SIEMENS

SIEMENS

	Fundamental safety instructions	1
SINAMICS	Parameters	2
SINAMICS S120/S150	Function diagrams	3
List Manual	Faults and alarms	$\mathbf{4}$
	Appendix	\mathbf{A}

Valid for
Drive
SINAMICS
Firmware version
5.1 SP1

Legal information

Warning notice system

This Manual contains information which you must observe to ensure your own personal safety as well as to avoid material damage. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to equipment damage have no safety alert symbol. Depending on the hazard level, warnings are indicated in a descending order as follows:

DANGER

indicates that death or serious injury will result if proper precautions are not taken.

WARNING

indicates that death or serious injury could result if proper precautions are not taken.

CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.
If more than one level of danger is simultaneously applicable, the warning notice for the highest level is used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified personnel

The product/system described in this documentation may only be operated by personnel qualified for the specific task in accordance with the relevant documentation for the specific task, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

WARNING

Siemens products are only permitted to be used for the applications listed in the catalog and in the associated technical documentation. If third-party products and components are used, then they must be recommended or approved by Siemens. These products can only function correctly and safely if they are transported, stored, set up, mounted, installed, commissioned, operated and maintained correctly. The permissible ambient conditions must be adhered to. Notices in the relevant documentation must be observed.

Trademarks

All names identified with $®$ are registered trademarks of Siemens AG. Any other names used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of liability

We have checked the contents of this publication for consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. The information given in this document is reviewed at regular intervals and any corrections that might be necessary are made in the subsequent editions.

Preface

SINAMICS documentation

The SINAMICS documentation is structured according to the following categories:

- General documentation/catalogs
- Manufacturer/service documentation

Additional information

Information on the following topics is available under the link:

- Ordering documentation/overview of documentation
- Additional links to download documents
- Using documentation online (find and search in manuals/information).
http://www.siemens.com/motioncontrol/docu
Please send any questions about the technical documentation (e. g. suggestions for improvement, corrections) to the following e-mail address:
docu.motioncontrol@siemens.com

My Documentation Manager

Information on how to produce individual contents for your own machine documentation based on Siemens contents is available under the link:
http://www.siemens.com/mdm

Training

Information about SITRAIN (Siemens Training on products, systems and solutions for automation) is available under the following link: http://www.siemens.com/sitrain

FAQs

You can find Frequently Asked Questions in the Service\&Support pages under Product Support:
http://support.automation.siemens.com

SINAMICS

You can find information on SINAMICS at: http://www.siemens.com/sinamics

Usage phases and their tools/documents (as an example)

Table V-1 Usage phases and the available tools/documents

Usage phase	Tools/documents
Orientation	SINAMICS S Sales Documentation
Planning/configuration	SIZER Engineering Tool Configuration Manuals, Motors
Deciding/ordering	SINAMICS S Catalogs
Installation/assembly	- SINAMICS S120 Equipment Manual for Control Units and Additional System Components - SINAMICS S120 Equipment Manual for Booksize Power Units - SINAMICS S120 Manual for Booksize Power Units C/D Type - SINAMICS S120 Manual for Chassis Power Units, Air-cooled - SINAMICS S120 Manual for Chassis Power Units, Liquid-cooled - SINAMICS S150 Operating Instructions - SINAMICS S120 Equipment Manual for AC Drives - SINAMICS S120 Manual Combi - SINAMICS S120M Equipment Manual Distributed Drive Technology - SINAMICS HLA System Manual Hydraulic Drive
Commissioning	- STARTER Commissioning Tool - Startdrive commissioning tool - SINAMICS S120 Getting Started with STARTER - SINAMICS S120 Getting Started with Startdrive - SINAMICS S120 Commissioning Manual with STARTER - SINAMICS S120 Commissioning Manual with Startdrive - SINAMICS S120 CANopen Commissioning Manual - SINAMICS S120 Function Manual Drive Functions - SINAMICS S120 Safety Integrated Function Manual - SINAMICS S120/S150 List Manual - SINAMICS S150 Operating Instructions - SINAMICS HLA System Manual Hydraulic Drive
Usage/operation	- SINAMICS S120 Commissioning Manual with STARTER - SINAMICS S120 Commissioning Manual with Startdrive - SINAMICS S120/S150 List Manual - SINAMICS S150 Operating Instructions - SINAMICS HLA System Manual Hydraulic Drive
Maintenance/servicing	- SINAMICS S120 Commissioning Manual with STARTER - SINAMICS S120 Commissioning Manual with Startdrive - SINAMICS S120/S150 List Manual - SINAMICS S150 Operating Instructions

Target group

This documentation is intended for machine manufacturers, commissioning engineers, and service personnel who use the SINAMICS drive system.

Benefits

This documentation contains the comprehensive information about parameters, function diagrams and faults and alarms required to commission and service the system.

This manual should be used in addition to the other manuals and tools provided for the product.

Standard scope

The scope of the functionality described in this document can differ from that of the drive system that is actually supplied.

- It may be possible for other functions not described in this documentation to be executed in the drive system. However, no claim can be made regarding the availability of these functions when the equipment is first supplied or in the event of servicing.
- Functions that are not available in a particular product version of the drive system may be described in the documentation. The functionality of the supplied drive system should only be taken from the ordering documentation.
- Extensions or changes made by the machine manufacturer must be documented by the machine manufacturer.

For reasons of clarity, this documentation does not contain all of the detailed information on all of the product types, and cannot take into consideration every conceivable type of installation, operation and service/maintenance.

Search guides

The following guides are provided to help you locate information in this manual:

1. Table of contents

- Table of contents for the complete manual (Page 9)
- Table of contents for function diagrams (Page 2007)

2. List of abbreviations (Page 3227)
3. References (Page 3236)
4. Index (Page 3243)

Technical Support

Country-specific telephone numbers for technical support are provided at the following Internet address:
http://www.siemens.com/automation/service\&support

EC Declaration of Conformity

The EC Declaration of Conformity for the EMC Directive can be found on the Internet at: http://support.automation.siemens.com/WW/view/de/21901735/134200

Alternatively, you can contact the Siemens office in your region in order to obtain the EC Declaration of Conformity.

Compliance with the General Data Protection Regulation

Siemens respects the principles of data protection, in particular the data minimization rules (privacy by design).

For this product, this means:
The product does not process neither store any person-related data, only technical function data (e.g. time stamps). If the user links these data with other data (e.g. shift plans) or if he stores person-related data on the same data medium (e.g. hard disk), thus personalizing these data, he has to ensure compliance with the applicable data protection stipulations.

Table of contents

1 Fundamental safety instructions 13
1.1 General safety instructions 14
1.2 Warranty and liability for application examples 14
1.3 Industrial security 15
2 Parameters 17
2.1 Overview of parameters 18
2.1.1 Explanation of the list of parameters 18
2.1.2 Number ranges of parameters 36
2.2 List of parameters 39
2.3 Parameters for data sets 1971
2.3.1 Parameters for command data sets (CDS) 1971
2.3.2 Parameters for drive data sets (DDS) 1974
2.3.3 Parameters for encoder data sets (EDS) 1990
2.3.4 Parameters for motor data sets (MDS) 1992
2.3.5 Parameters for power unit data sets (PDS) 1997
2.4 Parameters for write protection and know-how protection 1999
2.4.1 Parameters with "WRITE_NO_LOCK" 1999
2.4.2 Parameters with "KHP_WRITE_NO_LOCK" 2001
2.4.3 Parameters with "KHP_ACTIVE_READ" 2002
3 Function diagrams 2005
3.1 Table of contents 2007
3.2 Explanations on the function diagrams 2021
3.3 CU310-2 input/output terminals 2026
3.4 CU320-2 input/output terminals 2036
3.5 CX32-2 input/output terminals 2044
3.6 Control Unit communication 2049
3.7 S120M input/output terminals 2056
3.8 PROFlenergy 2058
3.9 PROFIdrive 2061
3.10 Internal control/status words 2123
3.11 Sequence control 2136
3.12 Brake control 2139
3.13 Safety Integrated Basic Functions 2144
3.14 Safety Integrated Extended Functions 2152
3.15 Safety Integrated Advanced Functions 2172
3.16 Safety Integrated TM54F 2176
3.17 Safety Integrated PROFIsafe 2189
3.18 Setpoint channel 2192
3.19 Setpoint channel not activated 2204
3.20 Basic positioner (EPOS) 2206
3.21 Position control 2222
3.22 Encoder evaluation 2227
3.23 Hydraulic drive 2239
3.24 Servo control 2249
3.25 Vector control 2275
3.26 Technology functions 2312
3.27 Technology controller 2322
3.28 Line droop control (r0108.12 = 1). 2329
3.29 Line transformer (r0108.4 = 1) 2334
$3.30 \quad$ Dynamic grid support (r0108.7 = 1) 2344
3.31 Signals and monitoring functions 2349
3.32 Diagnostics 2362
3.33 Data sets 2371
3.34 Basic Infeed 2377
3.35 Smart Infeed 2385
3.36 Active Infeed 2395
3.37 Terminal Board 30 (TB30) 2410
3.38 Communication Board CAN10 (CBC10) 2416
3.39 Terminal Module 15 (TM15) 2423
3.40 Terminal Module 17 High Feature (TM17 High Feature) 2429
3.41 Terminal Module 31 (TM31) 2431
3.42 Terminal Module 120 (TM120) 2442
3.43 Terminal Module 150 (TM150) 2445
3.44 Terminal Module 41 (TM41) 2449
3.45 Auxiliaries 2464
3.46 Voltage Sensing Module (VSM) 2468
3.47 Basic Operator Panel 20 (BOP20) 2471
3.48 External Braking Module 2473
4 Faults and alarms 2475
4.1 Overview of faults and alarms 2476
4.1.1 General information 2476
4.1.2 Explanation of the list of faults and alarms. 2480
4.1.3 Number ranges of faults and alarms 2487
4.2 List of faults and alarms 2489
A Appendix 3223
A. 1 ASCII table (characters that can be displayed) 3224
A. 2 List of abbreviations 3227
A. 3 References. 3236
Index 3243

Fundamental safety instructions

Content

1.1 General safety instructions 14
1.2 Warranty and liability for application examples 14
1.3 Industrial security 15

1.1 General safety instructions

WARNING

Danger to life if the safety instructions and residual risks are not observed

If the safety instructions and residual risks in the associated hardware documentation are not observed, accidents involving severe injuries or death can occur.

- Observe the safety instructions given in the hardware documentation.
- Consider the residual risks for the risk evaluation.

WARNING

Malfunctions of the machine as a result of incorrect or changed parameter settings
As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization (parameter assignments) against unauthorized access.
- Handle possible malfunctions by taking suitable measures, e.g. emergency stop or emergency off.

1.2 Warranty and liability for application examples

The application examples are not binding and do not claim to be complete regarding configuration, equipment or any eventuality which may arise. The application examples do not represent specific customer solutions, but are only intended to provide support for typical tasks. You are responsible for the proper operation of the described products. These application examples do not relieve you of your responsibility for safe handling when using, installing, operating and maintaining the equipment.

1.3 Industrial security

Note

Industrial security

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions only represent one component of such a concept.

The customer is responsible for preventing unauthorized access to its plants, systems, machines and networks. Systems, machines and components should only be connected to the enterprise network or the internet if and to the extent necessary and with appropriate security measures (e.g. use of firewalls and network segmentation) in place.
Additionally, Siemens' guidance on appropriate security measures should be taken into account. For more information about industrial security, please visit:

Industrial security (http://www.siemens.com/industrialsecurity).
Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends to apply product updates as soon as available and to always use the latest product versions. Use of product versions that are no longer supported, and failure to apply latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed at:

Industrial security (http://www.siemens.com/industrialsecurity).

WARNING

Unsafe operating states resulting from software manipulation

Software manipulations (e.g. viruses, trojans, malware or worms) can cause unsafe operating states in your system that may lead to death, serious injury, and property damage.

- Keep the software up to date.
- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.
- Make sure that you include all installed products into the holistic industrial security concept.
- Protect files stored on exchangeable storage media from malicious software by with suitable protection measures, e.g. virus scanners.

1 Fundamental safety instructions
1.3 Industrial security

Parameters

Content

2.1 Overview of parameters 18
2.2 List of parameters 39
2.3 Parameters for data sets 1971
2.4 Parameters for write protection and know-how protection 1999

2.1 Overview of parameters

2.1.1 Explanation of the list of parameters

Basic structure of the parameter descriptions

The data in the following example have been chosen at random. The description of a parameter includes as a maximum the information listed below. Some of the information is optional.

The "List of parameters (Page 39)" has the following structure:

Start of example

End of example

The individual pieces of information are described in detail below.

pxxxx[0...n] Parameter number

The parameter number is made up of a " p " or " r ", followed by the parameter number and the index or bit array (optional).

Examples of representation in the parameter list

- p... Adjustable parameters (read and write parameters)
- r... Display parameters (read only)
- p0918 Adjustable parameter 918
- p0099[0...3] Adjustable parameter 99, indices 0 to 3
- p1001[0...n] Adjustable parameter 1001, indices 0 to n ($\mathrm{n}=$ configurable)
- r0944 Display parameter 944
- r2129.0... 15 Display parameter 2129 with bit array from bit 0 (smallest bit) to bit 15 (largest bit)

Other examples of the notation in the documentation:

- p1070[1] Adjustable parameter 1070, index 1
- p2098[1]. 3 Adjustable parameter 2098, index 1 bit 3
- r0945[2](3) Display parameter 945, index 2 of drive object 3
- p0795.4 Adjustable parameter 795, bit 4

The following applies to adjustable parameters:
The parameter value "when shipped" is specified under "Factory setting" with the relevant unit in square parentheses. The value can be adjusted within the range defined by "Min" and "Max".

The term "linked parameterization" is used in cases where changes to adjustable parameters affect the settings of other parameters.

Linked parameterization can occur, for example, as a result of the following actions and parameters:

- Executing macros p0015, p0700, p1000, p1500
- Setting the PROFIBUS telegram (BICO interconnection)
p0922
- Setting component lists
p0230, p0300, p0301, p0400
- Automatically calculating and pre-assigning
p0112, p0340, p0578, p3900
- Restoring the factory settings p0970

The following applies to display parameters:
The fields "Min", "Max" and "Factory setting" are specified with a dash "-" and the relevant unit in square parentheses.

Note

The parameter list can contain parameters that are not visible in the expert lists of the particular commissioning software (e. g. parameters for trace functions).

BICO: Full parameter name / abbreviated name

The following abbreviations can appear in front of the BICO parameter name:

- BI: Binector Input This parameter is used for selecting the source of a digital signal.
- BO: Binector output

This parameter is available as a digital signal for interconnection with other parameters.

- $\mathrm{CI}: \quad$ Connector Input

This parameter is used for selecting the source of an "analog" signal.

- CO: Connector output

This parameter is available as an "analog" signal for interconnection with other parameters.

- CO/BO: Connector/Binector Output

This parameter is available as an "analog" and digital signal for interconnection with other parameters.

Note

A BICO input ($\mathrm{BI} / \mathrm{CI}$) cannot be interconnected with just any BICO output ($\mathrm{BO} / \mathrm{CO}$, signal source).
When interconnecting a BICO input using the commissioning software, only the corresponding possible signal sources are listed.

Function diagrams 1020 ... 1030 explain the symbols for BICO parameters and how to deal with BICO technology.

Drive object (function module)

A drive object (DO) is an independent, "self-contained" functional unit that has its own parameters and, in some cases, faults and alarms.

When carrying out commissioning using the commissioning software, you can select/deselect additional functions and their parameters by activating/deactivating function modules accordingly.

Note

References: SINAMICS S120 Function Manual Drive Functions
The parameter list specifies the associated drive object and function module for each individual parameter.

Examples:

- p1070 CI: Main setpoint

SERVO (extended setpoint), VECTOR
The parameter is available only in association with drive object SERVO with the "Extended setpoint channel" function module or with drive object VECTOR irrespective of activated function modules.

- p1055 BI: Jog bit 0

SERVO, VECTOR
The parameter is available in association with drive objects SERVO and VECTOR irrespective of activated function modules, i.e. it is also available with every activated function module belonging to the respective drive object.

A parameter can belong to one, several, or all drive objects.
The following information relating to "Drive object" and "Function module" can be displayed under the parameter number:

Table 2-1 Data in the "Drive object (function module)" field

Drive object (function module)	Type	Significance
All objects	-	This parameter is used by all drive objects.
A_INF	10	Active Infeed closed-loop control Closed-loop controlled, self-commutated infeed/regenerative feedback unit for generating a constant DC-link voltage
A_INF (supplementary control)	-	Active Infeed with "Additional controls" function module (r0108.3)
A_INF (line transformer)	-	Active Infeed with "Line transformer" function module (r0108.4).
A_INF (rec)	-	Active Infeed with "Recorder" function module (r0108.5).
A_INF (dynamic line buffering)	-	Active Infeed with "Dynamic line buffering" function module (r0108.7).
A_INF (cos phi)		Active Infeed with "cosine phi" function module (r0108.10).
A_INF (line droop control)	-	Active Infeed with "Line droop control" function module (r0108.12).
A_INF (parallel)	-	Active Infeed with "Parallel connection" function module (r0108.15).
A_INF (master/slave)	-	Active Infeed with "Master/Slave" function module (r0108.19).
A_INF (SW_sts)	-	Active Infeed with "Software gating set" function module (r0108.20).
A_INF (Brk Mod Ext)	-	Active Infeed with "Braking Module external" function module (r0108.26).
A_INF (Cooling unit)	-	Active Infeed with "Cooling unit" function module (r0108.28)
A_INF (PN CBE20)	-	Active Infeed with "PROFINET CBE20" function module (r0108.31).
B_INF	30	Basic Infeed closed loop control Unregulated line infeed unit (without regenerative feedback) for rectifying the line voltage of the DC link.
B_INF (rec)	Basic Infeed with "Recorder" function module (r0108.5).	
B_INF (parallel)	-	Basic Infeed with "Parallel connection" function module (r0108.15).
B_INF (Brk Mod Ext)	-	Basic Infeed with "Braking Module external" function module (r0108.26).
B_INF (Cooling unit)	-	Basic Infeed with "Cooling unit" function module (r0108.28)

2.1 Overview of parameters

Table 2-1 Data in the "Drive object (function module)" field, continued

Drive object (function module)	Type	Significance
B_INF (PN CBE20)		Basic Infeed with "PROFINET CBE20" function module (r0108.31).
CU_I	3	Control Unit SINAMICS Integrated (only SIMOTION D4×5-2).
CU_I_D410	201	Control Unit SINAMICS Integrated for SIMOTION D410-2.
CU_LINK	254	Object for Controller Extension 32 (CX32)
CU_NX_CX	4	Controller Extension for boosting the processing performance
CU_S_AC_DP	2	Control Unit SINAMICS S120 AC Drive with PROFIBUS interface.
CU_S_AC_PN	3	Control Unit SINAMICS S120 AC Drive with PROFINET interface.
CU_S120_DP	6	Control Unit SINAMICS S120 with PROFIBUS interface.
CU_S120_DP (CAN)	-	Control Unit SINAMICS S120 with PROFIBUS interface and function module "CAN" (p0108.29).
CU_S120_DP (COMM BOARD)	-	Control Unit SINAMICS S120 with PROFIBUS interface and "COMM BOARD" function module (p0108.30).
$\begin{aligned} & \hline \text { CU_S120_DP } \\ & \text { (PN CBE20) } \end{aligned}$	-	Control Unit SINAMICS S120 with PROFIBUS interface and "PROFINET CBE20" function module (p 0108.31).
CU_S120_PN	4	Control Unit SINAMICS S120 with PROFINET interface.
CU_S120_PN (CAN)	-	Control Unit SINAMICS S120 with PROFINET interface and function module "CAN" (p0108.29).
CU_S120_PN (COMM BOARD)	-	Control Unit SINAMICS S120 with PROFINET interface and "COMM BOARD" function module (p 0108.30).
$\begin{aligned} & \text { CU_S120_PN } \\ & \text { (PN CBE20) } \end{aligned}$	-	Control Unit SINAMICS S120 with PROFINET interface and "PROFINET CBE20" function module (p 0108.31).
CU_S150_DP	7	Control Unit SINAMICS S150 with PROFIBUS interface.
CU_S150_DP (CAN)	-	Control Unit SINAMICS S150 with PROFIBUS interface and function module "CAN" (p0108.29).
CU S150 DP (COMM BOARD)	-	Control Unit SINAMICS S150 with PROFIBUS interface and "COMM BOARD" function module (p 0108.30).
$\begin{aligned} & \hline \text { CU_S150_DP } \\ & \text { (PN CBE20) } \end{aligned}$	-	Control Unit SINAMICS S150 with PROFIBUS interface and "PROFINET CBE20" function module (p 0108.31).
CU_S150_PN	5	Control Unit SINAMICS S150 with PROFINET interface.
CU_S150_PN (CAN)	-	Control Unit SINAMICS S150 with PROFINET interface and function module "CAN" (p0108.29).
CU_S150_PN (COMM BOARD)	-	Control Unit SINAMICS S150 with PROFINET interface and "COMM BOARD" function module (p 0108.30).
$\begin{aligned} & \text { CU_S150_PN } \\ & \text { (PN CBE20) } \end{aligned}$	-	Control Unit SINAMICS S150 with PROFINET interface and "PROFINET CBE20" function module (p0108.31).
ENC	300	Object for a DRIVE-CLiQ encoder.
ENC (lin_encoder)	300	Object for a DRIVE-CLiQ encoder with "Linear encoder" function module (r0108.12).
ENC (PN CBE20)	300	Object for a DRIVE-CLiQ encoder with function module "PROFINET CBE20" (r0108.31).
HLA	70	Hydraulic linear drive.

Table 2-1 Data in the "Drive object (function module)" field, continued

Drive object (function module)	Type	Significance
HLA (ESR)	-	Hydraulic linear drive with "Extended Stop and Retract" function module (r0108.9).
HLA (PN CBE20)	-	Hydraulic linear drive with function module "PROFINET CBE20" (r0108.31).
HUB	150	DRIVE-CLiQ Hub Module.
R_INF	21	Renewable Infeed Control Closed-loop controlled, self-commutated infeed/regenerative feedback unit for generating a constant DC-link voltage
R_INF (additional cntrl)	-	Renewable Infeed with "Additional controls" function module (r0108.3)
R_INF (line transformer)	-	Renewable Infeed with "Line transformer" function module (r0108.4).
R_INF (rec)	-	Renewable Infeed with "Recorder" function module (r0108.5).
R_INF (dynamic line buffering)	-	Renewable Infeed with "Dynamic line buffering" function module (r0108.7).
R_INF (cos phi)		Renewable Infeed with "cosine phi" function module (r0108.10).
R_INF (line droop control)	-	Renewable Infeed with "Line droop control" function module (r0108.12).
R_INF (parallel)	-	Renewable Infeed with "Parallel connection" function module (r0108.15).
R_INF (master/slave)	-	Renewable Infeed with "Master/Slave" function module (r0108.19).
R_INF (SW_sts)	-	Renewable Infeed with "Software gating unit" function module (r0108.20).
R_INF (Brk Mod Ext)	-	Renewable Infeed with "Braking Module external" function module (r0108.26).
R_INF (Cooling unit)	-	Renewable Infeed with "Cooling unit" function module (r0108.28)
R_INF (PN CBE20)	-	Renewable Infeed with "PROFINET CBE20" function module (r0108.31).
S_INF	20	Smart Infeed control Unregulated line infeed/feedback unit for generating the DC-link voltage.
S_INF (rec)	-	Smart Infeed with "Recorder" function module (r0108.5).
S_INF (parallel)	-	Smart Infeed with "Parallel connection" function module (r0108.15).
S_INF (Brk Mod Ext)	-	Smart Infeed with "Braking Module external" function module (r0108.26).
S_INF (Cooling unit)	-	Smart Infeed with "Cooling unit" function module (r0108.28).
S_INF (PN CBE20)	-	Smart Infeed with "PROFINET CBE20" function module (r0108.31).
SERVO	11	Servo drive.
SERVO (Ext M_reg)	-	Servo drive with "Extended torque control" function module (r0108.1).
SERVO (pos ctrl)	-	Servo drive with "Closed-loop position control" function module (r0108.3).
SERVO (EPOS)	-	Servo drive with "Basic positioner" function module (r0108.4).
SERVO (rec)	-	Servo drive with "Recorder" function module (r0108.5).
SERVO (DSC spline)	-	Servo drive with function module "DSC with Spline" (r0108.6).
SERVO (APC)	-	Servo drive with "Advanced Positioning Control (APC)" function module (r0108.7).
SERVO (Extended setp)	-	Servo drive with "Extended setpoint channel" function module (r0108.8).
SERVO (ESR)	-	Servo drive with "Extended Stop and Retract" function module (r0108.9).
SERVO (J_estimator)	-	Servo drive with "Moment of inertia estimator" function module (r0108.10).

2.1 Overview of parameters

Table 2-1 Data in the "Drive object (function module)" field, continued

Drive object (function module)	Type	Significance
SERVO (Spin_diag)	-	Servo drive with "Spindle diagnostics" function module (r0108.11). This function module can only be used in conjunction with a Sensor Module Integrated 24 (SMI24).
SERVO (Lin)	-	Servo drive with "Linear motor" function module (r0108.12).
SERVO (Safety rot)	-	Servo drive with "Safety rotary axis" function module (r0108.13).
SERVO (ext brake)	-	Servo drive with "Extended brake control" function module (r0108.14)
SERVO (Tech_ctrl)	-	Servo drive with "Technology controller" function module (r0108.16).
SERVO (ext. msg)	-	Servo drive with "Extended messages/monitoring functions" function module (r0108.17).
SERVO (Ext. I_set_filt)	-	Servo drive with "Extended current setpoint filter" function module (r0108.21).
SERVO (cogging_M_comp)	-	Servo drive with "cogging torque compensation" function module (r0108.22).
SERVO (Dig IO)	-	Servo drive for SINAMICS S120M with "Digital inputs-/outputs" function module (r0108.23)
SERVO (Cooling unit)	-	Servo drive with "Cooling unit" function module (r0108.28).
SERVO (CAN)	-	Servo drive with "CAN" function module (r0108.29).
SERVO (PN CBE20)	-	Servo drive with "PROFINET CBE20" function module (r0108.31).
SERVO_AC	-	Servo drive for SINAMICS S120 AC Drive.
SERVO_I_AC	-	Servo drive for SINAMICS Integrated in SIMOTION D410-2.
TB30	100	Terminal Board 30.
TM120	207	Terminal Module 120.
TM15	203	Terminal Module 15 (SIMOTION D4xx-2 only).
TM150	208	Terminal Module 150.
TM15DI_DO	204	Terminal Module 15 (for SINAMICS).
TM17	202	Terminal Module 17 (SIMOTION D4xx-2 only).
TM31	200	Terminal Module 31.
TM41	201	Terminal Module 41.
TM54F_MA	205	Terminal Module 54F Master.
TM54F_SL	206	Terminal Module 54F Slave.
VECTOR	12	Vector drive.
VECTOR (n / M)	-	Vector drive with "Closed-loop speed/torque control" function module (r0108.2).
VECTOR (pos ctrl)	-	Vector drive with "Position control" function module (r0108.3).
VECTOR (EPOS)	-	Vector drive with "Basic positioner" function module (r0108.4).
VECTOR (rec)	-	Vector drive with "Recorder" function module (r0108.5).
VECTOR (J_estimator)		Vector drive with "Moment of inertia estimator" function module (r0108.10).
VECTOR (Safety rot)	-	Vector drive with "Safety rotary axis" function module (r0108.13).
VECTOR (ext brake)	-	Vector drive with "Extended brake control" function module (r0108.14).

Table 2-1 Data in the "Drive object (function module)" field, continued

Drive object (function module)	Type	Significance
VECTOR (parallel)	-	Vector drive with "Parallel connection" function module (r0108.15).
VECTOR (tech_ctrl)	-	Vector drive with "Technology controller" function module (r0108.16).
VECTOR (Ext. mess.)	-	Vector drive with "Extended messages/monitoring functions" function module (r0108.17).
VECTOR (F3E)	-	Vector drive with "F3E power unit" function module (r0108.26). The power unit is the PM250 for CU310-2 CRANES.
VECTOR (Cooling unit)	-	Vector drive with "Cooling unit" function module (r0108.28).
VECTOR (CAN)	-	Vector drive with "CAN" function module (r0108.29).
VECTOR (PN CBE20)	-	Vector drive with "PROFINET CBE20" function module (r0108.31).
VECTOR_AC	-	Vector drive for SINAMICS S120 AC Drive.
VECTOR_I_AC	-	Vector drive for SINAMICS Integrated in SIMOTION D410-2.

Note

The drive object type is used to identify the drive objects in the drive system (e. g. r0107, r0975[1]).

Can be changed

The "-" sign indicates that the parameter can be changed in any object state and that the change will be effective immediately.

The information "C1(x), C2(x), T, U" ((x): optional) means that the parameter can be changed only in the specified drive unit state and that the change will not take effect until the unit switches to another state. This can be a single state or multiple states.

The following states are available:

- C1(x) Device commissioning

C1: Commissioning 1
Device is being commissioned (p0009 > 0).
Pulses cannot be enabled.
The parameter can only be changed for the following device commissioning settings (p0009 > 0):

- C1: Can be changed for all settings p0009 > 0 .
- C1(x): Can be changed only when p0009 = x.

A modified parameter value does not take effect until the device commissioning mode is exited with p0009 $=0$.

- C2(x) Drive object commissioning

C2: Commissioning 2
Drive commissioning is in progress ($\mathrm{p} 0009=0$ and p0010>0).
Pulses cannot be enabled.
The parameter can only be changed in the following drive commissioning settings (p0010 > 0):

- C2: Can be changed for all settings p0010>0.
- C2(x): Can only be changed for the settings p0010 = x.

A modified parameter value does not take effect until drive commissioning mode is exited with p0010 $=0$.

- U Operation

U: Run
Pulses are enabled.

- T Ready T: Ready to run

The pulses are not enabled and the state " $\mathrm{C} 1(\mathrm{x})$ " or " $\mathrm{C} 2(\mathrm{x})$ " is not active.

Note

Parameter p0009 is CU-specific (belongs to the Control Unit).
Parameter p0010 is drive-specific (belongs to each drive object).
The operating state of individual drive objects is displayed in r0002.

Calculated

Specifies whether the parameter is influenced by automatic calculations.
The calculation attribute defines which activities influence the parameter.
The following attributes exist:

- CALC_MOD_ALL
- $\mathrm{p} 0340=1$
- Project download with commissioning software and send from p0340=3
- CALC_MOD_CON
- p0340 = 1, 3, 4
- CALC_MOD_EQU
- p0340 = 1, 2
- CALC_MOD_LIM_REF
- $\mathrm{p} 0340=1,3,5$
- p0578 = 1
- CALC_MOD_REG
$-\mathrm{p} 0340=1,3$

Note

For p3900 > 0, p0340 $=1$ is also called automatically.
After p1910 = 1, p0340 $=3$ is also called automatically.

Access level

Specifies the minimum access level required to be able to display and change the relevant parameter. The required access level can be set using p0003.
The system uses the following access levels:

- 1: Standard
- 2: Extended
- 3: Expert
- 4: Service

Note

Parameter p0003 is CU-specific (belongs to the Control Unit).
A higher access level will also include the functions of the lower levels.

Data type

The information on the data type can consist of the following two items (separated by a slash):

- First item

Data type of the parameter.

- Second item (for binector or connector input only)

Data type of the signal source to be interconnected (binector/connector output).
Parameters can have the following data types:

- Integer8 18 8-bit integer number
- Integer16 116 16-bit integer number
- Integer32 132 32-bit integer number
- Unsigned8 U8 8 bits without sign
- Unsigned16 U16 16 bits without sign
- Unsigned32 U32 32 bits without sign
- FloatingPoint32 Float 32-bit floating point number

Depending on the data type of the BICO input parameter (signal sink) and BICO output parameter (signal source), the following combinations are possible when creating BICO interconnections:

Table 2-2 Possible combinations of BICO interconnections

	BICO input parameter			
		Cl parameter		BI parameter
BICO output parameter	Unsigned32 / Integer16	Unsigned32 / Integer32	Unsigned32 1 FloatingPoint32	Unsigned32 1 Binary
CO: Unsigned8	x	x	-	-
CO: Unsigned16	x	X	-	-
CO: Integer16	x	x	r2050, r8850	-
CO: Unsigned32	x	x	-	-
CO: Integer32	x	x	r2060, r8860	-
CO: FloatingPoint32	x	x	x	-
BO: Unsigned8	-	-	-	x
BO: Unsigned16	-	-	-	x
BO: Integer16	-	-	-	x
BO: Unsigned32	-	-	-	x
BO: Integer32	-	-	-	x
BO: FloatingPoint32	-	-	-	-
Legend: $x: B I C O$ interconnection permitted $-: ~ B I C O$ interconnection not permitted rxxxx:				

Dynamic index

For parameters with a dynamic index [0...n], the following information is specified here:

- Data set (if available).
- Parameter for the number of indices ($\mathrm{n}=$ number -1).

The following information can be contained in this field:

- "CDS, p0170" (Command Data Set, CDS count)

Example:
p1070[0] \rightarrow main setpoint [command data set 0]
p1070[1] \rightarrow main setpoint [command data set 1], etc.

- "DDS, p0180" (Drive Data Set, DDS count)
- "EDS, p0140" (Encoder Data Set, EDS count)
- "MDS, p0130" (Motor Data Set, MDS count)
- "PDS, p0120" (Power unit Data Set, PDS count)
- "p2615" (traversing blocks count)

Data sets can only be created and deleted when p0010 $=15$.

Note

Information on the data sets can be taken from the following references:
References: SINAMICS S120 Function Manual Drive Functions Chapter "Data sets"

Function diagram

The parameter is included in this function diagram. The structure of the parameter function and its relationship with other parameters is shown in the specified function diagram.

P group (only when accessing via BOP (Basic Operator Panel))
Specifies the functional group to which this parameter belongs. The required parameter group can be set via p0004.

Note

Parameter p0004 is CU-specific (belongs to the Control Unit).

Unit, unit group and unit selection

The standard unit of a parameter is specified in square brackets after the values for "Min", "Max", and "Factory setting".

For parameters where the unit can be switched over, the specifications for "Unit group" and "Unit selection" determine the group to which this parameter belongs and with which parameter the unit can be changed over.

Example:

Unit group: 7_1, unit selection: p0505
The parameter belongs to unit group 7_1 and the unit can be changed over using p0505.

Note

Detailed information on changing over units can be found in the following references:
References: /FH1/ SINAMICS S120 Function Manual Drive Functions
References: /BA3/ SINAMICS S150 Operating Instructions
All the potential unit groups and possible unit selections are listed below.
Table 2-3 Unit groups (p0100)

Unit group	Unit selection for $\mathrm{p} 0100=$		Reference variable for \%
	0	1	
7_4	Nm	lbf ft	-
8_4	N	Ibf	-
14_2	W	HP	-
14_6	kW	HP	-
14_13	W/A	HP/A	-
14_14	W min/1000	HP min/1000	-
14_15	W/A ${ }^{2}$	HP/A ${ }^{2}$	-
14_16	W $\mathrm{min}^{2} / 1000^{2}$	HP $\min ^{2} / 1000^{2}$	-
25_1	kgm^{2}	$\mathrm{lb} \mathrm{ft}{ }^{2}$	-
27_1	kg	lb	-
28_1	Nm/A	Ibf ft/A	-
29_1	N/Arms	Ibf/Arms	-
30_1	m	ft	-
47_1	kW s/K	HP s/K	-
48_1	W/K	HP/K	-
48_2	W min/1000 K	HP min/1000 K	-
48_3	$\mathrm{W} \mathrm{min}^{2} / 1000^{2} \mathrm{~K}$	HP $\min ^{2} / 1000^{2} \mathrm{~K}$	-
50_1	K/W	K/HP	-

Table 2-4 Unit groups (p0349)

Unit group	Unit selection for p0349 =		Reference variable for \%
	1	$\mathbf{2}$	
$15 _1$	mH	$\%$	$\frac{1000 \cdot \mathrm{p} 0304}{2 \cdot \pi \cdot \sqrt{3} \cdot \mathrm{p} 0305 \cdot \mathrm{p} 0310}$
$16 _1$	Ohm	$\%$	$\frac{\mathrm{p} 0304}{\sqrt{3} \cdot \mathrm{p} 0305}$

Table 2-5 Unit groups (p0505)

Unit group	Unit selection for p0505 =				Reference variable for \%
	1	2	3	4	
2_1	Hz	\%	Hz	\%	p2000
2_2	kHz	\%	kHz	\%	p2000
3_1	1 rpm	\%	1 rpm	\%	p2000
4_1	$\mathrm{m} / \mathrm{min}$	\%	$\mathrm{ft} / \mathrm{min}$	\%	p2000
4_2	$\mathrm{m} / \mathrm{min}$	$\mathrm{m} / \mathrm{min}$	$\mathrm{ft} / \mathrm{min}$	$\mathrm{ft} / \mathrm{min}$	-
5-1	Vrms	\%	Vrms	\%	p2001
5_2	V	\%	V	\%	p2001
5_3	V	\%	V	\%	p2001
6_1	mArms	\%	mArms	\%	p2002
6_2	Arms	\%	Arms	\%	p2002
6_3	mA	\%	mA	\%	p2002
6 -4	A	\%	A	\%	p2002
6_5	A	\%	A	\%	p2002
7_1	Nm	\%	Ibf ft	\%	p2003
7_2	Nm	Nm	lbf ft	Ibf ft	-
7_3	Nm	\%	lbf ft	\%	1.0
8-1	N	\%	Ibf	\%	p2003
8_2	N	N	Ibf	Ibf	-
8_3	N	\%	Ibf	\%	1.0
14_1	W	\%	HP	\%	r2004 (drive)
14_3	W	\%	HP	\%	r2004 (infeed)
14_4	W	\%	HP	\%	r2004 (drive)
14_5	kW	\%	HP	\%	r2004 (drive)
14_7	kW	\%	HP	\%	r2004 (infeed)
14_8	kW	\%	HP	\%	r2004 (drive)
14_9	W	W	HP	HP	-
14_10	kW	kW	HP	HP	-

Table 2-5 Unit groups (p0505), continued

Unit group	Unit selection for p0505 =				Reference variable for \%
	1	2	3	4	
14_11	var	\%	var	\%	r2004
14_12	kvar	\%	kvar	\%	r2004
17_1	Nms/rad	\%	lbf ft s/rad	\%	p2003/p2000
18_1	VIA	\%	V/A	\%	p2001/p2002
19_1	A/V	\%	A/V	\%	p2002/p2001
21_1	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
21_2	K	K	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
22_1	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{ft} / \mathrm{s}^{2}$	$\mathrm{ft} / \mathrm{s}^{2}$	-
22_2	$\mathrm{m} / \mathrm{s}^{2}$	\%	$\mathrm{ft} / \mathrm{s}^{2}$	\%	p2007
23_1	Vrms s/m	Vrms s/m	Vrms s/ft	Vrms s/ft	-
24_1	Ns/m	Ns/m	lbf s/ft	lbf s/ft	-
24_2	Ns/m	\%	lbf s/ft	\%	p2003/p2000
26_1	$\mathrm{m} / \mathrm{s}^{3}$	$\mathrm{m} / \mathrm{s}^{3}$	$\mathrm{ft} / \mathrm{s}^{3}$	$\mathrm{ft} / \mathrm{s}^{3}$	-
39_1	1/s ${ }^{2}$	\%	$1 / \mathrm{s}^{2}$	\%	p2007
49_1	Nm/rad	\%	lbf ft/rad	\%	p2003

Table 2-6 Unit group (p0595)

Unit group	Unit selection for p0595 =	Reference variable for \%	
	Value	Unit	
$9 _1$	The values that can be set and the technological units are shown in p0595.		

Parameter values

Min	Minimum value of the parameter [unit]
Max	Maximum value of the parameter [unit]
Factory setting	Value when delivered [unit]
	In the case of a binector/connector input, the signal source of the
default BICO interconnection is specified. A non-indexed	
connector output is assigned the index [0].	
	A different value may be displayed for certain parameters
(e.g. p1800) at the initial commissioning stage or when	
establishing the factory settings.	
	Reason:
The setting of these parameters is determined by the operating	
environment of the Control Unit (e. g. depending on converter type,	
macro, power unit).	

Note

For SINAMICS G150/G130/S150, the macros and their settings are provided in the following documentation:

References: SINAMICS G150/G130/S150 Operating Instructions

Not for motor type

Specifies for which motor type this parameter has no significance
ASM : Induction motor
PMSM : Permanent-magnet synchronous motor
REL : Reluctance motor textiles / SIEMOSYN motor
RESM : Synchronous reluctance motor
SESM : Separately-excited synchronous motor

Normalization

Specification of the reference variable with which a signal value is automatically converted for a BICO interconnection.

The following reference variables are available:

- p2000 ... p2007: Reference speed, reference voltage, etc.
- PERCENT: $1.0=100 \%$
- 4000H: 4000 hex $=100 \%$ (wort) or 40000000 hex $=100 \%$ (double word)
- p0514: specific normalization

Refer to the description for $\mathrm{p} 0514[0 \ldots 9$] and $\mathrm{p} 0515[0 \ldots 19]$ to $\mathrm{p} 0524[0 \ldots 19]$

Expert list

Specifies whether this parameter is available in the expert list of the specified drive objects in the commissioning software.

1: Parameter exists in the expert list.
0 : Parameter does not exist in the expert list.

```
NOTICE
Users assume full responsibility for using parameters marked "Expert list: 0" (parameter does
not exist in the expert list).
These parameters and their functionalities have not been tested and no further user
documentation is available for them (e. g. description of functions). Moreover, no support is
provided for these parameters by "Technical Support" (hotline).
```


Description

Explanation of the function of a parameter.

Values

Lists the possible values of a parameter.

Recommendation

Information about recommended settings.

Index

The name and meaning of each individual index is specified for indexed parameters.
The following applies to the values (Min, Max, Factory setting) of indexed adjustable parameters:

- Min, Max:

The adjustment range and unit apply to all indices.

- Factory setting:

When all indices have the same factory setting, index 0 is specified with the unit to represent all indices.

When the indices have different factory settings, they are all listed individually with the unit.

Bit array

For parameters with bit arrays, the following information is provided about each bit:

- Bit number and signal name
- Meaning for signal states 1 and 0
- Function diagram (optional)

The signal is shown in this function diagram.

Dependency

Conditions that must be fulfilled in conjunction with this parameter. Also includes special effects that can occur between this parameter and others.

Where necessary, "See also:" indicates the following information:

- List of other relevant parameters to be considered.
- List of faults and alarms to be considered.

Safety instructions

Important information that must be observed to avoid the risk of physical injury or material damage.

Information that must be observed to avoid any problems.
Information that the user may find useful.

Danger	The description of this safety notice can be found at the beginning of this manual, see "Legal information (Page 4)".
Warning	The description of this safety notice can be found at the beginning of this manual, see "Legal information (Page 4)".
Caution	The description of this safety notice can be found at the beginning of this manual, see "Legal information (Page 4)".
Notice	The description of this safety notice can be found at the beginning of this manual, see "Legal information (Page 4)".
Information that the user may find useful.	

2.1.2 Number ranges of parameters

Note

The following number ranges represent an overview for all of the parameters available for the SINAMICS drive family.

The parameters for the product described in this List Manual are described in detail in "List of parameters (Page 39)".

Parameters are grouped into the following number ranges:
Table 2-7 Number ranges for SINAMICS

Range		Description
From	To	
0000	0099	Display and operation
0100	0199	Commissioning
0200	0299	Power section
0300	0399	Motor
0400	0499	Encoder
0500	0599	Technology and units, motor-specific data, probes
0600	0699	Thermal monitoring, maximum current, operating hours, motor data, central probe
0700	0799	Control Unit terminals, measuring sockets
0800	0839	CDS, DDS data sets, motor changeover
0840	0879	Sequence control (e.g. signal source for ON/OFF1)
0880	0899	ESR, parking, control and status words
0900	0999	PROFIBUS/PROFIdrive
1000	1199	Setpoint channel (e.g. ramp-function generator)
1200	1299	Functions (e.g. motor holding brake)
1300	1399	U/f control
1400	1799	Closed-loop control
1800	1899	Gating unit
1900	1999	Power unit and motor identification
2000	2009	Reference values
2010	2099	Communication (fieldbus)
2100	2139	Faults and alarms
2140	2199	Signals and monitoring
2200	2359	Technology controller
2360	2399	Staging, hibernation
2500	2699	Position control (LR) and basic positioning (EPOS)
2700	2719	Reference values, display

Table 2-7 Number ranges for SINAMICS, continued

Range		Description
From	To	
2720	2729	Load gearbox
2800	2819	Logic operations
2900	2930	Fixed values (e. g. percentage, torque)
3000	3099	Motor identification results
3100	3109	Real-time clock (RTC)
3110	3199	Faults and alarms
3200	3299	Signals and monitoring
3400	3659	Infeed closed-loop control
3660	3699	Voltage Sensing Module (VSM), Braking Module internal
3700	3779	Advanced Positioning Control (APC)
3780	3819	Synchronization
3820	3849	Friction characteristic
3850	3899	Functions (e. g. long stator)
3900	3999	Management
4000	4599	Terminal Board, Terminal Module (e. g. TB30, TM31)
4600	4699	Sensor Module
4700	4799	Trace
4800	4849	Function generator
4950	4999	OA application
5000	5169	Spindle diagnostics
5200	5230	Current setpoint filter 5 ... 10 (r0108.21)
5400	5499	System droop control (e. g. shaft generator)
5500	5599	Dynamic grid support (solar)
5600	5614	PROFlenergy
5900	6999	SINAMICS GM/SM/GL/SL
7000	7499	Parallel connection of power units
7500	7599	SINAMICS SM120
7700	7729	External messages
7770	7789	NVRAM, system parameters
7800	7839	EEPROM read/write parameters
7840	8399	Internal system parameters
8400	8449	Real-time clock (RTC)
8500	8599	Data and macro management
8600	8799	CAN bus
8800	8899	Communication Board Ethernet (CBE), PROFIdrive

Table 2-7 Number ranges for SINAMICS, continued

Range		Description
From	To	
8900	8999	Industrial Ethernet, PROFINET, CBE20
9000	9299	topology
9300	9399	Safety Integrated
9400	9499	Parameter consistency and storage
9500	9899	Safety Integrated
9900	9949	topology
9950	9999	Diagnostics, internal
10000	10199	Safety Integrated
11000	11299	Free technology controller 0, 1, 2
20000	20999	Free function blocks (FBLOCKS)
21000	25999	Drive Control Chart (DCC)
50000	53999	SINAMICS DC MASTER (closed-loop DC current control)
61000	61001	PROFINET

2.2 List of parameters

Product: SINAMICS S120/S150, Version: 5103400, Language: eng
Objects: CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM31, TM41, TM17, TM15, TM15DI_DO, TM120, TM150, TB30, TM54F_MA, TM54F_SL, ENC, HUB, CU_LINK

r0002	Control Unit operating display / CU op_display			
CU_I, CU_NX_CX,	Can	changed: -	Calculated: -	Access level: 1
CU_S_AC_DP,	Data	ype: Integer16	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-G	up: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not	motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min		Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0		117	-
Description:	Operating display for the Control Unit (CU).			
Value:	0: Operation			
	10: Ready			
	20: Wait for run-up			
	25: Wait for automatic FW update of DRIVE-CLiQ compo			
	31: Commissioning tool download			
	33: Remove/acknowledge topology			
	34: Exit commissioning mode			
	35: Carry out first com			
	70: Initialization			
	80: Reset active			
	99: Internal software error			
	101: Specify topolog			
	111: Insert drive obj			
	112: Delete drive ob			
	113: Change drive object			
	114: Change component nu			
	115: Run parameter download			
	117: Delete compo			
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.			
r0002	Drive operating display / Drv op_display			
HLA	Can be changed: -		Calculated: -	Access level: 1
	Data type: Integer16		Dyn. index: -	Func. diagram: -
	P-Group: -		Unit group: -	Unit selection: -
	Not for motor type: -		Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		250	-
Description: Value:	Operating display for the drive.			
	0 :	Operation - eve		
	10:	Operation - set	" (p1142, p1152)	
	12:	Operation - RF	art" = "1" (p1141)	
	13:	Operation - set	1140)	
	14:	Operation - shu	STOP C	
	16:	Operation - with	F1 using "ON/O	
	17:	Operation - bra	nly be interrupted	
	18:	Operation - bra	ult, acknowledge	
	21:	Ready for oper	ration" = "1" (p0	
	23:	Ready - set "Sy	le" = "1" (p0864)	
	31:	Ready for switc	1" = "0/1" (p084	
	35:	Switching on in	commissioning	
	41:	Switching on in	$1 "=$ "0" (p0840)	
	42:	Switching on in	" = "1" (p0844,	
	43:	Switching on in	" = "1" (p0848,	
	44:	Switching on in	erminal w/ 24 V	
	45:	Switching on in	cknowledge faut	
	46:	Switching on in	oning mode (p0	

2.2 List of parameters

2.2 List of parameters

r0002	TM120 operating display / TM120 op_display		
TM120	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	250	-
Description:	Operating display for Terminal Module 120 (TM120)		
Value:	0: Module in cyclic operation		
	40: Module not in cyclic operation		
	50: Alarm		
	60: Fault		
	70: Initialization		
	120: Module deactivated		
	200: Wait for booting/partial booting250: Device signals a topology error		
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.		
r0002	TM15 operating display / TM15 op_display		
TM15	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	250	-
Description: Value:	Operating display for Terminal Module 15 (TM15).		
	0 : Module in cyclic operation		
	40: Module not in cyclic operation		
	50: Alarm		
	60: Fault		
	70: Initialization		
	120: Module deactivated		
	200:250:		
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.		
r0002	TM150 operating display / TM150 op_display		
TM150	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	250	-
Description: Value:	Operating display for Terminal Module 150 (TM150)		
	0 : Module in cyclic operation		
	40: Module not in cyclic operation		
	50: Alarm		
	60: Fault		
	70: Initialization		
	120: Module deactivated		
	200: Wait for booting/partial booting		
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.		

r0002	TM15DI/DO operating display / TM15D op_display		
TM15DI_DO	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	250	-
Description:	Operating display for Terminal Module 15 (TM15).		
Value:	$\begin{array}{ll}\text { 0: } & \text { Module in cyclic operation } \\ \text { 40: } & \text { Module not in cyclic operatio }\end{array}$		
	$\begin{array}{ll}\text { 40: } & \text { Module not in cyclic operation } \\ \text { 50: } & \text { Alarm }\end{array}$		
	60: Fault		
	70: Initialization		
	120: Module deactivated		
	200: Wait for booting/partial booting250: Device signals a topology erro		
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.		
r0002	TM17 operating display / TM17 op_display		
TM17	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	250	-
Description: Value:	Operating display for Terminal Module 17 (TM17).		
	0: Module in cyclic operation		
	40: Module not in cyclic operation		
	50: Alarm		
	60: Fault		
	70: Initialization		
	200: Wait for booting		
	250: Device signals a topology error		
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.		
r0002	TM31 operating display / TM31 op_display		
	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	250	-
Description: Value:	Operating display for Terminal Module 31 (TM31).		
	0 : Module in cyclic operation		
	40: Module not in cyclic operation50: Alarm		
	$\begin{array}{ll}\text { 50: } & \text { Alarm } \\ \text { 60: } & \text { Fault }\end{array}$		
	70: Initialization		
	120: Module deactivated		
	200: Wait for booting/partial booting		
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.		

2.2 List of parameters

r0002	TM54F operating display / TM54F op_display			
TM54F_MA, TM54F_SL	Can	e changed: -	Calculated: -	Access level: 1
	Data	ype: Integer16	Dyn. index: -	Func. diagram: -
	P-Gr	up: -	Unit group: -	Unit selection: -
	Not for	motor type: -	Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		250	-
Description:	Operating display for Terminal Module 54F (TM54F).			
Value:	0: Module in cyclic operation			
	40: Module not in cyclic operation			
	50: Alarm			
	60: Fault			
	70: Initialization			
	120: Module deactivated			
	200: Wait for booting/partial booting			
r0002	Encoder DO operating display / Enc DO op_display			
ENC	Can be changed: -		Calculated: -	Access level: 1
	Data type: Integer16		Dyn. index: -	Func. diagram: -
	P-Group: -		Unit group: -	Unit selection: -
	Not for motor type: -		Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		250	-
Description:	Operating display for encoder drive object.			
Value:	0: Encoder in cyclic operation 35: Carry out first commissioning (p0010)			
	45: Remove fault cause, acknowledge fault			
	46: Exit commissioning mode (p0009, p0010)60: Encoder deactivated			
	200: Wait for booting/partial booting			
	250: Device signals a topology error			
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.			
r0002	DRI	E-CLiQ Hub	g display /	
HUB	Can be changed: -		Calculated: -	Access level: 1
	Data type: Integer16		Dyn. index: -	Func. diagram: -
	P-Group: -		Unit group: -	Unit selection: -
	Not for motor type:		Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		250	-
Description: Value:	Operating display for the DRIVE-CLiQ Hub Module.			
	0 : 40: $50:$ 60: 70: 120: 200: 250:	Module in cyclic operation		
		Module not in		
		Alarm		
		Fault		
		Initialization		
		Module deactiv		
		Wait for booting		
		Device signals		
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.			

2.2 List of parameters

Description: Sets the display filter for parameters with the Basic Operator Panel (BOP).
Value:

Dependency:

0:	All parameters
1:	Displays, signals
$2:$	Power unit
$3:$	Motor
4:	Encoder/position encoder
5:	Technology/units
7:	Digital inputs/outputs, commands, sequence control
8:	Analog inputs/outputs
10:	Setpoint channel/ramp-fct generator
12:	Functions
13:	U/f control
14:	Control
15:	Data sets
17:	Basic positioner
18:	Gating unit
19:	Motor identification
$20:$	Communication
$21:$	Faults, alarms, monitoring functions
$25:$	Position control
$28:$	Free function blocks
$47:$	Trace and function generator
$50:$	Technology Extensions
$90:$	Topology
$95:$	Safety Integrated
$98:$	Command Data Sets (CDS)
$99:$	Drive Data Sets (DDS)
Refer	to: p0003

Access level: 1

Unit selection: -
Expert list: 1

0

Notice:	The display filter via p0004 provides precise filtering and displays the corresponding parameters only when p0009 and $\mathrm{p} 0010=0$.
Note:	The set access level via p0003 is also relevant for the display filter via p0004.
	Examples (assumption: $0000=\mathrm{p} 0010=0$):
	$\mathrm{p} 0003=1, \mathrm{p} 0004=3$
	--> Only the parameters for the motor with access level 1 are displayed.
	p0003 $=2$, p0004 $=3$
	--> Only the parameters for the motor with access levels 1 and 2 are displayed.

p0005[0..1]	BOP operating display selection / BOP op_disp sel		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 2
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Max	Factory setting	
CU_S150_DP,	Min	65535	$[0] 2$
SERVO, VECTOR,	0		$[1] 0$
HLA, SERVO_AC,			

SERVO I AC
VECTOR_I_AC,
A_INF, S_INF, R_INF,
B_INF, TM $31, \mathrm{TM} 41$,
TM17, TM15,
TM15DI_DO, TM120
TM150, TB30
TM54F_MA,
TM54F_SL, ENC, HUB
Description: Sets the parameter number and parameter index for display for p0006=2,4 for the Basic Operator Panel (BOP).
Examples for the SERVO drive object:
p0005[0] = 21, p0005[1] = 0: Actual speed smoothed (r0021)
$\mathrm{p} 0005[0]=25, \mathrm{p} 0005[1]=0$: Output voltage smoothed (r0025)
Index: [0] = Parameter number
[1] = Parameter index
Dependency: Refer to: p0006
Note: Procedure:
1.

The parameter number to be displayed should be set in index 0 . Only the monitoring parameters (read-only parameters) can be set that actually exist for the actual drive object.
If the set parameter number is not indexed, or if there is an index in index 1 that lies outside the valid range of the set parameter, then index 1 is automatically set to 0 .
2.

The index that belongs to the parameter set in index 0 should be set in index 1 . The permissible changes in index 1 always depend on the parameter number set in index 0 .

p0006	BOP operating display mode / BOP op_disp mode		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Max	Expert list: 1
CU_S120_DP,	4	Factory setting	
CU_S150_DP, HLA,	Min	4	
TM31, TM41, TM17,	4		
TM15, TM15DI_DO,			
TM120, TM150, TB30,			
TM54F_MA,			
TM54F_SL, ENC, HUB			
Description:	Sets the mode of the operating display for the Basic Operator Panel (BOP) in the operating states "ready for		

[^0]
2.2 List of parameters

Dependency:	Refer to: p0005
Note:	Mode $0 \ldots 3$ can only be selected if also r0020, r0021 are available on the drive object.
	Mode 4 is available for all drive objects.

p0006	BOP operating display mode / BOP op_disp mode		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: -	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC,	Max	Factory setting	
A_INF, S_INF, R_INF, Min	4	4	

Description: Sets the mode of the operating display for the Basic Operator Panel (BOP) in the operating states "ready for
Value: 0: Operation --> r0021, otherwise r0020 <--> r0021
Operation --> r0021, otherwise r0020
Operation --> p0005, otherwise p0005 <--> r0020
Operation --> r0002, otherwise r0002 <--> r0020
p0005
Dependency: Refer to: p0005
Note: Mode $0 \ldots 3$ can only be selected if also r0020, r0021 are available on the drive object.
Mode 4 is available for all drive objects.

p0007	BOP background lighting / BOP lighting		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Max	Expert list: 1
CU_S120_DP,	Min	2000 [s]	Factory setting
CU_S150_DP	$0[s]$	$0[s]$	
	Sets the delay time until the background lighting of the Basic Operator Panel (BOP) is switched off.		
Description:	If no keys are actuated, then the background lighting automatically switches itself off after this time has expired.		
	p0007 = 0: Background lighting is always switched on (factory setting).		

p0008	BOP drive object after booting / BOP DO after boot		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120_PN, CU S150 PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_DP	Min	Max	Factory setting
	1	65535	1
Description:	Sets the required drive object that is active at the Basic Operator Panel (BOP) after booting.		
Note:	The value from p0008 initializes the display on the Basic Operator Panel (BOP) at the top left after booting.		
p0009	Device commissioning parameter filter / Dev comm par_filt		
CU_I, CU_NX_CX,	Can be changed: $\mathrm{C} 1, \mathrm{~T}$	Calculated: -	Access level: 1
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-Group: All groups	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	10000	1
Description:	Sets the device and basic drive commissioning.		
	By appropriately setting this parameter, those parameters are filtered that can be written into in the various commissioning steps.		

2.2 List of parameters

p0009 = 111: Insert drive object
This state allows a new drive object to be inserted using p9911.
p0009 = 112: Delete drive object
This state allows existing drive objects to be deleted using p9912 after the device has been commissioned for the first time.
p0009 = 113: Change drive object number
This state allows the drive object number of existing drive objects to be changed using p9913 after the device has been commissioned for the first time.
p0009 = 114: Change component number
This state allows the component number of existing components to be changed using p9914 after the device has been commissioned for the first time.
p0009 = 115: Parameter download
This state allows the complete device and drive commissioning using the parameter services.
p0009 = 117: Delete component
This state allows components to be deleted using p9917 after the device has been commissioned for the first time. p0009 = 10000: ready (asynchronous)
When changing into this state, internally p0009 is set $=0$. Additional calculations and checks are carried out in the background (asynchronously).

p0010	Drive commissioning parameter filter / Drv comm. par_filt		
HLA	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: All groups	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	10000	1
Description:	Sets the parameter filter to commission a drive.		
	Setting this parameter filters out the parameters that can be written into in the various commissioning steps.		
Value:	0: Ready		
	1: Quick commissioning		
	2: Valve commissioning		
	3: Cylinder commissioning		
	4: Encoder commissioning		
	5: Technological application/units		
	11: Function modules		
	15: Data sets		
	17: Basic positioner commissioning		
	25: Position control commissioning		
	29: Only Siemens internal		
	30: Parameter reset		
	95: Safety Integrated commissioning		
	10000: Ready with immediate feedback signal		
Note:	The drive can only be switched on outside the drive commissioning (inverter enable). To realize this, this parameter must be set to 0 .		
	By setting p3900 to a value other than 0, the quick commissioning is completed, and this parameter is automatically reset to 0 .		
	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		

p0010	Drive commissioning parameter filter / Drv comm. par_filt		
SERVO, VECTOR,	Can be changed: C2(1), T	Calculated: -	Access level: 1
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: 2800,2818
VECTOR_AC,	P-Group: All groups	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Max
VECTOR_I_AC	Min	10000	Factory setting
	0	1	
Description:	Sets the parameter filter to commission a drive.		
	Setting this parameter filters out the parameters that can be written into in the various commissioning steps.		

2.2 List of parameters

Dependency:	Refer to: p0970
Note:	Only the following values are possible: p0010 $=0,30$
	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.

p0010 TM150 commissioning parameter filter / TM150 com par_filt

TM150	Can be changed: C2(1), T	Calculated: -	Access level: 1
Data type: Integer16	Dyn. index: -	Func. diagram: -	
P-Group: All groups	Unit group: -	Unit selection: -	
Not for motor type: -	Scaling: -	Expert list: 1	
Min	Max	Factory setting	
	30	0	

Description: Sets the parameter filter for commissioning a Terminal Module 150 (TM150).
Setting this parameter filters out the parameters that can be written into in the various commissioning steps.
For the BOP, this setting also causes the read access operations to be filtered.
Value:

Dependency:
0: Ready
29: Only Siemens internal
30: Parameter reset

Note: \quad Only the following values are possible: p0010 = 0,30
Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.

p0010	TM17 commissioning parameter filter / TM17 comm par_filt		
TM17	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: All groups	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	30	0
Description:	Sets the parameter filter for Setting this parameter filters For the BOP, this setting als	Terminal Modu ers that can be d access opera	ous commissioning steps.
Value:	0: Ready 29: Only Siemens internal 30: Parameter reset		
Dependency:	Refer to: p0970		
Note:	Only the following values are possible: $\mathrm{p} 0010=0,30$		
	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
p0010	TM31 commissioning parameter filter / TM31 comm par_filt		
TM31	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: All groups	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	30	0
Description:	Sets the parameter filter for commissioning a Terminal Module 31 (TM31). Setting this parameter filters out the parameters that can be written into in the various commissioning steps. For the BOP, this setting also causes the read access operations to be filtered.		
Value:	0: Ready 29: Only Siemens internal 30: Parameter reset		
Dependency:	Refer to: p0970		
Note:	Only the following values are possible: $\mathrm{p} 0010=0,30$		
	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
p0010	TM41 commissioning parameter filter / TM41 comm par_filt		
TM41	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: All groups	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	30	0
Description:	Sets the parameter filter for Setting this parameter filters For the BOP, this setting als	Terminal Modu ers that can be d access opera	ious commissioning steps
Value:	0: Ready 4: Encoder commission 5: Technological applic 29: Only Siemens intern 30: Parameter reset		
Dependency:	Refer to: p0970		
Note:	Procedure for "Reset param	to 30 and p097	

2.2 List of parameters

p0010	TB30 commissioning parameter filter / TB30 comm.par_filt		
TB30	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: All groups	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	30	0
Description:	Sets the parameter filter for commissioning a Terminal Board 30 (TB30). Setting this parameter filters out the parameters that can be written into in the various commissioning steps. For the BOP, this setting also causes the read access operations to be filtered.		
Value:	0: Ready 29: Only Siemens internal 30: Parameter reset		
Dependency:	Refer to: p0970		
Note:	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
p0010	TM54F commissioning parameter filter / TM54F com par_filt		
TM54F_MA	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 2891
	P-Group: All groups	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	95	0
Description:	Sets the parameter filter for commissioning a Terminal Module 54F (TM54F). Setting this parameter filters out the parameters that can be written into in the various commissioning steps. For the BOP, this setting also causes the read access operations to be filtered.		
Value:	0: Ready 29: Only Siemens internal 30: Parameter reset 95: Safety Integrated commissioning		
Dependency:	Refer to: p0970		
Note:	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
p0010	Encoder DO commissioning parameter filter / EncDO com par_filt		
ENC	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: All groups	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	30	0
Description:	Sets the parameter filter to commission an encoder drive object. Setting this parameter filters out the parameters that can be written into in the various commissioning steps. For the BOP, this setting also causes the read access operations to be filtered.		
Value:	0: Ready 4: Encoder commissioning 5: Technological applica 29: Only Siemens interna 30: Parameter reset		
Note:	Procedure for "Reset parame	to 30 and p097	

2.2 List of parameters

Note: \quad The following parameters can be read and written on the Control Unit drive object:

- p0003 (access stage)
- p0009 (device commissioning, parameter filter)
- p0012 (BOP password acknowledgment (p0013))

The following applies for the user-defined list:

- password protection is only available on the drive object Control Unit and is valid for all of the drive objects.
- p0013 cannot be included in the user-defined list for all drive objects.
- p0003, p0009, p0011, p0012, p0976 cannot, for the drive object Control Unit, be included in the user-defined list.
- the user-defined list can be cleared and deactivated "restore factory setting".

A value of 0 means: Entry is empty.

p0015	Macro drive object / Macro DO		
SERVO, VECTOR,	Can be changed: C2(1)	Calculated: -	Access level: 1
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC, SERVO_IAC,	P-Group: Commands	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A INF, S_INF, R_INF,	Min	Max	Factory setting
B_INF, TM31, TM15DI_DO, TM120, TM150	0	999999	0
Description:	Runs the corresponding macro files.		
	The selected macro file must be available on the memory card/device memory.		
	Example:		
	p0015 = 6 --> the macro file PM000006.ACX is run.		
Dependency:	Refer to: p0700, p1000, p1500, r8570		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
	When executing a specific macro, the corresponding programmed settings are made and become activ		
	No errors were issued during quick commissioning (p3900 = 1) when writing to parameters of the QUICK_IBN group!		
Note:	The macros in the specified directory are displayed in r8570. r8570 is not in the expert list of the commissioning tool.		

p0016	Activate BOP user-defined list / BOP user list act		
CU_S_AC_DP,	Can be changed: $\mathrm{C} 1, \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU S150 PN,	P-Group: All groups	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_DP	Min	Max	Factory setting
	0	1	0
Description:	Setting for activating/deactivating the user-defined list for the Basic Operator Panel (BOP). If p0016 $=1$, then it is only possible to access parameters in the parameter list (p 0013).		
Value:	0 : BOP user-defined list deactivated 1: BOP user-defined list activated		
Dependency:	Refer to: p0011, p0012, p0013		
Note:	The user-defined list can only be deactivated with p0011 = p0012		
r0018	Control Unit firmware version / CU FW version		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 1
CU_S_AC_DP, CU S AC PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	4294967295	-
Description:	Displays the firmware version of the Control Unit.		
Dependency:	Refer to: r0128, r0148, r0158, r0197, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

2.2 List of parameters

r0019.0.. 14	CO/BO: Control word BOP / STW BOP				
CU_S_AC_DP,	Can be changed: -		Calculated: -	Access level: 3	
CU_S_AC_PN,	Data type: Unsigned16		Dyn. index: -	Func. diagram: 9912	
CU S150 PN,	P-Group: Displays, signals		Unit group: -	Unit selection: -	
CU_S120_DP,	Not for motor type: -		Scaling: -	Expert list: 1	
CU_S150_DP	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the control word for the Basic Operator Panel (BOP).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	ON / OFF (OFF1)	ON	OFF (OFF1)	-
	01	No coast-down / coast-down (OFF2)	No coast down	Coast down (OFF2)	-
	02	No Quick Stop / Quick Stop (OFF3)	No Quick Stop	Quick Stop (OFF3)	-
	07	Acknowledge fault (0-> 1)	Yes	No	-
	13	Motorized potentiometer raise	Yes	No	-
	14	Motorized potentiometer lower	Yes	No	-

r0020	Velocity setpoint smoothed / v_set smth		
HLA	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the actual smoothed velocity setpoint at the velocity controller input.		
Dependency:	Refer to: r0060		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The velocity setpoint is available smoothed (r0020) and unsmoothed (r0060).		

r0020	Speed setpoint smoothed / n_set smth		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5020, 6799
SERVO I AC,	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
VECTOR_I_AC	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the currently smoothed speed setpoint at the input of the speed controller or U/f characteristic (after the interpolator).		
Dependency:	Refer to: r0060		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed setpoint is available smoothed (r0020) and unsmoothed (r0060).		

r0020	Velocity setpoint smoothed / v_set smth		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5020,6799
SERVO_I_AC (Lin)	P-Group: Displays, signals	Unit group: $4 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Max
	Min	$-[\mathrm{m} / \mathrm{min}]$	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	
Description:	Displays the currently smoothed velocity setpoint at the input of the velocity controller or U/f characteristic (after the		
	interpolator).		
Dependency:	Refer to: r0060		

Note:	Smoothing time constant $=100 \mathrm{~ms}$
The signal is not suitable as a process quantity and may only be used as a display quantity.	
The velocity setpoint is available smoothed (r0020) and unsmoothed (r0060).	

r0021	CO: Actual velocity smoothed / v_act smooth		
HLA	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the smoothed actual value of the piston velocity.		
Dependency:	Refer to: r0022, r0063		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The velocity actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		

r0021	CO: Actual velocity smoothed / v_act smooth		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4700,4710
SERVO_I_AC (Lin)	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
Description:	Displays the smoothed actual value of the motor velocity.		
Dependency:	Refer to: r0022, r0063		
Note:	Smoothing time constant = 100 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		

r0021	CO: Actual speed smoothed / n_act smooth		
VECTOR,	Can be changed: -	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6799
	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the smoothed actual value of the motor speed.		
	Frequency components from the slip compensation (for induction motors) are not included.		
Dependency:	Refer to: r0022, r0063		

2.2 List of parameters

Note:	Smoothing time constant $=100 \mathrm{~ms}$
The signal is not suitable as a process quantity and may only be used as a display quantity.	
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).

r0022	Actual velocity smoothed / v_act smooth		
HLA	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[m / m i n]$	$-[\mathrm{m} / \mathrm{min}]$	
Description:	Displays the smoothed actual value of the piston velocity.		
Dependency:	Refer to: r0021, r0063		
Note:	Smoothing time constant $=100$ ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		

r0022	Speed actual value rpm smoothed / n_act rpm smooth		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4700,4710
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[r p m]$	$-[r p m]$	
Description:	Displays the smoothed actual value of the motor speed.		
	r0022 is identical to r0021, however, it always has units of rpm and contrary to r0021 cannot be changed over.		
Dependency:	Refer to: r0021, r0063		
Note:	Smoothing time constant = 100 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		

r0022	Actual velocity smoothed / v_act smooth		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4700,4710
SERVO_I_AC (Lin)	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
Description:	Displays the smoothed actual value of the motor velocity.		
Dependency:	Refer to: r0021, r0063		
Note:	Smoothing time constant = 100 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		

r0022	Speed actual value rpm smoothed / n_act rpm smooth		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6799
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the smoothed actual value of the motor speed. Frequency components from the slip compensation (for induction motors) are not included. r0022 is identical to r0021, however, it always has units of rpm and contrary to r0021 cannot be changed over.		
Dependency:	Refer to: r0021, r0063		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		

r0024	Output frequency smoothed /f_outp smooth		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5300,5730
	P-Group: Displays, signals	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: p2000	Max
	Min	$-[\mathrm{Hz}]$	Factory setting
	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$	
Description:	Displays the smoothed output frequency.		
Dependency:	Refer to: r0066		
Note:	Smoothing time constant = 100 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		

r0024	Output frequency smoothed /f_outp smooth		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6300,6799
VECTOR_I_AC	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	$-[\mathrm{Hz}]$	Factory setting
	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$	
Description:	Displays the smoothed output frequency.		
	Frequency components from the slip compensation (for induction motors) are included.		
Dependency:	Refer to: r0066		
Note:	Smoothing time constant = 100 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		

r0024

A_INF, S_INF, R_INF
Can be changed: -
Data type: FloatingPoint32
P-Group: Displays, signals
Not for motor type: -
Min
$-[\mathrm{Hz}] \quad-[\mathrm{Hz}]$
Displays the smoothed line supply frequency.
$\begin{array}{ll}\text { Description: } & \text { Displays the sm } \\ \text { Dependency: } & \text { Refer to: r0066 }\end{array}$

Access level: 3
Func. diagram: 8850, 8950
Unit selection: -
Expert list: 1
Factory setting

- [Hz]

2.2 List of parameters

Note: | Smoothing time constant $=300 \mathrm{~ms}$ |
| :--- |
| The signal is not suitable as a process quantity and may only be used as a display quantity. |
| The line frequency is available smoothed (r0024) and unsmoothed (r0066). |
| A positive sign of the frequency is obtained when the line supply phases U, V and W are connected with the correct |
| phase sequence. |
| A negative sign of the frequency is obtained when the 3 line phases are interchanged therefore designating a |
| negative direction of the rotating field of the 3-phase line supply voltage. |

r0025
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description: Displays the smoothed output voltage of the power unit.
Dependency:
Refer to: r0072
Note: \quad Smoothing time constant $=100 \mathrm{~ms}$
The signal is not suitable as a process quantity and may only be used as a display quantity.
The output voltage is available smoothed (r0025) and unsmoothed (r0072).

r0025[0...4]	CO: Input voltage smoothed / U_inp smooth		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8850, 8950
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display and connector output for the smoothed actual values of the input voltage.		
Index:	[0] = Power unit input terminals (model)		
	[1] = Line filter input terminals (VSM)		
	[2] = Line voltage source (model)		
	[3] = Line voltage source smoothed (model)		
	[4] = Line voltage source strongly smoothed (model)		
Dependency:	Refer to: r0072		
Note:	Smoothing time constant $=300 \mathrm{~ms}$		
	The signals are not suitable as process quantity and may only be used as display quantities.		
	The input voltages are available smoothed (r0025) and unsmoothed (r0072).		
	For r0025[0]:		
	Pulsed voltage at the line supply input terminals of the power unit.		
	The value is calculated from the modulation depth r0074, and is therefore only correct in the closed-loop controlled mode and when the pulses are enabled.		
	For r0025[1]:		
	Absolute voltage value at the input terminals of the line filter or the connection point of a Voltage Sensing Module (VSM).		
	If a VSM is not connected, then the value is calculated from the VSM measured values r3661 and r3662 and is therefore equal to 0 .		
	For r0025[2]:		
	Estimated value for the voltage of the voltage source that is calculated in the voltage model of the line supply PLL. For r0025[3]:		
	Smoothed display value of the filtered source voltage from r0072[3].		
	For r0025[4]:		
	Smoothed display value of th	voltage from r00	

r0026	CO: DC link voltage smoothed / Vdc smooth		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 8750, 8850, 8950
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the smoothed actual value of the DC link voltage.		
Dependency:	Refer to: r0070		
Notice:	For SINAMICS S120 AC Drive (AC/AC) the following applies:		
	When measuring a DC link voltage $<200 \mathrm{~V}$, for the Power Module (e.g. PM340) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		
Note:	SERVO, VECTOR: Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		

r0026	CO: DC link voltage smoothed / Vdc smooth		
VECTOR,	Can be changed: -	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6799, 8750,
VECTOR_I_AC			8850,8950
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	$-[V]$

Description:	Displays the smoothed actual value of the DC link voltage.
Dependency:	Refer to: r0070
Notice:	For SINAMICS S120 AC Drive (AC/AC) the following applies:
	When measuring a DC link voltage $<200 \mathrm{~V}$, for the Power Module (e.g. PM340) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.
Note:	SERVO, VECTOR: Smoothing time constant = 100 ms
	The signal is not suitable as a process quantity and may only be used as a display quantity.
	The DC link voltage is available smoothed (rO026) and unsmoothed (rOO70).

r0026 CO: DC link voltage smoothed / Vdc smooth

A_INF, S_INF, R_INF,	Can be changed: -	Calculated: -	Access level: 2
B_INF	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799, 8750, 8850, 8950
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the smoothed actual value of the DC link voltage.		
Dependency:	Refer to: r0070		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
Note:	A_INF, B_INF, S_INF: smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		

r0027	CO: Absolute actual current smoothed / I_act abs val smth		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC, VECTOR_AC, SERVO I AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799, 8850, 8950
VECTOR I AC,	P-Group: Displays, signals	Unit group: -	Unit selection: -
A_INF, S_INF, R_INF	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the smoothed absolute actual current value.		
Dependency:	Refer to: r0068		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
Note:	A_INF, S_INF, VECTOR: Smoothing time constant $=300 \mathrm{~ms}$		
	SERVO: Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		

r0027	CO: Absolute actual current smoothed / I_act abs val smth		
B_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8750
	P-Group: Displays, signals	Unit group: 6_4	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the smoothed absolute actual current value.		
Dependency:	Refer to: r0068		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
	For Basic Line Modules of chassis format, the displayed value is invalid as these units do not have any current sensing.		
Note:	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The absolute current actual	smoothed (r0027)	

r0028	Modulation depth smoothed / Mod_depth smth		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC, VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799, 8950
SERVO_IAC,	P-Group: Displays, signals	Unit group: -	Unit selection: -
A_INF, R_INF	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the smoothed actual value of the modulation depth.		
Dependency:	Refer to: r0074		
Note:	A_INF: Smoothing time constant $=300 \mathrm{~ms}$		
	SERVO, VECTOR: Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The modulation depth is ava	(r0028) and uns	

r0029	Current actual value field-generating smoothed / Id_act smooth		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_IAC, } \end{aligned}$	P-Group: Displays, signals	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the smoothed field-generating actual current.		
Dependency:	Refer to: r0076		
Note:	SERVO: Smoothing time constant $=100 \mathrm{~ms}$		
	VECTOR: Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		

r0029	Reactive current actual value smoothed / I_react smooth		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8850,8950
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	$-[$ Arms $]$	Factory setting
	$-[$ [Arms $]$	$-[$ Arms $]$	
Description:	Displays the smoothed actual value of the reactive current component.		
Note:	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The reactive current actual value is available smoothed (r0029) and unsmoothed (r0076).		

r0030	Current actual value torque-generating smoothed / Iq_act smooth		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799
VECTOR_AC, SERVO I AC,	P-Group: Displays, signals	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the smoothed torque-generating actual current.		
Dependency:	Refer to: r0078		
Note:	SERVO: Smoothing time constant $=100 \mathrm{~ms}$		
	VECTOR: Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque-generating current actual value is available smoothed (r0030 with 100 ms , r0078[1] with p0045) and unsmoothed (r0078[0]).		
	The following applies for VECTOR:		
	The torque-generating current actual value is available smoothed (r0030 with 300 ms) and unsmoothed (r0078).		

2.2 List of parameters

r0030	Current actual value force generating smoothed / Iq_act smooth		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799
SERVO_I_AC (Lin)	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the smoothed force-generating actual current.		
Dependency:	Refer to: r0078		
Note:	SERVO: Smoothing time constant $=100 \mathrm{~ms}$		
	VECTOR: Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity. The following applies for SERVO.		
	The force-generating current actual value is available smoothed (r0030 with 100 ms , r0078[1] with p0045) and unsmoothed (r0078[0]).		
	The following applies for VECTOR:		
	The torque-generating current actual value is available smoothed (r 0030 with 300 ms) and unsmoothed (r0078)		

r0030 Active current actual value smoothed / I_active smooth

A_INF, S_INF, R_INF

Can be changed: -
Data type: FloatingPoint32
P-Group: Displays, signals
Not for motor type: -
Min

- [Arms]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: p2002
Max

- [Arms]

Access level: 3
Func. diagram: 8850, 8950
Unit selection: -
Expert list: 1
Factory setting

- [Arms]

Description:
Dependency:
Note:

Displays the smoothed actual value of the active current components.
Refer to: r0078
Smoothing time constant $=300 \mathrm{~ms}$
The signal is not suitable as a process quantity and may only be used as a display quantity.
The active current actual value is available smoothed (r0030) and unsmoothed (r0078).

r0031	Force actual value smoothed / F_act smooth		
HLA	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: 8_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Displays the smoothed force setpoint.		
Dependency:	Refer to: r0080		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.The force actual value is available smoothed (r0031) and unsmoothed (r0080).		

r0031	Actual torque smoothed / M_act smooth		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730,6799
VECTOR_AC,	P-Group: Displays, signals	Unit group: $7 _1$	Unit selection: p0505
SERVO_I_AC,	Scaling: p2003	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
	$-[\mathrm{Nm}]$		
Description:	Displays the smoothed torque actual value.		
Dependency:	Refer to: r0080		
Note:	Smoothing time constant $=100$ ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque actual value is available smoothed (r0031) and unsmoothed (r0080).		

r0031	Force actual value smoothed / F_act smooth		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730,6799
SERVO_I_AC (Lin)	P-Group: Displays, signals	Unit group: 8_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{N}]$	$-[\mathrm{N}]$	$-[\mathrm{N}]$
Description:	Displays the smoothed force setpoint.		
Dependency:	Refer to: r0080		
Note:	Smoothing time constant = 100 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		

r0032

SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC, A_INF, S_INF, R_INF

P-Group: Displays, signals Not for motor type: Min - [kW]

Can be changed: -
Data type: FloatingPoint32

CO: Active power actual value smoothed / P_actv_act smth

Display and connector output for the smoothed actual value of the active power.
Description:
Dependency

Notice:

Note:

Calculated: -
Dyn. index: -
Unit group: 14_10
Scaling: r2004
Max

- [kW]

Access level: 2
Func. diagram: 5730, 6799, 8750, 8850, 8950
Unit selection: p0505
Expert list: 1
Factory setting

- [kW]

This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.
Significance for the drive: Power output at the motor shaft
Significance for the infeed: Line power drawn
For A_{-}INF, B_INF and S_INF the following applies:
The active power is available smoothed (r 0032 with 300 ms) and unsmoothed (r0082).
The following applies for SERVO:
The active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]).
For VECTOR and VECTORMV, the following applies:
The active power is available smoothed (r 0032 with 100 ms) and unsmoothed (r0082).

r0032	CO: Active power actual value smoothed / P_actv_act smth		
B_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799, 8750, 8850, 8950
	P-Group: Displays, signals	Unit group: 14_10	Unit selection: p0505
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Display and connector output for the smoothed actual value of the active power.		
Dependency:	Refer to: r0082		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
	For Basic Line Modules of chassis format, the displayed value is invalid as these units do not have any current sensing.		
Note:	Significance for the drive: Power output at the motor shaft		
	Significance for the infeed: Line power drawn		
	For A_INF, B_INF and S_INF the following applies:		
	The active power is available smoothed (r0032 with 300 ms) and unsmoothed (r0082).		
	The following applies for SERVO:		
	The active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]).		
	For VECTOR and VECTORMV, the following applies:		
	The active power is available smoothed (r0032 with 100 ms) and unsmoothed (r0082).		

r0033	Torque utilization smoothed/ M_util smooth		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8012
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the smoothed torque utilization as a percentage.		
	The torque utilization is obtained from the required smoothed torque in reference to the torque limit, scaled using p2196.		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque utilization is available smoothed (r0033) and unsmoothed (r0081).		
	For M_set total (r0079) > M_max offset (p1532), the following applies:		
	- demanded torque = M_set total - M_max offset		
	- actual torque limit = M_max upper effective (r1538) - M_max offset		
	For M_set total (r0079) <= M_max offset (p1532), the following applies:		
	- demanded torque = M_max offset - M_set total		
	- actual torque limit = M_max offset - M_max lower effective (r1539)		
	For the actual torque limit = 0, the following applies: r0033 = 100\%		
	For the actual torque limit < 0, the following applies: r0033 $=0 \%$		

r0033
SERVO (Lin),
SERVO_AC (Lin),
SERVO_I_AC (Lin)

Force utilization smoothed / F_util smooth		
Can be changed: -	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8012
P-Group: Displays, signals	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: PERCENT	Expert list: 1
Min	Max	Factory setting
- [\%]	- [\%]	- [\%]
Displays the smoothed force utilization as a percentage.		
The force utilization is obtained from the required smoothed force referred to the force limit.		
Smoothing time constant $=100 \mathrm{~ms}$		
The signal is not suitable as a process quantity and may only be used as a display quantity.		
The force utilization is available smoothed (r0033) and unsmoothed (r0081).		
For F_set total (r0079) > F_max offset (p1532), the following applies:		
- demanded torque = F_set total - F_max offset		
- actual force limit = F_max upper effective (r1538) - F_max offset		
For F_set total (r0079) <= F_max offset (p1532), the following applies:		
- demanded force = F_max offset - F_set total		
- actual force limit = F_max offset - F_max lower effective (r1539)		
For the actual force limit = 0, the following applies: r0033 = 100\%		
For the actual force limit <0, the following applies: r0033 $=0 \%$		

r0033
VECTOR,
VECTOR_AC,
VECTOR_I_AC

Description:

Note:
Torque utilization smoothed / M_util smooth
Can be changed: -
Data type: FloatingPoint32
P-Group: Displays, signals
Not for motor type: -
Min

- [\%]

Displays the smoothed torque utilization as a percentage.
The torque utilization is obtained from the required smoothed torque in reference to the torque limit, scaled using p2196.

Calculated: -
Dyn. index: -
Unit group: -
Scaling: PERCENT

Max

- [\%]

Access level: 3
Func. diagram: 8012
Unit selection: -
Expert list: 1
Factory setting

- [\%]

Smoothing time constant $=100 \mathrm{~ms}$

The signal is not suitable as a process quantity and may only be used as a display quantity.
The torque utilization is available smoothed (r0033) and unsmoothed (r0081).
For M_set total $($ r0079) >0, the following applies:

- Required torque $=M$ _set total
- Actual torque limit = M_max upper effective (r1538)

For M_set total (r0079) <= 0, the following applies:

- Required torque $=-$ M_set total
- Actual torque limit = - M_max lower effective (r1539)

For the actual torque limit $=0$, the following applies: r0033 = 100 \%
For the actual torque limit < 0, the following applies: r0033 $=0 \%$

r0035

SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO I AC, VECTOR_I_AC

CO: Motor temperature / Mot temp

Can be changed: -
Data type: FloatingPoint32
P-Group: Displays, signals
Not for motor type: -
Min
$-\left[{ }^{\circ} \mathrm{C}\right]$
Display and connector output for the actual temperature in the motor.
For r0035 not equal to $-200.0^{\circ} \mathrm{C}$, the following applies:

- this temperature display is valid.
- a KTY/PT1000 temperature sensor is connected.
- the thermal model for the induction motor is activated (p0612 bit $1=1$ and temperature sensor deactivated: p0600
$=0$ or p0601 = 0).
For r0035 equal to $-200.0^{\circ} \mathrm{C}$, the following applies:
- this temperature display is not valid (temperature sensor error).
- a PTC sensor or bimetallic NC contact is connected.
- the temperature sensor of the synchronous motor is deactivated ($\mathrm{p} 0600=0$ or p0601 $=0$).

r0036	CO: Power unit overload I2t / PU overload I2t		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8021
VECTOR_AC, SERVO IAC,	P-Group: Displays, signals	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: PERCENT	Expert list: 1
A_INF, S_INF, R_INF,	Min	Max	Factory setting
B	- [\%]	- [\%]	- [\%]
Description:	Displays the power unit ove A current reference value is conducted by the power unit of the capacitors, inductanc If the I 2 t reference current of In the other case, the degre	using the 12 t calculat 2 t monitoring of the po rence of the switching is not exceeded, then load is calculated, wh	esents the current that can be continuously permissible current $\%$) is not displayed. ults in a trip.
Dependency:	Refer to: p0290, p0294		
r0037[0...1]	Control Unit temperature / CU temp		
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU I D410	Can be changed: - Data type: FloatingPoint32 P-Group: Displays, signals Not for motor type: - Min $-\left[{ }^{\circ} \mathrm{C}\right]$	Calculated: - Dyn. index: - Unit group: - Scaling: p2006 Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Displays the measured Control Unit temperature.
An appropriate message is output when the permitted operating temperature is exceeded.
Index: [0] = Actual measured value
[1] = Maximum measured value
Dependency: Refer to: A01009
Notice: Only for internal Siemens troubleshooting.
Note: \quad The value of -200 indicates that there is no measuring signal.

r0037[0...1]	CO: HLA temperature / HLA temp		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Display and connector output for the measured temperature in the Hydraulic Module.
Fault F30611 with fault value 1950 is output when the permitted operating temperature is exceeded. An implausible operating temperature value results in fault F30611 with fault value 1951.
Index:
[0] = Actual measured value
[1] = Maximum measured value
Notice: Only for internal Siemens troubleshooting.
Note: \quad The value of -200 indicates that there is no measuring signal.

r0038	Power factor smoothed/ Cos phi smooth		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC, VECTOR_I_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6799, 8850, 8950
A_INF, S_INF, R_INF	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the smoothed actual power factor.		
Notice:	For infeed units, the following applies:		
	For active powers < 25% of the rated power, this does not provide any useful information.		
Note:	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	Meaning for motor:		
	- power factor of the basic fundamental signals at the converter output.		
	Meaning for infeed:		
	- Power factor at the connec	, r3471)	

2.2 List of parameters

r0039[0...2]	CO: Energy display / Energy displ
SERVO, VECTOR, SERVO_AC, VECTOR AC, SERVO_IAC, VECTOR_I_AC	Can be changed: - Calculated: - Access level: 2 Data type: FloatingPoint32 Dyn. index: - Func. diagram: - P-Group: Displays, signals Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting $-[\mathrm{kWh}]$ $-[\mathrm{kWh}]$ $-[\mathrm{kWh}]$
Description: Recommendation: Index:	Display and connector output for the energy values at the output terminals of the power unit. r0042 should be used as process energy display. [0] = Energy balance (sum) [1] = Energy drawn [2] = Energy fed back
Dependency:	Refer to: p0040
Note:	For a BICO interconnection, signal source r0039 supplies the floating-point value in Ws. For index [0]: Difference between the energy drawn and energy that is fed back.

r0042[0...2]	CO: Process energy display / Proc energy disp		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC,	Data type: Integer32	Dyn. index: -	Func. diagram: -
VECTOR_AC, SERVO_I_AC,	P-Group: Displays, signals	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Wh]	- [Wh]	- [Wh]
Description: Index:	Display and connector output for the energy values at the output terminals of the power unit. [0] = Energy balance (sum) [1] = Energy drawn [2] = Energy fed back		
Dependency:	Refer to: p0043		
Note:	The signal can be displayed as process variable (scaling: $1=1 \mathrm{~Wh}$).		
	This is enabled in p0043.		
	The display is also reset with p0040 $=1$.		
	If an enable is present in r0043 when the Control Unit powers up, then the value from r0039 is transferred into r0042		
	As r0039 serves as a reference signal for r0042, due to format reasons, the process energy display can only process values of r0039 up to 2147483 kWh . r0039 should also be reset using this value.		

p0043	BI: Enable energy usage display / En	
SERVO, VECTOR,	Can be changed: U, T	Calc
SERVO_AC,	Data type: Unsigned32 / Binary	Dyn
VECTOR_AC,	P-Group: Communications	Unit
SERVO_IAC,	Not for motor type: -	Max
VECTOR_I_AC	Min	-
	-	Sets the signal source to enable/reset the process
Description:	BI: p0043 = 1 signal:	
	The process energy display is enabled in r0042.	
Dependency:	Refer to: ro042	

p0045	Display values smoothing time constant / Disp_val T_smooth		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
HLA, SERVO_AC, VECTOR_AC, SERVO IAC	Data type: FloatingPoint32	Dyn. index: -	$\begin{aligned} & \text { Func. diagram: } 4715,5610 \text {, } \\ & 5730,6714,8012 \end{aligned}$
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC, } \end{aligned}$	P-Group: -	Unit group: -	Unit selection: -
S_INF --	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	1.00 [ms]
Description:	Sets the smoothing time con SERVO: r0078[1], r0079[1], VECTOR: r0063[1], r0068[1]	wing display va drom the quan [1].	p0045), r0082[1].

p0045	Display values smoothing time constant / Disp_val T_smooth		
A_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$10000.00[\mathrm{~ms}]$	
Description:	Sets the smoothing time constant for the following display values:		
	r5515[1], r5516[1]		

2.2 List of parameters

r0046.0.. 30	CO/BO: Missing enable signal / Missing enable sig				
HLA	Can be changed: -		Calculated: - Acces		
	Data type: Unsigned32 Dy		Dyn. index: - Func.		
	P-Group: Displays, signals U		Unit group: - Unit s		
	Not for motor type: - S		Scaling: -	Expert	
	Min M		Max	Factory setting	
	- -		-	-	
Description:	Display and BICO output for missing enable signals that are preventing the closed-loop drive control from being commissioned.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	OFF1 enable missing	Yes	No	-
	01	OFF2 enable missing	Yes	No	-
	02	OFF3 enable missing	Yes	No	-
	03	Operation enable missing	Yes	No	-
	07	The 26.5 V supply voltage is missing	Yes	No	-
	08	Safety enable missing	Yes	No	-
	09	System pressure missing	Yes	No	-
	10	Ramp-function generator enable missing	Yes	No	-
	11	Ramp-function generator start missing	Yes	No	-
	12	Setpoint enable missing	Yes	No	-
	16	OFF1 enable internal missing	Yes	No	-
	17	OFF2 enable internal missing	Yes	No	-
	18	OFF3 enable internal missing	Yes	No	-
	19	Power enable internal missing	Yes	No	-
	21	STOP2 enable internal missing	Yes	No	-
	26	Drive inactive or not operational	Yes	No	-
	30	Velocity controller inhibited	Yes	No	-
Dependency:	Refer to: r0002				
Note:	The value r0046 $=0$ indicates that all enable signals for this drive are present.				
	Bit $00=1$ (enable signal missing), if:				
	- the signal source in p0840 is a 0 signal.				
	- there is a "switching on inhibited".				
	Bit $01=1$ (enable signal missing), if:				
	- the signal source in p0844 or p0845 is a 0 signal.				
	Bit $02=1$ (enable signal missing), if:				
	- the signal source in p0848 or p0849 is a 0 signal.				
	Bit $03=1$ (enable signal missing), if:				
	- the signal source in p0852 is a 0 signal.				
	Bit $07=1$ (enable signal missing), if:				
	- the 26.5 V supply voltage is missing (X271).				
	Bit $08=1$ (enable signal missing), if:				
	- safety functions have been enabled and STO is active.				
	- a safety-relevant signal is present with a STOP A response. STO enabled via terminals:				
	- the pulse enable via STO terminal is missing or the signal source in p9620 has a 0 signal.				
	STO enabled via PROFIsafe or TM54F:				
	- STO is selected via PROFIsafe or TM54F.				
	Bit $09=1$ (enable signal missing), if:				
	- the signal source in p0864 is a 0 signal.				
	Bit $10=1$ (enable signal missing), if:				
	- the signal source in p 1140 is a 0 signal.				
	Bit $11=1$ (enable signal missing) if the velocity setpoint is frozen, because:				
	- the signal source in p 1141 is a 0 signal.				
	Bit $12=1$ (enable signal missing), if:- the signal source in p 1142 is a 0 signal.				

Bit $16=1$ (enable signal missing), if:

- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the "switching on inhibited" withdrawn with OFF1 $=0$.
Bit $17=1$ (enable signal missing), if:
- commissioning mode is selected (p0009>0 or p0010>0).
- there is an OFF2 fault response.
- the drive is inactive ($\mathrm{p} 0105=0$) or is not operational (r 7850 [DO-Index]=0).

Bit $18=1$ (enable signal missing), if:

- OFF3 has still not been completed or an OFF3 fault response is present.

Bit $19=1$ (internal power enable missing), if:

- synchronization is running between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle.

Bit 21 = 1 (enable signal missing), if:

- the power has been enabled and the velocity setpoint has still not been enabled.

Bit $26=1$ (enable signal missing), if:

- the drive is inactive ($\mathrm{p} 0105=0$) or is not operational (r7850[DO-Index]=0).
- the function "parking axis" is selected (BI : p0897 = 1 signal)..
- the drive device is in the "PROFlenergy energy-saving mode" (r5600, CU-specific).

Bit $30=1$ (velocity controller inhibited), if:

- the function generator with deactivated velocity controller is active.
- the measuring function with deactivated velocity controller is active.

r0046.0... 31	CO/BO: Missing enable signal / Missing enable sig				
SERVO, SERVO_AC, SERVO_I_AC			Calculated: - Acces		
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2634	
	P-Group: Displays, signals U		Unit group: -	Unit selection: -	
	Not for motor type: - S		ng: -	Expert	
	Min M		Max	Factory setting	
	-			-	
Description:	Display and BICO output for missing enable signals that are preventing the closed-loop drive control from being commissioned.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	OFF1 enable missing	Yes	No	7954
	01	OFF2 enable missing	Yes	No	-
	02	OFF3 enable missing	Yes	No	-
	03	Operation enable missing	Yes	No	-
	04	Armature short-circuit / DC braking enable missing	Yes	No	$\begin{aligned} & 7014, \\ & 7016 \end{aligned}$
	05	STOP2 enable missing	Yes	No	-
	08	Safety enable missing	Yes	No	-
	09	Infeed enable missing	Yes	No	-
	10	Ramp-function generator enable missing	Yes	No	-
	11	Ramp-function generator start missing	Yes	No	-
	12	Setpoint enable missing	Yes	No	-
	16	OFF1 enable internal missing	Yes	No	-
	17	OFF2 enable internal missing	Yes	No	-
	18	OFF3 enable internal missing	Yes	No	-
	19	Pulse enable internal missing	Yes	No	-
	20	Armature short-circuit/DC braking internal enable missing	Yes	No	$\begin{aligned} & 7014, \\ & 7016 \end{aligned}$
	21	STOP2 enable internal missing	Yes	No	-
	25	Function bypass active	Yes	No	-
	26	Drive inactive or not operational	Yes	No	-
	27	De-magnetizing not completed	Yes	No	-
	28	Brake open missing	Yes	No	-
	29	Cooling unit ready signal missing	Yes	No	-
	30	Speed controller inhibited	Yes	No	-
	31	Jog setpoint active	Yes	No	-
Dependency:	Refe	to: r0002			

2.2 List of parameters

Note:

The value r0046 $=0$ indicates that all enable signals for this drive are present.
Bit $00=1$ (enable signal missing), if:

- the signal source in p0840 is a 0 signal.
- there is a "switching on inhibited".

Bit $01=1$ (enable signal missing), if:

- the signal source in p0844 or p0845 is a 0 signal.

Bit $02=1$ (enable signal missing), if:

- the signal source in p0848 or p0849 is a 0 signal.

Bit $03=1$ (enable signal missing), if:

- the signal source in p0852 is a 0 signal.

Bit $04=1$ (armature short-circuit active), if:

- the signal source in p1230 has a 1 signal

Bit 05, Bit 06: Being prepared
Bit $08=1$ (enable signal missing), if:

- safety functions have been enabled and STO is active.
- a safety-relevant signal is present with a STOP A response.

STO enabled via terminals:

- the pulse enable via terminal EP is missing (booksize: X21, chassis: X41), or the signal source in p9620 is for a 0 signal.
STO enabled via PROFIsafe or TM54F:
- STO is selected via PROFIsafe or TM54F

Bit $09=1$ (enable signal missing), if:

- the signal source in p0864 is a 0 signal.

Bit $10=1$ (enable signal missing), if:

- the signal source in p1140 is a 0 signal.

Bit 11 = 1 (enable signal missing) if the speed setpoint is frozen, because:

- the signal source in p1141 is a 0 signal.
- the speed setpoint is entered from jogging and the two signal sources for jogging, bit 0 (p1055) and bit 1 (p1056) have a 1 signal.

Bit $12=1$ (enable signal missing), if:

- the signal source in p1142 is a 0 signal.
- When activating the function module "basic positioner" (r0108.4 = 1), the signal source in p1142 is set to a 0 signal.

Bit $16=1$ (enable signal missing), if:

- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the "switching on inhibited" withdrawn with OFF1 $=0$.
Bit $17=1$ (enable signal missing), if:
- commissioning mode is selected (p0009 > 0 or p0010 > 0).
- there is an OFF2 fault response.
- the drive is inactive ($\mathrm{p} 0105=0$) or is not operational (r7850[DO-Index]=0).

Bit $18=1$ (enable signal missing), if:

- OFF3 has still not been completed or an OFF3 fault response is present.

Bit $19=1$ (internal pulse enable missing), if:

- synchronization is running between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle.

Bit $20=1$ (internal armature short-circuit active), if:

- the drive is not in the state "S4: Operation" or "S5x" (refer to function diagram 2610).
- the internal pulse enable is missing (r0046.19 = 0).

Bit $21=1$ (enable signal missing), if:
The pulses have been enabled and the speed setpoint has still not been enabled, because:

- the holding brake opening time (p 1216) has still not expired.
- the motor has still not been magnetized (induction motor).
- the encoder has not been calibrated (U/f vector and synchronous motor)

Bit 22: Being prepared

```
Bit 26=1 (enable signal missing), if:
- the drive is inactive (p0105 = 0) or is not operational (r7850[DO-Index]=0).
- the function "parking axis" is selected (BI: p0897 = 1 signal)..
- all power units of a parallel connection are deactivated (p0125, p0895).
- the drive device is in the "PROFlenergy energy-saving mode" (r5600, CU-specific).
Bit 27 = 1 (enable signal missing), if:
- de-magnetizing has still not been completed (only for vector).
Bit 28=1 (enable signal missing), if:
- the holding brake is closed or has still not been opened.
Bit 29 = 1 (enable signal missing), if:
- the cooling unit ready signal via binector input p0266[1] missing.
Bit 30=1 (speed controller inhibited), if one of the following reasons is present:
- a 0 signal is available via binector input p0856.
- the function generator with current input is active.
- the measuring function "current controller reference frequency characteristic" is active.
- the pole position identification is active.
- motor data identification is active (only certain steps).
Bit 31=1 (enable signal missing), if:
- the speed setpoint from jog 1 or 2 is entered.
```


2.2 List of parameters

Note:

The value r0046 $=0$ indicates that all enable signals for this drive are present.
Bit $00=1$ (enable signal missing), if:

- the signal source in p0840 is a 0 signal.
- there is a "switching on inhibited".

Bit $01=1$ (enable signal missing), if:

- the signal source in p0844 or p0845 is a 0 signal.

Bit $02=1$ (enable signal missing), if:

- the signal source in p0848 or p0849 is a 0 signal.

Bit $03=1$ (enable signal missing), if:

- the signal source in p0852 is a 0 signal.

Bit $04=1$ (armature short-circuit active), if:

- the signal source in p1230 has a 1 signal.

Bit 05, Bit 06: Being prepared
Bit $08=1$ (enable signal missing), if:

- safety functions have been enabled and STO is active.
- a safety-relevant signal is present with a STOP A response.

STO enabled via terminals:

- the pulse enable via terminal EP is missing (booksize: X 21 , chassis: X 41), or the signal source in p9620 is for a 0 signal.
STO enabled via PROFIsafe or TM54F:
- STO is selected via PROFIsafe or TM54F.

Bit $09=1$ (enable signal missing), if:

- the signal source in p0864 is a 0 signal.

Bit $10=1$ (enable signal missing), if:

- the signal source in p1140 is a 0 signal.

Bit 11 = 1 (enable signal missing) if the velocity setpoint is frozen, because:

- the signal source in p1141 is a 0 signal.
- the velocity setpoint is entered from jogging and the two signal sources for jogging, bit 0 (p1055) and bit 1 (p1056) have a 1 signal.

Bit $12=1$ (enable signal missing), if:

- the signal source in p 1142 is a 0 signal.
- When activating the function module "basic positioner" (r0108.4 = 1), the signal source in p1142 is set to a 0 signal.

Bit $16=1$ (enable signal missing), if:

- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the "switching on inhibited" withdrawn with OFF1 $=0$.
Bit $17=1$ (enable signal missing), if:
- commissioning mode is selected (p0009 > 0 or p0010 > 0).
- there is an OFF2 fault response.
- the drive is inactive ($\mathrm{p} 0105=0$) or is not operational (r7850[DO-Index]=0).

Bit $18=1$ (enable signal missing), if:

- OFF3 has still not been completed or an OFF3 fault response is present.

Bit $19=1$ (internal pulse enable missing), if:

- synchronization is running between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle.

Bit $20=1$ (internal armature short-circuit active), if:

- the drive is not in the state "S4: Operation" or "S5x" (refer to function diagram 2610).
- the internal pulse enable is missing (r0046.19 = 0).

Bit 21 = 1 (enable signal missing), if:
The pulses have been enabled and the velocity setpoint has still not been enabled, because:

- the holding brake opening time (p 1216) has still not expired.
- the motor has still not been magnetized (induction motor).

Bit 22: Being prepared

```
Bit 26=1 (enable signal missing), if:
- the drive is inactive (p0105 = 0) or is not operational (r7850[DO-Index]=0).
- the function "parking axis" is selected (BI: p0897 = 1 signal)..
- all power units of a parallel connection are deactivated (p0125, p0895).
- the drive device is in the "PROFlenergy energy-saving mode" (r5600, CU-specific).
Bit 27 = 1 (enable signal missing), if:
- de-magnetizing has still not been completed (only for vector).
Bit 28=1 (enable signal missing), if:
- the holding brake is closed or has still not been opened.
Bit 29 = 1 (enable signal missing), if:
- the cooling unit ready signal via binector input p0266[1] missing.
Bit 30=1 (velocity controller inhibited), if one of the following reasons is present:
- a 0 signal is available via binector input p0856.
- the function generator with current input is active.
- the measuring function "current controller reference frequency characteristic" is active.
- the pole position identification is active.
- motor data identification is active (only certain steps).
Bit 31=1 (enable signal missing), if:
- the velocity setpoint from jog 1 or 2 is entered.
```


2.2 List of parameters

Note:

The value r0046 $=0$ indicates that all enable signals for this drive are present.
Bit $00=1$ (enable signal missing), if:

- the signal source in p0840 is a 0 signal.
- there is a "switching on inhibited".

Bit $01=1$ (enable signal missing), if:

- the signal source in p0844 or p0845 is a 0 signal.

Bit $02=1$ (enable signal missing), if:

- the signal source in p0848 or p0849 is a 0 signal.

Bit $03=1$ (enable signal missing), if:

- the signal source in p0852 is a 0 signal.

Bit $04=1$ (armature short-circuit active), if:

- the signal source in p1230 has a 1 signal

Bit 05, Bit 06: Being prepared
Bit $08=1$ (enable signal missing), if:

- safety functions have been enabled and STO is active.
- a safety-relevant signal is present with a STOP A response.

STO enabled via terminals:

- the pulse enable via terminal EP is missing (booksize: X21, chassis: X41), or the signal source in p9620 is for a 0 signal.
STO enabled via PROFIsafe or TM54F:
- STO is selected via PROFIsafe or TM54F

Bit $09=1$ (enable signal missing), if:

- the signal source in p0864 is a 0 signal.

Bit $10=1$ (enable signal missing), if:

- the signal source in p1140 is a 0 signal.

Bit 11 = 1 (enable signal missing) if the speed setpoint is frozen, because:

- the signal source in p1141 is a 0 signal.
- the speed setpoint is entered from jogging and the two signal sources for jogging, bit 0 (p1055) and bit 1 (p1056) have a 1 signal.

Bit $12=1$ (enable signal missing), if:

- the signal source in p1142 is a 0 signal.
- When activating the function module "basic positioner" (r0108.4 = 1), the signal source in p1142 is set to a 0 signal.

Bit $16=1$ (enable signal missing), if:

- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the "switching on inhibited" withdrawn with OFF1 $=0$.
Bit $17=1$ (enable signal missing), if:
- commissioning mode is selected (p0009 > 0 or p0010 > 0).
- there is an OFF2 fault response.
- the drive is inactive ($\mathrm{p} 0105=0$) or is not operational (r7850[DO-Index]=0).

Bit $18=1$ (enable signal missing), if:

- OFF3 has still not been completed or an OFF3 fault response is present.

Bit $19=1$ (internal pulse enable missing), if:

- synchronization is running between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle.

Bit $20=1$ (internal armature short-circuit active), if:

- the drive is not in the state "S4: Operation" or "S5x" (refer to function diagram 2610).
- the internal pulse enable is missing (r0046.19 = 0).

Bit $21=1$ (enable signal missing), if:
The pulses have been enabled and the speed setpoint has still not been enabled, because:

- the holding brake opening time (p 1216) has still not expired.
- the motor has still not been magnetized (induction motor).
- the encoder has not been calibrated (U/f vector and synchronous motor)

Bit 22: Being prepared

```
Bit 26=1 (enable signal missing), if:
- the drive is inactive (p0105 = 0) or is not operational (r7850[DO-Index]=0).
- the function "parking axis" is selected (BI: p0897 = 1 signal)..
- all power units of a parallel connection are deactivated (p0125, p0895).
- the drive device is in the "PROFlenergy energy-saving mode" (r5600, CU-specific).
Bit 27=1 (enable signal missing), if:
- de-magnetizing has still not been completed (only for vector).
Bit 28=1 (enable signal missing), if:
- the holding brake is closed or has still not been opened.
Bit 29=1 (enable signal missing), if:
- the cooling unit ready signal via binector input p0266[1] missing.
Bit 30=1 (speed controller inhibited), if one of the following reasons is present:
- a 0 signal is available via binector input p0856.
- the function generator with current input is active.
- the measuring function "current controller reference frequency characteristic" is active.
- the pole position identification is active.
- motor data identification is active (only certain steps).
Bit 31=1 (enable signal missing), if:
- the speed setpoint from jog 1 or 2 is entered.
```


2.2 List of parameters

Bit $19=1$ (internal pulse enable missing), if:

- synchronization is running between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle.

Bit $26=1$ (enable signal missing), if:

- the infeed is inactive ($\mathrm{p} 0105=0$) or is not operational (r7850[DO-Index]=0).
- the infeed is in the "PROFlenergy energy-saving mode" (r5600, CU-specific).

Bit $29=1$ (enable signal missing), if:

- the cooling unit ready signal via binector input p0266[1] missing.

r0046.0... 29	CO/BO: Missing enable signal / Missing enable sig				
B_INF	Can be changed: -		Calculated: - Acces		
	Data type: Unsigned32		Dyn. index: - Func		
	P-Group: Displays, signals		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factory setting	
	-				
Description:	Display and BICO output for missing enable signals that are preventing the closed-loop infeed control from being commissioned.				
Bit field:	Bit Signal name		1 signal	0 signal	FP
		OFF1 enable missing	Yes	No	-
		OFF2 enable missing	Yes	No	-
		EP terminals enable missing	Yes	No	-
		OFF1 enable internal missing	Yes	No	-
		OFF2 enable internal missing	Yes	No	-
		Infeed inactive or not operational	Yes	No	-
		Cooling unit ready signal missing	Yes	No	-
Dependency: Note:	Refer to: r0002				
	The Bit - th - th Bit - th Bit - th "sw Bit - th sign Bit - th - th Bit - th	alue r0046 $=0$ indicates that all en $=1$ (enable signal missing), if: signal source in p0840 is a 0 signa is a "switching on inhibited". $=1$ (enable signal missing), if: signal source in p0844 or p0845 is $=1$ (enable signal missing), if: is an OFF1 fault response. The s hing on inhibited" withdrawn with $=1$ (enable signal missing), if: ommissioning mode is selected (p source (p 0840) is changed. $=1$ (enable signal missing), if: infeed is inactive $(\mathrm{p} 0105=0)$ or is nfeed is in the "PROFlenergy ener $=1$ (enable signal missing), if: cooling unit ready signal via binector	signals for the in signal. is only enabled $=0$. >0 or p0010> perational (r7850 aving mode" (r5600 ut p0266[1] miss	ved and FF2 fault	and FF1
r0047	Identification status / Ident status				
HLA	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Integer16		Dyn. index: -	Func. diagram: -	
	P-Group: Displays, signals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	0		200		
Description:	Displays the currently executed step for the motor data identification and the pole position identification.				
Value:	$\begin{aligned} & 0: \\ & 10: \\ & 11: \\ & 20: \end{aligned}$	No measurement Identification pressure offset step Identification pressure offset step ID: Piston calibration			

100:	ID: control sense correction step 1
101:	ID: control sense correction step 2
102:	ID: control sense correction step 3
110:	ID: valve offset correction step 1
111:	ID: valve offset correction step 2
120:	ID: automatic piston calibration step 1
121:	ID: automatic piston calibration step 2
130:	ID: traversing range detection step 1
131:	ID: traversing range detection step 2
140:	ID: characteristic measurement start
141:	ID: characteristic measurement start position
142:	ID: characteristic measurement approach start position
143:	ID: characteristic measurement braking phase
144:	ID: characteristic meas. wait for pressure accumulator to fill
146:	ID: characteristic measurement acceleration
147:	ID: characteristic measurement standstill test
148:	ID: characteristic measurement settling
149:	ID: characteristic measurement
150:	ID: characteristic measurement determine edge position
151:	ID: characteristic measurement approach edge position
153:	ID: characteristic measurement end
160:	ID: frictional force measurement start
161:	ID: frictional force measurement measure
162:	ID: frictional force measurement end
200:	ID: exit all measurements

$\mathbf{r 0 0 4 7} \quad$ Identification status / Ident status

SERVO, SERVO AC, SERVO_I_AC

Can be changed: -
Data type: Integer16
P-Group: Displays, signals
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
104

Access level: 1
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
-
Description: Displays the currently executed steps or the first step after the enable for the motor identification and pole position identification routines.

Value:

No measurement
PoIID: Wait for brake closing time
PoIID: Measurement step 1
PoIID: Measurement step 2
PoIID: Measurement step 3
PoIID: Measurement step 4
PoIID: Measurement stage 2
PoIID: Measurement evaluation
PoIID: Measurement end
MotID: Inductance measurement, step 1
MotID: Inductance measurement, step 2
MotID: Inductance measurement evaluation
MotID: Resistance measurement evaluation
MotID: Fine synchronization step 1
MotID: Fine synchronization step 2
MotID: Fine synchronization step 3
MotID: Fine synchronization end
MotID: Rotating inductance measurement step 1
MotID: Rotating inductance measurement step 2
MotID: Rotating inductance measurement step 3
MotID: Rotating inductance measurement step 4
MotID: Rotating Inductance measurement evaluation
MotID: Rotating Inductance measurement end
MotID: Induction motor measurement step 1
MotID: Induction motor measurement step 2
MotID: Induction motor measurement step 3
MotID: Induction motor measurement step 4
MotID: Induction motor measurement step 5

2.2 List of parameters

2.2 List of parameters

r0056.1..15	CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl				
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Displays, signals		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Display and BICO output for the status word of the closed-loop control.				
Bit field:		Signal name	1 signal	0 signal	FP
		De-magnetizing completed	Yes	No	-
		Magnetizing completed	Yes	No	2701
		Field weakening active	Yes	No	-
		Vdc_max controller active	Yes	No	-
		Vdc_min controller active	Yes	No	-
Note:	For bit 04:				
	The bit is immediately set after switch-on				
	Exception:				
	For an induction motor with brake (except for p1215 = 2), the bit is only set when 60% of the reference flux is reached.				

r0056.0... 15	CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl				
VECTOR, VECTOR AC, VECTOR_I_AC	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2526	
	P-Group: Displays, signals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and BICO output for the status word of the closed-loop control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Initialization completed	Yes	No	-
		De-magnetizing completed	Yes	No	-
		Pulse enable available	Yes	No	-
	03	Soft starting present	Yes	No	-
	04	Magnetizing completed	Yes	No	-
		Voltage boost when starting	Active	Inactive	6301
		Acceleration voltage	Active	Inactive	6301
	07	Frequency negative	Yes	No	6730

	08	Field weakening active	Yes	No	-
	09	Voltage limit active	Yes	No	6714
	10	Slip limit active	Yes	No	6310
	11	Frequency limit active	Yes	No	6730
	12	Current limiting controller voltage output active	Yes	No	-
	13	Current/torque limiting	Active	Inactive	6060
	14	Vdc_max controller active	Yes	No	$\begin{aligned} & 6220, \\ & 6320 \end{aligned}$
	15	Vdc_min controller active	Yes	No	$\begin{aligned} & 6220, \\ & 6320 \end{aligned}$
r0056.0... 13	CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl				
VECTOR (F3E),	Can be changed: -		Calculated: -	Access level: 3	
VECTOR_AC (F3E),	Data type: Unsigned16 D		Dyn. index: -	Func. diagram: 2526	
	P-Group: Displays, signals U		Unit group: -	Unit selection: -	
	Not for motor type: - S		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	- -				
Description:	Display and BICO output for the status word of the closed-loop control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Initialization completed	Yes	No	-
		De-magnetizing completed	Yes	No	-
		Pulse enable available	Yes	No	-
	03	Soft starting present	Yes	No	-
	04	Magnetizing completed	Yes	No	-
		Voltage boost when starting	Active	Inactive	6301
		Acceleration voltage	Active	Inactive	6301
	07	Frequency negative	Yes	No	6730
		Field weakening active	Yes	No	-
	09	Voltage limit active	Yes	No	6714
	10	Slip limit active	Yes	No	6310
		Frequency limit active	Yes	No	6730
		Current limiting controller voltage output active	Yes	No	-
	13	Current/torque limiting	Active	Inactive	6060
r0060	CO: Velocity setpoint before the setpoint filter / v_set before filt				
HLA	Can be changed: -		Calculated: -	Access level: 3	
	Data type: FloatingPoint32		Dyn. index: -	Func. diagram: 4965	
	P-Group: Displays, signals		Unit group: 4_1	Unit selection: p0505	
	Not for motor type: - S		Scaling: p2000	Expert list: 1	
	Min		Max	Factory setting	
	- [m/min] -		- [m/min]	- [m/min]	
Description:	Displays the actual velocity setpoint at the velocity controller input (after the interpolator).				
Dependency:	Refer to: r0020				
Note:	The velocity setpoint is available smoothed (r0020) and unsmoothed (r0060).				

2.2 List of parameters

r0060	CO: Speed setpoint before the setpoint filter / n_set before filt.		
SERVO, VECTOR, SERVO AC, VECTOR AC, SERVO_IAC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2701, 2704, 5020, 6030, 6799
	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description: Dependency:	Displays the actual speed setpoint at the input of the speed controller or U/f characteristic (after the interpolator). Refer to: r0020		
Note:	The speed setpoint is available smoothed (r 0020) and unsmoothed (r 0060).		
r0060	CO: Velocity setpoint before the setpoint filter / v_set before filt		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2701, 2704, 5020, 6030, 6799
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description: Dependency:	Displays the actual velocity setpoint at the input of the velocity controller or U/f characteristic (after the interpolator). Refer to: r0020		
Note:	The velocity setpoint is available smoothed (r0020) and unsmoothed (r0060).		
r0061[0...1]	CO: Actual velocity unsmoothed / v_act unsmoothed		
HLA	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4965
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description: Index:	Displays the unsmoothed actual velocity values sensed by the encoders. [0] = Encoder 1 [1] = Encoder 2		
r0061[0...1]	CO: Actual speed unsmoothed / n_act unsmoothed		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4700, 4710, 4715
	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the unsmoothed actual speed values sensed by the encoders.		
Index:	$\begin{aligned} & \text { [0] }=\text { Encoder } 1 \\ & \text { [1] }=\text { Encoder } 2 \end{aligned}$		

r0061[0...1]	CO: Actual velocity unsmoothed / v_act unsmoothed		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4700, 4710, 4715
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min		Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description: Index:	Displays the unsmoothed actual velocity values sensed by the encoders. [0] = Encoder 1 [1] = Encoder 2		
$\begin{aligned} & \text { r0061[0...2] } \\ & \text { VECTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	CO: Actual speed unsmoothed / n_act unsmoothed		
	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4700, 4710, 4715
	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
			Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual speed values sensed by the encoders.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Note:	With a parameterized filter time constant p 1441 , the speed signal from encoder 1 is displayed corrected by the following error.		
	The speeds from encoder 2 and 3 are only displayed in U/f operating modes if the function module (speed/torque control) (r0108.2) has been activated.		
r0061	CO: Actual speed uns	n_act unsmoot	
ENC	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4700, 4710, 4715
	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the unsmoothed actual speed values sensed by the encoders.		
Note:	The speed actual value within a PROFIBUS cycle (r2064[1]) is averaged and displayed.		
r0061	CO: Actual velocity unsmoothed / v_act unsmoothed		
ENC (Lin_enc)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4700, 4710, 4715
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the unsmoothed actual velocity values sensed by the encoders.		
Note:	The velocity actual value within a PROFIBUS cycle (r2064[1]) is averaged and displayed.		

r0062	CO: Velocity setpoint after the filter / v_set after filter		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4965
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	-[m/min]	-[m/min]
Description:	Display and connector output for the velocity setpoint after the setpoint filters.		
r0062	CO: Speed setpoint after the filter / n_set after filter		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5019, 5020, 5030, 5042, 5210
	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the speed setpoint after the setpoint filters.		
r0062	CO: Velocity setpoint after the filter / v_set after filter		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5019, 5020, 5030, 5042, 5210
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	-[m/min]	- [m/min]
Description:	Display and connector output for the velocity setpoint after the setpoint filters.		
r0062	CO: Speed setpoint after the filter / n_set after filter		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6020, 6030, 6031
	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the speed setpoint after the setpoint filters.		
r0063	CO: Actual velocity smoothed / v_act smooth		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4965
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Display and connector output for the smoothed velocity actual value.		
Dependency:	Refer to: r0021, r0022, r0061, p1441		
Note:	The value in r0063 is smoothed with p1441.		
	The velocity actual value is available smoothed (r0021, r0022) and unsmoothed (r0061).		

r0063	CO: Actual speed smoothed / n_act smooth		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4700, 4710, 5019, 5300, 8019
	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the smoothed speed actual value.		
Dependency:	Refer to: r0021, r0022, r0061, p1441, p1451		
Note:	In encoderless operation, the speed actual value is calculated and can be smoothed using p1451.		
	For operation with encoder, r0063 is smoothed with p1441.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0061).		

r0063	CO: Actual velocity smoothed / v_act smooth		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4 5019, 5300, 8019
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Display and connector output for the smoothed velocity actual value.		
Dependency:	Refer to: r0021, r0022, r0061, p1441, p1451		
Note:	In encoderless operation, the velocity actual value is calculated and can be smoothed using p1451.		
	For operation with encoder, r0063 is smoothed with p1441.		
	The velocity actual value is available smoothed (r0021, r0022) and unsmoothed (r0061).		

r0063[0...2]	CO: Speed actual value / n_act		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4702, 4715, 6799
	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the speed actual value.		
	Frequency components from the slip compensation (for induction motors) are not included.		
	For U/f control and when slip compensation is deactivated (see p1335), the synchronous speed to the output frequency is shown in r0063[0].		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \\ & {[2]=\text { Calculated from f_set }- \text { f_slip (unsmoothed) }} \end{aligned}$		
Dependency:	Refer to: r0021, r0022		
Note:	The speed actual value is calculated in encoderless operation and for U/f control.		
	For operation with encoder, r0063[0] is smoothed with p1441.		
	The speed actual value r0063[0] - smoothed with p0045 - is additionally displayed in r0063[1]. r0063[1] can be used as process variable for the appropriate smoothing time constant p0045.		
	The speed (r0063[2]) calculated from the output frequency and slip can only be compared with the speed actual value (r0063[0]) in the steady-state.		
	The actual speed (r0063[0]) is available as a display quantity with additional smoothing in r0021.		
	For U/f control, the mechanical speed calculated from the output frequency and the slip is shown in r0063[2] even if slip compensation is deactivated.		

r0063	CO: Speed actual value / n_act		
TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the smoothed speed actual value.		
Note:	For Terminal Module 41 (TM41), this value is used to interconnect with standard telegram 3 and is always zero.		
r0064	CO: Velocity controller system deviation / v_ctrl sys dev		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the actual system deviation of the velocity controller.		
Note:	With active reference model, the system deviation to the P component of the velocity controller is displayed.		
r0064	CO: Speed controller system deviation / n_ctrl sys dev		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 6040
SERVO_I_AC,	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
VECTOR_I_AC	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual system deviation of the speed controller.		
Note:	In servo control mode with active reference model, the system deviation to the P component of the speed controller is displayed.		
r0064	CO: Velocity controller system deviation / v_ctrl sys dev		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 6040
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the actual system deviation of the velocity controller.		
Note:	In servo control mode with active reference model, the system deviation to the P component of the velocity controller is displayed.		
r0065	Slip frequency / f_Slip		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6310, 6700, 6727, 6730, 6732
	P-Group: Displays, signals	Unit group: 2_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the slip frequency for induction m	ors (ASM).	

2.2 List of parameters

r0067	CO: Output current maximum / I_outp max		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC, VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5722, 6300, 6301, 6640
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the maximum output current of the power unit.		
Dependency:	The maximum output current is determined by the parameterized current limit and the motor and converter thermal protection.		
	Refer to: p0290, p0640		

r0067[0...1]	Absolute current value permissible / I_abs val perm		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the actual permissible absolute line-side current.		
Index:	$\begin{aligned} & {[0]=\text { Motor mode }} \\ & {[1]=\text { Regenerative mode }} \end{aligned}$		
Dependency:	The permissible current is th limits (p3530 to p3533) as w Refer to: p3530, p3531, r35	the maximum con um permissible cur	9), the parameterized current 354).

r0068[0...1]	CO: Pressure actual value B / Press act val B		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index:	Func. diagram: 4970
	P-Group: Displays, signals	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	$-[b a r]$	$-[b a r]$	
Description:	Displays the actual pressure value at side B.		
Index:	$[0]=$ Unsmoothed		
	$[1]=$ Smoothed with p0045		

Note:	Absolute current value $=\operatorname{sqrt}\left(\operatorname{lq} \wedge 2+\mathrm{Id}^{\wedge} 2\right)$
	The absolute current actual value is available smoothed (r0027) and unsmoothed (r0068).

r0068[0...1]	CO: Absolute current actual value / I_act abs val		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC, VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6300, 6714, 6799, 7017, 8017, 8019, 8029, 8021
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays actual absolute current.		
Index:	[0] = Unsmoothed		
Dependency:	Refer to: r0027		
Notice:	The value is updated with the current controller sampling time.		
Note:	Absolute current value $=\operatorname{sqrt}\left(1 q^{\wedge} 2+\operatorname{ld} \wedge 2\right)$		
	The absolute value of the current actual value is available smoothed (r0027 with 300 ms , r0068[1] with p0045) and unsmoothed (r0068[0]).		

r0068	CO: DC current in the DC link / Idc DC link		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8021, 8750
	P-Group: Displays, signals	Unit group: 6_4	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the DC current in the DC link.		
Dependency:	Refer to: r0027		
Notice:	For Basic Line Modules of chassis format, the displayed value is invalid as these units do not have any current sensing.		
Note:	The DC current in the DC link is available smoothed (r0027) and unsmoothed (r0068).		

r0069	CO: System pressure actual value / Sys press act val		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	$-[$ bar $]$	$-[$ bar $]$	
	Description:	Display and connector output for the actual value of the system pressure.	

2.2 List of parameters

r0069[0...8]	CO: Phase current actual value / I_phase act val		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	$\begin{aligned} & \text { Func. diagram: 5700, 5730, } \\ & 7008 \end{aligned}$
	P-Group: Displays, signals	Unit group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the measured actual phase currents as peak value.		
Index:	[0] = Phase U [1] = Phase V [2] = Phase W [3] = Phase U offset [4] = Phase V offset [5] = Phase W offset [6] = Total U, V, W [7] = Alpha component [8] = Beta component		
Note:	The sum of the 3 corrected phase currents is displayed in index 6 .		
r0069[0...8]	CO: Phase current actual value / I_phase act val		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC, VECTOR_I_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6730, 6731, 6732, 7983, 7987, 8850, 8950
	P-Group: Displays, signals	Unit group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Display and connector output for the measured actual phase currents as peak value.		
Index:	[0] = Phase U [1] = Phase V [2] = Phase W [3] = Phase U offset [4] = Phase V offset [5] = Phase W offset [6] = Total U, V, W [7] = Alpha component [8] = Beta component		
Note:	The sum of the 3 corrected phase currents is displayed in index 6 .		

r0070[0...1]	CO: Valve position voltage setpoint before inversion / U_set before inv		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4966
	P-Group: Displays, signals	Unit group: $5 _2$	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	
Description:	Display and connector output for the voltage setpoint of the valve position before inversion.		
Index:	$[0]=$ Before the manipulated variable filter p180x		
	$[1]=$ After the manipulated variable filter p180x		
Dependency:	Refer to: ro071		

r0070	CO: Actual DC link voltage / Vdc act val		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730
	P-Group: Displays, signals	Unit group: 5_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Display and connector output for the measured actual value of the DC link voltage.		
Dependency:	Refer to: r0026		
Notice:	For SINAMICS S120 AC Drive (AC/AC) the following applies:		
	When measuring a DC link voltage $<200 \mathrm{~V}$, for the Power Module (e.g. PM340) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed.		
Note:	The DC link voltage is available smoothed ($\mathrm{rOO26}$) and unsmoothed (r0070).		
r0070	CO: Actual DC link voltage / Vdc act val		
VECTOR, VECTOR AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6723, 6724, 6730, 6731, 6799
	P-Group: Displays, signals	Unit group: 5_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Display and connector output for the measured actual value of the DC link voltage.		
Dependency:	Refer to: r0026		
Notice:	For SINAMICS S120 AC Drive (AC/AC) the following applies:		
	When measuring a DC link voltage $<200 \mathrm{~V}$, for the Power Module (e.g. PM340) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed.		
Note:	The DC link voltage is available smoothed (r 0026) and unsmoothed (r 0070).		
r0070	CO: Actual DC link voltage / Vdc act val		
A_INF, S_INF, R_INF,BINF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8750, 8850, 8910, 8940, 8950, 8964
	P-Group: Displays, signals	Unit group: 5_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Display and connector output for the measured actual value of the DC link voltage.		
Dependency:	Refer to: r0026		
Note:	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0071[0...1]	CO: Valve position voltage setpoint / Valve U_set		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4966
	P-Group: Displays, signals	Unit group: 5_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the voltage setpoint for the valve position.		
Index:	[0] = Unsmoothed [1] = Smoothed		

Note:	The input voltages are available smoothed (r0025) and unsmoothed (r0072). For r0072[0]: Displays the pulsed voltage at the line supply input terminals of the power unit. The value is calculated from the modulation depth (r0074) and is therefore only correct in the closed-loop controlled mode and when the pulses are enabled. For r0072[1]: Displays the absolute voltage at the input terminals of the line filter or the connection point of a Voltage Sensing Module (VSM). If a VSM is not connected, then the value is calculated from the VSM measured values r3661 and r3662 and is therefore equal to 0 . For r0072[2]: Displays the estimated value for the voltage of the voltage source that is calculated in the voltage model of the line supply PLL. Input quantities of the model are the measured values of the line currents and the DC link voltage as well as the characteristics of the line filter p0225, p0226 as well as the line inductance p3424. For r0072[3]: Displays the smoothed value for the source voltage in r0072[2]. The PT1 smoothing time constant is set in p3472[0, 1]. For r0072[4]: Displays the strongly smoothed value for the source voltage in r0072[2]. The PT1 smoothing time constant is set in p3472[2].
r0073[0..1]	Controller valve position voltage setpoint / Valve U_set
HLA	Can be changed: - Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: 4965, 4970 P-Group: Displays, signals Unit group: 5_2 Unit selection: p0505 Not for motor type: - Scaling: p2001 Expert list: 1 Min Max Factory setting $-[V]$ $-[V]$ $-[V]$
Description: Index: Note:	Displays the voltage setpoints for the valve position of the controller. [0] = Velocity controller [1] = Force controller These voltage setpoints have been taken before the characteristic compensation.
r0073	Maximum modulation depth / Modulat_depth max
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: - Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: 6723, 6724,
	P-Group: Modulation Unit group: - Unit selection: - Not for motor type: - Scaling: PERCENT Expert list: 1 Min Max Factory setting $-[\%]$ $-[\%]$ $-[\%]$
Description: Dependency:	Displays the maximum modulation depth. Refer to: p1803
r0074	CO: Piston position with respect to the piston zero point / Piston pos zero
HLA	Can be changed: - Calculated: - Access level: 3 Data type: Integer32 Dyn. index: - Func. diagram: - P-Group: Displays, signals Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting - - -
Description:	Display and connector output for the piston position regarding the piston zero point in encoder fine pulses.

r0074	CO: Modulat_depth / Mod_depth		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC, VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6730, 6731, 6799, 8940, 8950
SERVO_I_AC,	P-Group: Displays, signals	Unit group: -	Unit selection: -
A_INF, R_INF	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual modulation depth.		
Dependency:	Refer to: r0028		
Note:	For space vector modulation, 100% corresponds to the maximum output voltage without overcontrol.		
	Values above 100% indicate an overcontrol condition - values below 100% have no overcontrol.		
	The phase voltage (phase-to-phase, rms) is calculated as follows:(r0074 \times r0070) / (sqrt(2) $\times 100 \%$).		
	The modulation depth is available smoothed	(r0028) and unsmooth	

r0075	CO: Current setpoint field-generating/Id_set		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5700,5714,
			5722
	P-Group: Displays, signals	Unit group: $6 _2$	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	$-[$ [Arms]	- [Arms]	
Description:	Display and connector output for the field-generating current setpoint (Id_set).		
Note:	This value is irrelevant for the U/f control mode.		

r0075	CO: Current setpoint field-generating / Id_set		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6700, 6714, 6725
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the field-generating current setpoint (ld_set).		
Note:	This value is irrelevant for the U/f control mode.		
r0075	CO: Reactive current setpoint / I_react_set		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7997, 8945, 8946
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the reactive current setpoint.		
Dependency:	Refer to: r3471, p3610		
Note:	The reactive current requirement of a line filter should be covered by the controlled infeed/regenerative feedback so that the converter always operates with a power factor of 1 compared to the line. Setpoint r0075 includes the reactive current for a line filter that depends on the actual operating point (r3471).		
	If the line phases are reversed and the line voltage therefore has a negative orientation (r0066<0), it should be noted that the sign of the reactive current is reversed.		

r0076	CO: Current actual value field-generating / Id_act		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5700, 5714, $5730,6700,6714,6799$
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the field-generating current actual value (ld_act).		
Dependency:	Refer to: r0029		
Note:	This value is irrelevant for the U/f control mode.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		
r0076	CO: Reactive current actual value / I_reactive_act		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8810, 8850, 8910, 8946, 8950
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the reactive current actual value.		
Dependency:	Refer to: r0029, r0075		
Note:	The reactive current actual value is available smoothed (r0029) and unsmoothed (r0076).		
r0077	CO: Current setpoint torque-generating / lq_set		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5700, 5714, 5722
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque/force-generating current setpoint.		
Note:	This value is irrelevant for the U/f control mode.		
r0077	CO: Current setpoint force-generating / lq_set		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5700, 5714, 5722
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the force-generating current setpoint. This value is irrelevant for the U/f control mode.		
Note:			

r0077	CO: Current setpoint torque-generating / Iq_set		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6700, 6710
VECTOR_I_AC	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque/force-generating current setpoint.		
Note:			
r0077	CO: Active current setpoint / I_active_set		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7997, 8910, 8940, 8945
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the active current setpoint (lq_set).		
r0078[0...1]	CO: Current actual value torque-generating / Iq_act		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5700, 5714, 5730
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque-generating current actual value (lq_act).		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$		
Dependency:	Refer to: r0030, p0045		
Note:	These values are irrelevant for the U/f control mode.		
	The torque-generating current actual value is available smoothed (r0030 with 100 ms , r0078[1] with p0045) and unsmoothed (r0078[0]).		

r0078[0...1]	CO: Current actual value force-generating / lq_act		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5700, 5714, 5730
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the force-generating current actual value (lq_act).		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$		
Dependency:	Refer to: r0030, p0045		
Note:	These values are irrelevant for the U/f control mode.		
	The force-generating current actual value is available smoothed (r0030 with 100 ms , r0078[1] with p0045) and unsmoothed (r0078[0]).		

$\overline{\mathbf{r 0 0 7 8}}$	CO: Current actual value torque-generating / Iq_act		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6310, 6700, 6714, 6799
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque-generating current actual value (lq_act).		
Dependency:	Refer to: r0030		
Note:	This value is irrelevant for the U/f control mode.		
	The torque-generating current actual value is available smoothed (r0030 with 300 ms) and unsmoothed (r0078).		
r0078	CO: Active current actual value / I_active_act		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8810, 8850, 8910, 8946, 8950
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the actual value of the active current.		
Dependency:	Refer to: r0030		
Note:	The active current actual value is available smoothed (r0030) and unsmoothed (r0078).		
r0079	CO: Total force setpoint / F_set total		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4970
	P-Group: Displays, signals	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Display and connector output for the total force setpoint.		
r0079[0...1]	CO: Torque setpoint total / M_set total		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5610
	P-Group: Displays, signals	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the speed controller (before clock cycle interpolation).		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$		

2.2 List of parameters

r0079[0...1]	CO: Total force setpoint / F_set total		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5610
SERVO_I_AC (Lin)	P-Group: Displays, signals	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{N}]$	$-[\mathrm{N}]$	$-[\mathrm{N}]$
Description:	Display and connector output for the force setpoint at the output of the velocity controller (before clock cycle		
	interpolation).		
Index:	$[0]=$ Unsmoothed		
	$[1]=$ Smoothed with p0045		

r0079	CO: Torque setpoint / M_set		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6020, 6060,
VECTOR_I_AC		Unit group: 7_1	Unit selection: p0505
	P-Group: Displays, signals	Scaling: p2003	Expert list: 1
	Not for motor type: REL	Max	Factory setting
	Min	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
	$-[\mathrm{Nm}]$		
Description:	Display and connector output for the torque setpoint at the output of the speed controller.		

r0080[0...1]	CO: Force actual value / F_act		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4970
	P-Group: Displays, signals	Unit group: 8_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N$]$	- [N$]$	- [N]
Description:	Display and connector output for actual force value.		
Index:	[0] = Unsmoothed		
Dependency:	Refer to: r0031, p0045		
Note:	The value is available smoothed (r0031 with 100 ms , r0080[1] with p0045) and unsmoothed (r0080[0]).		
r0080	CO: Torque actual value / M_act		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730
	P-Group: Displays, signals	Unit group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for actual torque value.		
Dependency:	Refer to: r0031		
Note:	The value is available smoothed (r0031) and unsmoothed (r0080).		

2.2 List of parameters

r0081	CO: Torque utilization / M_Utilization		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8012
VECTOR_I_AC	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the torque utilization as a percentage.		
	The torque utilization is obtained from the required smoothed torque referred to the torque limit.		
Dependency:	Refer to: r0033		
Note:	The torque utilization is available smoothed (r0033) and unsmoothed (r0081).		
	The torque utilization is obtained from the required torque referred to the torque limit as follows: - Positive torque: r0081 = (r0079/r1538) * 100 \%		
	- Negative torque: r0081 = (-r0079 / -r1539)* 100%		

r0082[0...1]	CO: Active power actual value / P_act		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730
	P-Group: Displays, signals	Unit group: 14_8	Unit selection: p0505
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the instantaneous active power.		
Index:	[0] = Unsmoothed [1] = Smoothed with p0045		
Dependency:	Refer to: r0032		
Note:	The active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[

r0082[0...3]	CO: Active power actual value / P_act		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730
	P-Group: Displays, signals	Unit group: 14_5	Unit selection: p0505
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the instantaneous active power.		
Index:	[0] = Unsmoothed [1] = Smoothed with p0045 [2] = Power drawn [3] = Power drawn smoothe		
Dependency:	Refer to: r0032		
Note:	The mechanical active power is available smoothed (r0032 with 100 ms , $\mathrm{r0082}$ [1] with p0045) and unsmoothed (r0082[0]).		
	For index [3]:		
	Smoothing time constant $=4 \mathrm{~ms}$		

2.2 List of parameters

r0082	CO: Active power actual value / P_act		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8750, 8850, 8950
	P-Group: Displays, signals	Unit group: 14_7	Unit selection: p0505
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the instantaneous active power.		
Dependency:	Refer to: r0032		
Notice:	For Basic Line Modules of chassis format, the displayed value is invalid as these units do not have any current sensing.		
Note:	The active power is available smoothed (r0032) and unsmoothed (r0082).		
r0083	CO: Flux setpoint / Flex setp		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5722
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the flux setpoint.		
r0083	CO: Flux setpoint / Flex setp		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the flux setpoint.		

r0084	CO: Flux actual value / Flux act val		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5722
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	$-[\%]$
Description:	Displays the flux actual value.		

r0084[0...1]	CO: Flux actual value / Flux act val		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6726,6730,
VECTOR_I_AC		Unit group: -	Unit selection: -
	P-Group: Displays, signals	Scaling: PERCENT	Expert list: 1
	Not for motor type: -	Max	Factory setting
	Min	$-[\%]$	$-[\%]$
	$-[\%]$		
Description:	Displays the flux actual value.		
Index:	$[0]=$ Unsmoothed		
	$[1]=$ Smoothed		

Note:	The flux actual value (index 1) smoothed with p1585 is only displayed for separately excited synchronous motors. In the following cases, the unsmoothed flux actual value is also displayed: - in the range of the current model. - during the pole position identification. - for I/f control. - for a stalled drive.		
r0087	CO: Actual power factor / Cos phi act		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC, VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714, 6730, 6732, 6799
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual active power factor.		

r0088	CO: DC link voltage setpoint / Vdc setpoint		
SERVO (Tech_ctrl),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8940,8964
(Tech_ctrl),	P-Group: Displays, signals	Unit group: $5 _2$	Unit selection: p0505
SERVO_I_AC	Scaling: p2001	Expert list: 1	
(Tech_ctrl), A_INF,	Not for motor type: -	Max	Factory setting
R_INF	Min	$-[V]$	- [V]
	$-[V]$		
Description:	Display and connector output for the DC link voltage setpoint.		

r0088	CO: DC link voltage setpoint / Vdc setpoint		
VECTOR (Tech_ctrl),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
(Tech_ctrl),	P-Group: Displays, signals	Unit group: $5 _2$	Unit selection: p0505
VECTOR_1_AC	Not for motor type: -	Scaling: p2001	Expert list: 1
(Tech_ctrl)	Min	Max	Factory setting
	$-[V]$	- [V]	
	Display and connector output for the DC link voltage setpoint.		

r0089[0...2] Actual phase voltage / U_phase act val
SERVO, VECTOR, Can be changed: -

SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC
P-Group: Displays, signals
Not for motor type: -

Min

- [V]

Displays the actual phase voltage.
Description:
[0] = Phase U
[1] = Phase V
[2] = Phase W
Note: The values are determined from the transistor switch-on duration.
p0092
CU_I, CU_NX_CX
CU_I_D410

Clock synchronous operation pre-assignment/check / Cl sync op pre-as		
Can be changed: C1(1)	Calculated: -	Access level: 1
Data type: Integer16	Dyn. index: -	Func. diagram: -
P-Group: -	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	1	1

Description: Setting to pre-assign/check the sampling times for the internal controller clock cycles for isochronous PROFIdrive operation.
For p0092 = 0:
The controller clock cycles are set without any restrictions by the isochronous PROFIdrive operation (same as for up to V2.3).
When calculating the drive unit utilization (r9976), when using the fixed DCC runtime groups "Receive AFTER IF1 PROFIdrive PZD", "Send BEFORE IF1 PROFIdrive PZD", "Receive AFTER IF2 PZD" (from V4.4) and "Send BEFORE IF2 PZD" (from V4.4), then its maximum computing time load has already been calculated during ramp-up for isochronous operation and taken into account in r9976 (from V4.3).
For p0092 = 1:
The controller clock cycles are set so that isochronous PROFIdrive operation is possible. If it is not possible to change the controller clock cycles of the isochronous PROFIdrive operation, then an appropriate message is output. The pre-setting of the controller clock cycles can result in a derating of the Motor Module (e.g. p0115[0] = $400 \mu \mathrm{~s}$--> $375 \mu \mathrm{~s}$).
When calculating the drive unit utilization (r9976), when using the fixed DCC runtime groups "Receive AFTER IF1 PROFIdrive PZD", "Send BEFORE IF1 PROFIdrive PZD", "Receive AFTER IF2 PZD" (from V4.4) and "Send BEFORE IF2 PZD" (from V4.4), then its maximum computing time load has already been calculated during ramp-up for isochronous operation and taken into account in r9976 (from V4.3).
Value: $\quad 0: \quad$ No isochronous PROFIBUS
1: Isochronous PROFIBUS
Dependency:
Caution: Only current controller sampling times (p0115[0]) which are integers of 125μ s are permitted for isochronous mode.

Notice: p0092 only has an influence on the automatic default for the sampling times (p0115) in the drive.
Refer to: r0110, p0115
Refer to: A01223, A01224 For SERVO the following current controller sampling times are also possible:
$187.5,150,100,93.75,75,62.5,50,37.5,31.25 \mu \mathrm{~s}$
For VECTOR the following current controller sampling times are also possible:
$312.5,218.75,200,187.5,175,156.25,150,137.5 \mu \mathrm{~s}$
The additional current controller sampling times must be taken into account when parameterizing the bus for Ti, To and Tdp.

If the sampling times are modified subsequently in expert mode ($\mathrm{p} 0112=0$), p0092 $=0$ should be set so that the new values are not overwritten again by the automatic default when the parameters are downloaded.
The conditions for current controller sampling time for isochronous operation must still be carefully ensured (refer under Caution!).

p0092	Clock synchronous operation pre-assignment/check / Cl sync op pre-as		
CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP	Can be changed: C1(1)	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to pre-assign/check the sampling times for the internal controller clock cycles for isochronous PROFIdrive operation.		
	For p0092 = 0:		
	The controller clock cycles are set without any restrictions by the isochronous PROFIdrive operation (same as for up to V2.3).		
	When calculating the drive unit utilization (r9976), when using the fixed DCC runtime groups "Receive AFTER IF1 PROFIdrive PZD", "Send BEFORE IF1 PROFIdrive PZD", "Receive AFTER IF2 PZD" (from V4.4) and "Send BEFORE IF2 PZD" (from V4.4), then its maximum computing time load has already been calculated during ramp-up for isochronous operation and taken into account in r9976 (from V4.3).		
	For p0092 = 1:		
	The controller clock cycles are set so that isochronous PROFIdrive operation is possible. If it is not possible to change the controller clock cycles of the isochronous PROFIdrive operation, then an appropriate message is output		
	The pre-setting of the controller clock cycles can result in a derating of the Motor Module (e.g. p0115[0] = $400 \mu \mathrm{~s}$--> $375 \mu \mathrm{~s}$).		
	When calculating the drive unit utilization (r9976), when using the fixed DCC runtime groups "Receive AFTER IF1 PROFIdrive PZD", "Send BEFORE IF1 PROFIdrive PZD", "Receive AFTER IF2 PZD" (from V4.4) and "Send BEFORE IF2 PZD" (from V4.4), then its maximum computing time load has already been calculated during ramp-up for isochronous operation and taken into account in r9976 (from V4.3).		
Value:	0 : \quad No isochronous PRO 1: Isochronous PROFIB		
Dependency:	Refer to: r0110, p0115		
	Refer to: A01223, A01224		
Caution:	Only current controller sampling times ($\mathrm{p} 0115[0]$) which are integers of $125 \mu \mathrm{~s}$ are permitted for isochronous mode.		
	For SERVO the following current controller sampling times are also possible:$187.5,150,100,93.75,75,62.5,50,37.5,31.25 \mu \mathrm{~s}$		
	For VECTOR the following current controller sampling times are also possible:		
	The additional current controller sampling times must be taken into account when parameterizing the bus for Ti, To and Tdp.		
Notice:	p0092 only has an influence on the automatic default for the sampling times (p0115) in the drive.		
	If the sampling times are modified subsequently in expert mode ($\mathrm{p} 0112=0$), p0092 $=0$ should be set so that the new values are not overwritten again by the automatic default when the parameters are downloaded.		
	The conditions for current controller sampling time for isochronous operation must still be carefully ensured (refer under Caution!).		
r0093	CO: Pole position angle electrically scaled / Pole pos el scale		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram:
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	- [${ }^{\circ}$]	- [${ }^{\circ}$]	- [${ }^{\circ}$]
Description:	Displays the scaled electrical pole position angle.		
Dependency:	Refer to: r0094, p0431, r1778		

2.2 List of parameters

Notice:	When the pole position angle (r0093) is output via test socket $T_{x}(x=0,1,2)$ to adjust the encoder (to determine the angular commutation offset) the test socket being used must be parameterized as follows:
	$\mathrm{p} 0771[\mathrm{x}]=\mathrm{r0093}$
	p0777[x] = 0 \%
	$\mathrm{p} 0778[\mathrm{x}]=0 \mathrm{~V}$
	$p 0779[x]=400 \%$
	$\mathrm{p} 0780[\mathrm{x}]=4 \mathrm{~V}$
	$\mathrm{p} 0783[\mathrm{x}]=0 \mathrm{~V}$
	p0784[x] = 0
	For p1821 = 1 (counter-clockwise direction of rotation) the following applies:
	In order to adjust the encoder using the EMF method, the value, determined using the oscilloscope, must be inverted and then entered in p0431.
Note:	For operation with encoder and pulse suppression, the following applies:
	- the value is generated from r0094 + 180°.
	- this angle can be used to adjust the encoders of synchronous motors.
	For pulse enable, the following applies:
	- the value indicates the transformation angle used by the control $+180^{\circ}$.
	- this value is, contrary to r0094, also applicable (provides information) for encoderless operation and after a pole position identification routine.
r0094	CO: Piston position actual value / Piston pos act val
HLA	Can be changed: - Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
	P-Group: Displays, signals Unit group: - Unit selection: -
	Not for motor type: - Scaling: p2005 Expert list: 1
	Min Max Factory setting
	$-[\mathrm{mm}] \quad-[\mathrm{mm}] \quad-[\mathrm{mm}]$
Description:	Display and connector output of the piston position.
Note:	The piston position should be calibrated, so that when the cylinder is completely retracted, zero is displayed and the value increases as it extends.
	For piston calibration, p1960 (automatic) or p1909 (manual) can be used.

r0094

SERVO, VECTOR, SERVO AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

CO: Transformation angle / Transformat_angle

Can be changed: -
Data type: FloatingPoint32

P-Group: Displays, signals
Not for motor type: -
Min

- [${ }^{\circ}$]

Calculated: -
Dyn. index: -

Unit group: -
Scaling: p2005
Max

- [${ }^{\circ}$]

Access level: 3

Func. diagram: 4700, 4702, 4710, 6300, 6714, 6730, 6731, 6732

Unit selection: -
Expert list: 1
Factory setting

- []

Description: Displays the transformation angle.
Dependency: Refer to: r0093, p0431, r1778
Note:
The transformation angle corresponds to the electrical commutation angle.
If no pole position identification is carried out (p1982), and the encoder is adjusted, the following applies:
The encoder supplies the value and indicates the electrical angle of the flux position (d axis).

2.2 List of parameters

Note:	Topology coding: abcd efgh hex $\mathrm{a}=$ number of Active Line Modules $b=$ number of Motor Modules $\mathrm{c}=$ number of motors $d=$ number of encoders (or the line supply voltage sensing for Active Line Modules) $e=$ number of additional encoders (or the line supply voltage sensing for Active Line Modules) $f=$ number of Terminal Modules $\mathrm{g}=$ number of Terminal Boards $h=$ reserved if the value 0 is displayed in all indices, then components are not detected via DRIVE-CLiQ.

p0100	IEC/NEMA Standards / IEC/NEMA Standards		
HLA	Can be changed: $\mathrm{C} 2(1,2)$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: SESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Defines whether the converter and motor power settings (e.g. rated motor power, p0307) are expressed in [kW] or [hp].		
	Depending on the selection, the rated motor frequency (p0310) is either set to 50 Hz or 60 Hz .		
	For $\mathrm{p} 0100=0$, the following applies: The power factor (p0308) should be parameterized.		
	For $\mathrm{p} 0100=1$, the following applies: The efficiency (p0309) should be parameterized.		
Value:	0 : IEC (50 Hz line, SI un 1. NEMA 60 Hz line,		

Dependency:	If p0100 is changed, all of the rated motor parameters are reset. Only then are possible unit changeovers made.		
The units of all motor parameters are changed that are involved in the selection of IEC or NEMA (e.g. r0206, p0307,			
p0316, r0333, r0334, p0341, p0344, r1493, r1969).			
	Refer to: r0206, p0206, p0210, p0300, p0304, p0305, p0307, p0308, p0309, p0310, p0311, p0312, p0314, p0320,		
p0322, p0323, p0335, r0336, r0337, p0338, p1800		\quad	The parameter can only be changed for vector control (p0107).
:---			
Note:			

p0100	IEC/NEMA Standards / IEC/NEMA Standards		
SERVO, SERVO_AC,	Can be changed: C2(1, 2)	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: SESM	Scaling: -	Expert list: 1
	Min	0	Factory setting
	0	0	
Description:	Defines whether the motor and drive converter power settings (e.g. rated motor power, p0307) are expressed in [kW].		
Value:	$0: \quad$ IEC $(50 \mathrm{~Hz}$ line, SI units)		
Dependency:	Refer to: $\mathrm{rO206}, \mathrm{p} 0206$, p0307, p0308		

p0100	IEC/NEMA Standards / IEC/NEMA Standards		
VECTOR,	Can be changed: $\mathrm{C} 2(1,2)$	Calculated: -	Access level: 1
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: SESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Defines whether the converter and motor power settings (e.g. rated motor power, p0307) are expressed in [kW] or [hp].		
	Depending on the selection, the rated motor frequency (p 0310) is either set to 50 Hz or 60 Hz .		
	For p0100 $=0$, the following applies: The power factor (p 0308) should be parameterized.		
	For $\mathrm{p} 0100=1$, the following applies: The efficiency (p0309) should be parameterized.		
Value:	0 : IEC (50 Hz line, SI u 1: NEMA (60 Hz line,		
Dependency:	The units of all motor parameters are changed that are involved in the selection of IEC or NEMA (e.g. r0206, p0307 p0316, r0333, r0334, p0341, p0344, r1493, r1969).		
	Refer to: r0206, p0206, p0210, p0300, p0304, p0305, p0307, p0308, p0309, p0310, p0311, p0312, p0314, p0320, p0322, p0323, p0335, r0336, r0337, p0338, p1800		
Note:	The parameter can only be changed for vector control (p0107).		
	The parameter value is not r	ctory setting is r	p0970).

p0101[0...n]	Drive object numbers / DO numbers		
CU_I, CU_NX_CX,	Can be changed: C1(1)	Calculated: -	Access level: 2
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Topology	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Min	Max	Factory setting
CU_S120_DP,	62	0	

Description: The parameter contains the object number via which every drive object can be addressed.
The number of an existing drive object is entered into each index.
Value $=0$: No drive object is defined.
Note: \quad The numbers are automatically allocated.
For the commissioning tool, this object number cannot be entered using the expert list, but is automatically assigned when inserting an object.

2.2 List of parameters

r0102[0...1]	Number of drive objects / DO count		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 2
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Topology	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	-
Description:	Displays the number of existing or existing and prepared drive objects.		
Index:	[0] = Existing drive objects [1] = Existing and prepared drive objects		
Dependency:	Refer to: p0101		
Note:	The numbers of the drive objects are in p0101.		
	For index [0]:		
	Displays the number of drive objects that have already been set up.		
	For index [1]:		
	Displays the number of drive objects that have already been set up and, in addition, the drive objects that still have to be set up.		

p0103[0...n]	Application-specific view / Appl_spec view		
CU_I, CU_NX_CX,	Can be changed: C1(2)	Calculated: -	Access level: 2
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group:	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Min	Max	Factory setting
CU_S120_DP,	999	0	
CU_S150_DP,	0		

Description:	The application-specific view of an existing drive object is entered into each index.
The parameter cannot be changed.	
Dependency:	Refer to: p0107, r0107
Note:	In the non-volatile memory, the application-specific views are defined in files with the following structure:
	PDxxxyy.ACX
	xxx: Application-specific view (p0103)
	yyy: Type of drive object (p0107)
	Example:
	PD052011.ACX
	--> "011" stands for the drive object, type SERVO
	--> "052" is the number of the view for this drive object

r0103

SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, Min B_INF

Description:

Dependency:

Application-specific view / Appl_spec view
Can be changed: -
Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
65535

Displays the application-specific view of the individual drive object. Refer to: p0107, r0107

Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

p0105	Activate/deactivate drive object / DO act/deact		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 2
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN, CU S120 PN,	P-Group: Closed-loop control	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	1	1
Description:	Setting to activate/deactivate a drive object.		
Value:	0 : Deactivate drive object 1: Activate drive object		
Dependency:	Refer to: r0106		
Notice:	The following applies when activating:		
	If components are inserted for the first time and the appropriate drive object is activated, then the drive system is automatically booted. To do this, the pulses of all of the drive objects must be suppressed.		

p0105

SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC,
A_INF, S_INF, R_INF,
B_INF, TM17,
TM15DI_DO, TM120,
TM150, TB30, ENC,
HUB, CU_LINK
Description: Setting to activate/deactivate a drive object.
Value: $\quad 0: \quad$ Deactivate drive object
1: Activate drive object
2: Drive object deactivate and not present
Dependency: When activating drive objects with the safety functions enabled, the following applies:
After reactivating, a warm restart ($\mathrm{p} 0009=30, \mathrm{p} 0976=2,3$) or POWER ON should be carried out.
Refer to: r0106
Refer to: A01314

Notice:

The following applies when activating:
If components are inserted for the first time and the appropriate drive object is activated, then the drive system is automatically booted. To do this, the pulses of all of the drive objects must be suppressed.
Note:

Can be changed: T
Data type: Integer16
P-Group: Closed-loop control
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
2

Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
1

Activate/deactivate drive object / DO act/deact

For value $=0,2$:
When a drive object is deactivated it no longer outputs any errors.
If value $=0$:
All components of the drive object were completely commissioned and are deactivated using this value. They can be removed from the DRIVE-CLiQ without any error.
If a component has been deactivated, only the component with the correct serial number may be inserted, or none at all.
If value $=1$:
All components of the drive object must be available for error-free operation.
If value $=2$:
Components of a drive object in a project generated offline and set to this value must never be inserted in the actual topology from the very start. This means that the components are marked to be bypassed in the DRIVE-CLiQ line. For components that comprise several individual components (e.g. Double Motor Modules), it is not permissible to set just one subset to this value.

p0105

TM54F_MA
TM54F_SL

Activate/deactivate drive object / DO act/deact		
Can be changed: T	Calculated: -	Access level: 3
Data type: Integer16	Dyn. index: -	Func. diagram: -
P-Group: Closed-loop control	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	2	1

Description: Setting to activate/deactivate a drive object.

Value:

Dependency:

Notice: The following applies when activating:
0 : Deactivate drive object
1: Activate drive object
2: Drive object deactivate and not present
Dependency: TM54F can only be deactivated if all of the drives assigned to it via p10010 have been deactivated or safety on the assigned drives has not be enabled.
When activating drive objects with the safety functions enabled, the following applies:
After reactivating, a warm restart ($\mathrm{p} 0009=30, \mathrm{p} 0976=2,3$) or POWER ON should be carried out.
Refer to: r0106
Refer to: A01314

If components are inserted for the first time and the appropriate drive object is activated, then the drive system is automatically booted. To do this, the pulses of all of the drive objects must be suppressed.

Note:
For value $=0,2$:
When a drive object is deactivated it no longer outputs any errors.
If value $=0$:
All components of the drive object were completely commissioned and are deactivated using this value. They can be removed from the DRIVE-CLiQ without any error.
If a component has been deactivated, only the component with the correct serial number may be inserted, or none at all.
If value $=1$:
All components of the drive object must be available for error-free operation.
If value $=2$:
Components of a drive object in a project generated offline and set to this value must never be inserted in the actual topology from the very start. This means that the components are marked to be bypassed in the DRIVE-CLiQ line. For components that comprise several individual components (e.g. Double Motor Modules), it is not permissible to set just one subset to this value.

r0106

CU_I, CU_NX_CX,
CU S AC DP,
CU_S_AC_PN,
CU_S120_PN,
CU_S150_PN,
CU_S120_DP,
CU_S150_DP,
CU_I_D410, SERVO,
VĒ̄TOR, HLA,
SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC,
A_INF, S_INF, R_INF,
B_INF, TM31, TM41,
TM17, TM15,
TM15DI_DO, TM120,
TM150, TB30, ENC,
HUB, CU_LINK
Description:
Value:

Dependency:

Drive object active/inactive / DO act/inact
Can be changed: -
Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
1

Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
p0107[0...n] Drive object type / DO type
CU_I_D410 C1(2)

CU_I_D410

Value:

Can be changed: C1(2)
Data type: Integer16
P-Group: -
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
300

Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

The type of an existing drive object is entered into each index.
3: SINAMICS I
11: SERVO
12: VECTOR
150: DRIVE-CLiQ Hub Module
200: TM31 (Terminal Module)
201: TM41 (Terminal Module)
202: TM17 High Feature (Terminal Module)
203: TM15 (Terminal Module)
204: TM15 (Terminal Module for SINAMICS)
205: TM54F - Master (Terminal Module)
206: TM54F - Slave (Terminal Module)

2.2 List of parameters

	207: TM120 (Terminal Module)
	208: TM150 (Terminal Module)
Dependency:	Refer to: p0103, r0103 Caution:
If you change this parameter and exit the device commissioning mode, then the complete software will be set up	
again and all of the previous drive parameter settings are deleted.	
Note:	The number (p0101) and the associated drive object type are in the same index.
	For SINAMICS S a drive object type can only be changed between SERVO and VECTOR. If you change the parameter and exit drive start-up (p0009 from 2 to 0) the drive parameters are set up again.

p0107[0...n] Drive object type / DO type

Can be changed: C1(2)
Data type: Integer16
P-Group: -
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
300

Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Description: The type of an existing drive object is entered into each index.
Value:

Dependency:
Caution:
If you change this parameter and exit the device commissioning mode, then the complete software will be set up again and all of the previous drive parameter settings are deleted.

Note:
The number (p0101) and the associated drive object type are in the same index.
For SINAMICS S a drive object type can only be changed between SERVO and VECTOR. If you change the parameter and exit drive start-up (p0009 from 2 to 0) the drive parameters are set up again.

p0107[0...n]	Drive object type / DO type		
CU_S_AC_DP,	Can be changed: C 1 (2)	Calculated: -	Access level: 2
CU_S_AC_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	300	0
Description:	The type of an existing drive object is entered into each index.		
Value:	0: -		
	1: SINAMICS S		
	10: ACTIVE INFEED		
	11: SERVO		
	12: VECTOR		
	20: SMART INFEED		
	21: RENEWABLE IN		
	30: BASIC INFEED		
	70: HLA		
	100: TB30 (Terminal B		
	150: DRIVE-CLiQ Hub		
	200: TM31 (Terminal		
	201: TM41 (Terminal		
	202: TM17 High Feature (Terminal Module)		
	203: TM15 (Terminal Module)		
	204: TM15 (Terminal Module for SINAMICS		
	205: TM54F - Master (Terminal Module)		
	206: TM54F - Slave (Terminal Module)		
	207: TM120 (Terminal Module)		
	208: TM150 (Terminal Module)		
	300: ENCODER		
Dependency:	Refer to: p0103, r0103		
Caution:	If you change this parameter and exit the device commissioning mode, then the complete software will be set up again and all of the previous drive parameter settings are deleted.		
Note:	The number (p0101) and the associated drive object type are in the same index.		
	For SINAMICS S a drive object type can only be changed between SERVO and VECTOR. If you change the parameter and exit drive start-up (p0009 from 2 to 0) the drive parameters are set up again.		

p0107[0...n]	Drive object type / DO type		
CU_S150_PN,	Can be changed: C1(2)	Calculated: -	Access level: 2
CU_S150_DP	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	300	0

Description: The type of an existing drive object is entered into each index.
Value: $0:-$

1: SINAMICS S
10: ACTIVE INFEED CONTROL
12: VECTOR
100: TB30 (Terminal Board)
150: DRIVE-CLiQ Hub Module
200: TM31 (Terminal Module)
201: TM41 (Terminal Module)
202: TM17 High Feature (Terminal Module)
203: TM15 (Terminal Module)
204: TM15 (Terminal Module for SINAMICS)
205: TM54F - Master (Terminal Module)
206: TM54F - Slave (Terminal Module)

2.2 List of parameters

	207: TM120 (Terminal Module) 208: TM150 (Terminal Module) 300: ENCODER
Dependency:	Refer to: p0103, r0103 If you change this parameter and exit the device commissioning mode, then the complete software will be set up again and all of the previous drive parameter settings are deleted.
Note:	The number (p0101) and the associated drive object type are in the same index. For SINAMICS S a drive object type can only be changed between SERVO and VECTOR. If you change the parameter and exit drive start-up (p0009 from 2 to 0) the drive parameters are set up again.

r0107	Drive object type / DO type		
HLA	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	70	70	-
Description:	Displays the type of each drive object.		
Value:	70: HLA		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 2
SERVO_I_AC	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	11	11	-
Description:	Displays the type of each drive object.		
Value:	11: SERVO		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
VECTOR,	Can be changed: -	Calculated: -	Access level: 2
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	12	12	-
Description:	Displays the type of each drive object.		
Value:	12: VECTOR		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
A_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10	10	-
Description:	Displays the type of each drive object.		
Value:	10: ACTIVE INFEED CONTROL		
Dependency:	Refer to: p0103, r0103		

r0107	Drive object type / DO type		
B_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	30	30	-
Description:	Displays the type of each drive object.		
Value:	30: BASIC INFEED CONTROL		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
R_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	21	21	-
Description:	Displays the type of each drive object.		
Value:	21: RENEWABLE INFEED CONTROL		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
S_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	20	20	-
Description:	Displays the type of each drive object.		
Value:	20: SMART INFEED CONTROL		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
TM120	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	207	207	-
Description:	Displays the type of each drive object.		
Value:	207: TM120 (Terminal Module)		
Dependency:	Refer to: p0103, r0103		

2.2 List of parameters

r0107	Drive object type / DO type		
TM15	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	203	203	-
Description:	Displays the type of each drive object.		
Value:	203: TM15 (Terminal Module)		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
TM150	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	208	208	-
Description:	Displays the type of each drive object.		
Value:	208: TM150 (Terminal Module)		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
TM15DI_DO	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	204	204	-
Description:	Displays the type of each drive object.		
Value:	204: TM15 (Terminal Module for SINAMICS)		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
TM17	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	202	202	-
Description:	Displays the type of each drive object.		
Value:	202: TM17 High Feature (Terminal Module)		
Dependency:	Refer to: p0103, r0103		

r0107	Drive object type / DO type		
TM31	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	200	200	-
Description:	Displays the type of each drive object.		
Value:	200: TM31 (Terminal Module)		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
TM41	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	201	201	-
Description:	Displays the type of each drive object.		
Value:	201: TM41 (Terminal Module)		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
TB30	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	100	100	-
Description:	Displays the type of each drive object.		
Value:	100: TB30 (Terminal Board)		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
TM54F_MA	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	205	205	-
Description:	Displays the type of each drive object.		
Value:	205: TM54F - Master (Terminal Module)		
Dependency:	Refer to: p0103, r0103		

2.2 List of parameters

r0107 TM54F_SL	Drive object type / DO type		
	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	206	206	-
Description:	Displays the type of each drive object.		
Value:	206: TM54F - Slave (Terminal Module)		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
ENC	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	300	300	-
Description:	Displays the type of each drive object.		
Value:	300: ENCODER		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
CU_LINK	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	254	254	-
Description:	Displays the type of each drive object.		
Value:	254: CU-LINK		
Dependency:	Refer to: p0103, r0103		
r0107	Drive object type / DO type		
HUB	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	150	150	-
Description:	Displays the type of each drive object.		
Value:	150: DRIVE-CLiQ Hub Module		
Dependency:	Refer to: p0103, r0103		

p0108[0...n]	Drive objects function module / DO fct_mod				
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: C 1 (2)		Calculated:	Acces	
	Data type: Unsigned32			Func.	
	P-Group: -		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factory setting	
	-		-	00000000000000000000 000000000000 bin	
Description:	The function module of an existing drive object is entered into each index (see p0101, p0107).				
	The following bits are available for the Control Unit (Index 0):				
	Bit 18: Free function blocks				
	Bit 29: CAN				
	Bit 30: COMM BOARD				
	Bit 31: PROFINET				
	For all other drive objects (Index >0), the significance of the bits should be taken from the display parameters r0108 of the drive object.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-
	26	Bit 26	ON	OFF	-
	27	Bit 27	ON	OFF	-
	28	Bit 28	ON	OFF	-
	29	Bit 29	ON	OFF	-
	30	Bit 30	ON	OFF	-
	31	Bit 31	ON	OFF	-
Dependency:	Active messages can prevent or influence activating a function module.				
	Refer to: p0171, r0171, p0172, r0172, p0173, r0173				
	Refer to: A06860, A07089, F13010				
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				

r0108	Drive objects function module / DO fct_mod				
SERVO_AC	Can be changed: - Ca		ulated: -	Access lev	
	Data type: Unsigned32 D		index: -	Func. diag	
	P-Group: Closed-loop control Unit		group: -	Unit selection	
	Not for motor type: - S		ng: -	Expert list:	
	Min Max			Factory se	
	-	-		-	
Description:	Displays the activated function module for the particular drive object.				
Bit field:		Signal name	1 signal	0 signal	FP
		Extended torque control / Ext M_ctrl	Activated	Not activated	-
		Speed/torque control/n/M	Activated	Not activated	-
		Position control / Pos ctrl	Activated	Not activated	-
		Basic positioner / EPOS	Activated	Not activated	-
	05	Recorder/Rec	Activated	Not activated	-
		DSC with spline / DSC spline	Activated	Not activated	-
		Advanced Positioning Control (APC) / APC	Activated	Not activated	-
		Extended setpoint channel / Ext setp	Activated	Not activated	-
		Extended Stopping and Retraction / ESR	Activated	Not activated	-
	10	Moment of inertia estimator / J_estimator	Activated	Not activated	-
		Spindle diagnostics / Spin_diag	Activated	Not activated	-
	12	Linear motor / Lin	Activated	Not activated	-
	13	Safety rotary axis / Safety rot	Activated	Not activated	-
		Extended brake control / Ext brake	Activated	Not activated	-
		Technology controller / Tech_ctrl	Activated	Not activated	-
		Extended messages/monitoring / Ext msg	Activated	Not activated	-
	18	Free function blocks / FBLOCKS	Activated	Not activated	-
		Extended current setpoint filter / Ext I_setp_filt	Activated	Not activated	-
		Cogging torque compensation / Cog_M_comp	Activated	Not activated	-
		Failsafe inputs/outputs on CU / F-DI F-DO CU	Activated	Not activated	-
		Cooling unit / Cool_unit	Activated	Not activated	-
		PROFINET CBE20 / PN CBE20	Activated	Not activated	-
Dependency:	Refer to: p0171, r0171, p0172, r0172, p0173, r0173				
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				
r0108	Drive objects function module / DO fct_mod				
SERVO_I_AC	Can be changed: - Ca		ulated: -	Access lev	
	Data type: Unsigned32 Dy		index: -	Func. diag	
	P-Group: Closed-loop control		group: -	Unit select	
	Not for motor type: - S		ng: -	Expert list:	
	Min M			Factory se	
	-	-		-	
Description:	Displays the activated function module for the particular drive object.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	01	Extended torque control / Ext M_ctrl	Activated	Not activated	-
	02	Speed/torque control / n / M	Activated	Not activated	-
	05	Recorder/Rec	Activated	Not activated	-
	06	DSC with spline / DSC spline	Activated	Not activated	-
	07	Advanced Positioning Control (APC) / APC	Activated	Not activated	-
	08	Extended setpoint channel / Ext setp	Activated	Not activated	-
	09	Extended Stopping and Retraction / ESR	Activated	Not activated	-
	10	Moment of inertia estimator / J_estimator	Activated	Not activated	-
	11	Spindle diagnostics / Spin_diag	Activated	Not activated	-
	12	Linear motor / Lin -	Activated	Not activated	-
	13	Safety rotary axis / Safety rot	Activated	Not activated	-
	14	Extended brake control / Ext brake	Activated	Not activated	-
	16	Technology controller / Tech_ctrl	Activated	Not activated	-

2.2 List of parameters

	17	Extended messages/monitoring / Ext msg	Activated	Not activated	-
	18	Free function blocks / FBLOCKS	Activated	Not activated	-
	21	Extended current setpoint filter / Ext I setp filt	Activated	Not activated	-
	22	Cogging torque compensation / Cog_M_comp	Activated	Not activated	-
	25	Failsafe inputs/outputs on CU / F-DI F-DO CU	Activated	Not activated	-
	28	Cooling unit / Cool_unit	Activated	Not activated	
	31	PROFINET CBE20 / PN CBE20	Activated	Not activated	-
Dependency:	Refer to: p0171, r0171, p0172, r0172, p0173, r0173				
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				
r0108	Drive objects function module / DO fct_mod				
VECTOR	Can be changed: - Ca		Calculated: -	Access lev	
	Data type: Unsigned32 Dyn		Dyn. index: -	Func. diagr	
	P-Group: Closed-loop control Unt		Unit group: -	Unit selecti	
	Not for motor type: - S		Scaling: -	Expert list:	
	Min		Max	Factory set	
		- -		-	
Description:	Displays the activated function module for the particular drive object.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	02	Speed/torque control/n/M	Activated	Not activated	-
	03	Position control / Pos ctrl	Activated	Not activated	-
	04	Basic positioner / EPOS	Activated	Not activated	-
	05	Recorder / Rec	Activated	Not activated	-
	08	Extended setpoint channel / Ext setp	Activated	Not activated	-
	10	Moment of inertia estimator / J_estimator	Activated	Not activated	-
	13	Safety rotary axis / Safety rot	Activated	Not activated	-
	14	Extended brake control / Ext brake	Activated	Not activated	-
	15	Parallel connection / Parallel	Activated	Not activated	-
	16	Technology controller / Tech_ctrl	Activated	Not activated	-
	17	Extended messages/monitoring / Ext msg	Activated	Not activated	-
	18	Free function blocks / FBLOCKS	Activated	Not activated	-
	20	Software gating unit / SW_gating unit	Activated	Not activated	-
	24	PM330 / PM330	Activated	Not activated	-
	26	F3E power unit / F3E	Activated	Not activated	-
	28	Cooling unit / Cool_unit	Activated	Not activated	
	29	CAN / CAN	Activated	Not activated	-
	31	PROFINET CBE20 / PN CBE20	Activated	Not activated	-
Dependency:	Refer to: p0171, r0171, p0172, r0172, p0173, r0173				
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				
	The following bits are only automatically set, if the power units are detected with the appropriate properties.				
	Bit 15: Parallel connection of identical power units (only automatically set for G130/G150).				
	Bit 20: Software gating unit (only automatically set when power units are connected in parallel).				
	Bit 24: Type PM330 power units are presently not supported.				
	Bit 26: Type PM250 power units with F3E energy recovery are only supported for S120 CRANES.				
	28: Power units with liquid cooli				

2.2 List of parameters

		Failsafe inputs/outputs on CU / F-DI F-DO CU	Activated	Not activated	-
		F3E power unit / F3E	Activated	Not activated	-
		Cooling unit / Cool_unit	Activated	Not activated	-
	31	PROFINET CBE20 / PN CBE20	Activated	Not activated	-
Dependency:	Refer to: p0171, r0171, p0172, r0172, p0173, r0173				
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				
	The following bits are only automatically set, if the power units are detected with the appropriate properties.				
	Bit 15: Parallel connection of identical power units (only automatically set for G130/G150).				
	Bit 20: Software gating unit (only automatically set when power units are connected in parallel).				
	Bit 24: Type PM330 power units are presently not supported.				
	Bit 26: Type PM250 power units with F3E energy recovery are only supported for S120 CRANES.				
	Bit 28: Power units with liquid cooling.				
r0108	Drive objects function module / DO fct_mod				
A_INF, R_INF	Can be changed: - Calculat		ulated: -	Access leve	
	Data type: Unsigned32 Dyn.		index: -	Func. diagr	
	P-Group: Closed-loop control Un		group: -	Unit selecti	
	Not for motor type: - S		ng: -	Expert list:	
	Min Max			Factory set	
	- -			-	
Description:	Displays the activated function module for the particular drive object.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Supplementary closed-loop control / Suppl cl-loop ctrl	Activated	Not activated	-
	04	Line transformer / Line transf	Activated	Not activated	-
	05	Recorder / Rec	Activated	Not activated	-
		Dynamic grid support / Dyn. grid support	Activated	Not activated	-
	10	Supplementary module cosinus phi / cos phi	Activated	Not activated	-
	12	Line droop control / Line droop ctrl	Activated	Not activated	-
	15	Parallel connection / Parallel	Activated	Not activated	-
	18	Free function blocks / FBLOCKS	Activated	Not activated	-
	19	Master/Slave / Master/Slave	Activated	Not activated	-
		Software gating unit / SW_gating unit	Activated	Not activated	-
		Braking Module external / Brk Mod ext	Activated	Not activated	-
		Cooling unit / Cool_unit	Activated	Not activated	-
	31	PROFINET CBE20 / PN CBE20	Activated	Not activated	-
Dependency:	Refer to: p0171, r0171, p0172, r0172, p0173, r0173				
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				
r0108	Drive objects function module / DO fct_mod				
S_INF, B_INF	Can be changed: - Calculat		ulated: -	Access leve	
	Data type: Unsigned32		index: -	Func. diagr	
	P-Group: Closed-loop control Un		group: -	Unit selecti	
	Not for motor type: - S		ng: -	Expert list:	
	Min Max			Factory set	
	-	-		-	
Description:	Displays the activated function module for the particular drive object.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	05	Recorder / Rec	Activated	Not activated	-
	15	Parallel connection / Parallel	Activated	Not activated	-
	18	Free function blocks / FBLOCKS	Activated	Not activated	-
	26	Braking Module external / Brk Mod ext	Activated	Not activated	-
	28	Cooling unit / Cool_unit	Activated	Not activated	-
	31	PROFINET CBE20 / PN CBE20	Activated	Not activated	-
Dependency:	Refer to: p0171, r0171, p0172, r0172, p0173, r0173				
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				

r0108	Drive objects function module / DO fct_mod			
TM31, TM41,	Can be changed: -	Calculated: -	Access lev	
TM15DI_DO, TM120,	Data type: Unsigned32	Dyn. index: -	Func. diag	
	P-Group: Closed-loop control	Unit group: -	Unit select	
	Not for motor type: -	Scaling: -	Expert list:	
	Min	Max	Factory se	
	-	-	-	
Description:	Displays the activated function module for the particular drive object.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	18 Free function blocks / FBLOCKS	Activated	Not activated	
	31 PROFINET CBE20 / PN CBE20	Activated	Not activated	-
Dependency:	Refer to: p0171, r0171, p0172, r0172, p0173, r0173			
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.			
r0108	Drive objects function module / DO fct_mod			
ENC	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned32	Dyn. index: -	Func. diag	
	P-Group: Closed-loop control	Unit group: -	Unit select	
	Not for motor type: -	Scaling: -	Expert list:	
	Min	Max	Factory setting	
		-	-	
Description:	Displays the activated function module for the particular drive object.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	12 Linear encoder / Lin_enc	Activated	Not activated	-
	18 Free function blocks / FBLOCKS	Activated	Not activated	-
	31 PROFINET CBE20 / PN CBE20	Activated	Not activated	-
Dependency:	Refer to: p0171, r0171, p0172, r0172, p0173, r0173			
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.			
r0110[0...2]	Basic sampling times / t_basis			
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access lev	
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diag	
CU S120 PN,	P-Group: Closed-loop control	Unit group: -	Unit select	
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list:	
CU_S120_DP,	Min	Max	Factory se	
$\begin{aligned} & C U_{-}^{-} \text {S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	- [$\mu \mathrm{s}$]			
Description:	Displays the basic sampling times.			
	The sampling times are set using p0112 and p0115. The values for the basic sampling times are determined as a result of these settings.			
Index:	[0] = Basic sampling time 0 [1] = Basic sampling time 1 [2] = Basic sampling time 2			

	Basic sampling time selection / t_basis sel
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF	Can be changed: - Calculated: - Access level: 3 Data type: Integer16 Dyn. index: - Func. diagram: - P-Group: Closed-loop control Unit group: Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting - - -
Description: Dependency:	Displays the selected basic sampling time for this drive object. Refer to: r0110
p0112 SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF	Sampling times pre-setting p0115 /t_sample for p0115 Can be changed: C1(3) Calculated: - Access level: 3 Data type: Integer16 Dyn. index: - Func. diagram: - P-Group: Closed-loop control Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0 5 3
Description:	Pre-assignment of the sampling times in p0115. The clock cycles for the current controller / speed controller / flux controller / setpoint channel / position controller / positioning / technology controller are pre-assigned as follows: SINAMICS S, servo drive: p0112 $=1: 250 / 250 / 250 / 4000 / 2000 / 8000 / 4000 \mu \mathrm{~s}$ (for chassis units) p0112 = 2: $125 / 250 / 250 / 4000 / 2000 / 8000 / 4000 \mu \mathrm{~s}$ p0112 = 3: $125 / 125 / 125 / 4000 / 1000 / 4000 / 4000 \mu \mathrm{~s}$ p0112 = 4: $62.5 / 62.5 / 62.5 / 1000 / 1000 / 2000 / 1000 \mu \mathrm{~s}(f o r ~ S 210)$ p0112 = 5: $31.25 / 31.25 / 31.25 / 1000 / 1000 / 2000 / 1000 \mu s$ SINAMICS S, Active Infeed (p0112 = 1 not for p0092 = 1): p0112 $=1: 400 /-/-/ 1600 \mu \mathrm{~s}$ (pre-setting for the rated pulse frequency $=2.5 \mathrm{kHz}$) p0112 = 2: $250 /-/-/ 2000 \mu \mathrm{~s}$ (pre-setting for the rated pulse frequency $=4.0 \mathrm{kHz}$) p0112 = 3: $125 /-/-/ 2000 \mu \mathrm{~s}$ p0112 = 4: $125 /-/-/ 1000 \mu \mathrm{~s}$ p0112 = 5: $125 /-/-/ 500 \mu \mathrm{~s}$ SINAMICS S, Smart Infeed (p0112 = 1 not for p0092 = 1): p0112 $=1: 400 /-/-/ 1600 \mu \mathrm{~s}$ (pre-setting for the rated pulse frequency $=2.5 \mathrm{kHz}$) p0112 = 2: $250 /-/-/ 2000 \mu \mathrm{~s}$ (pre-setting for the rated pulse frequency $=4.0 \mathrm{kHz}$) p0112 = 3: $250 /-/-/ 2000 \mu \mathrm{~s}$ p0112 = 4: $250 /-/-/ 1000 \mu \mathrm{~s}$ p0112 = 5: Not possible SINAMICS S, Basic Infeed, booksize: p0112 = 4: $250 /-/-/ 2000 \mu \mathrm{~s}$ SINAMICS S, Basic Infeed, chassis: p0112 = 1: $2000 /-/-/ 2000 \mu \mathrm{~s}$ p0112 = 2: $2000 /-/-/ 2000 \mu \mathrm{~s}$ (pre-setting) p0112 = 3: $2000 /-/-/ 2000 \mu \mathrm{~s}$ p0112 = 4: Not possible p0112 = 5: Not possible

	SINAMICS S/G, vector drive (p0112 = 1 not for p0092 $=1$ and not for PM340):		
	p0112 = 2: $250 / 1000 / 2000 / 1000 / 2000 / 4000 / 4000 \mu \mathrm{~s}$		
	p0112 = 3: $250 / 1000 / 1000 / 1000 / 2000 / 4000 / 4000 \mu s($ for rated pulse frequency $=2.0,4.0 \mathrm{kHz}$)		
	SINAMICS S, vector drive:		
	p0112 = 4: $250 / 500 / 1000 / 500 / 1000 / 2000 / 2000 \mu \mathrm{~s}$		
	p0112 = 5: $250 / 250 / 1000 / 500 / 1000 / 2000 / 1000 \mu \mathrm{~s}$		
Value:	0: Expert		
	1: xLow		
	2: Low		
	3: Standard		
	4: High		
	5: xHigh		
Recommendation:	When changing the sampling times of the current and speed controllers (also refer to p 0115), then we recommend that after exiting commissioning $(\mathrm{p} 0009=0)$ the controller settings are re-calculated using p0340 $=4$.		
Dependency:	It is prohibited to select a parameter value from p0112 if the associated current controller clock cycle cannot set (e.g. p0112 = 1 is not possible for a vector drive and PM340 power unit).		
	If, for a servo drive, $\mathrm{p} 112=5$ is set, then the pulse frequency p1800 is pre-assigned 8 kHz . For D410-2 and vector drive, the current controller sampling time can only be permanently changed for p0112 $=0$.		
	Refer to: p0092		
Note:	For p0112 $=0$ (expert) the individual sampling times in p0115 can be adjusted.		
	The setting p0112 = 1 cannot be set for a vector drive with power unit type PM340 (refer to r0203).		
p0113	Minimum pulse frequency, selection / f_puls min sel		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: C 1 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	2.000 [kHz]	4.000 [kHz]	4.000 [kHz]
Description:	The current controller sampling time ($\mathrm{p} 0115[0]$) is pre-assigned by selecting the minimum pulse frequency.		
Dependency:	The parameter can only be changed with p0112 = 0 (expert). For isochronous operation ($p 0092=1$) the parameter can only be set so that a current controller sampling time of $125 \mu \mathrm{~s}$ is obtained as an integer number.		
	The required pulse frequency can be set in p1800 after commissioning ($p 0009=p 0010=0$), assuming that this has not been restricted by other conditions (e.g. as a result of p1082, p0310).		
	Refer to: p0112, r0114, p0115, p1800		
Note:	The current controller sampling time ($\mathrm{p} 0115[0]$) is set to the inverse value of twice the minimum pulse frequency. For $\mathrm{p} 0113=2.0 \mathrm{kHz}, \mathrm{p} 0115[0]=250 \mu \mathrm{~s}$ is set, for $\mathrm{p} 0113=4.0 \mathrm{kHz}, \mathrm{p} 0115[0]=125 \mu \mathrm{~s}$ is set. The current controller sampling time ($\mathrm{p} 0115[0]$), calculated from the pulse frequency, is set in a grid of $1.25 \mu \mathrm{~s}$.		
	For a power unit type PM340 (refer to r0203), only the values 2.0 and 4.0 kHz can be set.		
p0113	Minimum pulse frequency, selection / f_puls min sel		
SERVO (Dig IO)	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	4.000 [kHz]	4.000 [kHz]	4.000 [kHz]
Description:	The current controller sampling time ($\mathrm{p} 0115[0]$) is pre-assigned by selecting the minimum pulse frequency.		
Dependency:	The parameter can only be changed with p0112 = 0 (expert). For isochronous operation (p0092 = 1) the parameter can only be set so that a current controller sampling time of $125 \mu \mathrm{~s}$ is obtained as an integer number.		
	The required pulse frequency can be set in p1800 after commissioning ($p 0009=p 0010=0$), assuming that this has not been restricted by other conditions (e.g. as a result of p1082, p0310).		

2.2 List of parameters

Note: \quad The current controller sampling time ($\mathrm{p} 0115[0]$) is set to the inverse value of twice the minimum pulse frequency. For $\mathrm{p} 0113=2.0 \mathrm{kHz}, \mathrm{p} 0115[0]=250 \mu \mathrm{~s}$ is set, for $\mathrm{p} 0113=4.0 \mathrm{kHz}, \mathrm{p} 0115[0]=125 \mu \mathrm{~s}$ is set. The current controller sampling time ($\mathrm{p} 0115[0]$), calculated from the pulse frequency, is set in a grid of $1.25 \mu \mathrm{~s}$.
For a power unit type PM340 (refer to r0203), only the values 2.0 and 4.0 kHz can be set.

p0113	Minimum pulse frequency, selection / f_puls min sel		
VECTOR,	Can be changed: C1(3)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.000 [kHz]	4.000 [kHz]	2.000 [Hzz]
Description:	The current controller sampling time ($\mathrm{p} 0115[0]$) is pre-assigned by selecting the minimum pulse frequency.		
Dependency:	The parameter can only be changed with p0112 = 0 (expert). For isochronous operation (p0092 = 1) the parameter can only be set so that a current controller sampling time of $125 \mu \mathrm{~s}$ is obtained as an integer number.		
	The required pulse frequency can be set in p1800 after commissioning ($\mathrm{p} 0009=\mathrm{p} 0010=0$), assuming that this has not been restricted by other conditions (e.g. as a result of p1082, p0310).		
	Refer to: p0112, r0114, p0115, p1800		
Note:	The current controller sampling time ($\mathrm{p} 0115[0]$) is set to the inverse value of twice the minimum pulse frequency. For $\mathrm{p} 0113=1.0 \mathrm{kHz}, \mathrm{p} 0115[0]=500 \mu \mathrm{~s}$ is set, for $\mathrm{p} 0113=2.0 \mathrm{kHz}, \mathrm{p} 0115[0]=250 \mu \mathrm{~s}$ is set. The current controller sampling time ($\mathrm{p} 0115[0]$), calculated from the pulse frequency, is set in a grid of $1.25 \mu \mathrm{~s}$.		
	For a power unit type PM340 (refer to r0203), only the values 1.0 and 2.0 kHz can be set. A value of 1.0 kHz can be set in order to achieve a current controller sampling time of $500 \mu \mathrm{~s}$. However, in this case, the minimum pulse frequency p1800 is limited to 2 kHz .		

p0115[0]	Sampling time for supplementary functions / t_samp suppl_fct		
CU_I, CU_NX_CX,	Can be changed: C 1 (3)	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Closed-loop control	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0.00 [$\mu \mathrm{s}$]	16000.00 [$\mu \mathrm{s}$]	4000.00 [$\mu \mathrm{s}$]
Description:	Sets the basic sampling time for supplementary functions (DCC, free function blocks) on this object. Only setting values that are an integer multiple of $125 \mu \mathrm{~s}$ are permissible.		
Index:	[0] = Basic sampling time		

p0115[0...6]	Sampling times for internal control loops / t_sample int ctrl		
HLA	Can be changed: C 1 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	16000.00 [$\mu \mathrm{s}$]	[0] 125.00 [$\mu \mathrm{s}$]
			[1] 125.00 [$\mu \mathrm{s}$]
			[2] 125.00 [$\mu \mathrm{s}$]
			[3] 4000.00 [$\mu \mathrm{s}$]
			[4] 1000.00 [$\mu \mathrm{s}$]
			[5] 4000.00 [$\mu \mathrm{s}$]
			[6] 4000.00 [$\mu \mathrm{s}$]
Description:	Sets the sampling times for the control loops.		
	The default setting is made using p0112 and can only be individually changed for p0112 $=0$ (expert).		
Recommendation:	When changing the sampling times of the controller ($\mathrm{p} 0115[0]$), then we recommend that after exiting commissioning (p0009 $=0$) the controller settings are re-calculated using p0340.3 $=1$.		
Index:	[0] = Controller (velocity/force)		
	[1] = Reserved		
	[2] = Reserved		
	[3] = Setpoint channel		
	[4] = Position controller		
	[5] = Positioning		
	[6] = Technology controller		
Dependency:	The sampling times can only b mode, then all of the sampling time itself was changed. Slow	et if p0112 is 0 her indices are re only taken if	time is modified in d in the same ratio ng time is also perm

Higher-level controls must be calculated in integral ratios to lower-level controls (e.g. p0115[1] = N * 0 0115[0]; where N is an integer number).
The sampling times for setpoint channel (p0115[3]), position controller (p0115[4]), positioning (p0115[5]) and technology controller ($\mathrm{p} 0115[6]$) must have at least $2 x$ the value of the controller sampling time ($\mathrm{p} 0115[0]$). Refer to: r0110, r0111, p0112
Note: For function modules that can be activated (e.g. technology controller), the parameters values are pre-assigned. If sampling times in p0115 are individually changed for $\mathrm{p} 0112=0$ (expert) then it must always be observed that the selected sampling times of the setpoint channel (p0115[3]), position controller (p0115[4]), positioning (p0115[5]) and technology controller (p0115[6]) are always greater than or equal to twice the controller sampling time (p0115[0]).

p0115[0...6]	Sampling times for internal control loops /t_sample int ctrl		
SERVO, SERVO_AC,	Can be changed: C1(3)	Calculated: -	Access level: 3
SERVO_IAC, A_INF,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
S_INF, R_INF, B_INF	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mu \mathrm{~s}]$	$16000.00[\mu \mathrm{~s}]$	$[0] 125.00[\mu \mathrm{~s}]$
		$[1] 125.00[\mu \mathrm{~s}]$	
		$[2] 125.00[\mu \mathrm{~s}]$	
		$[3] 4000.00[\mu \mathrm{~s}]$	
		$[4] 1000.00[\mu \mathrm{~s}]$	
		$[5] 4000.00[\mu \mathrm{~s}]$	
		$[6] 4000.00[\mu \mathrm{~s}]$	

Description: Sets the sampling times for the control loops.

The default setting is made using p0112 and can only be individually changed for p0112 $=0$ (expert).
Recommendation: When changing the sampling times of the current and speed controllers (also refer to p0115), then we recommend that after exiting commissioning $(\mathrm{p0009}=0)$ the controller settings are re-calculated using p0340 $=4$.

Index:	[0] = Current controller [1] = Speed controller [2] = Flux controller [3] = Setpoint channel [4] = Position controller [5] = Positioning [6] = Technology controller
Dependency:	The sampling times can only be separately set if p0112 is 0 (expert). If a sampling time is modified in the expert mode, then all of the sampling times with higher indices are automatically changed in the same ratio as the sampling time itself was changed. Slower time slices are only taken if the calculated sampling time is also permitted. Upper limit is 8 ms .
	Higher-level controls must be calculated in integral ratios to lower-level controls (e.g. p0115[1] = N * p0115[0]; where N is an integer number). The sampling time of the speed controller ($\mathrm{p} 0115[1]$) can have as a maximum a value of 800% of the current controller sampling time ($\mathrm{p} 0115[0]$). For servo drives, the maximum sampling time of the current controller is $250 \mu \mathrm{~s}$ and for vector drives, $500 \mu \mathrm{~s}$. The sampling times for setpoint channel (p0115[3]), position controller (p0115[4]), positioning (p0115[5]) and technology controller ($\mathrm{p} 0115[6]$) must have at least $2 x$ the value of the current controller sampling time ($\mathrm{p} 0115[0]$). Refer to: r0110, r0111, p0112
Note:	For function modules that can be activated (e.g. technology controller), the parameters values are pre-assigned.
	For the Active Line Module (ALM) and Smart Line Module (SLM), the current and DC link voltage controllers operate with the same sampling time. For ALM/SLM the maximum current controller sampling time is $400 \mu \mathrm{~s}$.
	For the Basic Line Module (BLM), the DC link voltage measurement operates in the current controller sampling time.
	For BLM booksize, only the current controller sampling time of 250μ s is permitted. For BLM chassis, only the current controller sampling time of 2000μ s is permitted.
	For power unit type PM340 (r0203), only current controller sampling times of $62.5 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}$ and $500 \mu \mathrm{~s}$ can be set. The maximum current controller sampling time for servo drives and the minimum current controller sampling time for vector drives is $250 \mu \mathrm{~s}$.
	If sampling times in p0115 are individually changed for $\mathrm{p} 0112=0$ (expert) then it must always be observed that the selected sampling times of the setpoint channel (p0115[3]), position controller (p0115[4]), positioning (p0115[5]) and technology controller (p0115[6]) are always greater than or equal to twice the current controller sampling time (p0115[0]).

p0115[0...6]
SERVO (Lin),
SERVO_AC (Lin),
SERVO_I_AC (Lin)

Description:

Recommendation:

Index:
Dependency:

Note:

Sampling times for internal control loops / t_sample int ctrl		
Can be changed: $\mathrm{C} 1(3)$	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Closed-loop control	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.00[\mu \mathrm{~s}]$	$16000.00[\mu \mathrm{~s}]$	$[0] 125.00[\mu \mathrm{~s}]$
		$[1] 125.00[\mu \mathrm{~s}]$
	$[2] 125.00[\mu \mathrm{~s}]$	
	$[3] 4000.00[\mu \mathrm{~s}]$	
	$[4] 1000.00[\mu \mathrm{~s}]$	
	$[5] 4000.00[\mu \mathrm{~s}]$	
	$[6] 4000.00[\mu \mathrm{~s}]$	

Sets the sampling times for the control loops.
The default setting is made using p0112 and can only be individually changed for p0112 $=0$ (expert).
When changing the sampling times of the current and velocity controllers (p0115), then we recommend that after exiting commissioning ($\mathrm{p} 0009=0$) the controller settings are re-calculated using p0340 $=4$.
[0] = Current controller
[1] = Velocity controller
[2] = Flux controller
[3] = Setpoint channel
[4] = Position controller
[5] = Positioning
[6] = Technology controller
The sampling times can only be separately set if p0112 is 0 (expert). If a sampling time is modified in the expert mode, then all of the sampling times with higher indices are automatically changed in the same ratio as the sampling time itself was changed. Slower time slices are only taken if the calculated sampling time is also permitted. Upper limit is 8 ms .
Higher-level controls must be calculated in integral ratios to lower-level controls (e.g. p0115[1] = N * p0115[0]; where N is an integer number). The sampling time of the velocity controller ($\mathrm{p} 0115[1]$) can have as a maximum a value of 800% of the current controller sampling time (p0115[0]).
For servo drives, the maximum sampling time of the current controller is $250 \mu \mathrm{~s}$ and for vector drives, $500 \mu \mathrm{~s}$.
Refer to: r0110, r0111, p0112
For function modules that can be activated (e.g. technology controller), the parameters values are pre-assigned.
For the Active Line Module (ALM) and Smart Line Module (SLM), the current and DC link voltage controllers operate with the same sampling time. For ALM/SLM the maximum current controller sampling time is $400 \mu \mathrm{~s}$.
For the Basic Line Module (BLM), the DC link voltage measurement operates in the current controller sampling time. For BLM booksize, only the current controller sampling time of 250μ s is permitted. For BLM chassis, only the current controller sampling time of $2000 \mu \mathrm{~s}$ is permitted.
For power unit type PM340 (r0203), only current controller sampling times of $62.5 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}$ and $500 \mu \mathrm{~s}$ can be set. The maximum current controller sampling time for servo drives and the minimum current controller sampling time for vector drives is $250 \mu \mathrm{~s}$.
If sampling times in p 0115 are individually changed for $\mathrm{p} 0112=0$ (expert) then it must always be observed that the selected sampling times of the setpoint channel (p0115[3]), position controller (p0115[4]), positioning (p0115[5]) and technology controller (p0115[6]) are always greater than or equal to twice the current controller sampling time (p0115[0]).

p0115[0...6]
VECTOR,
VECTOR_AC,
VECTOR_I_AC

Description:

Recommendation

Index:

Dependency:

Note:

Sampling times for internal control loops /t_sample int ctrl		
Can be changed: $\mathrm{C} 1(3)$	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Closed-loop control	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.00[\mu \mathrm{~s}]$	$16000.00[\mu \mathrm{~s}]$	$[0] 250.00[\mu \mathrm{~s}]$
		$[1] 1000.00[\mu \mathrm{~s}]$
	$[2] 1000.00[\mu \mathrm{~s}]$	
	$[3] 1000.00[\mu \mathrm{~s}]$	
	$[4] 2000.00[\mu \mathrm{~s}]$	
	$[5] 4000.00[\mu \mathrm{~s}]$	
	$[6] 4000.00[\mu \mathrm{~s}]$	

Sets the sampling times for the control loops.
The default setting is made using p0112 and can only be individually changed for p0112 $=0$ (expert).
When changing the sampling times of the current and speed controllers (also refer to p0115), then we recommend that after exiting commissioning (p0009 = 0) the controller settings are re-calculated using p0340 $=4$.
When adjusting the current controller sampling time, it is recommended to use values that are an integer multiple of $6.25 \mu \mathrm{~s}$. The sampling times of analog or digital inputs/outputs (see p0799, p4099) should be set to an integer multiple of the current controller sampling time.
If the current controller sampling time is to be reduced with respect to the default setting (e.g. $<250 \mu$ s), then it is recommended that the motor data identification (standstill measurement) is executed beforehand, in order to avoid a thermal overload of the power unit as a result of high pulse frequencies (p 1800).
[0] = Current controller
[1] = Speed controller
[2] = Flux controller
[3] = Setpoint channel
[4] = Position controller
[5] = Positioning
[6] = Technology controller
Depending on the number and type of vector drives, the sampling times are preset differently.
The sampling times can only be separately set if p0112 is 0 (expert). If a sampling time is modified in the expert mode, then all of the sampling times with higher indices are automatically changed in the same ratio as the sampling time itself was changed. Slower time slices are only taken if the calculated sampling time is also permitted. Upper limit is 8 ms .
Higher-level controls must be calculated in integral ratios to lower-level controls (e.g. p0115[1] = N * p0115[0]; where N is an integer number). The sampling time of the speed controller ($\mathrm{p} 0115[1]$) can have as a maximum a value of 800% of the current controller sampling time (p0115[0]).
The sampling times for setpoint channel ($\mathrm{p} 0115[3]$), position controller ($\mathrm{p} 0115[4]$), positioning ($\mathrm{p} 0115[5]$) and technology controller ($\mathrm{p} 0115[6]$) must have at least 2 x the value of the current controller sampling time ($\mathrm{p} 0115[0]$). The sampling time of the current controller p0115[0] and pulse frequency p1800 are checked at each parameter download, and when necessary changed, if, for p0092 $=1$, the current controller sampling time is not an integral multiple of $125 \mu \mathrm{~s}$ or if p0112 is set > 1 . For p0092 $=0$, the check with p0112 $=0$ ($=$ expert) can be deactivated. Refer to: r0110, r0111, p0112 For function modules that can be activated (e.g. technology controller), the parameters values are pre-assigned. For power unit type PM340 (r0203), only current controller sampling times of $250 \mu \mathrm{~s}$ or $500 \mu \mathrm{~s}$ can be set. The minimum current controller sampling time is otherwise $125 \mu \mathrm{~s}$ (SINAMICS G: $250 \mu \mathrm{~s}$), the maximum current controller sampling time is $500 \mu \mathrm{~s}$. For SINAMICS G, the minimum speed controller sampling time is 1 ms .
Current controller sampling times of less than 250μ s are restricted by the number of drives or by the number of power units connected in parallel (also see F01340).
For chassis power units connected in parallel, it is recommended to connect the DRIVE-CLiQ cables (partially) in parallel between the Control Unit and the individual Motor Modules.
For D410-2, the current controller sampling times can only be permanently changed with p0112 = 0 (e.g. to $250 \mu \mathrm{~s}$).

p0115[0]	Sampling time for supplementary functions / t_samp suppl_fct		
TM120	Can be changed: C 1 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	16000.00 [ss]	4000.00 [$\mu \mathrm{s}$]
Description:	Sets the sampling times for supplementary functions (DCC, free function blocks) on this object. Only setting values that are an integer multiple of $125 \mu \mathrm{~s}$ are permissible. $[0]=$ Basic sampling time		
Index:			

p0115[0]	Sampling time for supplementary functions / t_samp suppl_fct		
TM31, TM15DI_DO,	Can be changed: C 1 (3)	Calculated: -	Access level: 3
TM150, TB30	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	16000.00 [ss]	4000.00 [$\mu \mathrm{s}$]
Description:	Sets the sampling times for supplementary functions (DCC, free function blocks) on this object. Only setting values that are an integer multiple of $125 \mu \mathrm{~s}$ are permissible.		
Index:	[0] = Basic sampling time		
Note:	This parameter only applies to set the sampling times of possible supplementary functions. The sampling times for inputs/outputs must be set in p4099.		

p0115[0]	Sampling time for supplementary functions / t_samp suppl_fct		
TM41	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	16000.00 [$\mu \mathrm{s}$]	4000.00 [$\mu \mathrm{s}$]
Description:	Sets the sampling times for supplementary functions (DCC, free function blocks) on this object. Only setting values that are an integer multiple of $125 \mu \mathrm{~s}$ are permissible.		
Index:	[0] = Basic sampling time		
Note:	This parameter only applies to set the sampling times of possible supplementary functions.		

p0115[0]	Sampling time for speed detection /t_sample n_det		
ENC	Can be changed: $\mathrm{C} 1(3)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$125.00[\mu \mathrm{~s}]$	$125.00[\mu \mathrm{~s}]$	
	Sets the sampling times for speed detection.		
Description:	$[0]=$ Basic sampling time		
Index:			

2.2 List of parameters

r0116[0...1]	Drive object clock cycle recommended / DO_clock recom
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM331, TM41, TM17, TM15, TM15DI_DO, TB30	Can be changed: - Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: - P-Group: Closed-loop control Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting $-[\mu \mathrm{s}]$ $-[\mu \mathrm{s}]$ $-[\mu \mathrm{s}]$
Description:	Displays the recommended sampling time for the drive objects. r00116[0] = recommended sampling time: Recommended value which would then make the complete system operational. r00116[1] = recommended sampling time: Recommended value, which after changing other clock cycles on the DRIVE-CLiQ line, would result in an operational system.
Index:	[0] = Change only for the actual drive object [1] = Changing all objects on the DRIVE-CLiQ line
Dependency:	Refer to: p0115
p0117	Current controller computing dead time mode / I_ctrl t_dead mode
CU_I, CU_NX_CX, $C U _$S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410	Can be changed: U, T Calculated: - Access level: 4 Data type: Integer16 Dyn. index: - Func. diagram: - P-Group: Closed-loop control Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: Min Max Factory setting 0 6 6
Description:	Sets the mode for the computing dead time of the current controller. 0 : Offset (shifted) clocking, minimum computing dead time of each drive, automatic setting 1: Clocking at the same time, the dead time aligns itself to the dead time of the latest drive, automatic setting 2: Manual setting of the computing dead time, early transfer 3: Manual setting of the computing dead time, late transfer 4-6: As for 0-2, however, no early transfers are set for vectors
Dependency:	Refer to: p0118 Refer to: A02100
Note:	The mode change is not effective until the drive unit is switched on again. For p0117 = 0: The times when the setpoints become effective for the individual controls is automatically and individually determined. Another computing dead time is set for each control (closed-loop) (p0118). Current is impressed for the individual controls without any offset with respect to time (improved EMC compatibility). For p0117 = 1: The latest closed-loop control determines when the setpoints for each of the individual controls become active. The same computing dead time is set for each control (p0118). Current is impressed (flows) for the individual controls without any offset with respect to time. For p0117 = 2: The computing dead time is manually set. The user must optimize the value in p0118. For p0117 = 3: The computing dead time is manually set. The user must optimize the value in p 0118 .

For p0117 = $4 \ldots 6$:
Behavior as for p0117 = $0 \ldots 2$, however for vectors, the earliest times are not determined.

p0118	Current controller computing dead time / I_ctrl t_dead		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	2000.00 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	This parameter is pre-set as a function of the current controller sampling time ($\mathrm{p} 0115[0]$) and normally does not have to be changed.		
Dependency:	Refer to: p0117		
	Refer to: A02100		
Note:	For $\mathrm{p} 0118<=0.005 \mu \mathrm{~s}$, the current controller output is delayed by a complete current controller sampling time (p0115[0]).		
	After p0118 has been changed, we recommend that the current controller is adapted (p1715).		

p0118	Current controller computing dead time / I_ctrl t_dead		
VECTOR, HLA,	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
A INF S INF, R INF,	P-Group: Closed-loop control	Unit group: -	Unit selection: -
B_INF	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	2000.00 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	This parameter is pre-set as a function of the current controller sampling time ($\mathrm{p} 0115[0]$) and normally does not have to be changed.		
Dependency:	Refer to: p0117		
	Refer to: A02100		
Note:	For $\mathrm{p} 0118<=0.005 \mu \mathrm{~s}$, the current controller output is delayed by a complete current controller sampling time (p0115[0]).		
	After p0118 has been changed, we recommend that the current controller is adapted (p1715).		

p0120	Number of valve data sets (PDS) / PDS count		
HLA	Can be changed: C 1 (3), $\mathrm{C} 2(15)$	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	1	1
Description:	Sets the number of valve data sets (power unit data set PDS).		
Dependency:	Refer to: p0107, r0107		
Note:	Only one valve data set is supported.		
p0120	Number of Power unit Data Sets (PDS) / PDS count		
SERVO, VECTOR,	Can be changed: C 1 (3), $\mathrm{C} 2(15)$	Calculated: -	Access level: 2
SERVO_AC, VECTOR AC	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF,	Min	Max	Factory setting
B_INF, TM41	1	8	1
Description:	Sets the number of Power unit Data Sets (PDS).		

2.2 List of parameters

$\begin{array}{ll}\text { Dependency: } & \text { Refer to: p0107, r0107 } \\ \text { Note: } & \text { This parameter is only significant for drive objects A_INFEED and VECTOR with a parallel circuit configuration }\end{array}$

p0121[0...n]	Power unit component number / PU comp_no		
SERVO, VECTOR,	Can be changed: C1(4), C2(15)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
SERVO_IAC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_IAC,	Max	Factory setting	
A_INF, S_INF, R_INF,	Min	199	0

Description: The power unit data set is assigned to a power unit using this parameter.
This unique component number is assigned when parameterizing the topology.
Only component numbers can be entered into this parameter that correspond to a power unit.
Dependency: Refer to: p0107, r0107
Note: \quad For parallel circuit configurations, the parameter index is assigned to a power unit.

p0124[0...n]	Main component detection using LED / M_comp detect LED		
CU_I, CU_NX_CX,	Can be changed: C2(2), U, T	Calculated: -	Access level: 2
CU_S_AC_DP,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Converter	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Min	Factory setting	
CU_S120_DP,	1	0	
CU_S150_DP,	0		
CU_I_D410	Detection of the main components of the drive object selected via the index.		
Description:			

p0124[0...n]	Power unit detection via LED / PU detection LED		
SERVO, VECTOR,	Can be changed: C2(2), U, T	Calculated: -	Access level: 2
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_AC,	P-Group: Converter	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Expert list: 1	
VECTOR_I_AC,	Not for motor type: -	Max	Factory setting
A_INF, S_INF, R_INF,	Min	1	0
B_INF	0	Detects the power unit assigned to this drive and data set.	
Description:	While p0124 = 1, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate power unit.		
Note:	For parallel circuit configurations, the parameter index is assigned to a power unit.		

p0125[0...n]	Activate/deactivate power unit components / PU_comp act/deact		
SERVO, VECTOR,	Can be changed: C1(4), C2(15), T	Calculated: -	Access level: 2
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_IIAC,	Not for motor type: -	Max	Factory setting
A_INF, S_INF, R_INF,	Min	1	
B_INF	0	2	
Description:	Setting to activate/deactivate a power unit component.		
Value:	$0: \quad$ Deactivate component		
	$1: \quad$ Activate component		
Recommendation:	$2:$ After inserting a component, before activating, first wait for Alarm A01317.		
Dependency:	Refer to: r0126		
	Refer to: A01314, A01317		

Caution:	For a parallel connection, the following applies:
When deactivating individual power units using this parameter, it is not permissible that the power units of the parallel	
connection involved are connected. Infeed units should be disconnected from the line supply (for example, using a	
contactor). Motor feeder cables should be disconnected. In addition, defective power units should be disconnected	
from the DC link.	
Notice:	It is not permissible to deactivate drive objects with safety functions enabled.
Note:	The activation of a component can be rejected if the component was inserted for the first time. In this case, it is only
possible to activate the component when the pulses for all of the drive objects are inhibited.	
For units connected in parallel, when one of the power units is deactivated, then the enable in p7001 is withdrawn.	
For value = 0, 2:	
When a component is deactivated it no longer outputs any errors.	
If value = 0:	
The component was completely commissioned and is deactivated using this value. It can be removed from the	
DRIVE-CLiQ without any error.	
If value = 1:	
The component must be available for error-free operation.	
If value = 2 :	
A component in a project generated offline and set to this value must never be inserted in the actual topology from	
the very start. This means that the component is marked to be bypassed in the DRIVE-CLiQ line.	
For components that comprise several individual components (e.g. Double Motor Modules), it is not permissible to	
set just one subset to this value.	

r0126[0...n]	Power unit components active/inactive / PU comp act/inact		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_IIC,	Not for motor type: -	Max	Factory setting
A_INF, S_INF, R_INF, Min	1	-	
B_INF	0		
Description:	Displays the "active/inactive" state of a power unit component.		
Value:	$0: \quad$ Component inactive		
	$1: \quad$ Component active		
Dependency:	Refer to: $\mathrm{p} 0105, \mathrm{p} 0125, \mathrm{p} 0897$		

r0127[0...n] Power unit EEPROM data version / PU EEPROM version
SERVO, VECTOR, Can be changed: - Calculated: -

HLA, SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
Not for motor type:
A_INF, S_INF, R_INF, Min B_INF

Description: Displays the version of the EEPROM data of the power unit.
Dependency: Refer to: r0147, r0157
Note: For parallel circuit configurations, the parameter index is assigned to a power unit.

r0128[0...n]	Power unit firmware version / PU FW	
SERVO, VECTOR,	Can be changed: -	Calcu
HLA, SERVO_AC,	Data type: Unsigned32	Dyn
VECTOR_AC,	P-Group: Converter	Unit
SERVO_I_AC,	Not for motor type: -	Sca
VECTOR_IAC,	Max	
A_INF, S_INF, R_INF,	Min	-
B_INF	-	Displays the firmware version of the power unit.
Description:	Refer to: r0018, r0148, r0158, r0197, r0198	

2.2 List of parameters

Note: Example:

The value 1010100 should be interpreted as V01.01.01.00
For parallel circuit configurations, the parameter index is assigned to a power unit.

p0130	Number of Motor Data Sets (MDS) / MDS count		
HLA	Can be changed: C1(3), C2(15)	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: -	Func. diagram: 8575
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	1	1
Description:	Sets the number of Motor Data Sets (MDS).		
p0130	Number of Motor Data Sets (MDS) / MDS count		
SERVO, VECTOR,	Can be changed: C1(3), C2(15)	Calculated: -	Access level: 2
SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: 8575
VECTOR_AC, SERVO I AC,	P-Group: Data sets	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	16	1
Description:	Sets the number of Motor Data Sets (MDS).		

p0131[0...n]	Motor component number / Mot comp_no		
SERVO, VECTOR,	Can be changed: C1(4), C2(15)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	199	Factory setting
	0	0	
Description:	The motor data set is assigned to a motor using this parameter.		
	This unique component number is assigned when parameterizing the topology.		

p0139[0...2]	Copy Motor Data Set MDS / Copy MDS		
SERVO, VECTOR,	Can be changed: C2(15)	Calculated: -	Access level: 2
SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: 8575
VECTOR_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	Factory setting	
	0	0	
	Copying a Motor Data Set (MDS) into another.		
Description:	[0] = Source motor data set		
Index:	[1] = Target motor data set		
	[2] = Start copying procedure		
	Procedure:		
	1. In Index 0, enter which motor data set should be copied.		
	2. In Index 1, enter the motor data set data that is to be copied into.		
	3. Start copying: set index 2 from 0 to 1.		
	p0139[2] is automatically set to 0 when copying is completed.		
	When copying, p0131 is not taken into account.		

p0141[0...n]	Encoder interface (Sensor Module) component number / Enc_interf comp_no		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO IAC, VECTOR_I_AC, ENC	Can be changed: $\mathrm{C} 1(4), \mathrm{C} 2(15)$	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: EDS, p0140	Func. diagram: 4704, 8570
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	199	0
Description:	This parameter is used to assign the encoder data set to an encoder evaluation (e.g. SMC). This unique component number is assigned when parameterizing the topology. Only a component number can be entered that corresponds to an encoder evaluation.		
Note:	If the encoder evaluation and encoder are integrated (motor with DRIVE-CLiQ), then their component numbers are identical.		
	For an SMC, different component numbers are assigned for the SMC (p0141) and the (actual) encoder (p0142). SMC: Sensor Module Cabinet		

p0141[0...n]	VSM component number /VSM comp_no		
A_INF, S_INF, R_INF	Can be changed: C1(4), C2(15)	Calculated: -	Access level: 4
	Data type: Unsigned8	Dyn. index: p0140	Func. diagram: -
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	199	0

Description: The VSM data set is assigned to a VSM evaluation using this parameter.
This unique component number is assigned when parameterizing the topology.
Only a component number can be entered that corresponds to a VSM evaluation.

p0142[0...n]	Encoder component number / Encoder comp_no		
SERVO, VECTOR,	Can be changed: C 1 (4), C 2 (15)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: EDS, p0140	Func. diagram: 4704
VECTOR_AC, SERVO_IAC,	P-Group: Data sets	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	199	0
Description:	This parameter is used to assign the encoder data set to an encoder.		
	This assignment is made using the unique component number that was assigned when parameterizing the topology.		
	Only component numbers can be entered into this parameter that correspond to an encoder.		
Note:	If the encoder evaluation and encoder are integrated (motor with DRIVE-CLiQ), then their component numbers are identical.		
	For an SMC, different component numbers are assigned for the SMC (p0141) and the (actual) encoder (p0142).		

p0144[0...n]	Sensor Module detection via LED / SM detection LED		
SERVO, VECTOR,	Can be changed: C2(4), U, T	Calculated: -	Access level: 2
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	1	0
	0		
Description:	Detects the Sensor Module assigned to this drive and data set.		
Note:	While p0144 = 1, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate Sensor Module.		

2.2 List of parameters

Dependency:	Refer to: r0146		
	Refer to: A01314, A01317		
Note:	For chassis infeeds, it is not possible to activate/deactivate the Voltage Sensing Module (VSM) via p0145. The VSM can only be activated/deactivated in the group with the appropriate infeed via p0125[0...n].		
	The activation of a component can be rejected if the component was inserted for the first time. In this case, it is only possible to activate the component when the pulses for all of the drive objects are inhibited.		
r0146[0...n]	Encoder interface active/inactive / Enc_intf act/inact		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: -
SERVO_I_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	-
Description:	Displays the "active" or "inactive" state of an encoder interface (Sensor Module).		
Value:	0: Component in		
	1: Component ac		
Dependency:	Refer to: p0105, p014		

r0146[0...n] Voltage Sensing Module active/inactive / VSM act/inact

A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: p0140	Func. diagram: -
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	1	Factory setting
	0	-	
Description:	Displays the "active" or "inactive" state of a Voltage Sensing Module (VSM).		
Value:	$0: \quad$ Component inactive		
Dependency:	$1: \quad$ Component active		
	Refer to: p0105, p0145		

r0147[0...n]	Sensor Module EEPROM data version / SM EEPROM version		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
SERVO I AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_ı_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the version of the EEPROM data of the Sensor Module.		
Dependency:	Refer to: r0127, r0157		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
r0147[0...n]	Voltage Sensing Module EEPROM data version / VSM EEPROM version		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: p0140	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the version of the EEPROM data of the Voltage Sensing Module (VSM).		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

r0148[0...n]	Sensor Module firmware	SM FW version	
SERVO, VECTOR, hLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, ENC	Can be changed: - Data type: Unsigned32 P-Group: Encoder Not for motor type: - Min	Calculated: - Dyn. index: EDS, p0140 Unit group: - Scaling: - Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting
Description: Dependency: Note:	Displays the firmware version of the Refer to: r0018, r0128, r0158, r01 Example: The value 1010100 should be inte	Module. V01.01.01.00.	
r0148[0...n] A_INF, S_INF, R_INF	Voltage Sensing Modul Can be changed: - Data type: Unsigned32 P-Group: Encoder Not for motor type: - Min	version / VSM FW Calculated: - Dyn. index: p0140 Unit group: - Scaling: - Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting
Description: Dependency: Note:	Displays the firmware version of the Refer to: r0018, r0128, r0158, r01 Example: The value 1010100 should be inte	Sensing Module (VSM). V01.01.01.00.	
p0150 VECTOR, VECTOR_AC, VECTOR_I_AC	Number of VSM data sets Can be changed: C1(3), C2(15) Data type: Unsigned8 P-Group: Data sets Not for motor type: - Min 1	dat_sets qty. Calculated: Dyn. index: - Unit group: - Scaling: - Max 2	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting 1
Description:	Sets the number of VSM data sets		
p0150	VSM2 data sets selectio	dat_sets qty	
A_INF, S_INF, R_INF	Can be changed: C1(3), C2(15) Data type: Unsigned8 P-Group: Data sets Not for motor type: - Min 1	Calculated: - Dyn. index: - Unit group: - Scaling: - Max 2	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting 1
Description: Dependency:	Sets the number of VSM2 data sets. The Voltage Sensing Module 2 (V) (r0108.4 = 1). For the VSM2, parameters p5460	nly be used if the "line tran ing are significant.	unction module has been activated
Note:	The Voltage Sensing Module 2 (V possible.	always be connected to	side of the line transformer if at all

p0154[0...n]	Voltage Sensing Module 2 detection via LED / VSM2 detection LED		
A_INF, S_INF, R_INF	Can be changed: C2(4), U, T	Calculated: -	Access level: 4
	Data type: Unsigned8	Dyn. index: p0150	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Detects the Voltage Sensing Module 2 (VSM2) assigned to this infeed.		

p0154	Terminal Module detection via LED / TM detection LED		
TM31, TM41, TM17,	Can be changed: U, T	Calculated: -	Access level: 2
TM15, TM15DI_DO,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
TM120, TM150,	P-Group: Terminals	Unit group: -	Unit selection: -
TM54F_MA,	Scaling: -	Expert list: 1	
TM54F_SL	Not for motor type: -	Max	Factory setting
	Min	1	0
	0		
Description:	Detects the Terminal Module assigned to this drive and data set.		
Note:	While p0154 = 1, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate Terminal Module.		

p0154	DRIVE-CLiQ Hub Module detection via LED / Hub detection LED		
HUB	Can be changed: C2(4), U, T	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Detects any DRIVE-CLiQ Hub Module that has been assigned.		

p0155[0...n]	Voltage Sensing Module activate/deactivate / VSM act/deact		
VECTOR,	Can be changed: C1(4), C2(15), T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: Integer16	Dyn. index: p0150	Func. diagram: -
VECTOR_I_AC	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Factory setting	
	0	2	1
Description:	Setting to activate/deactivate a Voltage Sensing Module (VSM).		
Value:	$0: \quad$ Deactivate component		
	$1: \quad$ Activate component		
Recommendation:	$2: \quad$ After inserting a component, before activating, first wait for Alarm A01317.		
Dependency:	Refer to: r0156		
	Refer to: A01314, A01317		

2.2 List of parameters

p0155[0...n]	Voltage Sensing Module 2 activate/deactivate / VSM2 act/deact		
A_INF, S_INF, R_INF	Can be changed: C1(4), C2(15), T	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: p0150	Func. diagram: -
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	
Description:	Setting to activate/deactivate a Voltage Sensing Module 2 (VSM2).		
Value:	$0: \quad$ Deactivate component		
	$1: \quad$ Activate component		
Recommendation:	$2:$ After inserting a component, before activating, first wait for Alarm A01317.		
Dependency:	Refer to: r0156		
	Refer to: A01314, A01317		

r0156[0...n]	Voltage Sensing Module active/inactive / VSM act/inact		
VECTOR,	Can be changed: -	Calculated: -	Access level: 2
VECTOR_AC,	Data type: Integer16	Dyn. index: p0150	Func. diagram: -
VECTOR_I_AC	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	-

Description: Displays the "active" or "inactive" state of a Voltage Sensing Module (VSM).

Value:	$0: \quad$ Component inactive
	1: Component active
Dependency:	Refer to: p0155

r0156[0...n]	Voltage Sensing Module 2 active/inactive / VSM2 act/inact		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: p0150	Func. diagram: -
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	
Description:	Displays the "active" or "inactive" state of a Voltage Sensing Module 2 (VSM2).		
Value:	$0: \quad$ Component inactive		
Dependency:	$1: \quad$ Refer to: p0155		

r0157[0...n]	Voltage Sensing Module EEPROM data version / VSM EEPROM version		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Unsigned32	Dyn. index: p0150	Func. diagram: -
VECTOR_I_AC	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the version of the EEPROM data of the Voltage Sensing Module (VSM).		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

r0157[0...n]	Voltage Sensing Module 2 EEPROM data version / VSM2 EEPROM vers		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: p0150	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the version of the EEPROM data of the Voltage Sensing Module 2 (VSM2).		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

r0157	Terminal Module EEPROM data version / TM EEPROM version		
TM31, TM41, TM17,	Can be changed: -	Calculated: -	Access level: 3
TM15, TM15DI_DO,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
TM120, TM150,	P-Group: Terminals	Unit group: -	Unit selection: -
TM54F_MA,	Not for motor type: -	Scaling: -	Expert list: 1
TM54F_SL	Min	Factory setting	
	-	-	
Description:	Displays the version of the EEPROM data of the Terminal Module.		
Dependency:	Refer to: r0127, r0147		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

r0157	DRIVE-CLiQ Hub Module EEPROM data version / Hub EEPROM version		
HUB	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type:	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the version of the EEPROM data for the DRIVE-CLiQ Hub Module.		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

r0158[0...n]	Voltage Sensing Module firmware version / VSM FW version		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Unsigned32	Dyn. index: p0150	Func. diagram: -
VECTOR_I_AC	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the firmware version of the Voltage Sensing Module (VSM).		
Dependency: Refer to: r0018, ro128, r0197, r0198			
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

2.2 List of parameters

r0158[0...n]	Voltage Sensing Module 2 firmware version / VSM2 FW version		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: p0150	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the firmware version of the Voltage Sensing Module 2 (VSM2).		
Dependency:	Refer to: r0018, r0197, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
$\mathbf{r 0 1 5 8}$	Terminal Module firmware version / TM FW version		
TM31, TM41, TM17, TM15, TM15DI_DO, TM120, TM150, TM54F_MA, TM54F_SL	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the firmware version of the Terminal Module.		
Dependency:	Refer to: r0018, r0128, r0148, r0197, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
r0158	DRIVE-CLiQ Hub Module firmware version / Hub FW version		
HUB	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the firmware version of the DRIVE-CLiQ Hub Module.		
p0161	Valve component number / Valve comp_no		
HLA	Can be changed: C 1 (4), C 2 (15)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	199	0
Description:	Sets the component number for th This unique component number is Only component numbers can be	when parameterizing othis parameter that	valve.

p0161	HF Damping Module component number / HF Damp comp_no		
SERVO, SERVO_AC,	Can be changed: C1(4), C2(15)	Calculated: -	Access level: 4
SERVO_I_AC	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Factory setting
	Min	199	0
	0		
Description:	Sets the component number for the HF Damping Module.		
	This unique component number is assigned when parameterizing the topology.		
	Only component numbers can be entered into this parameter that correspond to an HF Damping Module.		

p0161	Option board component number / Opt board comp_no		
TB30	Can be changed: C1(4), C2(15)	Calculated: -	Access level: 4
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	199	0

Description: Sets the component number for the option board (e.g. Terminal Board 30).
This unique component number is assigned when parameterizing the topology.
Only component numbers can be entered into this parameter that correspond to an option board.

p0162	HF Choke Module component number / HF Choke comp_no		
SERVO, SERVO_AC,	Can be changed: C1(4)	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	0
	0	199	
Description:	Sets the component number for the HF Choke Module.		
	This unique component number is assigned when parameterizing the topology.		
	Only component numbers can be entered into this parameter that correspond to an HF Choke Module.		

p0162	CU-LINK slave component number / CU-LINK comp_no		
CU_LINK	Can be changed: C1(4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Factory setting
	Min	199	0
	0		
Description:	Sets the component number for the expansion component (e.g. CX32, NX10) for CU-LINK.		
	This unique component number is assigned when parameterizing the topology.		

2.2 List of parameters

p0170	Number of Command Data Sets (CDS) / CDS count		
SERVO, SERVO_AC,	Can be changed: C1(3)	Calculated: -	Access level: 2
SERVO_IAC, A_INF,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
S_INF, R_INF, B_INF	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	1
	1	2	Factory setting
Description:	Sets the number of Command Data Sets (CDS).		
Note:	It is possible to toggle between command parameters (BICO parameters) using this data set changeover.		

p0170	Number of Command Data Sets (CDS) / CDS count		
VECTOR,	Can be changed: C1(3)	Calculated: -	Access level: 2
VECTOR_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Commands	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	4	Factory setting
	2	2	
Description:	Sets the number of Command Data Sets (CDS).		
Note:	It is possible to toggle between command parameters (BICO parameters) using this data set changeover.		

p0171[0...n]	Drive objects function module 1 / DO fct_mod 1				
CU_I, CU_NX_CX,	Can be changed: C1(2)		Calculated: -	Access level: 2	
CU_S_AC_DP,	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
CU_S_AC_PN, CU S120 PN,	P-Group: -		Unit group: -	Unit selection: -	
CU_S150_PN,	Not for motor type: -		Scaling: -	Expert list: 1	
CU_S120_DP,	Min		Max	Factory setting	
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-		-	00000000000000000000 000000000000 bin	
Description:	The function module of an existing drive object is entered into each index (see p0101, p0107).				
	The following bits are available in p0171 for the Control Unit (Index 0):				
	For all other drive objects (Index >0), the significance of the bits should be taken from the display parameters r01 of the drive object.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-

2.2 List of parameters

	22	Bit 22	ON	OFF
	23	Bit 23	ON	OFF
	24	Bit 24	ON	OFF
	25	Bit 25	ON	OFF
	26	Bit 26	ON	OFF
	27	Bit 27	ON	OFF
	28	Bit 28	ON	OFF
	29	Bit 29	ON	OFF
	30	Bit 30	ON	OFF
	31	Bit 31	ON	OFF
Dependency:		messages can prevent	ctivating a functio	
	Ref	to: p0108, r0108, p0172,	3, r0173	
	Ref	to: A06860, A07089, F1301		
Note:	A "f	ction module" is a functio	of a drive obje	ated when commissioning.
r0171		e objects function	DO fct_mod	
SERVO, VECTOR,		be changed: -	Calculated: -	Access level: 2
HLA, SERVO_AC,		type: Unsigned32	Dyn. index: -	Func. diagram: -
SERVO_IAC,		oup: Closed-loop control	Unit group: -	Unit selection: -
VECTOR_I_AC,		or motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF,	Min		Max	Factory setting
B_INF, TM31, TM41, TM15DI_DO, TM120, TM150, TB30, ENC			-	-
Description:		ays the activated function	e particular drive	
Dependency:	Ref	to: p0108, r0108, p0172,	, r0173	
Note:		nction module" is a functio	of a drive obje	ated when commissioning.

	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-
	26	Bit 26	ON	OFF	-
	27	Bit 27	ON	OFF	-
	28	Bit 28	ON	OFF	-
	29	Bit 29	ON	OFF	-
	30	Bit 30	ON	OFF	-
	31	Bit 31	ON	OFF	-
Dependency:	Active messages can prevent or influence activating a function module.				
	Refer to: p0108, r0108, p0171, r0171, p0173, r0173				
	Refer to: A06860, A07089, F13010				
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				
r0172	Drive objects function module 2 / DO fct_mod 2				
SERVO, VECTOR,	Can be changed: -		Calculated: -	Access level: 2	
HLA, SERVO_AC,	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
SERVO I AC,	P-Group: Closed-loop control		Unit group: -	Unit selection: -	
VECTOR_I_AC,	Not for motor type: -		Scaling: -	Expert list: 1	
A_INF, S_INF, R_INF,	Min		Max	Factory setting	
B_INF, TM31, TM41, TM15DI_DO, TM120, TM150, TB30, ENC	-		-		
Description:	Displays the activated function module for the particular drive object.				
Dependency:	Refer to: p0108, r0108, p0171, r0171, p0173, r0173				
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.				
p0173[0...n]	Drive objects function module 3 / DO fct_mod 3				
CU_I, CU_NX_CX,	Can be changed: C1(2)		Calculated: -	Access level: 2	
CU_S_AC_DP,	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
CU_S120_PN,	P-Group: -		Unit group: -	Unit selection: -	
CU_S150_PN,	Not for motor type: -		Scaling: -	Expert list: 1	
CU_S120_DP,	Min		Max	Factory setting	
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-		-	00000000000000000000 000000000000 bin	
Description:	The function module of an existing drive object is entered into each index (see p0101, p0107).				
	The following bits are available in p0173 for the Control Unit (Index 0): - still none				
	For all other drive objects (Index > 0), the significance of the bits should be taken from the display parameters r0173 of the drive object.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-

2.2 List of parameters

	12	Bit 12	ON	OFF
	13	Bit 13	ON	OFF
	14	Bit 14	ON	OFF
	15	Bit 15	ON	OFF
	16	Bit 16	ON	OFF
	17	Bit 17	ON	OFF
	18	Bit 18	ON	OFF
	19	Bit 19	ON	OFF
	20	Bit 20	ON	OFF
	21	Bit 21	ON	OFF
	22	Bit 22	ON	OFF
	23	Bit 23	ON	OFF
	24	Bit 24	ON	OFF
	25	Bit 25	ON	OFF
	26	Bit 26	ON	OFF
	27	Bit 27	ON	OFF
	28	Bit 28	ON	OFF
	29	Bit 29	ON	OFF
	30	Bit 30	ON	OFF
	31	Bit 31	ON	OFF
Dependency:	Active messages can prevent or influence activating a function module.			
	Refer to: p0108, r0108, p0171, r0171, p0172, r0172			
	Refer to: A06860, A07089, F13010			
Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.			

r0173

SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF B_INF, TM31, TM41 TM15DI DO, TM120, TM150, TB30, ENC
Description: Displays the activated function module for the particular drive object Dependency: Refer to: p0108, r0108, p0171, r0171, p0172, r0172
Note: \quad A "function module" is a functional expansion of a drive object that can be activated when commissioning

p0180	Number of Drive Data Sets (DDS) / DDS count		
SERVO, VECTOR,	Can be changed: C 1 (3), C2(15)	Calculated: -	Access level: 2
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: 8565
SERVO I AC,	P-Group: Data sets	Unit group: -	Unit selection: -
VECTOR_I_AC, TM41	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	32	1
Description:	Sets the number of Drive Data Sets (DDS).		
p0186[0...n]	Motor Data Sets (MDS) number / MDS number		
SERVO, VECTOR,	Can be changed: C 1 (4), C2(15)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: DDS, p0180	Func. diagram: 8575
SERVO_I_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	15	0
Description:	Using the parameter, each Drive Data Set (= index) is assigned the associated Motor Data Set (MDS). The parameter value therefore corresponds to the number of the assigned motor data set.		

p0187[0...n]	Encoder 1 encoder data set number / Enc 1 EDS number		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: C 1 (4), $\mathrm{C} 2(15)$	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: DDS, p0180	Func. diagram: 4700, 8570
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	99	99
Description:	Assign a drive data set (= index) the corresponding encoder data set (EDS) for encoder 1.		
	The value corresponds to the number of the assigned encoder data set.		
	Example:		
	Encoder 1 in drive data set 2 should be assigned encoder data set 0 .		
Notice:	Writing to p0187 is rejected if the pole position identification is selected ($\mathrm{p} 1982=1$) and additional data sets with the same MDS data set (p0186) are available, which however have a different encoder data set number in p0187.		
	If all data sets with this MDS p0187 are to be changed, then the pole position identification of the data sets involved should be temporarily deselected ($\mathrm{p} 1982=0$), p0187 changed for all MDS data sets and then the pole position identification reselected (p1982 = 1).		
	If a motor with pole position identification is to be operated with two different encoders, then for this motor, two motor data sets should be introduced.		
Note:	A value of 99 means that no encoder has been assigned to this drive data set (not configured).		
p0187[0...n]	Encoder 1 encoder data set number / Enc 1 EDS number		
VECTOR, HLA, VECTOR_AC, VECTOR_I_AC	Can be changed: C 1 (4), $\mathrm{C} 2(15)$	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: DDS, p0180	Func. diagram: 4700, 8570
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	99	99
Description:	Assign a drive data set (= index) the corresponding encoder data set (EDS) for encoder 1.		
	The value corresponds to the number of the assigned encoder data set.		
	Example:		
	Encoder 1 in drive data set 2 should be assigned encoder data set 0 .		
Note:	A value of 99 means that no encoder has been assigned to this drive data set (not configured).		
p0188[0...n]	Encoder 2 encoder data set number / Enc 2 EDS number		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C 1 (4), C 2 (15)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: DDS, p0180	Func. diagram: 4700, 8570
	P-Group: Data sets	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	99	99
Description:	Assign a drive data set (= index) the corresponding encoder data set (EDS) for encoder 2.		
	Example:		
	Encoder 2 in drive data set 2 should be assigned to encoder data set 1.		
Note:	A value of 99 means that no encod	en assigned to this drive da	configured).

2.2 List of parameters

p0189[0...n]	Encoder 3 encoder data set number / Enc 3 EDS number		
SERVO, VECTOR,	Can be changed: C1(4), C2(15)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: DDS, p0180	Func. diagram: 4700,8570
VECTOR_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	99	Factory setting
	0	99	
	Assign a drive data set (= index) the corresponding encoder data set (EDS) for encoder 3.		
Description:	The value corresponds to the number of the assigned encoder data set.		
	A value of 99 means that no encoder has been assigned to this drive data set (not configured).		

r 0192	Power unit firmware properties 1 / PU FW property 1				
SERVO, SERVO_AC,		be changed: - Calcu	ulated: -	Acces	
SERVO_I_AC		type: Unsigned32 Dyn	index: -	Func	
		up: Converter Unit	group: -	Unit se	
		or motor type: - Scal		Expe	
	Min	Max		Facto	
	-	-		-	
Description:	Displays the properties supported by the power unit firmware.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Edge modulation possible	Yes	No	-
	01	Free telegram can be selected	Yes	No	-
	02	Smart mode possible for Active Line Module	Yes	No	-
	03	Safety Integrated possible for VECTOR	Yes	No	-
	05	Thermal model expanded	Yes	No	-
	06	Liquid cooling	Yes	No	-
	07	SERVO pulse frequency changeover DDSdependent	Yes	No	-
	08	Simulation mode possible	Yes	No	-
	09	Internal armature short-circuit possible	Yes	No	-
	10	Autonomous internal armature short-circuit possible	Yes	No	-
	11	Infeed temperature inputs X21.1/2	Yes	No	-
	12	Integral scaled to half the gating unit clock cycle freq.	Yes	No	-
	13	Filtering thermal power unit current limit possible	Yes	No	-
	14	Reserved	Yes	No	-
	15	PT100 temperature evaluation possible	Yes	No	-
	16	Gating unit with pulse frequency wobbulation possible	Yes	No	-
	17	Compound braking possible	Yes	No	-
	18	Extended voltage range possible	Yes	No	-
	19	Gating unit available with current limitation control	Yes	No	-
	20	Component status possible	Yes	No	-
	21	Temperature evaluation via Motor Module / CU terminals possible	Yes	No	-
	22	Reduced device supply voltage possible	Yes	No	-
	23	Current measurement oversampling available	Yes	No	-
	24	Parking keeping the relevant data is available	Yes	No	-
	25	Internal fan operating hours counter available	Yes	No	-
	26	Software gating unit supported in the Control Unit	Yes	No	-
	27	Current controller dynamics higher	Yes	No	-

	28	DC link voltage compensation in the power unit.	Yes	No	-
	29	Voltage measurement	Yes	No	-
	30	Gating unit with all-phase current limiting	Yes	No	-
Dependency:	Refer to: r0193				
Notice:	This information represents the characteristics/features of the power unit firmware. It does not provide information/data about the characteristics/features of the hardware (e.g. bit $06=1$ means that although the firmware supports "liquid cooling", a power unit with liquid cooling does not have to be used).				
Note:	For bit 09:				
	The Motor Module supports the internal armature short-circuit. The function is internally required for voltage protection (p1231 = 3).				
	For bit 10:				
	The Motor Module supports the autonomous internal voltage protection. If the "internal voltage protection" function is activated (p1231 = 3) the Motor Module decides autonomously - using the DC link voltage - as to whether the short-circuit is activated.				
	For bit 23:				
	The component supports the detection of current actual values (and the detection of valve close durations) with double clocking and phase shift.				
r0192	Power unit firmware properties 1 / PU FW property 1				
VECTOR, VECTOR_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF	Can be changed: - Calcul		ulated: -	Access	
	Data type: Unsigned32		index: -	Func.	
	P-Group: Converter		group: -	Unit se	
	Not for motor type: -			Expert	
	Min			Factory	
	- -			-	
Description:	Displays the properties supported by the power unit firmware.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Edge modulation possible	Yes	No	-
	01	Free telegram can be selected	Yes	No	-
	02	Smart mode possible for Active Line Module	Yes	No	-
	03	Safety Integrated possible for VECTOR	Yes	No	-
	05	Thermal model expanded	Yes	No	-
	06	Liquid cooling	Yes	No	-
	07	SERVO pulse frequency changeover DDSdependent	Yes	No	-
	08	Simulation mode possible	Yes	No	-
	09	Internal armature short-circuit possible	Yes	No	-
	10	Autonomous internal armature short-circuit possible	Yes	No	-
	11	Infeed temperature inputs X21.1/2	Yes	No	-
	12	Integral scaled to half the gating unit clock cycle freq.	Yes	No	-
	13	Filtering thermal power unit current limit possible	Yes	No	-
	14	DC link compensation possible in power unit	Yes	No	-
	15	PT100 temperature evaluation possible	Yes	No	-
	16	Gating unit with pulse frequency wobbulation possible	Yes	No	-
	17	Compound braking possible	Yes	No	-
	18	Extended voltage range possible	Yes	No	-
	19	Gating unit available with current limitation control	Yes	No	-
	20	Component status possible	Yes	No	-
	21	Temperature evaluation via Motor Module / CU terminals possible	Yes	No	-
	22	Reduced device supply voltage possible	Yes	No	-
	23	Current measurement oversampling available	Yes	No	-
	24	Parking keeping the relevant data is available	Yes	No	-

2.2 List of parameters

25	Internal fan operating hours counter available Software gating unit supported in the	Yes	No
26	Control Unit	No	
27	Current controller dynamics higher	Yes	No
28	Reserved	Yes	No
29	Voltage measurement	Gating unit with all-phase current limiting	Yes

Dependency:	Refer to: $\mathrm{r0193}$
Notice:	This information represents the characteristics/features of the power unit firmware. It does not provide

Note:
For bit 09:
The Motor Module supports the internal armature short-circuit. The function is internally required for voltage protection (p1231 = 3).
For bit 10:
The Motor Module supports the autonomous internal voltage protection
If the "internal voltage protection" function is activated (p1231 = 3) the Motor Module decides autonomously - using the DC link voltage - as to whether the short-circuit is activated.
For bit 23:
The component supports the detection of current actual values (and the detection of valve close durations) with double clocking and phase shift.

r0193

SERVO, VECTOR,
Power unit firmware properties 2 / PU FW property 2

SERVO_AC,
VECTOR AC,
SERVO_I_AC,
VECTOR I AC,
Can be changed:
Data type: Unsigned32
P-Group: Converter

A_INF, S_INF, R_INF, Min
Not for motor type: -

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

Access level: 3

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Displays the properties supported by the power unit firmware.

Description:		ss the properties supported by the power un	rmware		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	01	Component trace	Yes	No	-
	06	PT1000 temperature sensor evaluation	Yes	No	-
	08	Reduced undervoltage threshold during precharging	Yes	No	-
	09	Switchover to 1-phase line voltage	Yes	No	-
	10	Wobbulation with extended pulse frequency	Yes	No	-
	12	DC link forming	Yes	No	-
	13	Capacitor air discharge temperature monitoring available	Yes	No	-
	14	Red. switching frequency at rated frequency L/dvdt filter use	Yes	No	-
Dependency:	Refer to: r0192				
Note:	For bit 13:				
	The set bit also indicates that the wear counter of the heat sink fan (r0277)				

r0194[0...n]	VSM properties / VSM properties		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: Unsigned32	Dyn. index: p0150	Func. diagram: -
VECTOR_I_AC	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the properties supported by the Voltage Sensing Module (VSM).		
Bit field:	Bit Signal name	1 signal	$\mathbf{0}$ signal
	$00 ~ R e s e r v e d ~$	Yes	No

2.2 List of parameters

r0197[0...1]	Bootloader version / Bootloader vers		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Closed-loop control	Unit group: -	Unit selection: -
CU_S12_PN,	Scaling: -	Expert list: 1	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	
CU_S150_DP,	-		
CU_I_D410			
Description:	Displays the bootloader version.		
	Index 0:		
	Displays the bootloader version.		
	Index 1:		
	Displays the bootloader version 3 (for CU320-2 and CU310-2)		
	A value of 0 indicates that bootloader 3 is not available.		
Dependency:	Refer to: ro018, r0128, r0148, ro158, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

r0198[0...2]	BIOS/EEPROM data version / BIOS/EEPROM vers		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Closed-loop control	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	-
Description:			
	r0198[1]: EEPROM data version EEPROM 0		
	r0198[2]: EEPROM data version EEPROM 1		
Dependency:	Refer to: r0018, r0128, r0148, r0158, r0197		
Note:	Example:		
	The value 1010100 should be interpreted as V 01.01 .01 .00 .		

p0199[0...24]	Drive object name / DO name		
All objects	Can be changed: C1	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Fxpert list: 1
	Min	65535	0
	0		Factory setting
Description:	Freely assignable name for a drive object.		
	For the commissioning tool, this name cannot be entered using the expert list, but is specified in the configuration		
	wizards. The object name can be subsequently modified in the Project Navigator using standard Windows resources.		
Note:	The parameter is not influenced by setting the factory setting.		

r0200[0...n]	Power unit code number actual / PU code no. act		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned16	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_AC,	P-Group: Converter	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_IAC,	Not for motor type: -	Max	Factory setting
A_INF, S_INF, R_INF,	Min	-	-

Description: Displays the unique code number of the power unit.
Note: \quad r0200 $=$ p0201: No power unit found
For parallel circuit configurations, the parameter index is assigned to a power unit.

p0201[0...n]	Power unit code number / PU code no		
SERVO, VECTOR,	Can be changed: C2(2)	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned16	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_AC,	P-Group: Converter	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	65535	0

Description:	Sets the actual code number from r0200 to acknowledge the power unit being used.
When commissioned for the first time, the code number is automatically transferred from r0200 into p0201.	
Dependency:	Refer to: F07815
Notice:	When p0201 = 10000, the rated power unit data is reloaded and dependent parameters are set (e.g. p0205, p0210,
p0230, p0857, p1800). p0201 is then automatically assigned the value of r0200 if the code number of the power unit	
could be read. A warm start must be performed after this procedure (automatically if necessary).	
Note:	The parameter is used to identify when the drive is being commissioned for the first time.
	The power unit commissioning can only be exited (p0201 = r0200), if the actual and acknowledged code numbers are
identical (p0010 = 2). However, if the comparator in p9906 or p9908 is at 2 (low) or 3 (minimum), the power unit	
commissioning is automatically set to p0201 = r0200 upon exiting.	
	When the code number is changed, the connection voltage (p0210) is checked and, if necessary, adjusted.
	For parallel circuit configurations, the parameter index is assigned to a power unit.

2.2 List of parameters

2.2 List of parameters

p0205[0...n]	Valve rated voltage / Valve Un		
HLA	Can be changed: C2(1, 2)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.500[V]$		
	Sets the rated voltage for the valve.		
Description:	Refer to: p1832, p1850, p1851		
Dependency:	The output valve voltage is between -p0205 + offset (p1832) and p0205 + offset (p1832).		
Note:	Additional voltage limiting is possible via p1850 and p1851.		

p0205	Power unit application / PU application		
VECTOR,	Can be changed: C2(1,2)	Calculated: -	Access level: 2
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	7	6

Description: Overloading the load duty cycles applies under the prerequisite that before and after the overload, the drive converter is operated with its base load current - in this case, a load duty cycle of 300 s is used as basis.
For booksize drive units, the following applies:
Only the setting p0205 = 0 can be selected. In this particular case, the base load current has a load duty cycle of 150 $\%$ for 60 s and 176% for 30 s .
For chassis units, the following applies:
The base load current for a low overload condition is based on a load duty cycle 110% for 60 s and 150% for 10 s .
The base load current for a high overload condition is based on a load duty cycle 150% for 60 s and 160% for 10 s

Value: $\quad 0: \quad$ Load duty cycle with high overload

1: Load duty cycle with low overload
6: S1 continuous duty (for servo drives)
7: \quad S6 load duty cycle (for servo drives)
Note: \quad When the parameter is changed, all of the motor parameters and the control mode are pre-assigned according to the selected application.
The parameter has no influence when calculating the thermal overload.
p0205 can only be changed to the settings that are saved in the power unit EEPROM.
The parameter value is not reset when the factory setting is restored (see p0010 = 30, p0970).

p0206[0...n]	Valve transition point flow rate / Valve trans flow		
HLA	Can be changed: C2(1, 2)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.2[\%]$	$10.0[\%]$	
Description:	Sets the flow rate at the transition point of the valve.		
Dependency:	Pre-assignment of p1839 and p1842.		

p0207[0...n]	Valve transition point voltage / Valve trans \mathbf{U}		
HLA	Can be changed: C2(1, 2)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.2[\%]$	$10.0[\%]$	
Description:	Sets the voltage at the transition point of the valve.		

r0207[0...4]	Rated power unit current / PU PI_rated		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8021
VECTOR_AC,	P-Group: Converter	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	- [Arms]	- [Arms]
	- [Arms]		

2.2 List of parameters

Index:	$[0]=$ Rated value
	$[1]=$ Load duty cycle with low overload
	$[2]=$ Load duty cycle with high overload
	$[3]=S 1$ cont duty cyc
	$[4]=$ S6 load duty cycle
Dependency: \quad	Refer to: p0205

r0207[0...4] Rated power unit current / PU PI_rated
A_INF, S_INF, R_INF, Can be changed: - Calculated:
B_INF Data type: FloatingPoint32

Dyn. index: -
Unit group: -
Scaling: -
Max

- [Arms]

Access level: 2
Func. diagram: 8021
Unit selection: -
Expert list: 1
Factory setting

- [Arms]

Description: Displays the rated power unit power for various load duty cycles.
Index:
[0] = Rated value
[1] = Load duty cycle with low overload
[2] = Load duty cycle with high overload
[3] = S1 cont duty cyc
[4] = S6 load duty cycle
Dependency: Refer to: p0205
Note: The following applies for booksize power units:
The display value corresponds to the rated DC link current at 600 V (according to the SINAMICS S120 Manual).
For chassis power units, the following applies:
The display value corresponds to the rated input current at the rated line voltage (according to the SINAMICS S120 Manual).

The precharging switch-in threshold for the DC link voltage (Vdc) is calculated from p0210:
Vdc_pre $=$ p0210 * 0.82 * 1.35 (AC/AC)
Vdc_pre $=$ p 0210 * 0.82 (DC/AC)

2.2 List of parameters

The undervoltage thresholds for the DC link voltage (Vdc) are calculated from p 0210 as a function of the rated power unit voltage:
U_rated $=400 \mathrm{~V}$:

- U_min $=$ p0210 * $0.78(\mathrm{AC} / \mathrm{AC})>330 \mathrm{~V}, \mathrm{p} 0210$ * $0.60(\mathrm{DC} / \mathrm{AC})>380 \mathrm{~V}$

U_rated $=500 \mathrm{~V}$:

- U_min $=$ p0210 * $0.76(A C / A C)>410 \mathrm{~V}$

U_rated $=660 \ldots 690 \mathrm{~V}$:

- U_min = p0210 * 0.82 (AC/AC) > $565 \mathrm{~V}, \mathrm{p} 0210$ * 0.63 (DC/AC) > 650 V

U_rated $=500 \ldots 690 \mathrm{~V}$:

- U_min $=$ p0210 * $0.82(A C / A C)>420 \mathrm{~V}, \mathrm{p} 0210$ * $0.63(\mathrm{DC} / \mathrm{AC})>480 \mathrm{~V}$

The precharging switch-in threshold for the DC link voltage (Vdc) is calculated from p0210:
Vdc_pre $=$ p0210 * 0.82 * 1.35 (AC/AC)
Vdc_pre = p0210 * 0.82 (DC/AC)
The undervoltage thresholds for the DC link voltage (Vdc) are calculated from p 0210 as a function of the rated power unit voltage:
U_rated $=400 \mathrm{~V}$:

- U_min $=$ p0210 * $0.78(\mathrm{AC} / \mathrm{AC})>330 \mathrm{~V}, \mathrm{p} 0210$ * $0.60(\mathrm{DC} / \mathrm{AC})>380 \mathrm{~V}$

U_rated $=500 \mathrm{~V}$:

- U_min $=p 0210 * 0.76(A C / A C)>410 V$

U_rated $=660 \ldots 690 \mathrm{~V}$:

- U_min $=$ p0210 * $0.82(A C / A C)>565 \mathrm{~V}, \mathrm{p} 0210$ * 0.63 (DC/AC) $>650 \mathrm{~V}$

U_rated $=500 \ldots 690 \mathrm{~V}$:

- U_min $=$ p0210 * $0.82(A C / A C)>420 \mathrm{~V}, \mathrm{p} 0210$ * 0.63 (DC/AC) > 480 V

p0211[0...n]	Valve, flow rate ratio A to B side / Flowrate_ratio A/B		
HLA	Can be changed: C2(1, 2)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.500	1.000	
Description:	Sets the flow rate ratio from the A side to the B side.		

p0211	Rated line frequency / Rated line freq		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: C2(3), T	Calculated: -	
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	
	RESM		Max
	Min	$100[\mathrm{~Hz}]$	$60[\mathrm{~Hz}]$
	$10[\mathrm{~Hz}]$		
	Sets the rated line frequency.		
Description:	The frequency corresponds to the stator frequency of the exciter when supplied from a three-phase AC power		
Note:	controller for a separately excited synchronous machine with reverse field excitation.		

2.2 List of parameters

p0212	Power unit configuration / PU config					
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(2)$ Data type: Unsigned16 P-Group: Converter Not for motor type: - Min -		Calculated: Dyn. index: - Unit group: - Scaling: - Max	Access level: 3		
			Func. diagram: -			
			Unit selection: -			
			Expert list: 1			
			Factory setting			
			00000000 bin			
Description:	Sets the power unit configuration.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Drive unit line supply		Yes	No	
	01	External prechargin		Yes	No	-
	03	Automatically adap		No	Yes	-
	05	Contactor display in		Yes	No	9814
Dependency:	For bit 00:					
	Reduced supply voltages are only possible for booksize and chassis power units (DC/AC).					
	Bit $0=1$ can only be set if r0192.22 $=1$.					
	For bit $01=1$:					
	The external precharging setting only affects the DC/AC power units.					
	For bit $03=1$:					
	The automatic adaptation (reduction) of the Vdc max limit is deactivated (only for chassis power units). Bit 3 only has an effect, if bit 0 is simultaneously set.					
	Refer to: r0192, p0210					
Caution:\qquad	For bit 00:					
	Working with reduced input voltages deactivates undervoltage detection. For bit 03:					
	If the automatic setting of the Vdc max limit is deactivated, then all of the components connected to the DC link must be suitable for the maximum DC link voltage of the power unit (e.g. 820 V for 400 V units).					
Note:	For bit $00=0$:					
	It is not possible to reduce the supply voltage in p0210.					
	For bit $00=1$:					
	With this setting the supply voltage in p0210 can be reduced to 100 V .					
	Booksize PU: only for operating mode p1300 $=19$					
	Chassis PU: only for operating mode p1300 > 19 and closed-loop DC voltage control					
	For bit $01=0$:					
	There is no external precharging of the DC/AC Motor Modules. The precharging monitoring is bypassed. For bit $01=1$:					
	There is external precharging of the DC/AC Motor Modules. The precharging monitoring is calculated.					
	For bit $03=0$:					
	The DC link voltage limit is calculated from p0210.					
	For bit $03=1$:					
	The DC link voltage limit is set to the maximum value of the power unit.					
	For bit $05=1$:					
	The status of the inputs/outputs for the power unit contactors is displayed in r0256.					
	This only applies to chassis power units with 3 AC line connection and line contactors.The status display is only effective after parameter save and POWER ON.					

p0212	Power unit configuration / PU config			
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: C2(2)	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -	
	P-Group: Converter	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	- -	-	00000000 bin	
Description:	Sets the power unit configuration.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Drive unit line supply voltage reduced	Yes	No	-
	01 External precharging present	Yes	No	-
	03 Automatically adapt Vdc_max limit	No	Yes	-
	05 Contactor display inputs/outputs status	Yes	No	9814
	06 Reduction of the permissible minimum voltage during precharging	Yes	No	-
Dependency:	For bit 00:			
	Reduced supply voltages are only possible for booksize and chassis power units (DC/AC).			
	Bit $0=1$ can only be set if r0192.22 $=1$.			
	For bit $01=1$:			
	The external precharging setting only affects the DC/AC power units.			
	For bit $03=1$:			
	The automatic adaptation (reduction) of the Vdc max limit is deactivated (only for chassis power units). Bit 3 only has an effect, if bit 0 is simultaneously set.			
	Refer to: r0192, p0210			
Caution:介	For bit 00:			
	Working with reduced input voltages deactivates undervoltage detection.			
	If the automatic setting of the Vdc max limit is deactivated, then all of the components connected to the DC link must be suitable for the maximum DC link voltage of the power unit (e.g. 820 V for 400 V units).			
Note:	For bit $00=0$:			
	It is not possible to reduce the supply voltage in p0210.			
	For bit $00=1$:			
	With this setting the supply voltage in p0210 can be reduced to 100 V .			
	Booksize PU: only for operating mode p1300 $=19$			
	Chassis PU: only for operating mode p1300 > 19 and closed-loop DC voltage control			
	For bit $01=0$:			
	There is no external precharging of the DC/AC Motor Modules. The precharging monitoring is bypassed.			
	For bit $01=1$:			
	There is external precharging of the DC/AC Motor Modules. The precharging monitoring is calculated.			
	For bit $03=0$:			
	The DC link voltage limit is calculated from p0210.			
	For bit $03=1$:			
	The DC link voltage limit is set to the maximum value of the power unit.			
	For bit $05=1$:			
	The status of the inputs/outputs for the power unit contactors is displayed in r0256.			
	This only applies to chassis power units with 3 AC line connection and line contactors.			
	The status display is only effective after parameter save and POWER ON.			
	For bit 06:			
	Precharging via the Motor Module is activated using this bit. To do this, while precharging, the undervoltage threshold for the pulse enable is reduced.			
	Precharging via the Motor Module can only be activated for S120 devices for separately excited synchronous generators where the DC link voltage control has been preselected (technology controller function module).			

p0212	Power unit configuration / PU config			
A_INF, S_INF, R_INF	Can be changed: C2(2)	Calculated: -	Access	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Converter	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factory	
	-	-	000000	
Description:	Sets the power unit configuration.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Drive unit line supply voltage reduced	Yes		
	05 Contactor display inputs/outputs status	Yes	No	9814
Dependency:	For bit 00:			
	Reduced supply voltages to 100 V are only possible for booksize power units.			
	Supply voltages reduced down to 180 V are only possible for A_{-}infeed power units ($500 \mathrm{~V}-690 \mathrm{~V}$). Bit $0=1$ can only be set if r0192.22 $=1$.			
Caution:\qquad 4	For bit 00:			
	Working with reduced input voltages correspondingly reduces undervoltage detection. This function may only be used by personnel with expert knowledge!			
Note:	For bit $00=0$:			
	400 V units: It is not possible to reduce the supply voltage in p0210 to below 180 V .			
	690 V units: It is not possible to reduce the supply voltage in p0210 to below 380 V .			
	For bit $00=1$:			
	400 V units (Booksize): With this setting, the supply voltage in p0210 can be reduced down to 70 V .			
	690 V units (Chassis): With this setting, the supply voltage in p0210 can be reduced down to 180 V .			
	The activation of this function is retentively saved in the unit and for incorrect design of the application can result in loss of warranty!			
	For bit $05=1$:			
	The status of the inputs/outputs for the power unit contactors is displayed in r0256.			
	This only applies to chassis power units with 3 AC line connection and line contactors.			
	The status display is only effective after parameter save and POWER ON.			

p0212	Power unit configuration / PU config				
B_INF	Can	be changed: C 2 (2)	Calculated: -	Acces	
	Data	type: Unsigned16	Dyn. index: -	Func.	
	P-Gr	oup: Converter	Unit group: -	Unit se	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
	-		-	00000	
Description:	Sets the power unit configuration.				
Bit field:		Signal name	1 signal	0 signal	FP
		Drive unit line supply voltage reduced	Yes	No	-
		Reserved	Yes	No	-
		Contactor display inputs/outputs status	Yes	No	9814
Dependency:	For bit 00:				
	Reduced supply voltages are only possible on booksize power units.				
	Bit $0=1$ can only be set if r0192.22 $=1$.				
	Refer to: r0192, p0210				
Caution:	For bit 00:				
Λ	Working with reduced input voltages correspondingly reduces undervoltage detection. This function may only be used by personnel with expert knowledge!				

Note:

For bit $00=0$:
It is not possible to reduce the supply voltage in p0210 to below 180 V .
For bit $00=1$:
With this setting the supply voltage in p0210 can be reduced to 70 V .
Bit $0=1$ can only be set for booksize power units with a rated power of up to 40 kW .
The activation of this function is retentively saved in the unit and for incorrect design of the application can result in loss of warranty!
For bit 02:
Reserved. It is not permissible to set to 1 .
For bit $05=1$:
The status of the inputs/outputs for the power unit contactors is displayed in r0256.
This only applies to chassis power units with 3 AC line connection and line contactors.
The status display is only effective after parameter save and POWER ON.

p0216[0...n]	Valve natural frequency / Valve fn					
HLA	Can be changed: $\mathrm{C} 2(1,2)$			Calculated: - Access level: 3		
	Data type: FloatingPoint32 D			Dyn. index: PDS, p0120 Func. diagram		
	P-Group: Converter U			Unit group: - Unit selection		
	Not for motor type: - S			Scaling: - Expert		
	Min M		Max Factor			
	$1.0[\mathrm{~Hz}]$ 1		1000.0 [Hz]		150.0 [Hz]	
Description:	Sets the natural frequency for the valve.					
p0217[0...n]	Val	damping / Valv				
HLA	Can be changed: $\mathrm{C} 2(1,2)$		Calculated: -		Access level: 3	
	Data type: FloatingPoint32		Dyn. index: PDS, p0120		Func. diagram: -	
	P-Group: Converter		Unit group: -		Unit selection: -	
	Not for motor type: -		Scaling: -		Expert list: 1	
	Min		Max		Factory setting	
	0.400		1.000		0.800	
Description:	Sets the damping for the valve.					
p0218[0...n]	Cyl	der safety confi	1 sa	ty config		
HLA	Can be changed: $\mathrm{C} 2(1,2)$		Calculated: -		Access level: 3	
	Data type: Unsigned16		Dyn. index: PDS, p0120		Func. diagram: -	
	P-Group: Converter		Unit group: -		Unit selection: -	
	Not for motor type: -		Scaling: -		Expert list: 1	
	Min		Max		Factory setting	
	-		-		0111 b	
Description:	Sets the configuration for the cylinder safety circuit.					
Bit field:		it Signal name		1 signal	0 signal	FP
		Close shutoff valve for power inhibit (PI)		Yes	No	-
		Shutdown control valve supply for power inhibit (PI)		er Yes	No	4990
		Valve feedback signal available Invert valve feedback signal		Yes	No	
				Yes	No	-
Note:	PI: power inhibit					
	For bit $01=0$ and power inhibit:					
	When the control valve is switched in, the valve setpoint is interlocked to 0 . If bit $0=0$ (shutoff valve for power inhibit does not close) the drive can drift.					

p0220	Hydraulic oil modulus of elasticity / Hydr_oil e_module	
HLA	Can be changed: C2(1, 2) Calculated: -	Access level: 3
	Data type: FloatingPoint32 Dyn. index: -	Func. diagram: -
	P-Group: Converter Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	1000.0 [bar] 21000.0 [bar]	11000.0 [bar]
Description:	Sets the value of the modulus of elasticity for the hydraulic oil being used. The value defines the compressibility of the hydraulic fluid.	
Note:		
p0220[0...1]	Infeed line filter type / INF line filt type	
A_INF, R_INF	Can be changed: $\mathrm{C} 2(1,2)$	Access level: 3
	Data type: Integer16 D	Func. diagram: 8950
	P-Group: Converter U	Unit selection: -
	Not for motor type: - S	Expert list: 1
	Min M	Factory setting
	0	0
Description:	Sets the line filter type for the Active Line Module (ALM).	
	For an Active Line Module (ALM), a line filter (Active Interface Module, AIM) with the appropriate rating is automatically selected and the line filter type (p 0220) preset as follows:	
	- "booksize" format: p0220 $=41$... 45	
	- "Chassis" format: p0220 = 10 ... 29 or 78 ... 105	
	- "Chassis-ULMA" format: p0220 = 110 ... 140	
	Based on the line filter type, filter capacitance (p 0221), filter resistance (p 0222), line-side filter reactor (p 0228) as well as inductance (p 0223) and the resistance (p 0224) of the commutation reactor are preassigned. Further, the setting of the pulse frequency wobbulation is also preassigned ($\mathrm{p} 1810.2, \mathrm{p} 1810.4, \mathrm{p} 1811$) for which the AIM is dimensioned.	
	For the selected filter, controller settings ($\mathrm{p} 3421, \mathrm{p} 3422, \mathrm{p} 3424$) are newly preassigned suitable values. As a consequence, it is recommended that a line and DC link identification routing with automatic controller setting is carried out ($\mathrm{p} 3410>=4$).	
Value:	0: No line filter	
	1: Wideband Line Filter booksize 400 V 16 kW (6SL3000-0BE21-6AA0)	
	2: Wideband Line Filter booksize 400 V 36 kW (6SL3000-0BE23-6AA0)	
	3: Wideband Line Filter booksize 400 V 55 kW (6SL3000-0BE25-5AA0)	
	4: Wideband Line Filter booksize 400 V 80 kW (6SL3000-0BE28-0AA0)	
	5: Wideband Line Filter booksize 400 V 120 kW ($6 \mathrm{SL} 3000-0 \mathrm{BE} 31-2 \mathrm{AAO}$)	
	10: AIM F 400 V 132 kW 160 kW (6SL3300-7TE32-6Ax0)	
	11: AIM G 400 V 235 kW ($6 \mathrm{SL} 3300-7 \mathrm{TE} 33-8 \mathrm{Ax} 0$)	
	12: AIM G 400 V 300 kW ($6 \mathrm{SL} 3300-7 \mathrm{TE} 35-0 \mathrm{Ax} 0$)	
	13: AIM H 400 V 380 kW 500 kW (6 SL3300-7TE38-4Ax0)	
	14: AIM J 400 V 630 kW 900 kW ($6 \mathrm{SL} 3300-7 \mathrm{TE} 41-4 \mathrm{AxO}$)	
	15: AIM F 690 V 150 kW (6 SL3300-7Tx31-4Ax0)	
	16: AIM G 690 V 330 kW (6 SL3300-7Tx33-1Ax0)	
	17: AIM H 690 V 630 kW (6 SL3300-7Tx35-8Ax0)	
	18: AIM J 690 V 800 kW (6 SL3300-7Tx37-4Ax0)	
	19: AIM J 690 V 1100 kW 1400 kW ($6 \mathrm{SL} 3300-7 \mathrm{~T} \times 41-3 \mathrm{Ax0}$)	
	20: AIM F 400 V 132 kW 160kW (6SL3300-7TE32-6Ax1)	
	21: AIM G 400 V 235 kW (6 SL3300-7TE33-8Ax1)	
	22: AIM G 400 V 300 kW ($6 \mathrm{SL} 3300-7 \mathrm{TE} 35-0 \mathrm{Ax} 1)$	
	23: AIM H 400 V 380 kW 500 kW (6SL3300-7TE38-4Ax1)	
	24: AIM J 400 V 630 kW 900 kW (6SL3300-7TE41-4Ax1)	
	25: AIM F 690 V 150 kW ($6 \mathrm{SL} 3300-7 \mathrm{~T} \times 31-4 \mathrm{Ax} 1)$	
	26: AIM G $690 \vee 330 \mathrm{~kW}$ ($6 \mathrm{SL} 3300-7 \mathrm{~T} \times 33-1 \mathrm{Ax} 1)$	
	27: AIM H 690 V 630 kW (6 SL3300-7Tx35-8Ax1)	
	28: AIM J 690 V 800 kW (6 SL3300-7Tx $37-4 \mathrm{Ax} 1)$	
	29: AIM J 690 V 1100 kW 1400 kW (6 SL3300-7Tx41-3Ax1)	
	31: Basic Line Filter booksize 400 V 16 kW (6SL3000-0BE21-6DA0)	
	32: Basic Line Filter booksize 400 V 36 kW (6SL3000-0BE23-6DA0)	
	33:34:Basic Line Filter booksize 400 V 55 kW (6SL3000-0BE25-5DA0)Basic Line Filter booksize 400 V 80 kW (6SL3000-0BE28-0DAx)	

p0221

System pressure / p_system

HLA
Can be changed: $\mathrm{C} 2(1,2) \quad$ Calculated:
Data type: FloatingPoint32 Dyn. index: -
P-Group: Converter Unit group: -
Not for motor type: -
Min
0.0 [bar]

Scaling: -
Max
10000.0 [bar]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0.0 [bar]

Description:
Sets the system pressure that the drive unit supplies.

p0221[0..1]	Infeed filter capacitance / INF C_filter		
A_INF, R_INF	Can be changed: $\mathrm{C} 2(1,2)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8950
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{F}$]	100000.00 [$\mu \mathrm{F}$]	0.00 [F]
Description:	Sets the filter capacitance of the line filter (connected in a delta configuration).		
Index:	$\begin{aligned} & {[0]=\text { Line filter }} \\ & {[1]=\text { Line filter optional }} \end{aligned}$		
Note:	When a Siemens line filter is used (p0220) this parameter is automatically pre-set with the correct value. For a parallel circuit, the value corresponds to the capacitance of a power unit.		
	Index 0 refers to the first line filter from p0220[0].		
	Index 1 refers to the optional second line filter from p0220[1].		

p0222[0...n]	Valve precontrol pressure / Valve p_prectrl		
HLA	Can be changed: C2(1, 2)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [bar]	350.0 [bar]	0.0 [bar]
Description:	Sets the precontrol pressure for precontrolled valve.		
	For a value $=0$, the following applies:		
	Directly controlled (not precontroled) valve.		
	For values not equal to 0 , the following applies:		
	Precontrol pressure for the precontrolled valve.		
Note:	The natural frequency of the precontrolled valve is obtained from the valve natural frequency multiplied by the square root of the precontrolled pressure divided by 100 bar.		

p0223	Infeed inductance between filter and power unit / INF L filter/PU		
A_INF, S_INF, R_INF	Can be changed: $\mathrm{C} 2(1,2)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8850, 8950
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001 [mH]	$1000.000[\mathrm{mH}]$	$2.100[\mathrm{mH}]$
Description:	Sets the inductance between the filter and power unit.		
Note:	The parameter is automatically pre-assigned depending on the power unit being used and matches the specified Siemens line reactors.		
	For a parallel circuit, the value corresponds to the inductance of a power unit.		
	The controller settings (p 3421 , p 3424) are overwritten according to p0223. In the case that p0223 is subsequently changed, it is always recommended that a line and DC link identification routine with automatic controller setting is carried out (p3410 >= 4).		
p0224	Infeed resistance between filter and power unit / INF R filter/PU		
A_INF, S_INF, R_INF	Can be changed: $\mathrm{C} 2(1,2)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8850, 8950
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [ohm]	100.00000 [ohm]	0.00100 [ohm]
Description:	Sets the resistance between the filter and power unit		
Note:	The parameter is automatically pre-assigned depending on the power unit being used and matches the specified Siemens line reactors.		
	For a parallel circuit, the value corresponds to the resistance of a power unit.		
p0225	Infeed inductance between line supply and filter / INF L line/filter		
A_INF, S_INF, R_INF	Can be changed: $\mathrm{C} 2(1,2)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8850, 8950
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001 [mH]	$1000.000[\mathrm{mH}]$	0.001 [mH]
Description:	Sets the inductance between line supply and filter.		
Note:	The value must be, for example, appropriately increased if an additional inductance (reactor or transformer is installed in front of the filter).		
	The controller settings (p3421, p3424) are overwritten according to p0225. In the case that p0225 is subsequently changed, it is always recommended that a line and DC link identification routine with automatic controller setting is carried out (p3410 >= 4).		
p0226	Infeed resistance between line supply and filter / INF R line/filter		
A_INF, S_INF, R_INF	Can be changed: C2(1, 2)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8850, 8950
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ohm]	100.00 [ohm]	0.00 [ohm]
Description:	Sets the resistance between the line supply and filter.		
Note:	The value must be, for example, appropriately increased if an additional resistor is installed in front of the filter.		

p0227	Infeed DC link capacitance, power unit / INF C		
A_INF, S_INF, R_INF	Can be changed: C2(1, 2)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8850, 8950
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.20 [mF]	1000.00 [mF]	1.00 [mF]
Description:	Sets the total DC link capacitance.		
Note:	The total DC link capacitance of a DC link group comprises the sum of the sub-capacitances of all motor/infeed modules and the additional DC link capacitors.		
	The controller setting (p 3422) is overwritten according to p0227. In the case that p0227 is subsequently changed, it is always recommended that a line and DC link identification routine with automatic controller setting is carried out (p3410 >= 4).		
p0228	Infeed filter inductance line side / INF L_Filt L-side		
A_INF, S_INF, R_INF	Can be changed: C2 $(1,2)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8850, 8950
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{mH}]$	1000.000 [mH]	$0.000[\mathrm{mH}]$
Description:	Sets the inductance of a line reactor in the filter.		
Note:	Contrary to p0225, this inductance is in the filter itself, and in the case that active infeed units are connected in parallel, this inductance becomes part of the parallel connection.		
	For a parallel connection, the following applies:		
	In the case of a single connection (r7000 = 1), the inductance value is entered in p0228.		
	The controller settings (p3421, p3424) are overwritten according to p0228. In the case that p0228 is subsequently changed, it is always recommended that a line and DC link identification routine with automatic controller setting is carried out (p3410 >= 4).		
p0230[0...n]	Manipulated variable inhibit time / Manip var t_inhib		
HLA	Can be changed: C2(2), T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]		
Description:	Setting the manipulated variable inhibit time.		
	The manipulated variable inhibit time starts after controlling the shutoff valve (opening) or after switching-on the power supply voltage of the control valve and during this time keeps the velocity setpoint at zero.		
Note:	For p0218.1 = 1 (shutdown control valve supply for power inhibit), the following applies:		
	The system waits for the manipulated variable inhibit time to expire - also after the close command for the shutoff valve - and then the power supply voltage of the control valve is shut down.		
	For p0218.0 = 0 (do not close shutoff valve for power inhibit) and p0218.1 = 0 (do not switch off control valve supply for power inhibit), the following applies:		

p0232[0...n]	Valve monitoring time / Valve t_monit		
HLA	Can be changed: C2(2), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [ms]	1000 [ms]	50 [ms]
Description:	Sets the monitoring time for the valve.		
p0233	Power unit motor reactor / PU mot reactor		
SERVO, SERVO_AC,	Can be changed: C2(2), U, T	Calculated: -	Access level: 4
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [mH]	1000.000 [mH]	$0.000[\mathrm{mH}]$
Description:	Enter the inductance of a filter connected at the power unit output.		
Dependency:	This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit.		
	Refer to: p0230		
Note:	The parameter cannot be changed if the power unit has an internal sine-wave filter.		

p0233	Power unit motor reactor / PU mot reactor		
VECTOR,	Can be changed: C2(2), U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{mH}]$	1000.000 [mH]	$0.000[\mathrm{mH}]$
Description:	Enter the inductance of a filter connected at the power unit output.		
Dependency:	This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit.		
	Refer to: p0230		
Note:	When exiting the quick commis SIEMENS filter or to zero. For this the commissioning phase (p 00	p3900 $=1$, the e parameter val en the controller	t to the value of the defined er only has to be entered outside 3) is carried out.

p0234	Power unit sine-wave filter capacitance / PU sine filter C		
SERVO, SERVO_AC,	Can be changed: $\mathrm{C} 2(2), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [$\mu \mathrm{F}$]	1000.000 [$\mu \mathrm{F}$]	0.000 [$\mu \mathrm{F}$]
Description:	Enters the capacitance of a sine-wave filter connected at the power unit output.		
Dependency:	This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit.		
	Refer to: p0230		
Note:	The parameter value includes the sum of all of the capacitances of a phase connected in series (phase - ground). The parameter cannot be changed if the power unit has an internal sine-wave filter.		

p0234	Power unit sine-wave filter capacitance / PU sine filter C		
VECTOR,	Can be changed: $\mathrm{C} 2(2), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [$\mu \mathrm{F}$]	1000.000 [$\mu \mathrm{F}$]	0.000 [$\mu \mathrm{F}$]
Description:	Enters the capacitance of a sine-wave filter connected at the power unit output.		
Dependency:	This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit.		
	Refer to: p0230		
Note:			
	When exiting the quick commissioning using $\mathrm{p} 3900=1$, the parameter value is set to the value of the defined SIEMENS filter or to zero. For this reason, the parameter value of a third-party filter only has to be entered outside the commissioning phase ($\mathrm{p} 0010=0$).		

p0235	Motor reactor in series number / L_mot in SeriesQty		
VECTOR,	Can be changed: $\mathrm{C} 2(1,2)$	Calculated: -	Access level: 1
VECTOR_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	3	1
Description:	Sets the number of reactors connected in series at the power unit output.		
Dependency:	Refer to: p0230		
Notice:	If the number of motor reactors connected in series does not correspond to this parameter value, then this can result in an unfavorable control behavior.		

r0238	Internal power unit resistance / PU R internal		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Converter	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	$-[o h m]$	$-[$ ohm $]$
	- [ohm]		
Description:	Displays the internal resistance of the power unit (IGBT and line resistance).		
Note:	For a parallel circuit, the value corresponds to the resistance of a power unit.		

p0240[0...n]	Pressure sensor A reference value at 10 V / Sensor A ref 10V		
HLA	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$50.0[$ bar $]$	$1000.0[$ bar $]$	$200.0[$ bar $]$
Description:	Sets the reference value for pressure sensor A to 10 V.		

p0241[0...n]	Pressure sensor A offset correction / Sensor A offs		
HLA	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Fax	Factory setting
	$-5000.000[$ bar]	$0.000[$ bar]	
Description:	Sets the offset correction for pressure sensor A		
Dependency:	After changing the reference value (p0240) this value must be adapted.		
	Refer to: p0240		

p0242[0...n]	Pressure sensor B reference value at 10 V / Sensor B ref 10V		
HLA	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$50.0[$ bar]	$1000.0[\mathrm{bar}]$	$200.0[\mathrm{bar}]$

p0243[0...n]	Pressure sensor B offset correction / Sensor B offs		
HLA	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-5000.000 [bar]	5000.000 [bar]	0.000 [bar]
Description:	Sets the offset correction for pressure sensor B		
Dependency:	Refer to: p0242		
Note:	After changing the reference value (p0242) this value must be adapted.		
p0244[0...n]	Pressure sensor P reference value at $10 \mathrm{~V} /$ Sensor P ref 10V		
HLA	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	50.0 [bar]	1000.0 [bar]	200.0 [bar]
Description:	Sets the reference value for pressure sensor P (system pressure) to 10 V .		

p0245[0...n]	Pressure sensor P offset correction / Sensor P offs_corr		
HLA	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-5000.000 [bar]	5000.000 [bar]	0.000 [bar]
Description:	Sets the offset correction for pressure sensor P (system pressure).		
Dependency:	Refer to: p0244		
Note:	After changing the reference value (p0244) this value must be adapted.		
p0246	CI: System pressure external / Sys pressure ext		
HLA	Can be changed: $\mathrm{C} 2(3)$, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the external system pressure.		
Dependency:	Refer to: r0069		
Note:	For several hydraulic drives with the same system pressure, and only one system pressure measurement, the value can be interconnected from another axis via this connector input.		
	To do this, the following BICO interconnection should be set:		
	p0264 (axis without system pressure measurement) = r0069 (axis with system pressure measurement).		
	CI: p0246 = 0:		
	The analog measurement of its own axis is effective (p0244, p0245).		
	CI: p0246 > 0:		
	The value of the source is accepted, and displayed in r0069 of its own axis.		

$\mathbf{p 0 2 4 7}$
VECTOR,
VECTOR_AC,
VECTOR_I_AC

Description:

Bit field:
Voltage measurement configuration / U_mes config

Can be changed: C2(2), U, T
Calculated: -
Data type: Unsigned32
P-Group: Converter
Not for motor type: -
Min
Mis
Sets the configuration for the voltage measurement.

Bit	Signal name
05	Use voltage measured values for flying
restart	

Warning: \quad For p0247.5 = 1 (only for induction motors):

If the Voltage Sensing Module (VSM) is connected to the line voltage, then the line frequency is interpreted as speed. In this case, the flying restart function cannot be used together with VSM and the bit should be set to 0 .
If only one VSM is connected at the Motor Module, line synchronization must be deactivated (p3800 = 0), in order to be able to use flying restart together with VSM. If two VSMs are connected, the second VSM is used for flying restart.

[^1]
2.2 List of parameters

p0251[0...n]	Power unit heat sink fan operating hours counter / PU fan t_oper		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned32	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_AC,	P-Group: Modulation	Unit group: -	Unit selection:-
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_IAC,	$4294967295[\mathrm{~h}]$	Factory setting	
A_INF, S_INF, R_INF,	Min	$0[\mathrm{~h}]$	
B_INF	$0[\mathrm{~h}]$		
Description:	Displays the operating hours of the heat sink fan in the power unit.		
	The number of hours operated can only be reset to 0 in this parameter (e.g. after a fan has been replaced).		
Dependency:	Refer to: p0252, r0277		
	Refer to: A30042		
Note:	For r0193.13 = 0, the following applies:		
	For liquid-cooled chassis power units, the operating hours of the inner fan are displayed in p0251 and not in p0254.		

p0252	Power unit heat sink fan operating time maximum / PU fan t_oper max		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 4
SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Modulation	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF,	Min	Max	Factory setting
B_INF	0 [h]	500000 [h]	40000 [h]
Description:	Sets the maximum operating time of the heat sink fan in the power unit. The monitoring is deactivated with p0252 $=0$.		
Dependency:	Refer to: p0251, r0277		
	Refer to: A30042		
Notice:	For firmware version < 5.1 of the power unit, the value is limited to 65535 hours.		
	For multi-axis power units, the same value must be entered for all axes.		
Note:	For power units with a model for the fan service life, the shortest conceivable service life is permanently saved. If p0252 is set to a value not equal to 0 , then this saved value is always indicated in p0252.		

p0254[0...n]	Operating hours counter power unit fan inside the converter / PU inner fan t_op		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned32	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_AC,	P-Group: Modulation	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF,	Min	Max	Factory setting
B_INF	0 [h]	4294967295 [h]	0 [h]
Description:	Displays the power unit fan operating hours of the internal fan in the power unit. The number of hours operated can only be reset to 0 in this parameter (e.g. after a fan has been replaced)		
Dependency:	Refer to: A30042		
Note:	For r0193.13 = 0, the following applies:		
	For liquid-cooled chassis power units, the operating hours of the inner fan are displayed in p0251 and not in p0254.		

2.2 List of parameters

	29	PDS7 precharging/line contactor feedback	High	Low
		signal input		Low
	30	PDS7 bypass contactor control output	High	Low
	31	PDS7 bypass contactor feedback signal	High	
input				

p0260	Cooling unit starting time 1 / RKA start time 1	
SERVO (Cool_unit), VECTOR (Cool_unit), SERVO_AC (Cool_unit), VECTOR_AC (Cool_unit), SERVO_I_AC (Cool_unit), VECTOR_I_AC (Cool_unit), A_INF (Cool_unit), S_INF (Cool_unit), R_INF (Cool_unit), B_INF (Cool_unit)	Can be changed: C2(2), U, T Calculated: - Data type: FloatingPoint32 Dyn. index: - P-Group: Converter Unit group: - Not for motor type: - Scaling: - Min Max $0.0[s]$ $60.0[s]$	Access level: 3 Func. diagram: 9795 Unit selection: - Expert list: 1 Factory setting $5.0 \text { [s] }$
Description: Dependency: Note:	Sets starting time 1 to monitor the cooling unit after switch-on command. After switching on, the following signals must be present within starting time 1 : - "RKA switched on" - "RKA liquid flow OK" When a fault occurs, an appropriate message is output. Refer to: F49152, F49153 RKA: cooling system	
p0261 SERVO (Cool_unit), VECTOR (Cool_unit), SERVO_AC (Cool_unit), VECTOR_AC (Cool_unit), SERVO_I_AC (Cool_unit), VECTOR_I_AC (Cool_unit), A_INF (Cool_unit), S_INF (Cool_unit), R_INF (Cool_unit), B_INF (Cool_unit)	Cooling unit starting time 2 / RKA start time 2 Can be changed: C2(2), U, T Calculated: - Data type: FloatingPoint32 Dyn. index: - P-Group: Converter Unit group: - Not for motor type: - Scaling: - Min Max $0.0[\mathrm{~s}]$ $1200.0[\mathrm{~s}]$	Access level: 3 Func. diagram: 9795 Unit selection: - Expert list: 1 Factory setting $180.0 \text { [s] }$
Description:	Sets starting time 2 to monitor the cooling unit after switch-on command. After switching on, the following signals must be present within starting time 2 : - "RKA conductivity, no fault" - "RKA conductivity, no alarm" When a fault occurs, an appropriate message is output.	
Dependency:	Refer to: p0266 Refer to: F49151	

2.2 List of parameters

p0262	Cooling unit fault conductivity delay time / RKA cond t_del		
SERVO (Cool_unit), VECTOR (Cool_unit), SERVO_AC (Cool_unit), VECTOR_AC (Cool_unit), SERVO_I_AC (Cool_unit), VECTOR_I_AC (Cool_unit), A INF (Cool_unit), S_INF (Cool_unit), R_INF (Cool_unit), B_INF (Cool_unit)	Can be changed: $\mathrm{C} 2(2), \mathrm{U}, \mathrm{T}$ Data type: FloatingPoint32 P-Group: Converter Not for motor type: - Min 0.0 [s]	Calculated: Dyn. index: Unit group: Scaling: - Max 30.0 [s]	Access level: 3 Func. diagram: 9795 Unit selection: - Expert list: 1 Factory setting 0.0 [s]
Description:	Sets the delay time for the fault "RKA: Conductive limit value exceeded" during operation. The fault is only output if the conductivity during operation exceeds the permissible fault value, and the value remains at this level for longer than is set in this parameter.		
Dependency:	Refer to: F49151, A49171		
p0263 SERVO (Cool_unit), VECTOR (Cool_unit), SERVO_AC (Cool_unit), VECTOR_AC (Cool_unit), SERVO_I_AC (Cool_unit), VECTOR_I_AC (Cool_unit), A_INF (Cool_unit), S_INF (Cool_unit), R_INF (Cool_unit), B_INF (Cool_unit)	Cooling unit fault liquid Can be changed: C2(2), U, T Data type: FloatingPoint32 P-Group: Converter Not for motor type: - Min 0.0 [s]	y time / RK Calculated: Dyn. index: Unit group: Scaling: - Max 20.0 [s]	Access level: 3 Func. diagram: 9795 Unit selection: - Expert list: 1 Factory setting $3.0 \text { [s] }$
Description: Dependency:	Sets the delay time for the fault "RKA: Liquid flow too low". The fault is only output if the cause is present for a time longer than is set in this parameter.		
p0264 SERVO (Cool_unit), VECTOR (Cool_unit), SERVO_AC (Cool_unit), VECTOR_AC (Cool_unit), SERVO_I_AC (Cool_unit), VECTOR_I_AC (Cool_unit), A_INF (Cool_unit), S_INF (Cool_unit), R_INF (Cool_unit), B_INF (Cool_unit)	Cooling unit run-on tim Can be changed: $\mathrm{C} 2(2), \mathrm{U}, \mathrm{T}$ Data type: FloatingPoint32 P-Group: Converter Not for motor type: - Min 0.0 [s]	n-on time Calculated: Dyn. index: Unit group: Scaling: - Max 180.0 [s]	Access level: 3 Func. diagram: 9795 Unit selection: - Expert list: 1 Factory setting 30.0 [s]
Description:	Sets the run-up time of the cooling unit after a switch-off command.		

r0265.0... 3	BO: Cooling unit control word / RKA STW				
SERVO (Cool_unit), VECTOR (Cool_unit), SERVO AC (Cool_unit), VECTOR_AC (Cool_unit), SERVO_IAC (Cool_unit), VECTOR_I_AC (Cool_unit), A_INF (Cool_unit), S_INF (Cool_unit), R_INF (Cool_unit), B_INF (Cool_unit)	Can Data P-Gr Not Min	be changed: type: Unsigned8 oup: Commands or motor type: -	Calculated: Dyn. index: - Unit group: - Scaling: - Max	Access level: 3 Func. diagram: - Unit selection: - Expert list: 1 Factory setting	
Description:	Display and binector output for the cooling unit control word.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Switch on cooling unit	Switch on	Switch off	-
	01	Message converter off	OFF	ON	-
		Acknowledge faults	Acknowledgment	No acknowledgment	-
	03	Leakage sensing OK	No leaked liquid	Leaked liquid	-

r0267.0... 7	BO: Cooling unit status word / RKA ZSW				
SERVO (Cool_unit), VECTOR (Cool_unit), SERVO_AC (Cool_unit), VECTOR_AC (Cool_unit), SERVO_IAC (Cool_unit), VECTOR_I_AC (Cool_unit), A_INF (Cool_unit), S_INF (Cool_unit), R_INF (Cool_unit), B_INF (Cool_unit)	Can Data P-G Not Min	be changed: type: Unsigned16 up: Commands or motor type: -	Calculated: Dyn. index: Unit group: Scaling: - Max	Acces Func. Unit s Expert Factor	
Description: Bit field:	Disp Bit 00 01 02 03 04 05 06 07	ays the status word of the co Signal name RKA switched on RKA ready for switching on RKA no alarm present RKA no fault present RKA no leaked fluid RKA liquid flow OK RKA conductivity no fault RKA conductivity no alarm	1 signal Yes	0 signal No	FP 9974 9974
Dependency:	Refe	to: p0266			
r0277[0...n] SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF	Pow Can Data P-G Not Min - [\%]	er unit heat sink fan be changed: type: FloatingPoint32 up: Modulation or motor type: -	unter / PU fan wear_ Calculated: - Dyn. index: PDS, p0120 Unit group: - Scaling: - Max - [\%]	Acces Func. Unit se Expert Factor - [\%]	
Description:	Displays the wear counter of the heat sink fan in the power unit. After a fan has been replaced, the wear can be reset by setting parameter p0251 to 0 . The wear counter is deactivated with p0252 $=0$.				
Dependency:	Refer to: p0251, p0252				
Note:	- for r0193.13 = 1, the wear counter is based on a model for the service life. For $\mathrm{r} 0193.13=0$, the value is determined as quotient from p0251 and p0252. - for r0193.13 = 0 , a 0 is displayed in the wear counter if the operating hours counter/wear counter was deactivated using p0252 $=0$.				
p0278	DC link voltage undervoltage threshold reduction / Vdc U_under red				
SERVO, VECTOR, SERVO AC, VECTOR AC, SERVO_I_AC, VECTOR_I_AC	Can Data P-G Not Min -80	be changed: C2(2), T type: FloatingPoint32 up: Converter or motor type: -	Calculated: Dyn. index: - Unit group: - Scaling: - Max 0 [V]	Acces Func. Unit s Expert Factory 0 [V]	
Description: Dependency:	Sets the absolute value by which the threshold to initiate the undervoltage fault (F30003) is reduced.Refer to: 0210 , r0296Refer to: F30003				
Notice:	When using a Control Supply Module (CSM) for 24 V supply from the DC link, the minimum continuous DC link voltage may not lie below 430 V . DC link voltages in the range $300 \ldots 430 \mathrm{~V}$ are permissible up to a duration of 1 min . For chassis power units, this parameter has no significance.				

p0281	Line supply overvoltage alarm threshold / U_I_over A thresh		
A_INF, S_INF, R_INF	Can be changed: C2(2), T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8860, 8960
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	100 [\%]	200 [\%]	110 [\%]
Description:	Sets the alarm threshold for a line supply overvoltage condition. The setting is made as a percentage of the drive unit supply voltage (p 0210).		
Dependency:	Refer to: p0211, p0221, p0222, p0223, p0224, p0225, p0226		
Note:	If synchronizing voltages are not detected, the line supply voltage is estimated using a model. It is therefore important to ensure that drive unit data is correctly specified.		
p0282	Line supply undervoltage alarm threshold / U_I_under A thresh		
A_INF, S_INF, R_INF	Can be changed: C2(2), T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8860, 8960
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [\%]	100 [\%]	85 [\%]
Description:	Sets the alarm threshold for a line undervoltage condition.		
	The setting is made as a percentage of the drive unit supply voltage (p 0210).		
Dependency:	Refer to: p0222, p0224, p0225, p0226, p3421, p3422		
	Refer to: A06105		
Note:	If synchronizing voltages are not detected, the line supply voltage is estimated using a model. It is therefore important to ensure that drive unit data is correctly specified.		
$\overline{p 0283}$ A_INF, S_INF, R_INF	Line supply undervoltage shutdown (trip) threshold / U_I_under tr_thrsh		
	Can be changed: $\mathrm{C} 2(1,2)$, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8860, 8960
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [\%]	100 [\%]	75 [\%]
Description:	Sets the shutdown threshold for the line supply undervoltage.		
	The setting is made as a percentage of the drive unit supply voltage (p 0210).		
Dependency:	Refer to: p0282		
	Refer to: F06100		
Notice:	For booksize Active Line Modules, the following applies:		
	When operated without Active Interface Module (p0220 not equal to $41 \ldots 45$), the minimum shutdown threshold is 75 \%.		
p0284	Line supply frequency exceeded alarm threshold / f_I_exc A thresh		
A_INF, S_INF, R_INF	Can be changed: C2(2), T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8864, 8964
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	100.0 [\%]	300.0 [\%]	110.0 [\%]
Description:	Sets the alarm threshold for an excessively high line frequency.		
Dependency:	Set as a percentage of the rated line frequency.		
	Refer to: p0211		

p0285	Line supply frequency undershot alarm threshold / f_I_under A thresh		
A_INF, S_INF, R_INF	Can be changed: C2(2), T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8864, 8964
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Factory setting	
	$0.0[\%]$	$90.0[\%]$	
Description:	Sets the alarm threshold for an excessively low line frequency.		
Dependency:	Set as a percentage of the rated line frequency.		
	Refer to: p0211		

r0289	CO: Maximum power unit output current / PU I_outp max		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Displays, signals	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: p2002	Expert list: 1
VECTOR_I_AC	Min	- [Arms]	Factory setting
	$-[$ Arms $]$	- [Arms]	
	Display and connector output for the maximum actual output current of the power unit.		

p0290	Power unit overload response / PU overld response		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(2)$, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 8021
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	13	0
Description:	Sets the response to a thermal overload condition of the power unit.		
	The following quantities can result in a response to thermal overload:		
	- heat sink temperature (r0037[0]).		
	- chip temperature (r0037[1]).		
	- power unit overload l2t (r0036).		
	Possible measures to avoid thermal overload:		
	- reduce the output current limit r0289 and r0067 (for closed-loop speed/velocity or torque/force control) or the output frequency (for U/f control indirectly via the output current limit and the intervention of the current limiting controller).		
	A reduction, if parameterized, is always realized after an appropriate alarm is output.		
Value:	0: Reduce output curre		
	1: No reduction shutdo	d threshold is r	
	2: Reduce the pulse fre	ut current	
	3: Reduce the pulse fre		
	10: Automatic output cu		
	12: Automatic pulse freq	t current reduc	
	13: Automatic pulse freq		
Dependency:	For a thermal power unit overload, an appropriate alarm or fault is output, and r2135.15 or r2135.13 set.		
	Settings, where the pulse frequency is reduced, are not possible if the "Extended torque control" function module (r0108.1) is activated.		
	For p0290 = 2, 3:		
	These responses are only applicable for blocksize power units.		
	For p0290 $=10$:		
	This response is only applicable for booksize power units.		
	For p0290 = 12, 13:		
	These responses are only applicable for booksize or blocksize power units.		
	Refer to: r0036, r0037, p0108, r0108, p0230, r2135		
	Refer to: A05000, A05001, A07805		
Notice:	If the thermal overload of th down. This means that the	ot sufficiently re ays protected irr	aken, the drive is always shut g of this parameter.
Note:	Under overload conditions, the current and torque limit are reduced, and therefore the motor is braked and forbidden speed ranges (e.g. minimum speed p1080 and suppression [skip] speeds p1091 ... p1094) can be passed through.		
	When the motor data identification routine is selected, parameter p0290 cannot be changed.		
	For p0290 $=0,2,12$:		
	This is setting is only practical if the load decreases with decreasing speed (e.g. for applications with variable torque such as for pumps and fans).		
	For p0290 = 2, 3, 12, 13:		
	The 12 t overload detection of the power unit does not influence the response "Reduce pulse frequency".		
	For p0290 = 10, 12, 13:		
	The possible load duty cycles, calculated based on the previous model ($\mathrm{p} 0290=0,1,2,3$) for booksize power units cannot be transferred in every case. This is the reason that we recommend that you contact our application support department if you are uncertain about dimensioning the device.		

p0290	Power unit overload response / PU overld response		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: C2(2), T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 8021
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	13	0
Description:	Sets the response to a thermal overload condition of the power unit.		
	The following quantities can result in a response to thermal overload:		
	- heat sink temperature (r0037[0]).		
	- chip temperature (r0037[1]).		
	- power unit overload I2t (r0036).		
	Possible measures to avoid thermal overload:		
	- reduce the output current limit r0289 and r0067 (for closed-loop speed/velocity or torque/force control) or the output frequency (for U/f control indirectly via the output current limit and the intervention of the current limiting controller).		
	A reduction, if parameterized, is always realized after an appropriate alarm is output.		
Value:	0: Reduce output current		
	1: No reduction shutdown when overload threshold is reached		
	2: Reduce the pulse frequency and output current		
	3: Reduce the pulse frequency		
	10: Automatic output current reductio		
	12: Automatic pulse frequency and output current reductio		
	13: Automatic pulse frequency reduction		
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only responses can be selected without reducing the pulse frequency ($\mathrm{p} 0290=0,1,10$).		
	For a thermal power unit overload, an appropriate alarm or fault is output, and r2135.15 or r2135.13 set.		
	For $02290=10: \quad 2$		
	This response is only applicable for booksize power units.		
	For p0290 = 12, 13:		
	These responses are applicable for booksize, blocksize and chassis power units.		
	Refer to: r0036, r0037, p0108, r0108, p0230, r2135		
	Refer to: A05000, A05001, A07805		
Notice:	If the thermal overload of th down. This means that the	t sufficiently red ys protected irr	taken, the drive is always shut g of this parameter.
Note:	Under overload conditions, the current and torque limit are reduced, and therefore the motor is braked and forbidden speed ranges (e.g. minimum speed p1080 and suppression [skip] speeds p1091 ... p1094) can be passed through.		
	When the motor data identification routine is selected, parameter p0290 cannot be changed.		
	For p0290 = 0, 2, 12:		
	This is setting is only practical if the load decreases with decreasing speed (e.g. for applications with variable torque such as for pumps and fans).		
	For p0290 $=2,3,12,13$:		
	The 12t overload detection of the power unit does not influence the response "Reduce pulse frequency".		
	For p0290 = 10, 12, 13:		
	The possible load duty cycles, calculated based on the previous model ($\mathrm{p} 0290=0,1,2,3$) for booksize power units cannot be transferred in every case. This is the reason that we recommend that you contact our application support department if you are uncertain about dimensioning the device.		

2.2 List of parameters

r0293	CO: Power unit alarm threshold model temperature / PU A_thr mod_temp		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8021
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_IAC, } \end{aligned}$	P-Group: Converter	Unit group: 21_1	Unit selection: p0505
VECTOR_I_AC	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description: Dependency:	Temperature alarm threshold for the difference from the chip and heat sink temperature in the thermal model. Refer to: r0037		
	Refer to: F30024		
Note:	The parameter is only relevant for chassis power units.		
p0294	Power unit alarm with I2t overload / PU I2t alrm thresh		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(2), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8021
SERVO_I_AC,	P-Group: Converter	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF	Min	Max	Factory setting
	10.0 [\%]	100.0 [\%]	95.0 [\%]
Description:	Sets the alarm threshold for the 12t power unit overload.		
	If this threshold is exceeded, an overload alarm is generated and the system responds as parameterized in p0290.		
	When the threshold value is exceeded, only an overload alarm is output.		
Dependency:	Refer to: r0036, p0290		
	Refer to: A07805		
Note:	The I2t fault threshold is 100%. If this value is exceeded, fault F30005 is output.		
p0294	Power unit alarm with I2t overload / PU I2t alrm thresh		
B_INF	Can be changed: C2(2), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8021
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	100.0 [\%]	95.0 [\%]
Description:	Sets the alarm threshold for the 12t power unit overload.		
Dependency:	Refer to: r0036		
	Refer to: A07805		
Note:	The parameter is only relevant for booksize units!		
p0295	Fan run-on time / Fan run-on time		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(2), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Converter	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF,	Min	Max	Factory setting
B_INF	0 [s]	600 [s]	0 [s]
Description:	Sets the fan run-on time after the pulses for the power unit have been canceled.		
Note:	- Under certain circumstances, the fan can continue to run for longer than was set (e.g. as a result of the excessively high heat sink temperature).		

2.2 List of parameters

p0300[0...n]	Motor type selection / Mot type sel		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	10100	0
Description:	Selects the motor type or start to read in the motor parameters for a motor with DRIVE-CLiQ (p0300 = 10000). For p0300 < 10000 the following applies:		
	The first digit of the parameter value always defines the general motor type and corresponds to the third-party motor belonging to a motor list:		
	1 = rotating induction motor		
	2 = rotating synchronous motor		
	3 = linear induction motor (reserved)		
	4 = linear synchronous motor		
	The type information must be entered to filter motor-specific parameters and to optimize the operating characteristics and behavior. For example, for synchronous motors, power factor (p 0308) is neither used nor displayed (in the BOP/AOP).		
	The following applies for values < 100:		
	Motor data must be manually entered.		
	The following applies for values $>=100$:		
	Motor data are automatically loaded from an internal list.		
Value:	0: No motor		
	1: Induction motor		
	2: Synchronous motor		
	4: Synchronous motor linear		
	102: 1PH2 induction motor		
	103: 1PH3 induction motor		
	104: 1PH4 induction motor		
	107: 1PH7 induction motor		
	108: 1PH8 induction motor		
	111: xxxx induction motor OEM		
	134: 1PM4 induction motor		
	136: 1PM6 induction motor		
	166: 1PL6 induction motor		
	191: 2SP1 induction motor		
	200: 1PH8 synchronous motor		
	206: 1FT6 synchronous motor		
	207: 1FT7 synchronous motor		
	222: xxxx synchronous motor OEM		
	231: 1FG1 synchronous geared motor		
	232: 1FE2 synchronous motor		
	236: 1FK6 synchronous motor		
	237: 1FK7 synchronous motor		
	261: 1FE1 synchronous motor		
	272: 1FK2 synchronous motor		
	276: 1FS6 synchronous motor		
	283: 1FW3 synchronous motor		
	286: 1FW6 synchronous motor		
	291: 2SP1 synchronous motor		
	401: 1FN1 synchronous motor linear		
	403: 1FN3 synchronous motor linear		
	406: 1FN6 synchronous motor linear		
	444: xxxx synchronous motor linear OEM		
	10000: Motor with DRIVE-CLiQ		
	10001: Motor with DRIVE-CLLQ 2nd data set10100: Motor with DRIVE-CLiQ (only read in motor data)		

Dependency:	When the motor type is changed, the code number in p0301 may be reset to 0 .
	If p0300 is changed during quick commissioning ($p 0010=1$), then the matching technological application ($p 0500$) is automatically pre-assigned. This does not occur when commissioning the motor ($p 0010=3$). If $p 0300=10000$ is written for a parameter download, p0500 is pre-assigned with DRIVE-CLiQ corresponding to the motor type. Refer to: p0301
Notice:	If a catalog motor is selected ($\mathrm{p} 0300>=100$) and an associated motor code number (p 0301), then the parameters that are associated with this list cannot be changed (write protection). The write protection is canceled if the motor type p0300 is set to a non-Siemens motor that matches p0301 (e.g. p0300 $=2$ for p0301 $=2 x x x x$). Write protection is automatically canceled when the results of motor data identification are copied to the motor parameters.
	The motor type of a catalog motor corresponds to the upper three digits of the code number or the following assignment (if the particular motor type is listed):
	Type/code number ranges
	102 / 102xx, 122xx
	103 / 103xx
	104 / 104xx, 114xx, 124xx
	107 / 107xx, 117xx, 127xx
	108 / 108xx, 118xx, 128xx, 138xx, 148xx, 158xx
	134 / 134xx, 144xx, 154xx
	136/136xx, 146xx, 156xx
	166 / 166xx, 176xx, 186xx
	191/191xx
	200 / 200xx, 210xx, 220xx
	206 / 206xx, 216xx, 226xx
	207 / 207xx, 217xx, 227xx
	231 / 231xx, 241xx, 251xx
	232 / 232xx, 242xx, 252xx
	235 / 235xx, 245xx, 255xx
	237 / 237xx, 247xx, 257xx
	261 / 261xx, 262xx, 263xx
	283 / 283xx, 293xx
	286/286xx, 296xx
	403 / 403xx, 413xx
	406 / 406xx, 416xx, 426xx
	For OEM motors:
	111 / 111xx, 112xx, 113xx
	222 / 222xx, 223xx, 224xx
	444 / 444xx, 445xx, 446xx
Note:	With $\mathrm{p} 0300=10000$, for a motor with DRIVE-CLiQ, the motor parameters are automatically downloaded, with p0300 $=10001$, the motor parameters of a second data set (if available).
	If a motor type has not been selected ($\mathrm{p} 0300=0$), then the drive commissioning routine cannot be exited.
	A motor type with a value above p0300 >= 100 describes motors for which a motor parameter list exists.
	Motor types with a value below p0300 < 100 correspond to the selection of a third-party motor. When appropriately selected, this means that the motor parameters are pre-assigned the settings for a third-party motor.
	This also applies for parameters for a motor with DRIVE-CLiQ. In this case p0300 can only be set to p0300 $=10000$ or 10001 (read motor parameters) or to the corresponding non-Siemens motor (first digit of the motor code number) in order to be able to cancel the write protection.
	With $\mathrm{p} 0300=10100$, when the system powers up, for a motor with DRIVE-CLiQ, the motor data are loaded, without subsequently newly calculating the control parameters. This means that control parameters that are already optimized are kept. To load the data, motor code number p0301 must match the code number of the connected encoder r0302.

p0300[0...n]	Motor type selection / Mot type sel			
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(1,3)$ Data type: Integer16		Calculated: -	Access level: 1
			Dyn. index: MDS, p0130	Func. diagram: 6310
	P-Group: Motor		Unit group: -	Unit selection: -
	Not for motor type: -		Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		10001	0
Description:	Selects the motor type or starts to read in the motor parameters for a motor with DRIVE-CLiQ (p0300 = 10000 or 10001, if there is a second data set).			
	For p0300 < 10000 the following applies:			
	The first digit of the parameter value always defines the general motor type and corresponds to the third-party motor belonging to a motor list:			
	1 = induction motor			
	2 = synchronous motor			
	5 = synchronous motor separately excited			
	7 = SIEMOSYN motor			
	8 = reluctance motor (for textile applications)			
	$x \mathrm{x}=$ motor without code number			
	xxx = motor with code number			
	The type information must be entered to filter motor-specific parameters and to optimize the operating characteristics and behavior. For example, for synchronous motors, power factor (p0308) is neither used nor displayed (in the			
	The following applies for values < 100:			
	Motor data must be manually entered.			
	The following applies for values >=100:			
	Motor data are automatically loaded from an internal list.			
Value:	0: \quad No motor			
	1: Induction motor			
	2: Synchronous motor			
	5: Synchronous motor separately excited			
	6: Synchronous reluctance motor			
	7: SIEMOSYN synchronous motor			
	8: Reluctance motor textile			
	10: 1LE1 induction motor (not a code number)			
	11: 1LA1 induction motor (not a code number)			
	12: 1LE2 induction motor (not a code number)			
	13: 1LG6 induction motor (not a code number)			
	14: 1xx1 SIMOTICS FD induction motor (not a code number)			
	15: 1LA5 induction motor (not a code number)			
	16: 1LA6 induction motor (not a code number)			
	17: 1LA7 induction motor (not a code number)			
	18: $1 \times \times 8$ SIMOTICS TN induction motor (not a code number)			
	19: 1LA9 induction motor (not a code number)			
	100: 1LE1 induction motor			
	101: 1PC1 induction motor			
	102: 1PH2 induction motor			
	104: 1PH4 induction motor			
	105: 1LE5 induction motor			
	107: 1PH7 induction motor			
	108: 1PH8 induction motor			
	111: xxxx induction motor OEM			
	134: 1PM4 induction motor			
	136: 1PM6 induction motor			
	166: 1PL6 induction motor			
	222: xxxx synchronous motor OEM			
	264: 1FW4 synchronous motor			
	283: 1FW3 synchronous motor600: 1FP1 standard reluctance			

p0301[0...n]	Motor code number selection / Mot code No. sel		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: SESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	The parameter is used to select a motor from a motor parameter list.		
	When changing the code number (with the exception to the value 0), all of the motor parameters are pre-assigned from the internally available parameter lists.		
Dependency:	Code numbers can only be selected for motor types that correspond to the motor type selected in p0300. For 1PH2, 1PH4, 1PH7, 1PM4, 1PM6, 1FT6 motors, code numbers are also possible, whose fourth decimal position is greater by a value of 1 or 2 than the matching motor type in p0300. For 1FE1 motors, the third decimal position can be higher by a value of 1 .		
	Refer to: p0300		
Note:	The motor code number can only be changed if the matching catalog motor was first selected in p0300.		
	For a motor with DRIVE-CLiQ, p0301 cannot be changed. In this case, p0301 is automatically written to the code number of the motor parameter read in (r0302) if p0300 is set to 10000.		
	When selecting a catalog motor (p0300 >= 100), drive commissioning can only be exited if a code number is selected.		
	If, for direct drives, the motor code number (p 0301) is changed, this does not automatically result in the angular commutation offset being determined (p0431).		

p0301[0...n]	Motor code number selection / Mot code No. sel		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: C2(1,3)	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: SESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	The parameter is used to select a motor from a motor parameter list.		
	When changing the code number (with the exception to the value 0), all of the motor parameters are pre-assigned from the internally available parameter lists.		
Dependency:	Code numbers can only be selected for motor types that correspond to the motor type selected in p0300. Refer to: p0300		
Note:	The motor code number can only be changed if the matching catalog motor was first selected in p0300. When selecting a catalog motor ($\mathrm{p} 0300>=100$), drive commissioning can only be exited if a code number is selected.		

p0301[0...n]	Motor code number selection / Mot code No. sel		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: SESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	The parameter is used to select a motor from a motor parameter list.		
	When changing the code number (with the exception to the value 0), all of the motor parameters are pre-assigned from the internally available parameter lists.		
Dependency:	Code numbers can only be selected for motor types that correspond to the motor type selected in p0300. For 1PH2, 1PH4, 1PH7, 1PM4, 1PM6, 1FT6 motors, code numbers are also possible, whose fourth decimal position is greater by a value of 1 or 2 than the matching motor type in p0300. For 1FE1 motors, the third decimal position can be higher by a value of 1 .		
	Refer to: p0300		

Note:	The motor code number can only be changed if the matching catalog motor was first selected in p0300.
	For a motor with DRIVE-CLiQ, p0301 cannot be changed. In this case, p0301 is automatically written to the code
number of the motor parameter read in (r0302) if p0300 is set to 10000.	

p0304[0...n]	Rated motor voltage / Mot U_rated		
SERVO, SERVO_AC,	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	$20000[\mathrm{Vrms}]$	Factory setting
	$0[\mathrm{Vrms}]$	$0[\mathrm{Vrms}]$	
Description:	Sets the rated motor voltage (rating plate).		
Dependency:	Refer to: p0349		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		
Note:	When the parameter value is entered the connection type of the motor (star-delta) must be taken into account.		

p0304[0...n]	Rated motor voltage / Mot U_rated		
VECTOR,	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6301, 6724
VECTOR__AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [Vrms]	20000 [Vrms]	0 [Vrms]
Description:	Sets the rated motor voltage (rating plate).		
Dependency:	Refer to: p0349		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	When the parameter value is entered the connection type of the motor (star-delta) must be taken into account.		
	When commissioned for the first time or after the factory settings have been restored, the parameter is preassigned a value that matches the power unit; this value also depends on the set standard (IEC/NEMA, p0100).		

p0305[0...n]	Rated motor current / Mot I_rated		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the rated motor current (rating plate).		
Dependency:	Refer to: p0349		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0305 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is pre-assigned accordingly. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		
Note:	When the parameter value is entered the con	nection type of the motor (s)	must be taken into account.

p0305[0...n]	Rated motor current / Mot I_rated		
VECTOR,	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6301
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the rated motor current (rating plate).		
Dependency:	Refer to: p0349		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0305 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is pre-assigned accordingly. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		
	If the rated motor current exceeds twice the maximum drive converter current (r0209), then the maximum current is reduced due to the current harmonics that increase overproportionally (r0067).		
Note:	When the parameter value is entered the connection type of the motor (star-delta) must be taken into account.		
	When commissioned for the first time or after the factory settings have been restored, the parameter is preassigned a value that matches the power unit; this value also depends on the set standard (IEC/NEMA, p0100).		

p0306[0...n]	Number of motors connected in parallel / Motor qty		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: Unsigned8	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	10	1
Description:	Sets the number (count) of motors that can be operated in parallel using one motor data set.		
	Depending on the motor number entered, internally an equivalent motor is calculated.		
	The following should be carefully observed for motors connected in series:		
	The following rating plate data should only be entered for one motor:		
	- resistances and inductances: p 0350 , p0352, p0353, p0354, p0356, p0357, p0358, p0360		
	- currents: p0305, p0318, p0320, p0323, p0325, p0329, p0338, p0391, p0392		
	- torques/forces: p0312, p0319		
	- power ratings: p0307		
	- masses/moments of inertia: p0341, p0344		
	All other parameters take into account the replacement/equivalent motor (e.g. r0331, r0370, r0373, r0374).		
Recommendation: Dependency:	For motors connected in parallel, external thermal protection should be provided for each individual motor.		
	Refer to: r0331, r0370, r0373, r0374, r0376, r0377, r0382		
Caution:$\$$	The motors to be connected up in parallel must be of the same type and the same size (power rating) (identical Article No. [MLFB]).		
	The mounting regulations when connecting motors in parallel must be carefully maintained! Especially for synchronous motors, the pole position of motors that are rigidly coupled with one another (mechanically) must be identical.		
	The number of motors set must correspond to the number of motors that are actually connected in parallel. After changing p0306, it is imperative that the control parameters are adapted (e.g. using automatic calculation with p0340 = 1).		
	For synchronous motors connected in parallel with p1300 >= 20, be following applies:		
	- the individual motors must be mechanically coupled with one another and the EMF must be aligned to one another.		
	For induction motors that are connected in parallel, but which are not mechanically coupled with one another, then the following applies:		
	- an individual motor must not be loaded beyond its stall point.		
Notice:	If p0306 is changed during assigned. This is not the ca	ing ($p 0010=1$), then the sioning the motor (p0010 =	current p0640 is appropriately pre-

p0306[0...n]	Number of motors connected in parallel / Motor qty		
VECTOR,	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
VECTOR_AC,	Data type: Unsigned8	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: SESM, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	50	1
Description:	Number of motors that can be operated in parallel using one motor data set.		
	Depending on the motor number entered, internally an equivalent motor is calculated.		
	The following should be carefully observed for motors connected in series:		
	The following rating plate data should only be entered for one motor:		
	- resistances and inductances: p0350 ... p0361		
	- currents: p0305, p0320, p0323, p0325, p0329, p0389, p0390, p0391, p0392		
	- power ratings: p0307		
	- masses/moments of inertia: p0341, p0344		
	All other parameters take into account the replacement/equivalent motor (e.g. r0331, r0333).		
Recommendation:	For motors connected in parallel, external thermal protection should be provided for each individual motor.		
Dependency:	Refer to: r0331		

Caution:	The motors to be connected up in parallel must be of the same type and the same size (power rating) (identical Article No. [MLFB]).
	The mounting regulations when connecting motors in parallel must be carefully maintained! Especially for synchronous motors, the pole position of motors that are rigidly coupled with one another (mechanically) must be identical.
	The number of motors set must correspond to the number of motors that are actually connected in parallel.
	After changing p0306, it is imperative that the control parameters are adapted (e.g. using automatic calculation with p0340 = 1).
	For synchronous motors connected in parallel with p1300 >= 20, be following applies:
	- the individual motors must be mechanically coupled with one another and the EMF must be aligned to one another.
	For induction motors that are connected in parallel, but which are not mechanically coupled with one another, then the following applies:
	- an individual motor must not be loaded beyond its stall point.
Notice:	If p 0306 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p 0640 is appropriately preassigned. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).
Note:	Only operation with U/f characteristic makes sense if more than 10 identical motors are connected in parallel.
	Separately excited synchronous motors must not be connected in parallel.
	Synchronous and reluctance motors that are not coupled with one another align themselves when the pulses are switched in. If the motors have different load levels, then equalization currents flow between the motors.

p0307[0...n]	Rated motor power / Mot P_rated		
SERVO, SERVO_AC,	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 14_6	Unit selection: p0100
	Not for motor type: -	Max	Expert list: 1
	Min	$100000.00[\mathrm{~kW}]$	Factory setting
	$0.00[\mathrm{~kW}]$		$0.00[\mathrm{~kW}]$
Description:	Sets the rated motor power (rating plate).		
Dependency:	IECdrives (p0100 = 0): Units kW		
	NEMA drives (p0100 = 1): Units hp		
	Refer to: p0100		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		

p0309[0...n]	Rated motor efficiency / Mot eta_rated		
VECTOR,	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL	Max	Expert list: 1
	Min	Factory setting	
	$0.0[\%]$	0.9 [\%]	
Description:	Sets the rated motor efficiency (rating plate).		
	For a parameter value of 0.0, the power factor is internally calculated and displayed in r0332.		
Dependency:	This parameter is only visible for NEMA motors (p0100 = 1, 2).		
	Refer to: p0100, p0308, r0332		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors (p0300 = 2xx).		

p0310[0...n]	Cylinder piston diameter / Cyl piston diam		
HLA	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [mm]	2500.0 [mm]	0.0 [mm]
Description:	Sets the piston diameter of the hydraulic cylinder.		
p0310[0...n]	Rated motor frequency / Mot f_rated		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~Hz}]$	$3000.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$
Description:	Sets the rated motor frequency (rating plate).		
Dependency:	The number of pole pairs (r0313) is automatically re-calculated when the parameter is changed (together with p0311), if p0314 $=0$.		
	If p 0310 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly.		
	Refer to: p0311, r0313, p0313, p0314		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0310 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 = $3)$.		
Note:	For synchronous motors, the parameter is not required and must therefore be pre-assigned zero. For $\mathrm{p} 0310=0$, it is not possible to calculate the pole pair; instead, it must be entered in p0314.		
p0310[0...n]	Rated motor frequency / Mot f_rated		
VECTOR, VECTOR AC, VECTOR_I_AC	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6301
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{~Hz}]$	$3000.000[\mathrm{~Hz}]$	0.000 [Hz]
Description:	Sets the rated motor frequency (rating plate).		
Dependency:	The number of pole pairs (r0313) is automatically re-calculated when the parameter is changed (together with p0311), if p0314 $=0$.		
	The rated frequency is restricted to values between 1.00 Hz and 650.00 Hz .		
	Refer to: p0311, r0313, p0313, p0314		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If p0310 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor ($\mathrm{p} 0010=$ $3)$.		
Note:	When commissioned for the first time or after the factory settings have been restored, the parameter is preassigned a value that matches the power unit; this value also depends on the set standard (IEC/NEMA, p0100).		

p0311[0...n]	Cylinder piston rod diameter A side / Cyl PistRodDiam A		
HLA	Can be changed: C2(1, 3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~mm}]$	$0.0[\mathrm{~mm}]$	
Description:	Sets the piston rod diameter on the A side.		

p0311[0...n]	Rated motor speed / Mot n_rated		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the rated motor speed (rating plate).		
Dependency:	If p0311 is changed and for $\mathrm{p} 0314=0$, the pole pair (r 0313) is re-calculated automatically.		
	Refer to: p0310, r0313, p0313, p0314		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0311 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 $=$ $3)$.		

p0311[0...n]	Rated motor velocity / Mot v_rated		
SERVO (Lin),	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [m/min]	6000.0 [$\mathrm{m} / \mathrm{min}$]	0.0 [m/min]
Description:	Sets the rated motor velocity (rating plate).		
Dependency:	The pole pair width is set in p0315.		
	Refer to: p0310, r0313, p0313, p0314		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If $p 0311$ is changed during quick commissioning ($p 0010=1$), the maximum speed $p 1082$, which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor ($\mathrm{p} 0010=$ 3).		

p0311[0...n]	Rated motor speed / Mot n_rated		
VECCOR,	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	$210000.00[r p m]$	Factory setting
	$0.00[r p m]$	$0.00[r p m]$	
Description:	Sets the rated motor speed (rating plate).		
	For VECTOR the following applies (p0107):		
	For p0311 $=0$, the rated motor slip of induction motors is internally calculated and displayed in r0330.		
	It is especially important to correctly enter the rated motor speed for vector control and slip compensation for U/f		
	control.		

2.2 List of parameters

Dependency:	If p 0311 is changed and for $\mathrm{p} 0314=0$, the pole pair (r 0313) is re-calculated automatically.
	Refer to: p0310, r0313, $\mathrm{p} 0313, \mathrm{p} 0314$
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected.
	Information in p0300 should be carefully observed when removing write protection.
	If p0311 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated
with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 =	
3).	
Note:	When commissioned for the first time or after the factory settings have been restored, the parameter is preassigned a
	value that matches the power unit; this value also depends on the set standard (IEC/NEMA, p0100).

p0312[0...n]	Cylinder piston rod diameter B side / Cyl rod diam B		
HLA	Can be changed: C2(1,3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~mm}]$	$2400.0[\mathrm{~mm}]$	$0.0[\mathrm{~mm}]$
Description:	Sets the piston rod diameter on the B side.		

p0312[0...n]	Rated motor torque / Mot M_rated		
SERVO, SERVO_AC,	Can be changed: C2(3)	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 7_4	Unit selection: p0100
	Not for motor type: ASM, SESM, REL,	Scaling: -	Expert list: 1
	RESM		
	Min	Max	Factory setting
	$0.00[\mathrm{Nm}]$	$1000000.00[\mathrm{Nm}]$	$0.00[\mathrm{Nm}]$
Description:	Sets the rated motor torque (rating plate).		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		

p0312[0...n]	Rated motor force / Mot F_rated		
SERVO (Lin),	Can be changed: C2(3)	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
SERVO_I_AC (Lin)	P-Group: Motor	Unit group: 8_4	Unit selection: p0100
	Not for motor type: ASM, SESM, REL,	Scaling: -	Expert list: 1
	RESM		
	Min	Max	Factory setting
	$0.00[\mathrm{~N}]$	$1000000.00[\mathrm{~N}]$	$0.00[\mathrm{~N}]$
Description:	Sets the rated motor force (rating plate).		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		

p0313[0...n]	Cylinder piston stroke / Cyl pist stroke		
HLA	Can be changed: C2(1, 3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	$6000.0[\mathrm{~mm}]$	Factory setting
	$0.0[\mathrm{~mm}]$	$0.0[\mathrm{~mm}]$	

r0313[0...n]	Motor pole pair number, actual (or calculated) / Mot PolePairNo act		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: 5300
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of motor pole pairs. The value is used for internal calculations. r0313 = 1: 2-pole motor r0313 = 2: 4-pole motor, etc.		
Dependency:	For p0314>0, the entered value is displayed in r0313.		
	For $\mathrm{p} 0314=0$, the pole pair number $(\mathrm{r} 0313)$ is automatically calculated from the rated frequency $(\mathrm{p} 0310)$ and the rated speed (p0311).		
	Refer to: p0310, p0311, p0314		
Note:	For the automatic calculation, the pole pair number is set to the value of 2 if the rated speed or the rated frequency is zero.		
r0313[0...n]	Motor pole pair number, actual (or calculated) / Mot PolePairNo act		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: 5300
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of motor pole pairs. The value is used for internal calculations.		
	r0313 = 1: 2-pole motor		
	r0313 = 2: 4-pole motor, etc.		
Dependency:	For p0314>0, the entered value is displayed in r0313.		
	For $\mathrm{p} 0314=0$, the pole pair number (r 0313) is automatically calculated from the rated power (p 0307), rated frequency (p 0310) and rated speed (p 0311).		
	Refer to: p0307, p0310, p0311, p0314		
Note:	For the automatic calculation, the pole pair number is set to the value of 2 if the rated speed or the rated frequency is zero.		
p0314[0...n]	Cylinder dead volume A side / Cyl_dead vol A		
HLA	Can be changed: C2(1, 3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0\left[\mathrm{~cm}^{3}\right]$	$200000.0\left[\mathrm{~cm}^{3}\right]$	0.0 [cm^{3}]
Description:	Sets the cylinder dead volume on the A side.		
p0314[0...n]	Motor pole pair number / Mot pole pair No.		
SERVO, SERVO_AC,	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
SERVO_I_AC	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4000	0
Description:	Sets the motor pole pair number. p0314 = 1: 2-pole motor p0314 = 2: 4-pole motor, etc.		

2.2 List of parameters

Dependency: \quad For $p 0314=0$, the pole pair number is automatically calculated from the rated frequency (p 0310) and the rated speed (p 0311) and displayed in r0313
Notice: If p0314 is changed during quick commissioning ($p 0010=1$), the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor ($\mathrm{p} 0010=$ $3)$.
For induction motors, the value need only be input if the rated data of a generator is entered therefore resulting in a negative rated slip. In this case, the number of pole pairs in r0313 is too low by 1 and must be manually corrected.

p0315[0...n]	Cylinder dead volume B side / Cyl_dead vol B		
HLA	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0\left[\mathrm{~cm}^{3}\right]$	$0.0\left[\mathrm{~cm}^{3}\right]$	
Description:	Sets the cylinder dead volume on the B side.		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		

p0315[0...n]	Motor pole pair width / MotPolePair width		
SERVO (Lin),	Can be changed: C2(1, 3)	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
SERVO_I_AC (Lin)	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$1.00[\mathrm{~mm}]$	$30.00[\mathrm{~mm}]$	
Description:	Sets the pole pair width of the linear motor.		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		

p0316[0...n]	Motor torque constant / Mot kT		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 28_1	Unit selection: p0100
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [Nm / A]	400.000 [Nm / A]	0.000 [Nm / A]
Description:	Sets the torque constant of the synchronous motor. p0316 $=0$:		
	The torque constant is calculated from the motor data.		
	p0316 > 0 :		
	The selected value is used as torque constant.		
Dependency:	Refer to: r0334		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter is not used for induction motors (p0300 = 1xx).		

p0317[0...n]	Motor voltage constant / Mot kE		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: C2(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Vrms]	240000.0 [Vrms]	0.0 [Vrms]
Description:	Sets the voltage constant for synchronous motors.		
	Units for rotating synchronous motors: Vrms/(1000 rpm), phase-to-phase		
Dependency:	Refer to: r1938		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter is not used for induction mot	ors (p0300 = 1xx).	

p0317[0...n]	Motor voltage constant / Mot kE		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: C2(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Vrms s/m]	50000.0 [Vrms s/m]	0.0 [$\mathrm{Vrms} \mathrm{s} / \mathrm{m}$]
Description:	Sets the voltage constant for synchronous motors.		
	Units for linear synchronous motors: Vrms s/m, phase		
Dependency:	Refer to: r1938		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

p0318[0...n]	Motor stall current / Mot I_standstill		
SERVO, SERVO_AC,	Can be changed: C2(3)	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the stall current for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is used for the I 2 t monitoring of the motor (refer to p0611). This parameter is not used for induction motors ($\mathrm{p} 0300=1 \mathrm{xx}$).		
p0318[0...n]	Motor stall current / Mot I_standstill		
VECTOR,	Can be changed: C2(3)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the stall current for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$), as well as for synchronous reluctance motors ($\mathrm{p} 0300=$ $6 x x$).		

Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected.
Information in p 0300 should be carefully observed when removing write protection.	
Note:	The parameter is used for the I 2 t monitoring of the motor (refer to p0611).
	This parameter is not used for induction motors ($\mathrm{p} 0300=1 \mathrm{xx}$).
	For synchronous reluctance motors, the current corresponds to a winding temperature increase of 105 K at a speed
of 20% of the rated speed.	

p0319[0...n]	Motor stall torque / Mot M_standstill		
SERVO, SERVO_AC,	Can be changed: C2(3)	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 7_4	Unit selection: p0100
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Nm]	100000.00 [Nm]	0.00 [Nm]
Description:	Sets the standstill (stall) torque for rotating synchronous motors (p0300 $=2 x x$).		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter is not used for induction motors (p0300 = 1xx).		
	This parameter value is not evaluated from a control-related perspective.		

p0319[0...n]	Motor stall force / Mot F_standstill		
SERVO (Lin),	Can be changed: C2(3)	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
SERVO_I_AC (Lin)	P-Group: Motor	Unit group: $8 _4$	Unit selection: p0100
	Not for motor type: ASM, SESM, REL,	Scaling: -	Expert list: 1
	RESM	Max	
	Min	$100000.00[\mathrm{~N}]$	Factory setting
	$0.00[\mathrm{~N}]$	$0.00[\mathrm{~N}]$	
Description:	Sets the standstill (stall) force for linear synchronous motors (p0300 = 4xx).		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter value is not evaluated from a control-related perspective.		

p0320[0...n]	Motor rated magnetizing current/short-circuit current / Mot I_mag_rated		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5722
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [Arms]	5000.000 [Arms]	0.000 [Arms]
Description:	Induction motors:		
	Sets the rated motor magnetizing current.		
	For p0320 $=0.000$ the magnetizing current is internally calculated and displayed in r0331.		
	Synchronous motors:		
	Sets the rated motor short-circuit current.		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The magnetization current p0320 for induction motors (not for catalog motors) is reset when quick commissioning is exited with p3900 > 0 .		
	VECTOR:		
	If, for induction motors, the magnetizing current p0320 is changed outside the commissioning phase ($\mathrm{p} 0010>0$), then the magnetizing inductance p0360 is changed so that the EMF r0337 remains constant.		

p0322[0...n]	Maximum motor speed / Mot n_max		
SERVO, SERVO_AC, SERVO_I_AC (Spin_diag), SERVO_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum motor speed.		
Dependency:	Refer to: p1082, r1082		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p 0322 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor ($\mathrm{p} 0010=$ $3)$.		
Note:	The parameter has no significance for a value of p0322 $=0$.		
p0322[0...n]	Motor maximum velocity / Mot v_max		
SERVO (Lin,	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
Spin_diag),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
Spin diag),	P-Group: Motor	Unit group: -	Unit selection: -
SERVO_I_AC (Lin,	Not for motor type: -	Scaling: -	Expert list: 1
Spin_diag)	Min	Max	Factory setting
	0.0 [m/min]	2000.0 [$\mathrm{m} / \mathrm{min}$]	0.0 [m/min]
Description:	Sets the maximum motor velocity.		
Dependency:	Refer to: p1082, r1082		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0322 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 = $3)$.		
Note:	The parameter has no significance for a value of p0322 $=0$.		
p0322[0...n]	Maximum motor speed / Mot n_max		
SERVO (Spin_diag), SERVO_AC (Spin_diag)	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [rpm]	260000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum motor speed.		
Dependency:	Refer to: p1082, r1082		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If $p 0322$ is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 $=$ 3).		
Note:	The parameter has no significance for a value of p0322 $=0$.		

p0322[0...n]	Maximum motor speed / Mot n_max		
VECTOR,	Can be changed: C2(1, 3)	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum motor speed.		
Dependency:	Refer to: p1082, r1082		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p 0322 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor ($\mathrm{p} 0010=$ 3).		

Note: \quad The parameter has no significance for a value of $p 0322=0$.

p0323[0...n]	Maximum motor current / Mot I_max		
SERVO, SERVO_AC,	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5722
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	20000.00 [Arms]	0.00 [Arms]
Description:	Sets the maximum permissible motor current (e.g. de-magnetizing current for synchronous motors).		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If $p 0323$ is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is pre-assigned accordingly. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		
Note:	The parameter has no effect for induction motors.		
	For synchronous motors, a value must always be entered for the maximum motor current.		

p0323[0...n]	Maximum motor current / Mot I_max		
VECTOR,	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	20000.00 [Arms]	0.00 [Arms]
Description:	Sets the maximum permissible motor current (e.g. de-magnetizing current for synchronous motors).		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0323 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is pre-assigned accordingly. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		
Note:	The parameter has no effect for induction motors.		
	The parameter has not effect for synchronous motors if a value of 0.0 is entered. The user-selectable current limit entered into p0640.		

p0324[0...n]	Winding maximum speed / Winding n_max		
SERVO, SERVO_AC,	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum speed for the winding.		
	The following applies when calculating the maximum speed (p1082):		
	- for p0324 $=0$ or p0532 $=0, \mathrm{p} 0322$ is used.		
	- for p0324>0 and p0532 > 0, the minimum value from the two parameters is used.		
Dependency:	Refer to: p0322, p0532, p1082, r1082		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0324 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum speed p 1082 , which is also		

p0324[0...n]	Winding maximum velocity / Winding v_max		
SERVO (Lin),	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [m/min]	1300.0 [$\mathrm{m} / \mathrm{min}$]	0.0 [m/min]
Description:	Sets the maximum velocity for the winding.		
	The following applies when calculating the maximum velocity (p1082):		
	- for p0324 $=0$ or p0532 $=0, \mathrm{p} 0322$ is used.		
	- for p0324>0 and p0532 > 0, the minimum value from the two parameters is used.		
Dependency:	Refer to: p0322, p0532, p1082, r1082		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0324 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum velocity p 1082 , which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		

p0324[0...n]	Winding maximum speed / Winding n_max		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum speed for the winding.		
	The following applies when calculating the maximum speed (p1082):		
	- for p0324 $=0$ or p0532 $=0, \mathrm{p} 0322$ is used.		
	- for p0324>0 and p0532 > 0, the minimum value from the two parameters is used.		
Dependency:	Refer to: p0322, p0532, p1082, r1082		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If $p 0324$ is changed during quick commissioning ($p 0010=1$), then the maximum speed $p 1082$, which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning motor ($\mathrm{p} 0010=3$).		

p0326[0...n]	Motor stall torque correction factor / Mot M_stall_corr		
SERVO, SERVO_AC,	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$5[\%]$	$300[\%]$	$60[\%]$

Description:	Sets the correction factor for the stall torque/force at a 600 V DC link voltage.
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected.

Note: \quad When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).
The reference value for this parameter is inversely proportional to the leakage inductance of the motor ($p 0353$, p0354, p0356).
The following applies for firmware version 2.6 SP2 and higher:
If leakage inductances are changed for motor data identification, the value in p0326 is automatically adapted to maintain the stall torque.

p0326[0...n]	Motor stall force correction factor / Mot F_stall_corr		
SERVO (Lin),	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
SERVO_I_AC (Lin)	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5 [\%]	300 [\%]	60 [\%]
Description:	Sets the correction factor for the stall force at a 600 V DC link voltage.		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p 0300).		
	The reference value for this parameter is inversely proportional to the leakage inductance of the motor (p 0353 , p0354, p0356).		
	If leakage inductances are changed for motor data identification, the value in p0326 is automatically adapted to maintain the stall torque.		

p0327[0...n]	Optimum motor load angle / Mot phi_load opt		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5722, 6721
VECTOR_AC, SERVO I AC,	P-Group: Motor	Unit group: -	Unit selection:
VECTOR_I_AC	Not for motor type: ASM, SESM, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [$\left.{ }^{\circ}\right]$	135.0 [${ }^{\circ}$]	90.0 [${ }^{\text {] }}$
Description:	Sets the optimum load angle for synchronous motors with reluctance torque (e.g. 1FE motors). SERVO: The load angle is measured at $1.5 \times$ rated motor current. VECTOR: The load angle is measured at the rated motor current.		
Dependency:	Refer to: r1947		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter has no significance for induction motors.		
	For synchronous motors without reluctance torque, a angle of 90 degrees must be set.		
	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0328[0...n]	Motor reluctance torque constant / Mot kT_reluctance		
SERVO, VECTOR,	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_AC, SERVO I AC,	P-Group: Motor	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [mH]	1000.00 [mH]	0.00 [mH]
Description:	Sets the reluctance torque constant for synchronous motors with reluctance torque (e.g. 1FE ... motors). This parameter has no significance for induction motors.		
Dependency:	Refer to: r1939		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	For synchronous motors without reluctan	orque, the value 0 must be	

p0328[0...n]	Motor reluctance force constant / Mot kT_reluctance		
SERVO (Lin),	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [mH]	1000.00 [mH]	0.00 [mH]
Description:	Sets the reluctance force constant for synchronous motors with reluctance force (e.g. 1FE ... motors). This parameter has no significance for induction motors.		
Dependency:	Refer to: r1939		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	For synchronous motors without reluctan	orque, the value 0 must be	

r0330[0...n]	Rated motor slip / Mot slip_rated		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the rated motor slip.		
Dependency:	The rated slip is calculated from the rated frequency, rated speed and number of pole pairs. Refer to: p0310, p0311, r0313, p0313		
Note:	The parameter is not used for synchronous motors (p0300 = 2xx).		
r0331[0...n]	Actual motor magnetizing current/short-circuit current / Mot l_mag_rtd act		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5722, 6722, 6724
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Induction motor:		
	Displays the rated magnetizing current from p0320.		
	For p0320 $=0$, the internally calculated magnetizing current is displayed.		
	Synchronous motor:		
	Displays the rated short-circuit current from p0320.		
Dependency:	If p0320 was not entered, then the parameter is calculated from the rating plate parameters.		
Note:	In the case of multi-motor operation r0331 is increased by the factor p0306 compared to p0320.		

2.2 List of parameters

r0332[0...n]	Rated motor power factor / Mot cos phi rated		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:			
	For p0308 $=0$, the internally calculated power factor is displayed.		
	For p0308>0, this value is displayed.		
	For NEMA motors, the following applies ($\mathrm{p} 0100=1,2$):		
	For p0309 = 0, the internally calculated power factor is displayed.		
	For p0309 > 0, this value is converted into the power factor and displayed.		
Dependency:	If p0308 is not entered, the parameter is calculated from the rating plate parameters.		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0333[0...n]	Rated motor torque / Mot M_rated		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 7_4	Unit selection: p0100
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the rated motor torque.		
Dependency:	IEC drives (p0100 = 0): unit Nm		
	NEMA drives (p0100 = 1): unit lbf ft		
Note:	For induction and reluctance motors, r0333 is calculated from p0307 and p0311.		
	For synchronous motors, r 0333 is calculated from p 0305 , $\mathrm{p} 0316, \mathrm{p} 0327$ and p 0328 . The result can deviate from the input in p 0312 . If $\mathrm{p} 0316=0$, then $\mathrm{r} 0333=\mathrm{p} 0312$ is displayed.		
	In the case of multi-motor operation r0333 is increased by the factor p0306 compared to the rated torque of an individual motor.		

r0333[0...n]	Rated motor force / Mot F_rated		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 8_4	Unit selection: p0100
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Displays the rated motor force.		
Dependency:	IECdrives (p0100 = 0): Units N		
	NEMA drives ($\mathrm{p} 0100=1$): unit lbf		
Note:	For synchronous motors, r0333 is calculated from p0305, p0316, p0327 and p0328. The result can deviate from the input in p0312. For $\mathrm{p} 0316=0, \mathrm{r} 0333=\mathrm{p} 0312$ is displayed.		

r0334[0...n]	Actual motor-torque constant / Mot kT act		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 28_1	Unit selection: p0100
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Nm / A]	- [$\mathrm{Nm} / \mathrm{A}]$	- [Nm / A]
Description:	Displays the torque constant of the synchronous motor used.		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit Nm / A		
	NEMA drives (p0100 = 1): unit lbf ft / A		
	Refer to: p0316		
Note:	This parameter is not used for induction motors (p0300 = 1xx).		
	For synchronous motors, parameter r0334 = p0316 is displayed. For p0316 = 0, r0334 is calculated from p0305 and p0312.		
r0334[0...n]	Actual motor force constant / Mot kT act		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
SERVO_I_AC (Lin)	P-Group: Motor	Unit group: 29_1	Unit selection: p0100
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [N/Arms]	- [N/Arms]	- [N/Arms]
Description:	Displays the force constant of the synchronous motor used.		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit N / A		
	NEMA drives (p0100 = 1): unit lbf / A		
	Refer to: p0316		
Note:	For synchronous motors, parameter r0334 $=\mathrm{p} 0316$ is displayed. For $\mathrm{p} 0316=0$, r 0334 is calculated from p0305 and p0312.		
r0334[0...n]	Actual motor-torque constant / Mot kT act		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 28_1	Unit selection: p0100
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Nm / A]	- [Nm / A]	- [Nm / A]
Description:	Displays the torque constant of the synchronous motor used.		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit Nm / A		
	NEMA drives (p0100 = 1): unit lbf ft / A		
	Refer to: p0316		
Note:	This parameter is not used for induction motors (p0300 = 1xx).		
	For synchronous motors, parameter r0334 $=$ p0316 is displayed. For p0316 $=0$, r0334 is calculated from p0305 and p0312 or p0305, p0307, and p0311.		

2.2 List of parameters

p0335[0...n]	Motor cooling type / Mot cool type		
SERVO, VECTOR,	Can be changed: C2(1, 3), T	Calculated: -	Access level: 1
SERVO_AC,	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_AC,	P-Group: Motor	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	128	0
Description:	Sets the motor cooling system used.		
Value:	0: Natural ventilation		
	1: Forced cooling		
	2: Liquid cooling		
	4: Natural ventilation and internal fan		
	5: Forced cooling and internal fan		
	6: Liquid cooling and internal fan		
	128: No fan		
Dependency:	For 1LA5 and 1LA7 motors (p0300), the parameter is pre-set as a function of p0307 and p0311.		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter influences the thermal 3-mass motor model.		
	1LA1 and 1LA8 motors are characterized by the fact that they have an internal rotor fan. This "internal cooling" lies within the motor frame and is not visible. Air is not directly exchanged with the motor ambient air.		
	For 1PQ8 motors, p0335 should be set to 5 as these motors are force-ventilated motors.		
	The setting p0335 = 128 applies for 1LA7 motors, frame size 56 (these are operated without a fan).		

r0336[0...n]	Actual rated motor frequency / Mot f_rated act		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_AC,	P-Group: Motor	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	$-[\mathrm{Hz}]$	Factory setting
	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$	
Description:	Displays the rated frequency of the motor.		
	For p0310 >0, this value is displayed.		
Dependency:	Refer to: p0311, p0314		
Note:	For p0310 $=0$ or for synchronous motors, the rated motor frequency r0336 is calculated from the rated speed and the		
	pole pair number.		

r0337[0...n]	Rated motor EMF / Mot EMF_rated		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_AC,	P-Group: Motor	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: REL, RESM	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	$-[V r m s]$	$-[V r m s]$	$-[V \mathrm{rms}]$
	Displays the rated EMF of the motor.		
Description:	EMF: Electromotive force		
Note:			

r0337[0...n]	Rated motor EMF / Mot EMF_r		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: - Data type: FloatingPoint32 P-Group: Motor Not for motor type: REL, RESM Min - [Vrms s/m]	Calculated: - Dyn. index: MDS, p0130 Unit group: - Scaling: - Max - [Vrms s/m]	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [Vrms s/m]
Description: Note:	Displays the rated EMF of the motor. EMF: Electromotive force		
p0338[0...n]	Motor limit current / Mot I_limit		
SERVO, SERVO_AC,	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the motor limit current for synchronous motors (for a $600 \mathrm{~V} D C$ link voltage). Using this current, the maximum torque is achieved at the rated speed (voltage limit characteristic).		
Dependency:	If p 0338 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is appropriately preassigned. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

r0339[0...n]	Rated motor voltage / Mot U_rated		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
SERVO_I_AC,	P-Group: Motor	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the rated motor voltage.		
Note:	For induction motors ($\mathrm{p} 0300=1 \mathrm{xx}$) the parameter is set to p0304.		
	For synchronous motors, parameter r0339 $=$ p0304 is displayed. If p0304 $=0$, then r0339 is calculated from p0305 and p0316.		

p0340[0...n]	Automatic parameter calculation / Auto par calc		
HLA	Can be changed: C2(1,3), T	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	00000000 bin

Description: Setting to automatically calculate the corresponding values from the valve, cylinder and system data. Bit field:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Pre-assign reference values	Yes	No	-
01	Pre-assign loop gain and natural	Yes	No	-
	frequencies		No	-
02	Pre-assign characteristic values	Yes	Yo	-
03	Pre-assign controller values	Yes	Yes	No

2.2 List of parameters

```
Notice: \(\quad\) The following parameters are influenced using p0340:
p0340.0 = 1 :
- p2000 ... p2003
p0340.1 = 1 :
- p0350 ... p0354, p1475, p1570 ... p1572, p1700, p1830, p1831, p3998
p0340.2 = 1
- p1833, p1834, p1836, p1837, p1839 ... p1848
p0340.3 = 1 :
- p1400.5, p1433, p1434, p1460 ... p1467, p1715 ... p1719, p1820
p0340.4 = 1:
- p1082, p1083, p1086, p1520, p1521, p1532, p1850, p1851, p2162, p2177
Note: \(\quad\) When quick commissioning is exited using \(p 3900=3, p 0340\) is automatically called = 11111 bin.
At the end of the calculations, p0340 is automatically set to 0 .
```

p0340[0...n]	Automatic calculation motor/control parameters / Calc auto par		
SERVO, VECTOR,	Can be changed: C2(3), T	Calculated: -	Access level: 2
SERVO_AC,	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_AC,	P-Group: Motor	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	0	5	0

Description: Setting to automatically calculate motor parameters and U/f open-loop and closed-loop control parameters from the rating plate data.

Value:

Notice: \quad After the value has been modified, no further parameter modifications can be made and the status is shown in r3996.
Modifications can be made again when r3996 $=0$.
The following parameters are influenced using p0340:
The parameters designated with $\left(^{*}\right.$) are not overwritten for catalog motors (p0300 > 100).
SERVO:
p0340 = 1:
--> All of the parameters influenced for p0340 = 2, 3, 4, 5
--> p0341 (*)
--> p0344, p0600, p0640, p1082, p2000, p2001, p2002, p2003, p2005, p2007
p0340 = 2:
--> p0350 (*), p0354 (*), p0356 (*), p0358 (*), p0360 (*)
--> p0625 (matching p0350), p0626 ... p0628
p0340 = 3:
--> All of the parameters influenced for p0340 $=4,5$
--> p0325 (is only calculated for p0325 = 0)
--> p0348 (*) (is only calculated for p0348 = 0)
--> p0441, p0442, p0443, p0444, p0445 (only for 1FT6, 1FK6, 1FK7 motors)
--> p0492, p1082, p1980, p1319, p1326, p1327, p1612, p1752, p1755
p0340 $=4$:
--> p0118, p1441, p1460, p1462, p1463, p1464, p1465, p1470, p1472, p1590, p1592, p1596, p1656, p1657, p1658, p1659, p1715, p1717
--> p1461 (for p0348 > p0322, p1461 is set to 100%)
--> p1463 (for p0348 > p0322, p1463 is set to 400%)
p0340 = 5 :
--> p1037, p1038, p1520, p1521, p1530, p1531, p2140 ... p2142, p2148, p2150, p2155, p2161 ... p2164, p2175, p2177, p2194, p3820 ... p3829

```
Note:
Note: \(\quad\) The calculation is not performed, if the power unit is deactivated.
\(\mathrm{p} 0340=1\) contains the calculations of \(\mathrm{p} 0340=2,3,4,5\) without overwriting the motor parameters from the Siemens motor lists ( \(\mathrm{p} 0301>0\) ).
p0340 = 2 calculates the motor parameters (p0350 ... p0360), but only if it does not involve a Siemens catalog motor (p0301 = 0).
\(\mathrm{p} 0340=3\) contains the calculations of \(\mathrm{p} 0340=4,5\).
p0340 = 4 only calculates the controller parameters.
p0340 \(=5\) only calculates the controller limits.
When quick commissioning is exited using p3900 \(>0, \mathrm{p} 0340\) is automatically set to 1 .
At the end of the calculations, p0340 is automatically set to 0 .
If the STARTER commissioning tool writes a 3 into p0340 when "Downloading to target device", then this corresponds to a "Complete calculation of the motor/control parameters without equivalent circuit diagram data". The same calculations are carried out as for \(\mathrm{p} 0340=1\), however, without the equivalent circuit diagram parameters of the motor ( \(\mathrm{p} 0340=2\) ), the motor moment of inertia ( p 0341 ) and the motor mass ( p 0344 ).
For third-party linear synchronous motors \((p 0300=4)\) equivalent circuit diagram data are not calculated ( \(p 0340=2\) ).
```

VECTOR:
p0340 = 1:
--> All of the parameters influenced for p0340 $=2,3,4,5$
--> p0341 (*)
--> p0344, p0600, p0640, p1082, p1145, p1231, p1232, p1281, p1333, p1335, p1349, p1360, p1362, p1441, p1442,
p1576, p1577, p1609, p1610, p1611, p1619, p1620, p1621, p1654, p1726, p1825, p1828 ... p1832, p1901, p1909, p1959, p2000, p2001, p2002, p2003, p2005, p2007, p3806. p3927, p3928
p0340 = 2:
--> p0350 (*), p0354 ... p0361 (*), p0652 ... p0660
--> p0625 (matching p0350)
p0340 = 3
--> All of the parameters influenced for p0340 $=4,5$
--> p0346, p0347, p0492, p0622, p1262, p1320 ... p1327, p1582, p1584, p1612, p1616, p1744, p1748, p1749,
p1755, p1756, p2178
p0340 = 4:
--> p1290, p1292, p1293, p1299, p1338, p1339, p1340, p1341, p1345, p1346, p1460, p1461, p1462, p1463, p1464, p1465, p1470, p1472, p1590, p1592, p1600, p1628, p1629, p1630, p1643, p1703, p1715, p1717, p1740, p1756, p1757, p1760, p1761, p1764, p1767, p1780, p1781, p1783, p1785, p1786, p1795, p7036, p7037, p7038 p0340 = 5:
--> p0260 ... p0264, p1037, p1038, p1520, p1521, p1530, p1531, p1574, p1750, p1802, p1803, p2140, p2141, p2142, p2148, p2150, p2155, p2161 ... p2164, p2175, p2177, p2194, p3207, p3208, p3236, p3237, p3806, p3815 p3820 ... p3829

p0340

A_INF, S_INF, R_INF
Can be changed: T
Data type: Integer16
P-Group: Closed-loop control
Not for motor type: -
Min
0

Automatic calculation control parameters / Calc auto par

Can be changed: T	Calculated: -	Access level: 3
Data type: Integer16	Dyn. index: -	Func. diagram: -
P-Group: Closed-loop control	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	2	0

Setting to reset and automatically calculate filter and control (closed-loop) parameters.
Description:
Value:

0 : \quad No calculation
Complete re-calculation of control parameters with COMM data
Reset control parameters

2.2 List of parameters

Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
	The following parameters are influenced using p0340:
	$\mathrm{p} 0340=1$:
	--> All of the parameters influenced for p0340=2
	--> p3421 = p0223, p0225
	--> p3422 = p0227
	--> p3424 = p0225
	--> p3415, p3425, p3555, p3614, p3620, p3622 are reset to the factory settings dependent on the particular unit.
	p0340 = 2:
	--> p3560, p3562, p3564, p3603, p3615 and p3617 are reset to the factory setting.
	For S_INF, these control parameters are not available.
Note:	When quick commissioning is exited using p3900 > 0, p0340 is automatically set to 1 .
	At the end of the calculations, p0340 is automatically set to 0 .

p0341[0...n] Cylinder weight / Cyl weight
HLA Can be changed: C2(1, 3), U, T

Description: Sets the inertia mass.

Data type: FloatingPoint32
P-Group: Motor
Not for motor type: -
Min
0.000000 [kg]

Calculated: -
Dyn. index: MDS, p0130
Unit group: 27_1
Scaling: -
Max
100000.000000 [kg]

Access level: 3
Func. diagram: -
Unit selection: p0100
Expert list: 1
Factory setting
0.000000 [kg]

p0341[0...n]	Motor moment of inertia / Mot M_inert		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5042, 5210, 6020, 6030, 6031
	P-Group: Motor	Unit group: 25_1	Unit selection: p0100
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [kgm^{2}]	- [kgm^{2}]	- [kgm^{2}]
Description: Dependency:	Sets the motor moment of inertia (without load).		
	IEC drives ($\mathrm{p} 0100=0$): unit $\mathrm{kg} \mathrm{m}{ }^{\wedge} 2$		
	NEMA drives ($\mathrm{p} 0100=1$): unit lb ft^2		
	The parameter value is included, together with p0342, in the rated starting time of the motor. Refer to: p0342, r0345, p0345		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	SERVO:		
	p0341 * p0342 + p1498 influence the speed/torque precontrol in encoderless operation.		
	VECTOR:		
	The product of p0341 * p 0342 is used when the speed controller (p0340 $=4$) is calculated automatically.		

p0341[0...n]	Motor weight / Mot weight		
$\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5042, 5210
	P-Group: Motor	Unit group: 27_1	Unit selection: p0100
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [kg]	- [kg]	- [kg]
Description:	Sets the high moments of inertia (without load).		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit $\mathrm{kg} \mathrm{m}{ }^{\wedge} 2$		
	NEMA drives (p0100 = 1) : unit lb ft^2		
	The parameter value is included, together with p0342, in the rated starting time of the motor. Refer to: p0342, r0345, p0345		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	p0341 * p0342 + p1498 influence the speed/torque precontrol in encoderless operation.		

p0341[0...n]	Motor moment of inertia / Mot M_inert		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC, VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5042, 5210, 6020, 6030, 6031
	P-Group: Motor	Unit group: 25_1	Unit selection: p0100
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.000000\left[\mathrm{kgm}^{2}\right]$	$100000.000000\left[\mathrm{kgm}^{2}\right]$	$0.000000\left[\mathrm{kgm}^{2}\right]$
Description:	Sets the motor moment of inertia (without load).		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit kg m^2		
	NEMA drives ($\mathrm{p} 0100=1$): unit lb ft^2		
	The parameter value is included, together with p0342, in the rated starting time of the motor.		
	Refer to: p0342, r0345, p0345		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	SERVO:		
	p0341 * p0342 + p1498 influence the speed/torque precontrol in encoderless operation.		
	VECTOR:		
	The product of p0341 * p0342 is used when the speed controller (p0340 = 4) is calculated automatically.		

p0342[0...n]	Ratio between the total and motor moment of inertia / Mot Momlnert Ratio		
SERVO, SERVO_AC,	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5042,5210
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Max
	Min	10000.000	Factory setting
	1.000	1.000	
Description:	Sets the ratio between the total moment of inertia (load + motor) and the intrinsic motor moment of inertia (no load).		
Dependency:	Refer to: p0341, r0345, p0345, p1498		
Note:	$\left(p 0341^{*}\right.$ p0342) +p 1498 influence the speed/torque precontrol (active in encoderless operation or for $\left.\mathrm{p} 1402.4=1\right)$.		

2.2 List of parameters

Note: For bit 00:
The firmware does not evaluate this bit.
For bit 01:
For bit $=0$, the cylinder is stationary, the mass that is moved is attached to the piston rod.
For bit $=1$, the piston rod is stationary, the mass that is moved is attached to the cylinder.

p0343[0...n]	Rated motor current identified / Mot I_rated ident		
VECTOR,	Can be changed: C2(3), T	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL,	Scaling: -	Expert list: 1
	RESM		
	Min	Max	Factory setting
	$0.00[A r m s]$	$0.00[$ Arms]	
	Displays the identified rated motor current.		

p0344[0...n]	Cylinder mounting position A side / Cyl mount pos A		
HLA	Can be changed: C2(3), T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	$90.0\left[{ }^{\circ}\right]$	Factory setting
	$-90.0\left[{ }^{\circ}\right]$	$0.0\left[{ }^{\circ}\right]$	
	Adjustment of the mounting position referred to the A side of the cylinder.		
Description:	The mounting position specifies to what extent the forces due to weight of the moved mass is taken into account		
Note:	when calculating the loop gain and the maximum retraction/extension.		

p0344[0...n]	Motor weight (for the thermal motor model) / Mot weight th mod		
SERVO, VECTOR,	Can be changed: C2(3), T	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8018
SERVO_I_AC,	P-Group: Motor	Unit group: 27_1	Unit selection: p0100
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [kg]	50000.0 [kg]	0.0 [kg]
Description:	Sets the motor weight.		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit kg		
	NEMA drives ($\mathrm{p} 0100=1$): unit lb		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter influences the thermal 3 mass model of the induction motor.		
	The parameter is not used for synchronous motors (p0300 = 2xx).		

p0345[0...n] Required damping controlled axis / Damped ctrl axis
Can be changed: C2(3), T Calculated: -

Data type: FloatingPoint32 Dyn. index: DDS, p0180
P-Group: Motor
Not for motor type: -
0.2002 .000

Sets the required damping for the controlled axis.
With this value, for "Calculate controller data", the control loop (gain, integral time, rate time) is calculated.

r0345[0...n]	Nominal motor starting time / Mot t_start_rated		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[s]$	$-[s]$	
Description:	Displays the rated motor starting time.		
	This time corresponds to the time from standstill up to reaching the motor rated speed and the acceleration with		
	motor rated torque (r0333).		
Dependency:	Refer to: r0313, p0313, r0333, r0336, p0341, p0342		

p0346[0...n]	Line length A side / Line length A		
HLA	Can be changed: C2(3), T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [mm]	10000.0 [mm]	0.0 [mm]
Description:	Sets the hydraulic line length on the A side.		
Dependency:	Refer to: p0347		
p0346[0...n]	Motor excitation build-up time / Mot t_excitation		
VECTOR, VECTOR AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000 [s]	20.000 [s]	0.000 [s]
Description:	Sets the excitation build-up time of the motor.		
	This involves the delay time between enabling the pulses and enabling the ramp-function generator. The induction motor is magnetized during this time.		
Caution: \qquad 1	If there is insufficient magnetization under load or if the acceleration rate is too high, then an induction motor can stall (refer to the note). This is especially true for sensorless vector control or U/f control.		
Notice:	If the parameter is set to 0 s for separately excited synchronous motors ($\mathrm{p} 0300=5$), then an excitation current setpoint is generated even if the drive is switched off. In the base speed range, this is the no-load excitation current (p0389). In the field-weakening range, the value is reduced with the inverse value of the actual speed. An excitation current setpoint is not generated during de-magnetizing (p 0347) and if an encoder fault is detected.		
	When starting or executing a flying restart for a separately excited synchronous motor without encoder or with incremental encoder, then the voltage induced in the stator by the excitation current pulse is used to determine the rotor position.		
	The length of the ramp is pre-assigned from the motor data for p0346 = 0 s . If it crystallizes out that this time is too short, then it can be extended by entering a negative value in p0346, whereby otherwise, the excitation behavior corresponds with that for p0346 $=0 \mathrm{~s}$.		
	For all other motor types, p0346 is internally limited downwards to 0 s .		
Note:	The parameter is calculated using p $0340=1,3$.		
	For induction motors, the result depends on the rotor time constant (r0384). If this time is excessively reduced, this can result in an inadequate magnetizing of the induction motor. This is the case if the current limit is reached while building up magnetizing. For induction motors, the parameter cannot be set to 0 s (internal limit: 0.1 * r0384).		
	For permanent-magnet synchronous motors and vector control, the value depends on the stator time constant (r0386). Here, it defines the time to establish the current for encoderless operation immediately after the pulses have been enabled.		
	The current to excite the induction motor can be limited in p0644.		
p0347[0...n]	Line length B side / Line length B		
HLA	Can be changed: $\mathrm{C} 2(3)$, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [mm]	10000.0 [mm]	0.0 [mm]
Description:	Sets the hydraulic line length of		
Dependency:	Refer to: p0346		

p0347[0...n]	Motor de-excitation time / Mot t_de-excitat		
SERVO, SERVO_AC,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	20.000 [s]	0.000 [s]
Description:	Sets the de-magnetizing time (for induction motors) after the inverter pulses have been canceled. The inverter pulses cannot be switched in (enabled) within this delay time. For SERVO, the de-excitation time is only used for DC current braking.		
Note:	The parameter is calculated u For induction motors, the resu if this time is shortened too mu an overcurrent condition when and the motor is rotating).	, 3. the rotor time constant (r0384). an result in an inadequate de-ma subsequently enabled (only whe	izing of the inductio flying restart functio

p0347[0...n]	Motor de-excitation time / Mot t_de-excitat		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	20.000 [s]	0.000 [s]
Description:	Sets the de-magnetizing time (for induction motors) after the inverter pulses have been canceled. The inverter pulses cannot be switched in (enabled) within this delay time.		
Note:	The parameter is calculated u For induction motors, the resu if this time is shortened too mu an overcurrent condition when and the motor is rotating).	, 3. the rotor time constant (r0384). an result in an inadequate de-ma subsequently enabled (only whe	izing of the induction motor and in flying restart function is activated

p0348[0...n]	Internal line diameter / Line_inner diam		
HLA	Can be changed: C2(3), T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~mm}]$	$5.0[\mathrm{~mm}]$	
Description:	Sets the internal line diameter for the A and B sides.		

p0348[0...n]	Speed at the start of field weakening Vdc = 600 V/n_strt field weak		
SERVO, SERVO_AC,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5722
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{rrm}]$	$210000.0[\mathrm{rrm}]$	$0.0[\mathrm{rpm}]$
Description:	Sets the speed at the start of field weakening for a DC link voltage of 600 V.		
Dependency:	Refer to: p0320, r0331		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		

p0348[0...n]	Velocity at the start of field weakening Vdc = 600 V/v_strt field weak		
SERVO (Lin),	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5722
SERVO_I_AC (Lin)	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~m} / \mathrm{min}]$	$0.0[\mathrm{~m} / \mathrm{min}]$	
Description:	Sets the velocity at the start of field weakening for a DC link voltage of 600 V.		
Dependency:	Refer to: p0320, r0331		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		

p0349	System of units motor equivalent circuit diagram data / Unit_sys mot ESB		
SERVO, VECTOR,	Can be changed: C2(3)	Calculated: -	Access level: 1
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
SERVO I AC,	P-Group: Motor	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	1
Description:	Sets the actual system of units for motor equivalent circuit diagram data.		
Value:	1: System of units, physical 2: \quad System of units, referred		
Dependency:	The parameter can only be changed in an offline project using the commissioning tool.		
Note:	system.		
	Inductances are converted into a resistance using the factor 2 * Pi * p0310.		
	If a reference parameter ($\mathrm{p} 0304, \mathrm{p} 305, \mathrm{p} 0310$) is zero, then it is not possible to make a changeover to "referred" values (per unit values).		

p0350[0...n]	Damping uncontrolled axis / Damp unctrl axis		
HLA	Can be changed: C2(3), T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.010	0.000	
Description:	Sets the damping for the uncontrolled axis.		

p0350[0...n]	Motor stator resistance cold / Mot R_stator cold		
SERVO, VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_AC,	P-Group: Motor	Unit group: 16_1	Unit selection: p0349
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	2000.00000 [ohm]	0.00000 [ohm]
	$0.00000[o h m]$		
Description:	Sets the stator resistance of the motor at ambient temperature p0625 (phase value).		
Dependency:	Refer to: p0625, r1912		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		
Note:	The motor identification routine determines the stator resistance from the total stator resistance minus the cable		
	resistance $(\mathrm{p} 0352)$.		

p0351[0...n]	Piston position natural frequency minimum / Piston pos fn min		
HLA	Can be changed: C2(3), T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~mm}]$	$3000.0[\mathrm{~mm}]$	$0.0[\mathrm{~mm}]$
Description:	Sets the piston position for minimum natural frequency.		

p0352[0...n]	Axis natural frequency A side / Axis fn A		
HLA	Can be changed: C2(3), T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$1.0[\mathrm{~Hz}]$	$1.0[\mathrm{~Hz}]$	
Description:	Sets the natural frequency for the axis on the A side.		

p0352[0...n]	Cable resistance / R_cable		
SERVO, SERVO_AC,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 16_1	Unit selection: p0349
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [ohm]	120.00000 [ohm]	0.00000 [ohm]
Description:	Resistance of the power cable between the Motor Module and motor.		
Caution: !	The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be repeated.		
Note:	The parameter influences the temperature adaptation of the stator resistance.		
	The motor identification routine does not change the cable resistance. This is subtracted from the total measured stator resistance in order to calculate the stator resistance (p0350, p0352).		

p0352[0...n]	Cable resistance / R_cable		
VECTOR,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 16_1	Unit selection: p0349
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [ohm]	120.00000 [ohm]	0.00000 [ohm]
Description:	Resistance of the power cable between the Motor Module and motor.		
Dependency:	Refer to: p7003		
Caution:	The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be repeated.		
Notice:	Parallel circuits with one winding system (p7003 = 0):		
	p0352 includes the feeder cable resistance of an individual Motor Module. The total feeder cable resistance is obtained from p0352 divided by the number of activated Motor Modules (refer to r0395).		
	Parallel circuits with multi-winding system (p7003 = 1):		
	p0352 includes the complete feeder cable resistance and is directly added to the stator resistance (refer to r0395)		

Note: \quad The parameter influences the temperature adaptation of the stator resistance.
The motor identification sets the cable resistance to 20% of the measured total resistance if p0352 is zero at the time that the measurement is made. If p0352 is not zero, then the value is subtracted from the measured total stator resistance to calculate stator resistance p0350. In this case, p0350 is a minimum of 10% of the measured value. Exception:
For parallel circuit configurations with one winding system (p07003 = 0), the cable resistance is directly measured. It is important to note that only the component of an individual Motor Module is entered into p0352.
The cable resistance is reset when quick commissioning is exited with p3900 >0.

p0353[0...n]	Motor series inductance / Mot L_series		
VECTOR,	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{mH}]$	$1000000.000[\mathrm{mH}]$	$0.000[\mathrm{mH}]$
Description:	Sets the series inductance.		
Note:	For the automatic calculation with p0340 = 1, 3 or 4, the calculation of p1715 is influenced by p0353.		
	The series inductance is reset when quick commissioning is exited with p3900 >0.		

p0354[0...n]	Axis natural frequency B side / Axis fn B		
HLA	Can be changed: C2(3), T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$1.0[\mathrm{~Hz}]$	$2000.0[\mathrm{~Hz}]$	$1.0[\mathrm{~Hz}]$
Description:	Sets the natural frequency for the axis on the B side.		

p0354[0...n]	Motor rotor resistance cold / damping resistance d axis / Mot R_r cold/R_D d		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 16_1	Unit selection: p0349
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [ohm]	300.00000 [ohm]	0.00000 [ohm]
Description:	Sets the rotor/secondary section resistance of the motor at the ambient temperature p0625.		
	For separately excited synchronous motors: Sets the damping resistance in the rotor direction (d-axis).		
	This parameter value is automatically calculated using the motor model ($p 0340=1,2$) or using the motor data identification routine (p1910) (not for separately excited synchronous motors).		
Dependency:	Refer to: p0625		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors (p0300 $=2 x x$).		
	The reference value for p0326 is inversely proportional to the leakage inductance of the motor (p0353, p0354, p0356).		

p0354[0...n]	Motor rotor resistance cold / damping resistance d axis / Mot R_r cold/R_D d		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
VECTOR_I_AC	P-Group: Motor	Unit group: $16 _1$	Unit selection: p0349
	Not for motor type: PMSM, REL, RESM	Scaling: -	Max
	Min	Expert list: 1	

p0355[0...n]	Motor damping resistance q axis / Mot R_damp q		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
VECTOR_I_AC	P-Group: Motor	Unit group: 16_1	Unit selection: p0349
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1

p0356[0...n]	Motor stator leakage inductance / Mot L_stator leak.		
SERVO, SERVO_AC,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00000[\mathrm{mH}]$	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	This parameter value is automatically calculated using the motor model (p0340 $=1,2$) or using the motor identification routine (p1910).		
	Induction motor, separately excited synchronous motor: Sets the rotor leakage inductance of the motor. Synchronous motor: Sets the stator quadrature axis inductance of the motor.		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The reference value for p0326 is inversely proportional to the leakage inductance of the motor (p0353, p0354, p0356).		

p0356[0...n]	Motor stator leakage inductance / Mot L_stator leak.		
VECTOR, VECTOR AC, VECTOR_I_AC	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [mH]	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p1910).		
	Induction motor, separately excited synchronous motor: Sets the rotor leakage inductance of the motor. Synchronous motor: Sets the stator quadrature axis inductance of the motor.		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	If the stator leakage inductance (p 0356) for induction motors is changed outside the commissioning phase (p 0010 > 0), the magnetizing inductance (p 0360) is automatically adapted to the new EMF (r0337). You are then advised to repeat the measurement for the saturation characteristic (p1960).		
	For permanent-magnet synchronous motors ($\mathrm{p} 0300=2$), this is the non-saturated value and is, therefore, ideal for a low current.		

p0357[0...n]	Motor stator inductance d axis / Mot L_stator d		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00000[\mathrm{mH}]$	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Sets the stator direct-axis inductance of the synchronous motor.		
	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p 1910).		
Note:	The parameter is not used for separately excited synchronous motors ($\mathrm{p} 0300=5$).		
	For permanent-magnet synchronous motors ($0300=2$), this is the non-saturated value and is ideal for a		

p0359[0...n]	Motor damping inductance q axis / Mot L_damp q		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
VECTOR_I_AC	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM		
	Min	Max	Factory setting
	$0.00000[\mathrm{mH}]$	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Sets the damping inductance of the separately excited synchronous motor quadrature to the rotor direction (q axis).		
	This parameter value is automatically calculated using the motor model (p0340 = 1, 2).		

p0360[0...n]	Motor magnetizing inductance/magn. inductance d axis saturated/ Mot Lh/Lh d sat		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [mH]	$10000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Sets the magnetizing inductance of the motor.		
	For separately excited synchronous motors: Sets the saturated magnetizing inductance in the rotor direction (d-axis).		
	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p 1910) (not for separately excited synchronous motors).		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
p0360[0...n]	Motor magnetizing inductance/magn. inductance d axis saturated / Mot Lh/Lh d sat		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU Access level: 3	
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
		Max	Factory setting
	$0.00000[\mathrm{mH}]$	$10000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Sets the magnetizing inductance of the motor.		
	For separately excited synchronous motors: Sets the saturated magnetizing inductance in the rotor direction (d-axis).		
	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p 1910) (not for separately excited synchronous motors).		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
p0361[0...n]	Motor magnetizing inductance q axis saturated / Mot L_magn q sat		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [mH]	$10000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Sets the saturated magnetizing inductance of the separately excited synchronous motor quadrature to the rotor direction (q axis). This parameter value is automatically calculated using the motor model $(p 0340=1,2)$.		

p0362[0...n]	Motor saturation characteristic flux 1 / Mot saturat.flux 1		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: C2(3), U, T Data type: FloatingPoint32 P-Group: Motor	Calculated: - Dyn. index: MDS, p0130	Access level: 3
			Func. diagram: 6723, 6726
		Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	800.0 [\%]	60.0 [\%]
Description:	The saturation characteristic (flux as mapping of current) is defined using 4 points.		
	This parameter specifies the y coordinate (flux) for the 1st value pair of the characteristic.		
	Induction motors (ASM) and separately excited synchronous motors (SESM):		
	The saturation characteristic describes the mapping of the magnetizing current onto the motor flux.		
	The parameter sets the first motor flux as a [\%] referred to the rated motor flux.		
	Permanent magnet synchronous motors (PMSM):		
	The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux.		
	The parameter sets the first stator quadrature axis flux as a [\%] referred to the product of the unsaturated quadrature inductance (p 0356) and the rated motor current.		
Dependency:	The following applies for the flux values:		
	p0362 < p0363 < p0364 < p0365		
	The following applies for the stator quadrature axis flux values (PMSM):		
	20 \% < p0362 < p0363 < p0364 < p0365		
	Refer to: p0366		
Notice:	For permanent magnet synchronous motors (PMSM):		
	If the parameters are not set as specified, i.e. not in ascending order and to more than 20%, the unsaturated quadrature inductance (p 0356) is always used for quadrature axis flux calculation purposes.		
Note:	For induction motors, p0362 = 100% corresponds to the rated motor flux.		
	For separately excited synchronous motors p0362 $=100 \%$ corresponds to an induced terminal voltage with the magnitude of the rated motor voltage (under no-load conditions at the synchronous speed).		
	With permanent-magnet synchronous motors, p0362 = 100% corresponds to the product of the unsaturated quadrature inductance (p 0356) and the rated motor current (p 0305).		
	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0363[0...n]	Motor saturation characteristic flux 2 / Mot saturat.flux 2		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6723, 6726
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	800.0 [\%]	85.0 [\%]
Description:	The saturation characteristic (flux as mapping of current) is defined using 4 points.		
	This parameter specifies the y coordinate (flux) for the 2 nd value pair of the characteristic. Induction motors (ASM) and separately excited synchronous motors (SESM):		
	The saturation characteristic describes the mapping of the magnetizing current onto the motor flux.		
	The parameter sets the second motor flux as a [\%] referred to the rated motor flux.		
	Permanent magnet synchronous motors (PMSM):		
	The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux.		
	The parameter sets the second stator quadrature axis flux as a [\%] referred to the product of the unsaturated quadrature inductance (p 0356) and the rated motor current.		

2.2 List of parameters

p0364[0...n]	Motor saturation characteristic flux 3 / Mot saturat.flux 3		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6723, 6726
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	800.0 [\%]	115.0 [\%]
Description:	The saturation characteristic (flux as mapping of current) is defined using 4 points.		
	This parameter specifies the y coordinate (flux) for the 3rd value pair of the characteristic.		
	Induction motors (ASM) and separately excited synchronous motors (SESM):		
	The saturation characteristic describes the mapping of the magnetizing current onto the motor flux.		
	The parameter sets the third motor flux as a [\%] referred to the rated motor flux.		
	Permanent magnet synchronous motors (PMSM):		
	The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux.		
	The parameter sets the third stator quadrature axis flux as a [\%] referred to the product of the unsaturated quadrature inductance (p 0356) and the rated motor current.		
Dependency:	The following applies for the flux values:		
	p0362 < p0363 < p0364 < p0365		
	The following applies for the stator quadrature axis flux values (PMSM):		
	20\% < p0362 < p0363 < p0364 < p0365		
	Refer to: p0368		
Notice:	For permanent magnet synchronous motors (PMSM):		
	If the parameters are not set as specified, i.e. not in ascending order and to more than 20%, the unsaturated quadrature inductance (p 0356) is always used for quadrature axis flux calculation purposes.		
Note:	For induction motors, p0364 = 100 \% corresponds to the rated motor flux.		
	For separately excited synchronous motors p0364 $=100 \%$ corresponds to an induced terminal voltage with the magnitude of the rated motor voltage (under no-load conditions at the synchronous speed).		
	With permanent-magnet synchronous motors, p0362 $=100 \%$ corresponds to the product of the unsaturated quadrature inductance (p0356) and the rated motor current (p 0305).		
	When quick commissioning is exited with p3900 > 0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0366[0...n]	Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1		
VECTOR,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6723, 6726
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	50.0 [\%]
Description:	The saturation characteristic (flux as mapping of current) is defined using 4 points.		
	This parameter specifies the x coordinate for the 1st value pair of the characteristic. Induction motors (ASM) and separately excited synchronous motors (SESM):		
	The saturation characteristic describes the mapping of the magnetizing current onto the motor flux. The parameter sets the first magnetizing current as a [\%] referred to the rated magnetizing current r0331 (ASM), which in turn is referred to the no-load excitation current (SESM).		
	Permanent magnet synchronous motors (PMSM):		
	The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux.		
	parameter		

2.2 List of parameters

Dependency:	The following applies for the magnetizing currents:
	p0366 < p0367 < p0368 < p0369
	The following applies for the stator quadrature axis current values (PMSM):
	20 \% < p0366 < p0367 < p0368 < p0369
	Refer to: p0362
Notice:	For permanent magnet synchronous motors (PMSM), the following applies:
	If the parameters are not set as specified, i.e. not in ascending order and to more than 20%, the unsaturated quadrature inductance (p 0356) is always used for quadrature axis flux calculation purposes.

Note: \quad When quick commissioning is exited with p3900>0, then the parameter is reset if a catalog motor has not been selected (p0300).

p0367[0...n]	Motor saturation charac	mag 2 / Mot sat. I_m	
VECTOR,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6723, 6726
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	75.0 [\%]
Description:	The saturation characteristic (flux	of current) is defined usi	
	This parameter specifies the x	the 2 nd value pair of the char	
	Induction motors (ASM) and se	ed synchronous motors (SE	
	The saturation characteristic de	apping of the magnetizing	to the motor flux.
	The parameter sets the second which in turn is referred to the	current as a [\%] referred to ion current (SESM).	magnetizing current r0331 (ASM),
	Permanent magnet synchronou	SM):	
	The saturation characteristic de axis flux.	apping of the stator quadra	current onto the stator quadrature
	The parameter sets the second	ature axis current as a [\%]	the rated motor current (p0305).
Dependency:	The following applies for the ma	rents:	
	p0366 < p0367 < p0368 < p036		
	The following applies for the sta	e axis current values (PMS	
	20 \% < p0366 < p0367 < p0368		
	Refer to: p0363		
Notice:	For permanent magnet synchro	(PMSM), the following appl	
	If the parameters are not set as quadrature inductance (p0356)	not in ascending order an d for quadrature axis flux c	than 20%, the unsaturated purposes.
Note:	When quick commissioning is selected (p0300).	$900>0$, then the paramete	a catalog motor has not been

p0368[0...n]	Motor saturation characteristic I_mag 3 / Mot sat. I_mag 3		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6723, 6726
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	150.0 [\%]
Description:	The saturation characteristic (flux as mapping of current) is defined using 4 points.		
	This parameter specifies the x coordinate for the 3rd value pair of the characteristic.		
	Induction motors (ASM) and separately excited synchronous motors (SESM):		
	The saturation characteristic describes the mapping of the magnetizing current onto the motor flux.		
	The parameter sets the third magnetizing current as a [\%] referred to the rated magnetizing current r0331 (ASM), which in turn is referred to the no-load excitation current (SESM).		
	Permanent magnet synchronous motors (PMSM):		
	The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux.		
	The parameter sets the third stator quadrature axis current as a [\%] referred to the rated motor current (p0305).		
Dependency:	The following applies for the magnetizing currents:		
	p0366 < p0367 < p0368 < p0369		
	The following applies for the stator quadrature axis current values (PMSM):		
	20 \% < 0366 < p0367 < p0368 < p0369		
	Refer to: p0364		
Notice:	For permanent magnet synchronous motors (PMSM), the following applies:		
	If the parameters are not set as specified, i.e. not in ascending order and to more than 20%, the unsaturated quadrature inductance (p 0356) is always used for quadrature axis flux calculation purposes.		
Note:	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (p0300).		
p0369[0...n]	Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(3), \mathrm{U}$,	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6723, 6726
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	210.0 [\%]
Description:	The saturation characteristic (flux as mapping of current) is defined using 4 points.		
	This parameter specifies the x coordinate for the 4th value pair of the characteristic.		
	Induction motors (ASM) and separately excited synchronous motors (SESM):		
	The saturation characteristic describes the mapping of the magnetizing current onto the motor flux.		
	The parameter sets the fourth magnetizing current as a [\%] referred to the rated magnetizing current r0331 (ASM), which in turn is referred to the no-load excitation current (SESM).		
	Permanent magnet synchronous motors (PMSM):		
	The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux.		
	The parameter sets the fourth stator quadrature axis current as a [\%] referred to the rated motor current (p0305).		
Dependency:	The following applies for the magnetizing currents:		
	p0366 < p0367 < p0368 < p0369		
	The following applies for the stator quadrature axis current values (PMSM):		
	20 \% < p0366 < p0367 < p0368 < p0369		
	Refer to: p0365		
Notice:	For permanent magnet synchronous motors (PMSM), the following applies:		
	If the parameters are not set as specified, i.e. not in ascending order and to more than 20%, the unsaturated quadrature inductance (p 0356) is always used for quadrature axis flux calculation purposes.		

2.2 List of parameters

Note: \quad When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).

r0370[0...n]	Motor stator resistance cold / Mot R_stator cold		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: - Data type: FloatingPoint32 P-Group: Motor Not for motor type: - Min - [ohm]	Calculated: - Dyn. index: MDS, p0130 Unit group: 16_1 Scaling: - Max - [ohm]	Access level: 4 Func. diagram: - Unit selection: p0349 Expert list: 1 Factory setting - [ohm]
Description: Dependency:	Displays the motor stator resistance at an ambient temperature (p0625). The value does not include the cable resistance.		
$\begin{aligned} & \text { r0372[0...n] } \\ & \text { VECTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	Total power unit cabl Can be changed: - Data type: FloatingPoint32 P-Group: Motor Not for motor type: - Min - [ohm]	/ PU cable R tot Calculated: - Dyn. index: MDS, p0130 Unit group: 16_1 Scaling: - Max - [ohm]	Access level: 4 Func. diagram: - Unit selection: p0349 Expert list: 1 Factory setting - [ohm]
Description: Dependency:	Displays the total cable resistance between Motor Module and motor, as well as the internal converter resistance. Refer to: r0238, p0352		

r0373[0...n]	Motor rated stator resistance / Mot R_stator rated		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 4
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
SERVO I AC,	P-Group: Motor	Unit group: 16_1	Unit selection: p0349
VECTOR_I_AC	Not for motor type: PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the rated motor stator resistance at rated temperature (total of p0625 and p0627).		
Dependency:	Refer to: p0627		
Note:	The parameter is not used for synchronous motors (p0300 = 2xx).		
r0374[0...n]	Motor rotor resistance cold / damping resistance d axis / Mot R_r cold/R_D d		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 16_1	Unit selection: p0349
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the rotor/secondary section resistance of the motor for the ambient temperature p0625.		
	For separately excited synchronous motors:		
	Displays the damping resistance in the rotor direction (d-axis).		
Dependency:	Refer to: p0625		
Note:	The parameter is not used for synchronous motors (p0300 $=2 x \mathrm{x}$).		

r0375[0...n]	Motor damping resistance q axis / Mot R_damp q		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 16_1	Unit selection: 00349
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the damping resistance of the separately excited synchronous motor quadrature to the rotor direction (q axis).		
r0376[0...n]	Rated motor rotor resistance / Mot rated R_rotor		
SERVO, VECTOR, SERVO AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 16_1	Unit selection: p0349
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the nominal rotor / secondary section resistance of the motor at the rated temperature. The rated temperature is the sum of p0625 and p0628.		
Dependency:	Refer to: p0628		
Note:	The parameter is not used for synchronous motors ($0300=2 \mathrm{xx}$).		
r0377[0...n]	Motor leakage inductance total / Mot L_Ieak total		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6640
	P-Group: Motor	Unit group: 15_1	Unit selection: 00349
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the total stray inductance of the m Induction motor: Displays the stator leakage inductance of th Synchronous motor: Displays the stator quadrature axis inductan	motor including the series ce of the motor including the	e (p0353). ductance (p0353).
r0377[0...n] VECTOR, VECTOR_AC, VECTOR_I_AC	Motor leakage inductance total / Mot L_leak total		
	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6640
	P-Group: Motor	Unit group: 15_1	Unit selection: 00349
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the total stray inductance of the motor.		
	Induction motor, separately excited synchronous motor:		
	Displays the stator leakage inductance of the motor, including the series inductance (p 0353) and the motor reactor (p0233).		
	Synchronous motor:		
	Displays the stator quadrature inductance, including the series inductance (p 0353) and the motor reactor (p 0233).		

r0378[0...n]	Motor stator inductance d axis / Mot L_stator d		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$

Description: Displays the stator longitudinal inductance of the synchronous motor including the series inductance (p0353) and the motor reactor (p0233).
Note: \quad The parameter is not used for separately excited synchronous motors ($\mathrm{p} 0300=5$).

r0380[0...n]	Motor damping inductance d axis / Mot L_damp d		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM		
	Min	Max	Factory setting
	$-[m H]$	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$
Description:	Displays the damping inductance of the separately excited synchronous motor in the rotor direction (d-axis).		

r0381[0...n]	Motor damping inductance q axis / Mot L_damp q		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the damping inductance of a separately excited synchronous motor quadrature to the rotor direction (q axis).		
r0382[0...n]	Motor magnetizing inductance transformed / Lh d axis saturated / Mot L_m tr/Lhd sat		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 4
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
SERVO I AC,	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
VECTOR_I_AC	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the magnetizing inductance of the motor.		
	For separately excited synchronous motors:		
	Displays the saturated magnetizing inductance in the rotor direction (d-axis).		
Note:	The parameter is not used for synchronous motors (p0300 $=2 \mathrm{xx}$).		

r0383[0...n]	Motor magnetizing inductance q axis saturated / Mot L_magn q sat		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 15_1	Unit selection: p0349
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the saturated magnetizing inductance of a separately excited synchronous motor quadrature to the rotor direction (q axis).		
r0384[0...n]	Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6722
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the rotor time constant.		
	For separately excited synchronous motors:		
	Displays the damping time constant to the rotor direction (d axis).		
Note:	The parameter is not used for synchronous motors.		
	The value is calculated from the total of the inductances on the rotor side ($\mathrm{p} 0358, \mathrm{p} 0360$) divided by the rotor/damping resistance (p 0354). The temperature adaptation of the rotor resistance for induction motors is not taken into account.		

r0385[0...n]	Motor damping time constant	is / Mot L_damping	
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the damping time constant of a separately excited synchronous motor quadrature to the rotor direction (q axis).		
Note:	The value is calculated from the total of the inductances on the damping side (p 0359 , p 0361) divided by the damping resistance (p0355).		

r0386[0...n]	Motor stator leakage time constant / Mot T_stator leak		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 4
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_AC,	P-Group: Motor	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	$-[\mathrm{ms}]$	Factory setting
	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$	
Description:	Displays the stator leakage time constant.		
Note:	The value is calculated from the total of all leakage inductances (p0233*, p0353, p0356, p0358) divided by the total of all motor resistances (p0350, p0352, p0354). The temperature adaptation of the resistances is not taken into account. * only applies for VECTOR (r0107).		

r0387[0...n]	Motor stator leakage time constant q axis / Mot T_Sleak /T_Sq		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the stator leakage time constant quadrature to the rotor direction (q axis).		
Note:	The value is calculated from the total of all leakage inductances (p0233, p0356, p0359) divided by the total of all motor resistances (p0350, p0352, p0355).		
	The temperature adaptation of the resis	es is not taken into account.	

p0388[0...n]	Motor stall torque correction factor for p1402.6 = 1 / Mot M_stallCorrNew		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5 [\%]	300 [\%]	140 [\%]
Description:	Sets the correction factor for the stall torque for a DC link voltage of 600 V and p1402.6 $=1$.		
	For p1402.6 $=0$, this correction factor is set with p0326.		
	A value of p0388 that is set too low results in an unnecessarily low stall power limit.		
	The controller corrects a value that is set too high.		
	In the stall power range, r1549[1] can be used to check whether the controller the influences the value.		
	The value is sufficiently high if the controller intervention in r1549[1] is visible in the stall power range.		
Note:	If p0388 is too low, then r1549[1] remains zero in the stall power range.The reference values for p0326 and p0388 differ.		

p0389[0...n]	Excitation rated no-load current / Exc I_noload_rated		
VECTOR,	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM	Max	Factory setting
	Min	$10000.00[A]$	$0.00[A]$
	$0.00[A]$		
Description:	Sets the rated no-load current (I_FO) for the excitation.		

p0390[0...n]	Rated excitation current / Exc I_rated		
VECTOR,	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [A]	10000.00 [A]	0.00 [A]
Description:	Setting the rated current (I_F) of the controlled excitation rectifier (DC master).		

p0391[0...n]	Current controller adaptation starting point Kp / I_adapt pt Kp		
SERVO, SERVO_AC,	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5714
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Fxpert list: 1
	Min	Factory setting	

2.2 List of parameters

Dependency:	Refer to: p0391, p0393, p1402, p1715
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.
	Information in p0300 should be carefully observed when removing write protection.
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been

p0393[0...n]	Current controller adaptation p gain adaptation / I_adapt Kp adapt		
SERVO, SERVO_AC,	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5714
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the factor for the current controller P gain in the adaptation range (current > p 0392).		
Dependency:	Refer to: p0391, p0392, p1402, p1715		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected Information in p0300 should be carefully observed when removing write protection.		
Note:	For p0393 = 100 \% or p1402.2 range.	t controller adaptation is d	d $p 1715$ is effective over th

r0395[0...n]	Actual stator resistance / R_stator act		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6301,6730,
VECTOR_AC,		Unit group: 16_1	6731, 6732
SERVO_I_AC,	P-Group: Motor	Scaling: -	Unit selection: p0349
VECTOR_I_AC	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	

r0396[0...n]	Actual rotor resistance / R_rotor act		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6730
SERVO_I_AC,	P-Group: Motor	Unit group: 16_1	Unit selection: p0349
VECTOR_I_AC	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the actual rotor/secondary section resistance (phase value).		
Dependency:	Refer to: p0354, p0620		
Note:	In each case, only the rotor resistance of the active Motor Data Set is included with the rotor temperature of the thermal motor model. This parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		

p0397[0...n]	Angle magnetic decoupling maximum angle / Magn decpl max_ang		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-90.0\left[{ }^{\circ}\right]$	$90.0\left[{ }^{\circ}\right]$	$90.0\left[{ }^{\circ}\right]$
Description:	Maximum angle when calculating the polynomial function to decouple the magnetic flux axes for permanent-magnet		
	synchronous motors (see p0398, p0399).		

p0398[0...n]	Angle magn decoupling (cross saturation) coeff 1 / Magn decoupl C1		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL,	Scaling: -	Expert list: 1
	RESM	Max	Factory setting
	Min	10.000000	0.000000

p0399[0...n]	Angle magn decoupling (cross saturation) coeff 3 / Magn decoupl C3		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10.000000	10.000000	0.000000
Description:	The magnetic cross coupling of the motor's d and q axes caused by saturation (current-dependent) leads to an angle offset affecting the axis system d'q'; this decouples the magnetic quantities.		
	The angle offset can be described as a 3rd order polynomial function of the load current consumed: phiOffset $=f\left(C 1^{*} i q+C 3^{*} i q^{\wedge} 3\right)$		

2.2 List of parameters


```
10050: Encoder with EnDat2.x interface identified
10051: DRIVE-CLiQ encoder identified
10058: Digital encoder (absolute) identified
10059: Digital encoder (incremental) identified
10100: Identify encoder (waiting)
Notice: An encoder type with p0400<9999 defines an encoder for which there is an encoder parameter list.
When selecting a catalog encoder (p0400 < 9999) the parameters from the encoder parameter list cannot be
changed (write protection). To remove write protection, the encoder type should be set to a third-party encoder
(p0400 = 9999).
Note: The connected encoder can be identified by setting p0400 to 10000 or 10100. This means that the encoder must support this, and is possible in the following cases:
- motor with DRIVE-CLiQ
- encoder with EnDat interface
- DRIVE-CLiQ encoder
- encoder with SSI interface (only 10100)
The encoder data (e.g. pulse number p0408) can only be changed when p0400 \(=9999\).
When using an encoder with track \(A / B\) and zero pulse, as standard, fine synchronization is not set using a zero mark. If, for a synchronous motor, fine synchronization is to be realized using a zero mark, then the following must be executed:
- set p0400 to 9999
- set p0404.15 to 1
Prerequisite:
Coarse synchronization must be selected (e.g. pole position identification) and the zero pulse of the encoder must be either mechanically or electronically (p0431) adjusted to the pole position.
For p0400 = 10000 the following applies:
The connected encoder is identified. If an identification is not possible, then p0400 is set to 0 .
For p0400 = 10100 the following applies:
The connected encoder is identified. If identification is not possible, then p0400 remains set \(=10100\), and the system waits until identification is possible.
```


2.2 List of parameters

For p0402 $=10000$
It is only possible to identify the gearbox type for a motor with DRIVE-CLiQ. Parameters p0410, p0432 and p0433 are set corresponding to the identified gearbox. If an identification is not possible, then p0402 is set to 9999 .

Notice: \quad This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p 0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.

Note:

ZM: Zero mark
SMC: Sensor Module Cabinet
If a technique to determine the commutation information/data has not been selected (e.g. track C/D, Hall sensor), and the encoder pulse number is an integer multiple of the pole number, then the following applies:

The track A / B is adjusted to match the magnetic position of the motor.
For bit 01, 02 (absolute encoder, multiturn encoder):
These bits can only be selected for EnDat encoders, SSI encoders or DRIVE-CLiQ encoders.
For bit 10 (DRIVE-CLiQ encoder):
This bit is only used for the large-scale integrated DRIVE-CLiQ encoders that provide their encoder data directly in DRIVE-CLiQ format without converting this data. This bit is not, therefore, set for first-generation DRIVE-CLiQ encoders.
For bit 12 (equidistant zero mark):
The zero marks occur at regular intervals (e.g. rotary encoder with 1 zero mark per revolution or linear encoder with constant zero mark distance).
The bit activates monitoring of the zero mark distance (p0424/p0425, linear/rotary) or in the case of the linear encoder with 1 zero mark and p0424 $=0$ zero mark monitoring is activated.
For bit 13 (irregular zero mark):
The zero marks occur at irregular intervals (e.g. a linear scale with only 1 zero mark in the traversing range). The zero mark distance is not monitored.

For bit 14 (distance-coded zero mark):
The distance (clearance) between two or several consecutive zero marks allows the absolute position to be calculated.
For bit 15 (commutation with zero mark):
Only applicable for synchronous motors.
The function can be de-selected by priority via p0430.23.
For distance-coded zero marks, the following applies:
The phase sequence of the C / D track (if available) must be the same as the phase sequence of the encoder (A/B track).
The phase sequence of the Hall signal (if available) must be the same as the phase sequence of the motor. Further, the position of the Hall sensor must be mechanically adjusted to the motor EMF.
The fine synchronization is only started after two zero marks have been passed.

Notice: \quad This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p 0400).
When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.
If an SSI encoder (bit $9=1$) is used as motor encoder for permanent-magnet synchronous motors, then this is only permissible in conjunction with an additional A / B track (bit $3=1$ or bit $4=1$).
Note:
ZM: Zero mark
SMC: Sensor Module Cabinet
If a technique to determine the commutation information/data has not been selected (e.g. track C/D, Hall sensor), and the encoder pulse number is an integer multiple of the pole number, then the following applies:
The track A / B is adjusted to match the magnetic position of the motor.
For bit 01, 02 (absolute encoder, multiturn encoder):
These bits can only be selected for EnDat encoders, SSI encoders or DRIVE-CLiQ encoders.

2.2 List of parameters

For bit 10 (DRIVE-CLiQ encoder):
This bit is only used for the large-scale integrated DRIVE-CLiQ encoders that provide their encoder data directly in DRIVE-CLiQ format without converting this data. This bit is not, therefore, set for first-generation DRIVE-CLiQ encoders.
For bit 12 (equidistant zero mark):
The zero marks occur at regular intervals (e.g. rotary encoder with 1 zero mark per revolution or linear encoder with constant zero mark distance).
The bit activates monitoring of the zero mark distance (p0424/p0425, linear/rotary) or in the case of the linear encoder with 1 zero mark and p0424 $=0$ zero mark monitoring is activated.
For bit 13 (irregular zero mark):
The zero marks occur at irregular intervals (e.g. a linear scale with only 1 zero mark in the traversing range). The zero mark distance is not monitored.

For bit 14 (distance-coded zero mark):
The distance (clearance) between two or several consecutive zero marks allows the absolute position to be calculated
For bit 15 (commutation with zero mark):
Only applicable for synchronous motors.
The function can be de-selected by priority via p0430.23.
For distance-coded zero marks, the following applies:
The phase sequence of the C/D track (if available) must be the same as the phase sequence of the encoder (A/B track).
The phase sequence of the Hall signal (if available) must be the same as the phase sequence of the motor. Further, the position of the Hall sensor must be mechanically adjusted to the motor EMF.
The fine synchronization is only started after two zero marks have been passed.

p0405[0...n]	Square-wave encoder track A/B / Sq-wave enc A/B				
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, ENC			Calculated: - Dyn. index: EDS, p0140	Access level: 3	
	Can be changed: C2(4) Data type: Unsigned32			Func. diagram: 4704	
	P-Group: Encoder		Unit group: -	Unit selec	
	Not for motor type: -		Scaling: -	Expert list:	
	Min		Max	Factory setting	
			-	00001111 bin	
Description:	Settings for the track A / B in a square-wave encoder.				
	For square-wave encoders, p0404.3 must also be 1.				
Bit field:		Signal name	1 signal	0 signal \quad FP	
		Signal	Bipolar	Unipolar	-
		Level	TTL	HTL	-
		Track monitoring	$A / B<>-A / B$	None	-
		Zero pulse	Same as A/B track	24 V unipolar	-
		Switching threshold	High	Low	-
		Pulse/direction	Active	Inactive	-
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).				
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.				
Note:	For bit 02:				
	When the function is activated, track monitoring can be deactivated by setting p0437.26.				
	For bit 05:				
	When the function is activated, a frequency setpoint and a direction for traveling can be entered via an encoder interface.				

p0408[0...n]	Rotary encoder pulse number / Rot enc pulse No.		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: 4010,4704
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Factory setting	
	Min	16777215	2048
Description:	0	Sets the number of pulses for a rotary encoder.	
	In conjunction with the values in p0418/p0419, the pulse number defines the transfer format for position actual values		
	Gn_XIST1 (r0482) and Gn_XIST2 (r0483).		
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		
Note:	be carefully observed when removing write protection.		
	The smallest permissible value is 1 pulse.		
	The number of pole pairs for a resolver is entered here.		
	This value does not always correspond to the pulse number of the measuring device. For a DRIVE-CLiQ encoder, a		
	value is entered here that facilitates optimum transfer of the resolution (p0423).		

p0408

TM41

Description: Sets the pulse number output from the encoder emulation
Note:
For p4408 = 0, the following applies:
Parameters p0408 and p0418 have a double significance. They define the format of the position actual value from the original encoder (TM41 input) and the format of the TM41 output.
In this case, the zero mark is only correctly output, if the two parameters p0408 and p0418 for the TM41 and the encoder interconnected at p4420 have the same setting.

2.2 List of parameters

p0410[0...n]	Encoder inversion actual value / Enc inv act value			
HLA	Can be changed: C2(4)	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: 4965	
	P-Group: Encoder	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0000 bin	
Description:	Setting to invert actual values.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Invert velocity actual value	Yes	No	4710,
				$4711,$
	01 Invert position actual value	Yes	No	4704
Note:	The inversion influences the following parameters:			
	Bit 00: r0061, r0063, r0094			
	Bit 01: r0482, r0483			

p0410[0...n]	Encoder inversion actual value / Enc inv act value			
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin), ENC (Lin_enc)	Can be changed: C2(4)	Calculated: -	Acce	
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func 4711,	
	P-Group: Encoder	Unit group: -	Unit	
	Not for motor type: -	Scaling: -	Expe	
	Min	Max	Facto	
	-	-	0000	
Description:	Setting to invert actual values.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Invert velocity actual value	Yes	No	$\begin{aligned} & 4710, \\ & 4711, \\ & 4715 \end{aligned}$
	01 Invert position actual value	Yes	No	4704
Note:	The inversion influences the following parameters:			
	Bit 00: r0061, r0063 (exception: encoderless control), r0094			
	Bit 01: r0482, r0483			

Notice: \quad For p0411.3 = 1 the following applies:
If position tracking is activated for incremental encoders, only the position actual value is stored. Axis or encoder motion is not detected when deactivated! Any tolerance window entered in p0413 has no effect.
Note: \quad For the following events, the non-volatile, saved position values are automatically reset:

- when an encoder replacement has been identified.
- when changing the configuration of the Encoder Data Set (EDS).

p0413[O...n]	Measuring gear position tracking tolerance window / Pos track window		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Dyn. index: EDS, p0140

p0414[0...n]	Redundant coarse position value relevant bits (identified) / Relevant bits		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	16	16
	0		
Description:	Sets the number of relevant bits for the redundant coarse position value.		

p0415[0...n]	Gx_XIST1 Coarse position safe most significant bit (identified) / Gx_XIST1 safe MSB		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	31	14
	0		
Description:	Sets the bit number for the safe most significant bit (MSB) of the Gx_XIST1 coarse position.		
Note:	MSB: Most Significant Bit		

p0416[0...n]	Non safety-relevant meas. steps position value POS1 (detected) / nsrPos1		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	4294967295	22000
	0		
Description:	Sets the non safety-relevant measuring steps of POS1.		
Dependency:	Refer to: r0473, p9513		

p0421[0...n]	Absolute encoder rotary multiturn resolution / Enc abs multiturn		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: 4704
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	4294967295	4096
	0		
Description:	Sets the number of rotations that can be resolved for a rotary absolute encoder.		
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		
	be carefully observed when removing write protection.		

p0422[0...n]	Absolute encoder linear measuring step resolution / Enc abs meas step		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: 4704
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_I_AC, } \end{aligned}$	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [nm]	$4294967295[\mathrm{~nm}]$	100 [nm]
Description:	Sets the resolution of the absolute position for a linear absolute encoder.		
Notice:	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		
Note:	The serial protocol of an must be entered here.	rovides the position with a	olution (e.g. 100 nm). This value

p0423[0...n]	Absolute encoder rotary singleturn resolution / Enc abs singleturn		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: 4704
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Max	Expert list: 1
VECTOR_I_AC, ENC	Not for motor type: -	Min	Factory setting
	Min3741823	8192	
Description:	0	Sets the number of measuring steps per revolution for a rotary absolute encoder.	
Notice:	The resolution refers to the absolute position.		
	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		
	be carefully observed when removing write protection.		

p0424[0...n]	Encoder linear zero mark distance / Enc lin ZM_dist		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	$65535[\mathrm{~mm}]$	$20[\mathrm{~mm}]$
	$0[\mathrm{~mm}]$		
Description:	Sets the distance between two zero marks for a linear encoder.		
Notice:	This information is used for zero mark monitoring.		
	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		
Note:	be carefully observed when removing write protection.		

p0425[0...n]	Encoder rotary zero mark distance / Enc rot dist ZM		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: 4704, 8570
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	16777215	2048
	0		
Description:	Sets the distance in pulses between two zero marks for a rotary encoder.		
Notice:	This information is used for zero mark monitoring.		
	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		
Note:	be carefully observed when removing write protection.		

p0426[0...n]	Encoder zero mark differential distance / Enc ZM Dif_dist		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	65535	1
	1		
Description:	Sets the differential pitch for distance-coded zero marks (signal periods).		
	The value corresponds to jump displacement of "zero mark with interference".		
Dependency:	This function can only be used when a Sensor Module property is available (r0459.9 $=1$).		

Notice: \quad This parameter is automatically preassigned for encoders from the encoder list and for identify encoder ($p 0400$). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.

p0427[0...n]	Encoder SSI baud rate / Enc SSI baud rate		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	$65535[\mathrm{kHz}]$	$100[\mathrm{kHz}]$
	$0[\mathrm{kHz}]$		
Description:	Sets the baud rate for an SSI encoder.		
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		
	be carefully observed when removing write protection.		
Note:	SSI: Synchronous Serial Interface		

p0428[0...n]	Encoder SSI monoflop time / Enc SSI t_monoflop		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	$65535[\mu \mathrm{~s}]$	$30[\mu \mathrm{~s}]$
	$0[\mu \mathrm{~s}]$		
Description:	Sets the minimum delay time between two data transfers of the absolute value for an SSI encoder.		
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		
	be carefully observed when removing write protection.		

p0429[0...n]	Encoder SSI configuration / Enc	SSI config		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, ENC	Can be changed: C2(4) Calculated: -		Access level: 3	
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -	
	P-Group: Encoder	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	00000000 bin	
Description:	Sets the configuration for an SSI encoder.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Transfer code	Binary code	Gray code	-
	02 Transfer absolute value twice	Yes	No	-
	06 Data line during the monoflop time	High level	Low level	-

Notice: \quad This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p 0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.
Note:
For bit 06:
The quiescent signal level of the data line corresponds to the inverted, set level.

p0430[0...n]	Sensor Module configuration / SM config				
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, ENC	Can be changed: C2(4)		lated: -	Access level:	
	Data type: Unsigned32		index: EDS, p0140	Func. diagram	
	P-Group: Encoder		group: -	Unit selection	
	Not for motor type: -		ng: -	Expert list: 1	
	Min			Factory settin	
	- -		-	11100000000010000000 000000000000 bin	
Description:	Sets the configuration of the Sensor Module.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	17	Burst oversampling	Yes	No	-
	18	Continuous oversampling (reserved)	Yes	No	-
	19	Safety position actual value sensing	Yes	No	-
	20	Speed calculation mode (only SMC30)	Incremental diff	Flank time meas	-
	21	Zero mark tolerance	Yes	No	-
	22	Rotor position adaptation	Yes	No	-
	23	De-select commutation with zero mark	Yes	No	-
	24	Commutation with selected zero mark	Yes	No	-
	25	Switch off encoder voltage supply during parking	Yes	No	-
	27	Extrapolate position values	Yes	No	-
	28	Cubic correction	Yes	No	-
	29	Phase correction	Yes	No	-
	30	Amplitude correction	Yes	No	-
	31	Offset correction	Yes	No	-
Notice:	A bit	wise configuration is only possible if the cor	ponding property is	sent in r0458.	
Note:	For bit 17 (burst oversampling):				
	- if bit $=1$, burst oversampling is switched on.				
	For bit 18 (continuous oversampling):				
	- if bit $=1$, continuous oversampling is switched on.				
	For bit 19 (Safety position actual value sensing):				
	- if bit = 1, the Safety position actual value is transferred in the cyclic telegram.				
	For bit 20 (speed calculation mode):				
	- if bit $=1$, the speed is calculated via incremental difference without extrapolation.				
	- if bit $=0$, the speed is calculated via edge time measurement with extrapolation. p0453 is effective in this mode				
	- if bit $=1$, a one-off zero mark distance error is tolerated. In the event of a defect, the fault $\mathrm{F} 3 \times 100 / \mathrm{F} 3 \times 101$ does not appear, but alarm A3×400/A3×401 does.				
	For bit 22 (rotor position adaptation):				
	- if bit $=1$, the rotor position is corrected automatically. The correction speed is $+/-1 / 4$ encoder pulse per zero mark distance.				
	For bit 23 (de-select commutation with zero mark):				
	- the bit should only be set for encoders that have not been adjusted.				
	For bit 24 (commutation with selected zero mark):				
	- if bit $=1$, the commutation position is corrected via a selected zero mark.				
	For bit 25 (disconnect the encoder power supply on parking):				
	- if bit = 1, the encoder power supply is switched off on parking (0 V).				
	- if bit $=0$, the encoder power supply is not switched off on parking, it is reduced from 24 V to 5 V .				
	For bit 27 (extrapolate position values):				
	- if bit $=1$, the extrapolation of the position values is activated.				
	For bit 28 (cubic correction);				
	- if bit = 1, the cubic correction for track A/B sine is activated.				
	For bit 29 (phase correction):- if bit $=1$, the phase correction for track A/B sine is activated.				

For bit 30 (amplitude correction):

- if bit = 1 , the amplitude correction for track A / B sine is activated.

For bit 31 (offset correction):

- if bit $=1$, the offset correction for track A / B sine is activated.

p0430[0...n]	Sensor Module configuration / SM config					
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin), ENC (Lin_enc)			Calculated: - Dyn. index: EDS, p0140	Access level: 3		
	Can be changed: C2(4)Data type: Unsigned32			Func. diagram: -		
	P-Group: Encoder U		Dyn. index: EDS, p0140	Unit selection: -		
	Not for motor type: - S		Scaling: -	Expert list: 1		
	Min		Max	Factory setting		
	-		-	11100000000010000000 000000000000 bin		
Description:	Sets the configuration of the Sensor Module.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	17	Burst oversampling	Yes	No	-	
	18	Continuous oversampling (reserved)	Yes	No	-	
	19	Safety position actual value sensing	Yes	No	-	
	20	Velocity calculation mode (only SMC30)	Incremental diff	Flank time meas	-	
	21	Zero mark tolerance	Yes	No	-	
	22	Rotor position adaptation	Yes	No	-	
	23	De-select commutation with zero mark	Yes	No	-	
	24	Commutation with selected zero mark	Yes	No	-	
	25	Switch off encoder voltage supply during parking	Yes	No	-	
	27	Extrapolate position values	Yes	No	-	
	28	Cubic correction	Yes	No	-	
	29	Phase correction	Yes	No	-	
	30	Amplitude correction	Yes	No	-	
	31	Offset correction	Yes	No	-	
Notice: Note:	A bit-wise configuration is only possible if the corresponding property is also present in r0458.					
	For bit 17 (burst oversampling):					
	- if bit = 1, burst oversampling is switched on.					
	For bit 18 (continuous oversampling):					
	- if bit = 1, continuous oversampling is switched on.					
	For bit 19 (Safety position actual value sensing):					
	- if bit = 1, the Safety position actual value is transferred in the cyclic telegram.					
	For bit 20 (speed calculation mode):					
	- if bit = 1 , the speed is calculated via incremental difference without extrapolation.					
	- if bit $=0$, the speed is calculated via edge time measurement with extrapolation. p0453 is effective in this mode. For bit 21 (zero mark tolerance):					
	- if bit = 1 , a one-off zero mark distance error is tolerated. In the event of a defect, the fault F3×100/F3×101 does no appear, but alarm A3×400/A3×401 does.					
	For bit 22 (rotor position adaptation):					
	- if bit $=1$, the rotor position is corrected automatically. The correction speed is $+/-1 / 4$ encoder pulse per zero mark distance.					
	For bit 23 (de-select commutation with zero mark):					
	- the bit should only be set for encoders that have not been adjusted.					
	For bit 24 (commutation with selected zero mark):					
	- if bit $=1$, the commutation position is corrected via a selected zero mark.					
	For bit 25 (disconnect the encoder power supply on parking):					
	- if bit = 1, the encoder power supply is switched off on parking (0 V).					
	- if bit $=0$, the encoder power supply is not switched off on parking, it is reduced from 24 V to 5 V .					
	For bit 27 (extrapolate position values):					
	- if bit $=1$, the extrapolation of the position values is activated.					
		28 (cubic correction);				
	- if bit = 1 , the cubic correction for track A / B sine is activated.					

For bit 29 (phase correction):

- if bit = 1, the phase correction for track A / B sine is activated.

For bit 30 (amplitude correction):

- if bit = 1 , the amplitude correction for track A / B sine is activated.

For bit 31 (offset correction):

- if bit = 1 , the offset correction for track A / B sine is activated.

p0431[0...n]	Angular commutation offset / Ang_com offset		
SERVO, HLA, SERVO_AC, SERVO_I_AC	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-180.00 [${ }^{\circ}$]	180.00 [${ }^{\circ}$]	0.00 [${ }^{\circ}$]
Description:	Sets the angular commutation offset.		
Dependency:	The value is taken into account in r0094.		
	Refer to: r0094, r1778		
Notice:	When the firmware is upgraded from V 2.3 to V 2.4 or higher, the value must be reduced by 60° if all the following conditions are fulfilled:		
	- the motor is a synchronous motor ($\mathrm{p} 0300=2,2 \mathrm{xx}, 4,4 \mathrm{xx}$).		
	- the encoder is a resolver ($\mathrm{p} 0404.23=1$).		
	- the actual speed value is inverted ($00410.0=1$).		
	The angular commutation offset cannot be generally taken from other drive systems. As a minimum - the sign of the offset determined for SIMODRIVE 611 digital and SIMODRIVE 611 universal must be reversed for SINAMICS (p0431 (SINAMICS) = -p1016 (SIMODRIVE)).		
Note:	Angular commutation offset, angular difference between electrical position of encoder and flux position.		
	For p0404.5 = 1 (track C/D) the following applies:		
	The angular offset in p0431 acts on track A/B, the zero mark on track C/D.		
	For p0404.6 = 1 (Hall sensor) the following applies:		
	The angular offset in p0431 acts on track A/B and the zero mark.		

p0431[0...n]	Angular commutation offset / Ang_com offset		
VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_I_AC	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: ASM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-180.00\left[{ }^{\circ}\right]$	$180.00\left[{ }^{\circ}\right]$	$0.00\left[{ }^{\circ}\right]$

Description:	Sets the angular commutation offset.
Dependency:	The value is taken into account in r0094.
	Refer to: r0094, r1778
Notice:	When the firmware is upgraded from V 2.3 to V 2.4 or higher, the value must be reduced by 60° if all the following conditions are fulfilled:
	- the motor is a synchronous motor ($\mathrm{p} 0300=2,2 \mathrm{xx}, 4,4 \mathrm{xx}$).
	- the encoder is a resolver ($\mathrm{p} 0404.23=1$).
	- the actual speed value is inverted ($00410.0=1$).
	The angular commutation offset cannot be generally taken from other drive systems. As a minimum - the sign of the offset determined for SIMODRIVE 611 digital and SIMODRIVE 611 universal must be reversed for SINAMICS $($ p0431 (SINAMICS) $=-p 1016$ (SIMODRIVE)).
Note:	Angular commutation offset, angular difference between electrical position of encoder and flux position.
	For p0404.5 = 1 (track C/D) the following applies:
	The angular offset in p0431 acts on track A/B, the zero mark on track C/D.
	For p0404.6 = 1 (Hall sensor) the following applies:
	The angular offset in p0431 acts on track A/B and the zero mark.

p0435[0...n]	Encoder SSI alarm bit / Enc SSI alarm bit		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_IAC, } \end{aligned}$	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the position and level of the alarm bit in the SSI protocol.		
Notice:	The bit may only be positioned before (p 0446) or after (p 0448) the absolute value in the SSI protocol		
Note:	Value = dcba		
	ba: Position of the alarm bit in protocol ($0 \ldots 63$).		
	c: Level (0: Low level, 1: High level).		
	d: Status of the evaluation (0: Off, 1: On with 1 alarm bit, 2: On with 2 alarm bits ... 9: On with 9 alarm bits).		
	- the position specified under ba and the additional bits are assigned increasing consecutively.		
	- the level set under c applies to all error bits.		
	Example:		
	p0435 $=1014$		
	--> The evaluation is switched in and the alarm bit is at position 14 with a low level.		
	p0435 $=1114$		
	--> The evaluation is swit	m bit is at position 14 with	

p0436[0...n]	Encoder SSI parity bit / Enc SSI parity bit		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO IAC. } \end{aligned}$	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the position and parity of the parity bit in the SSI protocol.		
Notice:	The bit may only be positioned before (p 0446) or after (p 0448) the absolute value in the SSI protocol.		
Note:	Value $=$ dcba		
	ba: Position of the parity bit in the protocol ($0 \ldots 63$).		
	c: Parity (0: even, 1: uneven).		
	d : State of the evaluation (0: Off, 1: On).		
	Example:		
	p0436 $=1015$		
	--> The evaluation is switched in and the parity bit is at position 15 with even parity.$\mathrm{p} 0436=1115$		
	--> The evaluation is switched in and the parity bit is at position 15 with uneven parity.		

For bit 11:
If the bit is set, the Sensor Module checks within a certain time grid whether the fault cause is still present. This enables the Sensor Module to switch from the fault state to the operating state and provide valid actual values automatically. The faults are displayed until the user acknowledges them.
For bit 12:
Additional fault messages can be activated for extended fault diagnostics.
For bit 13:
When the bit is set, for an incremental encoder with zero mark, the absolute value in Gn_XIST2 can be requested via Gn_STW.13. The absolute value is only valid after passing the zero mark.
For bit 22:
When the bit is set, the resolution of the absolute position in the serial protocol is set using distribution factor in p4630. The resolution for the absolute position is then calculated using p0407/p4630.
For bit 26:
Track monitoring is deactivated for the square-wave encoders when the bit is set, even if the monitoring function is selected in p0405.2.
For bit 28:
Monitoring of the difference between incremental and absolute position in the case of linear encoders.
For bit 29:
When the bit is set, the EnDat encoder is initialized under a certain speed and, therefore, with high accuracy. If initialization at a higher speed is requested, fault F31151, F32151, or F33151 is output.
For bit 31:
When monitoring is active, the levels of the individual track signals and the corresponding inverted track signals are monitored separately.

p0437[0...n]	Sensor Module configuration extended / SM config ext				
SERVO (Lin),	Can be changed: C2(4) C		ulated: -	Access level: 3	
SERVO_AC (Lin),	Data type: Unsigned32 D		index: EDS, p0140	Func. diagram: -	
SERVO_I_AC (Lin), ENC (Lin enc)	P-Group: Encoder U		group: -	Unit selection: -	
	Not for motor type: - S			Expert list: 1	
	Min			Factory setting	
	-		-	00110000000000000000 100000000000 bin	
Description:	Sets the extended configuration of the Sensor Module.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Data logger	Yes	No	-
		Zero mark edge detection	Yes	No	-
	02	Correction position actual value XIST1	Yes	No	-
	04	Edge evaluation bit 0	Yes	No	-
	05	Edge evaluation bit 1	Yes	No	-
	06	Freeze the speed actual value for $\mathrm{dn} / \mathrm{dt}$ errors	Yes	No	-
	07	Do not accumulate the number of incorrect pulses	Yes	No	-
	11	Fault handling after PROFIdrive	Yes	No	-
	12	Activate additional messages	Yes	No	-
	13	Support absolute position for incremental encoder	Yes	No	4750
	22	Resolution absolute position as factor	Yes	No	-
	25	Deselect monitoring multiturn representation in Gx_XIST2	Yes	No	-
	26	Deselect track monitoring	Yes	No	-
	28	EnDat linear encoder monitoring incremental/absolute	Yes	No	-
	29	EnDat encoder initialization with high accuracy	Yes	No	-
	31	Analog unipolar track monitoring	Yes	No	-
Dependency:	Refer to: p0430, r0459				

2.2 List of parameters

A value of zero is displayed if an encoder is not present.
For bit 00:
When the data logger (trace) is activated, in the case of a fault, data before and after the event are recorded (traced)
and saved in files on the non-volatile memory medium. Experts can then evaluate this data.
For bit 01:
If bit $=0$, the zero mark is evaluated by ANDing tracks A and B and the zero mark.
For bit = 1, the zero mark is evaluated depending on the direction detected. For a positive direction, the positive edge
of the zero mark is considered and for a negative direction, the negative edge of the zero mark.
For bit 02:
When the bit is set, for a deviation less than the tolerance window for the zero mark (p4681, p4682), the pulse
number is corrected. If the bit is not set, encoder fault F3x131 is triggered.
For bits 05,04 :
Bit $5 / 4=0 / 0$: Signal evaluation per period, $4 x$.
Bit $5 / 4=1 / 0$: Signal evaluation per period, $4 x$.
Bit $5 / 4=0 / 1$: Signal evaluation per period, $1 x$.
Bit $5 / 4=1 / 1$: Illegal setting.
For bit 06:
If the function is active, when dn/dt monitoring responds, the velocity actual value is internally frozen for a time
equivalent to two current controller sampling times. The rotor position continues to be integrated. The actual value is
then re-enabled after this time has expired.
For bit 07:
When the bit is not set, the incorrect pulses that have occurred up until now are accumulated in p4688.
When the bit is not set, p4688 indicates the incorrect pulses that have still not been corrected.
For bit 29 :
When the bit is set, the EnDat encoder is initialized under a certain velocity and, therefore, with high accuracy. If
initialization at a higher velocity is requested, fault F31151, F32151, or F33151 is output.
For bit 31 :
When monitoring is active, the levels of the individual track signals and the corresponding inverted track signals are
monitored separately.

p0438[0...n]	Squarewave encoder filter time / Enc t_filt		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, ENC	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	100.00 [$\mu \mathrm{s}$]	0.64 [$\mu \mathrm{s}$]
Description:	Sets the filter time for a squarewave encoder.		
	The hardware of the squarewave encoder only supports the following values:		
	0 : No filtering		
	$0.04 \mu \mathrm{~s}$		
	$0.64 \mu \mathrm{~s}$		
	$2.56 \mu \mathrm{~s}$		
	$10.24 \mu \mathrm{~s}$		
	20.48 ¢		
Dependency:	Refer to: r0452		
Notice:	If the filter time is too long, the track signals $A / B / R$ may be suppressed and the appropriate messages output.		
Note:	The filter time is automatically corrected to the next value when entering a non-specified value. In this case, no message is output.		
	The effective filter time is displayed in r0452.		

1.) When commissioning 1FT6, 1FK6, 1FK7 motors.
2.) When writing into p0431.
3.) For $\mathrm{p} 1990=1$.
p0440 is automatically set to 0 when the copying has been completed.
In order to permanently accept the copied values, it is necessary to save in a non-volatile fashion (p0977).

p0441[0...n]	Encoder commissioning serial number part 1/Enc comm ser_no 1		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Max	Expert list: 1
VECTOR_I_AC, ENC	Not for motor type: -	Min	FFFF FFFF hex
	0000 hex	Factory setting	
	Serial number part 1 of the encoder for the commissioning.		
Description:	Refer to: p0440, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0463, r0464		
Dependency:	Refer to: F07414		
	A value of zero is displayed if an encoder is not present.		

p0444[0...n]	Encoder commissioning serial number part 4 / Enc comm ser_no 4		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC, SERVO I AC	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Serial number part 4 of the encoder for the commissioning.		
Dependency:	Refer to: p0440, p0441, p0442, p0443, p0445, r0460, r0461, r0462, r0463, r0464		
	Refer to: F07414		
Note:	A value of zero is displayed if an encoder is not present.		
p0445[0...n]	Encoder commissioning serial number part 5 / Enc comm ser_no 5		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
SERVO_I_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Serial number part 5 of the encoder for the commissioning.		
Dependency:	Refer to: p0440, p0441, p0442, p0443, p0444, r0460, r0461, r0462, r0463, r0464		
	Refer to: F07414		
Note:	A value of zero is displayed if an encoder is not present.		

p0446[0...n]	Encoder SSI number of bits before the absolute value / Enc SSI bit before		
SERVO, VECTOR,	Can be changed: C 2 (4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_I_AC, } \end{aligned}$	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the number of bits before the absolute value in the SSI protocol.		
Notice:	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		
Note:	For example, error bit, alarm bit or parity bit can be positioned at these bits.		
p0447[0...n]	Encoder SSI number of bits absolute value / Enc SSI bit val		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
SERVO_I_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	25
Description:	Sets the number of bits for the absolute value in the SSI protocol.		
Notice:	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		

p0448[0...n]	Encoder SSI number of bits after the absolute value / Enc SSI bit after		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
SERVO IAC	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the number of bits after the absolute value in the SSI protocol.		
Notice:	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		
Note:	For example, error bit, a	be positioned at thes	

p0449[0...n]	Encoder SSI number of bits filler bits / Enc SSI fill bits		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Max	Expert list: 1
VECTOR_I_AC, ENC	Not for motor type: -	65535	Factory setting
	Min	1	
Description:	0	Sets the number of filler bits for double absolute value transfer in the SSI protocol.	
Dependency:	Refer to: p0429	This parameter is automatically preassigned for encoders from the encoder list and for identify encoder (p0400).	
Notice:	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should		
	be carefully observed when removing write protection.		
Note:	This parameter is only of significance for p0429.2 =1.		

2.2 List of parameters

r0451[0...2]	Commutation angle factor / Enc commut_factor		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 4710
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_IAC, } \end{aligned}$	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the relationship between the electrical and mechanical pole positions.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		

r0452[0...2]	Squarewave encoder filter time display/Enc t_filt displ		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	$-[\mu \mathrm{s}]$	$-[\mu \mathrm{s}]$
	$-[\mu \mathrm{s}]$		
Description:	Displays the effective filter time for a squarewave encoder.		
	The filter time is set using p0438.		

Index
[0] = Encoder 1
[1] = Encoder 2
[2] = Encoder 3
Dependency: Refer to: p0438
Note: A value of zero is displayed if an encoder is not present.

r0452	Squarewave encoder filter time display / Enc t_filt displ		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]
Description:	Displays the effective filter time for a squarewave encoder. The filter time is set using p0438.		
Dependency:	Refer to: p0438		
Note:	A value of zero is displayed if an encoder is not present.		
p0453[0...n]	Pulse encoder evaluation zero speed measuring time / Enc_ev n_0 t_meas		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO I AC, } \end{aligned}$	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.10 [ms]	10000.00 [ms]	1000.00 [ms]
Description:	Sets the measuring time for evaluating zero speed. If no pulses are detected from track A / B during this time, a speed actual value of zero is output.		
Dependency:	Refer to: r0452		
Note:	This function is required for slow-running motors so that actual speeds close to zero can be output correctly.		

p0454[0...n]	Sensor Module configuration extended Part 2 / SM config ext 2			
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, ENC	Can be changed: C2(4) Data type: Unsigned32 P-Group: Encoder Not for motor type: - Min	Calculated: - Dyn. index: EDS, p0140 Unit group: - Scaling: - Max	Access level: 3 Func. diagram: - Unit selection: - Expert list: 1 Factory setting 0000 bin	
Description: Dependency:	Sets the extended configuration Part 2 of the Refer to: r0457	Sensor Module.		
r0455[0...2] SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Encoder configuration recognize Can be changed: - Data type: Unsigned32 P-Group: Encoder Not for motor type: - Min	/ Enc_config recog Calculated: - Dyn. index: - Unit group: - Scaling: - Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting	
Description Index:	Displays the detected encoder configuration. In this case, the encoder must automatically sup [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3	support the function (e.g. e	with EnDat interface).	
Bit field:	Bit Signal name 00 Linear encoder 01 Absolute encoder 02 Multiturn encoder 03 Track A/B square-wave 04 Track A/B sine 05 Track C/D 06 Hall sensor 08 EnDat encoder 09 SSI encoder 10 DRIVE-CLiQ encoder 11 Digital encoder 12 Equidistant zero mark 13 Irregular zero mark 14 Distance-coded zero mark 15 Commutation with zero mark (not ASM) 16 Acceleration 17 Track A/B analog 20 Voltage level 5 V 21 Voltage level 24 V 22 Remote sense (only SMC30) 23 Resolver excitation	1 signal Yes	0 signal No	FP
Dependency: Note:	Refer to: p0404 ZM: Zero mark This parameter is only used for diagnostics. A value of zero is displayed if an encoder is not For bit 20, 21 (voltage level 5 V , voltage level The voltage level cannot be detected. Therefo	ot present. $24 \mathrm{~V}):$ ore, these bits are always		

2.2 List of parameters

r0455	Encoder configuration recognized / Enc_config recog			
ENC	Can be changed: -	Calculated: - Acces		
	Data type: Unsigned32 Der	Dyn. index: - Func.		
	P-Group: Encoder Unis	Unit group: -	Unit s	
	Not for motor type: - Sca	Scaling: -	Exper	
	Min	Max	Factory setting	
	- -	-	-	
Description:	Displays the detected encoder configuration.			
	In this case, the encoder must automatically support the function (e.g. encoder with EnDat interface).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Linear encoder	Yes	No	-
	01 Absolute encoder	Yes	No	-
	02 Multiturn encoder	Yes	No	-
	03 Track A/B square-wave	Yes	No	-
	04 Track A/B sine	Yes	No	-
	05 Track C/D	Yes	No	-
	06 Hall sensor	Yes	No	-
	08 EnDat encoder	Yes	No	-
	09 SSI encoder	Yes	No	-
	10 DRIVE-CLiQ encoder	Yes	No	-
	11 Digital encoder	Yes	No	-
	12 Equidistant zero mark	Yes	No	-
	13 Irregular zero mark	Yes	No	-
	14 Distance-coded zero mark	Yes	No	-
	15 Commutation with zero mark (not ASM)) Yes	No	-
	16 Acceleration	Yes	No	-
	17 Track A/B analog	Yes	No	-
	20 Voltage level 5 V	Yes	No	-
	21 Voltage level 24 V	Yes	No	-
	22 Remote sense (only SMC30)	Yes	No	-
	23 Resolver excitation	Yes	No	-
Dependency:	Refer to: p0404			
Note:	ZM: Zero mark			
	This parameter is only used for diagnostics.			
	A value of zero is displayed if an encoder is not present.			
	For bit 20, 21 (voltage level 5 V , voltage level 24 V):			
	The voltage level cannot be detected. Therefore, these bits are always set to 0 .			

r0456[0...2]	Encoder configuration supported / Enc_config supp				
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -		Calculated: - Access level:		
	Data type: Unsigned32		Dyn. index: - Func		
	P-Group: Encoder		Unit group: - Unit s		
	Not for motor type: -		Scaling: - Exper		
	Min		Max	Factory setting	
	-		-	-	
Description: Index:	Displays the encoder configuration supported by the Sensor Module.				
	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Linear encoder	Yes	No	-
	01	Absolute encoder	Yes	No	-
	02	Multiturn encoder	Yes	No	-
	03	Track A/B square-wave	Yes	No	-
	04	Track A/B sine	Yes	No	-
	05	Track C/D	Yes	No	-
	06	Hall sensor	Yes	No	-
	08	EnDat encoder	Yes	No	-

	09	SSI encoder	Yes	No	-
	10	DRIVE-CLiQ encoder	Yes	No	-
	11	Digital encoder	Yes	No	-
	12	Equidistant zero mark	Yes	No	-
	13	Irregular zero mark	Yes	No	-
	14	Distance-coded zero mark	Yes	No	-
	15	Commutation with zero mark (not ASM)	Yes	No	-
	16	Acceleration	Yes	No	-
	17	Track A/B analog	Yes	No	-
		Voltage level 5 V	Yes	No	-
		Voltage level 24 V	Yes	No	-
		Remote sense (only SMC30)	Yes	No	-
	23	Resolver excitation	Yes	No	-
Dependency:	Ref	to: p0404			
Note:		Zero mark			
		parameter is only used for diagnostics.			
	A v	e of zero is displayed if an encoder is not	ent.		
r0456		der configuration supported /	_config		
ENC		be changed: -	ulated: -	Acces	
		ype: Unsigned32	ndex: -	Func	
	P-G	up: Encoder	roup: -	Unit s	
	Not	r motor type: -	g: -	Exper	
	Min			Factor	
	-	-		-	
Description:	Dis	ays the encoder configuration supported by	e Sensor		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Linear encoder	Yes	No	-
	01	Absolute encoder	Yes	No	-
	02	Multiturn encoder	Yes	No	-
	03	Track A/B square-wave	Yes	No	-
	04	Track A/B sine	Yes	No	-
	05	Track C/D	Yes	No	-
	06	Hall sensor	Yes	No	-
	08	EnDat encoder	Yes	No	-
	09	SSI encoder	Yes	No	-
	10	DRIVE-CLiQ encoder	Yes	No	-
	11	Digital encoder	Yes	No	-
	12	Equidistant zero mark	Yes	No	-
	13	Irregular zero mark	Yes	No	-
	14	Distance-coded zero mark	Yes	No	-
	15	Commutation with zero mark (not ASM)	Yes	No	-
	16	Acceleration	Yes	No	-
	17	Track A/B analog	Yes	No	-
	20	Voltage level 5 V	Yes	No	-
	21	Voltage level 24 V	Yes	No	-
		Remote sense (only SMC30)	Yes	No	-
	23	Resolver excitation	Yes	No	-
Dependency:	Ref	to: p0404			
Note:	ZM	Zero mark			
	This	parameter is only used for diagnostics.			
	A v	ue of zero is displayed if an encoder is not	sent.		

2.2 List of parameters

r0457[0...2]	Sensor Module properties extended Part 2 / SM prop ext 2				
SERVO, VECTOR, hLA, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Encoder		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description: Index:	Displays the extended properties part 2, supported by the Sensor Module.				
	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Reserved	Yes	No	-
		Shift factor XIST2 supported	Yes	No	-
Dependency:	Refer to: p0454				
Note:	A val	e of zero is displayed if an encoder	not present.		

2.2 List of parameters

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Encoder data available	Yes	No	-
	01	Motor data available	Yes	No	-
	02	Temperature sensor connection available	Yes	No	-
	03	Connection for PTC for motor with DRIVECLiQ also available	Yes	No	-
	04	Module temperature available	Yes	No	-
	05	Absolute encoder p0408/p0421 no power of 2	Yes	No	-
	06	Sensor Module permits parking/unparking	Yes	No	-
	07	Hall sensor can be combined with actual value inversion	Yes	No	-
	08	Evaluation through several temperature channels possible	Yes	No	-
	09	Encoder fault and its associated information available	Yes	No	-
	10	Velocity diagnostics in the Sensor Module	Yes	No	-
	11	Configuring without park state possible	Yes	No	-
	12	Extended functions available	Yes	No	-
	13	Extended encoder fault handling	Yes	No	-
	14	Extended singleturn/multiturn information available	Yes	No	-
	15	Evaluation function reserve	Yes	No	-
	16	Pole position identification	Yes	No	-
	17	Burst oversampling	Yes	No	-
	18	Continuous oversampling	Yes	No	-
	19	Safety position actual value sensing	Yes	No	-
	20	Extended velocity calculation available (only SMC30)	Yes	No	-
	21	Zero mark tolerance	Yes	No	-
	22	Rotor position adaptation	Yes	No	-
	23	Commutation with zero mark can be deselected	Yes	No	-
	24	Commutation with selected zero mark	Yes	No	-
	25	Disconnection of encoder power supply on parking supported	Yes	No	-
	26	Parking with temperature evaluation	Yes	No	-
	27	SSI position value extrapolation	Yes	No	-
	28	Cubic correction	Yes	No	-
	29	Phase correction	Yes	No	-
	30	Amplitude correction	Yes	No	-
	31	Offset correction	Yes	No	-
Dependency:	Refer to: p0437, p0600, p0601				
Note:	A value of zero is displayed if an encoder is not present.				
	For bit 11:				
	When the property is set, the following parameters can be changed without the actual value in the encoder interface becoming invalid (state r0481.14 = 1 "parking encoder active"):				
	p0314, p0315, p0430, p0431, p0441, p0442, p0443, p0444, p0445				
	For bit 12:				
	The extended functions can be configured using p0437.				
	For bit 13:				
	Encoder faults can be acknowledged via Gn_STW.15.				
	For bit 14:				
	Only for internal Siemens use.				
	For bit 23:				
	When the property is set, commutation with zero mark can be de-selected using p0430.23.				
	For bit 24:				
	If the property is set, commutation to the selected zero mark can be carried out.				

2.2 List of parameters

For bit 14
Only for internal Siemens use.
For bit 23:
When the property is set, commutation with zero mark can be de-selected using p0430.23.
For bit 24:
If the property is set, commutation to the selected zero mark can be carried out.


```
Note: A value of zero is displayed if an encoder is not present.
For bit 11:
When the property is set, the following parameters can be changed without the actual value in the encoder interface
becoming invalid (state r0481.14 = 1 "parking encoder active"):
p0314, p0315, p0430, p0431, p0441, p0442, p0443, p0444, p0445
For bit 12
The extended functions can be configured using p0437.
For bit 13:
Encoder faults can be acknowledged via Gn_STW.15.
For bit 14:
Only for internal Siemens use.
For bit 23:
When the property is set, commutation with zero mark can be de-selected using p0430.23.
For bit 24:
If the property is set, commutation to the selected zero mark can be carried out.
```

r0459[0...2]	Sensor Module properties extended / SM prop ext				
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can	be changed: - type: Unsigned32 up: Encoder or motor type: -	lated: - ndex: - group: - ng: -	Acces Func. Unit s Expert Factor	
Description: Index:	Displays the extended properties supported by the Sensor Module. [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3				
Bit field:	Bit 00 01 02 04 05 06	Signal name Data logger Zero mark edge detection Correction position actual value XIST1 Edge evaluation bit 0 Edge evaluation bit 1 Freeze the speed actual value for $\mathrm{dn} / \mathrm{dt}$	1 signal Yes Yes Yes Yes Yes Yes	0 signal No No No No No No	FP
	$\begin{aligned} & 07 \\ & 09 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	Accumulate uncorrected encoder pulses Function p0426, p0439 supported Pulse/direction interface Fault handling after PROFIdrive Activate additional messages Absolute position for incremental encoder supported	Yes Yes Yes Yes Yes Yes	No No No No No No	
	14	Spindle functionality	Yes	No	-
	15	Additional temperature sensor available	Yes	No	-
	16	Internal encoder temperature available Extended multiturn resolution	Yes Yes	No No	-
	18	PT1000 temperature sensor evaluation	Yes	No	-
	22	Resolution absolute position as factor	Yes	No	-
	23	Commutation with 180°	Yes	No	-
	24 25	Multiturn via battery Deselect monitoring multiturn representation in Gx_XIST2	Yes	No	-
	26 28	Track monitoring de-selection EnDat linear encoder monitoring incremental/absolute	Yes Yes	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	-
	29 30 31	EnDat encoder initialization with high accuracy Extended functions available Analog unipolar track monitoring	Yes Yes Yes	No No No	- - -
Dependency:	Refer to: p0437				

2.2 List of parameters

Note: \quad A value of zero is displayed if an encoder is not present.
For bit 09:
Parameter p0426 or p0439 has been modified. These functions are not supported by the connected Sensor Module.

2.2 List of parameters

r0461[0...2]	Encoder serial number part 2 / Enc ser_no 2		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number part 2 of the appropriate encoder. [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3		
Index:			
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0462, r0463, r0464		
r0461	Encoder serial number part 2 / Enc ser_no 2		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number part 2 of the appropriate encoder.		
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0462, r0463, r0464		
r0462[0...2]	Encoder serial number part 3 / Enc ser_no 3		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number part 3 of the appropriate encoder.		
Index:			
	[1] $=$ Encoder 2[2] $=$ Encoder 3		
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0463, r0464		
r0462	Encoder serial number part 3 / Enc ser_no 3		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number part 3 of the appropriate encoder.		
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0463, r0464		

2.2 List of parameters

r0463[0...2]	Encoder serial number part 4 / Enc ser_no 4	
SERVO, VECTOR, hLA, SERVO_AC, VECTOR AC, SERVO_IAC, VECTOR_I_AC	Can be changed: - Calculated: - Data type: Unsigned32 Dyn. index: - P-Group: Encoder Unit group: - Not for motor type: - Scaling: - Min Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting
Description: Index: Dependency:	Displays the actual serial number part 4 of the appropriate encoder. [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3 Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0464	
$\begin{aligned} & \mathbf{r 0 4 6 3} \\ & \text { ENC } \end{aligned}$	Encoder serial number part 4 / Enc ser_no 4 Can be changed: - Calculated: - Data type: Unsigned32 Dyn. index: - P-Group: Encoder Unit group: - Not for motor type: - Scaling: - Min Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting
Description: Dependency:	Displays the actual serial number part 4 of the appropriate encoder. Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0464	
r0464[0...2] SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Encoder serial number part 5 / Enc ser_no 5 Can be changed: - Calculated: - Data type: Unsigned32 Dyn. index: - P-Group: Encoder Unit group: - Not for motor type: - Scaling: - Min Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting
Description: Index: Dependency:	Displays the actual serial number part 5 of the appropriate encoder. [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3 Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0463	
r0464 ENC	Encoder serial number part 5 / Enc ser_no 5 Can be changed: - Calculated: - Data type: Unsigned32 Dyn. index: - P-Group: Encoder Unit group: - Not for motor type: - Scaling: - Min Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting
Description: Dependency:	Displays the actual serial number part 5 of the appropriate encoder. Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0463	

r0465[0...27]	Encoder 1 identification number/serial number / Enc1 ID_no/Ser_no		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
SERVO I AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the identification/serial number of encoder 1. Index 0 = first character of the identification number		
	\cdots		
	Index $\mathrm{x}=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+1=2 \mathrm{~F}$ hex (slash) --> separation between the identification number of serial number		
	Index $x+2=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+3=$ first character of the serial number		
	...		
	Index y with contents = last character of the serial number		
Dependency:	Refer to: r0460, r0461,		
Notice:	An ASCII table (excerp	xample, in the a	anual.
Note:	The individual characte	number/serial	coded as ASCII ch

r0466[0...27]	Encoder 2 identification number/serial number / Enc2 ID_no/Ser_no		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the identification/serial number of encoder 2.		
	Index $0=$ first character of the identification number		
	...		
	Index $\mathrm{x}=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+1=2 F$ hex (slash) --> separation between the identification number of serial number		
	Index $x+2=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+3=$ first character of the serial number		
	...		
	Index y with contents = last character of the serial number		
Dependency:	Refer to: r0460, r0461, r0462, r0463, r0464		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:	The individual characters of the identification number/serial number are available coded as ASCII characters.		

2.2 List of parameters

r0467[0...27]	Encoder 3 identification number/serial number / Enc3 ID_no/Ser_no		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the identification/serial number of encoder 3. Index $0=$ first character of the identification number		
	...		
	Index $\mathrm{x}=20$ hex (blank) --> separation between the identification number of serial number		
	Index $\mathrm{x}+1=2 \mathrm{~F}$ hex (slash) --> separation between the identification number of serial number		
	Index $\mathrm{x}+2=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+3=$ first character of the serial number		
	Index y with contents = last character of the serial number		
Dependency:	Refer to: r0460, r0461, r0462, r0463, r0464		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:	The individual characters of the identification number/serial number are available coded as ASCII characters.		

r0469[0...2]	Absolute encoder linear measuring step / Enc lin meas step		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	$-[n m]$	$-[\mathrm{nm}]$
	$-[\mathrm{nm}]$		
Description:	Displays the resolution of the absolute position for a linear absolute encoder.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		
Dependency:	$[2]=$ Encoder 3	Refer to: p0422, p9514	

r0469	Absolute encoder linear measuring step / Enc lin meas step		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{nm}]$	$-[\mathrm{nm}]$	
Description:	Displays the resolution of the absolute position for a linear absolute encoder.		
Dependency:	Refer to: p0422, p9514		

r0470[0...2]	Redundant coarse position value valid bits / Valid bits		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
SERVO I AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the valid bits of the redundant coarse position value.		
Index:	[0] = Encoder 1		
	[1] = Encoder 2		
	[2] = Encoder 3		
Dependency:	Refer to: p9323, p9523		
r0470	Redundant coarse position value valid bits / Valid bits		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the valid bits of the redundant coarse position value.		
Dependency:	Refer to: p9323, p9523		
r0471[0...2]	Redundant coarse position value fine resolution bits / Fine bit		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of valid bits for the fine resolution of the redundant coarse position value. [0] = Encoder 1		
Index:			
	$\begin{aligned} & \text { [0] = Encoder } 1 \\ & \text { [1] }=\text { Encoder } 2 \end{aligned}$		
	[2] = Encoder 3		
Dependency:	Refer to: p9324, p9524		
r0471	Redundant coarse position value fine resolution bits / Fine bit		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of valid bits for the fine resolution of the redundant coarse position value.		
Dependency:	Refer to: p9324, p9524		

2.2 List of parameters

r0479[0...2]	CO: Diagnostics encoder position actual value Gn_XIST1 / Diag Gn_XIST1		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer32	Dyn. index: -	Func. diagram: 4704
SERVO_İAC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output for the encoder actual position value Gn_XIST1 according to PROFIdrive for diagnostics.		
	In contrast to r0482, the value is updated in each DRIVE-CLiQ basic clock cycle and displayed with sign.		
Index:	[0] = Encoder 1		
	$\text { [1] = Encoder } 2$		

Caution: | Following ramping-up or after a data set changeover, the new value is present at connector inputs which are |
| :--- |
| interconnected to connector output r0479 and under certain circumstances take 100 ms to become available. |
| Reason: |
| These interconnections are updated in the background, unlike interconnections involving other connector outputs |
| (e.g. CO: r0482). |
| The value is immediately available when non-cyclically reading r0479 (e.g. via the expert list). |

r0479
 TM41

Description:
CO: TM41 encoder emulation diagnostics Gn_XIST1 / Diag Gn_XIST1

Can be changed: -
Data type: Integer32
P-Group: Encoder
Not for motor type: -
Min

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
-

Access level: 3
Func. diagram: 9674, 9676
Unit selection: -
Expert list: 1
Factory setting

Display and connector output for the encoder actual position value Gn_XIST1 according to PROFIdrive for diagnostics.
In contrast to r0482, the value is updated in each DRIVE-CLiQ basic clock cycle and displayed with sign.

r0479	CO: Diagnostics encoder position actual value Gn_XIST1 / Diag Gn_XIST1		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: 4704
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output for the encoder actual position value Gn_XIST1 according to PROFIdrive for diagnostics.		
	In contrast to r0482, th	ach DRIVE-CL	nd displayed with sign.
Caution:	Following ramping-up interconnected to conn Reason:	ngeover, the ne d under certain	connector inputs which are 00 ms to become available
	These interconnections are updated in the background, unlike interconnections involving other connector outputs (e.g. CO: r0482).		
	The value is immediately available when non-cyclically reading r0479 (e.g. via the expert list).		

p0480[0...2]	CI: Encoder control word Gn_STW signal source / Enc Gn_STW S_src		
SERVO, VECTOR,	Can be changed: C2(4), T	Calculated: -	Access level: 3
HLA, SERVO_AC, VECTOR_AC,	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 4700, 4720, 4750
SERVO_I_AC, VECTOR_I_AC	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the encoder control word Gn_STW according to PROFIdrive.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established:		
	CI: p0480[0] = r2520[0], CI: p0480[1] = r2520[1] and CI: p0480[2] = r2520[2]		

2.2 List of parameters

p0480	CI: Encoder control word Gn_STW signal source / Enc Gn_STW S_src		
ENC	Can be changed: C2(4), T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 4700, 4720, 4750
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the encoder control word Gn_STW according to PROFIdrive.		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established:		
	CI: p0480[0] = r2520[0], CI: p0480[1]	[1] and CI: p04	

r0481	CO: TM41 encoder emulation status word Gn_ZSW / Enc Gn_ZSW				
TM41	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 9676	
	P-Group: Encoder		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the encoder status word Gn_ZSW according to PROFIdrive.				
Bit field:		Signal name	1 signal	0 signal	FP
		Function 1 active	Yes	No	-
		Function 2 active	Yes	No	-
		Function 3 active	Yes	No	-
	03	Function 4 active	Yes	No	-
	04	Value 1	Displayed in r0483	Not present	-
	05	Value 2	Displayed in r0483	Not present	-
	06	Value 3	Displayed in r0483	Not present	-
	07	Value 4	Displayed in r0483	Not present	-
		Measuring probe 1 deflected	Yes	No	-
		Measuring probe 2 deflected	Yes	No	-
		Encoder fault acknowledge active	Yes	No	9676
		Absolute value cyclically	Displayed in r0483	No	-
		Parking encoder active	Yes	No	-
	15	Encoder fault	Displayed in r0483	None	-
Notice:	Information on Gn_STW/Gn_ZSW can, e.g. be found in the following literature: SINAMICS S120 Function Manual Drive Functions				
Note:	For p4401 = 0, the following applies:				
	For Terminal Module 41 (TM41), this value is used to interconnect with standard telegram 3 and is always zero. For p4401 = 1, the following applies:				
	r0481.0 indicates as to whether the zero mark synchronization is active.				
	r0481.4 indicates whether the zero mark of the incremental encoder was found.				
	r0481.14 indicates whether the output of track A / B is activated.				
r0481	CO: Encoder status word Gn_ZSW / Enc Gn_ZSW				
ENC	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index:	Func. diagram: 4704, 4730,4750	
	P-Group: Encoder		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
			-		
Description:	Displays the encoder status word Gn_ZSW according to PROFIdrive.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Function 1 active	Yes	No	-
	01	Function 2 active	Yes	No	-
	02	Function 3 active	Yes	No	-
	03	Function 4 active	Yes	No	-
	04	Value 1	Displayed in r0483	Not present	-
	05	Value 2	Displayed in r0483	Not present	-
	06	Value 3	Displayed in r0483	Not present	-
	07	Value 4	Displayed in r0483	Not present	-
	08	Measuring probe 1 deflected	Yes	No	-
	09	Measuring probe 2 deflected	Yes	No	-
	11	Encoder fault acknowledge active	Yes	No	9676
	13	Absolute value cyclically	Displayed in r0483	No	-
	14	Parking encoder active	Yes	No	-
	15	Encoder fault	Displayed in r0483	None	-

2.2 List of parameters

Notice: \quad\begin{tabular}{l}
Information on Gn_STW/Gn_ZSW can, e.g. be found in the following literature:

Note:

SINAMICS S120 Function Manual Drive Functions

For bit 14:

Displays the acknowledgment for "activate parking encoder" (Gn_STW. $14=1$) or encoder position actual value

(Gn_XIST1) invalid.

For bit 14, 15:

r0481.14 = 1 and r0481.15 = 0 can have one of the following causes:

- the encoder is parked.

- the encoder is deactivated.

- the encoder is being commissioned.

- no parameterized encoder available.

- encoder data set is being changed over.

r0481.14 = 1 and r0481.15 = 1 has the following significance:

An encoder error has occurred and the encoder position actual value (Gn_XIST1) is invalid.
\end{tabular}

r0482[0...2]	CO: Encoder actual position value Gn_XIST1 / Enc Gn_XIST1		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 4700,4702,
VECTOR_AC,		$4704,4735,4740,4750$	
SERVO_I_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting

Description: Display and connector output for the encoder actual position value Gn_XIST1 according to PROFIdrive.
[0] = Encoder 1
[1] = Encoder 2
[2] = Encoder 3
Note: $\quad-$ this value is reset if necessary when the "parking encoder" (r0481.14) function is de-selected.

- in this value, the measuring gear (p0432, p0433) is only taken into account when the position tracking is activated ($\mathrm{p} 0411.0=1$).
- the update time for the position control (EPOS) corresponds to the position controller clock cycle (p0115[4]).
- the update time in isochronous operation corresponds to the bus cycle time r2064[1].
- the update time in isochronous operation and with position control (EPOS) corresponds to the position controller sampling time ($\mathrm{p} 0115[4]$).
- the update time in non-isochronous operation or without position control (EPOS) must be determined from the default bus cycle time and the minimum cycle time:
The default bus cycle time is the lowest common multiple (LCM) of all current controller sampling times (p0115[0]) in the drive group (infeed + drives).
The minimum cycle time is four times the maximum of all current controller sampling times ($\mathrm{p} 0115[0]$) in the drive group (infeed + drives).
If the minimum cycle time is greater than the default bus cycle time, then the update time corresponds to the minimum cycle time; otherwise, the update time corresponds to the default bus cycle time.
The minimum update time is 1 ms .
Example 1: infeed, servo
Default bus cycle time $=\mathrm{KGV}(250 \mu \mathrm{~s}, 125 \mu \mathrm{~s})=250 \mu \mathrm{~s}$
Minimum cycle time $=4 * \operatorname{MAX}(250 \mu \mathrm{~s}, 125 \mu \mathrm{~s})=4 * 250 \mu \mathrm{~s}=1 \mathrm{~ms}$
-> update time $=1 \mathrm{~ms}$
Example 2: infeed, servo, vector
Default bus cycle time $=\operatorname{KGV}(250 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 400 \mu \mathrm{~s})=2 \mathrm{~ms}$
Minimum cycle time $=4{ }^{*} \operatorname{MAX}(250 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 400 \mu \mathrm{~s})=4{ }^{*} 400 \mu \mathrm{~s}=1.6 \mathrm{~ms}$
-> update time $=2 \mathrm{~ms}$

r0482	CO: TM41 encoder emulation position actual value Gn_XIST1 / Enc Gn_XIST1	
TM41	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned32 Dyn. index: -	Func. diagram:
	P-Group: Encoder Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	- -	-
Description:	Display and connector output for the encoder actual position value Gn_XIST1 according to PROFIdrive.	
r0482	CO: Encoder actual position value Gn_XIST1 / Enc Gn_XIST1	
ENC	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned32 Dyn. index: -	Func. diagram: 4704, 4735, $4740,4750$
	P-Group: Encoder Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
		-
Description: Note:	Display and connector output for the encoder actual position value Gn_XIST1 accor - this value is reset if necessary when the "parking encoder" (r0481.14) function is - in this value, the measuring gear ($\mathrm{p} 0432, \mathrm{p} 0433$) is only taken into account whe ($\mathrm{p} 0411.0=1$) . - the update time for the position control (EPOS) corresponds to the position contr - the update time in isochronous operation corresponds to the bus cycle time r2064 - the update time in isochronous operation and with position control (EPOS) corre sampling time ($\mathrm{p} 0115[4]$). - the update time in non-isochronous operation or without position control (EPOS) default bus cycle time and the minimum cycle time: The default bus cycle time is the lowest common multiple (LCM) of all current con the drive group (infeed + drives). The minimum cycle time is four times the maximum of all current controller sampl group (infeed + drives). If the minimum cycle time is greater than the default bus cycle time, then the upd minimum cycle time; otherwise, the update time corresponds to the default bus cy The minimum update time is 1 ms . Example 1: infeed, servo Default bus cycle time $=\mathrm{KGV}(250 \mu \mathrm{~s}, 125 \mu \mathrm{~s})=250 \mu \mathrm{~s}$ Minimum cycle time $=4 * \operatorname{MAX}(250 \mu \mathrm{~s}, 125 \mu \mathrm{~s})=4 * 250 \mu \mathrm{~s}=1 \mathrm{~ms}$ -> update time $=1 \mathrm{~ms}$ Example 2: infeed, servo, vector Default bus cycle time $=\operatorname{KGV}(250 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 400 \mu \mathrm{~s})=2 \mathrm{~ms}$ Minimum cycle time $=4 * \operatorname{MAX}(250 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 400 \mu \mathrm{~s})=4 * 400 \mu \mathrm{~s}=1.6 \mathrm{~ms}$ -> update time $=2 \mathrm{~ms}$	ording to PROFIdrive. de-selected. the position tracking is activated roller clock cycle (p0115[4]). 4[1]. sponds to the position controller must be determined from the troller sampling times (p0115[0]) in ing times (p0115[0]) in the drive ate time corresponds to the cle time.
r0483[0...2]	CO: Encoder actual position value Gn_XIST2 / Enc Gn_XIST2	
SERVO, VECTOR,	Can be changed: - Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32 Dyn. index: -	Func. diagram: 4704, 4750
SERVO_I_AC,	P-Group: Encoder Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	- -	-
Description: Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$	

2.2 List of parameters

Notice:	The encoder position actual value must be requested using the encoder control word Gn_STW. 13.
Note:	- in this value, the measuring gear (p0432, p0433) is only taken into account when the position tracking is activated
	(p0411.0 = 1).
	- if GxZSW.15 = 1 (r0481), then an error code with the following significance is located in Gx_XIST2 (r0483):
1: Encoder fault.	
2: Possible position shift in Gx_XIST1.	
3: Encoder parking not possible.	
4: Cancellation, reference block search (e.g. reference mark not available or input terminal for external zero mark not	
set). Zero mark is requested, however according to p0404.12/13/14 there is no zero mark (alarm A07565).	
5: Cancellation, fetch reference value (e.g. illegal change from reference mark search to flying measurement).	
6: cancellation, flying measurement (e.g. input terminal for probe not set).	
7: Cancellation, fetch measured value (e.g. illegal change from flying measurement to reference mark search).	
8: Abort, absolute value transfer.	
3841: Function not supported.	
4097: Abort, reference mark search due to an initialization error. Possible cause: defective Control Unit hardware.	
4098: Abort, flying measurement due to an initialization error. Possible cause: defective Control Unit hardware.	
4099: Abort, reference mark search due to a measuring error. Possible cause: too many measuring pulses have	
occurred.	
4100: Abort, flying measurement due to a measuring error. Possible cause: too many measuring pulses have	
occurred.	

r0483

TM41

Notice: The encoder position actual value must be requested using the encoder control word Gn_STW.13.
Note:
SIMOTION (p4400 = 0) operating mode:
This value is used for interconnection with standard telegram 3 and is always zero.
SINAMICS (p4400 = 1) operating mode:
Once automatic zero mark synchronization is complete, the position of the zero mark of the leading encoder is displayed in this parameter. The leading encoder is interconnected via connector input p4420.

r0483

ENC

Description: Displays the encoder actual position value Gn_XIST2 according to PROFIdrive.
Notice:
The encoder position actual value must be requested using the encoder control word Gn_STW.13.
Note: $\quad-$ in this value, the measuring gear ($\mathrm{p} 0432, \mathrm{p} 0433$) is only taken into account when the position tracking is activated ($\mathrm{p} 0411.0=1$).

- if GxZSW. $15=1$ (r0481), then an error code with the following significance is located in Gx_XIST2 (r0483):

1: Encoder fault.
2: Possible position shift in Gx_XIST1.
3: Encoder parking not possible.
4: Cancellation, reference block search (e.g. reference mark not available or input terminal for external zero mark not set). Zero mark is requested, however according to p0404.12/13/14 there is no zero mark (alarm A07565).
5: Cancellation, fetch reference value (e.g. illegal change from reference mark search to flying measurement).
6: cancellation, flying measurement (e.g. input terminal for probe not set).

7: Cancellation, fetch measured value (e.g. illegal change from flying measurement to reference mark search).
8: Abort, absolute value transfer.
3841: Function not supported.
4097: Abort, reference mark search due to an initialization error. Possible cause: defective Control Unit hardware.
4098: Abort, flying measurement due to an initialization error. Possible cause: defective Control Unit hardware. 4099: Abort, reference mark search due to a measuring error. Possible cause: too many measuring pulses have occurred.
4100: Abort, flying measurement due to a measuring error. Possible cause: too many measuring pulses have occurred.

r0484[0...2]	CO: Redundant coarse encoder position + CRC / Enc red pos+CRC		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the redundant coarse encoder position including CRC (Cyclic Redundancy Check).		
	CRC over the redundant coarse encoder position.		
	Lower 16 bits:		
	Redundant coarse encoder position.		
	On an SMx Sensor Module, the encoder coarse position count direction is opposite to r0482 (encoder actual value Gn_XIST1). The value contains 2 bit fine resolution.		
	With a DRIVE-CLiQ encoder, the encoder coarse position count direction is the same as r0482.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	The values are valid when the safety position actual value sensing is activated (p0430.19 = 1).		
	Refer to: p0430		
Note:	This absolute value does not change, contrary to r0482, when de-selecting the function "parking axis"		
r0484	CO: Redundant coarse encoder position + CRC / Enc red pos+CRC		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the redundant coarse encoder position including CRC (Cyclic Redundancy Check).		
	Upper 16 bits:		
	CRC over the redundant coarse encoder position.		
	Lower 16 bits:		
	Redundant coarse encoder position.		
	On an SMx Sensor Module, the encoder coarse position count direction is opposite to r0482 (encoder actual value Gn_XIST1). The value contains 2 bit fine resolution.		
	With a DRIVE-CLiQ encoder, the encoder coarse position count direction is the same as r0482.		
Dependency:	The values are valid when the safety position actual value sensing is activated (p0430.19 = 1).		
	Refer to: p0430		
Note:	This absolute value does	y to r0482, whe	nction "parking axis

2.2 List of parameters

r0485[0...2]	CO: Measuring gear encoder raw value incremental / Enc raw val incr		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 1
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	-	-
	-		
Description:	Displays the raw value of the incremental encoder actual value before the measuring gear.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		
	$[2]=$ Encoder 3		

r0485	CO: Measuring gear encoder raw value incremental / Enc raw val incr		
ENC	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Fxpert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the raw value of the incremental encoder actual value before the measuring gear.		

r0486[0...2]	CO: Measuring gear encoder raw value absolute / Enc raw val abs		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 1
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	-	-
	-		
Description:	Displays the raw value of the absolute encoder actual value before the measuring gear.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		
	$[2]=$ Encoder 3		

P0486	CO: Measuring gear encoder raw value absolute / Enc raw val abs		
ENC	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-		
Description:	Displays the raw value of the absolute encoder actual value before the measuring gear.		

r0487[0...2]	Diagnostic encoder control word Gn_STW / Enc Gn_STW					
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: - Data type: Unsigned16		Calculated: Dyn. index:	Access level: 3		
			Func. diagram: 4700, 4704,$\text { 4720, } 4740$			
	P-Group: Encoder			Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1		
	Min		Max	Factory setting		
	-		-	-		
Description:	Displays the encoder control word Gn_STW according to PROFIdrive for diagnostics.					
Index:	[0] [1] [2]	Encoder 1				
Bit field:		Signal name	1 signal	0 signal	FP	
		Request function 1	Yes	No	-	
		Request function 2	Yes	No	-	
		Request function 3	Yes	No	-	
		Request function 4	Yes	No	-	
		Request command bit 0	Yes	No	-	
		Request command bit 1	Yes	No	-	
		Request command bit 2	Yes	No	-	
		Flying measurement mode/search for reference mark	Flying measurement	Reference marks	-	
		Request absolute value cyclic	Yes	No	-	
		Request parking encoder	Yes	No	-	
		Request acknowledge encoder fault	Yes	No	-	
Notice:	Information on Gn_STW/Gn_ZSW should be taken from the corresponding product documentation.					
Note:	The signal source for the encoder control word is set with p0480.					
r0487	Diagnostic encoder control word Gn_STW / Enc Gn_STW					
ENC	Can be changed: -		Calculated: -	Access level: 3		
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 4700, 4704,$\text { 4720, } 4740$		
	P-Group: Encoder		Unit group: -	Unit selection: -		
	Not for motor type: -		Scaling: -	Expert list: 1		
	Min		Max	Factory setting		
	-		-	-		
Description:	Displays the encoder control word Gn_STW according to PROFIdrive for diagnostics.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	00	Request function 1	Yes	No	-	
	01	Request function 2	Yes	No	-	
	02	Request function 3	Yes	No	-	
	03	Request function 4	Yes	No	-	
	04	Request command bit 0	Yes	No	-	
	05	Request command bit 1	Yes	No	-	
	06	Request command bit 2	Yes	No	-	
	07	Flying measurement mode/search for reference mark	Flying measurement	Reference marks	-	
	13	Request absolute value cyclic	Yes	No	-	
	14	Request parking encoder	Yes	No	-	
	15	Request acknowledge encoder fault	Yes	No	-	
Notice:	Information on Gn_STW/Gn_ZSW should be taken from the corresponding product documentation.					
Note:	The signal source for the encoder control word is set with p0480.					

2.2 List of parameters

p0488[0...2]	Measuring probe 1 input term	/ Meas prob	
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(4), U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 4740
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	8	0
Description:	Sets the input terminal to connect probe 1.		
Value:	0: No measuring probe		
	1: DI/DO 9 (X122.10/X121.8)		
	2: DI/DO 10 (X122.12/X121.10)		
	3: DI/DO 11 (X122.13/X121.11)		
	4: DI/DO 13 (X132.10/X131.2)		
	5: DI/DO 14 (X132.12/X131.4)		
	6: DI/DO 15 (X132.13/X131.5)		
	7: DI/DO 8 (X122.9/X121.7)		
	8: DI/DO 12 (X132.9/X131.1)		
Index:	[0] $=$ Encoder 1 [1] $=$ Encoder 2 [2] $=$ Encoder 3		
Dependency:	Refer to: p0489, p0490, p0728		
Caution:	In order to prevent incorrect measurement values, these parameters may not be written during an active measurement.		
Notice:	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
	To select the values:		
	For CX32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual).		
Note:	DI/DO: Bidirectional Digital Input/Output		
	The terminal must be set as input (p0728).		
	Refer to the encoder interface for PROFIdrive.		
	If parameterization is rejected, check whether the terminal is already being used in p0580, p0680, p2517 or p2518.		

Caution:	In order to prevent incorrect measurement values, these parameters may not be written during an active measurement.
Notice:	Regarding the terminal designation:
	The first designation is valid for CU320, the second for CU310.
	To select the values:
	For CX32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual).
Note:	DI/DO: Bidirectional Digital Input/Output
	The terminal must be set as input (p0728).
	Refer to the encoder interface for PROFIdrive.
	If parameterization is rejected, check whether the terminal is already being used in p0580, p0680, p2517 or p2518.

p0488	Measuring probe 1 input terminal / Meas probe 1 inp		
ENC	Can be changed: $\mathrm{C} 2(4), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 4740
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	8	0
Description:	Sets the input terminal to connect probe 1.		
Value:	0 : No measuring probe		
	DI/DO 9 (X122.10/X121.8)		
	DI/DO 10 (X122.12/X121.10)		
	DI/DO 11 (X122.13/X121.11)		
	DI/DO 13 (X132.10/X131.2)		
	DI/DO 14 (X132.12/X131.4)		
	DI/DO 15 (X132.13/X131.5)		
	DI/DO 8 (X122.9/X121.7)		
	DI/DO 12 (X132.9/X131.1)		
Dependency:	Refer to: p0489, p0490, p0728		
Caution:	In order to prevent incorrect measurement values, these parameters may not be written during an active measurement.		
Notice:	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
	To select the values:		
	For CX32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual).		
Note:	DI/DO: Bidirectional Digital Input/Output		
	The terminal must be set as input (p0728).		
	Refer to the encoder interface for PROFIdrive.		
	If parameterization is rejected, check whether the terminal is already being used in p0580, p0680, p2517 or p2518.		

p0489[0...2]	Measuring probe 2 input termina	/ Meas probe 2 inp	
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(4), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: 4740
SERVO_I_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	8	0
Description:	Sets the input terminal to connect probe 2.		
Value:	0: No measuring probe		
	1: DI/DO 9 (X122.10/X121.8)		
	2: DI/DO 10 (X122.12/X121.10)		
	3: DI/DO 11 (X122.13/X121.11)		
	4: DI/DO 13 (X132.10/X131.2)		
	5: DI/DO 14 (X132.12/X131.4)		

2.2 List of parameters

	6: DI/DO 15 (X132.13/X131.5)
	7: DI/DO 8 (X122.9/X121.7)
	8: DI/DO 12 (X132.9/X131.1)
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$
Dependency:	Refer to: p0488, p0490, p0728
Caution:	In order to prevent incorrect measurement values, these parameters may not be written during an active measurement.
Notice:	Regarding the terminal designation:
	The first designation is valid for CU320, the second for CU310.
	To select the values:
	For CX32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual).
Note:	DI/DO: Bidirectional Digital Input/Output
	The terminal must be set as input (p0728).
	Refer to the encoder interface for PROFIdrive.
	If parameterization is rejected, check whether the terminal is already being used in p0580, p0680, p2517 or p2518.

p0489[0...2]	Measuring probe 2 input terminal / Meas probe 2 inp		
SERVO (Dig IO)	Can be changed: C2(4), U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 4740
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	51	0
Description:	Sets the input terminal to connect probe 2.		
Value:	0 : No measuring probe		
	1: DI/DO 9 (X122.10/X121.8)		
	2: DI/DO 10 (X122.12/X121.10)		
	3: DI/DO 11 (X122.13/X121.11)		
	4: DI/DO 13 (X132.10/X131.2)		
	5: DI/DO 14 (X132.12/X131.4)		
	6: DI/DO 15 (X132.13/X131.5)		
	7: DI/DO 8 (X122.9/X121.7)		
	8: DI/DO 12 (X132.9/X131.1)		
	50: DI/DO 0 distributed (X3.2)		
	51: DI/DO 1 distributed (X3.4)		
Index:	[0] $=$ Encoder 1 [1] $=$ Encoder 2 $[2]=$ Encoder 3		
Dependency:	Refer to: p0488, p0490, p0728		
Caution:	In order to prevent incorrect measurement values, these parameters may not be written during an active measurement.		
Notice:	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
	To select the values:		
	For CX32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual).		
Note:	DI/DO: Bidirectional Digital Input/Output		
	The terminal must be set as input (p0728).		
	Refer to the encoder interface for PROFIdrive.		
	If parameterization is rejected, check whether the terminal is already being used in p0580, p0680, p2517 or p2518.		

For a value $=5$, the following applies:
Same function as for value $=1$.
However, faults are output as alarm and the message bit "Fault active" (r2139.3) is not set. The encoder fault has to be acknowledged via the encoder interface in order to resume operation with encoder.

p0492	Square-wave encoder max. velocity difference per sampling cycle / v_dif max/samp_cyc
HLA	Can be changed: C2(4), U, T Calculated: CALC_MOD_REG Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
	P-Group: Encoder Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0.00 [m/min] 210000.00 [m/min] 0.00 [m/min]
Description:	Sets the maximum permissible speed difference between two computing cycles when square-wave encoders are evaluated. The drive is switched off if this value is exceeded.
Dependency:	Refer to: F31118, A31418, F32118, A32418, F33118, A33418
Note:	The velocity change monitoring is deactivated for a value $=0.0$. If the set maximum velocity difference is only exceeded for one sampling time, then an appropriate alarm is output. However, if the maximum speed difference is exceeded over several sampling times, then a corresponding fault is output.

p0492	Square-wave encoder maximum speed difference per sampling cycle $/$ n_dif max/samp_cyc

SERVO, SERVO AC, Can be changed: C2(4), U, T
SERVO_I_AC Data type: FloatingPoint32
P-Group: Encoder
Not for motor type: -
Min
0.00 [rpm]

Sets the maximum permissible speed difference within the current controller sampling time for squarewave encoders.
When the value is exceeded, depending on p0491, either encoderless closed-loop speed/torque control is selected or the drive is switched off.
Dependency: Refer to: F31118, A31418, F32118, A32418, F33118, A33418
Note: \quad For a value of 0.0 , the speed change monitoring is disabled.
if the set maximum speed difference is only exceeded for one sampling time of the current controller, then an appropriate alarm is output. However, if the maximum speed difference is exceeded over several sampling times, then a corresponding fault is output.
The speed actual value used for the monitoring is a floating average between $\mathrm{p} 0115[0$] and $\mathrm{p} 0115[1]$.

p0492	Square-wave encoder max. velocity difference per sampling cycle / v_dif max/samp_cyc		
SERVO (Lin),	Can be changed: $\mathrm{C} 2(4), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_REG	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	0.00 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the maximum permissible speed difference between two computing cycles when square-wave encoders are evaluated.		
	When the value is exceeded, depending on p0491, either encoderless closed-loop velocity/force control is selected or the drive is switched off.		
Dependency:	Refer to: F31118, A31418, F32118, A32418, F33118, A33418		

Note:	For a value of 0.0 , velocity change monitoring is disabled.
When half of the parameter value is exceeded, an alarm is already generated and the velocity change is limited to	
this.	

p0492	Maximum speed difference per sampling cycle / n_dif max/samp_cyc		
VECTOR,	Can be changed: C2(4), U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{rpm}]$	$210000.00[\mathrm{rpm}]$	$0.00[\mathrm{rpm}]$

Description: Sets the maximum permissible speed difference within the current controller sampling time. Refer to: r1408

Refer to: F07902, F31118, A31418, F32118, A32418, F33118, A33418
Note: \quad For a value of 0.0 , the speed change monitoring is disabled.
The following applies for square-wave encoders:
If the speed difference exceeds the threshold value p0492, depending on p0491, either encoderless closed-loop speed/torque control is selected or the drive is switched off with fault F3x118.
The following applies for other speed encoders:
If the speed difference exceeds threshold value p0492, in order to avoid subsequent faults, the old speed actual value is kept and after time p2178 shut down with fault F07902 (motor stalled).

p0492	Square-wave encoder max. velocity difference per sampling cycle /		
	V_dif max/samp_cyc		
ENC (Lin_enc)	Can be changed: C2(4), U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1

2.2 List of parameters

p0493[0...n]	Zero mark selection input terminal / ZM_sel inp_term		
SERVO, VECTOR,	Can be changed: C2(4), U, T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC, SERVO I AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	8	0
Description:	Sets the input terminal for selecting the reference mark via BERO/switching signal when performing referencing with several zero marks.		
	The encoder interface supplies the position of the reference mark, which was detected immediately after the positive edge of the BERO signal.		
Value:	0: No selection via BERO		
	1: DI/DO 9 (X122.10/X12		
	2: DI/DO 10 (X122.12/X1		
	3: DI/DO 11 (X122.13/X121		
	4: DI/DO 13 (X132.10/X131		
	5: DI/DO 14 (X132.12/X131		
	6: DI/DO 15 (X132.13/X131		
	7: DI/DO 8 (X122.9/X121		
	8: DI/DO 12 (X132.9/X13		
Dependency:	Refer to: p0490		
Caution:	In order to prevent incorrect measurement values, these parameters may not be written during an active measurement.		
Notice:	For CX32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual). Regarding the terminal designation: The first designation is valid for CU320, the second for CU310.		
Note:	Refer to the encoder interface for PROFIdrive.		
	The terminal must be set as input (p0728).		
	For p0493 $=0$ (factory setting) the following applies:		
	- there is no logic operation between the reference mark search and an input signal.		
	- the positive edge of the input signal is evaluated. If the negative edge is to be evaluated, signal inversion must be parameterized via p0490.		
	- if a parameter change is rejected, a check should be performed as to whether the input terminal is already being used in p0580, p0680, p2517, or p2518.		

p0493[0...n] Zero mark selection input terminal / ZM_sel inp_term

SERVO (Dig IO) Can be changed: C2(4), U, T Calculated: -
Data type: Integer16 Dyn. index: EDS, p0140
P-Group: Encoder
Not for motor type: -
Min
0

Unit group: -
Scaling: -
Max
51

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Description: Sets the input terminal for selecting the reference mark via BERO/switching signal when performing referencing with several zero marks.
The encoder interface supplies the position of the reference mark, which was detected immediately after the positive edge of the BERO signal
Value:
No selection via BERO
DI/DO 9 (X122.10/X121.8)
DI/DO 10 (X122.12/X121.10)
DI/DO 11 (X122.13/X121.11)
DI/DO 13 (X132.10/X131.2)
DI/DO 14 (X132.12/X131.4)
DI/DO 15 (X132.13/X131.5)
DI/DO 8 (X122.9/X121.7)

2.2 List of parameters

p0495[0...2]	Equivalent zero mark input terminal / ZM_equiv input		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(4), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: 473
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_I_AC, } \end{aligned}$	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	8	0
Description:	Selects the input terminal for connecting an equivalent zero mark (external encoder zero mark).		
Value:	0 : \quad No equivalent zero mark (evaluation of the encoder zero mark)		
	No equivalent zero mark (evaluation of the encoder zero mark)DI/DO 9 (X122.10/X121.8)		
	2: DI/DO 10 (X122.12/X121		
	3: DI/DO 11 (X122.13/X121		
	4: DI/DO 13 (X132.10/X131		
	5: DI/DO 14 (X132.12/X131		
	6: DI/DO 15 (X132.13/X131		
	7: DI/DO 8 (X122.9/X121.7)		
	8: DI/DO 12 (X132.9/X131.1)		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p0490, p0494		
Caution:	In order to prevent incorrect measurement values, these parameters may not be written during an active measurement.		
Notice:	For CX32, NX10 and NX15, on For p0494 > 0, the setting in p0 Regarding the terminal designa The first designation is valid for	10, 11 can be ve and p0495 is second for CU3	(refer to the Equipme
Note:	Refer to the encoder interface for PROFIdrive.		
	The terminal must be set as input.		
	For p0495 = 0 (factory setting), the encoder zero mark is evaluated as zero mark.		
	For p0495 > 0, the following applies:		
	Depending on the direction of motion, the positive or negative edge at the appropriate input is evaluated. - increasing position actual values (r0482) --> the $0 / 1$ edge is evaluated. - decreasing position actual values (r0482) --> the $1 / 0$ edge is evaluated.		
	Only one zero mark is supported. If function 2,3 or 4 is selected, this results in a fault message in Gn_ZSW.		
	The inversion of the inputs via p0490 affects the function "referencing with equivalent zero mark". This is the reason that the edge evaluation is interchanged as a function of the direction of motion.		
	An input can only be assigned to one encoder as measuring probe 1, 2 or equivalent zero mark.		
	Simultaneous use as measuring probe and equivalent zero mark is possible for the same encoder, as both functions cannot be simultaneously requested.		
p0495[0..2]	Equivalent zero mark input terminal / ZM_equiv input		
SERVO (Dig IO)	Can be changed: C2(4), U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 4735
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	51	0
Description: Selects the input terminal for c		Selects the input terminal for connecting an equivalent zero mark (external encoder zero mark).	
Value:	0 : No equivalent zero mark	of the encoder	
	1: DI/DO 9 (X122.10/X121		
	2: DI/DO 10 (X122.12/X121		
	DI/DO 11 (X122.13/X121.11)		
	4: DI/DO 13 (X132.10/X13		

2.2 List of parameters

Note: \quad Refer to the encoder interface for PROFIdrive.
The terminal must be set as input.
For p0495 = 0 (factory setting), the encoder zero mark is evaluated as zero mark.
For p0495 > 0, the following applies:
Depending on the direction of motion, the positive or negative edge at the appropriate input is evaluated.

- increasing position actual values (r0482) --> the 0/1 edge is evaluated.
- decreasing position actual values (r0482) --> the $1 / 0$ edge is evaluated.
Only one zero mark is supported. If function 2,3 or 4 is selected, this results in a fault message in Gn_ZSW.
The inversion of the inputs via p0490 affects the function "referencing with equivalent zero mark". This is the reason that the edge evaluation is interchanged as a function of the direction of motion.
An input can only be assigned to one encoder as measuring probe 1, 2 or equivalent zero mark.
Exception:
Simultaneous use as measuring probe and equivalent zero mark is possible for the same encoder, as both functions cannot be simultaneously requested.

p0496[0...2]	Encoder diagnostic signal selection / Enc diag select		
SERVO, VECTOR,	Can be changed: C2(4), U, T	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	0	86	0

Description: Selects the trace signal to be output in r0497, r0498 and r0499 for encoder diagnostics.

Value:

0 :	Inactive
1:	r0497: Mechanical revolution
7:	r0498: oversampling channel A with fault trigger
8 :	r0498: oversampling channel A with fault trigger
9:	r0497: sum of the squares $A B$ in 0.1 mV
10:	r0498: Raw value track A, r0499: Raw value track B
11:	r0498: Fine position X (-A/2), r0499: Fine position Y (-B/2)
12:	r0498: Fine position Phi, r0499: -
13:	r0498: Offset correction X, r0499: Offset correction Y
14:	r0498: Phase correction X, r0499: Amplitude correction Y
15:	r0498: Cubic correction X, r0499: Fine position X
16:	r0498: oversampling channel A, r0499: oversampling channel B
17:	r0498: fan-out amount, r0499: fan-out number
18:	r0498: Oversampling angle, r0499: Oversampling amount
19:	r0498: Fault counter AB, r0499: raw value track A
20:	r0498: Raw value track C, r0499: Raw value track D
21:	r0498: CD position X (-D/2), r0499: CD position Y (C/2)
22:	r0498: CD position Phi, r0499: CD pos. Phi - mech. revolution
23:	r0497: Zero mark status
24:	r0498: Raw value track R, r0499: Zero mark status
25:	r0498: Raw value track A, r0499: Raw value track R
26:	r0498: Sum of squares $A B$, r0499: sector number
30:	r0497: Absolute position serial
31:	r0497: Absolute position incremental
32:	r0497: Zero mark position
33:	r0497: Correction absolute position difference
40:	r0498: Raw temperature, r0499: Temperature in $0.1{ }^{\circ} \mathrm{C}$
41:	r0498: Resistance in 0.1 Ohm, r0499: Temperature in $0.1{ }^{\circ} \mathrm{C}$
42:	r0497: Resistance 2500 Ohm
51:	r0497: Absolute speed difference (dn/dt)
52.	r0497: Xact1 corrected quadrants
60:	Analog sensor: r0498: raw val chann. A, r0499: raw val chann. B
61:	Analog sensor: r0498: fine pos chann. A,r0499: fine pos chann. B
62 :	Analog sensor: r0498: Fine pos before characteristic, r0499: -
70:	Resolver: r0498: Transformation ratio, r0499: phase
80:	Spindle: r0498: Sensor S1 (raw), r0499: Sensor S4 (raw)

2.2 List of parameters

	81: Spindle: r0498: Sensor S5 (raw), r0499: - 85: Spindle: r0498: Sensor S1 (cal), r0499: Sensor S4 (cal) 86: Spindle: r0498: Sensor S5 (cal), r0499:-
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$
Dependency:	Refer to: r0497, r0498, r0499
Notice:	The setting option depends on the following properties:
	Sensor Module type, hardware version, firmware version (Sensor Module and Control Units), Article number (last digit). Not all combinations are supported.
Note:	For p0496 = 1:360* ---> 2^32
	For p0496 = 7, 8: input voltage in mV
	For p0496 = 10 (resolver): 2900 mV <--> 26214 dec
	For p0496 = 10, 20 (sin/cos 1 Vpp , EnDat): 500 mV <--> 21299 dec
	For p0496 = 11 (resolver): 2900 mV <--> 13107 dec , internal processor offset is corrected
	For p0496 = 11, 21 (sin/cos 1 Vpp , EnDat): 500 mV <--> 10650 dec , internal processor offset is corrected
	For p0496-12: 180° fine position <--> 32768 dec
	For p0496 = 13 (resolver): 2900 mV <--> 13107 dec
	For p0496 = 13 (sin/cos 1 Vpp , EnDat): 500 mV <--> 10650 dec
	For p0496 = 14: 1° <--> $286 \mathrm{dec}, 100 \%$ <--> 16384 dec
	For p0496 = 15: 100% <--> 16384 dec
	For p0496 = 16 (resolver): channel A: 2900 mV <--> 26214 dec, channel B: 2900 mV <--> 26214 dec, channel A and channel B can be shifted by one sample (in time)
	For p0496 = 16: (sin/cos 1 Vpp, EnDat) channel A: 500 mV <--> 21299 dec, channel B: 500 mV <--> 21299 dec , channel A and channel B can be shifted by one sample (in time)
	For p0496 = 17 (resolver): absolute value: 2900 mV <--> 13107 dec , number: 1 ... 8
	For p0496 = 17 (sin/cos 1 Vpp , EnDat): absolute value 500 mV <--> 10650 dec , number: $1 . .8$
	For p0496 = 18 (resolver): angle: signal period <--> 2^16, absolute value: 2900 mV <--> 13107 dec
	For p0496 = 18 (sin/cos 1 Vpp, EnDat): angle: signal period <--> 2^16, absolute value: 500 mV <--> 10650 dec
	For p0496 = 19 (resolver): counter: dec, channel A: 2900 mV <--> 26214 dec
	For p0496 = 19 (sin/cos 1 Vpp , EnDat): counter: dec, channel A: 500 mV <--> 21299 dec
	For p0496 = 22: 180° <--> 32768 dec
	For p0496 $=23$, 24: r0497.31 (r0499.15) set for at least 1 current controller sampling time when encoder zero mark detected
	For p0496 $=24,25: 500 \mathrm{mV}$ <--> 21299 dec
	For p0496 = 30: Rotary: 1 singleturn measuring step <--> 1 dec, linear: 1 measuring step <--> 1 dec
	For p0496 = 31: Absolute position, incremental in $1 / 4$ encoder pulses
	For p0496 = 32: Zero mark position in 1/4 encoder pulses
	For p0496 = 33: counter offset absolute value in 1/4 encoder pulses
	For p0496 = 40: r0498 <--> (R_KTY/1 kOhm - 0.9) * 32768
	For p0496 = 42: 2500 Ohm <--> 2^32
	For p0496 = 51: 1 rpm <--> 1000 dec
	For p0496 $=52$: In 1/4 encoder pulses
	For p0496 = 60: voltage, channel A in mV , voltage, channel B in mV
	For p0496 = 61: Channel A: encoder periods <--> $2^{\wedge} 16$, channel B: encoder periods <--> $2^{\wedge} 16$
	For p0496 = 62: encoder periods <--> 2^16
	For p0496 = 70: r: 100% <--> 10000 dec , phase: 180° <--> 18000 dec
	For p0496 = 80, 81, 85, 86: 1V <--> 1000 inc

p0496	Encoder diagnostic signal selection / Enc diag select		
ENC	Can be changed: C2(4), U, T	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	86	0
Description:	Selects the trace signal to be output in r0497, r0498 and r0499 for encoder diagnostics.		
Value:	0 : Inactive		
	1: r0497: Mechanical revolution		
	7: r0498: oversampling channel A with fault trigger		
	8: r0498: oversampling channel A with fault trigger		
	9: r0497: sum of the squares $A B$ in 0.1 mV		
	10: r0498: Raw value track A, r0499: Raw value track B		
	11: r0498: Fine position $X(-A / 2)$, r0499: Fine position $\mathrm{Y}(-\mathrm{B} / 2)$		
	12: r0498: Fine position Phi, r0499		
	13: r0498: Offset correction X, r0499: Offset correction Y		
	14: r0498: Phase correction X, r0499: Amplitude correction Y		
	15: r0498: Cubic correction X, r0499: Fine position X		
	16: r0498: oversampling channel A, r0499: oversampling channel B		
	17: r0498: fan-out amount, r0499: fan-out number		
	18: r0498: Oversampling angle, r0499: Oversampling amount		
	19: r0498: Fault counter $A B$, r0499: raw value track A		
	20: r0498: Raw value track C, r0499: Raw value track D		
	21: r0498: $C D$ position $X(-D / 2)$, r0499: $C D$ position $Y(C / 2)$		
	22: r0498: CD position Phi, r0499: CD pos. Phi - mech. revolution		
	23: r0497: Zero mark status		
	24: r0498: Raw value track R, r0499: Zero mark status		
	25: r0498: Raw value track A, r0499: Raw value track R		
	26: r0498: Sum of squares AB, r0499: sector number		
	30: r0497: Absolute position serial		
	31: r0497: Absolute position incremental		
	32: r0497: Zero mark position		
	33: r0497: Correction absolute position difference		
	40: r0498: Raw temperature, r0499: Temperature in $0.1{ }^{\circ} \mathrm{C}$		
	41: r0498: Resistance in 0.1 Ohm , r0499: Temperature in $0.1{ }^{\circ} \mathrm{C}$		
	42: r0497: Resistance 2500 Ohm		
	51: r0497: Absolute speed difference (dn/dt)		
	52: r0497: Xact1 corrected quadrants		
	60: Analog sensor: r0498: raw val chann. A, r0499: raw val chann. B		
	61: Analog sensor: r0498: fine pos chann. A,r0499: fine pos chann. B		
	62: Analog sensor: r0498: Fine pos before characteristic, r0499: -		
	70: Resolver: r0498: Transformation ratio, r0499: phase		
	80: Spindle: r0498: Sensor S1 (raw), r0499: Sensor S4 (raw)		
	81: Spindle: r0498: Sensor S5 (raw), r0499: -		
	85: Spindle: r0498: Sensor S1 (cal), r0499: Sensor S4 (cal)		
	86: Spindle: r0498: Sensor S5 (cal), r0499: -		
Dependency:	Refer to: r0497, r0498, r0499		
Notice:	The setting option depends on the following properties:		
	Sensor Module type, hardware version, firmware version (Sensor Module and Control Units), Article number (last digit).		
	Not all combinations are supported.		
Note:	For p0496 = 1:360 ${ }^{\circ}$ <--> $2^{\wedge} 32$		
	For p0496 $=7,8$: input voltage in mV		
	For p0496 = 10 (resolver): 2900 mV <--> 26214 dec		
	For p0496 = 10, 20 (sin/cos 1 Vpp , EnDat): 500 mV <--> 21299 dec		
	For p0496 = 11 (resolver): 2900 mV <--> 13107 dec, internal processor offset is corrected		
	For p0496 = 11, 21 (sin/cos 1 Vpp , EnDat): 500 mV <--> 10650 dec, internal processor offset is corrected		
	For p0496 = 12: $180{ }^{\circ}$ fine pos	68 dec	
	For p0496 = 13 (resolver): 2900 mV <--> 13107 dec		

2.2 List of parameters

> For p0496 = 13 (sin/cos 1 Vpp, EnDat): 500 mV <--> 10650 dec
> For p0496 = 14: 1° <--> 286 dec, 100% <--> 16384 dec
> For p0496 = 15: 100% <--> 16384 dec
> For p0496 = 16 (resolver): channel A: 2900 mV <--> 26214 dec, channel B: 2900 mV <--> 26214 dec , channel A and channel B can be shifted by one sample (in time)
> For p0496 = 16: (sin/cos 1 Vpp, EnDat) channel A: 500 mV <--> 21299 dec, channel B: 500 mV <--> 21299 dec, channel A and channel B can be shifted by one sample (in time)
> For p0496 = 17 (resolver): absolute value: 2900 mV <--> 13107 dec, number: 1 ... 8
> For p0496 $=17$ (sin/cos 1 Vpp, EnDat): absolute value 500 mV <--> 10650 dec, number: 1 ... 8
> For p0496 = 18 (resolver): angle: signal period <--> $2^{\wedge} 16$, absolute value: 2900 mV <--> 13107 dec
> For p0496 = 18 (sin/cos 1 Vpp, EnDat): angle: signal period <--> 2^16, absolute value: 500 mV <--> 10650 dec
> For p0496 $=19$ (resolver): counter: dec, channel A: 2900 mV <--> 26214 dec
> For p0496 = 19 (sin/cos 1 Vpp, EnDat): counter: dec, channel A: 500 mV <--> 21299 dec
> For p0496 $=22$: 180° <--> 32768 dec
> For p0496 $=23$, 24: r0497.31 (r0499.15) set for at least 1 current controller sampling time when encoder zero mark detected
> For p0496 = 24, 25: 500 mV <--> 21299 dec
> For p0496 = 30: Rotary: 1 singleturn measuring step <--> 1 dec, linear: 1 measuring step <--> 1 dec
> For p0496 = 31: Absolute position, incremental in $1 / 4$ encoder pulses
> For p0496 $=32$: Zero mark position in $1 / 4$ encoder pulses
> For p0496 = 33: counter offset absolute value in $1 / 4$ encoder pulses
> For p0496 = 40: r0498 <--> (R_KTY/1 kOhm - 0.9) * 32768
> For p0496 = 42: 2500 Ohm <--> 2^32
> For p0496 = 51: $1 \mathrm{rpm}<-->1000 \mathrm{dec}$
> For p0496 = 52: In $1 / 4$ encoder pulses
> For p0496 $=60$: voltage, channel A in mV , voltage, channel B in mV
> For p0496 = 61: Channel A: encoder periods <--> 2^16, channel B: encoder periods <--> 2^16
> For p0496 = 62: encoder periods <--> 2^16
> For p0496 = 70: r: 100% <--> 10000 dec, phase: 180° <--> 18000 dec
> For p0496 = 80, 81, 85, 86: 1 V <--> 1000 inc

r0497[0...2]	CO: Encoder diagnostic signal double word / Enc diag DW		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Max	Fxpert list: 1
VECTOR_I_AC	Not for motor type: -	-	-
	Min		
	-		
Description:	Displays the trace signal for encoder diagnostics (double word).		
	The signal to be output is selected in p0496.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		
Dependency:	[2] Encoder 3	Refer to: p0496, r0498, ro499	

r0497	Encoder diagnostic signal double word / Enc diag DW		
ENC	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the trace signal for encoder diagnostics (double word).		
	The signal to be output is selected in p0496.		
Dependency:	Refer to: p0496, r0498, r0499		

Value:	Standard drive (VECTOR) Pumps and fans Sensorless closed-loop control down to $\mathrm{f}=0$ (passive loads) Dynamic in the field weakening range Starting with a high break loose torque High load moment of inertia
Dependency:	Refer to: p2175, p2177
Note:	The calculation of parameters dependent on the technology application can be called up as follows: - when exiting quick commissioning using p3900>0 - when writing p0340 $=1,3,5$ (for p0500 $=6: p 0340=1,3,4$) - when writing p0578 = 1
	For $\mathrm{p} 0500=0$ and when the calculation is initiated, the following parameters are set:
	- p1574 = 10 V (separately excited synchronous motor: 20 V)
	- p1750.2 = 0
	- p1802 = 4 (SVM/FLB without overcontrol)
	- p1803 = 106%
	- p1610 = 50%
	- p1611 = 30%
	- p1310 = 50%
	- p1311 = 0 \%
	- p1381 = 0 \%
	For $\mathrm{p} 0500=1$ and when the calculation is initiated, the following parameters are set:
	- p1574 = 2 V (separately excited synchronous motor: 4 V)
	- p1750.2 = 0
	- p1802 = 9 (edge modulation), if r0192.0 = 1
	- p1802 = 4, if r0192.0 = 0
	- p1803 = 106 \%
	- p1310, p1311, p1381, p1610, p1610 as for p0500 = 0
	For $\mathrm{p} 0500=2$ and when the calculation is initiated, the following parameters are set:
	- p1574 = 2 V (separately excited synchronous motor: 4 V)
	-p1750.2 = 1: Encoderless control of the induction motor is effective down to zero frequency.
	This operating mode is possible for passive loads. These include applications where the load does not generate regenerative torque when breaking away and the motor comes to a standstill (zero speed) itself when the pulses are inhibited.
	- p1802, p1803, p1310, p1311, p1381, p1610, p1610 as for p0500 $=0$
	The setting of p1750 is only relevant for induction motors.
	p1802 and p1803 are only changed, in all cases, if a sine-wave output filter ($\mathrm{p} 0230=3,4$) has not been selected.
	For p0500 = 4: (presetting for VECTOR with PM250 power unit)
	- p1574 = 30 V
	- p1750.2 = 0
	- p1802 = 2 (SVM with overcontrol)
	- p1803 = 106 \%
	- p1381 = 6 \% (to avoid overcontrol)
	- p1654 = p0115[1]
	- p1402.11 = 1
	- p1310, p1311, p1610, p1610 as for p0500 = 0
	For $\mathrm{p} 0500=5$: (for speed-controlled starting for vector control without encoder)
	- p1574, p1750.2, p1802, p1803, p1381 as for p0500 = 0
	- p1610 = 80% (separately excited synchronous motor: 50\%)
	- p1611 = 80% (separately excited synchronous motor: 50\%)
	- p1310 minimum 80\%
	- p1311 minimum 30\%

For p0500 $=6$: (for high moments of inertia with/without gearbox coupling)

- p1574, p1750.2, p1802, p1803, p1610, p1611, p1310 p1311 as for p0500 $=0$

The following settings change the speed control for $p 0340=1,3,4$
They are only reset using p0340 $=1$ or p3900 >0.

- p0342 $=10$ (motor moment of inertia factor, if previously p0342 $=1$)

The real factor can be entered in the commissioning tool.

- p1400.20 = 1 (acceleration model)
- p1441, p1442, p1452 calculated
-p1496 = 100%
- p1959.14 = 1 (speed actual value smoothing is calculated)
- p1967 = 80 \%

The following settings are only reset again using p3900 $=1$.

- p1115 = 1
- p1130, p1131 ramp-function generator rounding calculated from p1120, p1121 and r0345.

The moment of inertia estimator (p1400 bit 18, p5310) can be used, depending on the specific application, to adaptively determine the load moment of inertia.

Value: 1: SI system of units

p0505

SERVO, VECTOR,
HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM41, ENC

Description:

Dependency: Caution:

Note:

Selecting the system of units / Unit sys select
Can be changed: C2(5)
Data type: Integer16
P-Group: Applications
Not for motor type: -
Min
1
Sets the actual system of units.
2: System of units referred/SI
3: US system of units
4: System of units referred/US
The parameter can only be changed in an offline project using the commissioning tool.
If a per unit representation is selected and if the reference parameters (e.g. p2000) are subsequently changed, then the physical significance of several control parameters is also adapted at the same time. As a consequence, the control behavior can change (see p1576, p1621, p1744, p1752, p1755 and p1609, p1612, p1619, p1620). selected, these are displayed using either SI or US units.

p0514[0...9]	Scaling-specific reference values / Scal spec ref val		
SERVO, VECTOR,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Communications	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF,	Min	Max	Factory setting
B_INF	0.000001	10000000.000000	1.000000
Description:	Sets the reference values for the specific scaling of BICO parameters.		
	The specific scaling is active when interconnecting with other BICO parameters, and can be used in the following cases:		
	1. Parameter with the marking "Scaling: p0514".		
	2. Changing the standard scaling for parameters with the marking "Scaling: p2000" ... "Scaling: p2007".		
	Relative values refer to the corresponding reference value. The reference value corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
	To specifically scale BICO parameters, proceed as follows:		
	- set the reference value (p0514[0...9]).		
	- set the numbers of the parameters, which should be active for the scaling, corresponding to the index of p0514 (p0515[0...19] ... p0524[0...19]).		
	For parameters with the marking "Scaling: p0514", which are not entered in p0515[0...19] to p0524[0...19], the reference value 1.0 (factory setting) applies.		

2.2 List of parameters

p0517[0...19]	Scaling specific parameters referred to p0514[2]/Scal spec p514[2]		
SERVO, VECTOR,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Communications	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_IAC,	4294967295	Factory setting	
A_INF, S_INF, R_INF, Min		0	
B_INF	0		
Description:	Sets the parameters with reference value in p0514[2] for the specific scaling.		
	p0517[0]: parameter number		
	p0517[1]: parameter number		
	p0517[2]: parameter number		
	\ldots		
	p0517[19]: parameter number		
	Refer to: p0514		

p0518[0...19]	Scaling specific parameters referred to p0514[3] / Scal spec p514[3]		
SERVO, VECTOR,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Communications	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC,	4294967295	Factory setting	
A_INF, S_INF, R_INF,	Min	0	
B_INF	0		
Description:	Sets the parameters with reference value in p0514[3] for the specific scaling.		
	p0518[0]: parameter number		
	p0518[1]: parameter number		
	p0518[2]: parameter number		
	\ldots		
	p0518[19]: parameter number		
	Refer to: p0514		

p0519[0...19]	Scaling specific parameters referred to p0514[4] / Scal spec p514[4]		
SERVO, VECTOR,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Communications	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC,	Max	Factory setting	
A_INF, S_INF, R_INF,	Min	4294967295	0

Description:	Sets the parameters with reference value in $\mathrm{p} 0514[4]$ for the specific scaling.
	$\mathrm{p} 0519[0]:$ parameter number
	$\mathrm{p} 0519[1]:$ parameter number
	$\mathrm{p} 0519[2]:$ parameter number
	\ldots
	p0519[19]: parameter number
Dependency:	Refer to: p 0514

p0520[0...19]	Scaling specific parameters referred to p0514[5] / Scal spec p514[5]		
SERVO, VECTOR,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Communications	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF,	Min	Max	Factory setting
B_INF	0	4294967295	0
Description:	Sets the parameters with reference value in $p 0514[5]$ for the specific scaling. p0520[0]: parameter number p0520[1]: parameter number p0520[2]: parameter number p0520[19]: parameter number		
Dependency:	Refer to: p0514		

p0522[0...19]	Scaling specific parameters referred to p0514[7]/Scal spec p514[7]		
SERVO, VECTOR,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Communications	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_IIAC,	Max	Factory setting	
A_INF, S_INF, R_INF, Min	4294967295	0	

Description:	Sets the parameters with reference value in p0514[7] for the specific scaling.
p0522[0]: parameter number	
	p0522[1]: parameter number
p0522[2]: parameter number	
	...
	p0522[19]: parameter number
Dependency:	Refer to: p0514

2.2 List of parameters

p0528	Controller gain system of units / Ctrl_gain unit_sys		
SERVO, HLA,	Can be changed: C2(5)	Calculated: -	Access level: 4
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
SERVO_I_AC, TM41, ENC	P-Group: Applications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the system of units for the controller gains.		
Value:	0 : Representation physical/\% (p0505) 1: Representation no dimensions (referred)		
Note:	The parameter is pre-assigned a value of 0 and cannot be changed.		
p0528	Controller gain system of units / Ctrl_gain unit_sys		
VECTOR,	Can be changed: C2(5)	Calculated: -	Access level: 4
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Applications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	1
Description:	Sets the system of units for the controller gains.		
Value:	0 : Representation physical/\% (p0505) 1: Representation no dimensions (referred)		

Note:	For VECTOR (r0107) the following applies:
	The parameter is pre-assigned a value of 1 and cannot be changed.

p0530[0...n]	Bearing version selection / Bearing vers sel		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: SESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	104	0
Description:	Sets the bearing version.		
	Corresponding to the bearing version entered, its code number (p0531) is automatically set.		
	0 = No data		
	1 = Manual entry		
	101 = STANDARD		
	102 = PERFORMANCE		
	103 = HIGH PERFORMANCE		
	104 = ADVANCED LIFETIME		
Dependency:	Refer to: p0301, p0531, p0532, p1082, r1082		
Notice:	For $p 0530=101,102,103,104$, the maximum bearing speed ($p 0532$) is write protected. Write protection is withdrawn with p0530 $=1$. If p0530 is changed during quick commissioning ($p 0010=1$), then the maximum speed $p 1082$, which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$). The maximum speed of the bearing is factored into the limit for the maximum speed p 1082.		
Note:	For a motor with DRIVE-CLiQ, p0530 can only be set to 1.		

p0532[0...n]	Bearing maximum speed / Bearing n_max		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	
	P-Group: Motor	Unit group: -	
	Not for motor type: -	Scaling: -	
	Min	Max	
	0.0 [rpm]	210000.0 [rpm]	0.
Description:	Sets the maximum speed of the bearing.		
	The following applies when calculating the maximum speed (p 1082): - for p0324 = 0 or p0532 $=0$, p0322 is used.		
	- for p0324 > 0 and p0532>0, the minimum value from the two parameters is used.		
Dependency:	Refer to: p0301, p0322, p03	2, r1082	

2.2 List of parameters

Notice: \quad This parameter is pre-assigned in the case of motors from the motor list ($p 0301$) if a bearing version ($p 0530$) is selected.
When selecting a catalog motor, this parameter cannot be changed (write protection). The information in p0530 should be observed when removing write protection.
If $p 0532$ is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor (p0010 = 3).

p0532[0...n]	Bearing maximum velocity / Bearing v_max		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [m/min]	1300.0 [m/min]	0.0 [m/min]
Description:	Sets the maximum velocity of the bearing.		
	The following applies when calculating the maximum velocity (p 1082): - for p0324 $=0$ or p0532 $=0$, p0322 is used. - for p0324>0 and p0532>0, the minimum value from the two parameters is used.		
Dependency:	Refer to: p0301, p0322, p0324, p0530, p1082, r1082		
Notice:	This parameter is pre-assigned in the case of motors from the motor list (p 0301) if a bearing version (p 0530) is selected.		
	When selecting a catalog motor, this parameter cannot be changed (write protection). The information in p0530 should be observed when removing write protection.		
	If p0532 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum velocity p 1082 , which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor (p0010 = 3).		

p0532[0...n]	Bearing maximum speed / Bearing n_max		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum speed of the bearing.		
	The following applies when calculating the maximum speed (p1082):		
	- for p0324 $=0$ or p0532 $=0$, p0322 is used.		
	- for p0324 > 0 and p0532>0, the minimum value from the two parameters is used.		
Dependency:	Refer to: p0301, p0322, p0324, p0530, p1082, r1082		
Notice:	This parameter is pre-assigned in the case of motors from the motor list (p 0301) if a bearing version (p 0530) is selected.		
	When selecting a catalog motor, this parameter cannot be changed (write protection). The information in p0530 should be observed when removing write protection.		
	If p0532 is changed during quick commissioning ($p 0010=1$), then the maximum speed $p 1082$, which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor (p0010 = 3).		

p0541[0...n]	Load gearbox code number / Load grbx CodeNo		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	1
Description:	Display and setting the code number for the load gearbox.		
	0 = No data		
	1 = Manual entry		
	> 1 = valid code number		
	If value $=0$:		
	- parameters listed under Dependent are set to a value of zero and are write protected.		
	If value $=1$: \quad		
	- write protection for the parameters listed under Dependent is withdrawn.		
	If value > 1:		
	- parameters listed under Dependent are automatically preassigned and are write protected.		
Dependency:	Refer to: p0542, p0543, p0544, p0545, p0546, p0547		
Note:	A code number that does not exist cannot be set.		
p0542[0...n]	Load gearbox maximum speed / Load grbx n_max		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum permissible input speed at the load gearbox.		
	When calculating the maximum speed (p1082) in quick commissioning ($0010=1$), the following applies:		
	- for p0542 $=0$, this parameter has no effect. The maximum speed from p0322 is used.		
	- for p0542 > 0 , the maximum speed (p 0322) is limited by p0542.		
Notice:	After entering a corresponding code number (p 0541), this parameter is automatically preassigned and write protected. The information in p0541 should be observed when removing write protection.		
p0543[0...n]	Load gearbox maximum torque / Load grbx M_max		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 7_4	Unit selection: p0100
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Nm]	$1000000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Sets the maximum permissible input torque at the load gearbox.		
	When calculating the upper/motoring torque limit (p1520) and the lower/generating torque limit (p1521) in quick commissioning ($\mathrm{p} 0010=1$), then the following applies:		
	- for p0543 $=0$, the values in p1520/p1521 remain unchanged.		
	- for p0543>0, the torque limits (r1538, r1539) are limited by p0543.		
Notice:	After entering a corresponding code number (p 0541), this parameter is automatically preassigned and write protected. The information in p0541 should be observed when removing write protection.		

p0544[0...n]	Load gearbox overall ratio numerator / Load grbx ratio N		
SERVO, SERVO_AC,	Can be changed: C2(1, 3)	Calculated: -	Access level: 2
SERVO_I_AC	Data type: Integer32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL,	Scaling: -	Expert list: 1
	RESM	Max	Factory setting
	Min	2147483647	0
Description:	0	Sets the numerator for the overall ratio (absolute value) of the load gearbox.	

p0545[0...n]	Load gearbox overall ratio denominator / Load grbx ratio D		
SERVO, SERVO_AC,	Can be changed: C2(1, 3)	Calculated: -	Access level: 2
SERVO_I_AC	Data type: Integer32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL,	Scaling: -	
	RESM	Max	
	Min	2147483647	Factory setting
	0	0	
Description:	Sets the denominator for the overall ratio (absolute value) of the load gearbox.		

p0546[0...n]	Load gearbox direction of rotation inversion / Load grbx dir inv		
SERVO, SERVO_AC,	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 2
SERVO_I_AC	Data type: Integer32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2147483647	0
Description:	Setting to invert the direction of rotation of the load gearbox. Value $=0$: no inversion		
Notice:	After entering a corresponding code num protected. The information in p0541 should	(p0541), this parameter is e observed when removing	ally preassigned and write tection.

p0547[0...n]	Load gearbox moment of inertia / Load gbx M_inertia		
SERVO, SERVO_AC,	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 25_1	Unit selection: p0100
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.000000\left[\mathrm{kgm}^{2}\right]$	$100000.000000\left[\mathrm{kgm}^{2}\right]$	$0.000000\left[\mathrm{kgm}^{2}\right]$
Description:	Sets the load gearbox moment of inertia.		
Notice:	After entering a corresponding code number (p 0541), this parameter is automatically preassigned and write protected. The information in p0541 should be observed when removing write protection.		
Note:	For a manual input ($\mathrm{p} 0541=1$), the value moment of inertia and the motor of less p0541 $=0$, and re-entered (p0541 $=0$ re	be set is rejected if this entry 1 (p0342 < 1). In this case in p0342 = 1).	lead to a ratio between the total ox data should be reset using

p0550[0...n]	Brake version / Brake version		
SERVO, SERVO_AC,	Can be changed: C2(1, 3)	Calculated: -	Access level: 2
SERVO_I_AC	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL,	Scaling: -	Expert list: 1
	RESM		
	Min	Max	0
	0	1	
Description:	Sets the brake version.		
Value:	$0: \quad$ No data		
Notice:	$1: \quad$ Holding brake		
	After entering a corresponding code number (p0551), this parameter is automatically preassigned and write		
	protected. The information in p0551 should be observed when removing write protection.		

p0551[0...n]	Brake code number / Brake code no.		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	1
Description:	Display and setting the code number for the brake.		
	0 = No data		
	1 = Manual entry		
	> 1 = valid code number		
	If value $=0$:		
	- parameters listed under Dependent are set to a value of zero and are write protected.		
	- parameters p1216, p1217 are set to a value of zero and are write protected.		
	If value $=1$:		
	- write protection for the parameters listed under Dependent is withdrawn.		
	If value >1 :		
	- parameters listed under Dependent are automatically preassigned and are write protected.		
	- parameters p1216, p1217 are automatic	appropriately preassigned	write protected.
Dependency:	Refer to: p0550, p0552, p0553		
Note:	Only code numbers can be set that are permitted for the selected motor code (p 0301).		

p0552[0...n]	Maximum brake speed / Brake n_max		
SERVO, SERVO_AC,	Can be changed: C2(1, 3)	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	When calculating the maximum speed (p 1082) in quick commissioning ($\mathrm{p} 0010=1$), the following applies: - for $\mathrm{p} 0552=0$, this parameter has no effect. The maximum speed from p0322 is used.		
Notice:	After entering a corresponding code num protected. The information in p0551 sho	(p0551), this parameter is e observed when removin	ally preassigned and write tection.

p0553[0...n]	Brake holding torque / Brake M_hold		
SERVO, SERVO_AC,	Can be changed: C2(1, 3)	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 7_4	Unit selection: p0100
	Not for motor type: ASM, SESM, REL,	Scaling:-	Expert list: 1
	RESM	Max	Factory setting
	Min	$1000000.00[\mathrm{Nm}]$	$0.00[\mathrm{Nm}]$
	$0.00[\mathrm{Nm}]$		
Description:	Sets the brake holding torque.		
Notice:	After entering a corresponding code number (p0551), this parameter is automatically preassigned and write		
	protected. The information in p0551 should be observed when removing write protection.		

p0554[0...n]	Brake moment of inertia / Brake M_inertia		
SERVO, SERVO_AC,	Can be changed: C2(1, 3)	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 25_1	Unit selection: p0100
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [kgm^{2}]	- $\left[\mathrm{kgm}^{2}\right]$	- [kgm^{2}]
Description:	Sets the brake moment of inertia.		
Notice:	After entering a corresponding code number (p0551), this parameter is automatically preassigned and write protected. The information in p0551 should be observed when removing write protection.		
Note:	For a manual input ($\mathrm{p} 0551=1$), the value moment of inertia and the motor of less $=0$, and re-entered (p0551 $=0$ results in	be set is rejected if this ent 1 (p0342 < 1). In this case, $42=1$).	lead to a ratio between the total data should be reset using p0551

r0565[0...15]	CO: Probe time stamp / Probe t_stamp		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-Group: Displays, signals	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$			-
Description:	Display and connector output for the time stamp MT_ZS_1 up to MT_ZS_16.		
	Displays the measuring time for an edge at the digital input for the "central measuring probe evaluation stage 3 " function.		
	The measuring time is specified as 16 -bit value with a resolution of $0.25 \mu \mathrm{~s}$.		
	Priority:		
	MT1 ... MT8, oldest ... newest time stamp		

r0566[0...3]	CO: Probe time stamp reference / Probe t_stamp name		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Displays, signals	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description:	Display and connector output for the time stamp reference MT_ZSB1 up to MT_ZSB4.		

r0567	CO: Probe diagnostics word / Probe diag_word		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & C U _S 150=D P, \\ & C U _1 _D 410 \end{aligned}$		-	-
Description:	Display and connector output for diagnostics word MT_DIAG.		
p0570	Inhibit list values effective number / Inhib list no		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(5), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Applications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	50	0
Description:	Sets the number of parameters in the inhibit list p0571.		
	This number of parameters can be automatically excluded from the calculation of the motor and control parameters (see p0340, p0578), starting from index 0 .		
Note:	Defines the number of entries in p0571 that should be taken into account.		
	The inhibit list is deactivated for a value of 0 .		
p0571[0...49]	Inhibit list motor/closed-loop control parameter calculation / Inhib list calc		
SERVO, SERVO_AC, SERVO_I_AC		Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Applications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2142	0
Description:	The inhibit list contains parameters that should be withdrawn from the automatic motor and closed-loop control parameter calculation (p0340, p0578).		
Value:	0: No parameter		
	348: Speed at the start of fie	$\mathrm{Vdc}=600 \mathrm{~V}$	
	600: Motor temperature sen		
	640: Current limit		
	1082: Maximum speed		
	1441: Actual speed smoothing time		
	1460: Speed controller P gain		
	1462: Speed controller integral time		
	1470: Speed controller P gain encoderless		
	1472: Speed controller integral time encoderless		
	1520: Torque limit upper/motoring		
	1521: Torque limit lower/regenerative		
	1530: Power limit motoring		
	1531: Power limit regenerative		
	1590: Flux controller P gain		
	1592: Flux controller integral time		
	1656: Activates current setpoint filter		
	2141: Speed threshold 1		
Note:	Parameter p0570 defines the number of entries (starting at index 0) in the inhibit list. p0572 can be used to define for which drive data sets the inhibit list should apply.		
	If a motor data set is entered into a parameter number, then this is not overwritten as soon as only one drive data set refers to the motor data set (p 0186).		

p0571[0...49]	Inhibit list motor/closed-loop control parameter calculation / Inhib list calc		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(5), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Applications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2142	0
Description:	The inhibit list contains parameters that should be withdrawn from the automatic motor and closed-loop control parameter calculation (p0340, p0578).		
Value:	0: \quad No parameter		
	600: Motor temperature sen		
	640: Current limit		
	1082: Maximum speed		
	1460: Speed controller P gain		
	1462: Speed controller integr		
	1470: Speed controller P gain		
	1472: Speed controller integra	rless	
	1520: Torque limit upper/mot		
	1521: Torque limit lower/rege		
	1530: Power limit motoring		
	1531: Power limit regenerativ		
	1590: Flux controller P gain		
	1592: Flux controller integral		
	2141: Speed threshold 1		
	2142: Hysteresis speed 1		
Note:	Parameter p0570 defines the number of entries (starting at index 0) in the inhibit list. p0572 can be used to define for which drive data sets the inhibit list should apply.		
	If a motor data set is entered into a parameter number, then this is not overwritten as soon as only one drive data set refers to the motor data set (p 0186).		

p0572[0...n]	Activate/deactivate inhibit list / Inh_list act/deact		
SERVO, VECTOR,	Can be changed: C2(5), U, T	Calculated: -	Access level: 2
SERVO_AC,	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_AC,	P-Group: Applications	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	1	0

Description: Setting for activating/deactivating the inhibit list.
Depending on the setting, the parameters of the inhibit list (p0571) should be overwritten when calculating the motor and closed-loop control parameters for the particular drive data set (DDS).
Value:
0 : No
1: Yes
Note: \quad If value $=0$:
The automatic calculation (p0340, p0578) also overwrites the parameters of the inhibit list (p0571).
If value = 1:
The automatic calculation ($\mathrm{p} 0340, \mathrm{p} 0578$) does not overwrite the parameters of the inhibit list (p 0571).

p0573	Inhibit automatic reference value calculation / Inhibit calc		
SERVO, VECTOR,	Can be changed: C2(5), U, T	Calculated: -	Access level: 2
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Applications	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_IAC,	Not for motor type: -	Max	Factory setting
A_INF, SINF, R_INF,	Min	1	0
B_INF, TM41	0		
Description:	Setting to inhibit the calculation of reference parameters (e.g. p2000) when automatically calculating the motor and		
	closed-loop control parameters (p0340, p3900).		

Value:	$0: \quad$ No
Notice:	$1: \quad$ Yes
	The inhibit for the reference value calculation is canceled when new motor parameters (e.g. p0305) are entered and
only one drive data set exists $(p 0180=1)$. This is the case during initial commissioning.	
Once the motor and control parameters have been calculated (p0340, p3900), the inhibit for the reference value	
calculation is automatically re-activated.	
Note:	If value =0:
	The automatic calculation (p0340, p3900) overwrites the reference parameters.
	If value =1:
	The automatic calculation $(p 0340, p 3900)$ does not overwrite the reference parameters.

p0578[0...n]	Calculate technology-dependent parameters / Calc tec par		
SERVO, VECTOR,	Can be changed: C2(5), T	Calculated: -	Access level: 2
SERVO_AC,	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
SERVO I AC,	P-Group: Applications	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	This parameter is used to calculate all parameters that depend on the technology of the application (p 0500). All of the parameters are calculated that can also be determined using p0340 $=5$.		
Value:	0 : \quad No calculation 1: Complete calculatio		
Note:	At the end of the calculation	matically set to 0 .	

p0581	Measuring probe edge / MT edge		
SERVO, HLA,	Can be changed: C2(4), U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the edge to evaluate the measuring probe signal for speed actual value measurement. $0: 0 / 1$ edge 1: 1/0 edge		
Dependency:	Refer to: p0580		
p0582	Measuring probe pulses per revolution / MT pulses per rev		
SERVO, HLA,	Can be changed: C2(4), U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	12	1
Description:	Sets the number of pulses per revolution (e.g. for disks with holes).		
p0583	Measuring probe maximum measuring time / MT t_meas max		
SERVO, HLA,	Can be changed: C2(4), U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_I_AC	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.040 [s]	10.000 [s]	10.000 [s]
Description:	Sets the maximum measuring time for the measuring probe. If a new pulse is not received before the maximum measuring time has expired, then the speed actual value in r0586 is set to zero. This timer is re-started with the next pulse.		
Dependency:	Refer to: r0586		
r0586	CO: Measuring probe speed actual value / MT n_act		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed actual value measured using the BERO.		
Dependency:	Refer to: p0580, p0583		
Note:	For p0580 $=0$ (no measuring probe), a value of zero is displayed here.		
r0586	CO: Measuring probe velocity actual value / MT v_act		
SERVO (Lin), HLA,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	-[m/min]	- [m/min]
Description:	Displays the velocity actual value measured using the BERO.		

Dependency:	Refer to: p0580, p0583		
Note:	For p0580 = 0 (no measuring probe), a value of zero is displayed here.		
r0587	CO: Measuring probe measuring time measured / MT t_meas measured		
SERVO, HLA, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time between the last two BERO pulses.		
	The measuring time is specified as 32 -bit value with a resolution of $1 / 48 \mu \mathrm{~s}$.		
	If a new pulse is not received before the maximum measured time in p0583 expires, then r0587 is set to the maximum measuring time.		
Dependency:	Refer to: p0580		
Note:	For p0580 = 0 (no measuring probe), a value of zero is displayed here.		
r0588	CO: Measuring probe pulse counter / MT pulse counter		
SERVO, HLA, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of measuring pulses that have occurred (been received) up until now.		
Dependency:	Refer to: p0580		
Note:	After reaching $4294967295\left(2^{\wedge} 32-1\right)$, the counter starts again at 0.		
r0589	Measuring probe delay time / MT t_delay		
SERVO, HLA, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the time since the last measuring pulse was detected.		
	The delay time is specified as 32-bit value with a resolution of $1 / 48 \mu \mathrm{~s}$.		
	When a measuring pulse occurs (is received) the delay time is reset and is limited to the maximum measuring time in p0583.		
Dependency:	Refer to: p0580		
Note:	For p0580 = 0 (no measuring probe), a value of zero is displayed here.		
p0595	Technological unit selection / Tech unit select		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl), SERVO_AC (Tech_ctrl),	Can be changed: C2(5)	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Applications	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC (Tech_ctrl),	1	32	1
VECTOR_I_AC (Tech_ctrl)			
Description:	Selects the units for the parameters of the technology controller.		
	For p0595 = 1, 2, the referen	in p0596 is not	

2.2 List of parameters

p0596	Technological unit reference quantity / Tech unit ref qty		
SERVO (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 1
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC (Tech_ctrl),	P-Group: -	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
$\begin{aligned} & \text { SERVO_I_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_I_AC } \\ & \text { (Tech_ctrl) } \end{aligned}$	0.01	340.28235E36	1.00
Description:	When changing over using changeover parameter p0595 to absolute units, all of the parameters involved refer to the reference quantity.		
Dependency:	Refer to: p0595		
Notice:	When changing over from one technological unit into another, or when changing the reference parameter, a changeover is not made.		

p0600[0...n]	Motor temperature sensor for monitoring / Mot temp_sensor		
SERVO, SERVO_AC,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_ALL	Access level: 2
SERVO_I_AC	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Unit group: -	Scaling: -
	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	

p0600[0...n]	Motor temperature sensor for monitoring / Mot temp_sensor		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	21	0
Description:	Sets the sensor to monitor the motor temperature.		
	The sensor type used is set in p0601.		
Value:	0 : No sensor		
	$\begin{array}{ll}\text { 1: } & \text { Temperature sensor via encoder } 1 \\ \text { 2: } & \text { Temperature sensor via encoder } 2\end{array}$		
	3: Temperature sensor via encoder 3		
	10: Temperature sensor via a BICO interconnection		
	11: Temperature sensor via Motor Module / CU terminals		
	20: Temperature sensor via a BICO interconnection p0608		
	21: Temperature sensor via a BICO interconnection p0609		
Dependency:	Refer to: r0458, p0601, p0603		

2.2 List of parameters

Caution:	If, for a selected temperature sensor (p0600 > 0), the motor temperature sensor is not connected but another sensor, then the temperature adaptation of the motor resistances must be switched out. Otherwise, in controlled-loop operation, torque errors will occur that will mean that the drive will not be able to be stopped.
Notice:	The parameter is calculated in the drive using p0340 and is inhibited for p0340 > 0 .
	For operation with a braking resistor ($\mathrm{p} 1300=15$), p0600 $=11$ is automatically set when commissioning.
Note:	For p0600 = 0:
	With induction motors, the motor temperature is calculated using the motor temperature model (see also p0612.1).
	For p0600 = 1, 2, 3:
	Bimetallic switch (p0601 $=4$) and PT100 temperature sensor (p0601 = 5) are not supported.
	For p0600 = 10:
	The BICO interconnection should be executed via connector input p0603.
	For p0600 = 11:
	For SINAMICS S120 AC Drive (AC/AC) and using the Control Unit Adapter CUA31, the temperature sensor is connected at the adapter (X210).
	For p0600 = 20, 21:
	The BICO interconnection should be executed via connector input p0608 or p0609.
	Associated parameters: p0601, p4600 ... p4603, p4610 ... p4613

p0601[0...n] Motor temperature sensor type / Mot_temp_sens type

SERVO, VECTOR,
SERVO_AC,
VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

Description:

Value:

Dependency

Note:

Calculated: -
Dyn. index: MDS, p0130
Unit group: -
Scaling: -
Max
11

Access level: 2

Func. diagram: 8016
Unit selection: -
Expert list: 1
Factory setting
2

Sets the sensor type for the motor temperature monitoring.
No sensor
PTC alarm \& timer
KTY84
KTY84 and PTC (only for motors with DRIVE-CLiQ):
Bimetallic NC contact alarm \& timer (only for temp_eval via MM)
PT100
PT1000
PT1000 and PTC (only for motors with DRIVE-CLiQ):
Evaluation via several temperature channels SME12x
Evaluation via several temperature channels BICO
11: Evalutor model is calculated corresponding to p 0612.
Refer to: r0458, p0600, p0612
The temperature sensor for the temperature evaluation is set in p0600
For p0600 = 10 (temperature sensor via a BICO interconnection), the setting in p0601 has no significance.
Information on using temperature sensors is provided in the following literature:

- hardware description of the appropriate components
- SINAMICS S120 Commissioning Manual

For p0601 = 1:
Tripping resistance $=1650$ Ohm.
After the tripping resistance has been exceeded, an appropriate alarm is output and after the delay time set in p0606 has expired, an appropriate fault is output.
For p0601 = 3, 7:
For motors with DRIVE-CLiQ and two temperature sensors, the value is automatically set.
For p0601 = 4:
Tripping resistance $=100$ Ohm.
After tripping, an appropriate alarm is output and after the delay time set in p0606 has expired, an appropriate fault is output.
For p0601 = 5:
It is only possible to evaluate a PT100 for p0600 $=11$ and r0192.15 $=1$.

	For p0601 = 10:			
	Not permitted for p0600 = 0, 10, 11.			
	Associated parameters: p4600 ... p4603 (can be switched via EDS)			
	For r0458.8 = 1, a temperature evaluation is supported through several temperature channels.			
	Examples:			
	When evaluating using SME120 or SME125, 4 temperature channels are available (parameterized using p4600, p4601, p4602, p4603).			
	When evaluating using CU310 and CUA32, 2 temperature channels are available (encoder interface: parameterization via p4600, terminal block: parameterization via p4601).			
	For p0601 = 11:			
	Not permitted for p0600 = 0, 10, 11.			
	Associated parameters: p4610 ... p4613 (can be switched via MDS)			
p0601	Temperature sensor, sensor type / Temp_sens type			
$\begin{aligned} & \text { A_INF, S_INF, R_INF, } \\ & \text { B_INF } \end{aligned}$	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2	
	Data type: Integer16	Dyn. index: -	Func. diagram: -	
	P-Group: Motor	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0	6	0	
Description:	Sets the sensor type for the temperature measurement at input X21 (booksize) or X41 (chassis). The measured value is displayed in r0035.			
Value:	0 : No sensor 1: PTC alarm \& timer 2: KTY84 4: \quad Bimetallic NC contact alarm \& timer 6: PT1000			
Dependency:	Refer to: r0035			
Note:	The measured value display depends on the selected sensor type.			
	For p0601 = 0:			
	--> r0035 = -200 ${ }^{\circ} \mathrm{C}$			
	For p0601 = 1:			
	Tripping resistance $=1650$ Ohm (lower resistance --> r0035 $=-50^{\circ} \mathrm{C}$, higher resistance --> r0035 = $250{ }^{\circ} \mathrm{C}$).			
	Displays the temperature in ${ }^{\circ} \mathrm{C}$.			
	For p0601 = 4:			
	r0035 $=-50{ }^{\circ} \mathrm{C}$			
	--> The tripping resistance is less than 100 Ohm (bimetallic NC contact is closed or has a short-circuit). r0035 $=250^{\circ} \mathrm{C}$			
	--> The tripping resistance is greater than 100 Ohm (bimetallic NC contact is open, not connected or has a wire breakage).			
	When using the following components, a value of 4 is set as the factory setting and can no longer be changed: - Basic Line Module (BLM) with internal Braking Module.			
	- Active Line Module (ALM) with line filter Active Interface Module (AIM, p0220[0] = $41 . . .45$).			
	In these cases, in addition to the temperature display, the temperature is also monitored.			
p0602	Par_connection power unit number, temperature sensor / PU_no temp_sensor			
VECTOR (Parallel), VECTOR_AC (Parallel), VECTOR_I_AC (Parallel)	Can be changed: C2(3), U, T	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -	
	P-Group: Motor	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0	10	0	
Description:	Sets the power unit number to Data Set number (PDS) of the	perature senso he number of po	lue corresponds to defined in p0120.	

p0603
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description:
Dependency:
Note:

CI: Motor temperature signal source / Mot temp S_src		
Can be changed: C 2 (3), T	Calculated: -	Access level: 2
Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 8016
P-Group: Motor	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: p2006	Expert list: 1
Min	Max	Factory setting
-	-	0
Sets the signal source to evaluate the motor temperature via a BICO interconnection.		
Refer to: p0600		
Temperature sensor KTY/PT1000: Valid temperature range -48 ${ }^{\circ} \mathrm{C} . . .248{ }^{\circ} \mathrm{C}$.		
PTC temperature sensor:		
For a value $=-50^{\circ} \mathrm{C}$, the following applies: Motor temperature < nominal response temperature of the PTC.		
For a value $=250^{\circ} \mathrm{C}$, the following applies: Motor temperature $>=$ nominal response temperature of the PTC.		
Note:		
When using a Terminal Module 31 (TM31), the following applies:		
- the sensor type used is set using p4100.		
- the temperature signal is interconnected using CO: r4105.		

p0604[0...n]	Mot_temp_mod 2: sensor alarm threshold / Mod 2: sens A_thr	Calculated: -	Access level: 2
SERVO, SERVO_AC,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Dyn. index: MDS, p0130	Func. diagram: 8016
SERVO_I_AC	Data type: FloatingPoint32	Unit group: $21 _1$	Unit selection: p0505
	P-Group: Motor	Scaling: -	Max
	Not for motor type: -	Expert list: 1	

p0604[0...n]	Mot_temp_mod 2: sensor alarm threshold / Mod 2: sens A_thr		
VECTOR,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Unit group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [${ }^{\circ} \mathrm{C}$]	200.0 [${ }^{\circ} \mathrm{C}$]	130.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold for monitoring the motor temperature for motor temperature model 2 or KTY/PT1000. After the alarm threshold is exceeded, alarm A07910 is output and timer (p0606) is started. If the delay time has expired and the alarm threshold has, in the meantime, not been fallen below, then fault F07011 is output.		
Dependency:	Refer to: p0606, p0612		
	Refer to: F07011, A07910		
Notice:	When selecting a catalog moto Information in p0300 should be	parameter is automatically prved when removing write	ned and is write protected.

The hysteresis is 2 K .
When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).

p0605[0...n]	Mot_temp_mod 1/2 sensor threshold and temperature value / Mod 1/2 sens thr_T		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8016, 8017
	P-Group: Motor	Unit group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [${ }^{\circ} \mathrm{C}$]	240.0 [${ }^{\circ} \mathrm{C}$]	145.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the threshold and temperature value to monitor the motor temperature. Temperature model 1 (12 t , p0612.0 = 1):		
	The following applies for firmware version < 4.7 SP6 or p0612.8 $=0$: - sets the alarm threshold. If the model temperature (r0034) exceeds the alarm threshold, then alarm A07012 is output.		
	- this value is simultaneously used as rated winding temperature.		
	The following applies from firmware version 4.7 SP6 and p0612.8 = 1 :		
	- p5390: when commissioning a catalog motor for the first time, p0605 is copied to p5390.		
	- p5390: p5390 is of significance when evaluating the alarm threshold.		
	- p5390: the stator winding temperature (r0632) is used to initiate the signal.		
	- p0627: when a catalog motor is commissioned for the first time, p0605-40 ${ }^{\circ} \mathrm{C}$ is copied to p0627.		
	- p0627: p0627 is of significance for the rated temperature.		
	Motor temperature model $2(\mathrm{p} 0612.1=1)$ or measurement:		
Dependency:	Refer to: r0034, p0606, p0611, p0612		
	Refer to: F07011, A07012		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	Motor temperature model 1 (12t):		
	The following applies for firmware version < 4.7 SP6 or p0612.8 $=0$:		
	p0605 also defines the final temperature of the model for r0034 $=100 \%$. Therefore, p0605 has no influence on the time up to alarm A07012 being issued. The time is only determined by time constant p0611, the actual current and the reference value p 0318 . For $\mathrm{p} 0318=0$, the rated motor current is used as reference value.		
Note:	The hysteresis is 2 K .		
	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0606[0...n]	Mot_temp_mod 2: sensor timer / Mod 2:sens timer		
SERVO, SERVO_AC,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	600.000 [s]	240.000 [s]
Description:	Sets the timer for monitoring the motor temperature for motor temperature model 2 or KTY/PT1000. This timer is started when the temperature alarm threshold (p0604) is exceeded. If the timer has expired and the alarm threshold has, in the meantime, not been fallen below, then fault F07011 is output. If the temperature fault threshold (p 0605) is prematurely exceeded before the timer has expired, then fault F07011 is immediately output.		
Dependency:	Refer to: p0604, p0605		
	Refer to: F07011, A07910		

Note:
With p0606 $=0 \mathrm{~s}$, the timer is deactivated and only the fault threshold is effective.
KTY/PT1000: When setting the minimum value, the timer is disabled and a fault is not output until p0605 is exceeded.
PTC, bimetallic NC contact: The timer minimum value has no special significance.

p0607[0...n]	Temperature sensor fault timer / Sensor fault time		
SERVO, VECTOR,	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8016
VECTOR_AC,	P-Group: Motor	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	$600.000[\mathrm{~s}]$	Factory setting
	$0.000[\mathrm{~s}]$	0.100 [s]	
Description:	Sets the timer between the output of alarm and fault for a temperature sensor fault.		
	If there is a sensor fault, this timer is started.		
	If the sensor fault is still present after the timer has expired, a corresponding fault is output.		
Notice:	The parameterized time is internally rounded-off to an integer multiple of 48 ms.		
Note:	If the motor is an induction motor, the timer is switched off when setting the minimum value and no alarm is output.		
	Temperature monitoring is then based on the thermal model.		

p0608[0...3]	CI: Motor temperature signal source 2 / Mot_temp S_src 2		
SERVO, VECTOR,	Can be changed: C2(3), T	Calculated: -	Access level: 2
SERVO_AC,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 8016
VECTOR_AC,	P-Group: Motor	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: p2006	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	-	-	0

Description: Sets signal source 2 to evaluate the motor temperature via a BICO interconnection.

Index:	$[0]=$ Motor temperature channel 1
	$[1]=$ Motor temperature channel 2
	$[2]=$ Motor temperature channel 3
	$[3]=$ Motor temperature channel 4
Dependency:	Refer to: p0600

Note:	Temperature sensor KTY/PT1000: Valid temperature range $-48^{\circ} \mathrm{C} . .248^{\circ} \mathrm{C}$. Temperature sensor PTC/bimetal: For a value of $-50^{\circ} \mathrm{C}$, the following applies: Motor temperature < nominal response temperature of the PTC (bimetal contact closed). For a value of $250^{\circ} \mathrm{C}$, the following applies: Motor temperature >= nominal response temperature of the PTC (bimetal contact open). Note: When using a Terminal Module 120 (TM120), the following applies: - the sensor type used is set using p4100. - the temperature signal is interconnected using connector output r4105.
p0609[0...3]	CI: Motor temperature signal source 3 / Mot_temp S_src 3
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(3), T Calculated: - Access level: 2 Data type: Unsigned32 / FloatingPoint32 Dyn. index: - Func. diagram: 8016 P-Group: Motor Unit group: - Unit selection: - Not for motor type: - Scaling: p2006 Expert list: 1 Min Max Factory setting - - 0
Description: Index:	Sets signal source 3 to evaluate the motor temperature via a BICO interconnection. [0] = Motor temperature channel 1 [1] = Motor temperature channel 2 [2] = Motor temperature channel 3 [3] = Motor temperature channel 4
Dependency:	Refer to: p0600
Note:	Temperature sensor KTY/PT1000: Valid temperature range $-48^{\circ} \mathrm{C} . .248^{\circ} \mathrm{C}$. Temperature sensor PTC/bimetal: For a value of $-50^{\circ} \mathrm{C}$, the following applies: Motor temperature < nominal response temperature of the PTC (bimetal contact closed). For a value of $250^{\circ} \mathrm{C}$, the following applies: Motor temperature >= nominal response temperature of the PTC (bimetal contact open). Note: When using a Terminal Module 120 (TM120), the following applies: - the sensor type used is set using p4100. - the temperature signal is interconnected using connector output r4105.

p0610[0...n]	Motor overtemperature response / Mot temp response		
SERVO, SERVO_AC,	Can be changed: C2(3), T	Calculated: -	Access level: 2
SERVO_I_AC	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: 8017, 8018, 8019
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	2	12	12
Description:	Sets the system response when the motor temperature reaches the alarm threshold.		
Value:	2: Messages, no reduction of I_max 12: Messages, no reduction of I_max, temperature storage		
Dependency:	Refer to: p0601, p0604, p0605, p0614, p0615		
	Refer to: F07011, A07012, A07910		

2.2 List of parameters

Note:
If value $=2:$
An alarm is output and a timer is started. A fault is output if the alarm is still active after this timer has expired.
If value $=12$:
Behavior is always the same as for value 2 .
For motor temperature monitoring without temperature sensor, when switching off, the model temperature is saved in
a non-volatile fashion. When switching on, the same value (reduced by p0614) is taken into account in the model
calculation. As a consequence, the UL508C specification is fulfilled.

p0610[0...n]	Motor overtemperature response / Mot temp response		
VECTOR,	Can be changed: C2(3), T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: 8016,8017,
VECTOR_I_AC			8018,8019
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	12	12

Description: Sets the system response when the motor temperature reaches the alarm threshold.

0: \quad No response only alarm no reduction of I_max
1: Messages, reduction of I_max
2: Messages, no reduction of I_max
12: Messages, no reduction of I_max, temperature storage
Dependency: Refer to: p0601, p0604, p0605, p0614, p0615
Refer to: F07011, A07012, A07910
Note: \quad The I_max reduction is not executed for PTC $(p 0601=1)$ or bimetallic NC contact $(p 0601=4)$.
The I_max reduction results in a lower output frequency.
If value $=0$:
An alarm is output and I_max is not reduced.
If value $=1$:
An alarm is output and a timer is started. A fault is output if the alarm is still active after this timer has expired.

- for KTY/PT1000/PT100, the following applies: reduction of I_max.
- for PTC, the following is valid: I_max. is not reduced

If value $=2$:
An alarm is output and a timer is started. A fault is output if the alarm is still active after this timer has expired.
If value $=12$:
Behavior is always the same as for value 2.
For motor temperature monitoring without temperature sensor, when switching off, the model temperature is saved in a non-volatile fashion. When switching on, the same value (reduced by p0614) is taken into account in the model calculation. As a consequence, the UL508C specification is fulfilled.

p0611[0...n]	I2t motor model thermal time constant / I2t mot_mod T		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
VECTOR_AC,	P-Group: Motor	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [s]	20000 [s]	0 [s]
Description:	Sets the winding time constant.		
	The time constant specifies the warm-up time of the cold stator winding when loaded with the motor standstill current (rated motor current, if the motor standstill current is not parameterized) up until a temperature rise of 63% of the continuously permissible winding temperature has been reached.		
Dependency:	The parameter is only used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}, 4$) and synchronous reluctance motors ($\mathrm{p} 0300=$ $6 x x$).		
	Refer to: r0034, p0612, p0615		
	Refer to: F07011, A07012, A07910		

Notice:	This parameter is automatically pre-set from the motor database for motors from the motor list (p0301).
When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be	
carefully observed when removing write protection.	
When exiting commissioning, p0612 is checked, and where relevant, is pre-assigned to a value that matches the	
motor power, if a temperature sensor was not parameterized (see p0601).	
Note:	When parameter p0611 is reset to 0 , then this switches out the thermal l2t motor model (refer to p0612).
If no temperature sensor is parameterized, then the ambient temperature for the thermal motor model is referred to	
p0625.	

For bit 01 (see also bit 9):
This bit is used to activate/deactivate the motor temperature model for induction motors.
For bit 02:
This bit is used to activate/deactivate the motor temperature model for 1FK7 Basic and 1FL6 motors.
Motor temperature model 3 cannot be simultaneously activated with another motor temperature model.
For bit 08:
This bit is used to extend the motor temperature model 1 (I2t).
The following applies for firmware version < 4.7 SP6 (only bit 0):

- this bit has no function. Temperature model 1 operates in the standard mode.

Overtemperature at rated load: p0605-40 ${ }^{\circ} \mathrm{C}$
Alarm threshold: p0605
Fault threshold: p0615
The following applies from firmware version 4.7 SP6 (bits 0 and 8):

- temperature model 1 operates in the extended mode.

Overtemperature at rated load: p0627
Alarm threshold: p5390
Fault threshold: p5391

2.2 List of parameters

For bit 09:
This bit is used to extend the motor temperature model 2.
For firmware version < 4.7 following applies (only bit 1):

- this bit has no function. Temperature model 2 operates in the standard mode.

From firmware version 4.7 the following applies (bits 1 and 9):

- this bit should be set. Temperature model 2 then operates in the extended mode and the result of the model is more precise.
For bit 12 (only effective if a temperature sensor has not been parameterized):
This bit is used to set the ambient temperature for the motor temperature model 1 (I2t).
The following applies for firmware version < 4.7 SP6 (only bit 0):
- this bit has no function. Temperature model 1 operates with an ambient temperature of $20^{\circ} \mathrm{C}$.

The following applies from firmware version 4.7 SP6 (bits 0 and 12):

- the ambient temperature can be adapted to the conditions using p0613.

p0613[0...n]	Mot_temp_mod 1/3 ambient temperature / Mod 1/3 amb_temp		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
VECTOR_AC, SERVO I AC,	P-Group: Motor	Unit group: 21_1	Unit selection: p0505
VECTOR_I_AC	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-40\left[{ }^{\circ} \mathrm{C}\right]$	100 [${ }^{\text {C }}$]	$20\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the ambient temperature for motor temperature model 1 or 3. - temperature model 1 (12 t , p0612.0 = 1):		
	For firmware version < 4.7 SP6 or p0612.12 = 0, the following applies:		
	The parameter is not relevant.		
	From firmware version 4.7 SP6 and p0612.12 = 1, the following applies:		
	The parameter defines the current ambient temperature.		
	The parameter defines the current ambient temperature.		
Dependency:	Refer to: p0612		
	Refer to: F07011, A07012		

p0614[0...n]	Thermal resistance adaptation reduction factor / Therm R_adapt red		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
SERVO_I_AC,	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [\%]	100 [\%]	30 [\%]
Description:	Sets the reduction factor for the overtemperature of the thermal adaptation of the stator/rotor resistance. The value is a starting value when switching on. Internally, after switch-on, the reduction factor has no effect corresponding to the thermal time constant.		
Dependency:	Refer to: p0610		
Note:	The reduction factor is only effective for p0610 $=12$, and refers to the overtemperature.		

p0615[0...n]	Mot_temp_mod 1 (12t) fault threshold / I2t F thresh		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Unit group: 21_1	Unit selection: p0505
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [${ }^{\circ} \mathrm{C}$]	220.0 [${ }^{\circ} \mathrm{C}$]	180.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the fault threshold for monitoring the motor temperature for motor temperature model 1 (12t).		
	The following applies for firmware version < 4.7 SP6:		
	- fault F07011 is output after the fault threshold is exceeded.		
	- fault threshold for r0034 = 100 \% * $\left.\mathrm{p} 0615-40^{\circ} \mathrm{C}\right) /\left(\mathrm{p} 0605-40^{\circ} \mathrm{C}\right)$.		
	The following applies from firmware version 4.7 SP6 and p0612.8 = 1:		
	- the fault threshold in p0615 is preset when commissioning.		
	- when a catalog motor with motor temperature model 1 (I2t) is being commissioned for the first time, the threshold value is copied from p0615 to p5391.		
	- p5391 is of significance for evaluating the fault threshold.		
Dependency:	The parameter is only used for motor temperature model 1 (I2t).		
	Refer to: r0034, p0611, p0612		
	Refer to: F07011, A07012		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The hysteresis is 2 K .		
p0616[0...n]	Motor overtemperature alarm threshold 1 / Mot temp alarm 1		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Unit group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0\left[{ }^{\circ} \mathrm{C}\right]$	200.0 [${ }^{\circ} \mathrm{C}$]	195.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold 1 for monitoring the motor temperature.		
Note:	The alarm threshold is not, as for p0604, coupled to the timer p0606. The hysteresis for canceling the fault is 2 K .		
p0616[0...n]	Motor overtemperature alarm threshold 1 / Mot temp alarm 1		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Unit group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0\left[{ }^{\circ} \mathrm{C}\right]$	200.0 [${ }^{\circ} \mathrm{C}$]	130.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold 1 for monitoring the motor temperature.		
Note:	The alarm threshold is not, as for p0604, coupled to the timer p0606. The hysteresis for canceling the fault is 2 K .		

p0617[0...n]	Stator thermally relevant iron component / Stat therm iron		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: C2(3), T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8018
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	40.0 [\%]
Description:	Thermally relevant iron component of the motor as a percentage of p0344.		
Dependency:	Refer to: p0344		
Note:	The sum of p0617, p0618 and p0619 can be more than 100%.		
p0618[0...n]	Stator thermally relevant copper component / Stat therm copper		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(3)$, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8018
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	15.0 [\%]
Description: Dependency: Note:	Thermally relevant copper component of the motor as a percentage of p0344.		
	Refer to: p0344		
	The sum of p0617, p0618 and p0619 can be more than 100%.		
p0619[0...n]	Rotor thermally relevant weight / Rotor therm weight		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: C2(3), T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8018
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	20.0 [\%]
Description: Dependency: Note:	Thermally relevant weight of the motor as a percentage of p0344.		
	Refer to: p0344		
	The sum of p0617, p0618 and p0619 can be more than 100%.		
p0620[0...n]	Thermal adaptation, stator and rotor resistance / Mot therm_adapt \mathbf{R}		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	2
Description:	Sets the thermal adaptation of the stator/primary section resistance and rotor/secondary section resistance according to r0395 and r0396.		
Value:	$\begin{array}{ll}\text { 0: } & \text { No thermal adaptation of stator and rotor resistances } \\ \text { 1: } & \text { Resistances adapted to the temperatures of the thermal model } \\ \text { 2: } & \text { Resistances adapted to the measured stator winding temperature }\end{array}$		

Description: Sets the thermal adaptation of the stator/primary section resistance and rotor/secondary section resistance according to r0395 and r0396.

Value:	$0:$	No thermal adaptation of stator and rotor resistances
	$1:$	Resistances adapted to the temperatures of the thermal model
	$2:$	Resistances adapted to the measured stator winding temperature

Note: \quad For p0620 = 1, the following applies:
The stator resistance is adapted using the temperature in r0035 and the rotor resistance together with the model temperature in r0633.
For p0620 = 2, the following applies:
The stator resistance is adapted using the temperature in r0035. If applicable, the rotor temperature for adapting the rotor resistance is calculated from the stator temperature (r 0035) as follows:
theta_R $=($ r0628 + r0625 $) /(r 0627+r 0625) *$ r0035
For separately excited synchronous motors and p0620 $=1, \mathrm{p} 0620=2$ is internally and automatically used for calculating. There is no thermal model to adapt the damping resistances.

p0621[0...n]	Identification stator resistance after restart / Rst_ident Restart		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: C2(3), T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Selects the identification of the stator resistance after booting the Control Unit (only for vector control).		
	The identification is used to measure the actual stator resistance and from the ratio of the result of motor data identification (p0350) to the matching ambient temperature (p0625) the actual mean temperature of the stator winding is calculated. The result is used to initialize the thermal motor model.p0621 = 1:		
	Identification of the stator resistance only when switching on the drive for the first time (pulse enable) after the Control Unit powers up.		
	p0621 = 2:		
	Identification of the stator resistance every time the drive is switched on (pulse enable).		
	p0621 = 3: one-time identification of the cable resistance p0352 without making a change in the thermal motor model (also suitable for synchronous motors).		

Value:

Dependency: - perform motor data identification (see p1910) with cold motor.

- enter ambient temperature at time of motor data identification in p0625.

Refer to: p0622, r0623

2.2 List of parameters

Notice:	The calculated stator temperature can only be compared with the measured value of a temperature sensor (KTY/PT1000) to a certain extent, as the sensor is usually the warmest point of the stator winding, whereas the measured value of identification reflects the mean value of the stator winding. Furthermore this is a short-time measurement with limited accuracy that is performed during the magnetizing phase of the induction motor. Note: The measurement is carried out: - For induction motors - When vector control is active (see p1300) - if a temperature sensor (KTY/PT1000) has not been connected - When the motor is at a standstill when switched on When a flying restart is performed on a rotating motor, the temperatures of the thermal motor model are set to a third of the overtemperatures. This occurs only once, however, when the CU is booted (e.g. after a power failure). If identification is activated, the magnetizing time is determined via p0622 and not via p0346. Quick magnetizing (p1401.6) is de-energized internally and alarm A07416 is displayed. The speed is enabled after completion of the measurement.

p0622[0...n]	Motor excitation time for Rs_ident after switching on again / t_excit Rs_id		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	20.000 [s]	0.000 [s]
Description:	Sets the excitation time of the motor for the stator resistance identification after switching on again (restart).		
Dependency:	Refer to: p0621, r0623		
Note:	For p0622 < p0346 the following applies:		
	If identification is activated, the magnetizing time is influenced by p0622. The speed is enabled after measurement is complete, but not before the time in p0346 has elapsed (see r0056 bit 4). The time taken for measurement also depends on the settling time of the measured current.		
	For p0622 >= p0346 the following applies:		
	Parameter p0622 is internally limited to the magnetizing time p0346, so that p0346 represents the maximum possible magnetizing time during identification. The entire measurement period (magnetizing plus measurement settling time plus measuring time) will always be greater than p0346.		

r0623	Rs identification stator resistance after switch on again / Rs-id Rs aft sw-on		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL,	Scaling: -	Expert list: 1
	RESM	Max	
	Min	$-[0 h m]$	Factory setting
	$-[o h m]$	$-[o h m]$	

Description: Displays the stator resistance determined using the Rs identification after switching on again. Dependency: Refer to: p0621, p0622

p0624[0...n]	Motor temperature offset PT100 / Mot T_offset PT100		
SERVO, VECTOR,	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8016
VECTOR_AC,	P-Group: Motor	Unit group: 21_2	Unit selection: p0505
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	$100.0[\mathrm{~K}]$	$0.0[\mathrm{~K}]$
	$-100.0[\mathrm{~K}]$		
Description:	Sets the temperature offset for the PT100 measured value.		
	If there is a difference between the motor temperature displayed in ro035 and the actual motor temperature, then this		
	offset can be entered into this parameter. thereby compensating for the difference.		

Dependency:	Refer to: p0600, p0601, p0602
Note:	The parameter only has an influence with the following settings:
	- Temperature sensor of the power unit detected $(p 0600=11)$.
	- Sensor type PT100 selected (p0601 = 5).
	If the resistance in series with the PT100 (e.g. the cable resistance of the feeder cable) is known, the following
conversion formula must be used:	
	Offset in p0624 = Measured resistance in ohms $\times 2.5 \mathrm{~K} / \mathrm{Ohm}$
	Example:
	Measured cable resistance $=2 \mathrm{Ohm}$
	$-->2$ Ohm $\times 2.5 \mathrm{~K} /$ Ohm $=5.0 \mathrm{~K}$

p0625[0...n]	Motor ambient temperature during commissioning / Mot T_ambient		
SERVO, VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017, 8018
VECTOR_AC, SERVO_I_AC,	P-Group: Motor	Unit group: 21_1	Unit selection: p0505
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-40\left[{ }^{\circ} \mathrm{C}\right]$	$80\left[{ }^{\circ} \mathrm{C}\right]$	20 [${ }^{\circ} \mathrm{C}$]
Description:	Defines the ambient temperature of the motor for calculating the motor temperature model.		
Dependency:	Refer to: p0350, p0354		
Note:	The parameters for stator and rotor resistance (p0350, p0354) refer to this temperature.		
	If the thermal I2t motor model is activated for permanent-magnet synchronous motors (refer to p0611), p0625 is included in the model calculation if a temperature sensor is not being used (see p0601).		

p0626[0...n]	Motor overtemperature, stator core / Mot T_over core		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_EQU	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8018
SERVO_I_AC,	P-Group: Motor	Unit group: 21_2	Unit selection: p0505
VECTOR_I_AC	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [K]	200 [K]	50 [K]
Description:	Defines the rated overtemperature of the stator iron referred to ambient temperature in the motor temperature model 2 (p0612.1 = 1).		
Dependency:	For 1LA5 and 1LA7 motors ($\mathrm{p} 0300=15,17$), the parameter is pre-set as a function of p0307 and p0311.		
Notice:	When selecting a standard induction motor listed in the catalog ($p 0300>100$, p0301 > 10000), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (p0300).		

2.2 List of parameters

p0627[0...n]	Motor overtemperature, stator winding / Mot T_over stator		
SERVO, VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017, 8018
VECTOR_AC, SERVO IAC,	P-Group: Motor	Unit group: 21_2	Unit selection: p0505
VECTOR_I_AC	Not for motor type: SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	15 [K]	200 [K]	80 [K]
Description:	Defines the rated overtemperature of the stator winding referred to the ambient temperature. - motor temperature model 1 (12 t , p0612.0 = 1):		
	The following applies for firmware version <4.7 SP6 or p0612.8 $=0$:		
	p0605 is of significance for the rated temperature.		
	The following applies from firmware version 4.7 SP6 and p0612.8 $=1$:		
	Overtemperature at the rated operating point.		
	- motor temperature model 2 (p0612.1 = 1):		
	Overtemperature at the rated operating point.		
Dependency:	For 1LA5 and 1 LA7 motors ($\mathrm{p} 0300=15,17$), the parameter is pre-set as a function of p 0307 and p 0311 .		
Notice:	When selecting a standard induction motor listed in the catalog ($\mathrm{p} 0300>100, \mathrm{p} 0301>10000$), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p 0300).		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		

p0628[0...n]	Motor overtemperature rotor / Mot T_over rotor		
SERVO, VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8018
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_I_AC, } \end{aligned}$	P-Group: Motor	Unit group: 21_2	Unit selection: p0505
VECTOR_I_AC	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	20 [K]	200 [K]	100 [K]
Description:	Defines the rated overtemperature of the squirrel cage rotor referred to ambient temperature in the motor temperature model $2(p 0612 \cdot 1=1)$.		
Dependency:	For 1 LA5 and 1 LA7 motors ($\mathrm{p} 0300=15,17$), the parameter is pre-set as a function of p 0307 and p 0311 . Refer to: p0625		
Notice:	When selecting a standard induction motor listed in the catalog ($\mathrm{p} 0300>100, \mathrm{p} 0301>10000$), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0629[0...n]	Stator resistance reference / R_stator ref		
VECTOR (n / M),	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_EQU	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: 16_1	Unit selection: p0349
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [ohm]	2000.00000 [ohm]	0.00000 [ohm]
Description:	Reference value for the identification of the stator resistance every time the drive is switched on.		
Dependency:	The measurement of the reference value is conditions apply: - the motor temperature is at this instant in - a temperature sensor is not being used (p Refer to: p0621, r0623	activated by the automatic calculation me less than $30^{\circ} \mathrm{C}(\mathrm{r} 0035)$. 601).	($p 0340=1,2$), if the following
Note:	The reference value to identify the stator res r0623). The identification must be realized temperature p0625. The feeder cable resist The result must be saved after the first mea When changing p0350 or p0352, the referen	stance should be manually entere hen the motor is in a cold state, as nce should be entered into p0352 urement so that the reference is a ce value p0629 should be re-dete	fter the first identification (p0629 = value refers to the ambient fore the measurement. able after the CU has powered up. ned.

r0630[0...n]	Mot_temp_mod ambient temperature / Mod T_ambient		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 4
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8018
VECTOR_AC,	P-Group: Motor	Unit group: $21 _1$	Unit selection: p0505
SERVO_I_AC,	Not for motor type: SESM, REL	Scaling: p2006	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
	Displays the ambient temperature of the motor temperature model (models 2 and 3).		

r0631[0...n]	Mot_temp_mod stator iron temperature / Mod T_stator		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 4
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8018, 8019
VECTOR_AC, SERVO I AC,	P-Group: Motor	Unit group: 21_1	Unit selection: p0505
VECTOR_I_AC	Not for motor type: SESM, REL	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	- [$\left.{ }^{\circ} \mathrm{C}\right]$	- [${ }^{\circ} \mathrm{C}$]	- [${ }^{\circ} \mathrm{C}$]
Description:	Displays the stator iron temperature of the motor temperature model (models 2 and 3).		
Note:	For motor temperature model 1 ($\mathrm{p} 0612.0=1$), this parameter is not valid:		
r0632[0...n]	Mot_temp_mod stator winding temperature / Mod T_winding		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC, VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017, 8018, 8019
SERVO_I_AC, VECTOR I AC	P-Group: Motor	Unit group: 21_1	Unit selection: p0505
	Not for motor type: SESM, REL	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	- $\left.{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	- [$\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator winding temperature of the motor temperature model.		
Dependency:	Refer to: F07011, A07012, A0791		

r0633[0...n]	Mot_temp_mod rotor temperatu	Mod rotor temp	
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: - Data type: FloatingPoint32 P-Group: Motor Not for motor type: SESM, REL Min $-\left[{ }^{\circ} \mathrm{C}\right]$	Calculated: - Dyn. index: MDS, p0130 Unit group: 21_1 Scaling: p2006 Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Access level: 4 Func. diagram: 8018, 8019 Unit selection: p0505 Expert list: 1 Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$
Description: Note:	Displays the rotor temperature of the motor temperature model (models 2 and 3). For motor temperature model 1 ($\mathrm{p} 0612.0=1$), this parameter is not valid:		
p0634[0...n] VECTOR, VECTOR_AC, VECTOR_I_AC	Q flux flux constant unsaturated Can be changed: C2(3), U, T Data type: FloatingPoint32 P-Group: Motor Not for motor type: ASM, SESM, RESM Min 0.000 [Vsrms]	PSIQ KPSI UNSAT Calculated: - Dyn. index: MDS, p0130 Unit group: - Scaling: - Max 100.000 [Vsrms]	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting 0.000 [Vsrms]
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. The parameter weights the unsaturated component of the quadrature axis flux function.		

p0635[0...n]	Q flux quadrature axis current constant unsaturated / PSIQ KIQ UNSAT		
VECTOR,	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[$ Arms $]$	10000.00 [Arms]	0.00 [Arms]
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients.		
	This parameter describes the interdependency of the unsaturated component of the quadrature axis current.		
Dependency:	Refer to: p0634		

p0636[0...n]	Q flux direct axis current constant unsaturated / PSIQ KID UNSAT		
VECTOR,	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[$ Arms $]$	$10000.00[$ Arms $]$	$0.00[$ Arms $]$
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients.		
	This parameter describes the interdependency of the unsaturated component of the direct axis current.		
Dependency:	Refer to: p0634		

p0637[0...n]	Q flux flux gradient saturated / PSIQ Grad SAT		
VECTOR,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [mH]	10000.00 [mH]	0.00 [mH]
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. This parameter describes the gradients of the saturated component over the quadrature axis current.		
Dependency:	Refer to: p0634, p0635, p0636		
p0640[0...n]	Current limit / Current limit		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5722, 6640
SERVO_IAC,	P-Group: Motor	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the current limit.		
Dependency:	Refer to: r0209, p0209, p0323		
Note:	The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0305, p0323 and p0338.		
	The current limit p0640 is limited to r0209 and p0323. The limit to p0323 is not realized if a value of zero is entered there.		
	The resulting current limit is displayed in r0067 and if required, r0067 is reduced by the thermal model of the Motor Module.		
	The torque and power limits (p1520, p1521, p1530, p1531) matching the current limit are automatically calculated when exiting the quick commissioning using p3900 > 0 or using the automatic parameterization with p0340 $=3,5$.		
	For VECTOR the following applies (p0107):		
	p0640 is pre-assigned for the automatic self commissioning routine (e.g. to $1.5 \times \mathrm{p} 0305$, with p0305 $=$ r0207[1]).		
	p0640 must be entered when commissioning the system. This is the reason that p0640 is not calculated by the automatic parameterization when exiting the quick commissioning (p3900>0).		
	For SERVO the following applies (p0107):		
	p0640 is pre-assigned as follows using the automatic parameterization ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) taking into account the limits r0209 and r0323:		
	- for induction motors: $\mathrm{p} 0640=1.5 \times \mathrm{p} 0305$		
	- for synchronous motors: $00640=$ p0338		

p0641[0...n]	Cl: Current limit scaling signal source / I_lim scal s_src		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6300, 6640
VECTOR_I_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the current limit (p0640).		

p0642[0...n]	Encoderless operation current reduction / Encoderl op I_red		
SERVO, SERVO_AC,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the reduction for the current limit in encoderless operation. The value is referred to p0640.		
Dependency:	Refer to: r0209, p0209, p0323, p0491, p0640, p1300, p1404		
Note:	If the motor is operated both with encoder as well as without encoder (e.g. p0491 is not equal to 0 or p1404 < p1082) then the maximum current can be reduced in encoderless operation. This reduces disturbing saturation-related motor data changes in encoderless operation.		

p0643[0...n]	Overvoltage protection for synchronous motors / Overvolt_protect		
SERVO, SERVO_AC,	Can be changed: C2(3), T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0

Description: Sets the overvoltage protection for synchronous motors in the field-weakening range.
Value: 0 : No measure
1: \quad Voltage Protection Module (VPM)
Dependency: Refer to: p0316, p1082, r1082, p1231, p9601, p9801
Refer to: F07432, F07906, F07907
Notice: When the speed limiting is removed, the user is responsible for implementing a suitable overvoltage protection.
Note: In the field-weakening range, synchronous motors can, when a fault condition exists, generate high DC link voltages.
The following possibilities exist to protect the drive system from being destroyed due to overvoltage:

- limit the maximum speed (p 1082) without any additional protection.

The maximum speed without protection is calculated as follows:
Rotary motors: p1082 [rpm] <= 11.695 * r0297/p0316 [Nm/A]
Linear motors: p1082 [m/min] <= 73.484 *r0297/0316 [N/A]

- use a Voltage Protection Module (VPM) in conjunction with the function "Safe Torque Off" (p9601, p9801).

When a fault condition exists, the VPM short-circuits the motors. During the short-circuit, the pulses must be suppressed - this means that the terminals for the function "Safe Torque Off" must be connected to the VPM.

- activating the internal voltage protection (IVP) with p1231 $=3$.

p0643[0...n]	Overvoltage protection for synchronous motors / Overvolt_protect		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: C2(3)	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	0
	0	1	
Description:	Sets the overvoltage protection for synchronous motors in the field-weakening range.		
Value:	$0: \quad$ No measure		
	$1: \quad$ Voltage Protection Module (VPM)		
Dependency:	Refer to: p0316, p1082, r1082, p1231, p9601, p9801		
	Refer to: F07432, F07906, F07907		
Notice:	When the speed limiting is removed, the user is responsible for implementing a suitable overvoltage protection.		

Note: In the field-weakening range, synchronous motors can, when a fault condition exists, generate high DC link voltages. The following possibilities exist to protect the drive system from being destroyed due to overvoltage:

- limit the maximum speed (p 1082) without any additional protection.

The maximum speed without protection is calculated as follows:
p1082 [rpm] <= 11.695 * r0297 / p0316 (or r0334) [Nm/A]

- use a Voltage Protection Module (VPM) in conjunction with the function "Safe Torque Off" (p9601, p9801). When a fault condition exists, the VPM short-circuits the motors. During the short-circuit, the pulses must be suppressed - this means that the terminals for the function "Safe Torque Off" must be connected to the VPM. - activating the internal voltage protection (IVP) with p1231 $=3$.

p0644[0...n]	Current limit excitation induction motor / Imax excit ASM		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$50.0[\%]$	$300.0[\%]$	
Description:	Maximum excitation current of the induction motor referred to the permissible rated current of the power unit		
	(ro207[0]).		
Dependency:	Only effective for vector control.		
	Refer to: p1401, p1573		
Note:	The parameter is pre-assigned in the automatic calculation for chassis power units.		

p0645[0...n]	Motor kT characteristic kT1 / Mot kT char kT1		
SERVO (Ext M_ctrl,	Can be changed: C2(3), U, T	Calculated: -	Access level: 1
Lin), SERVO_AC (Ext	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
M_ctrl, Lin), SERVO I AC (Ext	P-Group: Motor	Unit group: -	Unit selection: -
M_ctrl, Lin)	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [N/Arms]	200.000 [N/Arms]	0.000 [N/Arms]
Description:	Sets the constant kT 1 for the kT characteristic.$k T(i q)=k T 1+k T 3 * i q^{\wedge} 2+k T 5^{*} i q^{\wedge} 4+k T 7^{*} i q^{\wedge} 6$		
Dependency:	Refer to: p0316, p0646, p0647, p0648, p1780		
Notice:	In the case of current reduction (e.g. as a result of the thermal model) while measuring the kT characteristic, it cannot be ensured that the identified characteristic is reliable above the measured values (r1935, r1937).		
Note:	For the standard setting, the value in $p 031$ The value in p0316 is ignored and the k - the function module "expanded torque - the kT characteristic has been activated	s effective. aracteristic is effective, if the rol" has been activated (r0108 $780 \cdot 9=1$).	conditions are fulfilled:

p0645[0...n]	Motor kT characteristic kT1 / Mot kT char kT1		
SERVO (Ext M_ctrl),	Can be changed: C2(3), U, T	Calculated: -	Access level: 1
SERVO_AC (Ext	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
(Ext M ctrl)	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [Nm / A]	200.000 [Nm / A]	0.000 [Nm / A]
Description:	$\mathrm{kT}(\mathrm{iq})=\mathrm{kT} 1+\mathrm{kT3}$ * iq${ }^{\wedge} 2+\mathrm{kT5}{ }^{*} \mathrm{iq}{ }^{\wedge} 4+\mathrm{kT7}$ *iq^${ }^{\wedge}$		
Dependency:	Refer to: p0316, p0646, p0647, p0648, p1780		
Notice:	In the case of current reduction (e.g. as a result of the thermal model) while measuring the kT characteristic, it cannot be ensured that the identified characteristic is reliable above the measured values (r1935, r1937).		

Note: \quad For the standard setting, the value in p0316 is effective.
The value in p0316 is ignored and the kT characteristic is effective, if the following conditions are fulfilled:

- the function module "expanded torque control" has been activated (r0108.1 = 1).
- the kT characteristic has been activated (p1780.9 = 1) .

p0646[0...n]	Motor kT characteristic kT3 / Mot kT char kT3		
SERVO (Ext M_ctrl),	Can be changed: C2(3), U, T	Calculated: -	Access level: 1
SERVO_AC (Ext	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
(Ext M ctrl)	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Sets the constant kT3 for the kT characteristic.$\mathrm{kT}(\mathrm{iq})=\mathrm{kT} 1+\mathrm{kT} 3^{*} \mathrm{iq} \wedge 2+\mathrm{kT} 5^{*} \mathrm{iq} \mathrm{q}^{\wedge} 4+\mathrm{kT} 77^{*} \mathrm{iq} q^{\wedge} 6$		
Dependency:	Refer to: p0316, p0645, p0647, p0648, p1780		
Notice:	In the case of current reduction (e.g. as a result of the thermal model) while measuring the kT characteristic, it cannot be ensured that the identified characteristic is reliable above the measured values (r1935, r1937).		
Note:	For the standard setting, the value in p0316 is effective.		
	The value in p0316 is ignored and the kT characteristic is effective, if the following conditions are fulfilled:		
	- the function module "expanded torque control" has been activated (r0108.1 = 1).		
	- the kT characteristic has been activated (p1780.9 = 1).		

p0647[0...n]	Motor kT characteristic kT5 / Mot kT char kT5		
SERVO (Ext M_ctrl), SERVO_AC (Ext M_ctrl), SERVO_I_AC (Ext M_ctrl)	Can be changed: C2(3), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Sets the constant kT5 for the kT characteristic.$k T(i q)=k T 1+k T 3^{*} i q^{\wedge} 2+k T 5^{*} i q^{\wedge} 4+k T 7^{*} i q^{\wedge} 6$		
Dependency:	Refer to: p0316, p0645, p0646, p0648, p1780		
Notice:	In the case of current reduction (e.g. as a result of the thermal model) while measuring the kT characteristic, it cannot be ensured that the identified characteristic is reliable above the measured values ($\mathrm{r} 1935, \mathrm{r} 1937$).		
Note:	For the standard setting, the value in p0316 is effective.		
	The value in p0316 is ignored and the kT characteristic is effective, if the following conditions are fulfilled: - the function module "expanded torque control" has been activated (r0108.1 = 1). - the kT characteristic has been activated (p1780.9 = 1).		

p0648[0...n]	Motor kT characteristic kT7 / Mot kT char kT7		
SERVO (Ext M_ctrl),	Can be changed: C2(3), U, T	Calculated: -	Access level: 1
SERVO_AC (Ext	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
M_ctri), SERVO_I_A (Ext M ctrl)	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Sets the constant kT7 for the kT characteristic.$\mathrm{kT}(\mathrm{iq})=\mathrm{kT} 1+\mathrm{kT} 3^{*} \mathrm{iq} q^{\wedge} 2+\mathrm{kT} 5^{*} \mathrm{iq} \wedge 4+\mathrm{kT} 7^{*} \mathrm{iq} q^{\wedge} 6$		
Dependency:	Refer to: p0316, p0645, p0646, p0647, p1780		
Notice:	In the case of current reduction (e.g. as a result of the thermal model) while measuring the kT characteristic, it cannot be ensured that the identified characteristic is reliable above the measured values ($\mathrm{r} 1935, \mathrm{r} 1937$).		

Note:	For the standard setting, the value in p 0316 is effective.
The value in p 0316 is ignored and the kT characteristic is effective, if the following conditions are fulfilled:	
- the function module "expanded torque control" has been activated $(\mathrm{r} 0108.1=1)$.	
- the kT characteristic has been activated ($\mathrm{p} 1780.9=1$).	

p0650[0...n]	Actual motor operating hours / Mot t_oper act		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [h]	4294967295 [h]	0 [h]
Description:	Displays the operating hours for the corresponding motor.		
	The motor operating time counter continues to run when the pulses are enabled. When the pulse enable is withdrawn, the counter is held and the value saved.		
Dependency:	The following prerequisites must be fulfilled in order to be able to save the operating hours counter in a non-volatile fashion:		
	- firmware with V2.2 or higher.		
	- Control Unit 320 (CU320) with hardware version C or higher (module with NVRAM).		
	Refer to: p0651		
	Refer to: A01590		
Note:	For p0651 $=0$, the operating hours counter is disabled.		
	The operating hours counter in p0650 can only be reset to 0 .		
	The operating hours counter only runs with motor data set 0 and 1 (MDS).		

p0652[0...n]	Motor stator resistance scaling / Mot R_stator scal		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM	Max	Factory setting
	Min	$300.0[\%]$	$100.0[\%]$
Description:	$10.0[\%]$	Sets the factor to evaluate the stator resistance.	
Dependency:	Refer to: 00350, r0370		

p0653[0...n]	Motor stator leakage inductance scaling / Mot L_S_leak scal		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM	Max	Factory setting
	Min	$300.0[\%]$	$100.0[\%]$
	$10.0[\%]$		
Description:	Sets the factor to evaluate the stator leakage induction.		
Dependency:	Refer to: p0356, r0377		

p0655[0...n]	Motor magnetizing inductance d axis saturated scaling / Mot L_m d sat scal		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	300.0 [\%]	100.0 [\%]
Description:	Factor to evaluate the magnetizing inductance in the direction of the rotor axis (d axis). Refer to: p0360, r0382		
Dependency:			

p0656[0...n]	Motor magnetizing inductance q axis saturated scaling / Mot L_m q sat scal		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	300.0 [\%]	100.0 [\%]
Description: Dependency:	Factor to evaluate the magnetizing inductance quadrature to the rotor axis (q axis). Refer to: p0361, r0383		
p0657[0...n]	Motor damping inductance d axis scaling / Mot L_damp d scal		
VECTOR,	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_EQU	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	300.0 [\%]	100.0 [\%]
Description:	Factor to evaluate the damping inductance in the direction of the rotor axis (d axis). Refer to: p0358, r0380		
Dependency:			

p0658[0...n]	Motor damping inductance q axis scaling/ Mot L_damp q scal		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM	Max	Factory setting
	Min	$300.0[\%]$	$100.0[\%]$
	$10.0[\%]$		
Description:	Factor to evaluate the damping inductance quadrature to the rotor axis (q axis).		
Dependency:	Refer to: p0359, r0381		

p0659[0...n]	Motor damping resistance d axis scaling / Mot R_damp d scal		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
VECTOR_I_AC	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM		
	Min	Max	Factory setting
	$10.0[\%]$	$300.0[\%]$	$100.0[\%]$
Description:	Factor to evaluate the damping resistance in the direction of the rotor axis (d axis).		
Dependency:	Refer to: p0354, r0374		

p0660[0...n]	Motor damping resistance q axis scaling / Mot R_damp q scal		
VECTOR,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	300.0 [\%]	100.0 [\%]
Description:	Factor to evaluate the damping resistance quadrature to the rotor axis (q axis).		

p0680[0...7]	Central measuring probe input terminal / Cen meas inp		
CU_I, CU_NX_CX,	Can be changed: C2(4), U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Encoder	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	8	0

Description: Sets the digital input used for the function "central measuring probe evaluation".
p0680[0]: Digital input, measuring probe 1
p0680[1]: Digital input, measuring probe 2
p0680[7]: Digital input, measuring probe 8

2.2 List of parameters

Value:	0 :	No measuring probe
	1:	DI/DO 9 (X122.10/X121.8)
	2 :	DI/DO 10 (X122.12/X121.10)
	3:	DI/DO 11 (X122.13/X121.11)
	4:	DI/DO 13 (X132.10/X131.2)
	5:	DI/DO 14 (X132.12/X131.4)
	6:	DI/DO 15 (X132.13/X131.5)
	7:	DI/DO 8 (X122.9/X121.7)
	8:	DI/DO 12 (X132.9/X131.1)
Dependency:		o: p0728

Caution:

In order to prevent incorrect measurement values, these parameters may not be written during an active measurement.

Notice: \quad Regarding the terminal designation: The first designation is valid for CU320, the second for CU310
To select the values:
For CX32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual).
Note:
DI/DO: Bidirectional Digital Input/Output
Prerequisite: The DI/DO must be set as input ($p 0728 \cdot x=0$).
If a parameter change is rejected, a check should be performed as to whether the input terminal is already being used in p0488, p0489, p0493, p0494, p0495, p0580, p2517 or p2518.

p0681	BI: Central measuring probe synchronizing signal signal source / Cen meas syn		
CU_I, CU_NX_CX,	Can be changed: T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Commands	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	0
Description:	Sets the signal source for the synchronizing signal (SYN) of the function "central measuring probe evaluatio The signal is used to synchronize the common system time between the master and slave.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0682	CI: Central measuring probe control word signal source / Cen meas STW S_src		
CU_I, CU_NX_CX,	Can be changed: T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Displays, signals	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	0
Description:	Sets the signal source for the control word of the function "central measuring probe evaluation".		

p0684	Central measuring probe evaluation technique / Cen meas eval_tech		
CU_I, CU_NX_CX,	Can be changed: C2(4), U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Encoder	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Max
CU_S150_PN,	Min	16	Factory setting
CU_S120_DP,	0	0	
CU_S150_DP,	Sets the evaluation technique for the "central measuring probe evaluation" function.		
CU_I_D410	$0: \quad$ Measurement with handshake		
Description:	$1: \quad$ Measurement without handshake 2 edges		
Value:	$16: \quad M e a s u r e m e n t ~ w i t h o u t ~ h a n d s h a k e ~ m o r e ~ t h a n ~$		
		For edges	
Notice:	This evaluation procedure is only activated after parameter save and POWER ON.		

Note:	During measurement without a handshake, the probe may have a higher evaluation frequency.
	The setting "Measurement without handshake" must be supported by the higher-level control. This setting cannot be used for SIMOTION D with integrated SINAMICS or with CX32.
	For p0684 = 0:
	Changing this evaluation procedure to p0684 = 1 is possible in the RUN state.
	Changing this evaluation procedure to p0684 = 16 is only activated after parameter save and POWER ON.
	Permissible combinations in p0922 are:
	p0922 = 391, 392, 393, 394
	For p0684 = 1:
	Changing this evaluation procedure to p0684 $=0$ is possible in the RUN state.
	Changing this evaluation procedure to p0684 = 16 is only activated after parameter save and POWER ON.
	Permissible combinations in p0922 are:
	p0922 = 391, 392, 393, 394
	For p0684 = 16:
	Changing this evaluation procedure to p0684 = 0 or to $\mathrm{p} 0684=1$ is only activated after parameter save and POWER ON.
	Permissible combinations in p0922 are:
	p0922 $=395$

r0685
CU_I, CU_NX_CX,
CU_S_AC_DP,
CU_S_AC_PN,
CU_S120_PN,
CU_S15O_PN,
CU_S120_DP,
CU_S150_DP,
CU_I_D410
Description:
Bit field:

Central measuring probe control word display / Cen meas STW disp

Can be changed: -
Data type: Unsigned16
P-Group: Commands
Not for motor type: -
Min

Displays the control word for the function "central measuring probe evaluation".

Bit	Signal name	1 signal	$\mathbf{0}$ signal	FP
00	Falling edge measuring probe 1	Yes	No	-
01	Falling edge measuring probe 2	Yes	No	-
02	Falling edge measuring probe 3	Yes	No	-
03	Falling edge measuring probe 4	Yes	No	-
04	Falling edge measuring probe 5	Yes	No	-
05	Falling edge measuring probe 6	Yes	No	-
06	Falling edge measuring probe 7	Yes	No	-
07	Falling edge measuring probe 8	Yes	No	-
08	Rising edge measuring probe 1	Yes	No	-
09	Rising edge measuring probe 2	Yes	No	-
10	Rising edge measuring probe 3	Yes	No	-
11	Rising edge measuring probe 4	Yes	No	-
12	Rising edge measuring probe 5	Yes	No	-
13	Rising edge measuring probe 6	Yes	No	-
14	Rising edge measuring probe 7	Yes	No	-
15	Rising edge measuring probe 8	Yes	No	-
				-

2.2 List of parameters

r0686[0...7]	CO: Central measuring probe measuring time rising edge / CenMeas t_meas 0/1		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
$\text { CU_S } 120 \text { _PN, }$	P-Group: Displays, signals	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$		-	-
Description:	Displays the measuring time for a rising edge at the digital input for the "central measuring probe evaluation" function.		
	The measuring time is specified as 16 -bit value with a resolution of $0.25 \mu \mathrm{~s}$.		
	r0686[0]: Measuring time, rising edge measuring probe 1		
	r0686[1]: Measuring time, rising edge measuring probe 2		
	r0686[2]: Measuring time, rising edge measuring probe 3		
	r0686[3]: Measuring time, rising edge measuring probe 4		
	r0686[4]: Measuring time, rising edge measuring probe 5		
	r0686[5]: Measuring time, rising edge measuring probe 6		
	r0686[6]: Measuring time, rising edge measuring probe 7		
	r0686[7]: Measuring time, rising edge measuring probe 8		
Note:	The parameter is only active	n procedure p0	
	For p0684 = 16, r0686[0...7]		

r0687[0...7]	CO: Central measuring probe measuring time falling edge / CenMeas t_meas 1/0		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-Group: Displays, signals	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$		-	-
Description:	Displays the measuring time for a falling edge at the digital input for the "central measuring probe evaluation" function.		
	The measuring time is specified as 16-bit value with a resolution of $0.25 \mu \mathrm{~s}$.		
	r0687[0]: Measuring time, falling edge measuring probe 1		
	r0687[1]: Measuring time, falling edge measuring probe 2		
	r0687[2]: Measuring time, falling edge measuring probe 3		
	r0687[3]: Measuring time, falling edge measuring probe 4		
	r0687[4]: Measuring time, falling edge measuring probe 5		
	r0687[5]: Measuring time, falling edge measuring probe 6		
	r0687[6]: Measuring time, falling edge measuring probe 7		
	r0687[7]: Measuring time, falling edge measuring probe 8		
Note:	The parameter is only active for the evaluation procedure p0684 $=0,1$.		
	For p0684 = 16, r0687[0...7]		

p0690[0...n]	Brushless excitation rated current / BLE I_rated		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: C2(3), T	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM	Max	Factory setting
	Min	$1000.00[A]$	$0.00[A]$
	$0.00[A]$		
Description:	Sets the rated current of the excitation equipment for the exciter for brushless excitation with a rotating-armature		
	synchronous machine or reverse field induction machine.		
Dependency:	Refer to: r1626		
Notice:	For a value $=0$, brushless excitation is not activated.		
Note:	BLE: brushless excitation		

p0691[0...n]	Reverse field excitation correction factor / RFE correction		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: C2(3), U, T	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC (n/M)	P-Group: Motor	Unit group: -	Unit selection:-
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1

p0692[0...n]	Reverse field excitation iron resistance / RFE iron resist		
VECTOR (n/M),	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-100000.00000 [ohm]	100000.00000 [ohm]	0.00000 [ohm]
Description:	Sets the ohmic iron resistance of the rotor for the main machine for reverse field excitation.		
Note:	For a value of 0 , it is assumed that the iro	esistance is infinitely high.	

p0693[0...n]	Brushless excitation inductance d-axis saturated / BLE L_d sat		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n/M)	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00000 [mH]	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Sets the saturated inductance of the exciter for brushless excitation with rotating-armature synchronous machine or reverse field induction machine.		
	A negative value can also be entered as part of optimizing coefficients.		
Notice:	For a value $=0$, brushless excitation is not activated.		
Note:	For excitation using a rotating-armature synchronous machine, the equivalent circuit diagram data should be entered, referred to the rotor.		
	For excitation using a reverse field induction machine, the equivalent circuit diagram data should be entered, referred to the stator.		
	BLE: brushless excitation		

p0694[0...n]	Reverse field excitation leakage inductance / RFE L_Ieak		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: C2(3), U, T	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM	Max	Factory setting
	Min	$10.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
	$-10.00000[\mathrm{mH}]$		
Description:	Sets the leakage inductance of the reverse field exciter in mH for reverse field excitation.		
	A negative value can also be entered as part of optimizing coefficients.		

p0696[0...n]	Brushless excitation ratio / BLE ratio		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: C2(3), U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	1000.000	0.000
Description:	Sets the ratio between the stator and rotor of the exciter for brushless excitation.		
	For excitation using a rotating-armature synchronous machine, the ratio of the rated excitation current of the main machine to the associated excitation current of the exciter at the rated point of the machine is entered.		
	For excitation using a reverse field induction machine, the physical ratio at standstill is specified.		
Dependency:	Refer to: p0311, p0390		
Notice:	For a value $=0$, brushless excitation is not activated.		
Note:	BLE: brushless excitation		
p0697[0...n]	Brushless excitation number of pole pairs / BLE PolePairNo		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: $\mathrm{C} 2(3), \mathrm{T}$	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	20	0
Description:	Sets the pole pair number of the exciter for brushless excitation using a rotating- armature synchronous machine or using a reverse field induction machine.		
Notice:	For a value $=0$, brushless excitation is not activated.		
Note:	BLE: brushless excitation		
p0698[0...n]	Brushless excitation, excitation resistance / BLE exc_resist		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-100.00000 [ohm]	100.00000 [ohm]	0.00000 [ohm]
Description:	Sets the ohmic excitation resistance of the main machine for brushless excitation for a rotating-armature synchronous machine or reverse field induction machine.		
Notice:	For a value $=0$, brushless excitation is not activated.		
Note:	When the rotor resistance is known, this value can be added to the excitation resistance. For excitation using a reverse field induction machine, it should be noted that the rotor resistance specified in the data sheet is referred to the stator; however, the excitation resistance of the main machine is referred to the rotor. BLE: brushless excitation		

p0699[0...n]	Excitation configuration / Exc config		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n/M)	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	20	0
Description:	Configuration of the excitation.		
	0 :		
	Excitation via sliprings, default setting.		
	10:		
	Brushless excitation for rotating-armature synchronous motor with excitation current setpoint input (FCR). 11:		
	Brushless excitation for rotating-armature synchronous motor with independently controlled stator voltage (AVR). 20:		
	Brushless excitation using a reverse field induction machine where the exciter is fed from a SIMOTRAS three-phase AC power controller.		
Value:	0 : Excitation via sliprings		
	10: Brushless excitation via rotating-armature synchr. machine (FCR)		
	11: Brushless excitation via rotating-armature synchr. machine (AVR)		
	20: Brushless excit. via reverse field induction machine (SIMOTRAS)		
Warning:	For values = 10, 11:		
	For excitation using a rotating-armature synchronous machine, it is not permissible that a standing measurement is used for motor data identification, as this can damage the excitation winding of the main machine.		
Notice:	The following parameters must be assigned values that are not equal to zero in order that the speed-dependent transmission ratio for brushless excitation ($00699>0$) can be calculated:		
	p0699 = 10:		
	p0690, p0693, p0696, p0697, p0698		
	p0699 = 11:		
	No excitation current setpoint input		
	p0699 $=20$:		
	p0690, p0692, p0693, p0696, p0697, p0698		
	Otherwise, the speed-dependent transmission ratio for brushless excitation as well as for slipring excitation is assumed to be 1 .		
Note:	AVR: autonomous voltage control		
	FCR: field current control		
	SIMOTRAS: Siemens three-phase AC power controller		
	U/f-MM: SINAMICS-Motor Module with U/f control as excitation controller		
p0700	Macro Binector Input (BI) for TMs / Macro BI TM		
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, TM31, TM15DI_DO, TB30	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	999999	0
Description:	Runs the corresponding macro files.		
	The selected macro file must be available on the memory card/device memory.		
	Example:		
	p0700 = 6 --> macro file PM000006.ACX is run.		
Dependency:	Refer to: r8571		

Notice:	No errors were issued during quick commissioning $(\mathrm{p} 3900=1)$ when writing to parameters of the QUICK_IBN group!
Note:	When executing a specific macro, the corresponding programmed settings are made and become active.
The macros in the specified directory are displayed in r8571. r8571 is not in the expert list of the commissioning tool.	
Macros available as standard are described in the technical documentation of the particular product.	
BI: Binector Input	
CDS: Command Data Set	

p0700[0...n]	Macro Binector Input (BI) / Macro BI		
SERVO, VECTOR,	Can be changed: C2(1), T	Calculated: -	Access level: 1
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: CDS, p0170	Func. diagram: -
VECTOR_AC,	P-Group: Commands	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC,	Max	Factory setting	
A_INF, S_INF, R_INF, Min	999999	0	

Description: Runs the corresponding macro files.
The binector inputs of the corresponding command data set are appropriately interconnected.
The selected macro file must be available on the memory card/device memory.
Example:
p0700 = 6 --> macro file PM000006.ACX is run.
Dependency: Refer to: p0015, p1000, p1500, r8571
Notice: \quad No errors were issued during quick commissioning (p3900 = 1) when writing to parameters of the QUICK_IBN group! When executing a specific macro, the corresponding programmed settings are made and become active.
Note: \quad The macros in the specified directory are displayed in r8571. r8571 is not in the expert list of the commissioning tool. Macros available as standard are described in the technical documentation of the particular product.
BI: Binector Input
CDS: Command Data Set

p0713[0...7]	BI: Cam function setpoint state / Cam fct setp state		
CU_I_D410	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the setpoint state for the cam outputs.		
Index:	[0] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	[4] = Bit 4		
	[5] = Bit 5		
	[6] = Bit 6		
	[7] = Bit 7		
Note:	If the time stamp is not connected, or if both time stamps have the value " 0 ", then the output state (r0716) of the cam sequencer is obtained directly from the reference state (p 0713).		

2.2 List of parameters

p0714[0...7]	CI: Cam function setting time / Cam t_set		
CU_I_D410	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the setting time for the cam outputs.		
Index:	[0] = Cam_0 switching instant for a rising edge		
	[1] = Cam_1 switching instant for a rising edge		
	[2] $=$ Cam_2 switching instant for a rising edge		
	[3] $=$ Cam_3 switching instant for a rising edge		
	[4] = Cam_4 switching instant for a rising edge		
	[5] = Cam_5 switching instant for a rising edge		
	$[6]=$ Cam_6 switching instant for a rising edge$[7]=$ Cam 7 switching instant for a rising edge		
Note:	If the setpoint state is not connected, then the output state (r0716) of the cam sequencer is only obtained from the specified switching instants (p0714/p0715).		
	0000 hex and FFFF have a special significance "No switching event". The maximum time is 16 ms , FA00 hex.		

p0715[0...7]	CI: Cam function reset time / Cam t_reset		
CU_I_D410	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description:	Sets the reset time for the cam outputs.
Index:	[0] = Cam_0 switching instant for a falling edge
	[1] = Cam_1 switching instant for a falling edge
	[2] = Cam_2 switching instant for a falling edge
	[3] = Cam_3 switching instant for a falling edge
	[4] = Cam_4 switching instant for a falling edge
	[5] = Cam_5 switching instant for a falling edge
	[6] = Cam_6 switching instant for a falling edge
	[7] = Cam_7 switching instant for a falling edge
Note:	If the setpoint state is not connected, then the output state (r0716) of the cam sequencer is only obtained from the specified switching instants (p0714/p0715).
	0000 hex and FFFF have a special significance "No switching event". The maximum time is 16 ms , FA00 hex.

05	Cam_5 output signal	High	Low
06	Cam_6 output signal	High	Low
07	Cam_7 output signal	High	Low

Note: \quad The cam sequencer is only calculated if the output-side binector (r0716) is interconnected.

r0721	CU digital inputs terminal actual value / CU Dl term act val				
CU_I, CU_S120_PN,	Can be changed: -		Calculated: -	Access level: 2	
CU_S150_PN, CU_S120_DP,	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2119, 2120,$2121,2130,2131,2132,2133$	
CU_S150_DP	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the actual value at the digital inputs.				
	This means that the actual input signal can be checked at terminal DI x or DI/DO x prior to switching from the simulation mode ($p 0795 \cdot x=1$) to terminal mode ($p 0795 \cdot x=0$).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X122.1/X121.1)	High	Low	-
		DI 1 (X122.2/X121.2)	High	Low	-
		DI 2 (X122.3/X121.3)	High	Low	-
	03	DI 3 (X122.4/X121.4)	High	Low	-
	04	DI 4 (X132.1 / -)	High	Low	-
	05	DI 5 (X132.2 / -)	High	Low	-
	06	DI 6 (X132.3 / -)	High	Low	-
	07	DI 7 (X132.4 /-)	High	Low	-
	08	DI/DO 8 (X122.9/X121.7)	High	Low	-
		DI/DO 9 (X122.10/X121.8)	High	Low	-
		$\text { DI/DO } 10 \text { (X122.12/X121.10) }$	High	Low	-
		DI/DO 11 (X122.13/X121.11)	High	Low	-
		DI/DO 12 (X132.9/X131.1)	High	Low	-
	13	DI/DO 13 (X132.10/X131.2)	High	Low	-
		DI/DO 14 (X132.12/X131.4)	High	Low	-
		DI/DO 15 (X132.13/X131.5)	High	Low	-
		DI 16 (X122.5/X120.3)	High	Low	-
		DI 17 (X122.6/X120.4)	High	Low	-
		DI 20 (X132.5/X120.9)	High	Low	-
		DI 21 (X132.6/X120.10)	High	Low	-
Notice:	Regarding the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	If a DI/DO is parameterized as output ($\mathrm{p} 0728 . x=1$), then r0721. $x=0$ is displayed.				
	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				

r0721	CX digital inputs terminal actual value / CX DI actual value		
CU_NX_CX	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2179, 2180, 2190, 2191
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual value at the digital inputs.		
	This means that the actual input signal can be checked at terminal DI x or DI/DO x prior to switching from the simulation mode ($\mathrm{p} 0795 \cdot \mathrm{x}=1$) to terminal mode $(\mathrm{p} 0795 \cdot \mathrm{x}=0)$.		

2.2 List of parameters

Bit field:		Signal name	1 signal	0 signal	FP
		DI 0 (X122.1)	High	Low	-
		DI 1 (X122.2)	High	Low	-
	02	DI 2 (X122.3)	High	Low	-
	03	DI 3 (X122.4)	High	Low	-
	08	DI/DO 8 (X122.9)	High	Low	-
	09	DI/DO 9 (X122.10)	High	Low	-
	10	DI/DO 10 (X122.12)	High	Low	-
	11	DI/DO 11 (X122.13)	High	Low	-
	16	DI 16 (X122.5)	High	Low	-
	17	DI 17 (X122.6)	High	Low	-
Note:		I/DO is parameterized as outpu	. $x=1$), then r072		
		gital Input			
	DI/D	: Bidirectional Digital Input/Out			
r0721	CU	igital inputs terminal	alue / CU DI		
CU_S_AC_DP,	Can	be changed: -	Calculated: -	Acces	
$\begin{aligned} & C U_{-}^{-} \mathrm{S}_{-}^{-} A C_{-}^{-} \mathrm{PN}, \\ & \text { CU_I_D410 } \end{aligned}$		ype: Unsigned32	Dyn. index: -	Func. 2021,	$\begin{aligned} & 020, \\ & 2033 \end{aligned}$
	P-G	up: Commands	Unit group: -	Unit	
	Not	or motor type: -	Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description:	Disp	ays the actual value at the digita			
		means that the actual input sign ation mode ($p 0795 . x=1$) to ter	e checked at ter ode (p0795.x = 0)	x prior to	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X122.1/X121.1)	High	Low	-
	01	DI 1 (X122.2/X121.2)	High	Low	-
		DI 2 (X122.3/X121.3)	High	Low	-
	03	DI 3 (X122.4/X121.4)	High	Low	-
	08	DI/DO 8 (X122.9/X121.7)	High	Low	-
	09	DI/DO 9 (X122.10/X121.8)	High	Low	-
	10	DI/DO 10 (X122.12/X121.10)	High	Low	-
	11	DI/DO 11 (X122.13/X121.11)	High	Low	-
	12	DI/DO 12 (X132.9/X131.1)	High	Low	-
	13	DI/DO 13 (X132.10/X131.2)	High	Low	-
	14	DI/DO 14 (X132.12/X131.4)	High	Low	-
		DI/DO 15 (X132.13/X131.5)	High	Low	-
		DI 16 (X122.5/X120.3)	High	Low	-
		DI 17 (X122.6/X120.4)	High	Low	-
		DI 18 (- / X120.6)	High	Low	-
		DI 19 (- / X120.7)	High	Low	-
		DI 20 (X132.5/X120.9)	High	Low	-
		DI 21 (X132.6/X120.10)	High	Low	-
	22	DI 22 (- / X130.1)	High	Low	-
Notice:	Reg	rding the terminal designation:			
	The	rst designation is valid for CU320	second for CU310		
Note:	If a	I/DO is parameterized as outpu	. $x=1$), then r0721		
	DI:	gital Input			
	DI/D	: Bidirectional Digital Input/Out			

r0722.0... 21	CO/BO: CU digital inputs status / CU DI status					
$\begin{aligned} & \text { CU_I, CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can be changed: - Data type: Unsigned32		Calculated: - Dyn. index: -	Access level: 1		
			Func. 2121,	$\begin{aligned} & 120, \\ & 2133 \end{aligned}$		
	P-Group: Commands			Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert		
	Min		Max	Factory setting		
	-		-	-		
Description:	Display and BICO output for the status of the digital inputs.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	00	DI 0 (X122.1/X121.1)	High	Low	-	
		DI 1 (X122.2/X121.2)	High	Low	-	
		DI 2 (X122.3/X121.3)	High	Low	-	
	03	DI 3 (X122.4/X121.4)	High	Low	-	
	04	DI 4 (X132.1 / -)	High	Low	-	
	05	DI 5 (X132.2/-)	High	Low	-	
		DI 6 (X132.3/-)	High	Low	-	
		DI 7 (X132.4/-)	High	Low	-	
		DI/DO 8 (X122.9/X121.7)	High	Low	-	
	09	DI/DO 9 (X122.10/X121.8)	High	Low	-	
	10	DI/DO 10 (X122.12/X121.10)	High	Low	-	
		DI/DO 11 (X122.13/X121.11)	High	Low	-	
	12	DI/DO 12 (X132.9/X131.1)	High	Low	-	
		DI/DO 13 (X132.10/X131.2)	High	Low	-	
		DI/DO 14 (X132.12/X131.4)	High	Low	-	
		DI/DO 15 (X132.13/X131.5)	High	Low	-	
	16	DI 16 (X122.5/X120.3)	High	Low	-	
		DI 17 (X122.6/X120.4)	High	Low	-	
		DI 20 (X132.5/X120.9)	High	Low	-	
		DI 21 (X132.6/X120.10)	High	Low	-	
Dependency:	Refer to: r0723					
Notice:	Regarding the terminal designation:					
	The first designation is valid for CU320, the second for CU310.					
Note:	DI: Digital Input					
	DI/DO: Bidirectional Digital Input/Output					
r0722.0... 17	CO/BO: CX digital inputs status / CX DI status					
CU_NX_CX	Can be changed: -		Calculated: -	Access level: 1		
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2179, 2180, 2190, 2191		
	P-Group: Commands		Unit group: -	Unit selection: -		
	Not for motor type: -		Scaling: -	Expert list: 1		
	Min		Max	Factory setting		
	-		-	-		
Description:	Display and BICO output for the status of the digital inputs.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	00	DI 0 (X122.1)	High	Low	-	
	01	DI 1 (X122.2)	High	Low	-	
	02	DI 2 (X122.3)	High	Low	-	
	03	DI 3 (X122.4)	High	Low	-	
	08	DI/DO 8 (X122.9)	High	Low	-	
	09	DI/DO 9 (X122.10)	High	Low	-	
	10	DI/DO 10 (X122.12)	High	Low	-	
	11	DI/DO 11 (X122.13)	High	Low	-	
	16	DI 16 (X122.5)	High	Low	-	
	17	DI 17 (X122.6)	High	Low	-	
Dependency:	Refe	to: r0723				

2.2 List of parameters

Note:	DI: Digital Input
	DI/DO: Bidirectional Digital Input/Output

r0722.0... 22	CO/BO: CU digital inputs status / CU DI status				
CU_S_AC_DP,	Can be changed: -		Calculated: -	Access level: 1	
$\begin{aligned} & \text { CU_S_AC_PN, } \\ & \text { CU_I_D410 } \end{aligned}$	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2019, 2020, 2021, 2030, 2031, 2032, 2033	
	P-G	up: Commands	Unit group: -	Unit s	
	Not	or motor type: -	Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description:	Display and BICO output for the status of the digital inputs.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X122.1/X121.1)	High	Low	-
		DI 1 (X122.2/X121.2)	High	Low	-
		DI 2 (X122.3/X121.3)	High	Low	-
		DI 3 (X122.4/X121.4)	High	Low	-
		DI/DO 8 (X122.9/X121.7)	High	Low	-
	09	DI/DO 9 (X122.10/X121.8)	High	Low	-
	10	DI/DO 10 (X122.12/X121.10)	High	Low	-
		DI/DO 11 (X122.13/X121.11)	High	Low	-
	12	DI/DO 12 (X132.9/X131.1)	High	Low	-
	13	DI/DO 13 (X132.10/X131.2)	High	Low	-
		DI/DO 14 (X132.12/X131.4)	High	Low	-
		DI/DO 15 (X132.13/X131.5)	High	Low	-
		DI 16 (X122.5/X120.3)	High	Low	-
		DI 17 (X122.6/X120.4)	High	Low	-
		DI 18 (- / X120.6)	High	Low	-
		DI 19 (- / X120.7)	High	Low	-
		DI 20 (X132.5/X120.9)	High	Low	-
		DI 21 (X132.6/X120.10)	High	Low	-
		DI 22 (- / X130.1)	High	Low	-
Dependency:	Refer to: r0723				
Notice:	Regarding the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				

r0723.0... 21 CO/BO: CU digital inputs status inverted / CU DI status inv

$\begin{aligned} & \text { CU_I, CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can be changed: - Data type: Unsigned32		Calculated: - Dyn. index:	Access level: 1 Func. diagram: 2119, 2120, $2121,2130,2131,2132,2133$	
	P-Group: Commands		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Display and BICO output for the inverted status of the digital inputs.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X122.1/X121.1)	High	Low	-
	01	DI 1 (X122.2/X121.2)	High	Low	-
	02	DI 2 (X122.3/X121.3)	High	Low	-
	03	DI 3 (X122.4/X121.4)	High	Low	-
	04	DI 4 (X132.1 / -)	High	Low	-
	05	DI 5 (X132.2 / -)	High	Low	-
	06	DI 6 (X132.3 / -)	High	Low	-
	07	DI 7 (X132.4 /-)	High	Low	-
	08	DI/DO 8 (X122.9/X121.7)	High	Low	-
	09	DI/DO 9 (X122.10/X121.8)	High	Low	-
	10	DI/DO 10 (X122.12/X121.10)	High	Low	-

	11	DI/DO 11 (X122.13/X121.11)	High	Low	-
	12	DI/DO 12 (X132.9/X131.1)	High	Low	-
	13	DI/DO 13 (X132.10/X131.2)	High	Low	-
	14	DI/DO 14 (X132.12/X131.4)	High	Low	-
	15	DI/DO 15 (X132.13/X131.5)	High	Low	-
	16	DI 16 (X122.5/X120.3)	High	Low	-
		DI 17 (X122.6/X120.4)	High	Low	-
		DI 20 (X132.5/X120.9)	High	Low	-
	21	DI 21 (X132.6/X120.10)	High	Low	-
Dependency:	Ref	to: r0722			
Notice:	Reg	ding the terminal designation:			
		rst designation is valid for CU3	econd for CU310		
Note:		gital Input			
	DI/D	: Bidirectional Digital Input/Ou			
r0723.0... 17		BO: CX digital inputs st	nverted / CX D		
CU_NX_CX	Can	be changed: -	Calculated: -	Access	
		pe: Unsigned32	Dyn. index: -	Func. $2190,2$	
	P-G	up: Commands	Unit group: -	Unit se	
		or motor type: -	Scaling: -	Expert	
	Min		Max	Factory	
	-		-	-	
Description:	Disp	y and BICO output for the inve	us of the digital in		
Bit field:		Signal name	1 signal	0 signal	FP
		DI 0 (X122.1)	High	Low	-
		DI 1 (X122.2)	High	Low	-
		DI 2 (X122.3)	High	Low	-
		DI 3 (X122.4)	High	Low	-
		DI/DO 8 (X122.9)	High	Low	-
		DI/DO 9 (X122.10)	High	Low	-
		DI/DO 10 (X122.12)	High	Low	-
		DI/DO 11 (X122.13)	High	Low	-
		DI 16 (X122.5)	High	Low	-
	17	DI 17 (X122.6)	High	Low	-
Dependency:	Ref	to: r0722			
Note:		gital Input			
	DI/D	: Bidirectional Digital Input/Ou			
r0723.0... 22	CO	30: CU digital inputs st	inverted / CU		
CU_S_AC_DP,	Can	e changed: -	Calculated: -	Access	
$\begin{aligned} & \text { CU_S_AC_PN, } \\ & \text { CU_I_D410 } \end{aligned}$	Dat	type: Unsigned32	Dyn. index: -	Func. 2021, 2	$\begin{aligned} & 020, \\ & 2033 \end{aligned}$
	P-G	up: Commands	Unit group: -	Unit se	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max	Factory	
	-		-	-	
Description:	Disp	y and BICO output for the inve	us of the digital in		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X122.1/X121.1)	High	Low	-
	01	DI 1 (X122.2/X121.2)	High	Low	-
	02	DI 2 (X122.3/X121.3)	High	Low	-
	03	DI 3 (X122.4/X121.4)	High	Low	-
	08	DI/DO 8 (X122.9/X121.7)	High	Low	-
	09	DI/DO 9 (X122.10/X121.8)	High	Low	-
	10	DI/DO 10 (X122.12/X121.10)	High	Low	-
	11	DI/DO 11 (X122.13/X121.11)	High	Low	-
	12	DI/DO 12 (X132.9/X131.1)	High	Low	-

2.2 List of parameters

	13	DI/DO 13 (X132.10/X131.2)	High	Low	-
	14	DI/DO 14 (X132.12/X131.4)	High	Low	-
	15	DI/DO 15 (X132.13/X131.5)	High	Low	-
	16	DI 16 (X122.5/X120.3)	High	Low	
	17	DI 17 (X122.6/X120.4)	High	Low	
	18	DI 18 (- / X120.6)	High	Low	
	19	DI 19 (- / X120.7)	High	Low	
	20	DI 20 (X132.5/X120.9)	High	Low	-
	21	DI 21 (X132.6/X120.10)	High	Low	
	22	DI 22 (-/ X130.1)	High	Low	
Dependency:	Refe	to: r0722			
Notice:	Reg	rding the terminal designation:			
	The	first designation is valid for CU3	second for CU310		
Note:	DI:	igital Input			
	DIID	: Bidirectional Digital Input/Ou			
p0728	CU	set input or output / CU	DO		
CU_I, CU_S120_PN,	Can	be changed: T	Calculated: -	Access	
CU_S150_PN, CU_S120_DP,	Dat	type: Unsigned32	Dyn. index: -	Func. $2031,2$	
CU_S150_DP		oup: Commands	Unit group: -	Unit se	
		or motor type: -	Scaling: -	Expert	
	Min		Max	Factory	
	-		-	000000	
Description:	Sets	the bidirectional digital inputs/o	s an input or output		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	08	DI/DO 8 (X122.9/X121.7)	Output	Input	
		DI/DO 9 (X122.10/X121.8)	Output	Input	-
		DI/DO 10 (X122.12/X121.10)	Output	Input	
		DI/DO 11 (X122.13/X121.11)	Output	Input	
	12	DI/DO 12 (X132.9/X131.1)	Output	Input	-
	13	DI/DO 13 (X132.10/X131.2)	Output	Input	-
	14	DI/DO 14 (X132.12/X131.4)	Output	Input	-
	15	DI/DO 15 (X132.13/X131.5)	Output	Input	-
Notice:	Reg	rding the terminal designation:			
	The	first designation is valid for CU3	second for CU310		
Note:	DIID	: Bidirectional Digital Input/Ou			
p0728	CX	set input or output / CX	DO		
CU_NX_CX	Can	be changed: T	Calculated: -	Access	
		type: Unsigned32	Dyn. index: -	Func. 2191	
	P-G	oup: Commands	Unit group: -	Unit se	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max	Factory	
	-		-	000000	
Description:	Sets	the bidirectional digital inputs/o	s an input or output		
Bit field:	Bit	Signal name	1 signal	0 signal	
	08	DI/DO 8 (X122.9)	Output	Input	2190
	09	DI/DO 9 (X122.10)	Output	Input	2190
	10	DI/DO 10 (X122.12)	Output	Input	2191
		DI/DO 11 (X122.13)	Output	Input	2191
Note:	DIID	: Bidirectional Digital Input/Ou			

p0728	CU set input or output / CU DI or DO				
CU_S_AC_DP,	Can be changed: T		Calculated: -	Access level: 1	
$\begin{aligned} & \mathrm{CU}_{-}^{-} \mathrm{S}_{-} \mathrm{AC}_{-}^{-} \mathrm{PN}, \\ & \mathrm{CU} \text {,_D410 } \end{aligned}$	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2019, 2030, 2031, 2032, 2033	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	000000	
Description:	Sets the bidirectional digital inputs/outputs as an input or output.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 8 (X122.9/X121.7)	Output	Input	-
		DI/DO 9 (X122.10/X121.8)	Output	Input	-
		DI/DO 10 (X122.12/X121.10)	Output	Input	-
		DI/DO 11 (X122.13/X121.11)	Output	Input	-
		DI/DO 12 (X132.9/X131.1)	Output	Input	-
		DIIDO 13 (X132.10/X131.2)	Output	Input	-
		DI/DO 14 (X132.12/X131.4)	Output	Input	-
	15	DI/DO 15 (X132.13/X131.5)	Output	Input	-
Notice:	Regarding the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	DI/DO: Bidirectional Digital Input/Output				
r0729	CU digital outputs access authority / CU DO acc_auth				
$\begin{aligned} & \text { CU_I, CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2030, 2031, 2130, 2131, 2132, 2133	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the access authority at the digital outputs.Bit = 1:				
	The control has access authority to the digital output via PROFIBUS or direct access.$\text { Bit }=0:$				
	The drive has access authority to the digital output or the digital input/output is not set as digital output or is not available.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 8 (X122.9/X121.7)	High	Low	-
		DI/DO 9 (X122.10/X121.8)	High	Low	-
		DI/DO 10 (X122.12/X121.10)	High	Low	-
		DI/DO 11 (X122.13/X121.11)	High	Low	-
		DI/DO 12 (X132.9/X131.1)	High	Low	-
	13	DI/DO 13 (X132.10/X131.2)	High	Low	-
	14	DI/DO 14 (X132.12/X131.4)	High	Low	-
		DI/DO 15 (X132.13/X131.5)	High	Low	-
Dependency:	Refer to: p0728, p0738, p0739, p0740, p0741, p0742, p0743, p0744, p0745, r0747, p0748				
Notice:	Regarding the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	The DI/DO must be connected as output (p 0728). DI/DO: Bidirectional Digital Input/Output				

p0738	BI: CU signal source for terminal DI/DO 8 / CU S_src DI/DO 8		
CU_I_D410	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 8 (X122.9 / X121.7).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.8 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0738	BI: CU signal source for terminal DI/DO 8 / CU S_src DI/DO 8		
$\begin{aligned} & \text { CU_I, CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can be changed: U, T Data type: Unsigned32 / Binary	Calculated: -	Access level: 1
		Dyn. index: -	Func. diagram: 2119, 2130
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source for terminal DI/DO 8 (X122.9 / X121.7).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.8 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0738	BI: CX signal source for terminal DI/DO 8 / CX S_src DI/DO 8		
CU_NX_CX	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2179, 2190
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source for terminal DI/DO 8 (X122.9 / X121.7).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.8 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0738	BI: CU signal source for terminal DI/DO 8 / CU S_src DI/DO 8		
CU_S_AC_DP, CU_S_AC_PN	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2019, 2030
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 8 (X122.9 / X121.7).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		

2.2 List of parameters

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad Prerequisite: The DI/DO must be set as an output (p0728.8 = 1).
DI/DO: Bidirectional Digital Input/Output

p0739	BI: CU signal source for terminal DI/DO 9 / CU S_src DI/DO 9		
CU_I_D410	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting	
	-	-	0

Description:	Sets the signal source for terminal DI/DO 9 (X122.10 / X121.8).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.9 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0739	BI: CU signal source for terminal DI/DO 9 / CU S_src DI/DO 9		
CU_I, CU_S120_PN,	Can be changed: U, T	Calculated: -	Access level: 1
CU_S150_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2130
CU_S120_DP, CU S150 DP	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description:	Sets the signal source for terminal DI/DO 9 (X122.10 / X121.8).
	Regarding the terminal designation:
	The first designation is valid for CU320, the second for CU310.
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	Prerequisite: The DI/DO must be set as an output (p0728.9 = 1).
	DI/DO: Bidirectional Digital Input/Output

p0739	BI: CX signal source for terminal DI/DO 9 / CX S_src DI/DO 9		
CU_NX_CX	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2190
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 9 (X122.10 / X121.8).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.9 = 1).		
	DI/DO: Bidirectional Digital Input/Output		

p0739	BI: CU signal source for terminal DI/DO 9 / CU S_src DI/DO 9		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 1
CU_S_AC_PN	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2030
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 9 (X122.10 / X121.8). Regarding the terminal designation: The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.9 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0740	BI: CU signal source for terminal DI/DO 10 / CU S_src DI/DO 10		
$\begin{aligned} & \text { CU_I, CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2131
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 10 (X122.12 / X121.10).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.10 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0740	BI: CX signal source for terminal DI/DO 10 / CX S_src DI/DO 10		
CU_NX_CX	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2191
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 10 (X122.12 / X121.10).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.10 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0740	BI: CU signal source for terminal DI/DO 10 / CU S_src DI/DO 10		
$\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2031
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 10 (X122.12 / X121.10).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		

2.2 List of parameters

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad Prerequisite: The DI/DO must be set as an output (p0728.10 = 1).
DI/DO: Bidirectional Digital Input/Output

p0741	BI: CU signal source for terminal DI/DO 11 / CU S_src DI/DO 11		
CU_I_D410	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description:	Sets the signal source for terminal DI/DO $11(\mathrm{X} 122.13 / \mathrm{X121.11})$.
	Regarding the terminal designation:
	The first designation is valid for CU320, the second for CU310.
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	Prerequisite: The DI/DO must be set as an output (p0728.11=1).
	DI/DO: Bidirectional Digital Input/Output

p0741	BI: CU signal source for terminal DI/DO 11/CU S_src DI/DO 11		
CU_I, CU_S120_PN,	Can be changed: U, T	Calculated: -	Access level: 1
CU_S150_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2119,2131
CU_S120_DP,	P-Group: Commands	Unit group: -	Unit selection: -
CU_S150_DP	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description: \quad Sets the signal source for terminal DI/DO 11 (X122.13 / X121.11). Regarding the terminal designation: The first designation is valid for CU320, the second for CU310.
Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad Prerequisite: The DI/DO must be set as an output (p0728.11 = 1). DI/DO: Bidirectional Digital Input/Output

p0741	BI: CX signal source for terminal DI/DO 11 / CX S_src DI/DO 11		
CU_NX_CX	Can be changed: U, T	Calculated: -	Access
	Data type: Unsigned32 / Binary	Dyn. index: -	Func
	P-Group: Commands	Unit group: -	Unit
	Not for motor type: -	Scaling: -	Expert
	Min	Max	Factory
	-	-	0
Description:			
	Sets the signal source for terminal DI/DO 11 (X122.13 / X121.11). Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output ($\mathrm{p} 0728.11=1$). DI/DO: Bidirectional Digital Input/Output		

p0741	BI: CU signal source for terminal DI/DO 11 / CU S_src DI/DO 11		
$\begin{aligned} & C U _S _A C _D P, \\ & C U _S _A C=P N \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2019, 2031
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 11 (X122.13 / X121.11).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.11 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0742	BI: CU signal source for terminal DI/DO 12 / CU S_src DI/DO 12		
CU_I_D410	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 12 (X132.9 / X131.1).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.12 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0742	BI: CU signal source for terminal DI/DO 12 / CU S_src DI/DO 12		
$\begin{aligned} & \text { CU_I, CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Commands	Calculated: -	Access level: 1
		Dyn. index: -	Func. diagram: 2119, 2132
		Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
			0
Description:	Sets the signal source for terminal DI/DO 12 (X132.9 / X131.1).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.12 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0742	BI: CU signal source for terminal DI/DO 12 / CU S_src DI/DO 12		
CU_S_AC_DP, CU_S_AC_PN	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2019, 2032
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 12 (X132.9 / X131.1).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		

2.2 List of parameters

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad Prerequisite: The DI/DO must be set as an output (p0728.12 = 1).
DI/DO: Bidirectional Digital Input/Output

p0743	BI: CU signal source for terminal DI/DO 13 / CU S_src DI/DO 13		
CU_I_D410	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 13 (X132.10 / X131.2).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.13 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0743	BI: CU signal source for terminal DI/DO 13 / CU S_src DI/DO 13		
$\begin{aligned} & \text { CU_I, CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2132
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 13 (X132.10 / X131.2).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.13-1).		
	DI/DO: Bidirectional Digital Input/Output		

p0743	BI: CU signal source for terminal DI/DO 13 / CU S_src DI/DO 13		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 1
CU_S_AC_PN	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2032
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 13 (X132.10 / X131.2).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.13-1).		
	DI/DO: Bidirectional Digital Input/Output		

p0744	BI: CU signal source for terminal DI/DO 14 / CU S_src DI/DO 14		
CU_I_D410	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for termin Regarding the terminal designation The first designation is valid for	(X132.12 / X13 second for CU3	
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.14 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0744	BI: CU signal source for terminal DI/DO 14 / CU S_src DI/DO 14		
$\begin{aligned} & \text { CU_I, CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can be changed: U, T Data type: Unsigned32 / Binary	Calculated: -	Access level: 1
		Dyn. index: -	Func. diagram: 2133
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-		0
Description:	Sets the signal source for terminal DI/DO 14 (X132.12 / X131.4).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.14 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0744	BI: CU signal source for terminal DI/DO 14 / CU S_src DI/DO 14		
$\begin{aligned} & C U _S _A C _D P, \\ & C U _S _A C _P N \end{aligned}$	Can be changed: U, T Data type: Unsigned32 / Binary	Calculated: -	Access level: 1
		Dyn. index: -	Func. diagram: 2033
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- -		0
Description:	Sets the signal source for terminal DI/DO 14 (X132.12 / X131.4).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.14 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p0745	BI: CU signal source for terminal DI/DO 15 / CU S_src DI/DO 15		
CU_I_D410	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 15 (X132.13 / X131.5you). Regarding the terminal designation: The first designation is valid for CU320, the second for CU310.		

2.2 List of parameters

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad Prerequisite: The DI/DO must be set as an output (p0728.15 = 1).
DI/DO: Bidirectional Digital Input/Output

p0745	BI: CU signal source for terminal DI/DO 15/CU S_src DI/DO 15		
CU_I, CU_S120_PN,	Can be changed: U, T	Calculated: -	Access level: 1
CU_S150_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2119,2133
CU_S120_DP,	P-Group: Commands	Unit group: -	Unit selection: -
CU_S150_DP	Not for motor type: -	Maxing: -	Expert list: 1
	Min	Factory setting	
	-	0	
Description:	Sets the signal source for terminal DI/DO 15 (X132.13 / X131.5you).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.15 = 1).		
	DI/DO: Bidirectional Digital Input/Output		

p0745	BI: CU signal source for terminal DI/DO 15 / CU S_src DI/DO 15		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 1
CU_S_AC_PN	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2019,2033
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description:	Sets the signal source for terminal DI/DO 15 (X132.13 / X131.5you).
	Regarding the terminal designation:
	The first designation is valid for CU320, the second for CU310.
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	Prerequisite: The DI/DO must be set as an output (p0728.15 = 1).
	DI/DO: Bidirectional Digital Input/Output

p0746	BI: CU signal source for terminal DO 16 / CU S_src DO 16		
CU_I_D410	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DO 16 (- / X130.7).		
	Regarding the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	DO: Digital Output		

p0746	BI: CU signal source for terminal DO 16 / CU S_src DO 16				
$\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN } \end{aligned}$	Can be changed: U, T Data type: Unsigned32 / Binary		Calculated: - Acces		
			Dyn. index: -	Func. diagram: 2019, 2038	
	P-G	up: Commands	Unit group: -	Unit selection: -	
		or motor type: -	Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0	
Description:	Sets the signal source for terminal DO 16 (- / X130.7).				
	Regarding the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.				
Note:	DO: Digital Output				
r0747	CU digital outputs status / CU DO status				
$\begin{aligned} & \text { CU_I, CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can	e changed: -	Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2130, 2131,$\text { 2132, } 2133$	
	P-G	up: Commands	Unit group: -	Unit selection: -	
	Not	or motor type: -	Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status of digital outputs.				
Bit field:		Signal name	1 signal	0 signal	FP
		DI/DO 8 (X122.9/X121.7)	High	Low	-
		DI/DO 9 (X122.10/X121.8)	High	Low	-
		DI/DO 10 (X122.12/X121.10)	High	Low	-
		DI/DO 11 (X122.13/X121.11)	High	Low	-
		DI/DO 12 (X132.9/X131.1)	High	Low	-
		DI/DO 13 (X132.10/X131.2)	High	Low	-
		DI/DO 14 (X132.12/X131.4)	High	Low	-
		DI/DO 15 (X132.13/X131.5)	High	Low	-
Notice:	Regarding the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	Inversion using p0748 has been taken into account.				
	DI/DO: Bidirectional Digital Input/Output				
r0747	CX	digital outputs status /	status		
CU_NX_CX	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2190, 2191	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the status of digital outputs.				
Bit field:		Signal name	1 signal	0 signal	FP
		DI/DO 8 (X122.9)	High	Low	-
		DI/DO 9 (X122.10)	High	Low	-
		DI/DO 10 (X122.12)	High	Low	-
		DI/DO 11 (X122.13)	High	Low	-
Notice:	Regarding the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	Inversion using p0748 has been taken into account.				
	DI/DO: Bidirectional Digital Input/Output				

r0747	CU digital outputs status / CU DO status				
CU_S_AC_DP, CUS AC PN, CU_I_D410	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: -	Func. 2032,	
	P-Group: Commands		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the status of digital outputs.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 8 (X122.9/X121.7)	High	Low	-
		DI/DO 9 (X122.10/X121.8)	High	Low	-
		DI/DO 10 (X122.12/X121.10)	High	Low	-
		DI/DO 11 (X122.13/X121.11)	High	Low	-
		DI/DO 12 (X132.9/X131.1)	High	Low	-
		DI/DO 13 (X132.10/X131.2)	High	Low	-
		DI/DO 14 (X132.12/X131.4)	High	Low	-
		DI/DO 15 (X132.13/X131.5)	High	Low	-
	16	DO 16 (- / X130.7, 8)	High	Low	-
Notice:	Regarding the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	Inversion using p0748 has been taken into account.				
	DI/DO: Bidirectional Digital Input/Output				

p0748	CU invert digital outputs / CU DO inv					
$\begin{aligned} & \text { CU_I, CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can be changed: U, T Data type: Unsigned32		Calculated: Dyn. index:	Access lev		
			Func. diag $2130,2131$			
	P-Group: Commands			Unit group: -	Unit select	
	Not for motor type: -		Scaling: -	Expert list		
	Min		Max	Factory se		
	-		-	00000000		
Description:	Setting to invert the signals at the digital outputs.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	08	DI/DO 8 (X122.9/X121.7)	Inverted	Not inverted	-	
		DI/DO 9 (X122.10/X121.8)	Inverted	Not inverted	-	
	10	DI/DO 10 (X122.12/X121.10)	Inverted	Not inverted	-	
	11	DI/DO 11 (X122.13/X121.11)	Inverted	Not inverted	-	
	12	DI/DO 12 (X132.9/X131.1)	Inverted	Not inverted	-	
	13	DI/DO 13 (X132.10/X131.2)	Inverted	Not inverted	-	
	14	DI/DO 14 (X132.12/X131.4)	Inverted	Not inverted	-	
	15	DI/DO 15 (X132.13/X131.5)	Inverted	Not inverted	-	

Notice:	If telegram $39 x$ is set via p0922 in SINAMICS Integrated, the inversion of the output has no effect.
	Regarding the terminal designation:
The first designation is valid for CU320, the second for CU310.	
Note:	DI/DO: Bidirectional Digital Input/Output

p0748	CX invert digital outputs / CX DO inv		
CU_NX_CX	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2190,2191
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	0000000000000000 bin	
Description:	Setting to invert the signals at the digital outputs.		

Bit field:		Signal name	1 signal	0 signal	FP
	08	DI/DO 8 (X122.9)	Inverted	Not inverted	-
	09	DI/DO 9 (X122.10)	Inverted	Not inverted	-
		DI/DO 10 (X122.12)	Inverted	Not inverted	-
	11	DI/DO 11 (X122.13)	Inverted	Not inverted	-
Notice:	If telegram 39x is set via p0922 in SINAMICS Integrated, the inversion of the output has no effect.				
	Regarding the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	DI/DO: Bidirectional Digital Input/Output				
p0748	CU invert digital outputs / CU DO inv				
$\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: U, T		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2030, 2031,$\text { 2032, 2033, } 2038$	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	$\begin{aligned} & 00000000000000000000 \\ & 000000000000 \text { bin } \end{aligned}$	
Description:	Setting to invert the signals at the digital outputs.				
Bit field:		Signal name	1 signal	0 signal	FP
		DI/DO 8 (X122.9/X121.7)	Inverted	Not inverted	-
		DI/DO 9 (X122.10/X121.8)	Inverted	Not inverted	-
		DI/DO 10 (X122.12/X121.10)	Inverted	Not inverted	-
		DI/DO 11 (X122.13/X121.11)	Inverted	Not inverted	-
		DI/DO 12 (X132.9/X131.1)	Inverted	Not inverted	-
		DI/DO 13 (X132.10/X131.2)	Inverted	Not inverted	-
		DI/DO 14 (X132.12/X131.4)	Inverted	Not inverted	-
		DI/DO 15 (X132.13/X131.5)	Inverted	Not inverted	-
		DO 16 (- / X130.7, 8)	Inverted	Not inverted	-
Notice:	If telegram 39x is set via p0922 in SINAMICS Integrated, the inversion of the output has no effect.				
	Regarding the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	DI/DO: Bidirectional Digital Input/Output				
r0752[0]	CO: CU analog input input voltage/current actual / CU AI U_input act				
CU_S_AC_DP,	Can be changed: -		Calculated: -	Access level: 1	
CU_S_AC_PN,	Data type: FloatingPoint32		Dyn. index: -	Func. diagram: 2040	
CU__D410	P-Group: Terminals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
			-	-	
Description:	Displays the actual input voltage in V when set as voltage input.				
	Displays the actual input current in mA when set as current input and with the load resistor switched in.				
Index:	[0] = Al0 (X131.7, 8)				
Dependency:	The type of analog input AI 0 (voltage or current input) is set using p0756.				
	Refer to: p0756				
Note:	AI: Analog Input				

p0757[0]	CU analog input characteristic value x1 / CU Al char x1		
$\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2040
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000	20.000	0.000
Description:	Sets the scaling characteristic for the analog input of the CU310-2.		
	The scaling characteristic for the analog input is defined using 2 points.		
	This parameter specifies the x coordinate (input voltage in V or input current in mA) of the 1st value pair of the characteristic.		
Index:	[0] = AIO (X131.7, 8)		
Dependency:	The unit of this parameter (V or mA) depends on the analog input type.		
	Refer to: p0756		
Notice:	This parameter is automatically overwritten when the analog input type (p756) is modified.		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0758[0]	CU analog input characteristic value y1 / CU Al char y1		
$\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: U, T Data type: FloatingPoint32	Calculated: -	Access level: 2
		Dyn. index: -	Func. diagram: 2040
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog input of the CU310-2.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the y coordinate (percentage) of the 1 st value pair of the characteristic.		
Index:	[0] = AIO (X131.7, 8)		
Notice:	This parameter is automatically overwritten when the analog input type (p756) is modified.		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0759[0]	CU analog input characteristic value x2 / CU Al char $\times 2$		
$\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2040
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000	20.000	10.000
Description:	Sets the scaling characteristic for the analog input of the CU310-2.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the x coordinate (input voltage in V or input current in $m A$) of the 2 nd value pair of the characteristic.		
Index:	[0] = AIO (X131.7, 8)		
Dependency:	The unit of this parameter (V or mA) depends on the analog input type.		
	Refer to: p0756		
Notice:	This parameter is automatically overwritten when the analog input type (p0756) is modified.		
Note:	The parameters for the characteristic do not have a limiting effect.		

p0762[0]	CU analog input wire breakage monitoring delay time / CU wire brk t_del		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 2
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2040
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	100 [ms]
Description: Index:	Sets the delay time for the wire breakage monitoring of the analog input of the CU310-2. $[0]=\operatorname{AIO}(X 131.7,8)$ AI: Analog Input		
Note:			
p0763[0]	CU analog input offset / CU Al offset		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 2
CU_S_AC_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2040
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000	20.000	0.000
Description:	Sets the offset for the analog input. The offset is added to the input signal before the scaling characteristic. $[0]=\mathrm{AlO}(\mathrm{X} 131.7,8)$		
Index:			
p0766[0]	CU analog input activate absolute value generation / CU Al absVal act		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: 2040
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Activates the absolute value generation of the analog input signal.		
Value:	0 : \quad No absolute value generation 1: Absolute value generation switched in		
Index:	[0] = AIO (X131.7, 8)		
p0767[0]	BI: CU analog input signal source for inversion / CU Al inv S_src		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2040
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source to invert the analog input signals.$[0]=\operatorname{AlO}(\mathrm{X} 131.7,8)$		

2.2 List of parameters

p0779[0...2]	Test socket characteristic value x2 / Test skt char x2		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 2
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8134
CU_S_AC_PN,	P-Group: Terminals	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	$427.9 E 9[\%]$	$100.00[\%]$
CU_S150_DP,	$-100000.00[\%]$		

Description:	The scaling characteristic for the test sockets is defined using two points.
This parameter specifies the x coordinate (percentage) of the second point on the characteristic.	

Index:	$[0]=\mathrm{TO}$		
	$[1]=\mathrm{T} 1$		
	$[2]=\mathrm{T} 2$	\quad	Can only be set when p0776 = 99.
:---			
Dependency:			
Note:	\quad	Refer to: p0777, p0778, p0780, r0786	
:---	\quad The value 100.00% corresponds to 4.98 V.		

p0780[0...2]	Test socket characteristic value y2 / Test skt char y2		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 2
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8134
$\begin{aligned} & \text { CU_S_AC_PN, } \\ & \text { CU_S120 PN, } \end{aligned}$	P-Group: Terminals	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0.00 [V]	4.98 [V]	4.98 [V]
Description:	The scaling characteristic for the test sockets is defined using two points. This parameter specifies the y coordinate (output voltage) of the second point on the characteristic.		
Index:	$\begin{aligned} & {[0]=\mathrm{TO}} \\ & {[1]=\mathrm{T} 1} \\ & {[2]=\mathrm{T} 2} \end{aligned}$		
Dependency:	Can only be set when p0776 = 99.		
	Refer to: p0777, p0778, p0779, r0786		

p0783[0...2]	Test sockets offset / Test skt offset		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 2
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8134
CU_S_AC_PN,	P-Group: Terminals	Unit group:	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Min	Max	Factory setting
CU_S120_DP,	$4.98[\mathrm{~V}]$	0.00 [V]	
CU_S150_DP,	$-4.98[\mathrm{~V}]$		
CU_I_D410	Sets an additional offset for the test sockets.		
Description:	$[0]=$ T0		
Index:	$[1]=$ T1		
	$[2]=$ T2		

p0784[0...2]	Test socket limit on/off / TestSktLim on/off		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 2
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: 8134
CU S120 PN,	P-Group: Terminals	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	1	0
Description:	Sets the limit for a signal to be output via test sockets.		
Value:	0 : Limiting off 1: Limiting on		
Index:	$\begin{aligned} & {[0]=\mathrm{T} 0} \\ & {[1]=\mathrm{T} 1} \\ & {[2]=\mathrm{T} 2} \end{aligned}$		
Note:	Limiting on: If signals are output out Limiting off: If signals are output out overflow, the signal jum	measuring rang measuring rang or from 4.98 V	to 4.98 V or to 0 V . verflow. In the case of

2.2 List of parameters

p0788[0...2]	Test sockets physical address / Test skt PhyAddr		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Terminals	Unit group: -	Unit selection: -
CU_S12O_PN,	Scaling: -	Expert list: 1	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	111111111111111111111111	0000 bin
CU_S150_DP,	0000 bin	11111111 bin	

Description: Sets the physical address to output signals via the test sockets.

Index:	[0] = TO
	[1] = T1
	[2] = T2

Dependency: Changes only become effective if p0776 does not equal 99.
Refer to: p0789, r0790

p0789[0...2]	Test sockets physical address gain / TestSktPhyAddrGain		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_S_AC_PN, } \\ & \text { CU_S } 120 \text { PN , } \end{aligned}$	P-Group: Terminals	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-340.28235E36	340.28235E36	1.00000
Description:	Sets the gain of a signal output of a physical address via test sockets.		
Index:	$\begin{aligned} & {[1]=\mathrm{T} 1} \\ & {[2]=\mathrm{T} 2} \end{aligned}$		
Dependency:	Changes only become effective if p0776 does not equal 99.		
	Refer to: p0788		

r0790[0...2]	Test sockets physical address signal value / TestSktsPhyAddrVal		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Terminals	Unit group: -	Unit selection: -
CU_S150-PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$		-	-
Description:	Displays the actual value of a signal determined via a physical address.		
Index:	[0] = T0		
	[1] $=$ T1		
	$[2]=\mathrm{T} 2$		
Dependency:	Only effective when p0776 = 97 or p0776 = 96.		
	Refer to: p0788		

p0795	CU digital inputs simulation mode / CU DI simulation					
$\begin{aligned} & \text { CU_I, CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can be changed: U, T Data type: Unsigned32		Calculated: Dyn. index:	Access level: 2		
			Func. diagram: 2020, 2030, 2031, 2100, 2119, 2120, 2130, 2131, 2132, 2133			
	P-Group: Commands			Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1		
	Min		Max	Factory setting		
	-		-	00000000000000000000 000000000000 bin		
Description:	Sets the simulation mode for digital inputs.					
Bit field:		Signal name	1 signal	0 signal	FP	
		DI 0 (X122.1/X121.1)	Simulation	Terminal eval	-	
		DI 1 (X122.2/X121.2)	Simulation	Terminal eval	-	
		DI 2 (X122.3/X121.3)	Simulation	Terminal eval	-	
		DI 3 (X122.4/X121.4)	Simulation	Terminal eval	-	
	04	DI 4 (X132.1 /-)	Simulation	Terminal eval	-	
	05	DI 5 (X132.2 /-)	Simulation	Terminal eval	-	
		DI 6 (X132.3/-)	Simulation	Terminal eval	-	
	07	DI 7 (X132.4 /-)	Simulation	Terminal eval	-	
	08	DI/DO 8 (X122.9/X121.7)	Simulation	Terminal eval	-	
	09	DI/DO 9 (X122.10/X121.8)	Simulation	Terminal eval	-	
	10	DI/DO 10 (X122.12/X121.10)	Simulation	Terminal eval	-	
	11	DI/DO 11 (X122.13/X121.11)	Simulation	Terminal eval	-	
	12	DI/DO 12 (X132.9/X131.1)	Simulation	Terminal eval	-	
	13	DI/DO 13 (X132.10/X131.2)	Simulation	Terminal eval	-	
	14	DI/DO 14 (X132.12/X131.4)	Simulation	Terminal eval	-	
	15	DI/DO 15 (X132.13/X131.5)	Simulation	Terminal eval	-	
	16	DI 16 (X122.5/X120.3)	Simulation	Terminal eval	-	
		DI 17 (X122.6/X120.4)	Simulation	Terminal eval	-	
		DI 20 (X132.5/X120.9)	Simulation	Terminal eval	-	
	21	DI 21 (X132.6/X120.10)	Simulation	Terminal eval	-	
Dependency:	The setpoint for the input signals is specified using p0796.					
Notice:	If a digital input is used as signal source for the function "STO" (BI: p9620) then it is not permissible to select the simulation mode and this is rejected.					
	Regarding the terminal designation:					
Note:	This parameter is not saved when data is backed-up (p0971, p0977).					
	DI: Digital Input					
	DI/DO: Bidirectional Digital Input/Output					
p0795	CX digital inputs simulation mode / CX DI simulation					
CU_NX_CX	Can be changed: U, T		Calculated: -	Access level: 2		
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2180, 2190, 2191		
	P-Group: Commands		Unit group: -	Unit selection: -		
	Not for motor type: -		Scaling: -	Expert list: 1		
	Min		Max	Factory setting		
	-		-	00000000000000000000 000000000000 bin		
Description:	Sets the simulation mode for digital inputs.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	00	DI 0 (X122.1)	Simulation	Terminal eval	-	
		DI 1 (X122.2)	Simulation	Terminal eval	-	
	02	DI 2 (X122.3)	Simulation	Terminal eval	-	
	03	DI 3 (X122.4)	Simulation	Terminal eval	-	
	08	DIIDO 8 (X122.9)	Simulation	Terminal eval	-	

2.2 List of parameters

	09	DI/DO 9 (X122.10)	Simulation	Terminal eval	-
	10	DI/DO 10 (X122.12)	Simulation	Terminal eval	
		DI/DO 11 (X122.13)	Simulation	Terminal eval	
	16	DI 16 (X122.5)	Simulation	Terminal eval	
	17	DI 17 (X122.6)	Simulation	Terminal eval	-
Dependency:		etpoint for the input si	p0796.		
		to: p0796, p9620			
Notice:		gital input is used as ation mode and this is	ction "STO"	it is not permis	
Note:		parameter is not saved	(p0971, p0		
		gital Input			
		Bidirectional Digital			

p0795

CU_S_AC_DP, CU_S_AC_PN, CU_I_D410

Description: Bit field:

Dependency: The setpoint for the input signals is specified using p0796.
Refer to: p0796, p9620
Notice: If a digital input is used as signal source for the function "STO" (BI: p9620) then it is not permissible to select the simulation mode and this is rejected.
Regarding the terminal designation:
The first designation stands for CU320, the second for CU310.
Note: \quad This parameter is not saved when data is backed-up (p0971, p0977).
DI: Digital Input
DI/DO: Bidirectional Digital Input/Output

p0796	CU digital inputs simulation mode setpoint / CU DI simul setp				
$\begin{aligned} & \text { CU_I, CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can be changed: U, T Data type: Unsigned32		Calculated: -	Access	
			Dyn. index: -	Func. 2031, 2131,	$\begin{aligned} & 2030, \\ & , 2130, \end{aligned}$
	P-Group: Commands		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factory	
	-		-	$\begin{aligned} & 0000 \\ & 0000 \\ & 0 \end{aligned}$	
Description: Bit field:	Sets the setpoint for the input signals in the digital input simulation mode.				
	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X122.1/X121.1)	High	Low	-
		DI 1 (X122.2/X121.2)	High	Low	-
		DI 2 (X122.3/X121.3)	High	Low	-
		DI 3 (X122.4/X121.4)	High	Low	-
	04	DI 4 (X132.1 / -)	High	Low	-
		DI 5 (X132.2/-)	High	Low	-
		DI 6 (X132.3/-)	High	Low	-
		DI 7 (X132.4 /-)	High	Low	-
		DI/DO 8 (X122.9/X121.7)	High	Low	-
		DI/DO 9 (X122.10/X121.8)	High	Low	-
		DI/DO 10 (X122.12/X121.10)	High	Low	-
		DI/DO 11 (X122.13/X121.11)	High	Low	-
		DI/DO 12 (X132.9/X131.1)	High	Low	-
		DI/DO 13 (X132.10/X131.2)	High	Low	-
		DI/DO 14 (X132.12/X131.4)	High	Low	-
		DI/DO 15 (X132.13/X131.5)	High	Low	-
		DI 16 (X122.5/X120.3)	High	Low	-
		DI 17 (X122.6/X120.4)	High	Low	-
		DI 20 (X132.5/X120.9)	High	Low	-
		DI 21 (X132.6/X120.10)	High	Low	-
Dependency:	The simulation of a digital input is selected using p0795. Refer to: p0795				
Notice:	Regarding the terminal designation:				
Note:	This parameter is not saved when data is backed-up (p0971, p0977). DI: Digital Input				
p0796	CX	digital inputs simulation	, setpoint / CX	etp	
CU_NX_CX	Can be changed: U, T		Calculated: -	Access	
	Data type: Unsigned32		Dyn. index: -	Func. 2031	
	P-Group: Commands		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factory	
	-		-	$\begin{aligned} & 00000 \\ & 0000 \\ & 0 \end{aligned}$	
Description:	Sets the setpoint for the input signals in the digital input simulation mode.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X122.1)	High	Low	-
	01	DI 1 (X122.2)	High	Low	-
	02	DI 2 (X122.3)	High	Low	-
	03	DI 3 (X122.4)	High	Low	-
	08	DI/DO 8 (X122.9)	High	Low	-
	09	DI/DO 9 (X122.10)	High	Low	-
	10	DI/DO 10 (X122.12)	High	Low	-

2.2 List of parameters

		DI/DO 11 (X122.13)	High	Low	-
		DI 16 (X122.5)	High	Low	-
	17	DI 17 (X122.6)	High	Low	-
Dependency:	The simulation of a digital input is selected using p0795.				
	Refer to: p0795				
Notice:	Regarding the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	This parameter is not saved when data is backed-up (p0971, p0977).				
	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				
p0796	CU digital inputs simulation mode setpoint / CU DI simul setp				
$\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: U, T		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2019, 2020, 2021, 2030, 2031, 2032, 2033	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	$\begin{aligned} & 00000000000000000000 \\ & 000000000000 \text { bin } \end{aligned}$	
Description:	Sets the setpoint for the input signals in the digital input simulation mode.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X122.1/X121.1)	High	Low	-
		DI 1 (X122.2/X121.2)	High	Low	-
		DI 2 (X122.3/X121.3)	High	Low	-
	03	DI 3 (X122.4/X121.4)	High	Low	-
	08	DI/DO 8 (X122.9/X121.7)	High	Low	-
	09	DI/DO 9 (X122.10/X121.8)	High	Low	-
		DI/DO 10 (X122.12/X121.10)	High	Low	-
		DI/DO 11 (X122.13/X121.11)	High	Low	-
		DI/DO 12 (X132.9/X131.1)	High	Low	-
		DI/DO 13 (X132.10/X131.2)	High	Low	-
		DI/DO 14 (X132.12/X131.4)	High	Low	-
		DI/DO 15 (X132.13/X131.5)	High	Low	-
		DI 16 (X122.5/X120.3)	High	Low	-
		DI 17 (X122.6/X120.4)	High	Low	-
		DI 18 (- / X120.6)	High	Low	-
		DI 19 (- / X120.7)	High	Low	-
		DI 20 (X132.5/X120.9)	High	Low	-
		DI 21 (X132.6/X120.10)	High	Low	-
	22	DI 22 (- / X130.1)	High	Low	-
Dependency:	The simulation of a digital input is selected using p0795.				
	Refer to: p0795				
Notice:	Regarding the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	This parameter is not saved when data is backed-up (p0971, p0977).				
	DI: Digital Input				
	DI/D	: Bidirectional Digital Input/Ou			

p0799[0...2]	CX inputs/outputs sampling time / CX I/O t_sampl		
CU_NX_CX	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2020, 2030, 2031
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	5000.00 [$\mu \mathrm{s}$]	4000.00 [$\mu \mathrm{s}$]
Description:	Sets the sampling time for the inputs and outputs of the Control Unit.		
Index:	[0] = Digital inputs/outputs [1] = Not available - analog [2] = Not available - analog		
Dependency:	The parameter can only be modified for p0009 $=3,29$.		
	Refer to: p0009		
Note:	The changed sampling time is immediately effective after a completed sub-boot (p0009 -> 0).		
p0799[0...2]	CU inputs/outputs sampling time / CU I/O t_sampl		
$\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN } \end{aligned}$	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2020, 2030, 2031
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	5000.00 [$\mu \mathrm{s}$]	4000.00 [$\mu \mathrm{s}$]
Description:	Sets the sampling time for the inputs and outputs of the Control Unit.		
Index:	$\begin{aligned} & {[0]=\text { Digital inputs/outputs (}} \\ & {[1]=\text { Analog inputs (AI) }} \\ & {[2]=\text { Not available - analog }} \end{aligned}$		
Dependency:	The parameter can only be modified for p0009 $=3,29$.		
	Refer to: p0009		
Notice:	The sampling times entered in index 0 (digital inputs/outputs) and index 2 (analog outputs) must always be greater than or equal to the sampling time in index 1 (analog inputs).		
Note:	- the modified sampling time is not effective until the drive unit is switched on again. - parameter p0799[0] must never equal zero.		

p0799[0...2]	CU inputs/outputs sampling time / CU I/O t_sampl		
CU_S120_PN,	Can be changed: C1(3)	Calculated: -	Access level: 3
CU_S150_PN, CU_S120_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2020, 2030, 2031
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	5000.00 [$\mu \mathrm{s}$]	4000.00 [$\mu \mathrm{s}$]
Description:	Sets the sampling time for the inputs and outputs of the Control Unit.		
Index:	[0] = Digital inputs/outputs ([1] = Not available - analog [2] = Not available - analog		
Dependency:	The parameter can only be modified for p0009 $=3,29$.		
	Refer to: p0009		
Notice:	The sampling times entered in index 0 (digital inputs/outputs) and index 2 (analog outputs) must always be greater than or equal to the sampling time in index 1 (analog inputs).		
Note:	- the modified sampling time is not effective until the drive unit is switched on again. - parameter p0799[0] must never equal zero.		

p0809[0...2]	Copy Command Data Set CDS / Copy CDS		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 2
SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: 8560
VECTOR_AC,	P-Group: Commands	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	Factory setting	
	0	0	
	Copies one Command Data Set (CDS) into another.		
Description:	[0] = Source Command Data Set		
Index:	[1] = Target Command Data Set		
	[2] = Start copying procedure		
	Procedure:		
	1. In Index 0, enter which command data set should be copied.		
	2. In index 1, enter the command data set that is to be copied into.		
	3. Start copying: set index 2 from 0 to 1.		
	p0809[2] is automatically set to 0 when copying is completed.		

p0810	BI: Command data set selection CDS bit 0/CDS select., bit 0		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 8560
VECTOR_AC,	P-Group: Commands	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC,	Max	Factory setting	
A_INF, S_INF, R_INF, Min	-	0	

Description:	Sets the signal source to select the Command Data Set bit 0 (CDS bit 0$).$
Dependency:	Refer to: r0050, p0811, r0836
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	The Command Data Set selected using the binector inputs is displayed in r0836.
	The currently effective command data set is displayed in r0050.
	A Command Data Set can be copied using p0809.

p0811	BI: Command data set selection CDS bit 1 / CDS select., bit 1		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 8560
VECTOR_I_AC	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description: Sets the signal source to select the Command Data Set bit 1 (CDS bit 1).
Dependency: Refer to: r0050, p0810, r0836
Note: The Command Data Set selected using the binector inputs is displayed in r0836.
The currently effective command data set is displayed in r0050.
A Command Data Set can be copied using p0809.

p0819[0...2]	Copy Drive Data Set DDS / Copy DDS	
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC, TM41	Can be changed: $\mathrm{C} 2(15)$ Calculated: - Data type: Unsigned8 Dyn. index: P-Group: Data sets Unit group: - Not for motor type: - Scaling: - Min Max 0 31	Access level: 2 Func. diagram: 8565 Unit selection: - Expert list: 1 Factory setting
Description: Index:	Copies one Drive Data Set (DDS) into another. [0] = Source Drive Data Set [1] = Target Drive Data Set [2] = Start copying procedure	
Note:	Procedure: 1. In Index 0 , enter which drive data set is to be copied. 2. In index 1 , enter the drive data set data that is to be copied into. 3. Start copying: set index 2 from 0 to 1 . p0819[2] is automatically set to 0 when copying is completed.	

p0820[0...n]	BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0		
SERVO, VECTOR,	Can be changed: C 2 (15), T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8565, 8575
SERVO I AC,	P-Group: Data sets	Unit group: -	Unit selection: -
VECTOR_I_AC, TM41	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 0 (DDS, bit 0).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0821[0...n]	BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1		
SERVO, VECTOR,	Can be changed: C 2 (15), T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8565, 8570
SERVO_I_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
VECTOR_I_AC, TM41	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 1 (DDS, bit 1).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0822[0...n]	BI: Drive Data Set selection DDS bit 2 / DDS select., bit 2		
SERVO, VECTOR,	Can be changed: C 2 (15), T	Calculated: -	Access level: 3
HLA, SERVO_AC, VECTOR AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8565
SERVO_I_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
VECTOR_I_AC, TM41	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 2 (DDS, bit 2).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0823[0...n]	BI: Drive Data Set selection DDS bit 3 / DDS select., bit 3		
SERVO, VECTOR,	Can be changed: C 2 (15), T	Calculated: -	Access level: 3
HLA, SERVO_AC, VECTOR AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8565
SERVO_I_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
VECTOR_I_AC, TM41	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 3 (DDS, bit 3).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p0824[0...n]	BI: Drive Data Set selection DDS bit 4 / DDS select., bit 4		
SERVO, VECTOR,	Can be changed: C2(15), T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8565, 8575
VECTOR_AC,	P-Group: Data sets	Unit group: -	Unit selection: -
VECTOR_I_AC, TM41	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 4 (DDS, bit 4).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0826[0...n]	Motor changeover motor number / Mot_chng mot No.		
SERVO, SERVO_AC,	Can be changed: C2(3)	Calculated: -	Access level: 2
SERVO_I_AC	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: 8575
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	15	0
Description:	Sets the freely assignable motor number for the motor changeover.		
Dependency:	Refer to: p0827		
Notice:	When changing over motor data sets with the same motor number (e.g. star-delta changeover) and for a motor with brake, the motor brake remains open during the changeover.		
Note:	When the motor data sets are changed over, the following applies:		
	The same motor number signifies the same thermal model.		

p0826[0...n]	Motor changeover motor number / Mot_chng mot No.		
VECTOR,	Can be changed: C2(3)	Calculated: -	Access level: 2
VECTOR_AC,	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: 8575
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	15	0
Description:	Sets the freely assignable motor number for the motor changeover.		
Dependency:	Refer to: p0827		
Notice:	When changing over motor data sets with the same motor number (e.g. star-delta changeover) and for a motor with brake, the motor brake remains open during the changeover.		
Note:	When the motor data sets are changed over, the following applies:		
	The same motor number signifies the same thermal model.		
	For the same motor number, the correction values of the Rs, Lh or kT adaptation are applied for the data set changeover (refer to r1782, r1787, r1797).		

p0827[0...n]	Motor changeover status word bit number / Mot_chg ZSW bitNo.		
SERVO, VECTOR,	Can be changed: C2(3)	Calculated: -	Access level: 2
SERVO_AC,	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: 8575
VECTOR_AC,	P-Group: Motor	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	15	0
	0		
Description:	Sets the bit number for every motor data set.		
	Example:		
	p0827[0] $=0:$ For MDS0, r0830.0 is switched.		
	p0827[1] $=5:$ For MDS1, r0830.5 is switched.		

Dependency:	Refer to: p0826, r0830
Note:	A motor is only changed over (a new motor selected) after the pulses have been suppressed.
	When the motor data sets are changed over, the following applies:
	Bit numbers that are not identical, signify that the motor must be changed over.

p0828[0...n]	BI: Motor changeover feedback signal / Mot_chng fdbk sig				
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(3), T		Calculated: -	Access level: 3	
	Data type: Unsigned32 / Binary		Dyn. index: CDS, p0170	Func. diagram: 8575	
	P-Group: Motor		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0	
Description:	Sets the signal source for the feedback signal when changing over the motor.				
	For p0833.0 = 1 the following applies:				
	This feedback signal (0/1 edge) is required after a motor changeover to enable the pulses.				
Dependency:	Refer to: p0833				
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.				
r0830.0... 15	CO/BO: Motor changeover status word / Mot_chngov ZSW				
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 8575	
	P-Group: Displays, signals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status word of the motor changeover.				
	These signals can be connected to digital outputs to change over the motor.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Motor selection bit 0	High	Low	-
	01	Motor selection bit 1	High	Low	-
	02	Motor selection bit 2	High	Low	-
	03	Motor selection bit 3	High	Low	-
	04	Motor selection bit 4	High	Low	-
	05	Motor selection bit 5	High	Low	-
	06	Motor selection bit 6	High	Low	-
	07	Motor selection bit 7	High	Low	-
	08	Motor selection bit 8	High	Low	-
	09	Motor selection bit 9	High	Low	-
	10	Motor selection bit 10	High	Low	-
	11	Motor selection bit 11	High	Low	-
	12	Motor selection bit 12	High	Low	-
	13	Motor selection bit 13	High	Low	-
	14	Motor selection bit 14	High	Low	-
	15	Motor selection bit 15	High	Low	-
Dependency:	Refer to: p0827				

p0831[0...15]	BI: Motor changeover contactor feedback / Mot_chg cont fdbk		
SERVO, VECTOR,	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 8575
SERVO_I_AC,	P-Group: Motor	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the feedback signal of the contactors when changing over motors. There is a fixed inter-relationship between energizing the contactor and the feedback signal. Example:		
	A changeover is to be made between MDS0 (motor 0) and MDS1 (motor 1). The contactors should be switched using bit 4 (contactor 0) and 5 (contactor 1). The changeover should be made with an interconnection of the feedback signal.		
	Implementation:		
	MDS0: p0827[0] = 4, interconnect output to switch contactor 0 to r0830.4, p0831[4] = "input, feedback signal, contactor 0"		
	MDS1: p0827[1] = 5, interconnect output to switch contactor 1 to r0830.5, p0831[5] = "input, feedback signal, contactor 1"		
	The following sequence applies when changing over from MDS0 to MDS1:		
	1. Status bit r0830.4 is deleted. When the feedback signal ($\mathrm{p} 0831[4]$) is connected, the system waits until the feedback signal "contactor open" is displayed. If the feedback signal is not connected, then the system waits for the switch-off interlocking time of 320 ms .		
	2. Status bit r0830.5 is set. If the feedback signal (p0831[5]) is connected, the system waits until the feedback signal "contactor closed" is displayed. If the feedback signal is not connected, then the system waits for the switch-on interlocking time of 160 ms .		
Index:	[0] = Feedback signal contactor 0		
	[1] = Feedback signal contactor 1		
	[2] = Feedback signal contactor 2		
	[3] = Feedback signal contactor 3		
	[4] = Feedback signal contactor 4		
	[5] = Feedback signal contactor 5		
	[6] = Feedback signal contactor 6		
	[7] = Feedback signal contactor 7		
	[8] = Feedback signal contactor 8		
	[9] = Feedback signal contactor 9		
	[10] = Feedback signal contactor 10		
	[11] = Feedback signal contactor 11		
	[12] = Feedback signal contactor 12		
	[13] = Feedback signal contactor 13		
	[14] = Feedback signal contactor 14		
	[15] = Feedback signal contactor 15		

r0832.0... 15	CO/BO: Mot. changeover contactor feedback sig. status word / Mot_chng fdbk ZSW			
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Displays, signals	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the status word of the cont	dback signals wh	a motor.	
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Feedback signal contactor 0	Closed	Opened	-
	01 Feedback signal contactor 1	Closed	Opened	-
	02 Feedback signal contactor 2	Closed	Opened	-
	03 Feedback signal contactor 3	Closed	Opened	-
	04 Feedback signal contactor 4	Closed	Opened	-
	05 Feedback signal contactor 5	Closed	Opened	-
	06 Feedback signal contactor 6	Closed	Opened	-

2.2 List of parameters

r0835.0... 12	CO/BO: Data set changeover status word / Data set sw ZSW				
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Displays, signals		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Display and BICO output for the status word of the data set switchover.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Motor changeover actis	Yes	No	8575
	01	Encoder changeover	Yes	No	-
	02	Internal parameter	Yes	No	-
	04	Armature short circuit	Yes	No	-
	05	Identification running	Yes	No	-
	06	Friction characteristic	Yes	No	-
	07	Rotating measureme	Yes	No	-
	08	Motor data identifica	Yes	No	-
	10	Wait for pulse suppr	Yes	No	-
	11	Wait for motor chang	ignal Yes	No	-
	12	Frequency response	ning Yes	No	-

Note: \quad This parameter is only supplied with up-to-date values if data set changeover has been selected or is running For bit 00:
The signal is only influenced when a motor changeover is set via p0827 (unequal bit numbers).
For bit 01:
The signal is only influenced when an encoder changeover is set via p0187, p0188, or p0189.
For bit 02:
A data set changeover is delayed by the time required for the internal parameter calculation.
For bit 04:
A data set changeover is only carried out when the armature short circuit is not activated.
For bit 05:
The following applies for SERVO:
A data set changeover is only carried out when pole position identification, encoder adjustment, motor data identification, and rotating measurement are not running.
The following applies for VECTOR:
A data set changeover is only carried out when pole position identification is not running.
For bit 06:
A data set switchover is only carried out when the friction characteristic is not being plotted.
For bit 07 (VECTOR only):
A data set changeover is only carried out when rotating measurement is not running.
For bit 08 (VECTOR only):
A data set changeover is only carried out when motor data identification is not running.
For bit 10:
A motor changeover is set with p0833.1 = 1 . It can only be carried out when the application performs pulse suppression.
For bit 11:
A motor changeover is set with p0833.0 = 1. The pulses are only enabled when the "Motor changeover feedback" signal is detected.
For bit 12:
A data set switchover is only carried out when the moment of inertia determination $(\mathrm{p} 5320=0)$ is not activated.

r0837.0... 4	CO/BO: Drive Data Set DDS selected / DDS selected			
SERVO, VECTOR,	Can be changed: -	Calculated: -	Acces	
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func.	
VECTOR_AC, SERVO I AC	P-Group: Displays, signals	Unit group: -	Unit se	
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Exper	
TM41, ENC	Min	Max	Facto	
	-	-	-	
Description:	Displays the drive data set (DDS) selected via the binector input.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DDS selection bit 0	ON	OFF	-
	01 DDS selection bit 1	ON	OFF	-
	02 DDS selection bit 2	ON	OFF	-
	03 DDS selection bit 3	ON	OFF	-
	04 DDS selection bit 4	ON	OFF	-
Dependency:	Refer to: r0051, p0820, p0821, p0822, p0823, p0824			
Note:	Drive data sets are selected via binector input p0820 and following.			
	The currently effective drive data set is displayed in r0051.			
	If there is only one data set, then a value of 0 is displayed in this parameter and not the selection via binector inputs			

p0840[0...n]	BI: ON / OFF (OFF1) / ON / OFF (OFF1)		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR AC, SERVO_IAC, VECTOR_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 2610, 8720, 8820, 8920
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the command "ON/OFF (OFF1)".		
	For the PROFldrive profile, this command corresponds to control word 1 bit 0 (STW1.0).		
Recommendation:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p1055, p1056		
Caution: \uparrow	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	For binector input p0840 $=0$ signal, the motor can be moved, jogging using binector input p1055 or p1056.		
	The command "ON/OFF (OFF1)" can be issued using binector input p0840 or p1055/p1056.		
	For binector input p0840 $=0$ signal, the switching on inhibited is acknowledged.		
	Only the signal source that originally switched on can also switch off again.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

2.2 List of parameters

Notice:	Only the signal source that originally switched on can also switch off again.
The parameter may be protected as a result of p0922 or p2079 and cannot be changed.	
Note:	BI: p0840 = 0 signal: OFF1 (pulse suppression and switching on inhibited)
	BI: p0840 $=0 / 1$ signal: ON (pulses can be enabled)
	This parameter has no function in the "SINAMICS" $(p 4400=1)$ operating mode.

p0844[0...n]	BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 8720,
VECTOR_AC,			8820,8920
SERVO_IAC,	P-Group: Commands	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	1	

Description: Sets the first signal source for the command "No coast down/coast down (OFF2)".
The following signals are AND'ed:

- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"
- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"

For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).
BI: p0844 $=0$ signal or BI : p0845 $=0$ signal

- OFF2 (immediate pulse suppression and switching on inhibited)

BI: p0844 = 1 signal and BI: p0845 = 1 signal

- no OFF2 (enable is possible)

Caution: When "master control from PC" is activated, this binector input is ineffective

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p0844[0...n]	BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1		
$\begin{aligned} & \text { A_INF, S_INF, R_INF, } \\ & \text { B_INF } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8720, 8820, 8920
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the first signal source for the command to instantaneously switch off the drive.		
	This corresponds to command "No coast down/coast down (OFF2)" for drives.		
	The following signals are AND'ed:		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).		
	BI: p0844 $=0$ signal or BI: p0845 $=0$ signal		
	- OFF2 (immediate pulse suppression and switching on inhibited)		
	$\mathrm{BI}: \mathrm{p} 0844=1$ signal and BI : p0845 $=1$ signal		
	- no OFF2 (enable is possible)		
	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For binector input p0844 $=0$ signal or p0845 $=0$ signal, the following applies:		

p0844	BI: No coast-down / coast-down (OFF2) / OFF2		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9677
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "No coast down/coast down (OFF2)".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 1 (STW1.1).		
	BI: p0844 = 0 signal		
	- OFF2 (immediate pulse suppression and switching on inhibited)		
	BI: p0844 = 1 signal		
	- no OFF2 (enable is possible)		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	This parameter has no function in the "SINAMICS" (p4400=1) operating mode.		
p0845[0...n]	BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 8720, 8820, 8920
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
			1
Description:	Sets the second signal source for the command "No coast down/coast down (OFF2)".		
	The following signals are AND'ed:		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).		
	BI: p0844 $=0$ signal or BI: p0845 $=0$ signal		
	- OFF2 (immediate pulse suppression and switching on inhibited)		
	BI : $\mathrm{p} 0844=1$ signal and BI : p0845 $=1$ signal		
	- no OFF2 (enable is possible)		
Caution:	When "master control from PC" is	this binector input is effect	

p0848	BI: No Quick Stop / Quick Stop (OFF3) / OFF3					
TM41	Can be changed: T	Calculated: -	Access level: 3			
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9677			
	P-Group: Commands	Unit group: -	Unit selection: -			
	Not for motor type: -	Scaling: -	Expert list: 1			
	Min	Max	Factory setting			
	-	-	1			
Description:	Sets the first signal source for the command "No quick stop/quick stop (OFF3)".					
	For the PROFIdrive profile, this command corresponds to control word 1 bit 2 (STW1.2).					
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switching on inhibited)					
	BI: p0848 = 1 signal					
	- no OFF3 (enable is possible)					
Caution: When "master control from PC " is activated, this binector input is ineffective						
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.					
Note:	This parameter has no function in the "SINAMICS" (p4400=1) operating mode.					
p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2					
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	Can be changed: T Data type: Unsigned32 / Binary P-Group: Commands	Calculated: -	Access level: 3			
		Dyn. index: CDS, p0170	Func. diagram: 2501			
		Unit group: -	Unit selection: -			
	Not for motor type: -	Scaling: -	Expert list: 1			
	Min	Max	Factory setting			
	-	-	1			
Description:	Sets the second signal source for the command "No quick stop/quick stop (OFF3)".					
	The following signals are AND'ed:					
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"					
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"					
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2). BI: p0848 $=0$ signal or BI: p0849 $=0$ signal					
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switching on inhibited)					
	BI: p0848 = 1 signal and BI: p0849 = 1 signal					
	- no OFF3 (enable is possible)					
Caution: When "master control from PC" is activated, this binector input is effective.						
Note:	For drives with closed-loop torque control (activated using p1501), the following applies:					
	BI: p0849 $=0$ signal:					
	- no dedicated braking response, but pulse suppression when standstill is detected (p1226, p1227).					

p0852[0...n]	BI: Enable operation/inhibit operation / Enable operation		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 8820, 8920
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable operation/inhibit operation".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).		
	BI: p0852 $=0$ signal		
	Inhibit operation (suppress pulses).		
	BI: p0852 = 1 signal		
	Enable operation (pulses can be enabled).		
Caution: When "master control from PC" is activated, this binector input is ineffective.			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0852 TM41	BI: Enable operation/inhibit operation / Enable operation		
	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9677
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable operation/inhibit operation".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).		
	BI: p0852 $=0$ signal		
	Inhibit operation (suppress pulses).		
	BI: p0852 $=1$ signal		
	Enable operation (pulses can be enabled).		
Caution: When "master control from PC " is activated, this binector input is ineffective.			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	This parameter has no function in the "SINAMICS" (p4400 = 1) operating mode.		
p0854[0...n]	BI: Control by PLC/no control by PLC / Master ctrl by PLC		
SERVO, VECTOR, hLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 8720, 8820, 8920
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "control by PLC/no control by PLC".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10).		
	BI: p0854 $=0$ signal		
	No control by PLC		
	BI: p0854 = 1 signal		
	Master control by PLC.		
Caution:	When "master control from PC" is	this binector input is ineffec	

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then binector input p0854 should be set to 1 .
If a control is available, then STW1.10 must be set to 1 (PZD1) so that the received data is updated. This applies regardless of the setting in p0854 and even in the case of free telegram configuration ($\mathrm{p} 0922=999$).

p0854	BI: Control by PLC/no control by PLC / Master ctrl by PLC		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9677, 9678
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "control by PLC/no control by PLC".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10).		
	BI: p0854 = 0 signal		
	No control by PLC		
	BI: p0854 = 1 signal		
	Master control by PLC.		
Dependency:	Refer to: p1155		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For the TM41, a response can be initiated using this bit if the control fails.		
	The parameter is only effective in the "SIMOTION" operating mode ($\mathrm{p} 4400=0$).		
	In the "SINAMICS" operating mode, the setpoints at connector input p4420 are evaluated independently of p0854.		
	Further, the setting of p2037 should be observed.		
p0854	BI: Control by PLC/no control by PLC / Master ctrl by PLC		
ENC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2501, 8720, 8820, 8920
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "control by PLC/no control by PLC".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10).		
	BI: p0854 = 0 signal		
	No control by PLC		
	BI: p0854 = 1 signal		
	Master control by PLC.		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then binector input p0854 should be set to 1 .		
	If a control is available, then STW1.10 must be set to 1 (PZD1) so that the received data is updated. This applies regardless of the setting in p0854 and even in the case of free telegram configuration ($p 0922=999$).		

2.2 List of parameters

p0855[0...n]	BI: Unconditionally release holding brake / Uncond open brake		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 2701,
VECTOR_AC,		Unit group: -	2707
SERVO_IAC,	P-Group: Commands	Scaling: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	-	Expert list: 1
	Min	Factory setting	
	-	0	
Description:	Sets the signal source for the command "unconditionally open holding brake".		
Dependency:	Refer to: p0858		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The signal via binector input p0858 "Unconditionally close holding brake" has a higher priority than via binector input		
	p0855 "Unconditionally open holding brake".		

p0856[0...n]	BI: Enable speed controller / n_ctrl enable
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	Can be changed: T Calculated: -
	Data type: Unsigned32 / Binary Dyn. index: CDS, p0170
	P-Group: Commands Unit group: -
	Not for motor type: - Scaling: -
	Min Max
	- -
Description:	Sets the signal source for the command "enable speed controller" (r0898.12). 0 signal: Set the I component and speed controller output to zero. 1 signal: Enable speed controller.
Dependency:	Refer to: r0898
Note:	If "enable speed controller" is withdrawn, then an existing brake will be closed. If "enable speed controller" is withdrawn, the pulses are not suppressed.

Access level: 3

Func. diagram: 2501, 2701, 2707
Unit selection: -
Expert list: 1
Factory setting
1

p0856[0...n]	BI: Enable velocity controller / v_ctrl enable		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
$\begin{aligned} & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 2701, 2707
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable speed controller" (r0898.12). 0 signal: Set the I component and speed controller output to zero. 1 signal: Enable speed controller.		
Dependency:	Refer to: r0898		
Note:	If "enable speed controller" is withdrawn, then an existing brake will be closed. If "enable speed controller" is withdrawn, the pulses are not suppressed.		

p0857	Power unit monitoring time / PU t_monit		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8760, 8864, 8964
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	100.0 [ms]	60000.0 [ms]	6000.0 [ms]
Description:	Sets the monitoring time for the power unit.		
	The following applies for infeeds and drives:		
	The monitoring time is started after an $0 / 1$ edge of the ON/OFF1 command. If the power unit does not return a READY signal within the monitoring time, then fault F06000 (infeeds) or F07802 (drives) is output.		
	For drives, the following also applies:		
	After the pulse enable (operation enabled, p0852), the monitoring time is re-started. If the infeed does not signal ready to the drive within the monitoring time (using binector input p0864 of the drive), fault F07840 is initiated.		
Dependency:	Refer to: F06000, F07802, F078		
Notice:	The maximum time to precharge the DC link is monitored in the power unit and cannot be changed. The maximum duration of the precharging depends on the power class and the power unit design.		
	The monitoring time for the precharging is started after the ON command (BI: p0840 $=0 / 1$ signal). Fault F30027 is output when the maximum precharging duration is exceeded.		
Note:	The factory setting for p0857 depends on the power class and the design of the power unit.		
	The monitoring time for the ready signal of the power unit includes the time to precharge the DC link and, if relevant, the de-bounce time of the contactors.		
	If an excessively low value is entered into p0857, then after enable, this results in the corresponding fault.		
p0858[0...n]	BI: Unconditionally close holding brake / Uncond close brake		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 2701, 2707
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	9719.13
Description:	Sets the signal source for the command "unconditionally close holding brake".		
Dependency:	Refer to: p0855		
Note:	The signal via binector input p0858 "Unconditionally close holding brake" has a higher priority than via binector input p0855 "Unconditionally open holding brake".		
	For a 1 signal via binector input p0858, the command "unconditionally close the holding brake" is executed and internally a zero setpoint is entered.		

p0858[0...n]	BI: Unconditionally close holding brake / Uncond close brake		
VECTOR,	Can be changed: T	Calculated: -	Access level: 2
VECTOR_AC, VECTOR_I_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 2701, 2707
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the command "unconditionally close holding brake".		
Dependency:	Refer to: p0855		
Note:	The signal via binector input p0858 "Unconditionally close holding brake" has a higher priority than via binector input p0855 "Unconditionally open holding brake".		
	For a 1 signal via binector input p0858, the command "unconditionally close the holding brake" is executed and internally a zero setpoint is entered.		

p0860	BI: Line contactor feedback signal / Line contact feedb		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC, VECTOR_AC,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2634, 8734, 8834, 8934
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR I AC, } \end{aligned}$	P-Group: Commands	Unit group: -	Unit selection: -
A_INF, S_INF, R_INF,	Not for motor type: -	Scaling: -	Expert list: 1
B_INF	Min	Max	Factory setting
	-	-	863.1
Description:	Sets the signal source for the feedback signal from the line contactor.		
Recommendation:	When the monitoring is activated (BI: p0860 not equal to r0863.1), then to control the line contactor, signal BO: r0863.1 of its own drive object should be used.		
Dependency:	Refer to: p0861, r0863		
	Refer to: F07300		
Notice:	The line contactor monitoring is deactivated if the control signal of the particular drive object is set as the signal source for the feedback signal of the line contactor (BI: p0860 $=$ r0863.1).		
Note:	The state of the line contactor is monitored depending on signal BO: r 0863.1 .		
	When the monitoring is activated (BI: p0860 not equal to r0863.1), fault F07300 is then also output if the contactor is closed before it is controlled using r0863.1.		

p0861	Line contactor monitoring time / LineContact t_mon		
SERVO, VECTOR, SERVO AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2634, 8734, 8834, 8934
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	5000 [ms]	100 [ms]
Description:	Sets the monitoring time of the line contactor. This time starts each time that the line contactor switches (r0863.1). If a feedback signal is not received from the line contactor within the time, a message is output.		
Dependency:	Refer to: p0860, r0863		
	Refer to: F07300		
Note:	The monitoring function is disabled for the factory setting of p0860.		
p0862	Power unit ON delay / PU t_on		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2610, 8732, 8832, 8932
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	65000 [ms]	0 [ms]
Description:	Sets the delay time for the control command of the power unit and a line contactor, if used.		
Note:	This means that it is possible to realize a shifted (delayed) precharging or switch-on using a single ON command. When the infeed units are active, before the line contactor is closed, an offset adjustment of the current measurement is carried out for a duration of 120 ms (p 3491).		

2.2 List of parameters

p0864	BI: System pressure available / p_sys available	
HLA	Can be changed: T Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary Dyn. index: -	Func. diagram: -
	P-Group: Commands Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	- -	1
Description:	Sets the signal source for the "system pressure available" signal.	
Dependency:	Refer to: r0863, p0865, p0866	
Note:	An enable is only possible for p0864 $=1$ signal.	
p0864	BI: Infeed operation / INF operation	
SERVO, VECTOR,	Can be changed: T Calculated: -	Access level: 2
SERVO_AC, VECTOR_AC,	Data type: Unsigned32 / Binary \quad Dyn. index: -	Func. diagram: 2610, 8710, 8910
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Commands Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	- -	0
Description:	Sets the signal source for the operating signal of the infeed (e.g. BO: r0863.0).	
Dependency:	Refer to: r0863	
Note:	The sequence control of a servo/vector drive requires this signal.	
	The following applies for an infeed without DRIVE-CLiQ:	
	For these infeeds, the "ready" message is available via an output terminal. This signal must be connected to a digital input. The drives supplied from this infeed must use this signal as ready signal (BI: p0864 = digital input).	

p0865	System pressure switch-on threshold / p_sys thresh		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [bar]	10000.0 [bar]	0.0 [bar]
Description:	Sets the switch-on threshold to evaluate the measured system pressure.		
Recommendation:	If the system pressure is measured (r0069), this signal can be interconnected from the binector input "system pressure available" (p0864). To do this, the threshold and hysteresis for the system pressure must be appropriately set (p0865, p0866).		
Dependency:	Refer to: r0863, p0864, p0866		
p0866	System pressure switch-on threshold hysteresis / p_sys hyst		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	10000.0 [\%]	20.0 [\%]
Description:	Sets the hysteresis for the switch-on threshold to evaluate the measured system pressure.		
Recommendation:	If the system pressure is measured (r0069), this signal can be interconnected from the binector input "system pressure available" (p0864). To do this, the threshold and hysteresis for the system pressure must be appropriately set (p0865, p0866).		
Dependency:	Refer to: r0863, p0864, p0865		
Note:	The hysteresis refers to the switch-on threshold (p0865) and acts on the lower threshold.		

p0867	Power unit main contactor holding time after OFF1 / PU t_MC after OFF1		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram:
VECTOR_AC, SERVO I AC,	P-Group: Commands	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	500.0 [ms]	50.0 [ms]
Description:	Sets the main contactor holding time after OFF1		
	After withdrawing the OFF1 enable (signal source of p0840), the main contactor is only opened after the main contactor holding time has elapsed.		
Recommendation:	When operating a drive connected to SINUMERIK, which only closes the main contactor with the OFF1 command (blocksize, chassis), p0867 should be set as a minimum to 50 ms .		
Dependency:	Refer to: p0869		
Note:	For p0869 = 1 (keep main contactor closed for STO), after withdrawing STO, the switching on inhibited must be acknowledged via the signal source of $p 0840=0$ (OFF1) - and before the main contactor holding time expires, should go back to 1 , otherwise the main contactor will open.		

p0868	Power unit debounce time/wait time / PU t_debnc/t_wait		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Commands	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	Factory setting	
	0 [ms]	65000 [ms]	
	Sets the debounce time or wait time for the power unit.		
Description:	The following applies for "Chassis" format Motor Modules:		
	- sets the debounce time for the DC circuit breaker.		
	The following applies for "Chassis" format AC/AC converters:		
	- sets the wait time for the thyristor rectifier.		
	The following applies if p0868 = 65000 ms:		
	The debounce time defined internally in the power unit's EEPROM is implemented.		

p0869	Sequence control configuration / Seq_ctrl config			
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: T	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Commands	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factory	
	-	-	0000 b	
Description:	Sets the configuration for the sequence control.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Keep main contactor closed for STO	Yes	No	-
Dependency:	Refer to: p0867			
Note:	STO: Safe Torque Off			
	For bit 00:			
	After withdrawing the OFF1 enable (signal source of p0840), the main contactor is opened after the main contacto holding time has elapsed.			
	For p0869.0 = 1, after withdrawing STO, the switching on inhibited must be acknowledged via the signal source of p0840 = 0 (OFF1) - and before the main contactor holding time expires (p 0867), should go back to 1 , otherwise the main contactor will open.			

p0869	Sequence control configuration / Seq_ctrl config		
A_INF, S_INF, R_INF, B_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8732, 8832, 8932
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0000 bin
Description:	Sets the configuration for the sequence control.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	01 Wait for the feedback signal from the external main contactor	Yes	No 8732, 8832, 8932

Notice:	For chassis units, the following applies:
Setting p0869.1 = 1 is not permissible, if, using p0860 the internal circuit breaker is monitored (this is not controlled	
with r0863.1).	
Note:	For bit 01:
For p0869.1 = 1, before starting to charge the DC link (r0899.8 = 1), the system waits for a feedback signal from the	
external main contactor (p0860 = 1 signal). The main contactor must be controlled using r0863.1.	
Waiting for the contactor feedback signal is especially necessary if the external main contactor has long switching	
times, which would lead to the precharging time being exceeded (F06000, F30027).	

p0870
SERVO, VECTOR,

BI: Close main contactor / Close main cont

Can be changed: T
Data type: Unsigned32 / Binary
Calculated:
Dyn. index: -
Unit group: -
Scaling: -
Max
-

Description: Sets the signal source to close the main contactor.
Note: \quad The main contactor is also closed when the converter is switched on after issuing the necessary enable signals. A binector input p0870 $=1$ signal prevents the main contactor from being opened when enable signals are withdrawn.

r0873

S_INF, B_INF

Description:	Displays the operational readiness of the infeeds when using Smart Line Module (SLM) and Basic Line Module
(BLM) together (mixed operation).	
In order that signal BO: r0873 is available at one of the infeeds, then BI: p0874 of the one infeed must be	
interconnected to BO: r0863.0 of the other infeed.	
Dependency: \quad	Refer to: r0863, p0874
Note: \quad Mixed operation is not possible with the Active Line Module (ALM)!	

2.2 List of parameters

2.2 List of parameters

Dependency:	Refer to: p0480, p0897
Note:	For bit 00:
	If there is at least one BICO interconnection for "Parking axis" or "Parking encoder", this default setting is taken into
	consideration during power up.

p0895[0...n]	BI: Activate/deactivate power unit components / PU_comp act/deact		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 1
HLA, SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_AC,	P-Group: Displays, signals	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC,	Max	Factory setting	
A_INF, S_INF, R_INF,	Min	-	1

Description:	Sets the signal source to activate/deactivate a power unit component.
Dependency:	BI: p0895 = 0 signal
	Deactivate power unit components.
	BI: p0895 = 1 signal
	Activate power unit components
	Refer to: p0125, r0126
	Refer to: A05054
Caution:	It is not permissible to deactivate drive objects with safety functions enabled.

Notice: \quad For Active Line Modules in the "Chassis" format, the Voltage Sensing Module (VSM, p0145) belonging to the power unit is automatically activated/deactivated.
Note: \quad The power unit is only deactivated when the pulses are suppressed.
For units connected in parallel, when one of the power units is deactivated, then the enable in p7001 is withdrawn.

r0896.0
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Bit field:

Description: Displays the status word for the "parking axis" function.

BO: Parking axis, status word / Parking axis, ZSW
Can be changed: -
Data type: Unsigned8
P-Group: Displays, signals
Not for motor type: -
Min
Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
-
00 Parking axis active Yes
Yes

Dependency:
p0897

SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

Description: Sets the signal source to select the "parking axis" function.
Dependency: \quad BI: p0897 $=0$ signal
The function "parking axis" is not selected.
BI: p0897 = 1 signal
The function "parking axis" is selected.
Refer to: 0896
Notice: The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:
After it has been selected the "parking axis" function only becomes active when the pulses are suppressed.

	CO/BO: Control word drive object 1 / STW DO1				
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU I D410	Can Dat P-G Not Min	be changed: - type: Unsigned16 oup: Displays, signals for motor type: -	Calculated: Dyn. index: Unit group: - Scaling: - Max	Access level: 2 Func. diagram: Unit selection: - Expert list: 1 Factory setting	
Description: Bit field:	$\begin{aligned} & \text { Dis } \\ & \text { Bit } \\ & 00 \\ & 01 \\ & 07 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	ay and connector output for the con Signal name Synchronization signal SYN Real time synchronization PING Acknowledge fault Master sign-of-life bit 0 Master sign-of-life bit 1 Master sign-of-life bit 2 Master sign-of-life bit 3	word of drive obje 1 signal Yes	0 signal No	FP
r0898.0... 14 SERVO, VECTOR, hLA, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	CO Can Dat P-G Not Min	BO: Control word sequenc be changed: type: Unsigned16 oup: Displays, signals or motor type: -	ontrol / STW Calculated: - Dyn. index: - Unit group: - Scaling: - Max	Access level: 2 Func. diagram: 2501 Unit selection: - Expert list: 1 Factory setting	
Description: Bit field:	$\begin{aligned} & \text { Dis } \\ & \text { Bit } \\ & 00 \\ & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 05 \\ & 06 \\ & 07 \\ & 08 \\ & 09 \\ & 10 \\ & 12 \\ & 14 \end{aligned}$	lay and connector output for the con Signal name ON/OFF1 OC / OFF2 OC / OFF3 Enable operation Enable ramp-function generator Continue ramp-function generator Enable speed setpoint Command open brake Jog 1 Jog 2 Master control by PLC Speed controller enable Command close brake	word of the seque $\mathbf{1}$ signal Yes	0 signal No	$\begin{aligned} & \text { FP } \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & 3001 \\ & 3001 \end{aligned}$
Note:	OC: Operating condition				
$\begin{aligned} & \hline \mathbf{r 0 8 9 8 . 0} . .14 \\ & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$	CO Can Dat P-G Not Min	BO: Control word sequenc be changed: type: Unsigned16 oup: Displays, signals or motor type: -	ontrol / STW Calculated: - Dyn. index: - Unit group: - Scaling: - Max	Access level: 2 Func. diagram: 2501 Unit selection: - Expert list: 1 Factory setting	
Description: Bit field:	$\begin{aligned} & \text { Dis } \\ & \text { Bit } \\ & 00 \\ & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 05 \end{aligned}$	ay and connector output for the cont Signal name ON/OFF1 OC / OFF2 OC / OFF3 Enable operation Enable ramp-function generator Continue ramp-function generator	word of the sequ 1 signal Yes Yes Yes Yes Yes Yes	0 signal No No No No No No	FP

2.2 List of parameters

06	Enable velocity setpoint	Yes	No	-
07	Command open brake	Yes	No	-
08	Jog 1	Yes	No	3001
09	Jog 2	Yes	No	3001
10	Master control by PLC	Yes	No	-
12	Velocity controller enable	Yes	No	-
14	Command close brake	Yes	No	-

Note: OC: Operating condition

r0898.0...10	CO/BO: Control word sequence control infeed / STW seq_ctrl INF		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8820,8920
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output for the control word of the sequence control for the infeed.		
Bit field:	Bit Signal name	1 signal	O signal
	00	ON/OFF1	Yes
	01	OC / OFF2	Yes

r0898.0... 10	CO/BO: Control word sequence control infeed / STW seq_ctrl INF		
B_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8720
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output for the control word of the sequence control for the infeed.		
Bit field:	Bit Signal name	1 signal	O signal
	00 ON/OFF1	Yes	No
	01	OC / OFF2	Yes

r0898.0... 13	CO/BO: Control word sequence control / STW seq_ctrl			
TM41	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Displays, signals	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	-	
Description:	Display and connector output for the control word of the sequence control.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON/OFF1	Yes	No	-
	01 OC / OFF2	Yes	No	-
	02 OC / OFF3	Yes	No	-
	03 Enable operation	Yes	No	-
	04 Enable ramp-function generator	Yes	No	-
	05 Start ramp-function generator	Yes	No	-
	06 Enable speed setpoint	Yes	No	-

2.2 List of parameters

11	Enable power	Yes	No
12	Shutoff valve enabled	Yes	No
13	Command lock shutoff valve	Yes	No

Note:

 For bits 00, 01, 02, 04, 05, 06, 09:For PROFIdrive, these signals are used for status word 1.

r0899.0... 15	CO/BO: Status word sequence control / ZSW seq_ctrl			
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2	
SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2503	
VECTOR_AC, SERVO I AC,	P-Group: Displays, signals	Unit group: -	Unit selection: -	
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Display and BICO output for the status word of the sequence control.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Ready for switching on	Yes	No	-
	01 Ready	Yes	No	-
	02 Operation enabled	Yes	No	-
	03 Jog active	Yes	No	-
	04 No coasting active	OFF2 inactive	OFF2 active	-
	05 No Quick Stop active	OFF3 inactive	OFF3 active	-
	06 Switching on inhibited active	Yes	No	-
	07 Drive ready	Yes	No	-
	08 Controller enable	Yes	No	-
	09 Control request	Yes	No	-
	11 Pulses enabled	Yes	No	-
	12 Open holding brake	Yes	No	-
	13 Command close holding brake	Yes	No	-
	14 Pulse enable from the brake control	Yes	No	-
	15 Setpoint enable from the brake control	Yes	No	-

Note: \quad For bits $00,01,02,04,05,06,09$:

For PROFIdrive, these signals are used for status word 1.
For bit 13
When the "Safe Brake Control" (SBC) is activated and selected, the brake is no longer controlled using this signal.
For bit 14, 15:
These signals are only of significance when the "extended brake control" function module is activated (r0108.14 = 1)

Note:
For bit 12:
The feedback signal of a line contactor (auxiliary contact) can be interconnected via BI: p0860.

2.2 List of parameters

2.2 List of parameters

```
    4252: r4252 (set/resetting time digital output 2)
    4253: r4253 (set/resetting time digital output 3)
    4254: r4254 (set/resetting time digital output 4)
    4255: r4255 (set/resetting time digital output 5)
    4256: r4256 (set/resetting time digital output 6)
    4257: r4257 (set/resetting time digital output 7)
4258: r4258 (set/resetting time digital output 8)
4259: r4259 (set/resetting time digital output 9)
4260: r4260 (set/resetting time digital output 10)
4261: r4261 (set/resetting time digital output 11)
4262: r4262 (set/resetting time digital output 12)
4263: r4263 (set/resetting time digital output 13)
4264: r4264 (set/resetting time digital output 14)
4265: r4265 (set/resetting time digital output 15)
```

Index:

Note:

```
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
[32] = PZD 33
[33] = PZD 34
[34] = PZD 35
[35] = PZD 36
Example:
The telegram for the setpoints should have the following process data (PZD) and assignments:
PZD 1 (r4201), PZD 2 (r4204), PZD 3 (r4250), PZD 4 (r4250)
The setpoint assignment must be realized as follows:
p0915[0] = 4201-16 bit
p0915[1] = 4204-16 bit
p0915[2] \(=4250-32\) bit - specified twice one after the other
p0915[3] = 4250-32 bit
p0915[4] = 0
p0915[35] = 0
```

p0916[0...29]	TM15 PROFldrive PZD actual value assignment / TM15 PD PZD actVal		
TM15	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4373	[0] 4301
			[1] 4304
			[2] 4305
			[3] 4311
			[4] 4312
			[5] 4313
			[6...29] 0
Description:	Is used to assign the process data to be sent to the master (PZD, actual values).		
Value:	0: ZERO		
	4304: r4304 (status digital input 0 ... 15)		
	4311: r4311 (edge status digital input 0 ... 7)		
	4313: r4313 (edge status digital input 16 ... 23)		
	4350: r4350 (edge times digital input 0)		
	4351: r4351 (edge times digital input 1)		
	4352: r4352 (edge times digital input 2)		
	4353: r4353 (edge times digital input 3)		
	4354: r4354 (edge times digital input 4)		
	4355: r4355 (edge times digital input 5)		
	4356: r4356 (edge times digital input 6)		
	4357: r4357 (edge times digital input 7)		
	4358: r4358 (edge times digital input 8)		
	4359: r4359 (edge times digital input 9)		
	4360: r4360 (edge times digital input 10)		
	4361: r4361 (edge times digital input 11)		
	4362: r4362 (edge times digital input 12)		
	4363: r4363 (edge times digital input 13)		
	4364: r4364 (edge times digital input 14)		
	4365: r4365 (edge times digital input 15)		
	4366: r4366 (edge times digital input 16)		
	4367: r4367 (edge times digital input 17)		
	4368: r 4368 (edge times digital input 18)		
	4369: r4369 (edge times digital input 19)		
	4370: r4370 (edge times digital input 20)		
	4371: r4371 (edge times digital input 21)		
	4372: r4372 (edge times digital input 22)		
	4373: r4373 (edge times digital input 23)		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] $=$ PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		

2.2 List of parameters


```
Index:
Note:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
[32] = PZD 33
[33] = PZD 34
[34] = PZD 35
[35] = PZD 36
```


Note:

```
Example:
The telegram for the actual values should have the following process data (PZD) and assignments:
PZD 1 (r4301), PZD 2 (r4304), PZD 3 (r4350), PZD 4 (r4350)
The actual value assignment must be implemented as follows:
p0916[0] = 4301-16 bit
p0916[1] = 4304-16 bit
p0916[2] = 4350-32 bit - specified twice one after the other
p0916[3] \(=4350-32\) bit
p0916[4] = 0
p0916[35] = 0
```


2.2 List of parameters

p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
CU_I_D410	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2401, 2420,
		2423, 2481, 2483	
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	999	Factory setting
	390		999

Description: Sets the send and receive telegram.
390: SIEMENS telegram 390, PZD-2/2
391: SIEMENS telegram 391, PZD-3/7
392: SIEMENS telegram 392, PZD-3/15
393: SIEMENS telegram 393, PZD-4/21
394: SIEMENS telegram 394, PZD-3/3
395: SIEMENS telegram 395, PZD-4/25
396: SIEMENS telegram 396, PZD-20/21
999: Free telegram configuration with BICO

p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
HLA	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2401, 2415, 2416, 2419, 2420, 2421, 2422, 2423
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	166	999	999
Description:	Sets the send and receive telegram.		
Value:	166: SIEMENS telegram 166, PZD-14/20 999: Free telegram configuration with BICO		
Note:	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited.		
	The inhibited interconnections can only be changed again after setting value 999.		
p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{C} 2(1), \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2401, 2415, 2416, 2419, 2420, 2421, 2422, 2423
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	999	999
Description:	Sets the send and receive telegram.		
Value:	1: Standard telegram 1, PZD-2/2		
	2: Standard telegram 2, PZD-4/4		
	3: Standard telegram 3, PZD-5/9		
	4: Standard telegram 4, PZD-6/14		
	5: Standard telegram 5, PZD-9/9		
	6: Standard telegram 6, PZD-10/14		
	102: SIEMENS telegram 102, PZD-6/10		
	103: SIEMENS telegram 103, PZD-7/15		
	105: SIEMENS telegram 105, PZD-10/10		
	106: SIEMENS telegram 106, PZD-11/15		
	116: SIEMENS telegram 116, PZD-11/19		
	118: SIEMENS telegram 118, PZD-11/19		
	125: SIEMENS telegram 125, PZD-14/10		
	126: SIEMENS telegram 126, PZD-15/15		
	136: SIEMENS telegram 136, PZD-15/19		
	138: SIEMENS telegram 138, PZD-15/19		
	220: SIEMENS telegram 220, PZD-10/10		
	999: Free telegram configuration with BICO		
Note:	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited.		
	The inhibited interconnections can only be changed again after setting value 999.		

2.2 List of parameters

p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
SERVO (EPOS, Pos	Can be changed: C2(1), T	Calculated: -	Access level: 1
ctrl, Spin_diag), SERVO_AC (EPOS, Pos ctrl, Spin_diag)	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2401, 2415, 2416, 2419, 2420, 2421, 2422, 2423
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	7	999	999
Description:	Sets the send and receive telegram.		
Value:	7: Standard telegram 7, PZD-2/2		
	$\begin{array}{ll} \text { 9: } & \text { Standard telegram 9, PZD-10/5 } \\ \text { 110: } & \text { SIEMENS telegram 110, PZD-12/7 } \end{array}$		
	111: SIEMENS telegram 111, PZD-12/12		
	999: Free telegram configuration with BICO		
Note:	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited.		
	The inhibited interconnections can only be changed again after setting value 999.		

p0922	IF1 PROFldrive PZD telegram selection / IF1 PZD telegr		
SERVO (Pos ctrl, Spin_diag), SERVO_AC (Pos ctrl, Spin_diag)	Can be changed: $\mathrm{C} 2(1), \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2401, 2415, 2416, 2419, 2420, 2421, 2422, 2423
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	999	999	999
Description:	Sets the send and receive telegram.		
Value:	999: Free telegram configuration with BICO		
Note:	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited.		
	The inhibited interconnections can only be changed again after setting value 999.		
p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
SERVO (Spin_diag), SERVO_AC (Spin_diag)	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2401, 2415, 2416, 2419, 2420, 2421, 2422, 2423
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	999	999
Description:	Sets the send and receive telegram.		
Value:	1: Standard telegram 1, PZD-2/2		
	2: Standard telegram 2, PZD-4/4		
	3: Standard telegram 3, PZD-5/9		
	4: Standard telegram 4, PZD-6/14		
	5: Standard telegram 5, PZD-9/9		
	6: Standard telegram 6, PZD-10/14		
	102: SIEMENS telegram 102, PZD-6/10		
	103: SIEMENS telegram 103, PZD-7/15		
	105: SIEMENS telegram 105, PZD-10/10		
	106: SIEMENS telegram 106, PZD-11/15		
	116: SIEMENS telegram 116, PZD-11/19		
	118: SIEMENS telegram 118, PZD-11/19		

125:	SIEMENS telegram 125, PZD-14/10
126:	SIEMENS telegram 126, PZD-15/15
136:	SIEMENS telegram 136, PZD-15/19
138:	SIEMENS telegram 138, PZD-15/19
139:	SIEMENS telegram 139, PZD-15/19
220:	SIEMENS telegram 220, PZD-10/10
999:	Free telegram configuration with BICO

Note:	If a value is not equal to 999, a telegram is set and the automatically set interconnections in the telegram are
inhibited.	
The inhibited interconnections can only be changed again after setting value 999.	

p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
VECTOR,	Can be changed: C2(1), T	Calculated: -	Access level: 1
VECTOR_AC, VECTOR_I_AC	Data type: Unsigned16	Dyn. index: -	$\begin{aligned} & \text { Func. diagram: } 2401,2415, \\ & 2416,2419,2420,2421,2422, \\ & 2423 \end{aligned}$
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	999	999
Description:	Sets the send and receive telegram.		
Value:	1: Standard telegram 1, PZD-2/2		
	2: Standard telegram 2, PZD-4/4		
	20: Standard telegram 20, PZD-2/6		
	220: SIEMENS telegram 220, PZD-10/10		
	352: SIEMENS telegram 352, PZD-6/6		
	999: Free telegram configuration with BICO		
Caution:	necessary that the setpoint speed is entered at the ramp-function generator input (e.g. p1070) and not after the ramp-function generator (p1155).		
Note:	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited. The inhibited interconnections can only be changed again after setting value 999.		

p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
VECTOR (EPOS, n/M, Pos ctrl), VECTOR_AC (EPOS, n / M, Pos ctrl)	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	$\begin{aligned} & \text { Func. diagram: } 2401,2415, \\ & 2416,2419,2420,2421,2422, \\ & 2423 \end{aligned}$
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	7	999	999
Description:	Sets the send and receive telegram.		
Value:			
	7: Standard telegram 7, PZD-2/2 9: \quad Standard telegram 9, PZD-10/5		
	110: SIEMENS telegram 110, PZD-12/7		
	111: SIEMENS telegram 111, PZD-12/12		
	999: Free telegram configuration with BICO		
Caution:	Telegrams 2, 3 and 4 are not suitable for sensorless vector control ($\mathrm{p} 1300=20$). For sensorless vector control, it is necessary that the setpoint speed is entered at the ramp-function generator input (e.g. p1070) and not after the ramp-function generator (p 1155).		
Note:	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited. The inhibited interconnections can only be changed again after setting value 999.		

p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
VECTOR (n / M, Pos	Can be changed: C2(1), T	Calculated: -	Access level: 1
ctrl), VECTOR_AC (n / M, Pos ctrl)	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2401, 2415, 2416, 2419, 2420, 2421, 2422, 2423
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	999	999	999
Description:	Sets the send and receive telegram.		
Value:	999: Free telegram configuration with BICO		
Caution: $!$	Telegrams 2, 3 and 4 are not suitable for sensorless vector control ($p 1300=20$). For sensorless vector control, it is necessary that the setpoint speed is entered at the ramp-function generator input (e.g. p1070) and not after the ramp-function generator (p1155).		
Note:	If a value is not equal to 999, a telegram is set and the automatically set interconnections in the telegram are inhibited. The inhibited interconnections can only be changed again after setting value 999.		

p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
VECTOR (n/M), VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2401, 2415, 2416, 2419, 2420, 2421, 2422, 2423
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	999	999
Description:	Sets the send and receive telegram.		
Value:	1: Standard telegram 1, PZD-2/2		
	$\begin{array}{ll}\text { 2: } & \text { Standard telegram 2, PZD-4/4 } \\ \text { 3: } & \text { Standard telegram 3, PZD-5/9 }\end{array}$		
	4: Standard telegram 4, PZD-6/14		
	20: Standard telegram 20, PZD-2/6		
	220: SIEMENS telegram 220, PZD-10/10		
	352: SIEMENS telegram 352, PZD-6/6		
	999: Free telegram configuration with BICO		
Caution: \dagger	necessary that the setpoint speed is entered at the ramp-function generator input (e.g. p1070) and not after the ramp-function generator (p 1155).		
Note:	If a value is not equal to 999, a telegram is set and the automatically set interconnections in the telegram are inhibited. The inhibited interconnections can only be changed again after setting value 999.		

p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
A_INF, S_INF, R_INF,	Can be changed: C2(1), T	Calculated: -	Access level: 1
B_INF	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2401, 2420, 2423, 2447, 2457, 2481, 2483
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	370	999	999
Description:	Sets the send and receive telegram.		
Value:	370: SIEMENS telegram 370, PZD-1/1 371: SIEMENS telegram 371, PZD-5/8 999: Free telegram configuration with BICO		
Note:	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited.		

p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
TM17, TM15	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2481, 2483
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	0	0
Description:	Sets the send and receive telegram.		
Value:	0: Free telegram configuration with p0915/p0916		
p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
TM41	Can be changed: $\mathrm{C} 2(1), \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2401, 9677, 9679, 9681, 9683
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	3	999	999
Description:	Sets the send and receive telegram.		
Value:	$\begin{array}{ll}\text { 3: } & \text { Standard telegram 3, PZD-5/9 } \\ \text { 999: } & \text { Free telegram configuration with BICO }\end{array}$		
Note:	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited.		
	The inhibited interconnections can only be changed again after setting value 999.		
p0922	IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr		
ENC	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	$\begin{aligned} & \text { Func. diagram: 2401, 2415, } \\ & 2416,2419,2420,2421,2422, \\ & 2423 \end{aligned}$
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	81	999	999
Description:	Sets the send and receive telegram.		
Value:	81: SIEMENS telegram 82: SIEMENS telegram 83: SIEMENS telegram 999: Free telegram config		
Note:	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited. The inhibited interconnections can only be changed again after setting value 999.		

r0924[0...1]	ZSW bit pulses enabled / ZSW pulse enab		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2454,2456
VECTOR_AC,	P-Group: Communications	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Fax	Factory setting
	-	-	
Description:	Displays the position of the "Pulses enabled" status signal in the PROFldrive telegram.		
Index:	$[0]=$ Signal number		
	$[1]=$ Bit position		

2.2 List of parameters

Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
	Fault buffer structure (general principle):
	r0945[0], r0949[0], r0948[0], r2109[0], r3115[0] --> actual fault case, fault 1
	. .
	r0945[7], r0949[7], r0948[7], r2109[7], r3115[7] --> actual fault case, fault 8
	r0945[8], r0949[8], r0948[8], r2109[8], r3115[8] --> 1st acknowledged fault case, fault 1
	. .
	r0945[15], r0949[15], r0948[15], r2109[15], r3115[15] --> 1st acknowledged fault case, fault 8
	r0945[56], r0949[56], r0948[56], r2109[56], r3115[56] --> 7th acknowledged fault case, fault 1
	r0945[63], r0949[63], r0948[63], r2109[63], r3115[63] --> 7th acknowledged fault case, fault 8

r0946[0...65534]	Fault code list / Fault code list		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Lists the fault codes stored in the drive unit.		
	The indices can only be accessed with a valid fault code.		
	Example:		
	r0946[0...999] = 0 --> fault code $0 \ldots 999$ is not available		
	r0946[1000] = 1000 --> fault code 1000 is available		
	r0946[1001] = 1001 --> fault code 1001 is available		
	...		
	r0946[1008] = 0 --> fault code 1008 is not available		
	\ldots		
Dependency:	The parameter assigned to the fault code is entered in r0951 under the same index.		

r0947[0..63]	Fault number / Fault number		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8050, 8060
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	This parameter is identical to r0945.		
r0948[0...63]	Fault time received in milliseconds / t_fault recv ms		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8050, 8060
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the fault occurred.		
Dependency:	Refer to: r0945, r0947, r0949, r2109, r2114, r2130, r2133, r2136, r3115, r3120, r3122		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
	When the parameter is read via PROFldrive, the TimeDifference data type applies.		

2.2 List of parameters

r0949[0...63]	Fault value / Fault value		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: 8050, 8060
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays additional information about the fault that occurred (as integer number).		
Dependency:	Refer to: r0945, r0947, r0948, r2109, r2130, r2133, r2136, r3115, r3120, r3122		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
p0952	Fault cases counter / Fault cases qty		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 6700, 8060
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Number of fault situations that have occurred since the last reset.		
Dependency:	The fault buffer is deleted (cleared) by setting p0952 to 0 .		
	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136		
r0963	PROFIBUS baud rate / PB baud rate		
$\begin{aligned} & \text { CU_S_AC_DP, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	-
Description: Value:	Displays the corresponding value for the PROFIBUS baud rate.		
	0: $\quad 9.6$ kbit/s		
	1: $\quad 19.2 \mathrm{kbit} / \mathrm{s}$		
	2: $\quad 93.75 \mathrm{kbit} / \mathrm{s}$		
	3: $\quad 187.5 \mathrm{kbit} / \mathrm{s}$		
	4: $\quad 500 \mathrm{kbit} / \mathrm{s}$		
	6: $\quad 1.5 \mathrm{Mbit} / \mathrm{s}$		
	7: $3 \mathrm{Mbit} / \mathrm{s}$		
	8: $6 \mathrm{Mbit} / \mathrm{s}$		
	9: $12 \mathrm{Mbit} / \mathrm{s}$		
	10: $\quad 31.25 \mathrm{kbit} / \mathrm{s}$		
	11: $\quad 45.45 \mathrm{kbit} / \mathrm{s}$		
	255: Unknown		

r0964[0...6]	Device identification / Device ident		
CU_I, CU_I_D410	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the device identification.		
Index:	[0] = Company (Siemens = 42)		
	[1] = Device type		
	[2] = Firmware version		
	[3] = Firmware date (year)		
	[4] = Firmware date (day/month)		
	[5] = Number of drive objects		
	[6] = Firmware patch/hot fix		
Note:	Example:		
	r0964[0] = 42 --> SIEMENS		
	r0964[1] = device type, see below		
	r0964[2] = 403 --> first part of the firmware version V04.03 (for second part, refer to index 6)		
	r0964[3] = 2010 --> year 2010		
	r0964[4] = 1705 --> 17th of May		
	r0964[5] = 2 --> 2 drive objects		
	r0964[6] = 200 --> second part, firmware version (complete version: V04.03.02.00)		
	Device type:		
	r0964[1] = 5800 --> SINAMICS S120 in SIMOTION D435-2		
	r0964[1] = 5801 --> SINAMICS S120 in SIMOTION D445-2		
	r0964[1] = 5802 --> SINAMICS S120 in SIMOTION D425-2		
	r0964[1] = 5803 --> SINAMICS S120 in SIMOTION D455-2		
	r0964[1] = 5820 --> SINAMICS S120 in SIMOTION D410-2 DP		
	r0964[1] = 5821 --> SINAMICS S120 in SIMOTION D410-2 PN		
	r0964[1] = 5850 --> SINAMICS S120 in SINUMERIK NCU710		
	r0964[1] = 5851 --> SINAMICS S120 in SINUMERIK NCU720		
	r0964[1] = 5852 --> SINAMICS S120 in SINUMERIK NCU730		
	r0964[1] = 5853 --> SINAMICS S120 in SINUMERIK NCU730.2		
	r0964[1] = 5861 --> SINAMICS S120 in SINUMERIK 828D		
r0964[0...6] Device identification / Device ident			
CU_NX_CX	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the device identification.		
Index:	$[0]=\text { Company }(\text { Siemens }=42)$		
	[1] = Device type		
	[2] = Firmware version		
	[3] = Firmware date (year)		
	[4] = Firmware date (day/month)		
	[5] = Number of drive objects		
	[6] = Firmware patch/hot fix		

2.2 List of parameters

```
Note:
Example:
r0964[0] = 42 --> SIEMENS
r0964[1] = device type, see below
r0964[2] = 403 --> first part of the firmware version V04.03 (for second part, refer to index 6)
r0964[3] = 2010 --> year 2010
r0964[4] = 1705 --> 17th of May
r0964[5] = 2 --> 2 drive objects
r0964[6] = 200 --> second part, firmware version (complete version: V04.03.02.00)
Device type:
r0964[1] = 5100 --> SIMOTION CX32-2
r0964[1] = 5120 --> SINUMERIK NX10
r0964[1] = 5121 --> SINUMERIK NX15
```

r0964[0...6]	Device identification / Device ident		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 2
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120_PN, CU S150 PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_DP	Min	Max	Factory setting
	-	-	-
Description:	Displays the device identification.		
Index:	[0] = Company (Siemens = 42)		
	[1] = Device type		
	[2] = Firmware version		
	[3] = Firmware date (year)		
	[4] = Firmware date (day/month)		
	[5] = Number of drive objects		
	[6] = Firmware patch/hot fix		
Note:	Example:		
	r0964[0] = 42 --> SIEMENS		
	r0964[1] = device type, see below		
	r0964[2] = 403 --> first part of the firmware version V04.03 (for second part, refer to index 6)		
	r0964[3] = 2010 --> year 2010		
	r0964[4] = 1705 --> 17th of May		
	r0964[5] = 2 --> 2 drive objects		
	r0964[6] = 200 --> second part, firmware version (complete version: V04.03.02.00)		
	Device type:		
	r0964[1] = 5000 --> SINAMICS S120 CU320-2 DP		
	r0964[1] = 5001 --> SINAMICS S120 CU320-2 PN		
	r0964[1] = 5010 --> SINAMICS S120 CU310-2 DP		
	r0964[1] = 5011 --> SINAMICS S120 CU310-2 PN		
	r0964[1] = 5250 --> SINAMICS S150 CU320-2 DP		
	r0964[1] = 5251 --> SINAMICS S150 CU320-2 PN		

r0965	PROFldrive profile number / PD profile number		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	-
Description:	Displays the PROFIdrive profile number and profile version. Constant value $=0329$ hex. Byte 1: Profile number $=03$ hex $=$ PROFIdrive profile Byte 2: Profile version $=29$ hex $=$ Version 4.1		
Note:	When the parameter is read via PROFIdrive, the Octet String 2 data type applies.		
p0969	System runtime relative / t_System relative		
CU_I, CU_NX_CX,	Can be changed: T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8050, 8060
CU_S120_PN,	P-Group: Displays, signals	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0 [ms]	4294967295 [ms]	0 [ms]
Description:	Displays the system runtime in ms since the last POWER ON.		
Note:	The value in p0969 can only be reset to 0 .		
	The value overflows after approx. 49 days.		
	When the parameter is read via PROFldrive, the TimeDifference data type applies.		

p0970	Reset drive parameters / Drive par reset		
CU_S_AC_DP,	Can be changed: C2(30)	Calculated: -	Access level: 2
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Factory settings	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Max	Factory setting	
CU_S150_DP	Min	100	0

Description: The parameter is used to initiate the reset of the parameters of an individual drive unit. Parameters p0100, p0205 (only for VECTOR) and the parameters of the basic drive commissioning (p0009) are not reset (p0107, p0108, p0111, p0112, p0115, p0121, p0130, p0131, p0140, p0141, p0142, p0170, p0186 ... p0189). These can only be reset using the factory setting of the complete drive unit (p0976).

Value

Notice:
0 : Inactive

1: Start a parameter reset
5: \quad Starts a safety parameter reset
6: Start reset non-safety/safety parameters
10: \quad Start loading parameters saved with p0971 = 10
11: \quad Start loading parameters saved with p0971 $=11$
12: \quad Start loading parameters saved with p0971 = 12
30: \quad Start loading delivery condition saved with p0971 $=30$
100: Start a BICO interconnection reset
After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.

2.2 List of parameters

Note:	A factory setting run can only be started if p0010 was first set to 30 (parameter reset).
At the end of the calculations, p0970 is automatically set to 0 .	
Parameter reset has been completed if p0970 and p0010 have been set to 0.	
For p0970 $=5$ the following applies:	
The password for Safety Integrated must be set.	
When Safety Integrated is enabled, this can result in error messages, which then require an acceptance test to be	
performed.	
Then save the parameters and carry out a POWER ON.	

p0970	Reset drive parameters / Drive par reset		
HLA	Can be changed: C2(30)	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Factory settings	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	100	0
Description:	The parameter is used to initiate the reset of the parameters of an individual drive unit.		
	Parameters of the basic drive commissioning (p0009) are not reset (p0107, p0108, p0111, p0112, p0115, p0121, p0130, p0131, p0140, p0141, p0142, p0170, p0186 ... p0189). These can only be reset using the factory setting of the complete drive unit (p 0976).		
Value:	0 : Inactive		
	1: Start a parameter reset		
	100: Start a BICO interconnection reset		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	A factory setting run can only be started if p0010 was first set to 30 (parameter reset).		
	At the end of the calculations, p0970 is automatically set to 0 .		
	Parameter reset has been completed if p0970 and p0010 have been set to 0 .		

p0970	Reset drive parameters / Drive par reset		
SERVO, VECTOR,	Can be changed: C2(30)	Calculated: -	Access level: 2
SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Factory settings	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	100	0

Description: The parameter is used to initiate the reset of the parameters of an individual drive unit.
Parameters p0100, p0205 (only for VECTOR) and the parameters of the basic drive commissioning (p0009) are not reset (p0107, p0108, p0111, p0112, p0115, p0121, p0130, p0131, p0140, p0141, p0142, p0170, p0186 ... p0189). These can only be reset using the factory setting of the complete drive unit (p 0976).

Value:

Dependency:

Notice:

Note:

Inactive
Start a parameter reset
Starts a safety parameter reset
Start reset non-safety/safety parameters
100: Start a BICO interconnection reset
Refer to: F01659
After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
A factory setting run can only be started if p0010 was first set to 30 (parameter reset).
At the end of the calculations, p0970 is automatically set to 0 .
Parameter reset has been completed if p0970 and p0010 have been set to 0 .
For p0970 $=5$ the following applies:
The password for Safety Integrated must be set.
When Safety Integrated is enabled, this can result in error messages, which then require an acceptance test to be performed.
Then save the parameters and carry out a POWER ON.

For p0970 = 1 the following applies:
If a Safety Integrated function is parameterized (p9601), then the safety parameters are not reset. In this case, a fault F01659 is output with fault value 2.

2.2 List of parameters

2.2 List of parameters

p0970

ENC

Description:

Value:
ENCODER reset parameters / ENC par reset

Can be changed: $\mathrm{C} 2(30)$
Data type: Unsigned16
P-Group: Factory settings
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
100

Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

The parameter is used to initiate the reset of the parameters on the ENCODER drive object. Parameter p0141 is not reset. It is only reset if the entire drive unit is reset to the factory settings (p0976).
0 : Inactive
1: Start a parameter reset
100: Start a BICO interconnection reset
Notice: \quad After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
Note: \quad A factory setting run can only be started if p0010 was first set to 30 (parameter reset).
At the end of the calculations, p0970 is automatically set to 0 .
Parameter reset has been completed if p0970 and p0010 have been set to 0 .

p0971	Save drive object parameters / Drv_obj par save		
All objects	Can be changed: $\mathrm{C} 2(30), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Factory settings	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to save the parameter of the particular drive object in the non-volatile memory. When saving, only the adjustable parameters intended to be saved are taken into account.		
Value:	0 : Inactive 1: Save drive object		
Dependency:	Refer to: p0977, p1960, p3845, r3996		
Warning: \leqq	If the Control Unit power supply is switched off while data is being saved, then the backup of all adjusta parameters can be lost, and the Control Unit must be recommissioned.		
Notice:	The Control Unit power supply may only be switched off after data has been saved (i.e. after data save has been started, wait until the parameter again has the value 0).		
	Writing to parameters is inhibited while saving.		
Note:	Starting from the particular drive object, the following parameters are saved:		
	CU3xx: Device-specific parameters and PROFIBUS device parameters.		
	Other objects: Parameters of the actual object and PROFIBUS device parameters.		
	Prerequisite:		
	Before saving with p0971, all parameters (topology, all drive objects) must have been saved at least once using p0977 $=1$.		
p0972	Drive unit reset / Drv_unit reset		
CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: All groups	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description: Value:	Sets the required procedure to execute a hardware reset for the drive unit.		
	0 : Inactive		
	1: Hardware-Reset immediate		
	$\begin{array}{ll}\text { 2: } & \text { Hardware reset preparation } \\ \text { 3: } & \text { Hardware reset after cyclic communication has failed }\end{array}$		
Danger:	It must be absolutely ensured that the system is in a safe condition.		
	The memory card/device memory of the Control Unit must not be accessed.		
Note:	If value $=1$:		
	Reset is immediately executed and communications interrupted.		
	After communications have been established, check the reset operation (refer below).		
	This value cannot be set in operation.		
	If value $=2$:		
	Help to check the reset operation.		
	Firstly, set p0972 = 2 and then read back. Secondly, set p0972 $=1$ (it is possible that this request is possibly no longer acknowledged). The communication is then interrupted.		
	After communications have been established, check the reset operation (refer below).		

2.2 List of parameters

If value $=3$:
The reset is executed after interrupting cyclic communication. This setting is used to implement a synchronized reset by a control for several drive units.
If cyclic communication is not active, then the reset is immediately executed.
If the cyclic communication is active for both PROFIdrive interfaces, then the reset is executed after completing both cycle communications.
After communications have been established, check the reset operation (refer below).
To check the reset operation:
After the drive unit has been restarted and communications have been established, read p0972 and check the following:
p0972 = 0 --> the reset was successfully executed.
p0972 > 0 --> the reset was not executed.

p0976	Reset and load all parameters / Reset load all par		
CU_I, CU_NX_CX,	Can be changed: $\mathrm{C} 1(30), \mathrm{C} 2(30)$	Calculated: -	Access level: 1
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_S_AC_PN, } \\ & \text { CU_S } 120 \text { PNN, } \end{aligned}$	P-Group: Factory settings	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	1013	0
Description:	Resets or downloads all parameters of the drive system.		
Value:	0 : Inactive		
	1: Start reset of all parameters to factory setting		
	2: Start dnload of param. saved in non-volatile mem w/por		
	3: Start download of volatile parameters from RAM		
	10: Start dnload of param. saved in non-volatile mem w/por		
	11: Start dnload of param. saved in non-volatile mem w/pog		
	12: Start dnload of param. saved in non-volatile mem w/pos		
	20: Start load of param. saved in non-volatile mem w/ p0977		
	21: Start load of param. saved in non-volatile mem w/ p0977		
	22: Start load of param. saved in non-volatile mem w/ p0977		
	23: Start load of param. saved in non-volatile mem w/ p0973		
	24: Start load of param. saved in non-volatile mem w/ p0977		
	25: Start load of param. saved in non-volatile mem w/ p0977		
	26: Start load of param. saved in non-volatile mem w/ p0		
	30: Start loading the delivery state saved with p0977 $=30$		
	100: Start resetting of all BICO interconnections		
	1011: Start dnload of param. saved in volatile mem w/ p0977		
	1012: Start dnload of param. saved in volatile mem w/p0977		
	1013: Start dnload of param. saved in volatile mem w/ p0977 $=1013$		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.		
Note:	After all of the parameters have been reset to their factory setting, the system must be commissioned for the first time again.		
	Resetting or loading is realized in the non-volatile memory.		
	Procedure:		
	1. Set p0009 = 30 (parameter reset).		
	2. Set p0976 to "required value". The system is rebooted.		
	p0976 is automatically set to 0 and p0009 is automatically set to 1 after this has been carried out.		

p0977
CU_I, CU_NX_CX,
CU_S_AC_DP,
CU_S_AC_PN,
CU_S12O_PN,
CU_S15O_PN,
CU_S12O_DP,
CU_S150_DP,
CU_I_D410
Description:

Value:

Save all parameters / Save all par

CU_S_AC_DP,
CU_S_AC_PN, S120 PN CU_S150_PN, DP CU I D410

Can be changed: C2(30), U, T
Data type: Unsigned16
P-Group: Factory settings
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -

Max

1013

Access level: 1
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Saves all parameters of the drive system to the non-volatile memory.
When saving, only the adjustable parameters intended to be saved are taken into account.

0:	Inactive
1:	Save in non-volatile memory - loaded at POWER ON
10:	Save as opt. in non-vol. memory - loaded with p0976=10
11:	Save as opt. in non-vol. memory - loaded with p0976=11
12:	Save as opt. in non-vol. memory - loaded with p0976=12
20:	Save as opt. in non-vol. memory - loaded with p0976=20
21:	Save as opt. in non-vol. memory - loaded with p0976=21
22:	Save as opt. in non-vol. memory - loaded with p0976=22
23:	Save as opt. in non-vol. memory - loaded with p0976=23
24:	Save as opt. in non-vol. memory - loaded with p0976=24
25:	Save as opt. in non-vol. memory - loaded with p0976=25

2.2 List of parameters

	26: Save as opt. in non-vol. memory - loaded with p0976=26
	30: State when delivered, save in non-volatile memory as setting 30
	80: Save in non-volatile memory time-optimized (reserved)
	1011: Save in volatile memory, downloaded with p0976=1011
	1012: Save in volatile memory, downloaded with p0976=1012
	1013: Save in volatile memory, downloaded with p0976=1013
Dependency:	Refer to: p0976, p1960, p3845, r3996
Notice:	The Control Unit power supply may only be switched off after data has been saved (i.e. after data save has been started, wait until the parameter again has the value 0).
	Writing to parameters is inhibited while saving.
	The progress while saving is displayed in r3996.
	For p0977 = 30:
	The original state when delivered is overwritten when executing this memory function.
Note:	Parameters saved with p0977 = 10, 11 or 12 can be downloaded again with p0976 = 10, 11 or 12.
	The identification and maintenance data (I\&M data, p8806 and following) are only saved for p0977 = 1 .

p0978[0...n]	List of drive objects / List of the DO		
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410	Can be changed: C 1 (1)	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Topology	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	[0] 1
			$[1 . . .24] 0$
Description:	This parameter is an image of p0101 in conformance with PROFIdrive.		
	Parameters p0101 and p0978 contain the following information:		
	1) The same number of drive objects		
	2) The same drive objects		
	In this sense, they are consistent.		
	Difference between p0101 and p0978:		
	p0978 can be re-sorted and a zero inserted in order to identify those drive objects that participate in the process data exchange and to define their sequence in the process data exchange. Drive objects that are listed after the first zero, are excluded from the process data exchange.		
	For p 0978 , in addition, the value 255 can be inserted a multiple number of times.		
	p0978[n] = 255 means: The drive object is visible for the PROFIBUS master and is empty (without any actual process data exchange). This allows cyclic communications of a PROFIBUS master with unchanged configuring to the drive units with a lower number of drive objects.		
Dependency:	Refer to: p0101, p0971, p0977		
Note:	p0978 cannot be changed when the drive system is first commissioned. The reason for this is that at this time the actual topology has still not been acknowledged (p0099 is still not equal to r0098 and p0009 is set to 0).		

r0979[0...30]	PROFIdrive encoder format / PD encoder format		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 4704
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	Factory setting	
	-	-	
Description:	Displays the actual position encoder used according to PROFldrive.		
Index:	$[0]=$ Header		
	$[1]=$ Type encoder 1		
	$[2]=$ Resolution encoder 1		
	$[3]=$ Shift factor G1_XIST1		
	$[4]=$ Shift factor G1_XIST2		
	$[5]=$ Distinguishable revolutions encoder 1		
	$[6 \ldots 10]=$ Reserved		

	[13] = Shift factor G2_XIST1	
	[14] = Shift factor G2_XIST2	
	[15] = Distinguishable revolutions encoder 2	
	[16...20] = Reserved	
	[21] = Type encoder 3	
	[22] = Resolution encoder 3	
	[23] = Shift factor G3_XIST1	
	[24] = Shift factor G3_XIST2	
	[25] = Distinguishable revolutions encoder 3	
	[26...30] = Reserved	
Note:	Information about the individual indices can be taken from the following literature:	
	PROFIdrive Profile Drive Technology	
r0979[0...30]	PROFldrive encoder format / PD encoder format	
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned32 Dyn. index: -	Func. diagram: 4704
	P-Group: Encoder Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	-	-
Description:	Displays the actual position encoder used according to PROFIdrive.	
Index:	[0] = Header	
	[1] = Type encoder 1	
	[2] = Resolution encoder 1	
	[3] = Shift factor G1_XIST1	
	[4] = Shift factor G1_XIST2	
	[5] = Distinguishable distance encoder 1	
	[6...10] = Reserved	
	[11] = Type encoder 2	
	[12] = Resolution encoder 2	
	[13] = Shift factor G2_XIST1	
	[14] = Shift factor G2_XIST2	
	[15] = Distinguishable distance encoder 2	
	[16...20] = Reserved	
	[21] = Type encoder 3	
	[22] = Resolution encoder 3	
	[23] = Shift factor G3_XIST1	
	[24] = Shift factor G3_XIST2	
	[25] = Distinguishable distance encoder 3	
	[26...30] = Reserved	
Note:	Information about the individual indices can be taken from the following literature:	
	PROFIdrive Profile Drive Technology	
r0979[0...10]	PROFldrive encoder format / PD encoder format	
TM41, ENC	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned32 Dyn. index: -	Func. diagram: 4704
	P-Group: Encoder Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	- -	-
Description:	Displays the actual position encoder used according to PROFIdrive.	
Index:	[0] = Header	
	[1] = Type encoder 1	
	[2] = Resolution encoder 1	
	[3] = Shift factor G1_XIST1	
	[4] = Shift factor G1_XIST2	
	[5] = Distinguishable revolutions encoder 1	
	[6...10] $=$ Reserved	

2.2 List of parameters

Note: \quad| Information about the individual indices can be taken from the following literature: |
| :--- |
| PROFIdrive Profile Drive Technology |

r0979[0...10]	PROFIdrive encoder format / PD encoder format	
ENC (Lin_enc)	Can be changed: -	Calculated: -
	Data type: Unsigned32	Dyn. index: -
	P-Group: Encoder	Unit group: -
	Not for motor type: -	Scaling: -
	Min	Max
	-	-
Description:	Displays the actual position encoder used according to PROFIdrive.	
Index:	[0] = Header	
	[1] = Type encoder 1	
	$[2]=$ Resolution encoder 1	
	$[3]=$ Shift factor G1_XIST1	
	[4] = Shift factor G1_XIST2	
	$[5]=$ Distinguishable distance encoder 1	
	[6...10] = Reserved	
	Information about the individual indices can be taken from the following literature:	
		PROFIdrive Profile Drive Technology

r0980[0...299]	List of existing parameters 1 / List avail par 1		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0981, r0989		
Note:	Modified parameters are displayed in indices 0 to 298 . If an index contains the value 0 , then the list ends here. In a long list, index 299 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning tool. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0981[0...299]	List of existing parameters 2 / List avail par 2		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0980, r0989		
Note:	Modified parameters are displayed in indices 0 to 298. If an index contains the value 0 , then the list ends here. In a long list, index 299 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning tool. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0989[0...299]	List of existing parameters $10 /$ List avail par 10		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group:	Unit selection: -
	Not for motor type: -	Max	Expert list: 0
	Min	-	Factory setting
Description:	-	-	
Dependency:	Displays the parameters that exist for this drive.		
Note:	Refer to: r0980, r0981		
	Modified parameters are displayed in indices 0 to 298. If an index contains the value 0, then the list ends here.		
	This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning tool. However, they can be read		
	from a higher-level control system (e.g. PROFIBUS master).		

r0990[0...99]	List of modified parameters 1 / List chang par 1		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays those parameters with a value other than the factory setting for this drive.		
Dependency:	Refer to: r0991, r0999		
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0990[0...99], r0991[0...99] ... r0999[0...99]		
	The parameters in this list are not displayed in the expert list of the commissioning tool. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0999[0...99]	List of modified parameters 10 / List chang par 10		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-		-
Description:	Displays those parameters with a value other than the factory setting for this drive.		
Dependency:			
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here.		
	This list consists solely of the following parameters:		
	The parameters in this list are not displayed in the expert list of the commissioning tool. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		
p1000[0...n]	Macro Connector Inputs (CI) for speed setpoints / Macro CI n_set		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	999999	0
Description:	Runs the corresponding macro files.		
	The Connector Inputs (CI) for the speed setpoints of the appropriate Command Data Set (CDS) are appropriately interconnected.		
	The selected macro file must be available on the memory card/device memory.		
	Example:		
	p1000 = 6 --> the macro file PM000006.ACX is run.		
Dependency:	Refer to: p0015, p0700, p1500, r8572		
Notice:	No errors were issued during quick commissioning (p3900 = 1) when writing to parameters of the QUICK_IBN group! When executing a specific macro, the corresponding programmed settings are made and become active.		
Note:	The macros in the specified Macros available as standa CI: Connector Input	played in r8572. r8572 is n in the technical documenta	xpert list of the commissioning tool. particular product.

p1000[0...n]	Macro Connector Inputs (CI) for velocity setpoints / Macro CI v_set		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	999999	0
Description:	Runs the corresponding macro files.		
	The Connector Inputs (CI) for the velocity setpoints of the appropriate Command Data Set (CDS) are appropriately interconnected.		
	The selected macro file must be available on the memory card/device memory.		
	Example:		
	p1000 = 6 --> the macro file PM000006.ACX is run.		
Dependency:	Refer to: p0015, p0700, p1500, r8572		
Notice:	No errors were issued during quick commissioning ($\mathrm{p} 3900=1$) when writing to parameters of the QUICK_IBN group! When executing a specific macro, the corresponding programmed settings are made and become active.		

Note: \quad The macros in the specified directory are displayed in r8572. r8572 is not in the expert list of the commissioning tool. Macros available as standard are described in the technical documentation of the particular product. CI: Connector Input

p1001[0...n]	CO: Fixed velocity setpoint 1 / v_set_fix 1		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
Lin), SERVO_I_AC (Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [m/min]	0.000 [m/min]
Description:	Setting and connector output for fixed velocity setpoint 1.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1001[0...n]	CO: Fixed speed setpoint 1 / n_set_fixed 1		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
(Ext setp), VECTOR AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_İAC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 1.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1002[0...n]	CO: Fixed velocity setpoint 2 / v_set_fix 2		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
Lin), SERVO_I_AC (Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [$\mathrm{m} / \mathrm{min}$]	0.000 [m/min]
Description:	Setting and connector output for fixed velocity setpoint 2.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set		

p1002[0...n]	CO: Fixed speed setpoint 2 / n_set_fixed 2		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
(Ext setp), VECTOR AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 2.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1003[0...n]	CO: Fixed velocity setpoint 3 / v_set_fix 3		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
(Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [$\mathrm{m} / \mathrm{min}$]	1000.000 [m/min]	0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Setting and connector output for fixed velocity setpoint 3.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1003[0...n]	CO: Fixed speed setpoint 3 / n_set_fixed 3		
SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR_AC, SERVO_I_AC (Ext setp), VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 3.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1004[0...n]	CO: Fixed velocity setpoint 4 / v_set_fix 4		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp, Lin), SERVO_I_AC (Ext setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [m/min]	0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Setting and connector output for fixed velocity setpoint 4.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
VECTOR_AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 4.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1005[0...n]	CO: Fixed velocity setpoint 5 / v_set_fix 5		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
(Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [m/min]	0.000 [m/min]
Description:	Setting and connector output for fixed velocity setpoint 5.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1005[0...n]	CO: Fixed speed setpoint 5 / n_set_fixed 5		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC (Ext setp),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
VECTOR_AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 5.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1006[0...n]	CO: Fixed velocity setpoint 6 / v_set_fix 6		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
(Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [m/min]	0.000 [m/min]
Description:	Setting and connector output for fixed velocity setpoint 6.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1006[0...n]	CO: Fixed speed setpoint 6 / n_set_fixed 6		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
VECTOR_AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 6.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1007[0...n]	CO: Fixed velocity setpoint 7 / v_set_fix 7		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
(Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [$\mathrm{m} / \mathrm{min}$]	1000.000 [m/min]	0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Setting and connector output for fixed velocity setpoint 7.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1007[0...n]	CO: Fixed speed setpoint 7 / n_set_fixed 7		
SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR_AC, SERVO_I_AC (Ext setp), VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 7.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1008[0...n]	CO: Fixed velocity setpoint 8 / v_set_fix 8		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp, Lin), SERVO_I_AC (Ext setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [m/min]	0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Setting and connector output for fixed velocity setpoint 8.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1008[0...n]	CO: Fixed speed setpoint 8 / n_set_fixed 8		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
VECTOR_AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 8.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1009[0...n]	CO: Fixed velocity setpoint 9 / v_set_fix 9		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
(Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [m/min]	0.000 [m/min]
Description:	Setting and connector output for fixed velocity setpoint 9.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1009[0...n]	CO: Fixed speed setpoint 9 / n_set_fixed 9		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC (Ext setp),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
VECTOR_AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 9.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1010[0...n]	CO: Fixed velocity setpoint 10 / v_set_fix 10		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
(Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [m/min]	0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Setting and connector output for fixed velocity setpoint 10.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1010[0...n]	CO: Fixed speed setpoint 10 / n_set_fixed 10		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
VECTOR_AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 10.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1011[0...n]	CO: Fixed velocity setpoint 11 / v_set_fix 11		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
Lin), SERVO_I_AC (Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [$\mathrm{m} / \mathrm{min}$]	1000.000 [m/min]	0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Setting and connector output for fixed velocity setpoint 11.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1011[0...n]	CO: Fixed speed setpoint 11 / n_set_fixed 11		
SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR AC, SERVO_IAC (Ext setp), VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 11.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1012[0...n]	CO: Fixed velocity setpoint 12 / v_set_fix 12		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp, Lin), SERVO_I_AC (Ext setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [m/min]	0.000 [m/min]
Description:	Setting and connector output for fixed velocity setpoint 12.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
VECTOR AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 12.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1013[0...n]	CO: Fixed velocity setpoint 13 / v_set_fix 13		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
(Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [m/min]	0.000 [m/min]
Description:	Setting and connector output for fixed velocity setpoint 13.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1013[0...n]	CO: Fixed speed setpoint 13 / n_set_fixed 13		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC (Ext setp),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
VECTOR_AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 13.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1014[0...n]	CO: Fixed velocity setpoint 14 / v_set_fix 14		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
(Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [m/min]	0.000 [m/min]
Description:	Setting and connector output for fixed velocity setpoint 14.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1014[0...n]	CO: Fixed speed setpoint 14 / n_set_fixed 14		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
VECTOR_AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 14.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1015[0...n]	CO: Fixed velocity setpoint 15 / v_set_fix 15		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
Lin), SERVO_I_AC (Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [$\mathrm{m} / \mathrm{min}$]	1000.000 [m/min]	0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Setting and connector output for fixed velocity setpoint 15.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1015[0...n]	CO: Fixed speed setpoint 15 / n_set_fixed 15		
SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR_AC, SERVO_I_AC (Ext setp), VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 15.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1020[0...n]	BI: Fixed velocity setpoint selection Bit 0 / v_set_fixed Bit 0		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp, Lin), SERVO_I_AC (Ext setp, Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	0
Description: Dependency:	Sets the signal source to select the fixed velocity setpoint.		
	Selects the required fixed velocity setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed velocity setpoint in r1197.		
	Sets values for the fixed velocity setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1021, p1022, p1023, r1197		
Note:	If a fixed velocity setpoint has not been selected (p1020 \ldots p $1023=0, \mathrm{r} 1197=0$), then r1024 $=0$ (setpoint $=0$)		
p1020[0...n]	BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0		
SERVO (Ext setp), SERVO_AC (Ext setp), SERVO_I_AC (Ext setp)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r 1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1021, p1022, p1023, r1197		
Note:	If a fixed speed setpoint has not	ed (p1020 ... p1023 $=0, r 11$	hen r1024 $=0$ (setpoint $=0$).

p1020[0...n]	BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC, VECTOR_I_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010, 3011
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1021, p1022, p1023, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 \ldots p1023 $=0, \mathrm{r1197}=0$), then r1024 $=0($ setpoint $=0)$.		
p1021[0...n]	BI: Fixed velocity setpoint selection Bit 1 / v_set_fixed Bit 1		
SERVO (Ext setp, Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010
(Ext setp, Lin)	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the fixed velocity setpoint.		
Dependency:	Selects the required fixed velocity setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed velocity setpoint in r1197.		
	Sets values for the fixed velocity setpoints $1 . . .15$ using p1001 ... p1015.		
	Refer to: p1020, p1022, p1023, r1197		
Note:	If a fixed velocity setpoint has not been selected (p1020 \ldots p $1023=0, r 1197=0$), then r1024 $=0$ (setpoint $=0$).		
p1021[0...n]	BI: Fixed speed setpoint selection Bit 1 / n_set_fixed Bit 1		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Ext setp),	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010
setp)	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r 1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1022, p1023, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 \ldots p1023 $=0, \mathrm{r} 1197=0$), then r1024 $=0($ setpoint $=0)$.		

p1021[0...n]	BI: Fixed speed setpoint selection Bit 1 / n_set_fixed Bit 1		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC, VECTOR_I_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010, 3011
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1022, p1023, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 .. p1023 $=0, r 1197=0)$, then r1024 $=0($ setpoint $=0)$.		
p1022[0...n]	BI: Fixed velocity setpoint selection Bit 2 / v_set_fixed Bit 2		
SERVO (Ext setp, Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010
(Ext setp, Lin)	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the fixed velocity setpoint.		
Dependency:	Selects the required fixed velocity setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed velocity setpoint in r1197.		
	Sets values for the fixed velocity setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1021, p1023, r1197		
Note:	If a fixed velocity setpoint has not been selected (p1020 .. p1023 $=0, r 1197=0$, then r1024 $=0$ (setpoint $=0$).		
p1022[0...n]	BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2		
SERVO (Ext setp), SERVO_AC (Ext setp), SERVO_I_AC (Ext setp)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r 1197.		
	Sets the values for the fixed speed setpoints $1 . . .15$ using p1001 ... p1015.		
	Refer to: p1020, p1021, p1023, r1197		
Note:	If a fixed speed setpoint has not	d (p1020 .. p1023 $=0, \mathrm{r} 11$	

p1022[0...n]	BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC, VECTOR_I_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010, 3011
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1021, p1023, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 .. p1023 $=0, \mathrm{r1197}=0$), then r1024 $=0$ (setpoint $=0$).		
p1023[0...n]	BI: Fixed velocity setpoint selection Bit 3 / v_set_fixed Bit 3		
SERVO (Ext setp, Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010
(Ext setp, Lin)	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source to select the fixed velocity setpoint.		
Dependency:	Selects the required fixed velocity setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed velocity setpoint in r1197.		
	Sets values for the fixed velocity setpoints $1 . . .15$ using p1001 ... p1015.		
	Refer to: p1020, p1021, p1022, r1197		
Note:	If a fixed velocity setpoint has not been selected (p1020 \ldots p1023 $=0, \mathrm{r} 1197=0$), then r1024 $=0$ (setpoint $=0$).		
p1023[0...n]	BI: Fixed speed setpoint selection Bit 3 / n_set_fixed Bit 3		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Ext setp),	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010
setp)	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1021, p1022, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 .. p1023 $=0, \mathrm{r1197}=0$), then r1024 $=0$ (setpoint $=0$).		

p1023[0...n]	BI: Fixed speed setpoint selection Bit 3 / n_set_fixed Bit 3		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010, 3011
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1021, p1022, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 ... p1023 $=0, \mathrm{r} 1197=0$), then r1024 $=0$ (setpoint $=0$).		
r1024	CO: Fixed velocity setpoint effective / v_set_fixed eff		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp, Lin), SERVO_I_AC (Ext setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001, 3010
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the selected and effective fixed velocity setpoint.		
	This setpoint is the output value for the fixed velocity setpoints and must be appropriately interconnected (e.g. with the main setpoint).		
Recommendation: Dependency:	Interconnect the signal with the main setpoint (CI: $\mathrm{p} 1070=\mathrm{r} 1024$).		
	Selects the required fixed velocity setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed velocity setpoint in r1197.		
	Sets values for the fixed velocity setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1070, r1197		
Note:	If a fixed velocity setpoint has not been selected ($\mathrm{p} 1020 \ldots \mathrm{p} 1023=0, \mathrm{r1197}=0$), then r1024 $=0$ (setpoint $=0$).		
r1024 SERVO (Ext setp), SERVO_AC (Ext setp), SERVO_I_AC (Ext setp)	CO: Fixed speed setpoint effective / n_set_fixed eff		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001, 3010
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the selected and active fixed speed setpoint.		
	This setpoint is the output value for the fixed speed setpoints and must be appropriately interconnected (e.g. with the main setpoint).		
Recommendation:	Interconnect the signal with the main setpoint (Cl: p1070 = r1024).		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r 1197.		
	Sets the values for the fixed speed setpoints $1 . . .15$ using p1001 ... p1015.		
	Refer to: p1070, r1197		
Note:	If a fixed speed setpoint has not b	(p 1020 ... p1023 $=0, \mathrm{r} 11$	en r1024 $=0$ (setpoint $=0$).

r1024	CO: Fixed speed setpoint effective / n_set_fixed eff					
VECTOR, VECTOR_AC, VECTOR_I_AC		be changed: -		lated: -	Acces	
	Data	type: FloatingPoint32		ndex: -	Func. 3011	
	P-G	oup: Setpoints		roup: 3_1	Unit s	
	Not	or motor type: -		g: p2000	Expert	
	Min		Max		Factor	
	- [rp		- [rp		- [rpm]	
Description:	This setpoint is the output value for the fixed speed setpoints and must be appropriately interconnected (e.g. with the main setpoint).					
Recommendation:	Interconnect the signal with the main setpoint (CI: p1070 = r1024).					
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.					
	Displays the number of the actual fixed speed setpoint in r1197.					
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.					
	Refer to: p1070, r1197					
Note:	If a fixed speed setpoint has not been selected (p1020 \ldots p $1023=0, r 1197=0$), then r1024 $=0$ (setpoint $=0$).					
p1030[0...n]	Motorized potentiometer configuration / Mop configuration					
SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR_AC, SERVO_IAC (Ext setp), VECTOR_I_AC	Can be changed: U, T Calculated: - Acces					
	Data type: Unsigned16		Dyn. index: DDS, p0180		Func.	
	P-Group: Setpoints		Unit group: -		Unit s	
	Not for motor type: -		Scaling: -		Expert	
	Min		Max		Factor	
	-		-		00000	
Description:	Sets the configuration for the motorized potentiometer.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Data save active		Yes	No	
		Automatic mode ram active		Yes	No	-
		Initial rounding-off ac		Yes	No	-
		Non-volatile saving		Yes	No	-
		Ramp-function gene		Yes	No	-
Notice:	The following prerequisites must be fulfilled in order to be able to save the setpoint (Bit $03=1$) in a non-volatile fashion:					
	- Firmware with V2.3 or higher.					
	- Control Unit 320 (CU320) with hardware version C or higher (module with NVRAM).					
Note:	For bit 00:					
	0 : The setpoint for the motorized potentiometer is not saved and after ON is entered using p1040. 1: The setpoint for the motorized potentiometer is saved after OFF and after ON set to the saved value. In order to save in a non-volatile fashion, bit 03 should be set to 1 .					
	For bit 01:					
	0 : Without ramp-function generator in the automatic mode (ramp-up/ramp-down time $=0$).					
	1: With ramp-function generator in the automatic mode.					
	For manual operation (0 signal via BI: p1041), the ramp-function generator is always active.					
	For bit 02:					
	0 : Without initial rounding-off					
	1: With initial rounding-off. The selected ramp-up/down time is correspondingly exceeded. The initial rounding-off is a sensitive way of specifying small changes (progressive reaction when keys are pressed).					
	The jerk for the initial rounding-off is independent of the ramp-up time and only depends on the selected maximum speed (p 1082). It is calculated as follows:					
	$r=0.01 \%$ *p1082 [1/s] / 0.13^2 [s^2]					
	The jerk acts up until the maximum acceleration is reached (a_max $=$ p1082 [1/s]/p1047 [s]), and then the drive continues to run linearly with a constant rate of acceleration. The higher the maximum acceleration (the lower that p1047 is), the longer the ramp-up time increases with respect to the set ramp-up time.					

2.2 List of parameters

For bit 03:
0 : Non-volatile data save deactivated.
1: The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for bit $00=1$).
For bit 04:
When the bit is set, the ramp-function generator is computed independent of the pulse enable. The actual output value of the motorized potentiometer is always in r1050.

p1035[0...n]	BI: Motorized potentio	Mop rai	
SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR_AC, SERVO_I_AC (Ext setp), VECTOR_I_AC	Can be changed: T Data type: Unsigned32 / Binary P-Group: Setpoints Not for motor type: - Min	Calculated: - Dyn. index: CDS, p0170 Unit group: - Scaling: - Max	Access level: 3 Func. diagram: 2505, 3020 Unit selection: - Expert list: 1 Factory setting 0
Description: Dependency: Notice:	Sets the signal source to continually increase the setpoint for the motorized potentiometer. The setpoint change (CO: r1050) depends on the set ramp-up time (p1047) and the duration of the signal that is present (BI: p1035).		
$\overline{\text { p1035 }}$ TM41	BI: Zero marks enable / Can be changed: T Data type: Unsigned32 / Binary P-Group: Setpoints Not for motor type: - Min	Calculated: Dyn. index: Unit group: Scaling: - Max	Access level: 3 Func. diagram: 9677 Unit selection: - Expert list: 1 Factory setting 0
Description: Notice: Note:	Sets the signal source to enable the zero marks. The parameter may be protected as a result of p0922 or p2079 and cannot be changed. For TM41, this parameter has no function. The zero mark can only be switched in or switched out using p4401.		
p1036[0...n] SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR_AC, SERVO_I_AC (Ext setp), VECTOR_I_AC	BI: Motorized potentiom Can be changed: T Data type: Unsigned32 / Binary P-Group: Setpoints Not for motor type: - Min	r setpoint / Mop low Calculated: - Dyn. index: CDS, p0170 Unit group: - Scaling: - Max	Access level: 3 Func. diagram: 2505, 3020 Unit selection: - Expert list: 1 Factory setting 0
Description:	Sets the signal source to continuously lower the setpoint for the motorized potentiometer. The setpoint change (CO: r 1050) depends on the set ramp-down time (p 1048) and the duration of the signal that is present (BI: p1036).		
Dependency: Notice:	Refer to: p1035		

p1037[0...n]	Motorized potentiometer maximum velocity / MotP n_max		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp,	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
Lin), SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [$\mathrm{m} / \mathrm{min}$]	1000.000 [$\mathrm{m} / \mathrm{min}$]	0.000 [m/min]
Description:	Sets the maximum speed/velocity for the motorized potentiometer.		
Note:	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from th	iometer is limited to this	

p1037[0...n]	Motorized potentiometer maximum speed / MotP n_max		
SERVO (Ext setp), VECTOR, SERVO_AC	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
(Ext setp),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3020
SERVO_I_AC (Ext	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
setp), VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the maximum speed/velocity for the motorized potentiometer.		
Note:	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from the motorized potentiometer is limited to this value.		

p1038[0...n] Motorized potentiometer minimum velocity / MotP n_min

SERVO (Ext setp, Lin), Can be changed: U, T	Calculated:
SERVO_AC (Ext setp,	CALC_MOD_LIM_REF

Lin), SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180
(Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1
	Not for motor type: -	Scaling: -
	Min	Max
	$-1000.000[\mathrm{~m} / \mathrm{min}]$	$1000.000[\mathrm{~m} / \mathrm{min}]$
Description:	Sets the minimum speed/velocity for the motorized potentiometer.	
Note:	This parameter is automatically pre-assigned in the commissioning phase.	
	The setpoint output from the motorized potentiometer is limited to this value.	

p1038[0...n]	Motorized potentiometer minimum speed / MotP n_min		
SERVO (Ext setp), VECTOR, SERVO_AC	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
(Ext setp),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3020
SERVO_I_AC (Ext	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
setp), VECTTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the minimum speed/velocity for the motorized potentiometer.		
Note:	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from the motorized potentiometer is limited to this value.		

2.2 List of parameters

p1039[0...n]	BI: Motorized potentiometer inversion / MotP inv		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 3020
(Ext setp), VECTOR AC,	P-Group: Setpoints	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: -	Scaling: -	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to invert the minimum speed/velocity or the maximum speed/velocity for the motorized potentiometer.		
Dependency:	Refer to: p1037, p1038		
Note:	The inversion is only active during "motorized potentiometer raise" or "motorized potentiometer lower".		

p1040[0...n]	Motorized potentiometer starting value / Mop start value		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3020
Lin), SERVO_I_AC	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
(Ext setp, Lin)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-1000.000[\mathrm{~m} / \mathrm{min}]$	$0.000[\mathrm{~m} / \mathrm{min}]$	
Description:	Sets the starting value for the motorized potentiometer. This starting value becomes effective after the drive has been		
	switched on.		
Dependency:	Only effective if p1030.0 $=0$.		
	Refer to: p 1030		

p1040[0...n]	Motorized potentiometer starting value / Mop start value		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3020
(Ext setp),	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
VECTOR_AC,	Scaling: -	Expert list: 1	
SERVO_IAC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	$210000.000[\mathrm{rpm}]$	$0.000[\mathrm{rpm}]$

Description: Sets the starting value for the motorized potentiometer. This starting value becomes effective after the drive has been switched on
Dependency: \quad Only effective if p1030.0 $=0$.
Refer to: p1030

p1041[0...n]	BI: Motorized potentiometer manual/automatic / Mop manual/auto		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 3020
(Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Scaling: -	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	-	0
	-		
Description:	Sets the signal source to change over from manual to automatic when using a motorized potentiometer.		
	In the manual mode, the setpoint is changed using two signals - raise and lower. In the automatic mode, the setpoint		
	must be interconnected via a connector input.		
Dependency:	Refer to: p1030, p1035, p1036, p1042		
Note:	The effectiveness of the internal ramp-function generator can be set in automatic mode.		

p1042[0...n]	CI: Motorized potentiometer automatic setpoint/ Mop auto setpoint		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3020
(Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Scaling: p2000	Expert list: 1	
SERVO_IAC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	-	0
	-		
Description:	Sets the signal source for the setpoint of the motorized potentiometer in the automatic mode.		
Dependency:	Refer to: p1041		

p1043[0...n]	BI: Motorized potentiometer accept setting value / MotP acc set val		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 3020
(Ext setp),	Unit group: -	Unit selection: -	
VECTOR_AC,	P-Group: Setpoints	Scaling: -	Expert list: 1
SERVO_I_AC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	-	0
	-		
Description:	Sets the signal source to accept the setting value for the motorized potentiometer.		
Dependency:	Refer to: p1044		
Note:	The setting value (CI: p1044) becomes effective for a $0 / 1$ edge of the setting command (BI: p1043).		

p1044[0...n]	CI: Motorized potentiometer setting value / Mop set val		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3020
(Ext setp),	Unit group: -	Unit selection: -	
VECTOR_AC,	P-Group: Setpoints	Scaling: p2000	Expert list: 1
SERVO_IAC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	-	0
	-		
Description:	Sets the signal source for the setting value for the motorized potentiometer.		
Dependency:	Refer to: p1043		
Note:	The setting value (CI: p1044) becomes effective for a 0/1 edge of the setting command (BI: p1043).		

r1045	CO: Mot. potentiom. velocity setp. in front of ramp-fct. gen. / Mop n_set bef RFG		
SERVO (Ext setp, Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3020
Lin), SERVO_I_AC	P-Group: Setpoints	Unit group: $4 _1$	Unit selection: p0505
(Ext setp, Lin)	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
	Sescription:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator.	

$r 1045$

SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR_AC, SERVO_I_AC (Ext setp), VECTOR_I_AC

Can be changed: -
Data type: FloatingPoint32
P-Group: Setpoints
Not for motor type: -

- [rpm]

Description: Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator

p1047[0...n]	Motorized potentiometer ramp-up time / Mop ramp-up time		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3020
(Ext setp),	Unit group: -	Unit selection: -	
VECTOR_AC,	P-Group: Setpoints	Scaling: -	Expert list: 1
SERVO_IAC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	$1000.000[s]$	10.000 [s]
	$0.000[s]$		
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer.		
	The setpoint is changed from zero up to the speed/velocity limit (p1082) within this time (if no initial rounding-off has		
	been activated).		
Dependency:	Refer to: p1030, p1048, p1082, r1082		
Note:	When the initial rounding-off is activated (p1030.2) the ramp-up time is correspondingly extended.		

p1048[0...n]	Motorized potentiometer ramp-down time / Mop ramp-down time		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3020
(Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Scaling: -	Max	Expert list: 1
SERVO_I_AC (Ext	Not for motor type: -	$1000.000[\mathrm{~s}]$	Factory setting
setp), VECTOR_I_AC	Min	10.000 [s]	
	$0.000[\mathrm{~s}]$		
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer.		
	The setpoint is changed from the speed/velocity limit (p1082) to zero within this time (if no initial rounding-off has		
	been activated).		
Dependency:	Refer to: p1030, p1047, p1082, r1082		
Note:	The deceleration time is extended corresponding to the activated initial rounding-off (p1030.2).		

r1050	CO: Motorized potentiometer setpoint after ramp-function generator / Mop setp after RFG		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp, Lin), SERVO_I_AC (Ext setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001, 3020
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Sets the effective setpoint after the internal motorized potentiometer ramp-function generator.		
	This setpoint is the output value of the motorized potentiometer and must be appropriately interconnected onwards (e.g. with the main setpoint).		
Recommendation:	Interconnect the signal with main setpoint (p1070).		
Dependency:	Refer to: p1070		
Note:	For "With ramp-function generator", after an OFF1, OFF2, OFF3 or for a 0 signal via BI: p0852 (inhibit operation, suppress pulses) the ramp-function generator output (r1050) is set to the starting value (configuration via p1030.0).		

r1050	CO: Motorized potentiometer setpoint after ramp-function generator / Mop setp after RFG		
SERVO (Ext setp),	Can be changed: -	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001, 3020
(Ext setp), VECTOR AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Sets the effective setpoint after the internal motorized potentiometer ramp-function generator.		
	This setpoint is the output value of the motorized potentiometer and must be appropriately interconnected onward (e.g. with the main setpoint).		

Recommendation: Interconnect the signal with main setpoint (p1070).
Dependency: Refer to: p1070

Note: \quad For "With ramp-function generator", after an OFF1, OFF2, OFF3 or for a 0 signal via BI: p0852 (inhibit operation, suppress pulses) the ramp-function generator output (r1050) is set to the starting value (configuration via p 1030.0)

p1051[0...n]	Cl: Velocity limit RFG positive direction / v_limit RFG pos		
SERVO (ESR, Ext	Can be changed: T	Calculated: -	Access level: 3
setp, Lin), SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
(ESR, Ext setp, Lin),	P-Group: Setpoints	Unit group: -	Unit selection: -
SERVO_I_AC (ESR,	Not for motor type: -	Scaling: p2000	Max
Ext setp, Lin)	Min	-	Factory setting
	-	1083[0]	
		Sets the signal source for the velocity limit of the positive direction on the ramp-function generator input.	
Description:	She OFF3 ramp-down time (p1135) is effective when the limit is reduced.		
Note:			

$\mathbf{p 1 0 5 1 [0 . . . n] ~}$	Cl: Speed limit RFG positive direction of rotation / n_limit RFG pos		
SERVO (ESR, Ext	Can be changed: T	Calculated: -	Access level: 3
setp), VECTOR, HLA	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
(ESR), SERVO_AC	P-Group: Setpoints	Unit group: -	Unit selection: -
(ESR, Ext setp),	Not for motor type: -	Scaling: p2000	Expert list: 1
VECTOR_AC,	Max	Factory setting	
SERVO_I_AC (ESR,	Min	-	$1083[0]$
Ext setp),	-		

Description: Sets the signal source for the speed limit of the positive direction on the ramp-function generator input. Note: \quad The OFF3 ramp-down time (p1135) is effective when the limit is reduced.

p1052[0...n]	Cl: Velocity limit RFG negative direction / v_limit RFG neg		
SERVO (ESR, Ext	Can be changed: T	Calculated: -	Access level: 3
setp, Lin), SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
(ESR, Ext setp, Lin),	P-Group: Setpoints	Unit group: -	Unit selection: -
SERVO_I_AC (ESR,	Not for motor type: -	Scaling: p2000	Expert list: 1
Ext setp, Lin)	Min	Max	Factory setting
	-	1086[0]	
Description:	Sets the signal source for the velocity limit of the negative direction on the ramp-function generator input.		
Note:	The OFF3 ramp-down time (p1135) is effective when the limit is reduced.		

p1052[0...n]	Cl: Speed limit RFG negative direction of rotation / n_limit RFG neg		
SERVO (ESR, Ext	Can be changed: T	Calculated: -	Access level: 3
setp), VECTOR, HLA	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
(ESR), SERVO_AC	P-Group: Setpoints	Unit group: -	Unit selection: -
(ESR, Ext setp),	Not for motor type: -	Scaling: p2000	Max
VECTOR_AC,	Expert list: 1		
SERVO_I_AC (ESR,	Min	Factory setting	
Ext setp),	-	1086[0]	
VECTOR_I_AC			
Description:	Sets the signal source for the speed limit of the negative direction on the ramp-function generator input.		
Note:	The OFF3 ramp-down time (p1135) is effective when the limit is reduced.		

p1055[0...n]	BI: Jog bit 0 / Jog bit 0		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 3030
(Ext setp), VECTOR_AC,	P-Group: Setpoints	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: -	Scaling: -	Expert list: 1
setp), VECTOR_I	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for jog 1.		
Recommendation:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p0840, p1058		
Notice:	The drive is enabled for jogging using BI: p1055 or BI : p1056.		
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to switch on can also be used to switch off again.		

p1056[0...n]	BI: Jog bit 1 / Jog bit 1		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501,3030
(Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Ext	Max	Factory setting	
setp), VECTOR_I_AC	Min	-	0

Description: Sets the signal source for jog 2.
Recommendation: When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.
Dependency: Refer to: p0840, p1059
Notice: \quad The drive is enabled for jogging using BI: p1055 or BI: p1056.
The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.
Only the signal source that was used to switch on can also be used to switch off again.

p1058[0...n]	Jog 1 velocity setpoint / Jog 1 v_set		
SERVO (Ext setp, Lin),	Can be changed: T	Calculated: -	Access level: 2
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3001, 3030
(Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [m/min]	0.000 [m/min]
Description:	Sets the velocity for jog 1. Jogging (JOG) is level-triggered, and allows the motor to be incrementally traversed.		
Dependency:	Refer to: p1055, p1056		
p1058[0...n]	Jog 1 speed setpoint / Jog 1 n_set		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 2
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3001, 3030
(Ext setp),	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: -	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the speed for jog 1. Jogging (JOG) is level-triggered, and allows the motor to be incrementally traversed.		
Dependency:	Refer to: p1055, p1056		

p1059[0...n]	Jog 2 velocity setpoint / Jog 2 v_set		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp, Lin), SERVO_I_AC (Ext setp, Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3001, 3030
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	1000.000 [m/min]	0.000 [m/min]
Description:	Sets the velocity for jog 2. Jogging (JOG) is level-triggered, and allows the motor to be incrementally traversed.		
Dependency:	Refer to: p1055, p1056		
p1059[0...n]	Jog 2 speed setpoint / Jog 2 n_set		
SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR_AC, SERVO_I_AC (Ext setp), VECTOR_I_AC	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3001, 3030
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the speed for jog 2.		
	Jogging (JOG) is level-triggered, and allows the motor to be incrementally traversed.		
Dependency:	Refer to: p1055, p1056		
p1063[0...n]	Setpoint channel velocity limit / Setp_chan v_lim		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp, Lin), SERVO_I_AC (Ext setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3040
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [m/min]	1000.000 [m/min]	1000.000 [m/min]
Description:	Sets the velocity limit effective in the setpoint channel.		
Dependency:	Refer to: p1082, r1082, p1083, p1085, p1086, p1088		
p1063[0...n]	Setpoint channel speed limit / Setp_chan n_lim		
SERVO (Ext setp), SERVO_AC (Ext setp), SERVO_I_AC (Ext setp)	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3040
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	210000.000 [rpm]
Description:	Sets the speed limit effective in the setpoint channel.		
Dependency:	Refer to: p1082, r1082, p1083, p1085, p1086, p1088		
p1063[0...n]	Setpoint channel speed limit / Setp_chan n_lim		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 1
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3040
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	40000.000 [rpm]
Description:	Sets the speed limit effective in the setpoint channel. Refer to: p1082, r1082, p1083, p1085, p1086, p1088		
Dependency:			

2.2 List of parameters

p1070[0...n]	CI: Main setpoint / Main setpoint		
SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR_AC, SERVO_I_AC (Ext setp), VECTOR_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 3030
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	1024[0]
Description:	Sets the signal source for the main setpoint.		
	Examples:		
	r1024: Fixed speed setpoint effective		
	r1050: Motor. potentiometer setpoint after the	ramp-function generator	
Dependency:	Refer to: p1071, r1073, r1078		
Notice:	The parameter may be protected as a result	p0922 or p2079 and can	anged.

p1071[0...n]	CI: Main setpoint scaling / Main setp scal		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 3030
VECTOR_AC,	P-Group: Setpoints	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: -	Scaling: PERCENT	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the main setpoint.		

r1073	CO: Main setpoint effective / Main setpoint eff		
SERVO (Ext setp, Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3030
Lin), SERRVO_I_AC	P-Group: Setpoints	Unit group: $4 _1$	Unit selection: 00505
(Ext setp, Lin)	Not for motor type: -	Scaling: p 2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
Description:	Displays the effective main setpoint.		
	The value shown is the main setpoint after scaling.		

r1073	CO: Main setpoint effective / Main setpoint eff		
SERVO (Ext setp),	Can be changed: -	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3030
(Ext setp),	P-Group: Setpoints	Unit group: $3 _1$	Unit selection: p0505
VECTOR_AC,	Scaling: p2000	Expert list: 1	
SERVO_IAC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	$-[r p m]$	$-[r p m]$
	- [rpm]		
Description:	Displays the effective main setpoint.		
	The value shown is the main setpoint after scaling.		

p1075[0...n]	Cl: Supplementary setp / Suppl setp		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001,3030
(Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Scaling: p2000	Max	Expert list: 1
SERVO_I_AC (Ext	Not for motor type: -	-	Factory setting
setp), VECTOR_I_AC	Min	0	
	-		
Description:	Sets the signal source for the supplementary setpoint.		
Dependency:	Refer to: p1076, r1077, r1078		

p1076[0...n]	Cl: Supplementary setpoint scaling / Suppl setp scal		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001,3030
(Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Scaling: PERCENT	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	-	1
	-		
Description:	Sets the signal source for scaling the supplementary setpoint.		

$\mathbf{r 1 0 7 7}$	CO: Supplementary setpoint effective / Suppl setpoint eff		
SERVO (Ext setp, Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3030
Lin), SERVO_I_AC	P-Group: Setpoints	Unit group: $4 _1$	Unit selection: p0505
(Ext setp, Lin)	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[m / m i n]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
Description:	Displays the effective supplementary setpoint. The value shown is the additional setpoint after scaling.		

$\mathbf{r 1 0 7 7}$	CO: Supplementary setpoint effective / Suppl setpoint eff		
SERVO (Ext setp),	Can be changed: -	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: FloatingPoint32	P-Group: Setpoints	Uyn. index: -
(Ext setp),	Unit group: $3 _1$	Func. diagram: 3030	
VECTOR_AC,	Scaling: p2000	Unit selection: p0505	
SERVO_I_AC (Ext	Not for motor type: -	Max	Expert list: 1
setp), VECTOR_I_AC	Min	$-[r p m]$	Factory setting
	$-[r p m]$	$-[r p m]$	
Description:	Displays the effective supplementary setpoint. The value shown is the additional setpoint after scaling.		

$\mathbf{r 1 0 7 8}$	CO: Total setpoint effective / Total setpoint eff		
SERVO (Ext setp, Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3030
Lin), SERVO_I_AC	P-Group: Setpoints	Unit group: $4 _1$	Unit selection: p0505
(Ext setp, Lin)	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[m / m i n]$	$-[m / m i n]$	$-[\mathrm{m} / \mathrm{min}]$
Description:	Displays the total effective setpoint.		

r1078	CO: Total setpoint effective / Total setpoint eff		
SERVO (Ext setp),	Can be changed: -	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3030
(Ext setp),	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
VECTOR_AC,	Scaling: p2000	Expert list: 1	
SERVO_IAC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	$-[r p m]$	$-[r p m]$
	$-[r p m]$		
Description:	Displays the total effective setpoint.		
	The value indicates the sum of the effective main setpoint and supplementary setpoint.		

p1079	Interpolator clock cycle for speed setpoints / Interp_cyc n_set
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T Calculated: CALC_MOD_ALL Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
	P-Group: Setpoints Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0.00 [ms] 127.00 [ms] 0.00 [ms]
Description:	Sets the time with which new speed setpoints are interpolated.
	With interpolation, the higher-level control adapts the speed setpoint steps to the time grid of the setpoint channel.
Recommendation:	For non-synchronous operation, a setting to the maximum time difference between two setpoints is recommended.
	For sensorless vector control, interpolation should always be activated if the ramp-up and ramp-down times of the ramp-function generator are very short. The drive must be able to follow the external speed setpoint (the drive does not ramp up at the torque limit).
Note:	For acceleration precontrol of the speed controller, interpolation prevents torque peaks from occurring if the ramp-up or ramp-down times in the setpoint channel are zero.
	When exiting commissioning, the parameter is preset using the automatic calculation if, as setpoint source for the main or supplementary setpoint, a PZD receive word is already set and the ramp-up time is zero.
	Interpolation is limited to 127 cycles of the setpoint channel.
	$\mathrm{p} 1079=0 \mathrm{~ms}$:
	Interpolation is deactivated.
	$\mathrm{p} 1079=0.01 \mathrm{~ms}$:
	The interpolation time is automatically determined the first time that the speed setpoint is changed. After this, no other changes are made if the send times of the external control increase. Writing to p1079 again initiates the automatic adaptation of the interpolation time.
	p1079 > 0.01 ms:
	Interpolation is performed corresponding to the ratio to the computation clock cycle.
	For a value of 0 , for synchronized setpoint input, the currently valid application clock cycle is loaded.

p1080[0...n]	Minimum velocity / v_min		
SERVO (Ext setp, Lin),	Can be changed: C2(1), T	Calculated: -	Access level: 1
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
Lin), SERVO_I_AC	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
(Ext setp, Lin)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{~m} / \mathrm{min}]$	$1000.000[\mathrm{~m} / \mathrm{min}]$	$0.000[\mathrm{~m} / \mathrm{min}]$
Description:	Sets the lowest possible motor velocity.		
	This value is not undershot in operation.		
Dependency:	Refer to: p 1106		
Notice:	The effective minimum velocity is formed from p1080 and p1106.		

```
Note: The parameter value applies for both motor directions.
In exceptional cases, the motor can operate below this value (e.g. when reversing).
In order that a stationary motor - after all of the enable signals have been switched on, can operate at the minimum speed/minimum velocity once all of the enable signals are available, the direction must be entered using one of the following options:
- direction input via small setpoint.
- direction input by inhibiting the negative or positive direction (p1110, p1111).
```

p1080[0...n]	Minimum speed / n_min		
SERVO (Ext setp),	Can be changed: C2(1), T	Calculated: -	Access level: 1
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
VECTOR AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: -	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	0.000 [rpm]	19500.000 [rpm]	0.000 [rpm]
Description:	Sets the lowest possible motor speed. This value is not undershot in operation.		
Dependency:	Refer to: p1106		
Notice:	The effective minimum speed is formed from p1080 and p1106.		
Note:	The parameter value applies for both motor directions.		
	In exceptional cases, the motor can operate below this value (e.g. when reversing).		
	In order that a stationary motor - after all of the enable signals have been switched on, can operate at the minimum speed/minimum velocity once all of the enable signals are available, the direction must be entered using one of the following options:		
	- direction input via small setpoint.		
	- direction input by inhibiting the negative or positive direction (p1110, p1111).		

p1082[0...n]	Maximum velocity / v_max		
HLA	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: CALC_MOD_LIM_REF	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [$\mathrm{m} / \mathrm{min}$]	1000.000 [m/min]	1000.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the highest possible velocity.		
Dependency:	Refer to: p0115, p0230, r0313, p0313, p0322, p0324, r0336, p0532		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.		
Note:	The parameter is applicable for both directions of rotation.		
	The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).		
p1082[0...n]	Maximum speed / n_max		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: C2(1), T	Calculated: CALC_MOD_ALL	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 2820, 3020, 3050, 3060, 3070, 3095
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	1500.000 [rpm]
Description:	Sets the highest possible speed.		
Dependency:	Refer to: p0115, p0322, p0324, p0532		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.		
Note:	The parameter applies for both motor directions.		
	The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).		
	Since the parameter is part of quick commissioning ($\mathrm{p} 0010=1$), it is defined appropriately when p0310, p0311, p0322, p0324, p0530, p0531, and p0532 are changed.		
	p1082 < $=\min (\mathrm{p} 0324, \mathrm{p} 0532)$ if p0324>0 and p0532 >0		
	$\mathrm{p} 1082<=\mathrm{p} 0322$, if p0324 $=0$ or p0532 $=0$ and p0322 > 0		
	p1082 <= $60 /$ (10.0 * p0115[0] * r0313)		
	p1082 <= 60 * Maximum power unit pulse frequency / (5.0 * r0313)		
	For the automatic calculation ($\mathrm{p} 0340=1$) the value of the parameter is pre-assigned the maximum motor speed (p 0322). If $\mathrm{p} 0322=0$, the rated motor speed (p 0311) is used as default (pre-assignment) value. For induction motors that are not catalog motors ($\mathrm{p} 0301=0$), the synchronous no-load speed is used as default (pre-assignment) value (p0310 * $60 / \mathrm{r} 0313$).		
	For synchronous motors, the following additionally applies:		
	In the automatic calculation ($\mathrm{p} 0340=1$), p1082 is, on one hand, limited to speeds for which the rated power unit current (S 1 continuous duty r0207[3]) is not sufficient as field current:		
	p1082 < p0348 / (1 - r0207 / r0331), applicable for r0207[3] < r0331		
	On the other hand, an additional limit is effective, which prevents the EMF from exceeding the maximum DC link voltage (see p0643 and p1231).		
	The effective assignment of the motor data set parameter (e.g. p0311) to the drive data set parameter p1082 when pre-assigning should be taken from p0186.		
	p 1082 is also available in the quick commissioning ($\mathrm{p} 0010=1$); this means that when exiting via $\mathrm{p} 3900>0$, the value is not changed.		

p1082[0...n]	Maximum velocity / v_max		
SERVO (Lin),	Can be changed: C2(1), T	Calculated: CALC_MOD_ALL	Access level: 1
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 2820, 3020, 3050, 3060, 3070, 3095
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [m/min]	1300.000 [m/min]	1000.000 [m/min]
Description:	Sets the highest possible velocity.		
Dependency:	Refer to: p0115, p0322, p0324, p0532		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	The parameter applies for both motor directions.		
	The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).		
	Since the parameter is part of quick commissioning ($p 0010=1$), it is defined appropriately when $p 0310, p 0311$, p0322, p0324, p0530, p0531, and p0532 are changed.		
	p1082 < = min(p0324, p0532) if p0324>0 and p0532>0		
	$\mathrm{p} 1082<=\mathrm{p} 0322$, if p0324 $=0$ or p0532 $=0$ and p0322 > 0		
	p1082 <= $60 /(10.0$ * p0115[0] * r0313)		
	p1082 <= 60 * Maximum power unit pulse frequency / (5.0 * r0313)		
	For the automatic calculation ($\mathrm{p} 0340=1$) the value of the parameter is pre-assigned the maximum motor speed (p 0322). If $\mathrm{p} 0322=0$, the rated motor speed (p 0311) is used as default (pre-assignment) value. For induction motors that are not catalog motors ($\mathrm{p} 0301=0$), the synchronous no-load speed is used as default (pre-assignment) value (p0310 * $60 / \mathrm{r} 0313$).		
	For synchronous motors, the following additionally applies:		
	In the automatic calculation ($\mathrm{p} 0340=1$), p 1082 is, on one hand, limited to speeds for which the rated power unit current (S 1 continuous duty r0207[3]) is not sufficient as field current:		
	p1082 < p0348 / (1-r0207 / r0331), applicable for r0207[3] < r0331		
	On the other hand, an additional limit is effective, which prevents the EMF from exceeding the maximum DC link voltage (see p0643 and p1231).		
	The effective assignment of the motor data set parameter (e.g. p0311) to the drive data set parameter p1082 when pre-assigning should be taken from p0186.		
	p 1082 is also available in the quick commissioning ($\mathrm{p} 0010=1$); this means that when exiting via $\mathrm{p} 3900>0$, the value is not changed.		

p1082[0...n]	Maximum speed / n_max		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: CALC_MOD_ALL	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 2820, 3020, 3050, 3060, 3070, 3095
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	1500.000 [rpm]
Description:	Sets the highest possible speed.		
Dependency:	For vector control ($\mathrm{p} 1300=20 \ldots 23$) the maximum speed is limited to $60.0 /(8.333 \times \mathrm{p} 0115[0] \times \mathrm{r} 0313)$. This can be identified by a reduction in r1084. p1082 is not changed in this process due to the fact that the operating mode p1300 can be changed over.		
	If a sine-wave filter $(\mathrm{p} 0230=3)$ is parameterized as output filter, then the maximum speed is limited corresponding to the maximum permissible filter output frequency (refer to the filter data sheet). When using sine-wave filters (p0230 = 3,4), the maximum speed r1084 is limited to 70% of the resonant frequency of the filter capacitance and the motor leakage inductance.		

For reactors and dU/dt filters, it is limited to 150 Hz * $60 / \mathrm{r} 0313$ (for chassis power units) or $120 \mathrm{~Hz} \times 60 / \mathrm{r} 0313$ (for booksize power units).
Refer to: p0115, p0230, r0313, p0313, p0322, p0324, r0336, p0532

Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.
Note:	The parameter applies for both motor directions.
	The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).
	Since the parameter is part of quick commissioning (p0010 = 1), it is defined appropriately when p0310, p0311, p0322, p0324, p0530, p0531, and p0532 are changed.
	p1082 < = min(p0324, p0532) if p0324>0 and p0532 > 0
	$\mathrm{p} 1082<=\mathrm{p} 0322$, if p $0324=0$ or p0532 $=0$ and p0322 > 0
	p1082 < $=60 \times$ minimum ($15 \times$ r0336, 650 Hz) / r0313
	p1082 <= $60 \times$ Maximum power unit pulse frequency / (x r0313)
	$\mathrm{k}=12$ for vector control (r0108.2 = 1), $\mathrm{k}=6.5$ for U/f control (r0108.2 $=0$)
	For the automatic calculation $(\mathrm{p} 0340=1)$ the value of the parameter is pre-assigned the maximum motor speed (p 0322). If $\mathrm{p} 0322=0$, the rated motor speed (p 0311) is used as default (pre-assignment) value. For induction motors that are not catalog motors ($\mathrm{p} 0301=0$), the synchronous no-load speed is used as default (pre-assignment) value ($\mathrm{p} 0310 \times 60 / \mathrm{r} 0313$).
	For synchronous motors, the following additionally applies:
	The maximum speed p1082 is restricted to speeds (r1084) where the EMF does not exceed the DC link voltage.
	The effective assignment of the motor data set parameter (e.g. p0311) to the drive data set parameter p1082 when pre-assigning should be taken from p0186.
	$p 1082$ is also available in the quick commissioning ($p 0010=1$); this means that when exiting via $p 3900>0$, the value is not changed.

r1082[0...n]	Encoder emulation maximum speed / Enc_emul n_max		
TM41	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 9674, 9676
	P-Group: -	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the frequency limit of the signal output as maximum speed for the encoder emulation. The value is displayed independent of the operating mode set (p 4400).		
Dependency:	Refer to: p0115		
	Refer to: F35220		
p1083[0...n]	CO: Velocity limit positive direction / v_limit pos		
HLA	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	0.000 [$\mathrm{m} / \mathrm{min}$]	1000.000 [$\mathrm{m} / \mathrm{min}$]	1000.000 [m/min]
Description:	Sets the maximum velocity for the positive direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1083[0...n]	CO: Speed limit in positive direction of rotation / n_limit pos		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050, 3095
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{rpm}]$	$210000.000[\mathrm{rpm}]$	$210000.000[\mathrm{rpm}]$
Description:	Sets the maximum speed for the positive direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1083[0...n]	CO: Velocity limit positive direction / v_limit pos		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050,3095
SERVO_I_AC (Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$0.000[m / m i n]$	$1000.000[\mathrm{~m} / \mathrm{min}]$	$1000.000[\mathrm{~m} / \mathrm{min}]$
Description:	Sets the maximum velocity for the positive direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1083[0...n]	CO: Speed limit in positive direction of rotation / n_limit pos		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050,6732
VECTOR_I_AC	P-Group: Setpoints	Unit group: $3 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$0.000[r p m]$	$210000.000[\mathrm{rpm}]$	$40000.000[\mathrm{rpm}]$
Description:	Sets the maximum speed for the positive direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

r1084	CO: Velocity limit positive effective / v_limit pos eff		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min		Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Display and connector output for the active positive velocity limit.		
Dependency:	Refer to: p1082, r1082, p1083, p1085		
r1084	CO: Speed limit positive effective / n_limit pos eff		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3050, 3095
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the active positive speed limit.		
Dependency:	Refer to: p1082, r1082, p1083, p1085		
r1084	CO: Velocity limit positive effective / v_limit pos eff		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3050, 3095
SERVO_-AC	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Display and connector output for the active positive velocity limit.		
Dependency:	Refer to: p1082, r1082, p1083, p1085		

r1084	CO: Speed limit positive effective / n_limit pos eff		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3050, 3095
V	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the active positive speed limit.		
Dependency:	Refer to: p1082, r1082, p1083, p1085		
Note:	Vector control: r1084 <= $60 /(8.333 \times \mathrm{p} 0115[0] \times \mathrm{r0313})$		
p1085[0...n]	CI: Velocity limit positive direction / v_limit pos		
SERVO (Ext setp, Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
(Ext setp, Lin)	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	1083[0]
Description:	Sets the signal source for the velocity limit of the positive direction.		

$\mathbf{p 1 0 8 5 [0 . . . n] ~}$	Cl: Speed limit in positive direction of rotation / n_limit pos		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
(Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Scaling: p2000	Expert list: 1	
SERVO_IAC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	-	$1083[0]$
	-		
Description:	Sets the signal source for the speed limit of the positive direction.		

$\overline{p 1086[0 \ldots n]}$	CO: Velocity limit negative direction / v_limit neg		
HLA	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-1000.000 [m/min]	0.000 [m/min]	-1000.000 [m/min]
Description:	Sets the velocity limit for the negative direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1086[0...n]	CO: Speed limit in negative direction of rotation / n_limit neg		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050, 3095
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	0.000 [rpm]	-210000.000 [rpm]
Description:	Sets the speed limit for the negative direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1086[0...n]	CO: Velocity limit negative direction / v_limit neg		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050,3095
SERVO_I_AC (Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Max
	Min	$0.000[\mathrm{~m} / \mathrm{min}]$	Factory setting
	$-1000.000[\mathrm{~m} / \mathrm{min}]$	$-1000.000[\mathrm{~m} / \mathrm{min}]$	
Description:	Sets the velocity limit for the negative direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

$\mathbf{p 1 0 8 6 [0 . . . n] ~}$	CO: Speed limit in negative direction of rotation / n_limit neg		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
VECTOR_I_AC	P-Group: Setpoints	Unit group: $3 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-210000.000[\mathrm{rpm}]$	$0.000[\mathrm{rpm}]$	$-40000.000[\mathrm{rpm}]$
Description:	Sets the speed limit for the negative direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

r1087	CO: Velocity limit negative effective / v_limit neg eff		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Display and connector output for the active negative velocity limit.		
Dependency:			
r1087	CO: Speed limit negative effective / n_limit neg eff		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3050, 3095
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the active negative speed limit.		
Dependency:	Refer to: p1082, r1082, p1086, p1088		
r1087	CO: Velocity limit negative effective / v_limit neg eff		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3050, 3095
SERVO__AC (Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Display and connector output for the active negative velocity limit.		
Dependency:			

$\mathbf{r 1 0 8 7}$
VECTOR,
VECTOR_AC,
VECTOR_I_AC

CO: Speed limit negative effective / n_limit neg eff		
Can be changed: -	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3050,3095
P-Group: Setpoints	Unit group: $3 _1$	Unit selection: p0505
Not for motor type: -	Scaling: p 2000	Expert list: 1
Min	Max	Factory setting
$-[\mathrm{rpm}]$	$-[\mathrm{rpm}]$	$-[\mathrm{rpm}]$

Description: Display and connector output for the active negative speed limit.
Dependency: Refer to: p1082, r1082, p1086, p1088
Note: Vector control: r1087 >=-60 / (8.333 x p0115[0] x r0313)

p1088[0...n]	CI: Velocity limit negative direction / n_limit neg		
SERVO (Ext setp, Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
Lin), SERVO_I_AC	P-Group: Setpoints	Unit group: -	Unit selection: -
(Ext setp, Lin)	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	1086[0]
Description:	Sets the signal source for the speed/velocity limit of the negative direction.		

p1088[0...n]	CI: Speed limit in negative direction of rotation / n_limit neg		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR,SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
(Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Scaling: p2000	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	-	1086[0]
	-		
Description:	Sets the signal source for the speed/velocity limit of the negative direction.		

p1091[0...n]	Skip velocity 1 / v_skip 1		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp, Lin), SERVO_I_AC (Ext setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	0.000 [m/min]	1000.000 [m/min]	0.000 [$\mathrm{m} / \mathrm{min}$]
Description:			
Dependency:			
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
Note:	The skip (suppression) velocities can be used to prevent the effects of mechanical resonance.		
p1091[0...n]	Skip speed 1 / n_skip 1		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
(Ext setp),	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 1. Refer to: p1092, p1093, p1094, p1101		
Dependency:			

Notice: \quad Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.

Note:

p1092[0...n]	Skip velocity 2 / v_skip 2		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
Lin), SERVO_I_AC	P-Group: Setpoints	Unit group: $4 _1$	Unit selection: p0505
(Ext setp, Lin)	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{~m} / \mathrm{min}]$	$000.000[\mathrm{~m} / \mathrm{min}]$	$0.000[\mathrm{~m} / \mathrm{min}]$
Description:	Sets skip velocity 2.		
Dependency:	Refer to: p1091, p1093, p1094, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		

p1092[0...n]	Skip speed 2 / n_skip 2		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
(Ext setp),	P-Group: Setpoints	Unit group: $3 _1$	Unit selection: p0505
VECTOR_AC,	Scaling: p2000	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	$210000.000[\mathrm{rpm}]$	0.000 [rpm]
	0.000 [rpm]		
Description:	Sets skip speed 2.	Refer to: p1091, p1093, p1094, p1101	
Dependency:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
Notice:			

p1093[0...n]	Skip velocity 3 / v_sk		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp, Lin), SERVO_I_AC (Ext setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	0.000 [m/min]	1000.000 [m/min]	0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets skip velocity 3.		
Dependency:	Refer to: p1091, p1092, p1094, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
p1093[0...n]	Skip speed 3 / n_skip 3		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
(Ext setp),	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 3.		
Dependency:	Refer to: p1091, p1092, p1094, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		

2.2 List of parameters

p1094[0...n]	Skip velocity 4 / v_skip 4		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp, Lin), SERVO_I_AC (Ext setp, Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	0.000 [m/min]	1000.000 [m/min]	0.000 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets skip velocity 4.		
Dependency:	Refer to: p1091, p1092, p1093, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
p1094[0...n]	Skip speed 4 / n_skip 4		
SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR_AC, SERVO_I_AC (Ext setp), VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 4.		
Dependency:	Refer to: p1091, p1092, p1093, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
p1098[0...n]	Cl: Skip velocity scaling / v_skip scal		
SERVO (Ext setp, Lin), SERVO_AC (Ext setp, Lin), SERVO_I_AC (Ext setp, Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the skip velocities.		
Dependency:	Refer to: p1091, p1092, p1093, p1094		
p1098[0...n]	Cl: Skip speed scaling / n_skip scal		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC (Ext setp)	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
VECTOR_AC,	P-Group: Setpoints	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: -	Scaling: PERCENT	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the skip speeds.		
Dependency:	Refer to: p1091, p1092, p1093, p1094		

p1101[0...n]	Skip velocity bandwidth / v_skip bandwidth		
SERVO (Ext setp, Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
(Ext setp, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	0.000 [m/min]	1000.000 [m/min]	0.000 [m/min]
Description:	Sets the bandwidth for the skip velocities 1 to 4.		
Dependency:	Refer to: p1091, p1092, p1093, p1094		
Note:	The setpoint velocities are skipped (suppressed) in the range of the skip velocity +/-p1101.		
	Steady-state operation is not possible in the skipped (suppressed) velocity range. The skip (suppression) range is skipped.		
	Example:		
	p1091 = 600 and p1101 = 20		
	--> setpoint velocities between 580 and 620 [rpm] are skipped.		
	For the skip bandwidths, the following hysteresis behavior applies:		
	For a setpoint velocity coming from below, the following applies:		
	$\mathrm{r} 1170<580[\mathrm{~m} / \mathrm{min}]$ and $580[\mathrm{~m} / \mathrm{min}]<=r 1114<=620[\mathrm{~m} / \mathrm{min}]-->\mathrm{r} 1119=580[\mathrm{~m} / \mathrm{min}]$		
	For a setpoint velocity coming from above, the following applies:		
	$\mathrm{r} 1170>620[\mathrm{~m} / \mathrm{min}]$ and $580[\mathrm{~m} / \mathrm{min}]<=r 1114<=620[\mathrm{~m} / \mathrm{min}]-->\mathrm{r} 1119=620[\mathrm{~m} / \mathrm{min}]$		

p1101[0...n]	Skip speed bandwidth / n_skip bandwidth		
SERVO (Ext setp),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
(Ext setp), VECTOR AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the bandwidth for the skip speeds/velocities 1 to 4.		
Dependency:	Refer to: p1091, p1092, p1093, p1094		
Note:	The setpoint (reference) speeds are skipped (suppressed) in the range of the skip speed +/-p1101.		
	Steady-state operation is not possible in the skipped (suppressed) speed range. The skip (suppression) range is skipped.		
	Example:		
	p1091 = 600 and p1101 = 20		
	--> setpoint speeds between 580 and 620 [rpm] are skipped.		

For the skip bandwidths, the following hysteresis behavior applies:
For a setpoint speed coming from below, the following applies: r1170 < 580 [rpm] and $580[\mathrm{rpm}]<=\mathrm{r} 1114<=620$ [rpm] --> r1119 = 580 [rpm] For a setpoint speed coming from above, the following applies: r1170 > 620 [rpm] and $580[\mathrm{rpm}]<=\mathrm{r} 1114<=620[\mathrm{rpm}]-->\mathrm{r} 1119=620[\mathrm{rpm}]$

p1106[0...n]	CI: Minimum velocity signal source / v_min s_src		
SERVO (Ext setp, Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
Lin), SERVO_I_AC (Ext setp, Lin)	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for lowest possible motor velocity.		
Dependency:	Refer to: p1080		
Notice:	The effective minimum velocity is formed from p1080 and p1106.		
p1106[0...n]	CI: Minimum speed signal source / n_min s_src		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
VECTOR_AC,	P-Group: Setpoints	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: -	Scaling: p2000	Expert list: 1
setp), VECTOR_I_AC	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for lowest possible motor speed.		
Dependency:	Refer to: p1080		
Notice:	The effective minimum speed is formed from p1080 and p1106.		

p1110[0...n]	BI: Inhibit negative direction / Inhib neg dir		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3040
(Ext setp), Unit group: -	Unit selection: -		
VECTOR_AC,	P-Group: Setpoints	Scaling: -	Expert list: 1
SERVO_I_AC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	-	0
	-		
Description:	Sets the signal source to disable the negative direction.		
Dependency:	Refer to: p1111		

p1111[0...n]	BI: Inhibit positive direction / Inhib pos dir		
SERVO (Ext setp),	Can be changed: T	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3040
(Ext setp), Unit group: - Unit selection: - VECTOR_AC, P-Group: Setpoints Scaling: - SERVO_IAC (Ext Not for motor type: - Max setp), VECTOR_I_AC Min - - Expert list: 1 Factory setting Description: Sets the signal source to disable the positive direction. 0 Dependency: Refer to: p1110			

r1112	CO: Velocity setpoint after minimum limiting / v_set aft min_lim		
SERVO (Ext setp, Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3050
Lin), SERVO_I_AC	P-Group: Setpoints	Unit group: $4 _1$	Unit selection: $p 0505$
(Ext setp, Lin)	Not for motor type: -	Scaling: p 2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
Description:	Displays the velocity setpoint after the minimum limiting.		
Dependency:	Refer to: p1091, p1092, p1093, p1094, p1101		

r1112	CO: Speed setpoint after minimum limiting / n_set aft min_lim		
SERVO (Ext setp),	Can be changed: -	Calculated: -	Access level: 3
VECTOR, SERVO_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3050
(Ext setp),	Unit group: $3 _1$	Unit selection: p0505	
VECTOR_AC,	P-Group: Setpoints	Scaling: p2000	Expert list: 1
SERVO_IACC (Ext	Not for motor type: -	Max	Factory setting
setp), VECTOR_I_AC	Min	$-[$ rpm $]$	$-[r p m]$
	- [rpm]		
Description:	Displays the speed setpoint after the minimum limiting.		
Dependency:	Refer to: p1091, p1092, p1093, p1094, p1101		

p1113[0...n] BI: Setpoint inversion / Setp inv

VECTOR, SERVO_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2441, 2442,
(Ext setp),		2505,3040	
VECTOR_AC,	P-Group: Setpoints	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Scaling: -	Expert list: 1	
setp), VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	-	-	0

Description: Sets the signal source to invert the setpoint.
Dependency: Refer to: r1198

Notice:

$\mathbf{r 1 1 1 4}$	CO: Setpoint after the direction limiting / Setp after limit		
SERVO (Ext setp, Lin), Can be changed: -	Calculated: -	Access level: 3	
SERVO_AC (Ext setp,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001,3040,
Lin), SERVO_I_AC			3050
(Ext setp, Lin)	P-Group: Setpoints	Unit group: $4 _1$	Unit selection: $p 0505$
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	$-[\mathrm{m} / \mathrm{min}]$	Factory setting
	$-[m / m i n]$	$-[\mathrm{m} / \mathrm{min}]$	
Description:	Displays the speed/velocity setpoint after the changeover and limiting the direction.		

r1114	CO: Setpoint after the direction limiting / Setp after limit		
SERVO (Ext setp),	Can be changed: -	Calculated: -	Access level: 3
VECTOR, SERVO_AC (Ext setp),	Data type: FloatingPoint32	Dyn. index: -	$\begin{aligned} & \text { Func. diagram: 3001, 3040, } \\ & 3050 \end{aligned}$
VECTOR_AC, SERVO I AC (Ext	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
setp), VECTTOR_I_AC	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed/velocity setpoint after the changeover and limiting the direction.		

2.2 List of parameters

p1115	Ramp-function generator selection / RFG selection		
SERVO (ESR, Ext	Can be changed: T	Calculated: -	Access level: 3
setp), VECTOR, HLA	Data type: Integer16	Dyn. index: -	Func. diagram: 3001, 3080
(ESR, Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (ESR,	Min	Max	Factory setting
Ext setp), VECTOR_I_AC	0	1	0
Description:	Sets the ramp-function generator type.		
Value:	0 : Basic ramp-function generator 1: Extended ramp-function generator		
Note:	Another ramp-function generator type can only be selected when the motor is at a standstill.		
r1119	CO: Ramp-function generator setpoint at the input / RFG setp at inp		
HLA, HLA (ESR)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the setpoint at the input of the ramp-function generator.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The setpoint is influenced by other functions, e.g. skip (suppressed) speeds, minimum and maximum limits.		
r1119	CO: Ramp-function generator setpoint at the input / RFG setp at inp		
SERVO (ESR, Ext setp, Lin), SERVO_AC (ESR, Ext setp, Lin), SERVO_I_AC (ESR, Ext setp, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001, 3050, 3060, 3070, 6300
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the setpoint at the input of the ramp-function generator.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The setpoint is influenced by other functions, e.g. skip (suppressed) speeds, minimum and maximum limits.		
r1119	CO: Ramp-function generator setpoint at the input / RFG setp at inp		
SERVO (ESR, Ext	Can be changed: -	Calculated: -	Access level: 3
setp), VECTOR, SERVO_AC (ESR, Ext	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001, 3050, 3060, 3070, 6300
SERVO_I_AC (ESR,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
Ext setp),	Not for motor type: -	Scaling: p2000	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	- [rpm]	- [rpm]	
Description:	Displays the setpoint at the input of the ramp-function generator.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The setpoint is influenced by other functions, e.g. skip (suppressed) speeds, minimum and maximum limits.		

p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time	
HLA, HLA (ESR)	Can be changed: C2(1), U, T Calculated: -	Access level: 1
	Data type: FloatingPoint32 Dyn. index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	0.000 [s] 999999.000 [s]	10.000 [s]
Description:	The ramp-function generator ramps-up the velocity setpoint from standstill (setpoint $=0$) up to the maximum velocity (p 1082) in this time.	
Dependency:	Refer to: p1082, r1082, p1138	
Note:	The ramp-up time can be scaled via connector input p1138.	
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time	
SERVO (ESR, Ext	Can be changed: C2(1), U, T Calculated: -	Access level: 1
setp, Lin), SERVO_AC	Data type: FloatingPoint32 Dyn. index: DDS, p0180	Func. diagram: 3060, 3070
(ESR, Ext setp, Lin), SERVO I AC (ESR,	P-Group: Setpoints Unit group: -	Unit selection: -
Ext setp, Lin)	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	0.000 [s] 999999.000 [s]	10.000 [s]
Description:	The drive is accelerated from standstill (setpoint $=0$) up to the maximum velocity (p 1082) in this time.	
Dependency:	Refer to: p1082, r1082, p1138	
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time	
SERVO (ESR, Ext	Can be changed: C2(1), U, T Calculated: -	Access level: 1
setp), SERVO_AC (ESR, Ext setp)	Data type: FloatingPoint32 Dyn. index: DDS, p0180	Func. diagram: 3060, 3070
(ESR, Ext setp), SERVO_I_AC (ESR,	P-Group: Setpoints Unit group: -	Unit selection: -
Ext setp) ${ }^{-}$	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	0.000 [s] 999999.000 [s]	10.000 [s]
Description:	The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$) up to the maximum speed (p 1082) in this time.	
Dependency:	Refer to: p1082, r1082, p1138	
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time	
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: C2(1), U, T Calculated: -	Access level: 1
	Data type: FloatingPoint32 Dyn. index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	0.000 [s] 999999.000 [s]	10.000 [s]
Description:	The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$) up to the maximum speed (p 1082) in this time.	
Dependency:	Refer to: p1082, r1082, p1138	
Note:		
	The parameter is adapted during the rotating measurement ($\mathrm{p} 1960>0$). This is the reason that during the rotating measurement, the motor can accelerate faster than was originally parameterized.	
	For U/f control and sensorless vector control (see p1300), a ramp-up time of 0 s does not make sense. The setting should be based on the startup times (r0345) of the motor.	

2.2 List of parameters

p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
HLA	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Setpoints	Unit group: -	Unit selection:-
	Not for motor type: -	Scaling: -	Max
	Min	Expert list: 1	

p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
SERVO (Lin),	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3060,3070
SERVO_I_AC (Lin)	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	Expert list: 1	
	$0.000[\mathrm{~s}]$	Factory setting	
Description:	The drive is decelerated from the maximum velocity (p1082) down to standstill (setpoint $=0)$ in this time.		
	Further, the ramp-down time is always effective for OFF1.	$0.000[\mathrm{~s}]$	
Dependency:	Refer to: p1082, r1082, p1139		
Note:	The ramp-down time can be scaled via connector input p1139.		
	The following applies for SERVO:		

p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(1), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	Sets the ramp-down time for the ramp-function generator.		
	The ramp-function generator ramps-down the speed setpoint from the maximum speed (p1082) down to standstill (setpoint $=0$) in this time.		
	Further, the ramp-down time is always effective for OFF1.		
Dependency:	Refer to: p1082, r1082, p1139		
Note:	For U/f control and sensorless vector control (see p1300), a ramp-down time of 0 s does not make sense. The setting should be based on the startup times (r0345) of the motor.		

p1122[0...n]
setp), VECTOR, HLA
(ESR), SERVO_AC
(ESR, Ext setp),
VECTOR_AC,
SERVO_I_AC (ESR,
Ext setp),
VECTOR_I_AC
Description:
Notice:

Note:

$\mathbf{p 1 1 3 0 [0 . . . n]}$
SERVO (ESR, Ext
setp), VECTOR, HLA
(ESR), SERVO_AC
(ESR, Ext setp),
VECTOR_AC,
SERVO_I_AC (ESR,
Ext setp),
VECTOR IAC

Description: Sets the initial rounding-off time for the extended ramp generator.
The value applies to ramp-up and ramp-down.
Note:

$\mathbf{p 1 1 3 1 [0 . . . n] ~}$	Ramp-function generator final rounding-off time / RFG t_end_delay		
SERVO (ESR, Ext	Can be changed: U, T	Calculated: -	Access level: 2
setp), VECTOR, HLA	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3070
(ESR), SERVO_AC	P-Group: Setpoints	Unit group: -	Unit selection: -
(ESR, Ext setp),	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_AC,	Max	Factory setting	
SERVO_I_AC (ESR,	Min	$30.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$
Ext setp),	$0.000[\mathrm{~s}]$		
VECTOR_I_AC	Sets the final rounding-off time for the extended ramp generator.		
Description:	The value applies to ramp-up and ramp-down.		
	Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		

2.2 List of parameters

p1134[0...n]	Ramp-function generator rounding-off type / RFG round-off type		
SERVO (ESR, Ext	Can be changed: U, T	Calculated: -	Access level: 2
setp), VECTOR, HLA	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 3070
(ESR, Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (ESR,	Min	Max	Factory setting
Ext setp), VECTOR_I_AC	0	1	0
Description:	Sets the smoothed response to the OFF1 command or the reduced setpoint for the extended ramp-function generator.		
Value:	0 : Continuous smoothing 1: Discontinuous smoothing		
Dependency:	No effect up to initial rounding-off time (p1130) > 0 s .		
Note:	p1134 $=0$ (continuous smoothing)		
	If the setpoint is reduced while ramping-up, initially a final rounding-off is carried out and then the ramp-up completed. During the final rounding-off, the output of the ramp-function generator continues to go in the direction of the previous setpoint (overshoot). After the final rounding-off has been completed, the output goes toward the new setpoint.		
	p1134 = 1 (discontinuous smoothing)		
	If the setpoint is reduced while ramping-up, then the output goes immediately in the direction of the new setpoint. For the setpoint change there is no rounding-off.		

p1135[0...n] OFF3 ramp-down time / OFF3 t_RD
SERVO, HLA Can be changed: C2(1) U, T Calculated: - Access level: 2

SERVO_AC,
SERVO_I_AC
Can be changed: C2(1), U, T
Data type: FloatingPoint32
P-Group: Setpoints
Not for motor type: -
Min
0.000 [s]

Note: \quad This time can be exceeded if the DC link voltage reaches its maximum value.
Description: Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.

Access level: 2
Func. diagram: 3060, 3070
Unit selection: -
Expert list: 1
Factory setting
0.000 [s]

p1135[0...n]	OFF3 ramp-down time / OFF3 t_RD		
SERVO (Lin),	Can be changed: C2(1), U, T	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram:
SERVO_I_AC (Lin)	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	600.000 [s]	0.000 [s]
	Sets the ramp-down time from the maximum velocity down to zero speed for the OFF3 command.		
Description:	This time can be exceeded if the DC link voltage reaches its maximum value.		
Note:			

p1135[0...n]	OFF3 ramp-down time / OFF3 t_RD		
VECTOR,	Can be changed: C2(1), U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3060, 3070
VECTOR_I_AC	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{~s}]$	$600.000[\mathrm{~s}]$	$3.000[\mathrm{~s}]$
	Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.		
Description:	This time can be exceeded if the DC link voltage reaches its maximum value.		

p1136[0...n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd		
SERVO (ESR, Ext	Can be changed: U, T	Calculated: -	Access level: 2
setp), VECTOR, HLA	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3070
(ESR, Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (ESR,	Min	Max	Factory setting
Ext setp), VECTOR_I_AC	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the initial rounding-off time for OFF3 for the extended ramp generator.		
p1137[0...n]	OFF3 final rounding-off time / RFG OFF3 t_end_del		
SERVO (ESR, Ext	Can be changed: U, T	Calculated: -	Access level: 2
setp), VECTOR, HLA	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3070
(ESR, Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (ESR,	Min	Max	Factory setting
Ext setp), VECTOR_I_AC	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the final rounding-off time for OFF3 for the extended ramp generator.		

p1138[0...n]	CI: Ramp-function generator ramp-up time scaling / RFG t_RU scal		
SERVO (ESR, Ext	Can be changed: T	Calculated: -	Access level: 3
setp), VECTOR, HLA	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3060, 3070
(ESR, Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Not for motor type: -	Scaling: PERCENT	Expert list: 1
SERVO_I_AC (ESR,	Min	Max	Factory setting
Ext setp), VECTOR_I_AC	-	-	1
Description:	Sets the signal source for scaling the ramp-up time of the ramp-function generator.		
Dependency:	Refer to: p1120		
Note:	The ramp-up time is set in p1120.		
p1139[0...n]	CI: Ramp-function generator ramp-down time scaling / RFG t_RD scal		
SERVO (ESR, Ext	Can be changed: T	Calculated: -	Access level: 3
setp), VECTOR, HLA	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3060, 3070
(ESR, Ext setp),	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_AC,	Not for motor type: -	Scaling: PERCENT	Expert list: 1
SERVO_I_AC (ESR,	Min	Max	Factory setting
Ext setp), VECTOR_I_AC	-	-	1
Description:	Sets the signal source for scaling the ramp-down time of the ramp-function generator.		
Dependency:	Refer to: p1121		
Note:	The ramp-down time is set in p1121.		

2.2 List of parameters

p1140[0...n]	BI: Enable ramp-function generator/inhibit ramp-function generator / Enable RFG		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable ramp-function generator/inhibit ramp-function generator". For the PROFIdrive profile, this command corresponds to control word 1 bit 4 (STW1.4).		
	BI: p1140 = 0 signal:		
	Inhibits the ramp-function generator (the ramp-function generator output is set to zero).		
	BI: p1140 = 1 signal:		
	Enable ramp-function generator.		
Dependency:	Refer to: p1141, p1142		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
!			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1140	BI: Enable ramp-function generator/inhibit ramp-function generator / Enable RFG		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9678
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable ramp-function generator/inhibit ramp-function generator". For the PROFIdrive profile, this command corresponds to control word 1 bit 4 (STW1.4).		
	BI: p1140 = 0 signal:		
	Inhibits the ramp-function generator (the ramp-function generator output is set to zero).		
	BI: p1140 = 1 signal:		
	Enable ramp-function generator.		
Dependency:	Refer to: p1141, p1142		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	This parameter has no function in the "SINAMICS" (p4400 = 1) operating mode.		
p1141[0...n]	BI : Continue ramp-function generator/freeze ramp-function generator / Continue RFG		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "continue ramp-function generator/freeze ramp-function generator".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 5 (STW1.5).		
	BI: p1141 = 0 signal:		
	Freezes the ramp-function generator.		
	BI: p1141 = 1 signal:		
	Continue ramp-function generator.		
Dependency:	Refer to: p1140, p1142		

Caution: \qquad 1	When "master control from PC" is activated, this binector input is ineffective.
Notice:	The ramp-function generator is, independent of the state of the signal source, active in the following cases: - OFF1/OFF3. - ramp-function generator output within the suppression bandwidth. - ramp-function generator output below the minimum speed.
p1141	BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG
TM41	Can be changed: T Calculated: - Access level: 3
	Data type: Unsigned32 / Binary Dyn. index: - Func. diagram: 9678
	P-Group: Setpoints Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	1
Description:	Sets the signal source for the command "continue ramp-function generator/freeze ramp-function generator". For the PROFIdrive profile, this command corresponds to control word 1 bit 5 (STW1.5). BI: p1141 = 0 signal: Freezes the ramp-function generator. BI: p1141 = 1 signal: Continue ramp-function generator.
Dependency:	Refer to: p1140, p1142
Caution: \qquad个	When "master control from PC" is activated, this binector input is ineffective.
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed. This parameter has no function in the "SINAMICS" (p4400 = 1) operating mode.
Note:	
p1142[0...n]	BI: Enable setpoint/inhibit setpoint / Setpoint enable
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: T Calculated: - Access level: 3
	Data type: Unsigned32 / Binary \quad Dyn. index: CDS, p0170 Func. diagram: 2501
	P-Group: Setpoints Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	1
Description:	Sets the signal source for the command "enable setpoint/inhibit setpoint". For the PROFIdrive profile, this command corresponds to control word 1 bit 6 (STW1.6). BI: p1142 $=0$ signal Inhibits the setpoint (the ramp-function generator input is set to zero). BI: p1142 = 1 signal Setpoint enable.
Dependency:	Refer to: p1140, p1141
Caution: 1.	When "master control from PC" is activated, this binector input is ineffective.
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	When the function module "position control" (r0108.3 = 1) is activated, this binector input is interconnected as follows as standard: BI: p1142 $=0$ signal

2.2 List of parameters

p1142	BI: Enable setpoint/inhibit setpoint / Setpoint enable		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9674, 9678
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable setpoint/inhibit setpoint".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 6 (STW1.6).		
	BI: $\mathrm{p} 1142=0$ signal		
	Inhibits the setpoint (the ramp-function generator input is set to zero).		
	BI: $\mathrm{p} 1142=1$ signal		
	Setpoint enable.		
Dependency:	Refer to: p1140, p1141		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
¢			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	This parameter has no function in the "SINAMICS" (p4400 = 1) operating mode.		
p1143[0...n]	BI: Ramp-function generator, accept setting value / RFG accept set v		
SERVO (ESR, Ext setp), VECTOR, HLA (ESR), SERVO_AC (ESR, Ext setp), VECTOR_AC, SERVO_I_AC (ESR, Ext setp), VECTOR_I_AC	Can be changed: T Calculated: - Access level: 3		
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 3060, 3070
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for accepting the setting value of the ramp-function generator.		
Dependency:	The signal source for the ramp-function generator setting value is set using parameters. Refer to: p1144		
Note:	0/1 signal:		
	The ramp-function generator output is immediately (without delay) set to the setting value of the ramp-function generator.		
	1 signal:		
	The setting value of the ramp-function generator is effective. 1/0 signal:		
	The input value of the ramp-function generator is effective. The ramp-function generator output is adapted to the input value using the ramp-up time or the ramp-down time.		
	0 signal:		
	The input value of the ramp-function generator is effective.		
p1144[0...n]	CI: Ramp-function generator setting value / RFG setting value		
SERVO (ESR, Ext setp), VECTOR, HLA (ESR), SERVO_AC (ESR, Ext setp), VECTOR_AC, SERVO_I_AC (ESR, Ext setp), VECTOR_I_AC	Can be changed: U, T Data type: Unsigned32 / FloatingPoint32 P-Group: Setpoints	Calculated: -	Access level: 3
		Dyn. index: CDS, p0170	Func. diagram: 3060, 3070
		Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:Dependency:	Sets the signal source for the ramp-function generator setting value.		
	The signal source for accepting the setting value is set using parameters. Refer to: p1143		

p1145[0...n]	Ramp-function generator tracking intensity. / RFG track intens		
SERVO (ESR, Ext setp), SERVO_AC (ESR, Ext setp), SERVO_I_AC (ESR, Ext setp)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3080
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0	50.0	1.3
Description:	Sets the ramp-function generator tracking.		
	The output value of the ramp-function generator is tracked (corrected) corresponding to the maximum possible drive acceleration.		
	The reference value is the deviation at the speed/velocity controller input that is necessary to ensure that the motor accelerates at the torque/force limit.		
Recommendation:	If at least one speed setpoint filter/velocity setpoint filter is activated (p1414), then the ramp-function generator tracking should be deactivated ($\mathrm{p} 1145=0.0$). When the speed setpoint filter is activated, the output value of the ramp-function generator can no longer be tracked (corrected) corresponding to the maximum possible drive acceleration.		
	For p1145 = 0.0:		
	This value deactivates the ramp-function generator tracking.		
	For $1145=0.0 \ldots 1.0$:		
	Generally, these values are not practical. They cause the motor to accelerate below its torque limit. The lower the selected value, the greater the margin between the controller and torque limit when accelerating.		
	For p1145 > 1.0:		
	The greater the value, the higher the permissible deviation between the speed setpoint and speed actual value.		
Notice:	If ramp-function generator tracking is activated and the ramp time is set too short, this can cause unsteady acceleration.		
	Remedy:		
	- deactivate ramp-function generator tracking (p1145 = 0).		
	- increase the ramp-up/ramp-down time (p1120, p1121).		
Note:	In the U/f mode, ramp-function generator tracking is not active.		
	For SERVO with U/f operation, the following applies:		
	The complete ramp-function generator is not active, i.e. ramp-up and ramp-down time $=0$.		

p1145[0...n]	Ramp-function generator tracking intensity. / RFG track intens		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3080
VECTOR_I_AC	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0	50.0	1.3

Description: Sets the ramp-function generator tracking

The output value of the ramp-function generator is tracked (corrected) corresponding to the maximum possible drive acceleration.
The reference value is the deviation at the speed/velocity controller input that is necessary to ensure that the motor accelerates at the torque/force limit.
Recommendation: If at least one speed setpoint filter/velocity setpoint filter is activated (p1414), then the ramp-function generator tracking should be deactivated ($\mathrm{p} 1145=0.0$). When the speed setpoint filter is activated, the output value of the ramp-function generator can no longer be tracked (corrected) corresponding to the maximum possible drive acceleration.

For p1145 = 0.0:
This value deactivates the ramp-function generator tracking.
For p1145 = 0.0 ... 1.0:
Generally, these values are not practical. They cause the motor to accelerate below its torque limit. The lower the selected value, the greater the margin between the controller and torque limit when accelerating.
For p1145 > 1.0:
The greater the value, the higher the permissible deviation between the speed setpoint and speed actual value.

2.2 List of parameters

Notice: If ramp-function generator tracking is activated and the ramp time is set too short, this can cause unsteady acceleration.
Remedy:

- deactivate ramp-function generator tracking (p1145 = 0).
- increase the ramp-up/ramp-down time ($\mathrm{p} 1120, \mathrm{p} 1121$).

Note: In the U/f mode, ramp-function generator tracking is not active.
For ramp-function generator tracking and active acceleration model (p1400.20, 23), the integral component of the speed controller should be able to run freely up to the torque limit ($p 1400.16=1$).

p1148[0...n]	Ramp-function gen. tolerance for ramp-up and ramp-down active / RFG tol HL/RL act		
SERVO (ESR, Ext	Can be changed: U, T	Calculated: -	Access level: 3
setp, Lin), HLA, HLA	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3060, 3070
(ESR, Ext setp, Lin),	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
SERVO_I_AC (ESR,	Not for motor type: -	Scaling:	Expert list: 1
Ext setp, Lin)	Min	Max	Factory setting
	0.000 [$\mathrm{m} / \mathrm{min}$]	10.000 [m/min]	0.200 [m/min]
Description:	Sets the tolerance value for the status of the ramp-function generator (ramp-up active, ramp-down active). If the input of the ramp-function generator does not change in comparison to the output by more than the entered tolerance time, then the status bits "ramp-up active" and "ramp-down active" are not influenced.		
Dependency:	Refer to: r1199		

p1148[0...n]	Ramp-function gen. tolerance for ramp-up and ramp-down active / RFG tol HL/RL act		
SERVO (ESR, Ext	Can be changed: U, T	Calculated: -	Access level: 3
setp), VECTOR,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3060, 3070
setp), VECTOR AC,	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
SERVO_I_AC (ESR,	Not for motor type: -	Scaling: -	Expert list: 1
Ext setp),	Min	Max	Factory setting
ECTOR_I_AC	0.000 [rpm]	1000.000 [rpm]	19.800 [rpm]
Description:	Sets the tolerance value for the status of the ramp-function generator (ramp-up active, ramp-down active). If the input of the ramp-function generator does not change in comparison to the output by more than the entered tolerance time, then the status bits "ramp-up active" and "ramp-down active" are not influenced.		
Dependency:	Refer to: r1199		

r1149	CO: Ramp-function generator acceleration / RFG acceleration		
SERVO (ESR, Ext	Can be changed: -	Calculated: -	Access level: 3
setp, Lin), SERVO_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3060,3070
(ESR, Ext setp, Lin),	P-Group: Setpoints	Unit group: $22 _2$	Unit selection: $\mathbf{p} 0505$
SERVO_I_AC (ESR,	Not for motor type: -	Scaling: 2007	Expert list: 1
Ext setp, Lin)	Min	Max	Factory setting
	$-\left[m / \mathrm{s}^{2}\right]$	$-\left[\mathrm{m} / \mathrm{s}^{2}\right]$	$-\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Description:	Displays the acceleration of the ramp-function generator.		
Dependency:	Refer to: p1145		

r1149	CO: Ramp-function generator acceleration / RFG acceleration		
SERVO (ESR, Ext	Can be changed: -	Calculated: -	Access level: 3
setp), VECTOR, HLA	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3060,3070
(ESR), SERVO_AC	P-Group: Setpoints	Unit group: $39 _1$	Unit selection: p0505
(ESR, Ext setp),	Not for motor type: -	Scaling: p2007	Expert list: 1
VECTOR_AC,	Max	Factory setting	
SERVO_I_AC (ESR,	Min	$-\left[r e v / s^{2}\right]$	$-\left[r e v / s^{2}\right]$
Ext setp),	$-\left[r e v / s^{2}\right]$		
VECTOR_I_AC			
Description:	Displays the acceleration of the ramp-function generator.		
Dependency:	Refer to: p 1145		

$\mathbf{r 1 1 5 0}$	CO: Ramp-function generator velocity setpoint at the output / RFG v_set at outp		
SERVO (ESR, Ext	Can be changed: -	Calculated: -	Access level: 3
setp, Lin), HLA, HLA	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001,3080
(ESR), SERVO_AC	P-Group: Setpoints	Unit group: $4 _1$	Unit selection: $p 0505$
(ESR, Ext setp, Lin),	Not for motor type: -	Scaling: p2000	Expert list: 1
SERVO_I_AC (ESR,	Max	Factory setting	
Ext setp, Lin)	Min	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
	$-[\mathrm{m} / \mathrm{min}]$		
Description:	Displays the setpoint at the output of the ramp-function generator.		

$\mathbf{r 1 1 5 0}$
SERVO (ESR, Ext
setp), VECTOR,
SERVO_AC (ESR, Ext
setp), VECTOR_AC,
SERVO_I_AC (ESR,
Ext setp),
VECTOR_I_AC

Description:

CO: Ramp-function generator speed setpoint at the output / RFG n_set at outp		
Can be changed: -	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001,3080
P-Group: Setpoints	Unit group: $3-1$	Unit selection: p0505
Not for motor type: -	Scaling: p2000	Expert list: 1
Min	Max	Factory setting
$-[r p m]$	$-[r p m]$	$-[r p m]$
Displays the setpoint at the output of the ramp-function generator		

p1151[0...n]	Ramp-function generator configuration / RFG config					
SERVO (ESR, Ext	Can be changed: U, T		Calculated: -		Access level: 2	
setp), VECTOR,	Data type: Unsigned16		Dyn. index: DDS, p0180		Func. diagram: -	
setp), VECTOR_AC,	P-G	oup: Setpoints	Unit group: -		Unit selection: -	
SERVO_I_AC (ESR,	Not	or motor type: -	Scaling: -		Expert list: 1	
Ext setp),	Min		Max		Factory setting	
VECTOR_I_AC	-		-		0000 bin	
Description:	Sets the configuration for the extended ramp-function generator.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Deactivate round over		Yes	No	3070
		RFG tracking with		Yes	No	-
	02	RFG tracking with		Yes	No	-
Dependency:	For bit 01, $02=1$:					

These bits are only effective when ramp-function generator tracking is activated (p1145>0).
When both bits are activated, RFG tracking with polarity change is active.
For bit $01=0$, bit $02=0$:
When ramp-function generator tracking is active, the setpoint can only change in the direction of the target setpoint or be frozen.

Notice:

For bit $00=1$:
If the ramp-up time is longer than the ramp-down time ($\mathrm{p} 1120>\mathrm{p} 1121$), then there is an acceleration step at the zero crossover. This can have a negative impact on the mechanical system.
Note:
For bit $00=1$:
When the direction change is changed there is no rounding-off before and after the zero crossover.
For bit $01=1$:
For load surges, the ramp-function generator output tracks the actual value. The tracking (correction) ends at a setpoint of zero.
For bit $02=1$:
For load surges, the ramp-function generator output tracks the actual value. For a polarity change, the tracking (correction) is continued.

p1155[0...n]	CI: Velocity controller velocity setpoint 1 / v_ctrl v_set 1		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 3080, 5030, 6031
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for velocity setpoint 1 of the velocity controller.		
Dependency:	The effectiveness of this setpoint depends on, e.g. STW1.4 and STW1.6.		
	Refer to: r0002, p0840, p0844, p0848, p0852, p0854, r0898, p1140, p1142, p1160, r1170, p1189, p1412, p1414, p1417, p1418		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1155	CI: TM41 encoder emulation speed setpoint 1 / Enc_emulat n_set 1		
TM41	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 9674
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for speed setpoint 1 of the encoder emulation.		
	The speed setpoint is processed corresponding to the sequencer of the TM41.		
Dependency:	The effectiveness of this setpoint depends on control word 1 (STW1).		
	Refer to: r0898		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1160[0...n]	CI: Speed controller speed setpoint 2 / n_ctrl n_set 2		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 3080
VECTOR_AC, SERVO I AC,	P-Group: Setpoints	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for speed setpoint 2 of the speed controller.		
Dependency:	Refer to: p1155, r1170		
Note:	For OFF1/OFF3, the ramp-function generator ramp is effective.		
	The ramp-function generator is set (SERVO: to the actual value, VECTOR: To the setpoint (r1170)) and stops the drive corresponding to the ramp-downtime (p1121 or p1135). While stopping via the ramp-function generator, STW1.4 is effective (enable ramp-function generator).		
	When the function module "position control" (r0108.3 = 1) is activated, this connector input is interconnected as follows as standard:		

p1160[0...n]	CI: Velocity controller velocity setpoint 2 / v_ctrl v_set 2		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 3080
SERVO_I_AC (Lin)	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description:	Sets the signal source for velocity setpoint 2 of the velocity controller.
Dependency:	Refer to: p1155, r1170
Note:	For OFF1/OFF3, the ramp-function generator ramp is effective.
	The ramp-function generator is set to the actual value and stops the drive corresponding to the ramp-downtime
	(p1121 or p1135). While stopping via the ramp-function generator, STW1.4 is effective (enable ramp-function
generator).	
	For the function module "position control" (r0108.3 = 1), this connector input is interconnected as follows as standard:
	Cl: p1160 $=\mathrm{r} 2562$

$r 1169$

Description: Displays the velocity setpoint after the addition of the velocity setpoint 1 (p1155) and velocity setpoint 2 (p1160).

CO: Velocity controller velocity setpoints 1 and $2 / \mathrm{v}_{\text {_ }}$ ctrl v_set 1/2		
Can be changed: -	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
Not for motor type: -	Scaling: p2000	Expert list: 1
Min	Max	Factory setting
- [m/min]	- [m/min]	- [m/min]

Dependency: Refer to: p1155, p1160
Note: \quad The value is only correctly displayed at r0899.2 $=1$ (operation enabled).

$\mathbf{r 1 1 7 0}$	CO: Velocity controller setpoint sum / v_ctrl setp sum		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001, 3050, 3080, 5019, 5020
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Display and connector output for the velocity setpoint after selecting the ramp-function generator. The value is the sum of velocity setpoint 1 (p 1155) and velocity setpoint 2 (p 1160).		
Dependency:	Refer to: r1150, p1155, p116		

r1170	CO: Speed controller setpoint sum / n_ctrl setp sum		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC, VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001, 3080, 6300
	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the speed setpoint after selecting the ramp-function generator. The value is the sum of speed setpoint 1 (p 1155) and speed setpoint 2 (p 1160).		
Dependency:	Refer to: r1150, p1155, p1160		

p1189[0...n]	Speed setpoint configuration / n_ctrl config					
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: U, T		Calc	ulated: -	Acces	
	Data type: Unsigned16		Dyn.	index: D	Func.	
	P-Group: Setpoints			roup: -	Unit s	
	Not for motor type: -		Scal	ng: -	Exper	
	Min		Max		Facto	
	-		-		0011	
Description:Bit field:	Sets the configuration for the speed setpoint.					
	Bit	Signal name		1 signa	0 signal	FP
		Interpolation ramp active		Yes	No	3080
		Interpol. op-loop ctr	active		No	3080

Note:
For bit 01:
The interpolator is only effective in following cases:

- isochronous PROFIBUS operation with a sign-of-life received from the master (STW2.12 ... STW2.15).

p1189[0...n]	Velocity setpoint configuration / v_ctrl config					
SERVO (Lin),	Can be changed: U, T		Calculated: -		Access level: 2	
SERVO_AC (Lin),	Data type: Unsigned16		Dyn. index: DDS, p0180		Func. diagram: 3080	
	P-Group: Setpoints		Unit group -		Unit selection: -	
	Not for motor type: -		Scaling: -		Expert list: 1	
	Min		Max		Factory setting	
	-		-		0011 bin	
Description:	Sets the configuration for the velocity setpoint.					
Bit field:	$\begin{aligned} & \text { Bit } \\ & 00 \end{aligned}$	Signal name		1 signal	0 signal FP	
		Interpolation ramp-fct gen/velocity controller active		Yes	No	3080
	01	Interpol. op-loop ct active		Yes	No	3080

2.2 List of parameters

Description:	Sets the signal source for the position deviation XERR for DSC (position controller output of the higher-level control).
Dependency:	Isochronous operation must be activated for DSC.
	The position controller gain factor (KPC), the position deviation (XERR) and the speed setpoint (N_SOLL_B) must be
included in the setpoint telegram.	
	At least the encoder interface (Gx_XIST1) must be included in the actual value telegram.
	The position actual value used for the internal position controller can be selected using p1192.
	Refer to: p1191, p1192
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	The parameter can only be interconnected to a signal source with Integer32 data type.
	DSC: Dynamic Servo Control

p1191	CI: DSC position controller gain KPC / DSC KPC		
SERVO, HLA,	Can be changed: T	Calculated: -	Access
SERVO_AC,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func.
SERVO_I_AC	P-Group: Setpoints	Unit group: -	Unit se
	Not for motor type: -	Scaling: -	Maxpert
	Min	-	Factor
	-	0	
Description:	Sets the signal source for the position controller gain KPC for DSC.		
Dependency:	Isochronous operation must be activated for DSC.		
	Refer to: p1190		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	DSC: Dynamic Servo Control		

CI: DSC control word DSC_STW / DSC_STW

p1194

SERVO (DSC spline,
Lin), SERVO_AC
(DSC spline, Lin),
SERVO_I_AC (DSC
spline, Lin)

Can be changed: \top
Data type: Unsigned32 / Integer16
P-Group: Setpoints
Not for motor type: -
Min
,

Description: Sets the signal source for control word DSC_STW for DSC with spline.
Bit 0: DSC with spline on
Bit 4: Velocity precontrol for DSC with spline on
Bit 5: Force precontrol for DSC with spline on
The control word is only evaluated if the "DSC with spline" function module (r0108.6) is activated. The closed-loop control structure selected by the DSC control word is displayed in r1407 Refer to: p1191, p1192, p1195
Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
-

DSC: Dynamic Servo Control

Access level: 3
Func. diagram: 3001, 3090
Unit selection: -
Expert list: 1
Factory setting

2.2 List of parameters

p1194	Cl	STV	
SERVO (DSC spline), SERVO_AC (DSC spline), SERVO_I_AC (DSC spline)	Can be changed: T Data type: Unsigned32 / Integer16 P-Group: Setpoints Not for motor type: - Min	Calculated: Dyn. index: Unit group: Scaling: - Max	Access level: 3 Func. diagram: 3001, 3090 Unit selection: - Expert list: 1 Factory setting
Description:	Sets the signal source for control word DSC_STW for DSC with spline. Bit 0: DSC with spline on Bit 4: Speed precontrol for DSC with spline on Bit 5: Torque precontrol for DSC with spline on		
Dependency:	The control word is only evaluated if the "DSC with spline" function module (r0108.6) is activated. The closed-loop control structure selected by the DSC control word is displayed in r1407. Refer to: p1191, p1192, p1195		
Notice: Note:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed. DSC: Dynamic Servo Control		
p1195	CI: DSC symmetrizing time constant T_SYMM / DSC T_SYMM		
SERVO (DSC spline, Lin), SERVO_AC (DSC spline, Lin), SERVO_I_AC (DSC spline, Lin)	Can be changed: T Data type: Unsigned32 / Integer16 P-Group: Setpoints Not for motor type: - Min	Calculated: Dyn. index: Unit group: Scaling: - Max -	Access level: 3 Func. diagram: 3001, 3090 Unit selection: - Expert list: 1 Factory setting 0
Description:	Sets the signal source for the symmetrizing time constant T_SYMM for DSC with spline. T_SYMM = 0: Symmetrization is deactivated. T_SYMM > 0 : The position setpoint is symmetrized with the time constant T_SYMM. For active force precontrol ($\mathrm{r} 1407.20,21,22$), the velocity precontrol value is symmetrized with the sum of the following time constants: T_SYMM + T_SYMM_ADD (p1427) + 0.5 * velocity controller sampling time (p0115[1]) Force precontrol value is not symmetrized.		
Dependency:	The symmetrizing time constant is only evaluated if the "DSC with spline" function module (r0108.6) is activated. Refer to: p1191, p1192, p1194, p1427		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The symmetrizing time constant T_SYMM has the unit $10 \mu \mathrm{~s}$ in the Unsigned 16 format. DSC: Dynamic Servo Control		

p1195	CI: DSC symmetrizing time constant T_SYMM / DSC T_SYMM		
SERVO (DSC spline), SERVO_AC (DSC spline), SERVO_I_AC (DSC spline)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 3001, 3090
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the symmetrizing time constant T_SYMM for DSC with spline.		
	T_SYMM = 0:		
	Symmetrization is deactivated.		
	T_SYMM > 0:		
	The position setpoint is symmetrized with the time constant T_SYMM.		
	For active torque precontrol ($\mathrm{r} 1407.20,21,22$), the speed precontrol value is symmetrized with the sum of the following time constants:		
	T_SYMM + T_SYMM_ADD (p1427) + 0.5 * speed controller sampling time (p0115[1])		
	Torque precontrol value is not symmetrized.		
Dependency:	The symmetrizing time constant is only evaluated if the "DSC with spline" function module (r0108.6) is activated. Refer to: p1191, p1192, p1194, p1427		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The symmetrizing time constant T_SYMM has the unit $10 \mu \mathrm{~s}$ in the Unsigned16 format.		
	DSC: Dynamic Servo Control		

r1196	CO: DSC position setpoint / DSC x_set		
SERVO, HLA,	Can be changed: -	Calculated: -	Access level: 4
SERVO_AC,	Data type: Integer32	Dyn. index: -	Func. diagram: 3090
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output of the position setpoint of DSC in fine pulses.		
Note:	DSC: Dynamic Servo Control		
r1197	Fixed velocity setpoint number actual / n_set_fixed No act		
SERVO (Ext setp, Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Ext setp,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 3010
Lin), SERVO_I_AC (Ext setp, Lin)	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of the selected fixed speed/velocity setpoint.		
Dependency:	Refer to: p1020, p1021, p1022, p1023		
Note:	If a fixed speed setpoint has not been selected (p1020 \ldots p $1023=0, r 1197=0)$, then r1024 $=0($ setpoint $=0)$.		

r1197	Fixed speed setpoint number actual / n_set_fixed No act				
SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR_AC, SERVO_I_AC (Ext setp), VECTOR_I_AC			Calculated: -	Access	
	Data type: Unsigned32		Dyn. index: -	Func.	
	P-Group: Setpoints		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the number of the selected fixed speed/velocity setpoint.				
Dependency:	Refer to: p1020, p1021, p1022, p1023				
Note:	If a fixed speed setpoint has not been selected (p1020 ... p1023 $=0, r 1197=0$), then r1024 $=0$ (setpoint $=0$).				
r1198.0... 15	CO/BO: Control word setpoint channel / STW setpoint chan				
SERVO (Ext setp), VECTOR, SERVO_AC (Ext setp), VECTOR_AC, SERVO_I_AC (Ext setp), VECTOR_I_AC	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Setpoints		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Display and BICO output for the control word of the setpoint channel.				
Bit field:		Signal name	1 signal	0 signal	FP
	Bit 00	Fixed setpoint bit 0	Yes	No	3010
	01	Fixed setpoint bit 1	Yes	No	3010
	02	Fixed setpoint bit 2	Yes	No	3010
	03	Fixed setpoint bit 3	Yes	No	3010
	05	Inhibit negative direction	Yes	No	3040
	06	Inhibit positive direction	Yes	No	3040
	11	Setpoint inversion	Yes	No	3040
	13	Motorized potentiometer raise	Yes	No	3020
	14	Motorized potentiometer lower	Yes	No	3020
	15	Bypass ramp-function generator	Yes	No	$\begin{aligned} & 3060, \\ & 3070 \end{aligned}$

Note:	For bit $02:$
	The bit is the result of the OR logic operation - bit 00 and bit 01.

p1200	CI: Position offset incremental/absolute / x_off inc/abs		
HLA	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: -
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	0	
Description:	Sets the signal source for the position offset between incremental and absolute position.		
Dependency:	Refer to: p1201		
Note:	When using an incremental measuring system, which is referenced (homed) via the control system, then the control		
	must provide an offset for the incremental position. This value is added to the incremental value, therefore generating		
	an absolute position. The absolute position is used in the drive to determine the piston position, if the measuring		
	system does not have any absolute information.		

p1200[0...n]
VECTOR,
VECTOR_AC,
VECTOR_I_AC

Value:

Flying restart operating mode / FlyRest op_mode

Can be changed: U, T
Data type: Integer16
P-Group: Functions
Not for motor type: REL Min

0

Calculated: -
Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max
6

Access level: 2
Func. diagram: 6300
Unit selection: -
Expert list: 1
Factory setting
0

Description: Sets the operating mode for flying restart.
The flying restart allows the drive converter to be switched on while the motor is still rotating. In so doing, the drive converter output frequency is changed until the actual motor speed/velocity is found. The motor then accelerates up to the setpoint at the ramp-function generator setting.

Value.	g restart inactive
	2: FlyRestart active after on, fault, OFF2 (start in setp. dir.)
	3: FlyRestart active after fault, OFF2 (start in setp. direction)
	4: Flying restart always active (start only in setpoint direction)
	5: FlyRestart active after on, fault, OFF2 (start only in setp_dir)
	6: FlyRestart active after fault, OFF2 (start only in setp. dir.)
Dependency:	The ground fault test is only possible when the motor is stationary, and is therefore only realized when flying restart is deactivated ($\mathrm{p} 1200=0$).
	For induction motors, the following applies:
	A differentiation is made between flying restart for U/f control and for vector control (p1300).
	Flying restart, U/f control: p1202, p1203, r1204
	Flying restart, vector control: p1202, p1203, r1205
	For synchronous motors, the following applies:
	Flying restart is not possible with U/f control or if, in the case of sensorless vector control, a Voltage Sensing Module (VSM) has not been connected and parameterized.
	If two VSMs are connected to the Motor Module, then the motor voltage for the flying restart is measured using the second VSM (see p0151[1]).
	If only one VSM is connected, then this can be used for the flying restart (p 1200) (for induction motors, also see p0247 bit 5). When activating flying restart, line synchronization must be deactivated ($\mathrm{p} 3800=0$).
	Refer to: p1201
	Refer to: F07330, F07331
Notice:	The "flying restart" function must be used in cases where the motor may still be running (e.g. after a brief line supply interruption) or is being driven by the load. The system might otherwise shut down as a result of overcurrent.
	It does not make sense to use "flying restart" together with the "motor holding brake function" (p1215>0) because then the flying restart will always be realized with the motor stationary.
	For a flying restart of induction motors without voltage measurement (VSM) the de-energization time (p0347) must be set long enough so that for fast restarts after a pulse inhibit, excessively high current peaks do not occur.

2.2 List of parameters

Note:

For $\mathrm{p} 1200=1,4$, the following applies: Flying restart is active after faults, OFF1, OFF2, OFF3. For p1200 $=2,5$, the following applies:
The "switch-on" is the first switching-on operation after the drive system has been booted. This is practical for motors with a high-inertia load.
For p1200 $=1,2,3$, the following applies: The search is made in both directions.
For p1200 $=4,5,6$, the following applies: The search is only made in the setpoint direction. For a setpoint of zero, a search is not made in the negative direction of rotation.
For operation with encoder, the following applies:
$\mathrm{p} 1200=1,4$ as well as $\mathrm{p} 1200=2,5$ and $\mathrm{p} 1200=3,6$ have the same meaning.
For U/f control (p1300 < 20), the following applies:
The speed can only be sensed for values above approx. 5% of the rated motor speed. For lower speeds, it is assumed that the motor is at a standstill.
If p1200 is changed while commissioning (p 0009 , $\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1200 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).

p1201[0...n]	CI: Position offset incremental/absolute valid / x_off valid		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	0	
Description:	Sets the signal source for the message "Position offset incremental/absolute valid".		
	BI: p1201 = signal:		
	The value for the position offset incremental/absolute (p1200) is valid.		
Dependency:	Refer to: p1200		

p1201[0...n]	BI: Flying restart enable signal source / Fly_res enab S_src		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECCTOR_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: -
VECTOR_I_AC	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Factory setting	
	-	1	
Description:	Sets the signal source to enable the "flying restart" function.		
Dependency:	Refer to: p1200		
Note:	Withdrawing the enable signal has the same effect as setting p1200 $=0$.		

p1202[0...n]	Flying restart search current / FlyRest I_srch		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [\%]	400 [\%]	100 [\%]
Description:	Sets the search current for the "flying restart" function.		
	The value is referred to the motor magnetizing current.		
	For U/f control, it may be necessary to increase the search current (e.g. 120%) to ensure reliable flying restart.		
	Fast flying restart for induction motors with voltage model (see r1780.11):		
	Sets the initial setpoint for the field-generating current component.		
Dependency:	Refer to: r0331		

Caution:	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.
Note:	In U/f control mode, the parameter serves as a threshold value for establishing the current at the beginning of the flying restart function. When the threshold value is reached, the actual search current is set as a function of the frequency based on the voltage setpoints.
	Reducing the search current can also improve flying restart performance (if the system moment of inertia is not very high, for example).
	The following applies for a synchronous reluctance motor:
	- a parameter change only becomes effective after carrying out the motor data identification.
	- the minimum search current is limited (p1202 >= 50%).
	- the search algorithm is optimized for 100%, and the current reached is internally limited. It is possible that a set value (p 1202 != 100%) may not be able to be reached.
	- if the ratio between motor power and converter power is greater than 1 , then it may be advantageous to increase the search current.
p1203[0...n]	Flying restart search rate factor / FlyRst v_Srch Fact
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: DDS, p0180 Func. diagram: -
	P-Group: Functions Unit group: - Unit selection: -
	Not for motor type: PMSM, REL Scaling: - Expert list: 1
	Min Max Factory setting
	10 [\%] 4000 [\%] 100 [\%]
Description:	Sets the factor for the search speed for flying restart.
	The value influences the rate at which the output frequency is changed during a flying restart . A higher value results in a longer search time.
Recommendation:	For sensorless vector control and motor cables longer than 200 m - as well as for du/dt filters (p 0230) - the following applies:
	p1203 >= 300 \%
Caution: Note:	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.
	For vector control, a value that is too low or too high can cause flying restart to become unstable.
	The parameter factory setting is selected so that standard induction motors that are rotating can be found and restarted as quickly as possible (fast flying restart).
	With this pre-setting, if the motor is not found (e.g. for motors that are accelerated as a result of active loads or with U/f control and low speeds), we recommend that the search rate is reduced (by increasing p1203).
	For a fast flying restart with voltage model in the U/f control mode ($\mathrm{p} 1300<20$) the search duration can be modified using this parameter.
	The following applies for a synchronous reluctance motor:
	- the minimum search speed is limited (p1203 >= 50%).

r1204.0... 15	CO/BO: Flying restart U/f control status / FlyRest Uf st				
VECTOR,	Can be changed: -		Calculated: -	Access level: 4	
VECTOR_AC,	Data type: Unsigned16		Dyn. index: -	Func. diagram: -	
	P-Group: Functions		Unit group: -	Unit selection: -	
	Not for motor type: PMSM, REL		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status for checking and monitoring flying restart states in the U/f control mode.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Current impressed	Yes	No	-
	01	No current flow	Yes	No	-
	02	Voltage input	Yes	No	-
	03	Voltage reduced	Yes	No	-
	04	Start ramp-function generator	Yes	No	-
	05	Wait for execution	Yes	No	-
	06	Slope filter act	Yes	No	-
	07	Positive gradient	Yes	No	-

2.2 List of parameters

08	Current < threshold	Yes	No
09	Current minimum	Yes	No
10	Search in the positive direction	Yes	No
11	Stop after positive direction	Yes	No
12	Stop after negative direction	Yes	No
13	No result	Yes	No
14	Fast flying restart w/ voltage model for induction motor activ.	Yes	No
15	Flying restart with VSM active	Yes	No

Note:

For bit 00 ... 09:
Used to control internal sequences during the flying restart
Depending on the motor type (p 0300), the number of active bits differs.
For bits 10 ... 17:
Are used to monitor the flying restart sequence.

2.2 List of parameters

Danger:	If the automatic restart is activated (p1210 > 1) if there is an ON command (refer to p0840), the drive is switched on
as soon as any fault messages that are present can be acknowledged. This also occurs after the line supply returns	
or the Control Unit boots if the DC link voltage is again present or the feedback of the line supply infeed (refer to	
p0864) is again available. This automatic switching-on operation can only be interrupted by withdrawing the ON	
command.	
A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).	
Notice:	For p1210 > 1, the infeed is automatically started.
Note:	For p1210 = 1:
	Faults that are present are automatically acknowledged. If new faults occur after a successful fault acknowledgment,
then these are also automatically acknowledged again. A minimum time of p1212 + 1 s must expire between a	
	successful fault acknowledgment and a fault re-occurring if the signal ON/OFF1 (STW1.0) is at a HIGH signal level. If
the signal ON/OFF1 is at a LOW signal level, then the time between a successful fault acknowledgment and a new	
fault must be at least 1 s. p1211 has no influence on the number of acknowledgment attempts.	

For p1210 = 6:
An automatic restart is carried out if any fault has occurred.

$\mathbf{p 1 2 1 1}$
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Automatic restart start attempts / AR start attempts		
Can be changed: U, T	Calculated: -	Access level: 3
Data type: Unsigned16	Dyn. index: -	Func. diagram: -
P-Group: Functions	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	10	3

Description:
Dependency:

Notice: \quad After fault F07320 occurs, the switch-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.
After a complete power failure (blackout) the start counter always starts with the counter value that applied before the power failure, and decrements this start attempt by 1 . If a further attempt to acknowledge is started by the automatic restart function prior to power failure, e.g. if the Control Unit remains active on power failure longer than the time p1212/2, the fault counter will already have been decremented once. In this case, the start counter is thus decreased by the value 2 .
Note: A start attempt starts immediately when a fault occurs. The start attempt is considered to been completed if the motor was magnetized (r0056.4 = 1) and an additional delay time of 1 s has expired.
As long as a fault is present, an acknowledge command is generated in the time intervals of p1212 / 2. When successfully acknowledged, the start counter is decremented. If, after this, a fault re-occurs before a restart has been completed, then acknowledgment starts again from the beginning.
Fault F07320 is output if, after several faults occur, the number of parameterized start attempts has been reached. After a successful start attempt, i.e. a fault/error has no longer occurred up to the end of the magnetizing phase, the start counter is again reset to the parameter value after 1 s . If a fault re-occurs - the parameterized number of start attempts is again available.
At least one start attempt is always carried out.
After a line supply failure, acknowledgment is immediate and when the line supply returns, the system is switched on. If, between successfully acknowledging the line fault and the line supply returning, another fault occurs, then its acknowledgment also causes the start counter to be decremented.

A_INF, S_INF, R_INF, B_INF

Automatic restart start attempts / AR start attempts
Can be changed: U, T
Data type: Unsigned16
P-Group: Functions
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
10

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Description:

Notice:
Sets the start attempts of the automatic restart function for p1210 $=4,6$.
This parameter setting is active for p1210 $=6$.
For p1210 = 4, the parameter only has an influence if, when attempting to start, an additional line phase failure (F06200) occurs.
A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Refer to: p1210, r1214
Refer to: F07320
After fault F07320 occurs, the switch-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.
After a complete power failure (blackout) the start counter always starts with the counter value that applied before the power failure, and decrements this start attempt by 1 . If a further attempt to acknowledge is started by the automatic restart function prior to power failure, e.g. if the Control Unit remains active on power failure longer than the time p1212/2, the fault counter will already have been decremented once. In this case, the start counter is thus decreased by the value 2 .

Abstract

Note: A start attempt starts immediately when a fault occurs. The restart attempt is considered to have been completed if the infeed is switched on and an additional delay time of 1 s has expired.

As long as a fault is present, an acknowledge command is generated in the time intervals of p1212 / 2. When successfully acknowledged, the start counter is decremented. If, after this, a fault re-occurs before a restart has been completed, then acknowledgment starts again from the beginning. Fault F07320 is output if, after several faults occur, the number of parameterized start attempts has been reached. After a successful start attempt (i.e. a fault/error has no longer occurred up to the end of the switching-on operation) the start counter is again reset to the parameter value after 1 s . If faults re-occur, the parameterized number of start attempts is again available. At least one start attempt is always carried out. After a line supply failure, acknowledgment is immediate and when the line supply returns, the system is switched on. If, between successfully acknowledging the line fault and the line supply returning, another fault occurs, then its acknowledgment also causes the start counter to be decremented.

Automatic restart delay time start attempts / AR t_wait start

SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO I AC, VECTOR_I_AC

Can be changed: U, T
Data type: FloatingPoint32
P-Group: Functions
Not for motor type: -
Min
0.1 [s]

Calculated: -
Dyn. index: -
Unit group: -

Scaling: -

Max
1000.0 [s]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
1.0 [s]

Description:

Sets the delay time up to restart.
Dependency: \quad This parameter setting is active for $\mathrm{p} 1210=4,6$.
For p1210 = 1, the following applies:
Faults are only automatically acknowledged in half of the waiting time, no restart. Refer to: p1210, r1214
Notice: \quad A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Note: \quad The faults are automatically acknowledged after half of the delay time has expired and the full delay time. If the cause of a fault is not removed in the first half of the delay time, then it is no longer possible to acknowledge in the delay time.

$\overline{p 1212}$

A_INF, S_INF, R_INF, B_INF Dependency:

Notice: \quad A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Note: Faults are automatically acknowledged and the drive switched on again after half and the complete wait time have expired.

p1213[0...1]	Automatic restart monitoring time / AR t_monit		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Functions	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [s]	10000.0 [s]	0.0 [s]
Description:	Sets the monitoring time of the automatic restart (AR).		
Index:	$\begin{aligned} & {[0]=\text { Restart }} \\ & {[1]=\text { Reset start counter }} \end{aligned}$		
Dependency:	Refer to: p1210, r1214		
Notice:	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1)		
	After fault F07320 occurs, the switch-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.		
Note:	For index [0]:		
	The monitoring time starts when the faults are detected. If the automatic acknowledgments are not successful, the monitoring time runs again. If, after the monitoring time has expired, the drive has still not successfully started again (flying restart and magnetizing of the motor must have been completed: r0056.4 $=1$), then fault F 07320 is output.		
	The monitoring is deactivated with p1213 $=0$. If p1213 is set lower than the sum of p1212, the magnetizing time p0346 and the additional delay time due to the flying restart, then fault F07320 is generated at each restart. If, for $\mathrm{p} 1210=1$, the time in p 1213 is set lower than in p 1212 , then fault F07320 is also generated at each restart.		
	The monitoring time must be extended if the faults that occur cannot be immediately and successfully acknowledged (e.g. for faults that are permanently present).		
	In the case of $\mathrm{p} 1210=14,16$, the faults which are present must be acknowledged manually within the time in $\mathrm{p} 1213[0]$. Otherwise, fault F07320 is generated after the set time.		
	For index [1]:		
	The start counter (refer to r1214) is only set back to the starting value p1211 if, after successful restart, the time in $\mathrm{p} 1213[1]$ has expired. The delay time is not effective for fault acknowledgment without automatic restart (p1210 $=1$). After a power failure (blackout) the delay time only starts after the line supply returns and the Control Unit boots. The start counter is set to p1211, if F07320 occurred, the switch-on command is withdrawn and the fault is acknowledged.		

p1213[0...1]	Automatic restart monitoring time / AR t_monit		
A_INF, S_INF, R_INF,	Can be changed: U, T	Calculated: -	Access level: 3
B_INF	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [s]	10000.0 [s]	0.0 [s]
Description:	Sets the monitoring time of the automatic restart (AR).		
Index:	[0] = Restart		
Dependency:	Refer to: p1210, r1214		
Notice:	After fault F07320 occurs, the switch-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.		
Note:	For index [0]:		
	The monitoring is deactivated with p1213 = 0. If p1213 is set to a value which is lower than in p1212, fault F07320 is generated at each restart. If, for p1210 $=1$, the time in p1213 is set lower than in p1212, then fault F07320 is also generated at each restart.		
	The monitoring time must be extended if the faults that occur cannot be immediately and successfully acknowledged (e.g. for faults that are permanently present).		

For index [1]:
The start counter (refer to r1214) is only set back to the starting value p1211 if, after successful restart, the time in $p 1213[1]$ has expired. The delay time is not effective for fault acknowledgment without automatic restart ($p 1210=1$). After a power failure (blackout) the delay time only starts after the line supply returns and the Control Unit boots. The start counter is set to p 1211 , if F 07320 occurred, the switch-on command is withdrawn and the fault is acknowledged. The start counter is immediately updated if the starting value p1211 or the mode p1210 is changed.

2.2 List of parameters

r1214.0..15	CO/BO: Automatic restart status / AR status				
A_INF, S_INF, R_INF, B_INF	Can be changed: -		lated: -	Access	
	Data type: Unsigned16		index: -	Func.	
	P-Group: Functions U		group: -	Unit se	
	Not for motor type: - S		ng: -	Expert	
	Min M		Max	Factory setting	
	-			-	
Description:	Displays the status of the automatic restart (AR).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Initialization	Yes	No	-
	01	Wait for alarm	Yes	No	-
	02	Auto restart act	Yes	No	-
	03	Setting the acknowledgment command	Yes	No	-
	04	Acknowledge alarms	Yes	No	-
	05	Restart	Yes	No	-
	06	Delay time running after automatic switchon	Yes	No	-
	07	Fault	Yes	No	-
	10	Effective fault	Yes	No	-
	12	Start counter bit 0	ON	OFF	-
	13	Start counter bit 1	ON	OFF	-
	14	Start counter bit 2	ON	OFF	-
	15	Start counter bit 3	ON	OFF	-
Note:	For bit 00:				
	State to display the single initialization after POWER ON.				
	For bit 01:				
	State in which the automatic restart function waits for faults (initial state).				
	For bit 02:				
	General display that a fault has been identified and that the restart or acknowledgment has been initiated.				
	For bit 03:				
	Displays the acknowledge command within the "acknowledge alarms" state (bit $4=1$). For bit $5=1$ or bit $6=1$, the acknowledge command is continually displayed.				
	For bit 04:				
	State in which the faults that are present are acknowledged. The state is exited again after successful acknowledgment. A change is only made into the next state if it is signaled that a fault is no longer present after an acknowledgment command (bit $3=1$).				
	For bit 05:				
	State in which the drive is automatically switched on (only for p1210 $=4,6$).				
	For bit 06:				
	State in which the system waits after having been switched on, to the end of the start attempt.				
	For $\mathrm{p} 1210=1$, this signal is directly set after the faults have been successfully acknowledged.				
	For bit 07:				
	State which is assumed after a fault occurs within the automatic restart function.				
	For bit 10:				
	When the automatic restart function is active, r1214.7 is displayed, otherwise the active fault r2139.3.				
	The bit is set if the automatic restart can no longer acknowledge a fault, and cancels with fault F07320.				
		ts 12 ... 15:			
	Actual state of the start counter (binary coded).				

$\mathbf{p 1 2 1 5}$
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Motor holding brake configuration / Brake config

SERVO, VECTOR SERVO AC, VECTOR_AC, VECTOR_I_AC

Can be changed: T
Data type: Integer16

P-Group: Functions
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -

Unit group: -
Scaling: -
Max
3

Access level: 2
Func. diagram: 2701, 2707, 2711
Unit selection: -
Expert list: 1
Factory setting
0

Description:
Value:
Sets the holding brake configuration.
0: \quad No motor holding brake available
Motor holding brake acc. to sequence control
Motor holding brake always open
Motor holding brake like sequence control connection via BICO
Dependency:
Caution:
Refer to: p1216, p1217, p1226, p1227, p1228, p1278
For the setting p1215 = 0, if a brake is used, it remains closed. If the motor moves, this will destroy the brake.

If p 1215 was set to 1 or if p 1215 was set to 3 , then when the pulses are suppressed, the brake is closed even if the motor is still rotating. Pulse suppression can either be caused by a 0 signal at p0844, p0845 or p0852 or as a result of a fault with OFF2 response. If this is not desirable (e.g. for a flying restart), then the brake can be kept open using a 1 signal at p0855.
Note: If the configuration is set to "no holding brake present" when booting, then the motor holding brake will be automatically identified. If a motor holding brake is detected, the configuration is set to "motor holding brake as for sequence control".
If a motor holding brake is used via the brake connection of the Motor Module integrated in the drive, then it is not permissible that p1215 is set to 3 .
if an external motor holding brake is being used, then p 1215 should be set to 3 and r0899.12 should be interconnected as control signal.
When the function module "extended brake control" is activated (r0108.14 = 1), r1229.1 should be interconnected as control signal.
The parameter can only be set to zero when the pulses are inhibited.
The parameterization "no motor holding brake available" and "Safe Brake Control" enabled (p1215 = 0, p9602 = 1, p9802 = 1) is not practical if there is no motor holding brake.
The parameterization "motor holding brake the same as sequence control, connection via BICO" and "Safe Brake Control" enabled ($\mathrm{p} 1215=3, \mathrm{p} 9602=1, \mathrm{p} 9802=1$) is not practical.

p1216

SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC

Description:

Recommendation:

Dependency: Note:

Motor holding brake opening time / Brake t_open

Can be changed: U, T
Data type: FloatingPoint32
P-Group: Functions
Not for motor type: -
Min
0 [ms]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
10000 [ms]

Access level: 2
Func. diagram: 2701, 2711
Unit selection: -
Expert list: 1
Factory setting
100 [ms]

Sets the time to open the motor holding brake.
After controlling the holding brake (opens), the speed/velocity setpoint remains at zero for this time. After this, the speed/velocity setpoint is enabled.
This time should be set longer than the actual opening time of the brake. This ensures that the drive cannot accelerate when the brake is applied.
Refer to: p1215, p1217
For a motor with DRIVE-CLiQ and integrated brake, for $\mathrm{p} 0300=10000$, this time is pre-assigned the value saved in the motor.
For p1216 = 0 ms , the monitoring and the message A07931 "Brake does not open" are deactivated.

2.2 List of parameters

$\mathbf{p 1 2 1 7}$
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Motor holding brake closing time / Brake t_close
Can be changed: U, T Calculated: -
Data type: FloatingPoint32 Dyn. index: -
P-Group: Functions Unit group: -
Not for motor type: - Scaling: -
Min
Max
0 [ms]
10000 [ms]

Access level: 2

Func. diagram: 2701, 2711
Unit selection: -
Expert list: 1
Factory setting
100 [ms]
Description: Sets the time to apply the motor holding brake.
After OFF1 or OFF3 and the holding brake is controlled (the brake closes), then the drive remains closed-loop controlled for this time stationary with a speed setpoint/velocity setpoint of zero. The pulses are suppressed when the time expires.
Recommendation: This time should be set longer than the actual closing time of the brake. This ensures that the pulses are only suppressed after the brake has closed.
Dependency:
Notice:

Note: \quad For a motor with DRIVE-CLiQ and integrated brake, for $00300=10000$, this time is pre-assigned the value saved in the motor.
For $\mathrm{p} 1217=0 \mathrm{~ms}$, the monitoring and the message A07932 "Brake does not close" are deactivated.

p1218[0...1]	BI: Open motor holding brake / Open brake		
SERVO (Ext brake),	Can be changed: T	Calculated: -	Access level: 2
VECTOR (Ext brake),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2707
brake), VECTOR AC	P-Group: Functions	Unit group: -	Unit selection: -
(Ext brake),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Ext brake),	Min	Max	Factory setting
VECTOR_I_AC (Ext brake)	-	-	1
Description:	Sets the signal source for a conditional opening of the motor holding brake.		
Dependency:	Refer to: p1215		
Note:	[0]: Signal, open brake, AND logic operation, input 1		
	[1]: Signal, open brake, AND logic operation, input 2		

p1219[0...3] BI: Immediately close motor holding brake / Close brake

VECTOR (Ext brake),
SERVO_AC (Ext
brake), VECTOR_AC
(Ext brake),
SERVO_I_AC (Ext
brake),
VECTOR_I_AC (Ext
brake)
Can be changed: T
Data type: Unsigned32 / Binary
Calculated: -
Dyn. index: -
Unit group: -
Scaling: -

Max

-

Access level: 2
Func. diagram: 2707
Unit selection: -
Expert list: 1
Factory setting
[0] 0
[1] 0
[2] 0
[3] 1229.9

Description: Sets the signal source for an unconditional (immediate) closing of the motor holding brake.
Dependency: Refer to: p1215, p1275
Note: [0]: Signal, immediately close brake, inversion via p1275.0
[1]: Signal, immediately close brake, inversion via p1275.1
[2]: Signal, immediately close brake
[3]: Signal, immediately close brake - refer to the factory setting
These four signals form an OR logic operation.

p1220	Cl : Open motor holding brake	al source thre	brake thres
SERVO (Ext brake), VECTOR (Ext brake), SERVO_AC (Ext brake), VECTOR_AC (Ext brake), SERVO_I_AC (Ext brake), VECTOR_I_AC (Ext brake)	Can be changed: T Data type: Unsigned32 / FloatingPoint32 P-Group: Functions Not for motor type: - Min	Calculated: - Dyn. index: - Unit group: - Scaling: PERCENT Max	Access level: 2 Func. diagram: 2707 Unit selection: - Expert list: 1 Factory setting 1
Description: Dependency:	Sets the signal source for the command "open brake". Refer to: p1215, p1221, r1229, p1277		
p1221 SERVO (Ext brake), VECTOR (Ext brake), SERVO_AC (Ext brake), VECTOR_AC (Ext brake), SERVO_I_AC (Ext brake), VECTOR_I_AC (Ext brake)	Open motor holding brake thre Can be changed: U, T Data type: FloatingPoint32 P-Group: Functions Not for motor type: - Min 0.00 [\%]	old / Open bra Calculated: - Dyn. index: - Unit group: - Scaling: - Max 200.00 [\%]	Access level: 2 Func. diagram: 2707 Unit selection: - Expert list: 1 Factory setting $0.00 \text { [\%] }$
Description: Dependency:	Sets the threshold value for the command "open brake". Refer to: p1220, r1229, p1277		
p1222	BI: Motor holding brake feedback signal brake closed / Brake feedb closed		
SERVO (Ext brake), VECTOR (Ext brake), SERVO_AC (Ext brake), VECTOR_AC (Ext brake), SERVO_I_AC (Ext brake), VECTOR_I_AC (Ext brake)	Can be changed: T Data type: Unsigned32 / Binary P-Group: Functions Not for motor type: - Min	Calculated: - Dyn. index: - Unit group: - Scaling: - Max	Access level: 2 Func. diagram: 2711 Unit selection: - Expert list: 1 Factory setting 0
Description:	Sets the signal source for the feedback signal "brake closed". For motor holding brakes with feedback signal, the signal "brake closed" can be activated using p1275.5 = 1 .		
Dependency: Note:	Refer to: p1223, p1275 1 signal: Brake closed. When braking with 1 feedback signal, the i feedback signal (p1223). For r1229.5 = 1, OFF1/OFF3 are suppress whereby OFF2 remains effective.	erted feedback signal to prevent the drive	the BICO input for the second a load that drives the motor -
p1223 SERVO (Ext brake), VECTOR (Ext brake), SERVO_AC (Ext brake), VECTOR_AC (Ext brake), SERVO_I_AC (Ext brake), VECTOR_I_AC (Ext brake)	BI: Motor holding brake feedba Can be changed: T Data type: Unsigned32 / Binary P-Group: Functions Not for motor type: - Min	signal brake o Calculated: - Dyn. index: - Unit group: - Scaling: - Max	eedb open Access level: 2 Func. diagram: 2711 Unit selection: - Expert list: 1 Factory setting 1
Description: Dependency:	Sets the signal source for the feedback signal "brake open". For motor holding brakes with feedback signal, the signal "brake open" can be activated using p1275.5 = 1 .		

2.2 List of parameters

Note: $\quad 1$ signal: Brake open. feedback signal (p1222).

p1224[0...3]	BI: Close motor holding brake at standstill / Brk close standst		
SERVO (Ext brake),	Can be changed: T	Calculated: -	Access level: 2
VECTOR (Ext brake),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2704
brake), VECTOR AC	P-Group: Functions	Unit group: -	Unit selection: -
(Ext brake),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Ext	Min	Max	Factory setting
brake), VECTOR_I_AC (Ext brake)	-	-	0
Description:	Sets the signal source for close brake at standstill.		
Dependency:	Refer to: p1275		
Note:	[0]: Signal, close brake at standstill, inversion via p1275.2		
	[1]: Signal, close brake at standstill, inversion via p1275.3		
	[2]: signal, close brake at standstill		
	[3]: signal, close brake at standstill		
	These four signals form an OR logic operation.		

p1225	CI: Standstill detection threshold value / Standstill thresh		
SERVO (Ext brake),	Can be changed: T	Calculated: -	Access level: 2
VECTOR (Ext brake),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 2704
brake), VECTOR AC	P-Group: Functions	Unit group: -	Unit selection: -
(Ext brake), -	Not for motor type: -	Scaling: p2000	Expert list: 1
SERVO_I_AC (Ext	Min	Max	Factory setting
VECTOR_I_AC (Ext brake)	-	-	63[0]
Description:	Sets the signal source "threshold value" for the standstill identification.		
Dependency:	Refer to: p1226, p1228, r1229		

p1226[0...n]	Standstill detection velocity threshold / v_standst v_thresh		
HLA	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	0.20 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the velocity threshold for the standstill identification.		
	Acts on the actual value and setpoint monitoring.		
	When braking with OFF1 or OFF3, when the threshold is undershot, standstill is identified.		
Dependency:	Refer to: p1227		
Note:	Standstill is identified in the following cases:		
	- the velocity actual value falls below the velocity threshold in p1226 and the time started after this in p1228 has expired.		
	- the velocity setpoint falls below the velocity threshold in p1226 and the time started after this in p1227 has expi		
	The actual value sensing is subject to measuring noise. For this reason, standstill cannot be detected if the velocity threshold is too low.		

p1226[0...n]	Threshold for zero speed detection / n_standst n_thresh		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 2701, 2704
VECTOR_AC, SERVO_I_AC,	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	20.00 [rpm]
Description:	Sets the speed threshold for the standstill identification.		
	Acts on the actual value and setpoint monitoring.		
	When braking with OFF1 or OFF3, when the threshold is undershot, standstill is identified.		
	The following applies when the brake control is activated:		
	When the threshold is undershot, the brake control is started and the system waits for the brake closing time in p 1217 . The pulses are then suppressed.		
	if the brake control is not activated, the following applies:		
	When the threshold is undershot, the pulses are suppressed and the drive coasts down.		
Dependency:	Refer to: p1215, p1216, p1217, p1227		
Notice:	For reasons relating to the compatibility to earlier firmware versions, a parameter value of zero in indices 1 to 31 is overwritten with the parameter value in index 0 when the Control Unit boots.		
Note:	Standstill is identified in the following cases:		
	- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired - the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired.		
	The actual value sensing is subject to measuring noise. For this reason, standstill cannot be detected if the speed threshold is too low.		

p1226[0...n]	Standstill detection velocity threshold / v_standst v_thresh		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 2701, 2704
	P-Group: Functions	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	0.20 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the velocity threshold for the standstill identification.		
	Acts on the actual value and setpoint monitoring.		
	When braking with OFF1 or OFF3, when the threshold is undershot, standstill is identified.		
	The following applies when the brake control is activated:		
	When the threshold is undershot, the brake control is started and the system waits for the brake closing time in p 1217 . The pulses are then suppressed.		
	if the brake control is not activated, the following applies:		
	When the threshold is undershot, the pulses are suppressed and the drive coasts down.		
Dependency:	Refer to: p1215, p1216, p1217, p1227		
Notice:	For reasons relating to the compatibility to earlier firmware versions, a parameter value of zero in indices 1 to 31 is overwritten with the parameter value in index 0 when the Control Unit boots.		
Note:	Standstill is identified in the following cases:		
	- the velocity actual value falls below the velocity threshold in p1226 and the time started after this in p1228 has expired.		
	- the velocity setpoint falls below the velocity threshold in p1226 and the time started after this in p1227 has expired.		
	The actual value sensing is subject to measuring noise. For this reason, standstill cannot be detected if the velocity threshold is too low.		

p1227	Zero speed detection monitoring time / Standst_id t_monit		
HLA	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	300.000 [s]	4.000 [s]
Description:	Sets the monitoring time for the standstill identification.		
	When braking with OFF1 or OFF3, standstill is identified after this time has expired, after the setpoint speed has fallen below p1226 (also refer to p1145).		
	After this, the brake control is started, the system waits for the closing time in p1217 and then the pulses are suppressed.		
Notice:	For p1145>0.0 (RFG tracking) the setpoint is not equal to zero dependent on the selected value. This can therefore cause the monitoring time in p1227 to be exceeded. In this case, for a driven motor, the pulses are not suppressed.		
Note:	Standstill is identified in the following cases:		
	- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired.		
	- the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired.		
	For p1227 $=300.000 \mathrm{~s}$ the following applies:		
	Monitoring is deactivated.		
	For p1227 $=0.000 \mathrm{~s}$, the following applies:		
	With OFF1 or OFF3 and a ramp-down time $=0$, the pulses are immediately suppressed and the motor "coasts" down.		

$\mathbf{p 1 2 2 7}$
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description: Sets the monitoring time for the standstill identification.

When braking with OFF1 or OFF3, standstill is identified after this time has expired, after the setpoint speed has fallen below p1226 (also refer to p1145).
After this, the brake control is started, the system waits for the closing time in p1217 and then the pulses are suppressed.
Dependency: Refer to: p1215, p1216, p1217, p1226
Notice:
Note:

Zero speed detection monitoring time / n_standst t_monit

Can be changed: U, T
Data type: FloatingPoint32
P-Group: Functions
Not for motor type: -
Min
0.000 [s]

For $\mathrm{p} 1145>0.0$ (RFG tracking) the setpoint is not equal to zero dependent on the selected value. This can therefore cause the monitoring time in p1227 to be exceeded. In this case, for a driven motor, the pulses are not suppressed.
Standstill is identified in the following cases:

- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired.
- the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired.

For p1227 = 300.000 s the following applies:
Monitoring is deactivated.
For p1227 $=0.000 \mathrm{~s}$, the following applies:
With OFF1 or OFF3 and a ramp-down time $=0$, the pulses are immediately suppressed and the motor "coasts" down.

p1228	Pulse suppression delay time / Pulse suppr t_del		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2701, 2704
VECTOR_AC, SERVO I AC,	P-Group: Functions	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	299.000 [s]	0.000 [s]
Description:	Sets the delay time for pulse After OFF1 or OFF3, the pu - the speed actual value falls - the speed setpoint falls bel	, if at least one hold in p1226 a in p1226 and	itions is fulfilled: er this in p1228 has expired. is in p1227 has expired.
Dependency:	Refer to: p1226, p1227		
Notice:	When the motor holding bra (p1217).	ulse cancellati	ed by the brake closing time

r1229.1... 11	CO/BO: Motor holding brake status word / Brake ZSW					
SERVO (Ext brake),	Can be changed: -		Calculated: -		Access level: 2	
VECTOR (Ext brake),	Data type: Unsigned32		Dyn. index: -		Func. diagram: -	
brake), VECTOR_AC	P-Group: Functions		Unit group: -		Unit selection: -	
(Ext brake), -	Not for motor type: -		Scaling: -		Expert list: 1	
$\begin{aligned} & \text { SERVO_I_AC (Ext } \\ & \text { brake), } \end{aligned}$	Min		Max		Factory setting	
VECTOR_I_AC (Ext brake)	-				-	
Description:	Displays the status word for the motor holding brake.					
Bit field:	Bit01	Signal name		1 signal	0 signal	FP
		Command open brake (continuous signal)		Yes	No	2711
	03	Pulse enable extended brake control		Yes	No	2711
	04	Brake does not		Yes	No	2711
	05	Brake does not		Yes	No	2711
	06	Brake threshold		Yes	No	2707
	07	Brake threshold		Yes	No	2704
	08	Brake monitoring		Yes	No	2704
	09	Pulse enable req inhibited		Yes	No	2707
	10	Brake OR logic		Yes	No	2707
	11	Brake AND logic		Yes	No	2707

p1230[0...n]	BI: Armature short-circuit / DC braking activation / ASC/DCBRK act		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 1
SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 7014,7016,
VECTOR_AC,			7017
SERVO_I_AC,	P-Group: Functions	Unit group: -	Unit selection: -
VECTOR_IAC	Not for motor type: RESM	Scaling: -	Max
	Min	-	Fxpert list: 1
	-	Factory setting	
Description:	Sets the signal source to activate the armature short-circuit or DC braking.		
Dependency:	Refer to: p1231, p1232, p1233, p1234, p1235, p1236, p1237, r1238, r1239, p1345, p1346		
Note:	1 signal: Armature short-circuit/DC braking activated.		
	0 signal: Armature short-circuit/DC braking deactivated.		

$\mathbf{p 1 2 3 1 [0 . . . n] ~}$
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Armature short-circuit / DC braking configuration / ASC/DCBRK config		
Can be changed: U, T	Calculated: -	Access level: 1
Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: 7014, 7016,
		7017
P-Group: Functions	Unit group: -	Unit selection: -
Not for motor type: RESM	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	14	0

Description: Setting to activate the various types for armature short-circuit / DC braking.
Value:

Dependency: Danger:

0 : \quad No function
1: External armature short-circuit with contactor feedback signal
2: Ext. armature short circuit without contactor feedback signal
3: Internal voltage protection
4: Internal armature short-circuit / DC braking
5: DC braking for OFF1/OFF3
14: DC braking below starting speed
Refer to: p0300, p1230, p1232, p1233, p1234, p1235, p1236, p1237, r1238, r1239, p1345, p1346
For $\mathrm{p} 1231=1,2$:

- only short-circuit-proof motors may be used, or suitable resistors must be used to short-circuit the motor

For p1231 = 3:

- when the internal voltage protection is active, after pulse suppression, all of the motor terminals are at half of the DC link voltage (without an internal voltage protection, the motor terminals are at zero potential)!
- it is only permissible to use motors that are short-circuit proof (p0320 < p0323).
- the Motor Module must be able to conduct 180% short-circuit current (r0320) of the motor (r0209).
- the internal voltage protection cannot be interrupted due to a fault response. If an overcurrent condition occurs during the active, internal voltage protection, then this can destroy the Motor Module and/or the motor.
- if the Motor Module does not support the autonomous, internal voltage protection (r0192.10 = 0), in order to ensure safe, reliable functioning when the line supply fails, an external 24 V power supply (UPS) must be used for the components.
- if the Motor Module does support the autonomous, internal voltage protection (r0192.10 = 1), in order to ensure safe, reliable functioning when the line supply fails, the 24 V power supply for the components must be provided through a Control Supply Module.
- if the internal voltage protection is active, it is not permissible that the motor is driven by the load for a longer period of time (e.g. as a result of loads that move the motor or another coupled motor).
For p1231 = 4 and synchronous motor:
- when armature short-circuit is active, all of the motor terminals are at half of the DC link potential.
- it is only permissible to use motors that are short-circuit proof (p0320 < p0323).
- the Motor Module must be able to conduct 180% short-circuit current (r0320) of the motor (r0209).
- for pulling loads, it is not permissible that an armature short circuit is used by itself. The reason for this is that until this becomes effective, the motor will have continued to rotate. In the case of a fault, it is only permissible to use an armature short circuit as support in conjunction with a mechanical brake.
For p1231 = 4 and induction motor:
- it is not permissible that DC braking is used for pulling loads; this is because during the demagnetization time (p 0347) the motor rotates and a mechanical brake is then only closed while the motor is still rotating.
Note:
For p1231 = 1, 2 :
The external armature short circuit can only be selected for synchronous motors (p0300). In this case, control bit BO: r1239.0 must be interconnected (e.g. to a digital input) to control the external contactor.
The external armature short circuit cannot be set as a fault response. It can be triggered via binector input p1230. It is also always activated in the case of pulse suppression.
When the external armature short circuit is activated, the system waits for the de-excitation time (p0347) before the short-circuit contactor is controlled. For vector control, for the de-excitation time, a value greater than zero may be required in order to avoid the overcurrent monitoring from responding.

For p1231 = 3:
Internal voltage protection (using an internal armature short circuit) can only be selected for synchronous motors (p 0300) and Motor Modules in booksize or chassis format. Further, it is not permissible for Safety Integrated to be active on blocksize Motor Modules (i.e. p9501 $=0$ and p9601 $=0$). The internal voltage protection prevents the DC link capacitance from being charged if there is no possibility of regenerating the EMF of a motor operated in the fieldweakening mode. The Motor Module must support this function (r0192.9 = 1) .
a) If the Motor Module does not support the autonomous, internal armature short-circuit (r0192.10 = 0), the armature short-circuit is activated as soon as the activation criterion is fulfilled (refer below):
b) If the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1), then the Motor Module itself decides - using the DC link voltage - as to whether the short-circuit should be activated. In this case, protection is also provided even if the DRIVE-CLiQ connection between the Control Unit and Motor Module was interrupted. The short circuit is activated if the DC link voltage exceeds 800 V . If the DC link voltage falls below 450 V , then the short-circuit is withdrawn. This therefore ensures that the required input voltage for the Control Supply Module is maintained.
For chassis units, the following applies:
The value for the voltage limits is calculated, depending on the voltage class, from EEPROM data of the particular power unit and a factor.
For p1231 = 4:
The function is activated as soon as the activation criterion is fulfilled.

- the function can be superseded by OFF2
a) For synchronous motors ($p 0300=2 x x, 4 x x$), the internal armature short-circuit is initiated.
- the Motor Module must support this function (r0192.9 = 1).
b) For induction motors ($\mathrm{p} 0300=1 \mathrm{xx}$), the DC braking is initiated.

Activation criterion (one of the following criteria is fulfilled):

- binector input p1230 $=1$ signal (DC braking activation).
- the drive is not in the state "S4: Operation" or in "S5x" (refer to function diagram 2610).
- the internal pulse enable is missing ($\mathrm{r} 0046.19=0$).

For p1231 = 5:
DC braking can only be set for induction motors.
DC braking is activated if the OFF1 or OFF3 command is present. Binector input p1230 is ineffective. If the drive speed still lies above the speed threshold $p 1234$, then initially, the drive is ramped-down to this threshold, demagnetized (see p0347) and is then switched into DC braking for the time set in p1233. After this, the drive is switched-off. If, at OFF1/OFF3, the drive speed is below p1234, then it is immediately demagnetized and switched into DC braking. A change is made into normal operation if the OFF1 command is withdrawn prematurely.
DC braking by means of fault response continues to be possible.
For p1231 = 14:
DC braking can only be set for induction motors.
DC braking is initiated if binector input p1230 $=1$ during operation and the actual speed is below the starting speed p1234 (before this, the drive must have operated above p1234 plus the hysteresis). Then, following upstream demagnetization (see p0347), the braking current p1232 is injected for the time set in p1233. The drive then changes into normal operation. During braking the command for DC braking can be withdrawn. If the time p1233 is exceeded, then DC braking is inhibited and the drive changes into normal operation.
For OFF1 and OFF3, DC braking is only executed, if binector input p1230 $=1$ signal.
DC braking by means of fault response continues to be possible.
For operation with an encoder, the encoder signal may not exceed a ripple of 15 rpm in the range of p 1234 .
For p1231 = 3, 4, 5, 14:
The value can only be changed to values not equal to $3,4,5$ or 14 if p0491 is not equal to 4 and p2101 is not equal to 6 (armature short-circuit/DC braking not set).
In order that the armature short-circuit/DC braking is active as fault response, the corresponding fault number must be entered in p2100 and fault response p2101 set = 6 (encoder fault response, see p0491).
Note:
ASC: Armature Short Circuit
CSM: Control Supply Module
DCBRK: DC Braking
IVP: Internal Voltage Protection
UPS: Uninterruptible Power Supply

p1232[0...n]	DC braking braking current / DCBRK I_brake		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 1
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 7017
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the braking current for DC braking.		
Dependency:	Refer to: p1230, p1231, p1233, p1234, r1239, p1345, p1346		
Note:	A change to the braking current becomes e The value for p1232 is specified as an rms same as that of an identical output current internally limited to r0067.	ective the next time that DC alue in the 3-phase system. frequency zero (see r0067	is switched on. nitude of the braking cu 0640). The braking curr

p1232[0...n]	DC braking braking current / DCBRK I_brake		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 1
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 7017
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the braking current for DC braking.		
Dependency:	Refer to: p1230, p1231, p1233, p1234, r1239, p1345, p1346		
Note:	A change to the braking current becomes effective the next time that DC braking is switched on.		
	The value for p 1232 is specified as an rms value in the 3 -phase system. The magnitude of the braking current is the same as that of an identical output current at frequency zero (see r0067, r0068, p0640). The braking current is internally limited to r0067.		
	For the current controller, the settings of parameters p1345 and p1346 (I_max limiting controller) are used.		

p1233[0...n]	DC braking time / DCBRK time		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 1
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 7017
VECTOR_AC,	P-Group: Functions	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: PMSM, SESM, REL,	Scaling: -	Expert list: 1
VECTOR_I_AC	RESM	Max	Factory setting
	Min	$3600.0[\mathrm{~s}]$	$1.0[\mathrm{~s}]$
	$0.0[\mathrm{~s}]$		
Description:	Sets the DC braking time (as fault response).		
Dependency:	Refer to: p1230, p1231, p1232, p1234, r1239		
Note:	The time set is also effective when parameterizing DC braking as fault response.		
	If a speed encoder is being used, DC braking is ended as soon as the drive falls below the standstill threshold		
	(p1226).		

p1234[0...n]	Speed at the start of DC braking / DCBRK n_start		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 1
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 7017
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling:	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the starting speed for DC braking. If the actual speed falls below this threshold, then DC braking is activated.		
Dependency:	Refer to: p1230, p1231, p1232, p1233, r1239		
Notice:	If an encoder fault occurs during closed-loop operation with an encoder, controlled deceleration of the drive down to the start speed p1234 is no longer possible. In this case, DC braking is activated immediately and injects the braking current p1232 for the braking time p1233 after de-magnetizing. The braking current and braking duration must, therefore, be dimensioned accordingly for this situation so that the drive can be decelerated to standstill. In the case of operation with an encoder, this speed may not be set too low so as ensure that the oscillation movement induced by the residual flux/remanence of the motor does not cause DC braking to be deactivated again.		
Note:	Function p1231 = 14 is activated at $151 / \mathrm{min}$ higher than the value set in p 1234 . This hysteresis is required to prevent DC braking from being deactivated for speed encoder signals with ripple.		

p1234[0...n]	DC braking starting velocity / DCBRK v_start		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 1
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 7017
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mathrm{m} / \mathrm{min}$]	1300.00 [$/ \mathrm{min}$]	1000.00 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the starting velocity for DC braking. If the actual velocity falls below this threshold, then DC braking is activated.		
Dependency:	Refer to: p1230, p1231, p1232, p1233, r1239		
Notice:	If an encoder fault occurs during closed-loop operation with an encoder, controlled deceleration of the drive down to the start speed p1234 is no longer possible. In this case, DC braking is activated immediately and injects the braking current p1232 for the braking time p1233 after de-magnetizing. The braking current and braking duration must, therefore, be dimensioned accordingly for this situation so that the drive can be decelerated to standstill.		
	In the case of operation with an encoder, this speed may not be set too low so as ensure that the oscillation movement induced by the residual flux/remanence of the motor does not cause DC braking to be deactivated again.		
Note:	Function p1231 = 14 is activated at $151 / \mathrm{min}$ higher than the value set in p 1234 . This hysteresis is required to prevent DC braking from being deactivated for speed encoder signals with ripple.		

p1234[0...n]	Speed at the start of DC braking / DCBRK n_start	
VECTOR,	Can be changed: U, T	Calculated: -
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130
VECTOR_I_AC	P-Group: Functions	Unit group: -
	Not for motor type: PMSM, SESM, REL,	Scaling: -
	RESM	
	Min	Max
	0.00 [rpm]	210000.00 [rpm]
Description:	Sets the starting speed for DC braking.	
	If the actual speed falls below this threshold, then DC braking is activated.	
Dependency:	Refer to: p1230, p1231, p1232, p1233, r1239	

2.2 List of parameters

Notice:	If an encoder fault occurs during closed-loop operation with an encoder, controlled deceleration of the drive down to the start speed p1234 is no longer possible. In this case, DC braking is activated immediately and injects the braking current p1232 for the braking time p1233 after de-magnetizing. The braking current and braking duration must, therefore, be dimensioned accordingly for this situation so that the drive can be decelerated to standstill.
	In the case of operation with an encoder, this speed may not be set too low so as ensure that the oscillation movement induced by the residual flux/remanence of the motor does not cause DC braking to be deactivated again.
Note:	Function p1231 = 14 is activated at $151 / \mathrm{min}$ higher than the value set in p 1234 . This hysteresis is required to prevent

p1235[0...n]	BI: External armature short-circuit contactor feedback signal / ASC ext feedback		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 1
SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: -
VECTOR_AC,	P-Group: Functions	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: ASM, RESM	Max	Factory setting
	Min	-	0
	-		
Description:	Sets the signal source for the contactor feedback signal for external armature short-circuit.		
Dependency:	Refer to: p1230, p1231, p1236, p1237, r1239		
Notice:	In order that the pulses are not enabled when the contactor is closed, the contactor feedback signal must lag by a		
	sufficiently long time when opening the contactor.		

Note: $\quad 1$ signal: The contactor is closed.
0 signal: The contactor is open.

p1236[0...n]	Ext. armature short-cct. contactor feedback signal monit. time / ASC ext t_monit		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 1
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
SERVO I AC,	P-Group: Functions	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: ASM, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	200 [ms]
Description:	Sets the monitoring time of the contactor feedback signal for the external armature short-circuit configuration. If the contactor feedback signal (p 1235) is parameterized, then the appropriate feedback signal (r1239.1) is expected within this monitoring time after either opening or closing the contactor.		
Dependency:	Refer to: p1230, p1231, p1235, p1237, r1239		
	Refer to: F07904, F07905		

p1237[0...n]	External armature short-circuit delay time when opening / ASC ext t_wait		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 1
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
SERVO I AC,	P-Group: Functions	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: ASM, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	200 [ms]
Description:	If no contactor feedback signal has been selected (p1235), then the system waits for this time before the pulses are switched in.		
Dependency:	Refer to: p1230, p1231, p1235, p1236, r1239		
Notice:	This delay time must be at least long enough so that the contactor contacts reliably open before the pulses are switched in. The delay time must be greater than the contactor response time. The Motor Module can be damaged if the delay time is too short.		

r1238
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC

CO: Armature short-circuit external state / EASC state		
Can be changed: -	Calculated: -	Access level: 1
Data type: Integer16	Dyn. index: -	Func. diagram: 2610
P-Group: Functions	Unit group: -	Unit selection: -
Not for motor type: ASM, SESM, RESM	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	6	-

Description: Value:	Displays the state for the external armature short-circuit.
	0: Switched off
	1: Ready
	2: Active
	3: Active - feedback signal "Closed" OK
	4: Active - feedback signal "Closed" missing
	5: Prompt to remove the armature short-circuit
	6: Active - feedback signal "Open" missing
Dependency:	Refer to: p1230, p1231, p1235, p1236, p1237, r1239
	Refer to: F07904, F07905
Note:	Activation criterion (one of the following criteria is fulfilled):
	- the signal at BI: p1230 (armature short-circuit activation) is 0 .
	- the drive is not in the state "S4: Operation" or in S5x (refer to function diagram 2610).
	- the internal pulse enable is missing (r0046.19 = 0).
	For state "switched out" (r1238 = 0):
	- the external armature short-circuit can be selected with p1231 $=1$.
	For state "ready" (r1238 = 1):
	- as soon as the activation criterion is fulfilled, then a transition is made into the state "active" (r1238 = 2).
	Regarding the state "active" (r1238 = 2), "active - feedback signal "Closed" OK" (r1238 = 3)", "active - feedback signal "Closed" missing" (r1238 = 4)":
	- the control signal to close contactor r1239.0 is set to "1" (closed) and the pulses are suppressed.
	- if a contactor feedback signal is not connected (BI: p1235 = 0 signal), then a transition is immediately made into

- if a contactor feedback signal is connected, then a transition is made into state 3 if the feedback signal at BI: p1235 goes to "1" (closed) within the monitoring time (p1236).
- otherwise, a transition is made into state 4.

For state "prompt to remove the armature short-circuit" (r1238 = 5):

- the activation criterion is no longer fulfilled. An attempt is made to again remove the armature short circuit.
- the control signal to close the contactor r1239.0 is set to "0" (open) and the pulses remain suppressed.
- if a contactor feedback signal is not connected (BI: p1235 $=0$ signal), the system waits for the delay time (p1237) to expire until a transition is made into state 1.
- if a contactor feedback signal is connected, the system waits until the feedback signal at BI:p1235 goes to "0" (open) until a transition is made into state 1 . If this does not occur within the monitoring time (p1236), then a transition is made into state 6.
For state "active - feedback signal "Open" missing" (r1238 = 6):
- this error state can be exited by de-selecting the external armature short-circuit (p1231 = 0).

2.2 List of parameters

r1239.0...13
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description:	Displays the status word for armature short-circuit.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	External armature short-circuit	Active	Inactive	-
	01	External armature short-circuit contactor feedback signal	Closed	Open	-
	02	External armature short-circuit ready	Yes	No	-
	03	External armature short-circuit with contactor feedback signal	Yes	No	-
	04	Internal armature short-circuit	Active	Inactive	-
	05	Internal armature short circuit feedback signal from power unit	Active	Inactive	-
	06	Internal armature short-circuit ready	Yes	No	-
	08	DC braking active	Yes	No	7017
	09	DC current injection active	Yes	No	-
	10	DC braking ready	Yes	No	7017
	11	Armature short circuit/DC braking selected	Yes	No	-
	12	DC braking selection internally inhibited	Yes	No	-
	13	DC braking for OFF1/OFF3	Yes	No	-
Dependency:	Refer to: p1230, p1231, p1232, p1233, p1234, p1235, p1236, p1237				
Note:	External armature short-circuit (bits $0 \ldots 3$):				

For bit 00:
Using this signal, the motor is short-circuited through an external contactor circuit. This means that this BO: p1239.0 must be interconnected e.g. to a digital output.
For bit 01:
This signal indicates the state of the contactor to establish the armature short-circuit. To do this, B1: p1235 must be interconnected to a digital input.
For bit 02:
The external armature short-circuit configuration is ready and is activated as soon as the activation criterion is fulfilled.
For bit 03:
1: A feedback signal from an external contactor was parameterized in BI: p1235.
Internal voltage protection / internal armature short-circuit (bits 4 ... 6):
For bit 04:
a) Internal voltage protection $(\mathrm{p} 1231=3)$ was selected and the Motor Module does not support the autonomous internal voltage protection ($\mathrm{r} 0192.10=0$).
The Control Unit issues the command to the Motor Module to short-circuit the motor through the power semiconductors.
a) Internal voltage protection $(\mathrm{p} 1231=3)$ was selected and the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1).
The Motor Module decides autonomously whether the armature short-circuit is activated. In this case, the following applies: $\mathrm{r} 1239.4=\mathrm{r} 1239.5$.
c) Internal armature short-circuit (p1231 = 4) was selected.

The Control Unit issues the command to the Motor Module to short-circuit the motor through the power semiconductors.
For bit 05:
The Motor Module signals that the motor is short-circuited in the Motor Module through the power semiconductors.

For bit 06:
a) Internal voltage protection $(\mathrm{p} 1231=3)$ was selected and the Motor Module does not support the autonomous internal voltage protection (r0192.10 = 0) .
The internal voltage protection is ready and is activated as soon as the activation criterion is fulfilled.
a) Internal voltage protection (p1231 = 3) was selected and the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1).
The internal voltage protection is ready and the Motor Module decides autonomously - using the DC link voltage whether the short-circuit is activated. In this case, protection is also provided even if the DRIVE-CLiQ connection between the Control Unit and Motor Module was interrupted. The short-circuit is activated if the DC link voltage exceeds 800 V . If the DC link voltage falls below 450 V , then the short-circuit is withdrawn.
c) Internal armature short-circuit (p1231 = 4) was selected.

The internal armature short-circuit is ready and is activated as soon as the activation criterion is fulfilled.
Activation criterion (one of the following criteria is fulfilled):

- the signal at BI: p1230 (armature short-circuit activation) is 1.
- the drive is not in the state "S4: Operation" or in S5x (refer to function diagram 2610).
- the internal pulse enable is missing (r0046.19 = 0).

For bits 12, 13 :
Only effective for p1231 $=14$.

p1240[0...n]	Vdc controller or Vdc monitoring configuration / Vdc ctrl config		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 3082, 5650
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	9	0
Description:	Sets the configuration of the controller or monitoring for the DC link voltage (Vdc).		
Value:	0: Inhibit Vdc ctrl		
	1: Enable Vdc_max co		
	2: Enable Vdc_min controller (kinetic buffering)		
	3: Enable Vdc_min controller and Vdc_max controller		
	4: Activate Vdc_max monitoring		
	5: Activate Vdc_min monitoring		
	6: Activate Vdc_min monitoring and Vdc_max monitoring		
	7: Enable Vdc_max controller without accelerating		
	8: Enable Vdc_min controller without braking		
	9: Enable Vdc_min and Vdc_max controller w/o braking/accelerating		
Dependency:	Refer to: p1244, p1248, p1250, p1532		
Notice:	During a few steps of the rotating measurement (p1960 = 1) the Vdc_min controller and/or Vdc_max controller is disabled.		
Note:	p1240 = 1, 3:		
	When the upper DC link voltage threshold is reached (p1244), then the following applies:		
	- the Vdc_max controller limits the regenerative energy in order that the DC link voltage is kept below the maximum DC link voltage when braking.		
	- when other drives regenerate into the DC link, then the Vdc_max controller causes the motor to accelerate. p1240 $=2$, 3:		
	When the lower DC link voltage threshold is reached (p1248), the following applies:		
	- the Vdc_min controller limits the energy taken from the DC link in order to keep the DC link voltage above the minimum DC link voltage when accelerating.		
	- the motor is braked in order to use its kinetic energy to buffer the DC link.		
	$\mathrm{p} 1240=4,5,6:$		
	When the threshold in p1244 or p1248 is reached, the DC link voltage monitoring initiates a fault with a response and therefore reduces additional negative effects on the DC link voltage.		
	p1240 = 7, 9:		
	as for $\mathrm{p} 1240=1,3$. However, the motor is prevented from accelerating as a result of the regenerative feedback (energy recovery) of the other drives. The effective lower torque limit cannot exceed the offset of the torque limit (p1532).		

p1240 = 8, 9:
as for $\mathrm{p} 1240=2,3$. However, the motor is prevented from braking due to the fact that the DC link voltage has been lowered. The effective upper torque limit cannot be less than the offset of the torque limit (p1532).

p1240[0...n]

VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)

Vdc controller or Vdc monitoring configuration / Vdc ctrl config

```
Can be changed: U,T Calculated: -
Calculated: -
```

Data type: Integer16
P-Group: Functions
Not for motor type: REL
Min

0

Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max
6

Access level: 3

Func. diagram: 6220
Unit selection: -
Expert list: 1
Factory setting
1

Description: Sets the controller configuration of the DC link voltage (Vdc controller) in the closed-loop control mode.

Value:

Dependency:
Warning: When the Vdc_max controller is active, the motor can be accelerated (e.g. by driving loads or as a result of high DC link voltages). This can be caused by other drives that are operating on a common DC link busbar.

If several drives are operated from the same DC link busbar, then it is recommended that the Udc control is only activated for the drives with high moments of inertia. If the Udc controls for various drives are simultaneously active, then they can mutually influence one another. In this case, the controller dynamic performance should be reduced or the Udc control of individual drives should be deactivated.
Drives with Udc control must be able to brake and accelerate independently of one another.
Notice: \quad An excessively high value in p1245 can possibly negatively influence the normal operation of the drive.
Note: p1240 = 1, 3:
When the DC link voltage limit specified for the Motor Module is reached the following applies:

- the Vdc_max controller limits the regenerative energy in order that the DC link voltage is kept below the maximum DC link voltage when braking.
- the ramp-down times are automatically increased.
p1240 = 2, 3:
When the switch-in threshold of the Vdc_min controller is reached (p 1245), the following applies:
- the Vdc_min controller limits the energy taken from the DC link in order to keep the DC link voltage above the minimum DC link voltage when accelerating.
- the motor is braked in order to use its kinetic energy to buffer the DC link.
p1240 $=4,5,6$:
When the threshold in r1242 or r1246 is reached, the DC link voltage monitoring initiates a fault (F07403 or F07404) with a response and therefore reduces additional negative effects on the DC link voltage.
If a braking resistor is connected to the DC link, then the Vdc_max control should be disabled (also see p1531).

p1241

A_INF (Line droop
ctrl), R_INF (Line droop ctrl)

Vdc_max controller switch-in level / Vdc_max on_level

Can be changed: U, T Calculated: -
Data type: FloatingPoint32 Dyn. index: -
P-Group: - Unit group: -
Not for motor type: -
Min
70.0 [\%]
100.0 [\%]

Scaling: -
Max

Access level: 4

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
100.0 [\%]

Refer to: r0297, p1250
Note: The absolute value is obtained as follows:
p1241[\%] * r0297
Description: Sets the switch-in level for the Vdc_max controller for line droop control (BI: p5401[0] = 1 signal).
Dependency:

r1242	Vdc_max controller switch-in level / Vdc_max on_level		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6220
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_max controller. If p1254 $=0$ (automatic sensing of the switch-in level $=$ off), then the following applies: AC/AC device: $r 1242=1.15$ * sqrt(2) * p0210 DC/AC device: $r 1242=1.15$ * p0210 If p1254 $=1$ (automatic sensing of the switch-in level $=$ on), then the following applies: r1242 = Vdc_max-50.0 V (Vdc_max: Overvoltage threshold of the power unit) r1242 = Vdc_max - 25.0 V (for 230 V power units)		
Notice:	If the activation level of the Vdc_max controller is already exceeded in the deactivated state (pulse inhibit) by the DC link voltage, then the controller can be automatically deactivated (see F07401), so that the drive is not accelerated the next time that it is activated.		
Note:	The Vdc_max controller is not switched back off until the DC link voltage falls below the threshold 0.95 * r1242 and		

p1243[0...n] Vdc_max controller dynamic factor / Vdc_max dyn_factor

VECTOR (n / M),
VECTOR_AC (n / M), VECTOR_I_AC (n / M)

Can be changed: U, T
Data type: FloatingPoint32
P-Group: Functions
Not for motor type: REL
Min
1 [\%]

Calculated: CALC_MOD_CON
Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max
10000 [\%]

Access level: 3
Func. diagram: 6220
Unit selection: -
Expert list: 1
Factory setting
100 [\%]

Description: Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).
100% means that p1250, p1251, and p1252 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.

If subsequent optimization is required, this can be carried out using the dynamic factor. In this case p1250, p1251, p1252 are weighted with the dynamic factor p1243
If several modules are connected to the DC link, then the dynamic factor must be increased corresponding to the ratio of the additional capacitances to the capacitance of the module involved
Note: \quad The pre-setting of the dynamic factor is based on the power units connected to DRIVE-CLiQ. It is assumed that the power units connected via DRIVE-CLiQ are also electrically connected to the DC link. If this is not the case, then the dynamic factor must be optimized manually.
p1244[0...n] DC link voltage threshold upper / Vdc upper thresh

SERVO, SERVO AC, Can be changed: U, T
SERVO_I_AC
Data type: FloatingPoint32

P-Group: Functions
Not for motor type: REL

Min

165 [V]

Calculated: CALC MOD CON
Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max
1200 [V]

Access level: 3
Func. diagram: 5650
Unit selection: -
Expert list: 1
Factory setting
750 [V]

Description: Sets the upper threshold for the DC link voltage.
For p1240 = 1, 3, 7, 9, this threshold is used as limit setpoint for the Vdc_max controller.
For $\mathrm{p} 1240=4,6$, for DC link voltages above this threshold, an appropriate fault is output.
Dependency: Refer to: p1240, p1248, p1250
Note: \quad For p1244 < 1.07 * "parameterized DC link voltage" input of values is rejected.
For p0204.0 = 1, the following applies:
"Parameterized DC link voltage" = p0210
For p0204.0 $=0$, the following applies:
"Parameterized DC link voltage" = p0210 * 1.4142

2.2 List of parameters

p1245[0...n]	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
VECTOR (n/M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC (n/M)	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1

r1246

VECTOR (n/M), VECTOR_AC (n / M), VECTOR_I_AC (n/M)

Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
Can be changed: -	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6220
P-Group: Functions	Unit group: -	Unit selection: -
Not for motor type: REL	Scaling: p2001	Expert list: 1
Min	Max	Factory setting
- [V]	- [V]	- [V]
Displays the switch-in level for the Vdc_min controller (kinetic buffering).		
The Vdc_min controller is n the controller output is zero	off until the DC lin	ve the threshold 1.05 *

p1247[0...n]	Vdc_min controller dynamic factor (kinetic buffering) / Vdc_min dyn_factor		
$\begin{aligned} & \text { VECTOR }(n / M), \\ & \text { VECTOR_AC }(n / M), \\ & \text { VECTOR_I_AC }(n / M) \end{aligned}$	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6220
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the Vdc_min controller (kinetic buffering).		
	100% means that p1250, p1251, and p1252 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case p1250, p1251, p1252 are weighted with the dynamic factor p1247.		
	If several components are connected to the DC link, then the dynamic factor must be increased corresponding to the ratio of the additional capacitances to the capacitance of the component involved.		

p1248[0...n]	DC link voltage threshold lower / Vdc lower thresh		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5650
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	50 [V]	1000 [V]	285 [V]
Description:	Sets the lower threshold for the DC link voltage.		
	For p1240 $=2,3,8,9$, this threshold is used as limit setpoint for the Vdc_min controller. For $\mathrm{p} 1240=5,6$, for DC link voltages below this threshold, an appropriate fault is output.		
Dependency:	Refer to: p1240, p1244, p1250		
Note:	For p1248>0.93 * "parameterized DC link voltage" input of values is rejected.		
	For p0204.0 = 1, the following applies:		
	"Parameterized DC link voltage" = p0210		
	For p0204.0 = 0, the following applies:		
	"Parameterized DC link voltage" = p0210 * 1.4142		

p1249[0...n]	Vdc_max controller speed threshold / Vdc_max n_thresh		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	10.00 [rpm]
Description:	Sets the lower speed threshold for the Vdc_max controller.		
	When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the ramp-function generator.		
Note:	For fast braking where the ramp-function generator tracking was active, it is possible to prevent the drive rotating in the opposite direction by increasing the speed threshold and setting a final rounding-off time in the ramp-function generator (p 1131). This is supported using a dynamic setting of the speed controller.		

p1250[0...n]	Vdc controller proportional gain / Vdc_ctrl Kp		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5650
	P-Group: Functions	Unit group: 19_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[A / V]$	$100.00[A / V]$	1.00 [A/V]
Description:	Sets the proportional gain for the DC link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	Refer to: p1240, p1244, p1248		

p1250[0...n]	Vdc controller proportional gain / Vdc_ctrl Kp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1
	Min	100.00	Factory setting
	0.00	1.00	
Description:	Sets the proportional gain for the DC link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective proportional gain is obtained taking into account p1243 (Vdc_max controller dynamic factor).		
Note:	The gain factor is proportional to the capacitance of the DC link. The parameter is pre-set to a value that is optimally		
	adapted to the capacitance of the individual Motor Module. The capacitances of the other power units, which are		
	connected to the DC link, can be taken into account using the dynamic factor (p1247 or p1243).		

p1250	Vdc controller proportional gain / Vdc_ctrl Kp		
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	0.00
Description:	Sets the proportional gain for the DC link voltage controller (Vdc_min controller, Vdc_max controller) in line droop operation (p5401).		
	The controller actuating signal acts on the frequency output of the line droop control. The additional power to change the DC link voltage is therefore internally multiplied with the gradient of the frequency droop (p5407, p5408).		
Dependency:	Refer to: p1241, p1245		
Notice:	The Vdc_min controller or Vdc_max controller for grid droop operation can only become correctly active from its inherent operating principle, if additional island grid components are connected whose power significantly changes with the grid frequency. Examples of this are other power generators at an operating point with sufficient reserve for higher and lower power output - or line motors with sufficient reserve for higher and lower power consumption.		
	Otherwise, when the activation level for the Vdc_min controller or Vdc_max controller is exceeded, serious line faults can occur (underfrequency/overfrequency and undervoltage/overvoltage).		
Note:	Parameter p1250 acts as multiplier to the internal default setting of the gain factor.		
	The internal setting already takes into account the dependency on the capacitance of the DC link (corresponding to p3422).		

p1251[0...n]	Vdc controller integral time / Vdc_ctrl Tn		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6220
VECTOR_1_AC (n/M)	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the integral time for the DC link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective integral time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		
Note:	An integral time is normally possible to compensate for p1251 = 0: The integral com	ingle axis drives. For multiother axes using the integ vated.	on the other hand, it may be tegral component).

p1252[0...n]	Vdc controller rate time / Vdc_ctrl t_rate		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6220
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	$1000[m \mathrm{~ms}]$	Factory setting
	$0[\mathrm{~ms}]$	0 [ms]	
Description:	Sets the rate time constant for the DC link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective rate time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		

p1254	Vdc_max controller automatic ON level detection / Vdc_max SenseOnLev		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_I_AC (n/M)	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	1
Description:	Activates/deactivates the automatic sensing of the switch-in level for the Vdc_max controller.		
Value:	0: \quad Automatic detection inhibited 1: Automatic detection enabled		
p1255[0...n]	Vdc_min controller time threshold / Vdc_min t_thresh		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR__AC (n/M)	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	10000.000 [s]	0.000 [s]
Description:	Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized. Prerequisite: p1256 = 1		
Dependency:	Refer to: F07406		
Notice:	If a time threshold has been parameterized, the Vdc_max controller should also be activated (p1240=3) so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the event of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135.		

2.2 List of parameters

p1256[0...n]	Vdc_min controller response (kinetic buffering) / Vdc_min response		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the response for the Vdc_min controller (kinetic buffering).		
Value:	0: Buffer Vdc until undervoltage, n<p1257 -> F07405 1: Buff. Vdc until undervolt., n<p1257 -> F07405, t>p1255 -> F0740		
Dependency:	Refer to: F07405, F07406		

p1257[0...n]	Vdc_min controller speed threshold / Vdc_min n_thresh		
VECTOR (n/M),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	50.00 [rpm]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized Kinetic buffering is not started below the speed threshold.		
Note:	Exiting the Vdc_min control b increasing significantly at low However, the maximum brak	motor standstill prevents the reg ter a pulse inhibit, means that th be set via the appropriate torque	ative braking current from tor coasts down.

r1258	CO: Vdc controller output / Vdc_ctrl output		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6220
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Functions	Unit group: $6 _2$	Unit selection: p0505
	Not for motor type: REL	Max	Expert list: 1
	Min	$-[$ Arms $]$	Factory setting
	$-[$ Arms $]$	$-[$ Arms $]$	
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
Note:	The regenerative power limit p1531 is used for vector control to precontrol the Vdc_max controller. The lower the		
	power limit is set, the lower the correction signals of the controller when the voltage limit is reached.		

p1260	Bypass configuration / Bypass config		
VECTOR (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR I AC	P-Group: -	Unit group: -	Unit selection: -
(Tech_ctrl)	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description:	Sets the configuration for the bypass function.		
Value:	0: Bypass deactivated		
	1: Bypass with synchro	rlap	
	2: Bypass with synchro	overlap	
	3: Bypass without synchronization		

Note: If the bypass function is selected ($\mathrm{p} 1260>0$), then when the power unit restarts after POWER OFF, the state of the bypass switch is evaluated. This means that after the ramp-up, it is possible to directly change into the standby mode. This is only possible for p1267 = 1 (bypass using the control signal) and if the control command after the system has been booted is still available (p 1266). This function has a higher priority than the automatic restart function (p1210).
The "bypass" function can only be switched off again $(\mathrm{p} 1260=0)$ if the bypass is not active or the bypass function has a fault.
The corresponding function should be activated in p3800 for bypass with synchronization.

r1261.0... 12	CO/BO: Bypass control/status word / Bypass STW / ZSW				
$\begin{aligned} & \text { VECTOR (Tech_ctrl), } \\ & \text { VECTOR_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_I_AC } \\ & \text { (Tech_ctrl) } \end{aligned}$	Can be changed: -		Calculated: - Access		
	Data type: Unsigned32		Dyn. index: - Func. d		
	P-Group: -		Unit group: -	Unit selection: -	
	Not for motor type: RESM		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-			-	
Description:	Control and feedback signals of the bypass switch.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Command switch motor - power unit	Close	Open	-
	01	Command switch motor - line supply	Close	Open	-
	02	Synchronization requested	Yes	No	-
	03	Staging status	Active	Not active	-
	05	Feedback signal switch motor - power unit	Closed	Opened	-
	06	Feedback signal switch motor - line supply	Closed	Opened	-
		Bypass command (from p1266)	Yes	No	-
	08	Feedback signal synchronization completed (from p1268)	Yes	No	-
		Staging requested (from p2369)	Yes	No	-
	10	Bypass in process sequence	Yes	No	-
	11	Bypass enabled	Yes	No	-
	12	DC link voltage monitoring activated	Yes	No	-
Dependency:	Refer to: p1200, p2369				
Note:	Control bits 0 and 1 should be interconnected to the signal outputs via which the switches in the motor feeder cables should be controlled. These should be selected/dimensioned for switching under load.				
	The DC link voltage can suddenly rise for overlapping switching. In this case, a fast pulse inhibit is initiated. The "Flying restart" function must be activated so that after the pulse inhibit, for a bypass, the drive can be automatically re-synchronized to the converter.				

p1262[0...n]	Bypass dead time / Bypass t_dead		
VECTOR (Tech_ctrl),	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 2
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(Tech_ctrl), VECTOR I AC	P-Group: -	Unit group: -	Unit selection: -
(Tech_ctrl)	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	20.000 [s]	1.000 [s]
Description:	Sets the dead time for non-synchronized bypass.		
Note:	This parameter is used to define the changeover time of the contactors. It should not be shorter than the demagnetizing time of the motor (p 0347).		
	The total switchover time for the bypass is obtained from the sum of p1262 and the switch-off time of the relevant switch (p1274[x]).		

p1263	Debypass delay time / Debypass t_del		
VECTOR (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
(Tech_ctrl),	P-Group: -	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: RESM	Scaling: -	Expert list: 1
(Tech_ctrl)	Min	$300.000[\mathrm{~s}]$	Factory setting
	$0.000[\mathrm{~s}]$	$1.000[\mathrm{~s}]$	
	Sets the delay time to switch back to converter operation for a non-synchronized bypass.		

p1264	Bypass delay time / Bypass t_del		
VECTOR (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
(Tech_ctrl),	P-Group: -	Unit group: -	Unit selection: -
VECTOR_IC	Scaling: -	Expert list: 1	
(Tech_ctrl)	Not for motor type: RESM	Max	Factory setting
	Min	$300.000[\mathrm{~s}]$	$1.000[\mathrm{~s}]$
	$0.000[\mathrm{~s}]$	Sets the delay time for switching to line operation for a non-synchronized bypass.	

p1265	Bypass speed threshold / Bypass n_thresh		
VECTOR (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR I AC	P-Group: -	Unit group: 3_1	Unit selection: 00505
(Tech_ctrl)	Not for motor type: REL, RESM	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	1480.00 [rpm]
Description:	Sets the speed threshold to activate the bypass.		
Dependency:	If the drive setpoint speed is entered via a motorized potentiometer, then the configuration bit p1030.4 should be s in order to ensure the bypass via speed threshold function.		
Note:	When selecting p1260 $=3$ and p1267.1 $=1$, the bypass is automatically activated when this speed is reached.		

p1266	BI: Bypass control command / Bypass command		
VECTOR (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
(Tech_ctrl), U-Group: -	Unit group: -	Unit selection: -	
VECTOR_IAC	Not for motor type: RESM	Max	Expert list: 1
(Tech_ctrl)	Min	Factory setting	
	-	0	
Description:	Sets the signal source for the control command to the bypass.		

Note: \quad The parameter only has an effect for a non-synchronized bypass. $\quad \mathrm{p} 1267.0=1$: \quad The bypass is initiated by setting a binary signal. When the command is reset, after the debypass delay time (p 1263)

p1268	BI: Bypass feedback synchronization completed / FS sync compl		
VECTOR (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
(Tech_ctrl),	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: RESM	Scaling: -	Max
(Tech_ctrl)	Min	-	Factory setting
	-	3819.2	
Description:	Sets the signal source for the feedback signal "synchronization completed" for the bypass function. 1		
Dependency:	Refer to: r3819		

p1269[0..1]	BI: Bypass switch feedback signal / Bypass FS		
VECTOR (Tech_ctrI),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
(Tech_ctrl), P-Group: -	Unit group: -	Unit selection: -	
VECTOR_I_AC	Not for motor type: RESM	Scaling: -	Expert list: 1
(Tech_ctrl)	Min	Factory setting	
	-	0	
Description:	Sets the signal source for the feedback signal of the bypass switch.		
Index:	$[0]=$ Switch motor/drive		
	$[1]=$ Switch motor/line supply		
Note:	In the case of switches without a feedback signal, interconnect the corresponding control bit as the signal source:		
	BI: p1269[0] = r1261.0		
	BI: $1269[1]=r 1261.1$		

p1270[0...n]	Flying restart configuration / Fly restart config				
VECTOR,	Can be changed: T		Calculated: - Acces		
VECTOR_AC,	Data type: Unsigned16		Dyn. index: DDS, p0180	Func. diagram: -	
	P-Group: Closed-loop control		Unit group: -	Unit selection: -	
	Not for motor type: PMSM, SESM, REL, RESM		Scaling: -	Expert list: 1	
	Mi		Max	Factory setting	
			-	00000	
Description:	Sets the configuration for the "flying restart function" function.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Fast flying restart with voltage model for induction motor	r Yes	No	-
		PLL expansion for fast flying restart $\mathrm{w} /$ voltage model for ASM	Yes	No	-
		Siemens internal	Yes	No	-
		Siemens internal	1	0	-
		Siemens internal	1	0	-
		Siemens internal	1	0	-
Caution:	For bit $00=1$:				
1	When using a dv/dt filter, it is not permissible that a flying restart with voltage model is activated.				
Notice:	When selecting bit 00, also for U/f characteristic operation, a standstill measurement to identify the motor data must have been performed to set the necessary current controller for a fast flying restart.				

2.2 List of parameters

Note:	ASM: Induction motor		
	PMSM: permanent-magnet synchronous motor		
	For bit 00:		
	This bit is equivalent to p1780 bit 11.		
	For bit 01:		
	This bit should only be set when required for large drives.		
p1271[0...n]	Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0[\mathrm{~Hz}]$	650 [Hz]	0 [Hz$]$
Description:	Sets the maximum search frequency for a flying restart in an inhibited setpoint direction (p1110, p1111).		
Note:	The parameter has no effect for an operating mode, which only searches in the setpoint direction (p1200 > 3),		

p1272	Simulation mode / Simulation mode		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	In the simulation mode, the closed-loop control or U/f control can be operated without motor.		
	The simulation mode is used to test the power unit. Even though the DC link voltage is missing, the pulses are enabled when switching on. The DC link precharging is bypassed and the undervoltage detection is disabled.		
	Closed-loop speed control with an encoder is possible if the torque setpoint (r0079) is used in order to operate a second drive in the closed-loop torque controlled mode.		
Value:	$\begin{array}{ll} \text { 0: } & \text { OFF } \\ \text { 1: } & \text { ON } \end{array}$		
Dependency:	The following functions are deactivated in the simulation mode:		
	- motor data identification routine		
	- motor data identification routine, rotating without encoder		
	- pole position identification		
	For U/f control and sensorless vector control, flying restart is not carried out (refer to p1200).		
	Refer to: r0192, p1900, p1910, p1960, p1990		
	Refer to: A07825, F07826		
Notice:	In simulation mode, binector output r0863.1 = 1 is set. This is why you need to check whether other devices are switched on via this signal before activating simulation mode. You might need to disconnect the corresponding BICO interconnection temporarily.		
Note:	Simulation mode is only possible for DC link voltages below 40 V . In order that the closed-loop control can be calculated, the displayed DC link voltage (r0026, r0070) is set to the rated DC link voltage (refer to p0210). Closedloop current control and motor model are switched out (disabled) - the same is true for the speed controller for encoderless closed-loop speed control.		
	When fault messages occur, the parameter is not automatically reset. This function is not implemented for SINAMICS GM.		

p1274[0..1]	Bypass switch monitoring time / Switch t_monit		
VECTOR (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
(Tech_ctrl),	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: RESM	Max	Expert list: 1
(Tech_ctrl)	Min	Factory setting	
	$0[\mathrm{~ms}]$	$1000[\mathrm{~ms}]$	
	Sets the monitoring time for the bypass switch.		
Description:	$[0]=$ Switch motor/drive		
Index:	[1] = Switch motor/line supply		
Dependency:	Refer to: p1260		
Note:	The monitoring is deactivated with $\mathrm{p} 1274=0$ ms.		
	For non-synchronized bypass $(\mathrm{p} 1260=3)$, the following applies:		
	The changeover time for the bypass $(\mathrm{p} 1262)$ is extended by the value in this parameter.		

p1275	Motor holding brake control word / Brake STW				
SERVO (Ext brake),	Can be changed: U, T		Calculated: -	Access level: 2	
VECTOR (Ext brake),	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
brake), VECTOR AC	P-Group: Functions		Unit group: -	Unit selection: -	
(Ext brake),	Not for motor type: -		Scaling: -	Expert list: 1	
SERVO_I_AC (Ext	Min		Max	Factory setting	
VECTOR_I_AC (Ext brake)	-		-	00000000 bin	
Description:	Sets the control word for the motor holding brake.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Inversion BI: 1219[0]	Yes	No	2707
		Inversion BI: 1219[1]	Yes	No	2707
		Inversion BI: 1224[0]	Yes	No	2704
	03	Inversion BI: 1224[1]	Yes	No	2704
	05	Brake with feedback	Yes	No	2711
	06	Enable with feedback signal	Yes	No	2711

Note: \quad For $\mathrm{p} 1275.6=1$ and $\mathrm{p} 1275.5=1$, the following applies: \quad The pulse enable (BO: r 1229.3) is independent of the timer that has been set (p1217, p1216). The particular enable is only defined by the feedback signal ($\mathrm{BI}: \mathrm{p} 1222, \mathrm{BI}: \mathrm{p} 1223$). The timers ($\mathrm{p} 1216, \mathrm{p} 1217$) only influence the alarm A07931 "Brake does not open" and A07932 "Brake does not close".

p1276	Motor holding brake standstill detection bypass / Brk standst bypass		
SERVO (Ext brake),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Ext brake),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2704
brake), VECTOR AC	P-Group: Functions	Unit group: -	Unit selection: -
(Ext brake),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Ext	Min	Max	Factory setting
brake), VECTOR_I_AC (Ext brake)	0.000 [s]	300.000 [s]	300.000 [s]
Description:	Sets the delay time for closing the brake at standstill.		
	After this time has expired, if the "close brake at standstill" or OFF1/OFF3 is present, the brake is closed and the pulses are suppressed.		
	For p1276 $=300.000 \mathrm{~s}$, the timer is deactivated - this means that the timer output is always zero.		

2.2 List of parameters

p1277	Motor holding brake braking threshold delay exceeded / Del thresh exceed		
SERVO (Ext brake),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Ext brake),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2707
brake), VECTOR AC	P-Group: Functions	Unit group: -	Unit selection: -
(Ext brake),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Ext	Min	Max	Factory setting
brake), VECTOR_I_AC (Ext brake)	0.000 [s]	300.000 [s]	0.000 [s]
Description:	Sets the delay time for the signal "braking threshold exceeded" (BO: r1229.6). Refer to: p1220, p1221, r1229		
Dependency:			

p1278	Brake control diagnostics evaluation / Brake diagnostics		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Functions	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the brake control type (with or without diagnostics evaluation). Example for brake control with diagnostics evaluation. - brake control in the Motor Modules in booksize format - Safe Brake Relay for AC Drive Example for brake control without diagnostics evaluation. - Brake Relay for AC Drive		
Value:	0 : Brake control with diagnostics evaluation 1: Brake control without diagnostics evaluation		
Note:	If the configuration of the motor holding brake (p 1215) is set to "no holding brake present" when booting, then an automatic identification of the motor holding brake will be carried out. If a brake control is detected without diagnostics evaluation (e.g. Brake Relay for AC Drive), then the parameter is set to "brake control without diagnostics evaluation".		

p1279[0...3]	BI: Motor holding brake OR/AND logic operation / Brake OR AND		
SERVO (Ext brake),	Can be changed: T	Calculated: -	Access level: 2
VECTOR (Ext brake),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2707
SERVOAC (Ext	Unit group: -	Unit selection: -	
brake), VECCOR_AC	P-Group: Functions	Not for motor type: -	Scaling: -
(Ext brake),	Max	Expert list: 1	
SERVO_I_AC (Ext	Min	-	Factory setting
brake),		0	

brake)

Description: Sets the signal source for the OR/AND logic operation.
Dependency: Refer to: r1229
Note:
[0]: OR logic operation, input 1 --> the result is displayed in r1229.10.
[1]: OR logic operation, input 2 --> the result is displayed in r1229.10.
[2]: AND logic operation, input $1-->$ the result is displayed in r1229.11.
[3]: AND logic operation, input 2 --> the result is displayed in r1229.11.

$\mathbf{1 2 8 2}$
VECTOR,
VECTOR_AC,
VECTOR_I_AC

Notice:

Note: The Vdc_max controller is not switched back off until the DC link voltage falls below the threshold 0.95 * r1282 and the controller output is zero.

Vdc_max controller switch-in level (U/f)/Vdc_max on_level		
Can be changed: -	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6320
P-Group: Functions	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: p2001	Expert list: 1
Min	Max	Factory setting
$-[V]$	$-[V]$	$-[V]$

Description: Displays the switch-in level for the Vdc_max controller.
If p1294 $=0$ (automatic sensing of the switch-in level $=$ off), then the following applies:
AC/AC device: r1282 $=1.15$ * sqrt(2) * p0210
DC/AC device: $\mathrm{r} 1282=1.15^{*} \mathrm{p} 0210$
If p1294 $=1$ (automatic sensing of the switch-in level $=$ on), then the following applies:
r1282 $=$ Vdc_max-50.0 V (Vdc_max: Overvoltage threshold of the power unit)
r1282 = Vdc_max -25.0 V (for 230 V power units)
If the activation level of the Vdc_max controller is already exceeded in the deactivated state (pulse inhibit) by the DC link voltage, then the controller can be automatically deactivated (see F07401), so that the drive is not accelerated the next time that it is activated.

Note. \quad line

p1283[0...n]	Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6320
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100% means that p1290, p1291, and p1292 (gain, integral time, and rate time) are used in accordance with their basic settings and on the basis of a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case, p1290, p1291, and p1292 are weighted with the dynamic factor p 1283 .		
	If several modules are connected to the DC link, then the dynamic factor must be increased corresponding to the ratio of the additional capacitances to the capacitance of the module involved.		
Note:	The pre-setting of the dynam power units connected via D dynamic factor must be optim	d on the power units connected to also electrically connected to the	RIVE-CLiQ. It is assumed that the link. If this is not the case, then the

p1284[0...n] Vdc_max controller time threshold (U/f) / Vdc_max t_thresh
VECTOR,
VECTOR_AC,

VECTOR_I_AC

Description:
 Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor
Can be changed: U, T
Data type: FloatingPoint32
Dyn. index: DDS, p0180 Func. diagram: 6320
P-Group: Functions Unit group: - Unit selection: -
Not for motor type: -
Scaling: - Expert list: 1
Min Max Factory setting
1 [\%] 10000 [\%] 100 [\%]
Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).
100% means that p1290, p1291, and p1292 (gain, integral time, and rate time) are used in accordance with their basic settings and on the basis of a theoretical controller optimization.
If subsequent optimization is required, this can be carried out using the dynamic factor. In this case, p1290, p1291, and p1292 are weighted with the dynamic factor p1283.
If several modules are connected to the DC link, then the dynamic factor must be increased corresponding to the ratio of the additional capacitances to the capacitance of the module involved.

Can be changed: U, T
Data type: FloatingPoin
Calculated: CALC_MOD_ALL
Dyn. index: DDS, p0180
P-Group: Functions
Not for motor type: -
Unit group: -
Access level: 3
Func. diagram: -

Scaling: -
Unit selection: -

Min
Factory setting
0.000 [s] $300.000[\mathrm{~s}] \quad 4.000$ [s]

Sets the monitoring time for the Vdc_max controller.
If the down ramp of the speed setpoint is held for longer than the time set in p1284, then fault F07404 is output.

p1288[0...n]	Vdc_max controller feedback coupling factor ramp-fct. gen. (U/f) / Vdc_max factor RFG

VECTOR,
VECTOR_AC,
Can be changed: U, T

VECTOR_I_AC

Data type: FloatingPoint32
P-Group: Functions
Not for motor type: -
Min
0.000

Calculated: -

Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max
100.000

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting 0.500

Description: Sets the feedback factor for the ramp-function generator. Its ramp times are decelerated relative to the output signal of the Vdc_max controller.
Note: \quad For values $\mathrm{p} 1288=0.0$ to 0.5 , the controller dynamics are automatically adapted internally.
p1289[0...n] Vdc_max controller speed threshold (U/f) / Vdc_max n_thresh
VECTOR, Can be changed: U, T Calculated: CALC_MOD_ALL Access level: 3

Data type: FloatingPoint32
Dyn. index: DDS, p0180 Func. diagram: -
P-Group: Functions Unit group: 3_1
Not for motor type: - Scaling: -
Scaling: - Expert list: 1
Min Max Factory setting
0.00 [rpm] 210000.00 [rpm] 10.00 [rpm]

Description: Sets the lower speed threshold for the Vdc_max controller.
When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the ramp-function generator.

p1290[0...n]	Vdc controller proportional gain (U/f) / Vdc_ctrl Kp		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6320
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	1.00
Description:	Sets the proportional gain for the Vdc controller (DC link voltage controller).		
Note:	The gain factor is proportional to the capacitance of the DC link. The parameter is pre-set to a value that is optimally adapted to the capacitance of the individual Motor Module. The capacitances of the other power units which are connected to the DC link can be taken into account using the dynamic factor (p1287 or p1283).		

p1291[0...n]	Vdc controller integral time (U/f) / Vdc_ctrl Tn		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6320
VECTOR_I_AC	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	40 [ms]
Description:	Sets the integral time for the Vdc controller (DC link voltage controller).		
p1292[0...n]	Vdc controller rate time (U/f) / Vdc_ctrl t_rate	Calculated: CALC_MOD_CON	Access level: 3
VECTOR,	Can be changed: U, T	Dyn. index: DDS, p0180	Func. diagram: 6320
VECTOR_AC,	Data type: FloatingPoint32	Unit group: -	Unit selection: -
VECTOR_I_AC	P-Group: Functions	Scaling: -	Expert list: 1
	Not for motor type: -	Max	Factory setting

p1293[0...n]	Vdc min controller output limit (U/f)/Vdc_min outp_lim		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6320
VECTOR_I_AC	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~Hz}]$	$10.00[\mathrm{~Hz}]$	
Description:	Sets the output limit for the Vdc min controller (DC link undervoltage controller).		

p1294	Vdc_max controller automatic detection ON signal level (U/f)/Vdc_max SenseOnLev		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	1	Factory setting
	0	0	
Description:	Activates/deactivates the automatic sensing of the switch-in level for the Vdc_max controller. When the sensing function is deactivated, the activation threshold r1282 for the Vdc_max controller is determined from the parameterized connection voltage p0210.		

Value: $\quad 0: \quad$ Automatic detection inhibited
1: Automatic detection enabled

p1295[0...n]	Vdc_min controller time threshold (U/f) / Vdc_min t_thresh		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	10000.000 [s]	0.000 [s]
Description:	Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized. Prerequisite: p1296 = 1		
Notice:	If a time threshold has been parameterized, the Vdc_max controller should also be activated ($\mathrm{p} 1280=3$) so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the event of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135.		

p1296[0...n]	Vdc_min controller response (kinetic buffering) (U/f) / Vdc_min response		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the response for the Vdc_min controller (kinetic buffering).		
Value:	0: Buffer Vdc until undervoltage, $\mathrm{n}<\mathrm{p} 1297$-> F07405 1: Buff. Vdc until undervolt., n<p1297 -> F07405, t>p1295 -> F07406		
Note:	For p1296 = 1:		
	The quick stop ramp entered in p1135 must not be equal to zero, to prevent overcurrent shutdown if F07406 is triggered.		

p1297[0...n]	Vdc_min controller speed threshold (U/f)/Vdc_min n_thresh		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[r p m]$	$50.00[r \mathrm{rpm}]$	
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering).		
	If this value is exceeded a fault is output; the required response can be parameterized .		
Note:	Exiting the Vdc_min control before reaching motor standstill prevents the regenerative braking current from		
	increasing significantly at low speeds, and after a pulse inhibit, means that the motor coasts down.		

r1298	CO: Vdc controller output (U/f) / Vdc_ctrl output		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6320
	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode		
SERVO, SERVO_AC,	Can be changed: C2(1), T	Calculated: -	Access level: 2
SERVO_I_AC	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5060, 8012
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	20	23	21
Description:	Sets the open and closed-loop control mode of a drive.		
Value:	20: Speed control (encoderless) 21: Speed control (with encoder) 23: Torque control (with encoder)		
Dependency:	Closed-loop speed or torque control (with encoder) cannot be selected if the encoder type is not entered (p0400). Refer to: p0108, r0108, p0300, p0311, p0400, p1501		
Notice:	General conditions for encoderless operation can be found in the following literature: SINAMICS S120 Function Manual Drive Functions		
Note:	The closed-loop torque control can only be changed over in operation ($\mathrm{p} 1300=20,21$) by selecting the closed-loop speed control (p1501). At the changeover, the setting of p1300 does not change. In this case, the actual state is displayed in r1407, bit 2 and bit 3.		
	For encoderless operation (p1404 $=0$ or p1300 $=20$), the following applies:		
	- the following condition must be fulfilled: p1800 >= 1 / (4 * p0115[0])		
	- for motors with a low power rating (<300 W), we recommend to set p1800 >= 1 / p0115[0].		
	- although pulse frequencies p1800 $=1 /(n * p 0115[0])$ with $n=3$ or 4 are possible, for $p 0115[0]>62.5 \mu$ s, they result in unsteady closed-loop control and should be avoided.		
	- for a blocksize unit with a current controller sampling time $\mathrm{p} 0115[0]<80 \mu$ and a pulse frequency of p1800 $=0.5$ / $\mathrm{p} 0115[0]$, then it may be necessary to increase the switchover speed of the model p1755.		

p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: C2(1), T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 6300, 6301, 8012
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	19	0
Description:	Sets the U/f control mode of the drive.		
Value:	0 : U/f control with linear characteristic		
	1: U/f control with linear characteristic and FCC		
	2: U/f control with parabolic characteristic		
	3: U/f control with parameterizable characteristic		
	4: U/f control with linear characteristic and ECO		
	5: U/f control for drives requiring a precise freq. (e.g. textiles)		
	6: U/f control for drives requiring a precise frequency and FCC		
	7: U/f control for a parabolic characteristic and ECO		
	15: Operation with braking resistor		
	19: U/f control with independent voltage setpoint		
Recommendation: Dependency:	The use of the vector control operating modes is recommended for synchronous motors.		
	If you are working with reduced supply voltages ($\mathrm{p} 0212.0=1$), only U/f control with independent voltage setpoint ($\mathrm{p} 1300=19$) can be set as the operating mode.		
	p1300 $=15$ (operation with braking resistor), can only be activated or deactivated in quick commissioning ($\mathrm{p} 0010=$ 1). This operating mode is only possible for chassis power units (DC/AC Motor Module).		
Notice:	Active slip compensation is required in the U/f control types with Eco mode (p1300 = 4, 7). Slip compensation scaling (p 1335) must be set so that the slip is completely compensated (or generally, 100%).		
	The Eco mode is only effective in steady-state operation and when the ramp-function generator is not bypassed. In the case of analog setpoints, if required the tolerance for ramp-up and ramp-down should be actively increased for the ramp-function generator using p1148 in order to reliably signal a steady-state condition.		

2.2 List of parameters

Note: \quad The closed-loop torque control can only be changed over in operation ($p 1300=20,21$) by selecting the closed-loop speed control (p1501). At the changeover, the setting of p1300 does not change. In this case, the actual state is displayed in r1407, bit 2 and bit 3.
For motors, type $\mathrm{p} 0300=14$, operation with U/f control is only recommended for diagnostic purposes.
For motors, type p0300 $=6$ and $6 x x$, operation with U/f control is only recommended for diagnostic purposes.

p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode		
VECTOR (n / M),	Can be changed: C 2 (1), T	Calculated: -	Access level: 2
VECTOR_AC (n / M), VECTOR_I_AC (n/M)	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 6300, 6301, 8012
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	23	20
Description:	Sets the open and closed-loop control mode of a drive.		
Value:	0 : U/f control with linear characteristic		
	1: U/f control with linear characteristic and FCC		
	2: U/f control with parabolic characteristic		
	3: U/f control with parameterizable characteristic		
	4: U/f control with linear characteristic and ECO		
	5: U/f control for drives requiring a precise freq. (e.g. textiles)		
	6: U/f control for drives requiring a precise frequency and FCC		
	7: U/f control for a parabolic characteristic and ECO		
	15: Operation with braking resistor		
	18: I/f control with fixed current		
	19: U/f control with independent voltage setpoin		
	20: Speed control (encoderless)		
	21: Speed control (with encoder)		
	22: Torque control (encoderless)		
	23: Torque control (with encoder)		
Recommendation:	The use of the vector control operating modes is recommended for synchronous motors.		
Dependency:	Closed-loop speed or torque control (with encoder) cannot be selected if the encoder type is not entered (p0400).		
	Closed-loop speed or torque control can be selected if the closed-loop speed/torque control was selected as operating mode (p0108.2).		
	Only operation with U/f characteristic is possible if the rated motor speed is not entered (p0311).		
	A reluctance motor ($\mathrm{p} 0300=8$) can only be operated in a U/f control mode ($\mathrm{p} 1300<20$), a synchronous-reluctance motor ($\mathrm{p} 0300=6,6 \mathrm{xx}$) only in closed-loop speed/torque control.		
	Sensorless control on separately excited synchronous motors is only possible with a VSM module (see p0150, p0151).		
	For chassis power units with reduced line voltage (see r0212.0), the drive can only be operated in a control mode ($p 1300=20 \ldots 23$) and with the DC link voltage control activated.		
	Refer to: p0108, r0108, p0212, p0300, p0311, p0400, p1501		
Notice:	Active slip compensation is required in the U/f control types with Eco mode ($\mathrm{p} 1300=4,7$). Slip compensation scaling (p1335) must be set so that the slip is completely compensated (or generally, 100%).		
	The Eco mode is only effective in steady-state operation and when the ramp-function generator is not bypassed. In the case of analog setpoints, if required the tolerance for ramp-up and ramp-down should be actively increased for the ramp-function generator using p1148 in order to reliably signal a steady-state condition.		

Note: \quad The closed-loop torque control can only be changed over in operation ($p 1300=20,21$) by selecting the closed-loop speed control (p1501). At the changeover, the setting of p1300 does not change. In this case, the actual state is displayed in r1407, bit 2 and bit 3.
For the open-loop control modes p1300 = 5 and 6 (textile sector), slip compensation p1335, resonance damping p1338, and the Imax frequency controller are switched off internally so that the output frequency can be set precisely. The Imax voltage controller remains active.
For the open-loop control modes p1300 = 4 and 7 (Eco mode), the efficiency can be optimized by varying the voltage (when the operating point is constant).
Separately excited synchronous motors can only be operated in modes p1300 $=20,21$ and 23 - or for diagnostic purposes in modes p1300 = 0, 3 and 18. For l/f control ($\mathrm{p} 1300=18$), the current amplitude can be set using p1609. Both for U/f as well as for I/f control only a small load may be applied to the separately excited synchronous motor because the excitation current is not calculated as a function of the load.
During operation (pulses enabled) the open-loop/closed-loop control mode cannot be changed by changing over drive data sets.
p1300 is pre-assigned depending on r0108.2 and p0187.

p1310[0...n]	Starting current (voltage boost) permanent / I_start (Ua) perm		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 6301
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	250.0 [\%]	50.0 [\%]
Description:	Defines the voltage boost as a [\%] referred to the rated motor current (p0305).		
	The magnitude of the permanent voltage boost is reduced with increasing frequency so that at the rated motor frequency, the rated motor voltage is present.		
	The magnitude of the boost in Volt at a frequency of zero is defined as follows: Voltage boost [V] $=1.732 \times \mathrm{p} 0305$ (rated motor current [A]) \times r0395 (stator/primary section resistance [ohm]) $\times \mathrm{p} 1310$ (permanent voltage boost [\%]) / 100%		
	At low output frequencies, there is only a low output voltage in order to maintain the motor flux. However, the output voltage can be too low in order to achieve the following:		
	- magnetize the induction motor.		
	- hold the load.		
	- compensate for losses in the system.		
	This is the reason that the output voltage can be increased using p1310.		
	The voltage boost can be used for both linear as well as square-law U/f characteristics.		
Dependency:	The starting current (voltage boost) is limited by the current limit p0640.		
	The accuracy of the starting current depends on the setting of the stator and feeder cable resistance (p0350, p0352).		
Notice:	The starting current (voltage boo	s the motor temperature (particul	at zero speed).
Note:	The starting current as a result of the voltage boost is only effective for U/f control (p1300).		
	The boost values are combined with one another if the permanent voltage boost (p 1310) is used in conjunction with other boost parameters (acceleration boost (p 1311), voltage boost for starting (p 1312)).		
	However, these parameters are assigned the following priorities: p1310 > p1311, p1312		
p1311[0...n]	Starting current (voltage boost) when accelerating / I_start accel		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 6301
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	250.0 [\%]	0.0 [\%]
Description:	p1311 only results in a voltage boost when accelerating and generates a supplementary torque to accelerate the load.		
	The voltage boost becomes effective for a positive setpoint increase, and is withdrawn once the setpoint has been reached.		
	The build-up and withdrawal of the voltage boost are smoothed.		
	The magnitude of the boost in Volt at a frequency of zero is defined as follows:		
	Voltage boost [V] $=1.732$ * p 0305 (rated motor current [A]) x r0395 (stator/primary section resistance [ohm]) x p1311 (voltage boost when accelerating [\%]) / 100%		
Dependency:	The current limit p0640 limits the boost.		
	Refer to: p1300, p1310, p1312, r1315		
Notice:	The voltage boost results in a higher motor temperature increase.		
Note:	The voltage boost when accelerating can improve the response to small, positive setpoint changes. Assigning priorities for the voltage boosts: refer to p1310		

p1312[0...n]	Starting current (voltage boost) when starting / I_start start		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 6301
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	250.0 [\%]	0.0 [\%]
Description:	Setting for an additional voltage boost when powering-up (only for the first acceleration phase). The voltage boost becomes effective for a positive setpoint increase, and is withdrawn once the setpoint has been reached.		
	The build-up and withdrawal of the voltage boost are smoothed.		
Dependency:	The current limit p0640 limits the boost. Refer to: p1300, p1310, p1311, r1315		
Notice:	The voltage boost results in a higher motor temperature increase.		
Note:	The voltage boost when accelerating can improve the response to small, positive setpoint changes.		
r1315	Voltage boost total / U_boost total		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6301
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the total resulting voltage boost in volt.		
Dependency:	Refer to: p1310, p1311, p1312		
p1317[0...n]	U/f control activation / Uf act		
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5019, 5730
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to activate the U/f control with linear characteristic.		
Value:	0: Deactivated (p1300 effective) 1: Activated		
Dependency:	Refer to: p1318, p1319, p1326, p1327		
Note:	The following applies for firmware version 4.3 and higher:		
	Further, when U/f control is activated, the following functions are active: - Vdc controller (p1240, p1244, p1248, p1250). - the up ramp is limited by the set M, P and I limits (p0326, p0341, p0342, p0640, p1520, p1521, p1530, p1531, p1498).		

p1318[0...n]	U/f control ramp-up/ramp-down time / Uf t_rmp-up_rmp-dn		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5300
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	Sets the ramp-up and ramp-down time for the U/f control.		
	The ramp-function generator requires this time to reach the maximum speed (p 1082) from zero.		
Dependency:	Refer to: p1317, p1319, p1326, p1327		
Note:	This ramp is used for stall protection and operates independently of any ramp-function generator that might have been configured.		
p1319[0...n]	U/f control voltage at zero frequency / Uf U at f=0 Hz		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5300
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Vrms]	100.0 [Vrms]	0.0 [Vrms]
Description:	The linear characteristic for the U/f control is defined by $0 \mathrm{~Hz} / \mathrm{p} 1319$ and p1326/p1327. This parameter specifies the voltage for a frequency of 0 Hz .		
Dependency:	The U/f control is activated via p1317 = 1 .		
	Refer to: p1317, p1326, p1327		
Note:	Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1319$ and p1326/p1327.		
p1320[0...n]	U/f control programmable characteristic frequency 1 / Uf char f1		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	0.00 [Hz]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the first point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300=3.		
	The following applies to the frequency values: p1320 <= p1322 < = p1324 <= p1326. Otherwise, a standard characteristic is used that contains the rated motor operating point.		
	Refer to: p1300, p1310, p1311, p1321, p1322, p1323, p1324, p1325, p1326, p1327		
Note:	Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1310, \mathrm{p} 1320 / \mathrm{p} 1321 \ldots$ p1326/p1327. The voltage boost when accelerating (p 1311) is also applied to the freely programmable U/f characteristic.		
p1321[0...n]	U/f control programmable characteristic voltage 1 / Uf char U1		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Vrms]	10000.0 [Vrms]	0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the first point along the characteristic.		

Dependency:	Selects the freely programmable characteristic using p1300 = 3.
	Refer to: p1310, p1311, p1320, p1322, p1323, p1324, p1325, p1326, p1327
Note:	Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1310, \mathrm{p} 1320 / \mathrm{p} 1321 \ldots \mathrm{p} 1326 / \mathrm{p} 1327$.
	The voltage boost when accelerating (p1311) is also applied to the freely programmable U/f characteristic.

p1322[0...n]	U/f control programmable characteristic frequency $\mathbf{2} /$ Uf char f2		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	$3000.00[\mathrm{~Hz}]$	Factory setting
	$0.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$	
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$.		
	This parameter specifies the voltage of the second point along the characteristic.		

p1323[0...n]	U/f control programmable characteristic voltage 2 / Uf char U2		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Vrms]	10000.0 [Vrms]	0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the second point along the characteristic.		
Dependency:	Refer to: p1310, p1311, p1320,	2, p1324, p1325, p1326, p1327	

p1324[0...n]	U/f control programmable characteristic frequency 3 / Uf char f3		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	0.00 [Hz]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the third point along the characteristic.		
Dependency:	The following applies to the frequency values: p1320 <= p1322 <= p1324 <= p1326. Otherwise, a standard characteristic is used that contains the rated motor operating point.		
	Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1325, p1326, p1327		

p1325[0...n]	U/f control programmable characteristic voltage $\mathbf{3} / \mathrm{Uf}$ char U3		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	$10000.0[\mathrm{Vrms}]$	Factory setting
	$0.0[\mathrm{Vrms}]$	$0.0[\mathrm{Vrms}]$	
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$.		
	This parameter specifies the voltage of the third point along the characteristic.		
Dependency:	Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1324, p1326, p1327		

p1326[0...n]	U/f control characteristic frequency / Uf char f		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5300
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Hz]	10000.00 [Hz]	$0.00[\mathrm{~Hz}]$
Description:	The linear characteristic for the U/f control is defined by $0 \mathrm{~Hz} / \mathrm{p} 1319$ and $\mathrm{p} 1326 / \mathrm{p} 1327$. This parameter specifies the voltage of the upper point along the characteristic.		
Dependency:	The U/f control is activated via p1317 = 1 .		
	Refer to: p1317, p1319, p1327		
Note:	Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1319$ and p1326/p1327.		

p1326[0...n]	U/f control programmable characteristic frequency 4 / Uf char f4		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Hz]	10000.00 [Hz]	$0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the frequency of the fourth point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300 $=3$.		
	The following applies for the frequency values:		
	p1320 <= p1322 <= p1324 <= p1326		
	Otherwise, a standard characteristic is used that contains the rated motor operating point.		
	Refer to: p1310, p1311, p1317, p1319, p1320, p1321, p1322, p1323, p1324, p1325, p1327		
Note:	Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1310, \mathrm{p} 1320 / \mathrm{p} 1321 \ldots$... p1326/p1327. For output frequencies above p1326, the characteristic is extrapolated with the gradient between the characteristic points p1324/p1325 and p1326/p1327.		
	The voltage boost when accelerating (p1311) is also applied to the freely programmable U/f characteristic.		

p1327[0...n]	U/f control characteristic voltage / Uf char U		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5300
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Vrms]	10000.0 [Vrms]	0.0 [Vrms]
Description:	The linear characteristic for the U/f control is defined by $0 \mathrm{~Hz} / \mathrm{p} 1319$ and $\mathrm{p} 1326 / \mathrm{p} 1327$. This parameter specifies the voltage of the upper point along the characteristic.		
Dependency:	The U/f control is activated via p1317 = 1 .		
	Refer to: p1317, p1319, p1326		
Note:	Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1319$ and p1326/p1327.		

p1327[0...n]	U/f control programmable characteristic voltage 4 / Uf char U4		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Vrms]	10000.0 [Vrms]	0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the fourth point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300 $=3$.		
	Refer to: p1310, p1311, p1317, p1319, p1320, p1321, p1322, p1323, p1324, p1325, p1326		
Note:	Linear interpolation is carried out between the points $0 \mathrm{Hz/p1310}, \mathrm{p} 1320 / \mathrm{p} 1321 . . . \mathrm{p} 1326 / \mathrm{p} 1327$.		
	The voltage boost when accelerating (p1311) is also applied to the freely programmable U/f characteristic.		

p1330[0...n]	CI: U/f control independent voltage setpoint / Uf U_set independ.		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6301
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the voltage setpoint for U/f control with an independent voltage setpoint (p1300 = 19).		
Dependency:	Selects the U/f control with independent voltage setpoint via p1300 =19.		
	Refer to: p1300		

p1331[0...n]	Voltage limiting / U_lim		
VECTOR, VECTOR AC, VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300
	P-Group: -	Unit group: 5_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	50.00 [Vrms]	2000.00 [Vrms]	1000.00 [Vrms]
Description:	Limiting the voltage setpoint.		
	This means that the output voltage can be reduced with respect to the calculated maximum voltage r0071 and the start of field weakening.		
Note:	The output voltage is only limited if, as a result of p1331, the maximum output voltage (r0071) is fallen below.		
p1333[0...n]	U/f control FCC starting	y / U/f FCC f_start	
VECTOR, VECTOR AC, VECTOR_I_AC	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	$0.00[\mathrm{~Hz}]$
Description:	Sets the starting frequency at which FCC (Flux Current Control) is activated.		
Dependency:	The correct operating mode must be set ($\mathrm{p} 1300=1,6$).		
Warning:	An excessively low value can result in instability.		
Note:	For p1333 $=0 \mathrm{~Hz}$, the FCC starting frequency is automatically set to 6% of the rated motor frequency.		

p1334[0...n]	U/f control slip compensation starting frequency / Slip comp start		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6310
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	$3000.00[\mathrm{~Hz}]$	Factory setting
	$0.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$	
Description:	Sets the starting frequency of the slip compensation.		
Note:	For p1334 $=0$, the starting frequency of the slip compensation is automatically set to 6% of the rated motor frequency.		

p1335[0...n]	Slip compensation scaling / Slip comp scal		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 6310
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	600.0 [\%]	0.0 [\%]
Description:	Sets the setpoint for slip compensation in [\%] referred to r0330 (motor rated slip). p1335 $=0.0 \%$: Slip compensation deactivated. p1335 $=100.0 \%$: The slip is completely compensated.		
Dependency:	Prerequisite for a precise slip compensation for $\mathrm{p} 1335=100 \%$ are the precise motor parameters ($\mathrm{p} 0350 \ldots$ p 0360). If the parameters are not precisely known, a precise compensation can be achieved by varying p1335.		
	For U/f control modes with ECO optimization ($\mathrm{p} 1300=4,7$), slip compensation must be activated in order to guarantee correct operation.		
Note:	The purpose of slip compensation is to maintain a constant motor speed regardless of the applied load. The fact that the motor speed decreases with increasing load is a typical characteristic of induction motors.		
	For synchronous motors, this effect does not occur and the parameter has no effect in this case.		
	For U/f control modes, for textile applications (p1300 =5,6), slip compensation is internally deactivated, allowing the output frequency to be precisely adjusted.		
	If p1335 is changed during commissioning ($\mathrm{p} 0009, \mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1335 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).		

p1336[0...n]	Slip compensation limit value / Slip comp lim val		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6310
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\%]$	$600.00[\%]$	250.00 [\%]
Description:	Sets the limit value for slip compensation in [\%] referred to ro330 (motor rated slip).		

r1337	CO: Actual slip compensation / Slip comp act val		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6310
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual compensated slip [\%] referred to r0330 (rated motor slip).		
Dependency:	p1335 > 0 \%: Slip compensation active.		
	Refer to: p1335		

p1338[0...n]	U/f mode resonance damping gain / Uf Res_damp gain		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5300
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	1.00
Description:	In U/f mode, the resonance damping function dampens oscillations that are frequently experienced by induction motors in certain speed ranges and by synchronous motors above even low speeds.		
Dependency:	Refer to: p1317, p1339, p1349		
Note:	Resonance damping is active in the following ranges:		
	- Active: 3.1 Hz ... p1349		
	- Build-up (linear): 3.1 ... 4.77 Hz		
	- Reduction (linear): 0.95 * p1349 ... p1349		
	Where the value = 1 and at the oscillation amplitude of the rated current, the rated slip frequency is switched in for induction motors, while a frequency of 10 Hz is switched in for synchronous motors.		

p1338[0...n]	U/f mode resonance damping gain / Uf Res_damp gain		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 6310
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	0.00
Description:	Sets the gain for resonance damping for U/f control.		
Dependency:	Refer to: p1300, p1339, p1349		
Note:	The resonance damping function dampens active current oscillations that frequency occur under no-load conditions.		
	The resonance damping is active in a range from approximately 6% of the rated motor frequency (p 0310). The shutoff frequency is determined by p1349.		
	For the open-loop control modes p1300 $=5$ and 6 (textile sectors), the resonance damping is internally disabled in order that the output frequency can be precisely set.		

p1339[0...n]	U/f mode resonance damping filter time constant / Uf Res_damp T		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5300
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.00 [ms]	1000.00 [ms]	20.00 [ms]
Description:	Sets the filter time constant for resonance damping for U/f control.		
Dependency:	Refer to: p1317, p1338, p1349		
Note:	The filter time constant must be greater than the oscillation period of the oscillation to be dampened.		
p1339[0...n]	U/f mode resonance damping filter time constant / Uf Res_damp T		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6310
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.00 [ms]	1000.00 [ms]	20.00 [ms]

Description: Sets the filter time constant for resonance damping for U/f control.
Dependency: Refer to: p1300, p1338, p1349

p1340[0...n]	I_max frequency controller proportional gain / I_max_ctrl Kp		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	0.500	0.000
Description:	Sets the proportional gain of the I_max frequency controller.		
	The I_max controller reduces the drive converter output current if the maximum current (r0067) is exceeded.		
	In the U/f operating modes (p 1300) for the I_max control, one controller is used that acts on the output frequency and one controller that acts on the output voltage. The frequency controller reduces the current by decreasing the converter output frequency. The frequency is reduced down to a minimum value (equaling twice rated slip). If the overcurrent condition cannot be successfully resolved using this measure, then the drive converter output voltage is reduced using the I_max voltage controller. Once the overcurrent condition has been resolved, the drive is accelerated along the ramp set in p1120 (ramp-up time).		
Dependency:	In the U/f modes (p1300) for textile applications and for external voltage setpoints, only the I_max voltage controller is used.		
Notice:	When deactivating the I_max controller, the following must be carefully observed:		
	When the maximum current (r0067) is exceeded, the output current is no longer reduced. The drive is switched off when the overcurrent limits are exceeded.		
Note:	The I_max limiting controller becomes ineffective if the ramp-function generator is deactivated with p1122 $=1$. p1341 $=0$:		
	I_max frequency controller deactivated and I_max voltage controller activated over the complete speed range.		

p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	$50.000[\mathrm{~s}]$	Factory setting
	$0.000[\mathrm{~s}]$	$0.300[\mathrm{~s}]$	
Description:	Sets the integral time for the I_max frequency controller.		
Dependency:	Refer to: p1340		
Note:	When p1341 = 0, the current limiting controller influencing the frequency is deactivated and only the current limiting		
	controller influencing the output voltage remains active (p1345, p1346).		

r1343	CO: I_max controller frequency output /I_max_ctrl f_outp		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6300
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: $3 _1$	Unit selection: 00505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{rpm}]$	$-[\mathrm{rpm}]$	$-[\mathrm{rpm}]$
Description:	Displays the effective frequency limit.		
Dependency:	Refer to: $p 1340$		

r1344	I_max controller voltage output / I_max_ctrl U_outp		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6300
C	P-Group: V/f open-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the amount by which the converter output voltage is reduced.		
Dependency:	Refer to: p1340		
p1345[0...n]	DC braking proportional gain / DCBRK Kp		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 7017
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain for DC braking (p1230, p1231).		
Dependency:	Refer to: p1346		
Note:	Current controller adaptation is not effective for DC braking.		
p1345[0...n]	I_max voltage controller proportional gain / I_max_U_ctrl Kp		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 7017
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain for the I_max voltage controller.		
Dependency:	Refer to: p1340		
Note:	The controller settings are also used in the current controller of the DC braking (refer to p1232).		
p1346[0...n]	DC braking integral time / DCBRK Tn		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 7017
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [ms]	50.000 [ms]	0.030 [ms]
Description:	Sets the integral time for DC braking (p1230, p1231).		
Dependency:	Refer to: p1345		
Note:	For p1346 = 0, the following applies:		
	The integral time of DC braking is deactivated.		

p1346[0...n]	I_max voltage controller integral time / I_max_U_ctrl Tn		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 7017
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	50.000 [s]	0.030 [s]
Description:	Sets the integral time for the I_max voltage controller.		
Dependency:	Refer to: p1340		
Note:	The controller settings are also used in the current controller of the DC braking (refer to p1232).		
	For p1346 = 0, the following applies:		
	The integral time of the I_max vorta	ller is deactivated.	

p1349[0...n]	U/f mode resonance damping maximum frequency / Uf res_damp f_max		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6310
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	$3000.00[\mathrm{~Hz}]$	Factory setting
	$0.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$	
Description:	Sets the maximum output frequency for resonance damping for U/f control.		
	Resonance damping is inactive above this output frequency.		
Dependency:	Refer to: p1338, p1339		
Note:	For p1349 $=0$, the changeover limit is automatically set to 95% of the rated motor frequency - however, to a max. of		

p1350[0...n]	U/f control soft start / U/f soft start		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 6300
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets whether the voltage is continuously increased during the magnetizing phase (p1350 $=1$, On) or whether it jumps		
	directly to the voltage boost (p1350 =0, Off).		

Value:	$0:$	OFF
	$1:$	ON

Dependency: \quad The function is not effective for $\mathrm{p} 1300=15$.
Note: \quad The settings for this parameter have the following advantages and disadvantages:
$0=$ off (jump directly to voltage boost)
Advantage: Flux is established quickly -> torque is quickly available
Disadvantage: The motor can move while it is being magnetized
$1=$ on (voltage is continually established)
Advantage: The motor is unlikely to rotate
Disadvantage: The flux is established slower -> torque is available later

p1351[0...n]	CO: Motor holding brake starting frequency / Brake f_start		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6310
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	$-300.00[\%]$	$0.00[\%]$	
Description:	Sets the frequency setting value at the slip compensation output for starting up with motor holding brake.		
Dependency:	When setting p1351 > 0, then slip compensation is automatically activated (p1335 = 100 \%).		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	A value of 100% corresponds to the motor rated slip (r0330).		

p1356[0...n]	CI: U/f control angular setpoint / Uf ang setpoint		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: -
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the differential angular generation for U/f control.		
p1358[0...n]	Angular difference symmetrizing actual angle / Sym act angle		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0

r1359	CO: Angular difference / Angular difference		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2005	Expert list: 1
	Min	$-\left[^{\circ}\right]$	Factory setting
	$-\left[^{\circ}\right]$	$-\left[{ }^{\circ}\right]$	
Description:	Displays the output of the differential angular generation.		
Note:	The difference between the setpoint angle, read-in in p1356 and the actual value of the U/f control delayed with		
	p1358 is displayed.		

p1360	Braking chopper braking resistor cold / Br_chop R cold		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_1_AC	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [ohm]	10.000 [ohm]	0.000 [ohm]
Description:	Sets the braking resistor for the braking chopper.		
Dependency:	Select operation with braking resistor: p1300 $=15$		
	Refer to: p1362, r1363, p1364		
	Refer to: A06921, F06922		

p1362[0...1]	Braking chopper activation threshold / Br_chop thresh		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [V]	1158 [V]	[0] 0 [V]
			[1] 60 [V]
Description:	Sets the activation threshold for the brake chopper.		
	The hysteresis defines the range of the output voltage from zero up to the maximum voltage.		
Index:	[0] = Braking chopper threshold value [1] = Braking chopper hysteresis		
Dependency:	Select operation with braking resistor: p1300 = 15		
	Refer to: p1360, r1363, p1364		
	Refer to: A06921, F06922		

r1363

CO: Braking chopper output voltage / Br_chop U_output

VECTOR,
Can be changed: -
Calculated: -
Access level: 3
Data type: FloatingPoint32
P-Group: Displays, signals
Not for motor type: -
Min

- [Vrms]

Displays the actual power unit output voltage (Motor Module) in braking chopper operation.
Description:
Dependency:

Func. diagram: -
Unit selection: p0505
Expert list: 1
Factory setting

- [Vrms]

Refer to: p1360, p1362, p1364

Select operation with braking resistor: p1300 = 15
Refer to: A06921, F06922

p1364	Braking chopper resistor asymmetry / Br_chop R asym		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: V/f open-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	25.00 [\%]
Description:	Sets the percentage value for the asymmetry detection for the braking chopper.		
	The ripple of the absolute current r0068 is monitored.		
	The reference value is the average value of the absolute current.		
	The minimum monitoring value is 10% of the power unit rated current.		
Dependency:	Select operation with braking resistor: p1300 $=15$		
	Refer to: p1360, p1362, r1363		
	Refer to: F06922		
Note:	For p1364 = 0, asymmetry identification is deactivated.		
	Asymmetry can also be displayed if the absolute current manifests ripple, caused by load-related ripple of the DC link voltage. In this particular case, p1364 must be increased.		

r1369[0]	CO: Phase current actual value filtered / I_ph act val filt		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6300
	P-Group: V/f open-loop control	Unit group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the measured actual phase currents as peak value. This value is averaged for the display in the speed controller sampling time ($\mathrm{p} 0115[1]$).		
Index:	[0] = Phase U		
Dependency:	The signal is only displayed in operating mode p1300 $=19$ (U/f control with independent voltage setpoint) and is used to control DC currents (e.g. for excitation (field) controllers).		
p1381[0...n]	U/f control modulation limit reduction / U/f mod_lim reduce		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6723
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	40.0 [\%]	0.0 [\%]
Description:	Reduction of the maximum modulation depth when compared to r0073 to reduce the maximum output voltage r0071 The maximum modulation depth is reduced no more than the ideal overcontrol limit of 100%.		
Note:	If p1803 is increased for operation with closed-loop speed/torque control, then the modulation limit for operation with U/f control can in turn be reduced in order to avoid overcontrol and the associated current ripple.		

2.2 List of parameters

2.2 List of parameters

For bit 18:
Only active when the "moment of inertia estimator" function module is active (r0108.10 = 1).
The result of the moment of inertia estimator is displayed in r1493 when the function is activated.
The function assumes that speed changes are made without load change. If a speed change must be realized with associated load change, then during this time, the estimated moment of inertia should be frozen using binector input p1502.
For bit 22:
Only active when the "moment of inertia estimator" function module is active ($\mathrm{r} 0108.10=1$) and when the moment of inertia estimator is active ($\mathrm{p} 1400.18=1$).
For bit $=0$, the following applies:
The starting value after withdrawing the pulse inhibit is the parameterized moment of inertia (p0341 * p0342 + p1498).
For bit = 1, the following applies:
The starting value after withdrawing the pulse inhibit is the last estimated value for the moment of inertia.

Note: For bit 07:

The interpolator is only active for isochronous PROFIBUS operation, and with the sign-of-life received from the master (STW2.12 ... STW2.15). Further, for active Dynamic Servo Control (DSC) an additional dead time of one velocity controller sampling time occurs.
For bit 10:
The precontrol signal via connector input p1430 only becomes effective at p1402.4 = 1 (force-velocity precontrol with encoder) at p1400.10 $=0$ (for setp_filter 2).
For bit 11:
If the motor rotates when the pulses are enabled, then we recommend p1400.11 = 1 (starting value $=$ setpoint) with the matching sign.
If the motor remains stationary (zero speed) when the pulses are enabled, the we recommend p1400.11 = 0 (starting value $=0.0$)

For bit 12:
If a changeover is made from operation with encoder to encoderless operation while accelerating (with the threshold from p 1404), then we recommend $\mathrm{p} 1400.12=0$.
If the changeover is made from operation with an encoder to encoderless at constant velocity (e.g. with a DDS changeover or if there is an encoder fault via p0491), then we recommend p1400.12 $=1$.
For bit 17:
In order to avoid limit cycles (e.g. as a result of disturbing forces) for DSC with a high Kv factor, the position controller output can be limited using a root function corresponding to the currently available deceleration capability of the drive. In this case, the total mass (m_tot) must be parameterized precisely (if necessary, determine the mass p0341, p0342 and p1498 using the motor data identification). If the limiting function responds, then this is indicated in r1407.19.
As a result of the absolute value limiting above $v[\mathrm{~m} / \mathrm{min}]=5.7 \times \mathrm{F}$ max[N$] /(\mathrm{Kv}[1000 / \mathrm{min}] \times \mathrm{m}$ _tot[kg]), the dynamic response of the position controller is no longer linear (F_max, see r1538, r1539). This is the reason that velocity precontrol is recommended.
For bit 18:
Only active when the "moment of inertia estimator" function module is active (r0108.10 = 1).
The result of the moment of inertia estimator is displayed in r1493 when the function is activated.
The function assumes that the velocity changes without the load changing. If the velocity must be changed with associated load change, then during this time, the estimated mass should be frozen using binector input p1502.

p1400[0...n]	Speed control configuration / n_ctrl config				
VECTOR (n / M),	Can be changed: U, T Ca		ulated: -	Access level: 2	
VECTOR_AC (n / M),	Data type: Unsigned32 Dy		index: DDS, p0180	Func. diagram: 6490	
VECTOR_I_AC (n/M)	P-Group: Closed-loop control Un		group: -	Unit selection: -	
	Not for motor type: REL Scalis		ng: -	Expert list: 1	
	Min			Factory setting	
	-	-		$\begin{aligned} & 00000000000000001000 \\ & 000000100001 \text { bin } \end{aligned}$	
Description:	Sets the configuration for the closed-loop speed control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Automatic Kp/Tn adaptation active	Yes	No	6040
	01	Sensorless vector control freeze I comp	Yes	No	6040
		Acceleration precontrol signal source	External (p1495)	Internal (n_set)	6031
	03	Reference model speed setpoint I component	ON	OFF	6031
	05	$\mathrm{Kp} / \mathrm{Tn}$ adaptation active	Yes	No	6040
	06	Free Tn adaptation active	Yes	No	6050
	14	Torque precontrol	Always active	For n_ctrl enab	6060
	15	Sensorless vector control speed precontrol	Yes	No	6030
	16	I component for limiting	Enable	Hold	6030
	18	Moment of inertia estimator active	Yes	No	6030
	19	Anti-windup for integral component	Yes	No	6030
	20	Acceleration model	ON	OFF	6031
	22	Obtain moment of inertia estimator value for pulse inhibit	Yes	No	6030
	23	Acceleration model (with speed encoder)	Yes	No	6030
	24	Moment of inertia estimator fast estimation active	Yes	No	6030
		Acceleration torque instantaneous in the I/f mode	Yes	No	-
Note:	For bit 01:				
	When the bit is set, the I component of the speed controller is kept when changing into the open-loop controlled mode.				
	For bit 16:				
	When the bit is set, the integral component of the speed controller is only held if it reaches the torque limit. For bit 19:				
	When this bit is set, speed overshoots when accelerating along the torque limit and for load surges are reduced. If the setpoint torque reaches the torque limit, then the integral component is set to the difference between the torque limit and P component.				

2.2 List of parameters

For bits 20, 23:
The acceleration model for the speed setpoint is only active if p1496 is not zero. When the acceleration model and the ramp-function generator (p 1145) are simultaneously activated, it is recommended that p1400 bit 16 is set (this allows the I component to run freely up to the torque limit).
For bit 24:
When the bit is set, assuming that the motor accelerates smoothly, the moment of inertia can be determined faster.
For bit 25:
When the bit is set, for high dynamic starting in the l/f mode, the acceleration precontrol torque smoothing only has a short minimum time (4 ms).

p1401[0...n]	Flux control configuration / Flux ctrl config				
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: DDS, p0180	Func. diagram: 6491	
	P-Group: Closed-loop control		Unit group: -	Unit selection: -	
	Not for motor type: REL		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000000000001110 bin	
Description:	Sets the configuration for flux setpoint control				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Flux setpoint soft starting active	Yes	No	$\begin{aligned} & 6722, \\ & 6725 \end{aligned}$
	01	Flux setpoint differentiation active	Yes	No	$\begin{aligned} & 6723, \\ & 6726 \end{aligned}$
	02	Flux build-up control active	Yes	No	$\begin{aligned} & 6722, \\ & 6723, \\ & 6725, \\ & 6726 \end{aligned}$
	03	Flux characteristic load-dependent	Yes	No	6725
	04	Flux controller (ASM with encoder)	Yes	No	-
	05	Flux impression (ASM with encoder)	with model chngov	From 30 \% n_rated	-
	06	Quick magnetizing	Yes	No	6722
	07	Precontrol speed limitation	Yes	No	6640
	08	Speed limiting controller	With M_limits	With I_limits	6640
	09	Dynamic load-dependent flux boost	Yes	No	$\begin{aligned} & 6790, \\ & 6823 \end{aligned}$
	10	Flux boost low speed	Yes	No	$\begin{aligned} & 6790 \\ & 6823 \end{aligned}$
	13	Precontrol characteristic (PESM)	Yes	No	
	14	Efficiency optimization 2 active	Yes	No	$\begin{aligned} & 6722, \\ & 6837 \end{aligned}$

Note: \quad For bit 00 (only for induction motors):
Initially, the flux is only established with a low rate of rise when magnetizing the induction motor. The flux setpoint p1570 is reached again at the end of the magnetizing time p0346.
For bit 01 (only for induction motors and separately excited synchronous motors)
The flux differentiation can be switched out if a significant ripple occurs in the field-generating current setpoint (r0075) when entering the field weakening range. However, this is not suitable for fast acceleration operations because then, the flux decays more slowly and the voltage limiting responds.
For bit 02 (only for induction motors):
The flux build-up control operates during the magnetizing phase p0346 of the induction motor. If it is switched out, a constant current setpoint is injected and the flux is built up corresponding to the rotor time constant. When quick magnetizing ($\mathrm{p} 1401.6=1$) is selected and when flux build-up control is de-energized alarm A07416 is displayed. For bit 03:

Separately excited synchronous machine: flux characteristic is calculated as a function of the load. Synchronous-reluctance motor (RESM): activation of the load-dependent optimum flux characteristic.
For bit 04 (only for induction motors with encoder):
The flux controller does not operate in the range of the current model and not in the range of the flux impression (refer to p1750.4).

For bit 05 (only for induction motors with encoder):
Extremely rugged control operation is possible by directly toggling between the current model and flux impression. We therefore recommend that, in addition, the time-controlled model change is switched in (p1750.4 = 1) or the model changeover limits are significantly increased (p1752>0.35 * p0311; p1753 = 5%).
For bit 06 (not for induction motors):
Magnetizing is carried out with the maximum current (0.9 * r0067 <= p1603 * r0209). Magnetization has been completed if the flux threshold value p1573 or the magnetizing time p0346 has been reached. With active identification of the stator resistance (see p0621) quick magnetizing is internally deactivated and alarm A07416 is displayed. During a flying restart of a rotating motor (see p1200) no quick magnetizing takes place.
For bit 07:
If the speed of the drive exceeds the effective speed limit of the speed limiting controller, the torque limit is reduced linearly to zero as the deviation becomes greater. This reduces the integral component of the speed controller and, in turn, the overshoot during load shedding (see also F07901 and p2162).
For bit 08:
The speed limiting controller sets the speed to maximum by opening the torque limits as far as the current limits (bit 8 $=0$) or taking the torque limits into account (bit $8=1$).
For bit 09:
Synchronous reluctance motor (RESM):
Dynamic increase in the flux setpoint when torque is quickly established.
For bit 10:
Synchronous reluctance motor (RESM)
For load-dependent optimum flux characteristic ($\mathrm{p} 1401.3=1$) the flux setpoint is increased at low speeds.
Flux boost at low speeds is not effective when using an encoder - or for encoderless operation with HF signal injection (p1750.5).
For bit 13:
PESM: activation of the load-dependent precontrol characteristic
For bit 14:
When the function is activated, the following applies:

- the optimum flux is calculated and the power loss is entered for optimization purposes
- the efficiency optimization (p 1580) is not active.

It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn, reduce Kp). Further, the smoothing time of the flux setpoint filter (p 1582) should be increased.

p1402[0...n]	Closed-loop current control and motor model configuration / I_ctrl config		
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	00000100 bin

Description: Sets the configuration for the closed-loop control and the motor model.

Bit	Signal name	1 signal	0 signal	FP
01	Park encoder for n_act > p1404	Yes	No	-
02	Current controller adaptation active	Yes	No	-
03	Stall power limiting motoring	Yes	No	-
04	Torque-speed precontrol with encoder	Yes	No	-
05	Precontrol voltage drop across the resistance	Yes	No	-
06	Higher stall power	Yes	No	-

2.2 List of parameters

Note: \quad For bit 01:
When the bit is set, the encoder is parked as soon as the actual speed is greater than the changeover speed (p 1404). The encoder state is indicated in r0481.14.
For bit 02:
The current controller adaptation (p 0391 ... p0393) is only calculated when the bit is set.
For bit 04:
Only effective for operation with encoder.
When the bit is set, the highest dynamic performance is achieved with p1517 = 0 ms .

p1402[0...n]	Closed-loop current control and motor model configuration / I_ctrl config				
SERVO (Lin),	Can be changed: T		Calculated: -	Acces	
SERVO_AC (Lin),		type: Unsigned16	Dyn. index: DDS, p0180	Func	
SERVO_I_AC (Lin)		up: Closed-loop control	Unit group: -	Unit s	
		or motor type: -	Scaling: -	Exper	
	Min		Max	Factor	
	-		-	00000	
Description:		the configuration for the closed-loop con	trol and the motor model.		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	01	Park encoder for v_act > p1404	Yes	No	-
	02	Current controller adaptation active	Yes	No	-
	03	Stall power limiting motoring	Yes	No	-
	04	Force-velocity precontrol with encoder	Yes	No	-
	05	Precontrol voltage drop across the resistance	Yes	No	-
	06	Higher stall power	Yes	No	-
Note:	For	01:			

Note:
For bit 01:
When the bit is set, the encoder is parked as soon as the actual velocity is greater than the changeover velocity (p 1404). The encoder state is indicated in r0481.14.
For bit 02:
The current controller adaptation (p0391 ... p0393) is only calculated when the bit is set.

2.2 List of parameters

Note: \quad For bit 00:
When the bit is set, the speed following error is compensated that is obtained as a result of the smoothing time constant in p1441.
For bit 02:
The current controller adaptation (p0391 ... p0393) is only calculated when the bit is set.
For bit 07:
Only with encoderless control of separately excited synchronous motors.
For bit 08:
Only with encoderless control of separately excited synchronous motors.
For bit 11:
Model for the dynamic voltage precontrol Ldi/dt of the q current controller when reaching the voltage limit with the I component held (see p0500 = 4).
For bit 13 (only permanent-magnet synchronous motor):
Operation in the field weakening range is stabilized when the bit is set.
For bit 15:
For DC link voltage control (see function diagram 7960) the dynamic current controller precontrol is activated (scalable using p1702, p1703).

p1404[0...n]	Encoderless operation changeover velocity / Encoderl op v_chg		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5019,5060
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Max
	Min	$1000.00[\mathrm{~m} / \mathrm{min}]$	Factory setting
	$0.00[\mathrm{~m} / \mathrm{min}]$	$1000.00[\mathrm{~m} / \mathrm{min}]$	
Description:	Sets the velocity to change over between operation with and without an encoder.		
	Above this velocity, the drive system is automatically operated in encoderless mode.		
Notice:	General conditions for encoderless operation can be found in the following literature:		
	SINAMICS S120 Function Manual Drive Functions		

2.2 List of parameters

Note: The changeover velocity applies when changing over between operation with and without an encoder.
With p1404 > 0, the effective changeover velocity is limited to values greater than or equal to p1755 in order to avoid controlled operation.
Separate velocity controllers should be set when operating with and without an encoder.

- Operation with encoder: p1460 (Kp), p1462 (Tn), p1461, p1463, p1457, p1458 (velocity controller adaptation)
- Operation without encoder: p1470 (Kp), p1472 (Tn)

For encoderless operation ($p 1404=0$ or p1300 $=20$), the following applies:

- the following condition must be fulfilled: p1800 >= 1 / (4 * p0115[0])
- for motors with a low power rating (<300 W), we recommend to set p1800 >= $1 / \mathrm{p} 0115[0]$.
- although pulse frequencies p1800 $=1 /(n * p 0115[0])$ with $n=3$ or 4 are possible, for $p 0115[0]>62.5 \mu \mathrm{~s}$, they result in unsteady closed-loop control and should be avoided.

r1406.8...12	CO/BO: Control word speed controller / STW n_ctrl		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2520
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and BICO output for the control word of the speed controller.		
Bit field:	Bit Signal name	1 signal	Yes
	08	Travel to fixed stop active	Yes

r1406.8...12	CO/BO: Control word velocity controller / STW v_ctrl		
SERVO (Lin), HLA,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2520
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and BICO output for the control word of the velocity controller.		
Bit field:	Bit Signal name	1 signal	Yes signal
	08	Travel to fixed stop active	Yes

r1406.4... 15	CO/BO: Control word speed controller / STW n_ctrl			
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2520	
	P-Group: Closed-loop control	Unit group: -	Unit selection: -	
	Not for motor type: REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Display and BICO output for the control word of the speed controller.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	04 Hold speed controller I component	Yes	No	6040
	05 Set speed controller I component	Yes	No	6040
	08 Travel to fixed stop	Yes	No	8012
	11 Droop enable	Yes	No	6030
	12 Torque control active	Yes	No	6060
	15 Set speed adaptation controller I component	Yes	No	-

2.2 List of parameters

24	Moment of inertia estimator active	Yes	No
25	Load estimate active	Yes	No
26	Moment of inertia estimator stabilized	Yes	No

Note:
For bit 04:
The following conditions must be fulfilled to set to 1

- connector input p1190 and p1191 must be interconnected with a signal source that is not equal to zero.
- OFF1, OFF3 or STOP2 must not be active.
- it is not permissible that the motor data identification is active.
- Master control must not be active.

The following conditions can mean that the DSC function is not active in spite of the fact that the bit is set:

- isochronous operation is not selected (r2054 not equal to 4).
- the PROFIBUS is not isochronous (r2064[0] not equal to 1).
- DSC is not activated on the control side, therefore KPC = 0 is transferred as value to connector input p1191.
r1407.0... 26 SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)

CO/BO: Status word velocity controller / ZSW v_ctrl
Can be changed: -
Data type: Unsigned32
P-Group: Closed-loop control
Not for motor type: REL
Min
-

Display and BICO output for the status word of the velocity controller.

Description:

 Bit field:| Bit | Signal name | $\mathbf{1}$ signal | $\mathbf{0}$ signal | FP |
| :--- | :--- | :--- | :--- | :--- |
| 00 | U/f control active | Yes | No | - |
| 01 | Encoderless operation active | Yes | No | - |
| 02 | Force control active | Yes | No | 8010 |
| 04 | Velocity setpoint from DSC | Yes | No | 2522 |
| 05 | Velocity controller I component frozen | Yes | No | - |
| 06 | Velocity controller I component set | Yes | No | - |
| 07 | Force limit reached | Yes | No | 5610 |
| 08 | Upper force limit active | Yes | No | 5610 |
| 09 | Lower force limit active | Yes | No | 5610 |
| 11 | Velocity setpoint limited | Yes | No | - |
| 13 | Encoderless operation due to a fault | Yes | No | - |
| 19 | DSC position controller limited | Yes | No | 3090 |
| 20 | DSC with spline on | No | - | |
| 21 | Velocity precontrol for DSC with spline on | Yes | No | - |
| 22 | Force precontrol for DSC with spline on | Yes | No | - |
| 23 | Torque-speed precontrol with encoder on | Yes | Yes | No |
| 24 | Mass estimate active | Yes | No | - |
| 25 | Load estimate active | Yes | - | |
| 26 | Moment of inertia estimator stabilized | | - | |

Note:

For bit 04
The following conditions must be fulfilled to set to 1

- connector input p1190 and p1191 must be interconnected with a signal source that is not equal to zero.
- OFF1, OFF3 or STOP2 must not be active.
- it is not permissible that the motor data identification is active.
- Master control must not be active.

The following conditions can mean that the DSC function is not active in spite of the fact that the bit is set:

- isochronous operation is not selected (r2054 not equal to 4).
- the PROFIBUS is not isochronous (r2064[0] not equal to 1)
- DSC is not activated on the control side, therefore KPC = 0 is transferred as value to connector input p1191.

r1408.0...9	CO/BO: Status word current controller / ZSW I_ctrl		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2530,5040
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and BICO output for the status word of the current controller.		
Bit field:	Bit \quad Signal name	1 signal	Active
	00	Current control	Active
	04	Limit Ud	Active
	05	Limit Uq	Active

Note: \quad The set current limit is taken into account in upstream torque limiting. Bits 6,7 , and 8 are, therefore, only set in the event of overshoots on account of the current setpoint filter.

2.2 List of parameters

r1408.0... 15	CO/BO: Status word current controller / ZSW I_ctrl				
VECTOR (n / M),	Can be changed: - C		Calculated: -	Access level: 3	
VECTOR_AC (n / M),	Data type: Unsigned16 Dy		yn. index: -	Func. diagram: 2530	
VECTOR_I_AC (n/M)	P-Group: Closed-loop control		Unit group: -	Unit selection: -	
	Not for motor type: REL		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-	-		-	
Description:	Display and BICO output for the status word of the current controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Current controller active	Active	Not active	
	01	Id control I component limiting	Active	Not active	6714
	03	Voltage limiting	Active	Not active	6714
	10	Speed adaptation limiting	Active	Not active	-
	11	Speed adaptation speed deviation	Out tolerance	In tolerance	6730
	12	Motor stalled	Yes	No	$\begin{aligned} & 6730, \\ & 8020 \end{aligned}$
	13	Separately excited synchronous motor is excited	is Yes	No	-
	14	Current model SESM: magnetizing excitation current limited to 0	Yes	No	6726
	15	Excitation current differential exceeded	Yes	No	6726
Note:	For bit 11:				
	For operation with speed encoder, this bit is set as a result of steps/jumps in the speed signal (see p0492) or due to deviations at the adaptation controller output (see p1744).				

p1409[0...n]	Speed control extended configuration / n_ctrl ext config			
SERVO, SERVO_AC,	Can be changed: $\mathrm{C} 1(3)$	Calculated: -	Access level: 2	
SERVO_I_AC	Data type: Unsigned32 Dy	Dyn. index: DDS, p0180	Func. diagram: -	
	P-Group: - Unit	Unit group: -	Unit selection: -	
	Not for motor type: - S	Scaling: -	Expert list: 1	
	Min M	Max	Factory setting	
	- -	-	0000 bin	
Description:	Sets the extended configuration for the closed-loop speed control.			
Bit field:	Bit Signal name	1 signal	0 signal	
	00 Interpolation supplementary torque active	ve Yes	No	5060

p1409[0...n]	Velocity control extended configur	ration / v_ctrl ext co		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: C 1 (3)	Calculated: -	Access level: 2	
	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: -	
	P-Group: -	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	- -	-	0000 bin	
Description:	Sets the extended configuration for the closed-loop velocity control.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Interpolation supplementary force active	- Yes	No	5060

p1412[0...n]	TM41 increm. encoder emulation, speed setpoint filter deadtime / n_set dead time			
TM41	Can be changed: U, T	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func.	
	P-Group: Closed-loop control	Unit group: -	Unit s	
	Not for motor type: REL	Scaling: -	Expert	
	Min	Max	Factor	
	0.000 [ms]	1.000 [ms]	0.000	
Description:	Sets the delay of the speed setpoint for the incremental encoder emulation.			
Note:	The parameter is not effective in the SINAMICS operating mode ($\mathrm{p} 4400=1$).			
p1413[0...n]	Velocity actual value filter activation / v_act_filt act			
HLA	Can be changed: U, T	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func.	
	P-Group: Closed-loop control	Unit group: -	Unit s	
	Not for motor type: REL	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	0000 b	
Description:	Setting for activating/deactivating the velocity actual value filter.			
Bit field:	Bit Signal name 01 General filter activation	$1 \text { signal }$ Yes	0 signal No	FP
Dependency:	The velocity actual value filter is parameterized from p1446. Refer to: p1699			
p1413[0...n]	Speed actual value filter activation / n_act_filt act			
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T Calculated: -		Access level: 3	
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 5040, 5042, 5210	
	P-Group: Closed-loop control	Unit group: -	Unit selection: -	
	Not for motor type: REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0000 b	
Description: Bit field:	Setting for activating/deactivating the speed actual value filter.			
	$\begin{array}{ll}\text { Bit } & \text { Signal name } \\ 01 & \text { General filter activation }\end{array}$	$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$	0 signal No	FP
Dependency:	The speed actual value filter is parameterized from p1446.			
p1413[0...n]	Velocity actual value filter activation / v_act_filt act			
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3	
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 5040, 5042, 5210	
	P-Group: Closed-loop control	Unit group: -	Unit selection: -	
	Not for motor type: REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0000 b	
Description:	Setting for activating/deactivating the velocity actual value filter.			
Bit field:	Bit Signal name 01 General filter activation	1 signal Yes	0 signal No	FP
Dependency:	The velocity actual value filter is parameterized from p1446 and higher.			

2.2 List of parameters

p1414[0...n]	Velocity setpoint filter activation / v_set_filt act			
HLA	Can be changed: U, T	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func.	
	P-Group: Closed-loop control	Unit group: -	Unit se	
	Not for motor type: REL	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	0000 b	
Description:	Setting for activating/deactivating the velocity setpoint filter.			
Recommendation:	If only one filter is required, filter 1 should be activated and filter 2 deactivated, to avoid excessive processing time.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Activate filter 1	Yes	No	-
	01 Activate filter 2	Yes	No	-
Dependency:	The individual velocity setpoint filters are parameterized as of p 1415.			
	Refer to: p1699			
p1414[0...n]	Speed setpoint filter activation / n_set_filt act			
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 5020	
	P-Group: Closed-loop control	Unit group: -	Unit selection: -	
	Not for motor type: REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0000 bin	
Description:	Setting for activating/deactivating the speed setpoint filter.			
Recommendation:	If only one filter is required, filter 1 should be activated and filter 2 deactivated, to avoid excessive processing time.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Activate filter 1	Yes		-
	01 Activate filter 2	Yes	No	-
Dependency:	The individual speed setpoint fi	meterized as of p1415.		

p1414[0...n]	Velocity setpoint filter activation / v_set_filt act		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 5020
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0000 bin
Description:	Setting for activating/deactivating the velocity setpoint filter.		
Recommendation:	If only one filter is required, filter 1 should be activated and filter 2 deactivated, to avoid excessive processing time.		
Bit field:	Bit Signal name	1 signal	Y signal
	$00 ~ A c t i v a t e ~ f i l t e r ~ 1 ~$	Yes	No
Dependency:	01	Activate filter 2	No

p1414[0...n]	TM41 incr. encoder emulation speed setpoint filter activation / n_set_filt act			
TM41	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 9674	
	P-Group: Closed-loop control	Unit group: -	Unit selection: -	
	Not for motor type: REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0000 bin	
Description:	Setting for activating/deactivating speed setpoint filter 1 for the incremental encoder emulation.			
Bit field:	Bit Signal name 00 Activate filter 1	1 signal Yes	0 signal No	$\begin{aligned} & \text { FP } \\ & 9674 \end{aligned}$
Dependency:	The speed setpoint filter can be parameterized using p1417 and p1418. Refer to: p1417, p1418			
Note:	The parameter is not effective in the SINAMICS operating mode (p4400=1).			
p1415[0...n]	Velocity setpoint filter 1 type / v_setp_filt 1 type			
HLA	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 4965	
	P-Group: Closed-loop control	Unit group: -	Unit selection: -	
	Not for motor type: REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0	2	0	
Description:	Sets the type for speed setpoint filter 1.			
Value:	0: Low pass: PT1 1: Low pass: PT2 2: General 2 nd order filter			
Dependency:	PT1 low pass: p1416			
	PT2 low pass: p1417, p1418			
	General filter: p1417 ... p1420			
p1415[0...n]	Speed setpoint filter 1 type / n_set_filt 1 type			
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3	
SERVO_I_AC	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5020	
	P-Group: Closed-loop control	Unit group: -	Unit selection: -	
	Not for motor type: REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0	2	0	
Description:	Sets the type for speed setpoint filter 1.			
Value:	0: Low pass: PT1 1: Low pass: PT2 2: General 2nd order filter			
Dependency:	PT1 low pass: p1416 PT2 low pass: $\mathrm{p} 1417, \mathrm{p} 1418$ General filter: p1417 ... p1420			

2.2 List of parameters

p1415[0...n]	Velocity setpoint filter 1 type / v_setp_filt 1 type		
SERVO (Lin),	Can be changed: U, T	Calculated: -	
SERVO_AC (Lin),	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5020
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Sets the type for speed setpoint filter 1.		
Value:	$0: \quad$ Low pass: PT1		
	$1: \quad$ Low pass: PT2		
Dependency:	2: General 2nd order filter		
	PT1 low pass: p1416		
	PT2 low pass: p1417, p1418		
	General filter: p1417 ... p1420		

p1416[0...n] Velocity setpoint filter 1 time constant / v_set_filt 1 T

	Can be changed: U, T	Calculated: -
	Data type: FloatingPoint32	Dyn. index: DDS, p018
	P-Group: Closed-loop control	Unit group: -
	Not for motor type: REL	Scaling: -
	Min	Max
	$0.00[\mathrm{~ms}]$	$5000.00[\mathrm{~ms}]$
Description:	Sets the time constant for the velocity setpoint filter 1 (PT1).	
Dependency:	Refer to: p1414, p1415	
Note:	This parameter is only effective if the filter is set as a PT1 low pass.	

Access level: 3
Func. diagram: 4965
Unit selection: -
Expert list: 1
Factory setting
0.00 [ms]
p1416[0...n] Speed setpoint filter 1 time constant/n_set_filt 1 T
SERVO, SERVO_AC, Can be changed: U, T Calculated: -

SERVO_I_AC

Description: Sets the time constant for the speed setpoint filter 1 (PT1).
Dependency: Refer to: p1414, p1415
Note: \quad This parameter is only effective if the filter is set as a PT1 low pass.

p1416[0...n]	Velocity setpoint filter $\mathbf{1}$ time constant / v_set_filt 1 T		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$0.00[\mathrm{~ms}]$	
Description:	Sets the time constant for the velocity setpoint filter 1 (PT1).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the filter is set as a PT1 low pass.		

p1416[0...n]	Speed setpoint filter $\mathbf{1}$ time constant / n_set_filt 1 T		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6020,6030
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: :-	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$5000.00[\mathrm{~ms}]$	$0.00[\mathrm{~ms}]$
Description:	Sets the time constant for the speed setpoint filter 1 (PT1).		

p1417[0...n]	Velocity setpoint filter 1 denominator natural frequency / v_set_filt1 fn_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	2000.0 [Hz]
Description:	Sets the denominator natural frequency for velocity setpoint filter 1 (PT2, general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective	filter is parameterized as	pass or as general filter.

p1417[0...n] Speed setpoint filter 1 denominator natural frequency / n_set_filt1 fn_den

SERVO_I_AC

Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Min
0.5 [Hz]

Calculated: -
Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max
16000.0 [Hz]

Access level: 3

Func. diagram: 5020
Unit selection: -
Expert list: 1
Factory setting
2000.0 [Hz]

Description: Sets the denominator natural frequency for speed setpoint filter 1 (PT2, general filter).
Dependency: Refer to: p1414, p1415
Note: \quad This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter. The filter is only effective if the natural frequency is less than half of the sampling frequency.

p1417[0...n]	Velocity setpoint filter 1 denominator natural frequency / v_set_filt1 fn_den		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Max
	Min	Expert list: 1	
	$0.5[\mathrm{~Hz}]$	Factory setting	
	Sets the denominator natural frequency for velocity setpoint filter 1 (PT2, general filter).		
Description:	Refer to: p1414, p1415		
Dependency:	This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter.		
Note:	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

p1417[0...n]	TM41 Speed setpoint filter 1 denominator natural frequency / n_set_filt1 fn_den		
TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 9674
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	2000.0 [Hz]
Description:	Sets the denominator natural frequency for the speed setpoint filter 1 (PT2) of the incremental encoder emulation.		
Dependency:	Refer to: p1414		
Note:	The parameter is not effective in the SINAMICS operating mode (p4400 = 1).		
	This parameter is only effective if the speed setpoint filter in p1414 is activated.		
	The filter is only effective if the	ncy is less than half of the	frequency.

p1418[0...n]	Velocity setpoint filter 1 denominator damping /v_set_filt 1 D_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	0.000	0.700
Description:	Sets the denominator damping for velocity setpoint filter 1 (PT2, general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter.		

p1418[0...n]	Speed setpoint filter 1 denominator damping / n_set_filt 1 D_den		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for speed setpoint filter 1 (PT2, general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter.		
p1418[0...n]	Velocity setpoint filter 1 denominator damping / v_set_filt 1 D_den		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
S	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for velocity setpoint filter 1 (PT2, general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter.		

p1418[0...n]	TM41 Speed setpoint filter 1 denominator damping / n_set_filt 1 D_den		
TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 9674
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	1.000	0.700
Description: Dependency:	Sets the denominator damping for the speed setpoint filter 1 (PT2) of the incremental encoder emulation. Refer to: p1414		
Note:	The parameter is not effective in the SINAMICS operating mode (p4400 = 1).		
	This parameter is only effective if the speed setpoint filter in p1414 is activated.		
p1419[0...n]	Velocity setpoint filter 1 numerator natural frequency / v_set_filt1 fn_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	2000.0 [Hz]
Description:	Sets the numerator natural frequency for velocity setpoint filter 1 (general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

p1419[0...n] Speed setpoint filter 1 numerator natural frequency / n_set_filt1 fn_num
SERVO SERVO AC, Can be changed U, T

SERVO I AC
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Max Factory setting
16000.0 [Hz]
2000.0 [Hz]

Description: Sets the numerator natural frequency for speed setpoint filter 1 (general filter).
Dependency: Refer to: p1414, p1415
Note: \quad This parameter is only effective if the speed filter is set as a general filter.
The filter is only effective if the natural frequency is less than half of the sampling frequency.

p1419[0...n]	Velocity setpoint filter 1 numerator natural frequency / v_set_filt1 fn_num		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	$16000.0[\mathrm{~Hz}]$	$2000.0[\mathrm{~Hz}]$
Description:	Sets the numerator natural frequency for velocity setpoint filter 1 (general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

2.2 List of parameters

$\overline{p 1420[0 . . . n]}$	Velocity setpoint filter 1 numerator damping / v_set_filt 1 D_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for velocity setpoint filter 1 (general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		
p1420[0...n]	Speed setpoint filter 1 numerator damping / n_set_filt 1 D_num		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for speed setpoint filter 1 (general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the speed filter is set as a general filter.		
p1420[0...n]	Velocity setpoint filter 1 numerator damping / v_set_filt 1 D_num		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for velocity setpoint filter 1 (general filter).		
Dependency:	Refer to: p1414, p1415		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		
p1421[0...n]	Velocity setpoint filter 2 type / v_setp_filt 2 type		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Sets the type for velocity setpoint filter 2.		
Value:	0: Low pass: PT1 1: Low pass: PT2 2: General 2nd order filte		
Dependency:	PT1 low pass: p1422 PT2 low pass: p1423, p1424 General filter: p1423 ... p1426		

p1421[0...n] SERVO, SERVO_AC, SERVO_I_AC	Speed setpoint filter 2 type / n_set_filt 2 type		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Sets the type for speed setpoint filter 2.		
Value:	0: Low pass: PT1		
	1: Low pass: PT2		
	2: General 2nd order filter		
Dependency:	PT1 low pass: p1422		
	PT2 low pass: p1423, p1424		
	General filter: p1423 ... p1426		

p1421[0...n]	Velocity setpoint filter 2 type / v_setp_filt 2 type		
SERVO (Lin),	Can be changed: U, T	Calculated: -	
SERVO_AC (Lin),	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5020
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0

Description: Sets the type for velocity setpoint filter 2.

| Value: | $0: \quad$ Low pass: PT1 |
| :--- | :--- | :--- |
| | $1: \quad$ Low pass: PT2 |
| Dependency: | 2: General 2nd order filter |
| | PT1 low pass: p1422 |
| | PT2 low pass: p1423, p1424 |
| | General filter: p1423 ... p1426 |

p1422[0...n]	Velocity setpoint filter 2 time constant / v_set_filt 2 T		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	5000.00 [ms]	0.00 [ms]
Description:	Sets the time constant for the velocity setpoint filter 2 (PT1).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is set as a PT1 low pass.		
p1422[0...n]	Speed setpoint filter 2 time constant / n_set_filt 2 T		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	5000.00 [ms]	0.00 [ms]
Description:	Sets the time constant for the speed setpoint filter 2 (PT1).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the speed filter is set as a PT1 low pass.		

p1422[0...n]	Velocity setpoint filter 2 time constant / v_set_filt 2 T		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	5000.00 [ms]	0.00 [ms]
Description:	Sets the time constant for the velocity setpoint filter 2 (PT1). Refor to: p1414, p1421		
Dependency:			
Note:	This parameter is only effective if the velocity filter is set as a PT1 low pass.		
p1423[0...n]	Velocity setpoint filter 2 denominator natural frequency / v_set_filt2 fn_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	16000.0 [Hz]	2000.0 [Hz]
Description:	Sets the denominator natural frequency for velocity setpoint filter 2 (PT2, general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

p1423[0...n] Speed setpoint filter 2 denominator natural frequency / n_set_filt2 fn_den
SERVO, SERVO_AC, Can be changed: U, T Calculated: - Access level: 3

Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Min
$0.5[\mathrm{~Hz}]$

Calculated: -
Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max
16000.0 [Hz]

Access level: 3
Func. diagram: 5020
Unit selection: -
Expert list: 1
Factory setting
2000.0 [Hz]

Description: Sets the denominator natural frequency for speed setpoint filter 2 (PT2, general filter).
Dependency: Refer to: p1414, p1421
Note: \quad This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter.
The filter is only effective if the natural frequency is less than half of the sampling frequency.

p1423[0...n]	Velocity setpoint filter 2 denominator natural frequency / v_set_filt2 fn_den		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	2000.0 $[\mathrm{Hz}]$	
Description:	Sets the denominator natural frequency for velocity setpoint filter 2 (PT2, general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

p1424[0...n]	Velocity setpoint filter 2 denominator damping / v_set_filt 2 D_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for velocity setpoint filter 2 (PT2, general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter.		
p1424[0...n]	Speed setpoint filter 2 denominator damping / n_set_filt 2 D_den		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for speed setpoint filter 2 (PT2, general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter.		
p1424[0...n]	Velocity setpoint filter 2 denominator damping / v_set_filt 2 D_den		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO- AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
SERVO_-AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for velocity setpoint filter 2 (PT2, general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is parameterized as a PT2 low pass or as general filter.		
p1425[0...n]	Velocity setpoint filter 2 numerator natural frequency / v_set_filt2 fn_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	2000.0 [Hz]
Description:	Sets the numerator natural frequency for velocity setpoint filter 2 (general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

p1425[0...n]	Speed setpoint filter 2 numerator natural frequency $/ \mathbf{n}$ _set_filt2 fn_num		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Max
	Min	$16000.0[\mathrm{~Hz}]$	Factory setting
Description:	$0.5[\mathrm{~Hz}]$	Sets the numerator natural frequency for speed setpoint filter 2 (general filter).	
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the speed filter is set as a general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

p1425[0...n]	Velocity setpoint filter $\mathbf{2}$ numerator natural frequency / v_set_filt2 fn_num		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Max
	Min	$16000.0[\mathrm{~Hz}]$	Factory setting
	$0.5[\mathrm{~Hz}]$	$2000.0[\mathrm{~Hz}]$	
Description:	Sets the numerator natural frequency for velocity setpoint filter 2 (general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

p1426[0...n]	Velocity setpoint filter 2 numerator damping / v_set_filt 2 D_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for velocity setpoint filter 2 (general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		
p1426[0...n]	Speed setpoint filter 2 numerator damping / n_set_filt 2 D_num		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for speed setpoint filter 2 (general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the speed filter is set as a general filter.		

p1426[0...n]	Velocity setpoint filter 2 numerator damping / v_set_filt 2 D_num		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5020
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for velocity setpoint filter 2 (general filter).		
Dependency:	Refer to: p1414, p1421		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		
p1427[0...n]	DSC symmetrizing time constant additive T_SYMM_ADD / DSC T_SYMM_ADD		
SERVO (DSC spline, Lin), SERVO_AC (DSC spline, Lin), SERVO_I_AC (DSC spline, Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3090
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	0.00 [ms]
Description:	Set the additive symmetrizing time constant T_SYMM_ADD for the velocity precontrol value for active force precontrol.		
Dependency:	The additive symmetrizing time constant T_SYMM_ADD is only evaluated if the "DSC with spline" function module ($\mathrm{r} 0108.6=1$) is activated.		
	Refer to: p1190, p1191, p1194, p1195		
Note:	For active force precontrol (r1407.20/.21/.22) and active symmetrizing (T_SYMM > 0), the velocity precontrol value is symmetrized with the sum of the following time constants:		
	T_SYMM (see p1195) + T_SYMM_ADD (p1427) + 0.5 * velocity controller sampling time (p0115[1])		
	With half of the velocity controller sampling time, the velocity actual value generation is taken into account using position differences.		

p1427[0...n] DSC symmetrizing time constant additive T_SYMM_ADD / DSC T_SYMM_ADD

SERVO (DSC spline), SERVO_AC (DSC spline), SERVO_I_AC
(DSC spline)

Description:
Dependency: The additive symmetrizing time constant T_SYMM_ADD is only evaluated if the "DSC with spline" function module (r0108.6 $=1$) is activated.
Refer to: p1190, p1191, p1194, p1195
Note: \quad When torque precontrol is active (r1407.20/.21/.22) and symmetrization is active (T_SYMM >0) then the speed precontrol value is symmetrized with the sum of the following time constants:
T_SYMM (see p1195) + T_SYMM_ADD (p1427) + 0.5 * speed controller sampling time (p0115[1])
With half of the speed controller sampling time, the speed actual value generation is taken into account using position differences.
DSC: Dynamic Servo Control

p1428[0...n]	Velocity precontrol symmetrizing dead time / n_prectrSym t_dead		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030, 5042, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0	3.0	0.0
Description:	Sets the dead time to symmetrize the velocity setpoint for active force precontrol.		
	The selected multiplier refers to the sampling time of the controller (dead time= p1428 * p0115[0]).		
Dependency:	In conjunction with p1429, this parameter can emulate the characteristics of how the force is established (dynamic response of closed control loop).		
	Refer to: p1429, p1511		
p1428[0...n]	Speed precontrol symmetrizing dead time / n_prectrSym t_dead		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030, 5042, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0	2.0	0.0
Description:	Sets the dead time to symmetrize the speed setpoint for active torque precontrol.		
	The selected multiplier refers to the sampling time of the speed controller (dead time= p1428 * p0115[1]).		
Dependency:	In conjunction with p1429, this parameter can emulate the characteristics of how the torque is established (dynamic response of closed current control loop).		
	Refer to: p1429, p1511		

p1428[0...n]	Velocity precontrol symmetrizing dead time / n_prectrSym t_dead		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030, 5042, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0	2.0	0.0
Description:	Sets the dead time to symmetrize the velocity setpoint for active force precontrol.		
	The selected multiplier refers to the sampling time of the velocity controller (dead time= p1428 * p0115[1]).		
Dependency:	In conjunction with p1429, this parameter can emulate the characteristics of how the force is established (dynamic response of closed current control loop).		
	Refer to: p1429, p1511		

p1428[0...n]	Speed precontrol symmetrizing dead time /n_prectrSym t_dead		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6031
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0	3.0	0.0
Description:	Sets the dead time to symmetrize the speed setpoint for active torque precontrol.		
	The selected multiplier refers to the sampling time of the speed controller (dead time= p1428 * p0115[1]).		

Dependency: In conjunction with p1429, this parameter can emulate the characteristics of how the torque is established (dynamic response of closed current control loop).
The parameter is only effective if the acceleration model is supplied using external acceleration signals ($\mathrm{p} 1400.2=$ 1). For p1400.2 = 0, a fixed dead time is used.

Refer to: p1429, p1511

p1429[0...n]	Speed precontrol symmetrizing time constant / n_prectr sym T		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
(n / M), HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030, 5042, 5210, 6031
VECTOR_AC (n/M), SERVO_I_AC,	P-Group: Closed-loop control	Unit group: -	Unit selection: -
VECTOR_I_AC (n/M)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	0.00 [ms]
Description:	Sets the time constant (PT1) for symmetrizing the speed setpoint for active torque precontrol.		
Dependency:	In conjunction with p1428, this parameter can emulate the characteristics of how torque is established (dynamic response of the closed current control loop).		
	For VECTOR (r0107) the following applies:		
	The parameter is only effective if the acceleration model is supplied using external acceleration signals (p1400.2 = 1). For p1400.2 = 0 , time constant p1442 (or p1452 for sensorless vector control) is used.		
	Refer to: p1428, p1511		

p1429[0...n]	Velocity precontrol symmetrizing time constant / n_prectr sym T		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030, 5042, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	0.00 [ms]
Description:	Sets the time constant (PT1) for symmetrizing the velocity setpoint for active force precontrol.		
Dependency:	In conjunction with p1428, this parameter can emulate the characteristics of how the force is established (dynamic response of closed current control loop).		
	Refer to: p1428, p1511		
p1430[0...n]	CI: Velocity precontrol / v_prectrl		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 5019, 5030
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the velocity precontrol channel (velocity precontrol or force precontrol).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

2.2 List of parameters

p1430[0...n]	CI: Speed precontrol / n_prectrl		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 5019, 5030
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for speed precontrol channel (speed precontrol or torque precontrol).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The precontrol signal via connector input p1430 only becomes effective at p1402.4 = 1 (torque-speed precontrol with encoder) at p1400.10 $=0$ (for setp_filter 2).		
p1430[0...n]	CI: Velocity precontrol / v_prectrl		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 5019, 5030
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the velocity precontrol channel (velocity precontrol or force precontrol).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The precontrol signal via connector input p1430 only becomes effective at p1402.4 $=1$ (force-velocity precontrol with encoder) at p1400.10 $=0$ (for setp_filter 2).		

CO: Speed precontrol to motor model / n_prectrl mot_mod

$\mathbf{r 1 4 3 1}$
VECTOR (n / M),
VECTOR_AC (n / M),
VECTOR_I_AC (n / M)

Can be changed: -
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL Min

- [rpm]

Display and connector output for the speed setpoint to precontrol the motor model for sensorless vector control.
Description
Note:

With p1400.15 $=0$ or encoderless torque control, the precontrol signal is kept continuously in the range of the voltage model.

r1432[0...1]	CO: Speed precontrol / n_precontrol		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5020, 5030
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the speed precontrol.		
	For index [0]:		
	Displays the speed precontrol value after symmetrizing for the torque build-up (emulates the closed current control loop).		
	For index [1]:		
	Displays the speed precontrol value before the switch p1400.10.		
	When the "DSC with spline" function module is activated (r0108.6 = 1 , signal source of $\mathrm{p} 1194.0=1$), then this is the precontrol value generated by the spline. Otherwise, this is the value from the signal source of p1430 (possibly after linear interpolation). The precontrol value generated by the spline is zero if the speed precontrol for the spline is deactivated (signal source of p1194.4 = 0).		
Index:	[0] = After symmetrization		
Dependency:	Symmetrizing can be parameterized with p1428 and/or p1429.		
r1432[0...1]	CO: Velocity precontrol / v_precontrol		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5020, 5030
	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Display and connector output for the velocity precontrol.		
	For index [0]:		
	Displays the velocity precontrol value after symmetrizing for the force build-up (emulates the closed current control loop).		
	For index [1]:		
	Displays the velocity precontrol value before the switch p1400.10.		
	When the "DSC with spline" function module is activated (r0108.6 = 1 , signal source of $p 1194.0=1$), then this is the precontrol value generated by the spline. Otherwise, this is the value from the signal source of p1430 (possibly after linear interpolation). The precontrol value generated by the spline is zero if the velocity precontrol for the spline is deactivated (signal source of p1194.4 = 0).		
Index:	$\begin{aligned} & {[0]=\text { After symmetrization }} \\ & {[1]=\text { Before switch p1400.10 }} \end{aligned}$		
Dependency:	Symmetrizing can be parameterized with p1428 and/or p1429.		
p1433[0...n]	Velocity controller reference model natural frequency / v_ctrl RefMod fn		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Hz]	8000.0 [Hz]	0.0 [Hz]
Description:	Sets the natural frequency of a PT2 element for the reference model of the velocity controller.		
Recommendation:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (velocity actual value) are virtually identical when the I component of the velocity controller is disabled.		
Dependency:	In conjunction with p1434, the time response of the P-controlled velocity control loop can be emulated. Refer to: p1434, p1435		

2.2 List of parameters

p1433[0...n]	Speed controller reference model natural frequency / n_ctrl RefMod fn		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Hz]	8000.0 [Hz]	$0.0[\mathrm{~Hz}]$
Description:	Sets the natural frequency of a PT2 element for the reference model of the speed controller.		
Recommendation:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I component of the speed controller is disabled.		
Dependency:	Together with p1434 and p1435, the characteristics (in the time domain) of the closed-loop speed control (P) can be emulated.		
	Refer to: p1434, p1435		
p1433[0...n]	Velocity controller reference model natural frequency / v_ctrl RefMod fn		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Hz]	$8000.0[\mathrm{~Hz}]$	0.0 [Hz]
Description:	Sets the natural frequency of a PT2 element for the reference model of the velocity controller.		
Recommendation:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (velocity actual value) are virtually identical when the I component of the velocity controller is disabled.		
Dependency:	Together with p1434 and p1435, the characteristics (in the time domain) of the closed-loop velocity control (P) can be emulated.		
	Refer to: p1434, p1435		
p1433[0...n]	Speed controller reference model natural frequency / n_ctrl RefMod fn		
VECTOR (J_estimator, n/M), VECTOR_AC (J_estimator, n / M), VECTOR_I_AC (J_estimator, n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6031
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Hz]	$8000.0[\mathrm{~Hz}]$	0.0 [Hz]
Description:	Sets the natural frequency of a PT2 element for the reference model of the speed controller.		
Recommendation:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I component of the speed controller is disabled.		
Dependency:	Together with p1434 and p1435, the characteristics (in the time domain) of the closed-loop speed control (P) can be emulated.		
	For VECTOR (r0107) the following applies:		
	The reference model is activated with p1400.3 $=1$. For sensorless vector control ($\mathrm{p} 1300=20$) the reference model is disabled in open-loop speed controlled operation (refer to p1755).		

p1434[0...n]	Velocity controller reference model damping / v_ctrl RefMod D		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	5.000	1.000
Description:	Sets the damping of a PT2 element for the reference model of the velocity controller.		
Recommendation:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (velocity actual value) are virtually identical when the I component of the velocity controller is disabled.		
Dependency:	In conjunction with p1433, the time response of the P-controlled velocity control loop can be emulated. Refer to: p1433, p1435		
p1434[0...n]	Speed controller reference model damping / n_ctrl RefMod D		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030, 6031
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	5.000	1.000
Description:	Sets the damping of a PT2 element for the reference model of the speed controller.		
Recommendation:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I component of the speed controller is disabled.		
Dependency:	In conjunction with p1433 and p1435, the characteristics (in time) of the P-controlled speed control loop can be emulated.		
	Refer to: p1433, p1435		

p1434[0...n]	Velocity controller reference model damping / v_ctrl RefMod D		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030,6031
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1
	Min	Factory setting	
Description:	0.000	1.000	
Recommendation:	Sets the damping of a PT2 element for the reference model of the velocity controller.		
	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (velocity		
actual value) are virtually identical when the I component of the velocity controller is disabled.			

p1434[0...n]	Speed controller reference model damping / n_ctrl RefMod D		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030,6031
VECTOR_I_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Max
	Min	5.000	Factory setting
	0.000	1.000	
Description:	Sets the damping of a PT2 element for the reference model of the speed controller.		
Recommendation:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual		
	speed value) are virtually identical when the I component of the speed controller is disabled.		

2.2 List of parameters

Dependency:	In conjunction with p1433 and p1435, the characteristics (in time) of the P-controlled speed control loop can be emulated. For VECTOR (r0107) the following applies: The reference model is activated with p1400.3=1. Refer to: p1433, p1435
p1435[0...n]	Speed controller reference model dead time / n_ctrRefMod t_dead
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: U, T Calculated: - Access level: 2
	Data type: FloatingPoint32 Dyn. index: DDS, p0180 Func. diagram: 5030, 6031
	P-Group: Closed-loop control Unit group: - Unit selection: -
	Not for motor type: REL Scaling: - Expert list: 1
	Min Max Factory setting
	0.00 2.00 0.00
Description:	Sets the "fractional" dead time for the reference model of the speed controller.
	This parameter emulates the computing dead time of the proportionally controlled speed control loop.
	The selected multiplier refers to the speed controller sampling time (dead time= p1435 * 0115 [1]).
Recommendation:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I component of the speed controller is disabled.
Dependency:	In conjunction with p1433 and p1434, the characteristics (in time) of the P-controlled speed control loop can be emulated.
	Refer to: p0115, p1433, p1434

p1435[0...n]	Velocity controller reference model dead time / v_ctrRefMod t_dead		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030, 6031
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	2.00	0.00
Description:	Sets the "fractional" dead time This parameter emulates the com The selected multiplier refers to	ce model of the velocity co time of the proportionally controller sampling time (dead	velocity control loop. p1435 * p0115[1]).
Recommendation:	The reference model is correctly actual value) are virtually identica	characteristics of p1439 component of the velocity	model output) and p1445 (velocity is disabled.
Dependency:	Together with p1433 and p143 be emulated. Refer to: p0115, p1433, p1434	ristics (in the time domain)	controlled velocity control loop can

p1435[0...n]	Speed controller reference model dead time / n_ctrRefMod t_dead		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030, 6031
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	3.00	0.00
Description:	Sets the "fractional" dead time for the reference model of the speed controller.		
	This parameter emulates the computing dead time of the proportionally controlled speed control loop.		
	The selected multiplier refers to the speed controller sampling time (dead time= p1435 * 0115[1]).		
Recommendation:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I component of the speed controller is disabled.		
Dependency:	In conjunction with p1433 and p1434, the characteristics (in time) of the P-controlled speed control loop can be emulated.		
	For VECTOR (r0107) the following applies:		
	The reference model is activated with p1400.3 = 1.		
	Refer to: p0115, p1433, p1434		

r1436	CO: Velocity controller reference model velocity_setpoint output / RefMod v_set outp		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Display and connector output of the velocity setpoint at the output of the reference model.		

r1436	CO: Speed controller reference model speed setpoint output / RefMod n_set outp		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5030,6031
	P-Group: Closed-loop control	Unit group: $3 _1$	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[r p m]$	$-[\mathrm{rpm}]$	$-[\mathrm{rpm}]$
Description:	Display and connector output for the speed setpoint at the output of the reference model.		

r1436	CO: Velocity controller reference model velocity_setpoint output / RefMod v_set outp		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5030, 6031
	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Display and connector output for the velocity setpoint at the output of the reference model.		
r1436	CO: Speed controller reference model speed setpoint output / RefMod n_set outp		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5030, 6031
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the speed setpoint at the output of the reference model.		
Dependency:	For VECTOR (r0107) the following applies:		
	The reference model is activated with p1400.3 $=1$.		

p1437[0...n]	CI: Speed controller reference model I component input / n_ctrRefMod I_comp		
VECTOR (n / M),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6031
VECTOR__AC (N / M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	1436[0]
Description:	Sets the signal source for speed setpoint for the integral component of the speed controller.		
Dependency:	The reference model is activated with p1400.3 $=1$.		
	Refer to: p1400		
Notice:	In should be ensured that a speed setpoint is selected as signal source that corresponds to the setpoint for the P component of the speed controller.		

r1439	Speed setpoint I component / n_set I_comp		
SERVO, VECTOR (n / M), SERVO_AC, VECTOR_AC (n/M), SERVO_I_AC, VECTOR_I_AC (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5030, 5040, 6031
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed setpoint for the I component of the speed controller (output of the reference model after the setpoint limiting).		
Dependency:	Refer to: r1438		
Note:	In the standard state (the reference model is deactivated), $\mathrm{r} 1438=\mathrm{r} 1439$.		
r1439	Velocity setpoint I component / v_set I_comp		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5030, 5040, 6031
	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the velocity setpoint for the I component of the velocity controller (output of the reference model after the setpoint limiting).		
Dependency:	Refer to: r1438		
Note:	In the standard state (the reference model is deactivated), r1438 $=$ r1439 .		
p1440[0...n]	CI: Speed controller speed actual value input / n_ctrl n_act		
VECTOR (n / M), VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6040
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	63[0]
Description:	Sets the signal source for the speed actual value of the speed controller.		
Dependency:	Refer to: r1443		
Danger: \qquad	When using external speed actual values for the speed controller, for a direction of rotation change via p1821 $=1$, then its polarity must also be changed (e.g. for an encoder DO via p0410). Otherwise, a positive coupling can occur in the speed control loop and the drive would then be accelerated up to the speed limit.		
Caution:\leqq	Speed control with encoder (p1300 = 21):		
	For the speed or position signal of the motor model there must always be a motor encoder available (evaluation via SMC/SMI, see p0400). The actual speed of the motor (r0061) and the position data for synchronous motors continue to come from this motor encoder and are not affected by the setting of p1440.		
	Interconnection of p1440:		
	If connector input p1440 is interconnected with an external speed actual value, the identical scaling of the speed should be observed (p 2000).		
Notice:	Speed control without encoder (p1300 = 20):		
	Dependent upon the transmission path of the external speed signal there will be dead times which have to be taken into account when setting the speed controller parameters ($\mathrm{p} 1470, \mathrm{p} 1472$) and can lead to dynamic losses accordingly. It is for this reason that signal transmission times have to be kept as low as possible.		
	So that the speed controller can also work at standstill, set p1750.2 $=1$ (closed-loop operation from zero speed for passive loads). If you do not make this setting, operation will switch to open-loop speed control in the low speed range, switching the closed-loop speed controller off and rendering the measured actual speed ineffective.		
Note:	Speed control with encoder (p1300 = 21):		
	An external speed signal should, on the average, correspond to the speed of the motor encoder (r0061).		

p1441[0...n]	Actual velocity smoothing time / v_act t_smooth		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$0.00[\mathrm{~ms}]$	
Description:	Sets the smoothing time constant (PT1) for the velocity actual value.		
Dependency:	Refer to: r0063, p1451		
Note:	The velocity actual value should be smoothed for encoders with a low pulse number.		
	After this parameter has been changed, we recommend that the velocity controller is adjusted and/or the velocity		
	controller settings Kp, Tn and Tv checked.		

p1441[0...n] Actual speed smoothing time / n_act T_smooth
SERVO, SERVO_AC, Can be changed: U, T Calculated: CALC_MOD_CON

SERVO_I_AC
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Min
0.00 [ms]

Description: Sets the smoothing time constant (PT1) for the speed actual value.
Dependency:
Note:

Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max
50.00 [ms]

Refer to: r0063, p1451
The speed actual value should be smoothed for encoders with a low pulse number or for resolvers.

Access level: 3
Func. diagram: 4710, 4715
Unit selection: -
Expert list: 1
Factory setting
0.00 [ms]

After this parameter has been changed, we recommend that the speed controller is adapted and/or the speed controller settings checked Kp (p 1460) and Tn (p1462).

p1441[0...n]	Actual velocity smoothing time / v_act t_smooth		
SERVO (Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4710, 4715
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$0.00[\mathrm{~ms}]$	
Description:	Sets the smoothing time constant (PT1) for the velocity actual value.		
Dependency:	Refer to: roo63, p1451		
Note:	The speed actual value should be smoothed for encoders with a low pulse number or for resolvers.		
	After this parameter has been changed, we recommend that the velocity controller is adapted and/or the velocity		
	controller settings checked $\mathrm{Kp}(\mathrm{p} 1460)$ and $\mathrm{Tn}(\mathrm{p} 1462)$.		

p1441[0...n]	Actual speed smoothing time / n_act T_smooth		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4710, 4715
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	0.00 [ms]
Description:	Sets the smoothing time constant (PT1) for the speed actual value.		
Dependency:	Refer to: r0063		
Notice:	Smoothing times above 20 ms are only possible if the drive is accelerated or braked with the appropriately long ramp-up/ramp-down times. Otherwise, significant torque errors can occur and there is the danger that the drive is switched off (tripped) with F07902 (motor stalled).		

Note: \quad The speed actual value should be smoothed for encoders with a low pulse number or for resolvers.
\quad After this parameter has been changed, we recommend that the speed controller is adapted and/or the speed

p1442[0...n]	Speed controller speed actual value smoothing time / n_ctr \mathbf{n} _act T_smth		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 2
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6020,6040
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$32000.00[\mathrm{~ms}]$	$4.00[\mathrm{~ms}]$

Description: Sets the smoothing time for the actual speed value of the speed controller for closed-loop control with encoder. Note: The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 = 4).

$\mathbf{r 1 4 4 3}$
VECTOR (n / M),
VECTOR_AC (n / M),
VECTOR_I_AC (n / M)

CO: Speed controller speed actual value at actual value input / n_ctrl n_act inp		
Can be changed: -	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6040
P-Group: Closed-loop control	Unit group: $3 _1$	Unit selection: p0505
Not for motor type: REL	Scaling: p2000	Expert list: 1
Min	Max	Factory setting
- [rpm]	$-[r p m]$	$-[r p m]$
Displays the speed actual value at the speed controller's free-wiring actual value input p1440.		
Refer to: p1440		
This speed signal is only used by the speed controller and not by the motor model.		

r1444 Velocity controller velocity setpoint static / v_ctrl v_set stat

Can be changed: -
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Min

- [m/min]
- [m/min]

Displays the sum of all velocity setpoints that are present.
The following sources are available for the displayed setpoint:

- setpoint at the ramp-function generator input (r1119).
- velocity setpoint 1 (p1155).
- velocity setpoint 2 (p 1160).
- velocity setpoint for the velocity precontrol (p1430).
- setpoint from DSC (for DSC active).
- setpoint via PC (for master control active).

Dependency: Refer to: r1119, p1155, p1160, p1430
Description:

Access level: 3
Func. diagram: -
Unit selection: p0505
Expert list: 1
Factory setting

- [m/min]

r1445	CO: Actual velocity smoothed / v_act smooth		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040,5210
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: $p 0505$
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
		Display and connector output for the actual smoothed velocity actual value of the velocity control.	

r1445	CO: Actual speed smoothed / n_act smooth		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6040
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the actual smoothed speed actual value of the speed control.		
p1446[0...n]	Velocity actual value filter type / v_act_filt type		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	2
Description:	Sets the type for the general velocity actual value filter.		
Value:	1: PT2 low pass 2: \quad General 2nd order filter		
Dependency:	PT2 low pass: p1447, p1448 General filter: p1447 ... p1450		

p1446[0...n]	Speed actual value filter type / n_act_filt type		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	
SERVO_I_AC	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5040,5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	2
Description:	Sets the type for the general speed actual value filter.		
Value:	1: PT2 low pass		
Dependency:	2: General 2nd order filter		
	PT2 low pass: p1447, p1448		
	General filter: p1447 ... p1450		

2.2 List of parameters

p1446[0...n]	Velocity actual value filter type / v_act_filt type		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5040, 5210
SERVO_-AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	2
Description:	Sets the type for the general velocity actual value filter.		
Value:	1: PT2 low pass		
	2: General 2nd order filter		
Dependency:	PT2 low pass: p1447, p1448		
	General filter: p1447 ... p1450		

p1447[0...n]	Velocity actual value filter denominator natural frequency / v_act_filt fn_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	16000.0 [Hz]	2000.0 [Hz]
Description:	Sets the denominator natural frequency for the velocity actual value filter (PT2, general filter).		
Dependency:	Refer to: p1413, p1446		
Note:	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

$\mathbf{p 1 4 4 7 [0 . . . n] ~}$	Speed actual value filter denominator natural frequency / n_act_filt fn_den		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040,5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	$20000.0[\mathrm{~Hz}]$	$2000 . \mathrm{Hz}]$
Description:	Sets the denominator natural frequency for the speed actual value filter (PT2, general filter).		
Dependency:	Refer to: p1413, p1446		
Note:	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

p1447[0...n]	Velocity actual value filter denominator natural frequency / v_act_filt fn_den		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040,5210
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Max
	Min	$16000.0[\mathrm{~Hz}]$	Factory setting
	$0.5[\mathrm{~Hz}]$	$2000.0[\mathrm{~Hz}]$	
Description:	Sets the denominator natural frequency for the velocity actual value filter (PT2, general filter).		
Dependency:	Refer to: p1413, p1446		
Note:	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

p1448[0...n]	Velocity actual value filter denominator damping / v_act_filt D_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for the velocity actual value filter (PT2, general filter).		
Dependency:	Refer to: p1413, p1446		
p1448[0...n]	Speed actual value filter denominator damping / n_act_filt D_den		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for the speed actual value filter (PT2, general filter).		
Dependency:	Refer to: p1413, p1446		
p1448[0...n]	Velocity actual value filter denominator damping / v_act_filt D_den		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for the velocity actual value filter (PT2, general filter).		
Dependency:	Refer to: p1413, p1446		
p1449[0...n]	Velocity actual value filter numerator natural frequency / v_act_filt fn_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	2000.0 [Hz]
Description:	Sets the numerator natural frequency for the velocity actual value filter (general filter).		
Dependency:	Refer to: p1413, p1446		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		

2.2 List of parameters

p1449[0...n]	Speed actual value filter numerator natural frequency / n_act_filt fn_num		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	2000.0 [Hz]
Description:	Sets the numerator natural frequency for the speed actual value filter (general filter).		
Dependency:	Refer to: p1413, p1446		
Note:	The filter is only effective if the natural frequency is less than half of the sampling frequency.		
p1449[0...n]	Velocity actual value filter numerator natural frequency / v_act_filt fn_num		
$\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	2000.0 [Hz]
Description:	Sets the numerator natural frequency for the velocity actual value filter (general filter).		
Dependency:	Refer to: p1413, p1446		
Note:	This parameter is only effective if the velocity filter is set as a general filter.		
	The filter is only effective if the natural frequency is less than half of the sampling frequency.		
p1450[0...n]	Velocity actual value filter numerator damping / v_act_filt D_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for the velocity actual value filter (general filter).		
Dependency:	Refer to: p1413, p1446		
Note:	This parameter is only effective if the velocity actual value filter is set as a general filter.		
p1450[0...n]	Speed actual value filter numerator damping / n_act_filt D_num		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for the speed actual value filter (general filter).		
Dependency:	Refer to: p1413, p1446		
Note:	This parameter is only effective if the speed filter is set as a general filter.		

p1450[0...n]	Velocity actual value filter numerator damping / v_act_filt D_num		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5210
SERVO__AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for the velocity actual value filter (general filter).		
Dependency:	Refer to: p1413, p1446		
Note:	This parameter is only effective if the velocity actual value filter is set as a general filter.		
p1451[0...n]	Speed actual value smoothing time sensorless / n_act t_sm SL		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	0 [ms]
Description:	Sets the smoothing time for the calculated speed actual value in sensorless operation.		
Dependency:	Refer to: p1441		
p1451[0...n]	Velocity actual value smoothing time sensorless / v_act t_sm SL		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	0 [ms]
Description:	Sets the smoothing time for the calculated velocity actual value in sensorless operation.		
Dependency:	Refer to: p1441		
p1451[0...n]	Motor model speed actual value smoothing time sensorless / Mot_mod n_act t_sm		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	4 [ms]
Description:	Sets the smoothing time for the speed actual value calculated by the motor model in sensorless operation.		
p1452[0...n]	Speed controller speed actual value smoothing time (sensorless) / n_C n_act T_s SL		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6020, 6040
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	32000.00 [ms]	10.00 [ms]
Description:	Sets the smoothing time for the actual speed of the speed controller for encoderless closed-loop speed control. The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 $=4$).		
Note:			

2.2 List of parameters

r1454	CO: Velocity controller system deviation I component / v_ctrl sys dev Tn		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Display and connector output When the reference model is i complete PI controller (r1454	deviation of the I $=0 \mathrm{~Hz}$), this para	elocity controller. to the system deviation

r1454	CO: Speed controller system deviation I component / n_ctrl sys dev Tn		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: 00505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output When the reference model is i complete PI controller (r1454	deviation of the I co. $=0 \mathrm{~Hz}$), this para	peed controller. to the system deviation

$\mathbf{r 1 4 5 4}$
SERVO (Lin),
SERVO_AC (Lin),
SERVO_I_AC (Lin)

CO: Velocity controller system deviation I component / v_ctrl sys dev Tn
Can be changed: -
Data type: FloatingPoint32 Dyn. index: - Func. diagram: 5040
P-Group: Closed-loop control Unit group: 4_1 Unit selection: p0505
Not for motor type: REL Scaling: p2000 Expert list: 1
Min Max Factory setting
$-[\mathrm{m} / \mathrm{min}] \quad-[\mathrm{m} / \mathrm{min}] \quad-[\mathrm{m} / \mathrm{min}]$
Description: Display and connector output for the system deviation of the I component of the velocity controller. When the reference model is inactive ($\mathrm{p} 1433=0 \mathrm{~Hz}$), this parameter corresponds to the system deviation of the complete PI controller (r1454 = r0064).

$\overline{\mathbf{1 4 5 4}}$	CO: Speed controller system deviation I component / n_ctrl sys dev Tn		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6040
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the system deviation of the I component of the speed controller.		
	When the reference model is inactive ($\mathrm{p} 1433=0 \mathrm{~Hz}$), this parameter corresponds to the system deviation of the complete PI controller (r1454 = r0064).		

p1455[0...n] CI: Speed controller P gain adaptation signal / n_ctr adapt_sig Kp			
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the source for the adaptation signal to additionally adapt the P gain of the speed controller. Refer to: p1456, p1457, p1458, p1459		
Dependency:			
$\overline{p 1455[0 \ldots n]}$ SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	CI: Velocity controller P gain adaptation signal / v_ctr adapt_sig Kp		
	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the source for the adaptation signal to additionally adapt the P gain of the velocity controller. Refer to: p1456, p1457, p1458, p1459		
Dependency:			
p1455[0...n]	CI: Speed controller P gain adaptation signal / n_ctr adapt_sig Kp		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the source for the adaptation signal to additionally adapt the P gain of the speed controller. Refer to: p1456, p1457, p1458, p1459		
Dependency:			
p1456[0...n]	Speed controller P gain adaptation lower starting point / n_ctrl AdaptKpLow		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description:	Sets the lower starting point of the adaptation range for the additional adaptation of the P gain of the speed controller. The values are in \% and refer to the set source of the adaptation signal.		
Dependency:	Refer to: p1455, p1457, p1458, p1459		
p1456[0...n]	Velocity controller P gain adaptation lower starting point / v_ctrl AdaptKpLow		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description:	Sets the lower starting point of the adaptation range for the additional adaptation of the P gain of the velocity controller.		
Dependency:	Refer to: p1455, p1457, p1458, p1459		

p1456[0...n]	Speed controller P gain adaptation lower starting point / n_ctrl AdaptKpLow		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description:	Sets the lower starting point of the adaptation range for the additional adaptation of the P gain of the speed controller. The values are in \% and refer to the set source of the adaptation signal.		
Dependency:	Refer to: p1455, p1457, p1458, p1459		
Note:	If the upper transition point $p 1457$ of the speed controller adaptation is set to lower values than the lower transition p 1456 , then the controller gain below p 1457 is adapted with p 1459 and above p 1456 , with p 1458 .		
p1457[0...n]	Speed controller P gain adaptation upper starting point / n_ctrl AdaptKp up		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description:	Sets the upper starting point of the adaptation range for the additional adaptation of the P gain of the speed controller.		
	The values are in \% and refer to the set source of the adaptation signal.		
Dependency:	Refer to: p1455, p1456, p1458, p1459		
p1457[0...n]	Velocity controller P gain adaptation upper starting point / v_ctrl AdaptKp up		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description:	Sets the upper starting point of the adaptation range for the additional adaptation of the P gain of the velocity controller.		
	The values are in \% and refer to the set source of the adaptation signal.		
Dependency:	Refer to: p1455, p1456, p1458, p1459		
p1457[0...n]	Speed controller P gain adaptation upper starting point / n_ctrl AdaptKp up		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description:	Sets the upper starting point of the adaptation range for the additional adaptation of the P gain of the speed controller.		
	The values are in \% and refer to the set source of the adaptation signal.		
Dependency:	Refer to: p1455, p1456, p1458, p1459		
Note:	If the upper transition point p1457 of the speed controller adaptation is set to lower values than the lower transition p 1456 , then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458.		

p1458[0...n]	Adaptation factor lower / Adapt_factor lower		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\%]$	$200000.0[\%]$	$100.0[\%]$
Description:	Sets the adaptation factor before the adaptation range ($0 \% \ldots$ p1456) to additionally adapt the P gain of the		
	speed/velocity controller.		
Dependency:	Refer to: p1455, p1456, p1457, p1459		

p1458[0...n]	Adaptation factor lower / Adapt_factor lower		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the adaptation factor before the adaptation range ($0 \% \ldots \mathrm{p} 1456$) to additionally adapt the P gain of the speed/velocity controller.		
Dependency:	Refer to: p1455, p1456, p1457, p1459		
Note:	If the upper transition point $p 1457$ of the speed controller adaptation is set to lower values than the lower transition p 1456 , then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458.		

p1459[0...n]	Adaptation factor upper / Adapt_factor upper		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\%]$	200000.0 [\%]	$100.0[\%]$
Description:	Sets the adaptation factor after the adaptation range (> p1457) to additionally adapt the P gain of the speed/velocity		
	controller.		
Dependency:	Refer to: p1455, p1456, p1457, p1458		

p1459[0...n] Adaptation factor upper / Adapt_factor upper
VECTOR (n M) Can be changed: U T
VECTOR AC (n / M),
VECTOR_I_AC (n/M)

Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Min
0.0 [\%]

Sets the adaptation factor after the adaptation range (> p 1457) to additionally adapt the P gain of the speed/velocity controller.
Dependency: Refer to: $\mathrm{p} 1455, \mathrm{p} 1456, \mathrm{p} 1457, \mathrm{p} 1458$
Note: If the upper transition point p1457 of the speed controller adaptation is set to lower values than the lower transition p 1456 , then the controler gain below p 1457 is adapted with p 1459 and above p 1456 , with p 1458 .

p1460[0...n]	Velocity controller P gain A/v_ctrl Kp A		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-100.000[\%]$	$1000.000[\%]$	$0.000[\%]$
Description:	Sets the proportional gain (Kp) for the velocity controller at the A side		

p1460[0...n]	Speed controller P gain adaptation speed lower / n_ctrl Kp n lower		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5042
	P-Group: Closed-loop control	Unit group: 17_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000 [$\mathrm{Nms} / \mathrm{rad}$]	$500000000.0000[\mathrm{Nms} / \mathrm{rad}]$	0.3000 [$\mathrm{Nms} / \mathrm{rad}$]
Description:	Sets the P gain of the speed controller before the adaptation speed range ($0 \ldots \mathrm{p} 1464$).		
	This value corresponds to the basic setting of the P gain of the speed controller without adaptation (p1461 = 100%).		
Dependency:	Refer to: p1461, p1464, p1465		
Note:	When automatically calculating the speed controller, only the motor moment of inertia is taken into account (p0341). For higher load moments of inertia ($\mathrm{p} 0342>1$ or p1498>0), you are advised to check the speed controller gain.		

p1460[0...n]	Velocity controller P gain adaptation velocity lower / v_ctrl Kp n lower		
SERVO (Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5042
	P-Group: Closed-loop control	Unit group: 24_2	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0000[\mathrm{Ns} / \mathrm{m}]$	500000000.0000 [Ns / m]	10.0000 [Ns / m]
Description:	This value corresponds to the basic setting of the P gain of the velocity controller without adaptation (p1461 = 100 \%).		
Dependency:	Refer to: p1461, p1464, p1465		
Note:	When automatically calculating the velocity controller, only the motor inertia is taken into account (p0341). For higher inertias (p0342 > 1 or p1498>0), you are advised to check the velocity controller gain.		

p1460[0...n]	Speed controller P gain adaptation speed lower / n_ctrl Kp n lower		
VECTOR(J_estimator,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
n/M), VECTOR_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6020, 6040
VECTOR I AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
(J_estimator, n / M)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000	999999.0000	0.3000
Description:	Sets the P gain of the speed controller before the adaptation speed range ($0 \ldots \mathrm{p} 1464$).		
	This value corresponds to the basic setting of the P gain of the speed controller without adaptation (p1461 = 100%).		
Dependency:	For p0528 = 1, the speed controller gain is represented without any dimensions.		
	Refer to: p1461, p1464, p1465		

p1461[0...n]	Velocity controller P gain / v_ctr Kp		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-100.0[\%]$	$1000.0[\%]$	$0.0[\%]$
Description:	Sets the proportional gain $($ Kp $)$ for the velocity controller at the position of the minimum natural frequency.		

p1461[0...n]	Speed controller Kp adaptation speed upper scaling / n_ctr Kp n up scal		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the P gain of the speed controller for the upper adaptation speed range ($>\mathrm{p} 1465$).		
	The entry is made referred to the P gain for the lower adaptation speed range of the speed controller (\% referred to p1460).		
Dependency:	Refer to: p1460, p1464, p1465		
Note:	When automatically calculating the speed controller, only the motor moment of inertia is taken into account (p0341). For higher load moments of inertia ($\mathrm{p} 0342>1$ or $\mathrm{p} 1498>0$), you are advised to check the speed controller gain.		

p1461[0...n]	Velocity controller Kp adaptation velocity upper scaling / v_ctr Kp n up scal		
SERVO (Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	The entry is made referred to the P gain for the lower adaptation velocity range of the velocity controller (\% referred to p 1460).		
Dependency:	Refer to: p1460, p1464, p1465		
Note:	When automatically calculating the velocity controller, only the motor inertia is taken into account (p 0341). For higher inertias ($\mathrm{p} 0342>1$ or $\mathrm{p} 1498>0$), you are advised to check the velocity controller gain.		

p1461[0...n]	Speed controller Kp adaptation speed upper scaling / n_ctr Kp n up scal		
VECTOR (J_estimator, n/M), VECTOR_AC (J_estimator, n/M), VECTOR_I_AC (J_estimator, n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the P gain of the speed controller for the upper adaptation speed range (> 14465).		
	The entry is made referred to the P gain for the lower adaptation speed range of the speed controller (\% referred to p1460).		
Dependency:	Refer to: p1460, p1464, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition p1464, then the controller gain below p1465 is adapted with p1461. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1462[0...n]	Velocity controller P gain B / v_ctrl Kp B		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-100.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the proportional gain (Kp) for the velocity controller at the B side		
p1462[0...n]	Speed controller integral time adaptation speed lower / n_ctrl Tn n lower		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5042, 6020, 6040
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	100000.00 [ms]	20.00 [ms]
Description:	This value corresponds to the basic setting of the integral time of the speed controller without adaptation (p1461 = 100 \%).		
Dependency:	Refer to: p1463, p1464, p1465		
p1462[0...n]	Velocity contr. integral act. time adaptation velocity lower / v_ctrl Tn n lower		
SERVO (Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5042
SERVO__AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	100000.00 [ms]	20.00 [ms]
Description:	This value corresponds to the basic setting of the integral time of the velocity controller without adaptation (p1461 = 100%).		
Dependency:	Refer to: p1463, p1464, p1465		
p1462[0...n]	Speed controller integral time adaptation speed lower / n_ctrl Tn n lower		
VECTOR (J_estimator, n/M), VECTOR_AC (J_estimator, n / M), VECTOR_I_AC (J_estimator, n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5042, $6020,6040$
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	100000.00 [ms]	20.00 [ms]
Description:	Sets the integration time of the speed controller before the adaptation speed range ($0 \ldots \mathrm{p} 1464$). This value corresponds to the basic setting of the integral time of the speed controller without adaptation (p1461 = 100 \%).		
Dependency:	Refer to: p1463, p1464, p1465		
Note:	The integral component is stopped if the complete controller output or the sum of controller output and torque precontrol reach the torque limit.		

p1463[0...n]	Velocity controller integral time / v_ctr Tn		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	2000.0 [ms]	0.0 [ms]
Description:	Sets the integral time (Tn) for the velocity controller.		
p1463[0...n]	Speed controller Tn adaptation speed upper scaling / n_ctr Tn n up scal		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the integral time of the speed controller after the adaptation speed range (> p1465).		
	The entry is made referred to the integral time for the lower adaptation speed range of the speed controller (\% referred to p1462).		
Dependency:	Refer to: p1462, p1464, p1465		
p1463[0...n]	Velocity controller Tn adaptation velocity upper scaling / v_ctr Tn n up scal		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the integral time of the velocity controller after the adaptation velocity range (> p1465).		
	The entry is made referred to the integral time for the lower adaptation velocity range of the velocity controller (\% referred to p 1462).		
Dependency:	Refer to: p1462, p1464, p1465		
p1463[0...n]	Speed controller Tn adaptation speed upper scaling / n_ctr Tn n up scal		
VECTOR (J_estimator, n/M), VECTOR_AC (J_estimator, n / M), VECTOR_I_AC (J_estimator, n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the integral time of the speed controller after the adaptation speed range (> p1465).		
	The entry is made referred to the integral time for the lower adaptation speed range of the speed controller (\% referred to p1462).		
Dependency:	Refer to: p1462, p1464, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller integral time below p1465 is adapted with p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

2.2 List of parameters

p1464[0...n]	Velocity controller D component smoothing time constant / v_ctr D comp T		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.25[\mathrm{~ms}]$	$100.00[\mathrm{~ms}]$	$0.25[\mathrm{~ms}]$
Description:	Sets the smoothing time constant for the D component of the velocity controller.		

p1464[0...n]	Speed controller adaptation speed lower / n_ctrl n lower		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{rpm}]$	$0.00[\mathrm{rpm}]$	
Description:	Sets the lower adaptation speed of the speed controller.		
	No adaptation is effective below this speed.		
Dependency:	Refer to: p1460, p1461, p1462, p1463, p1465		

p1464[0...n]	Velocity controller adaptation velocity lower / v_ctrl n lower		
SERVO (Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	0.00 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the lower adaptation velocity of the velocity controller. No adaptation is effective below this velocity.		
Dependency:	Refer to: p1460, p1461, p1462, p1463, p1465		
p1464[0...n]	Speed controller adaptation speed lower / n_ctrl n lower		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
VECTOR_I_AC (n / M)	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	0.00 [rpm]
Description:	Sets the lower adaptation speed of the speed controller.		
	No adaptation is effective below this speed.		
Dependency:	The parameter is set by the speed controller optimization. Adaptation to the application should then be subsequently made.		
	Refer to: p1460, p1461, p1462, p1463, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller below p1465 is adapted with p1461 or p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1465[0...n]	Velocity controller derivative-action time A/v_ctrl Tv A		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-1000.00[\mathrm{~ms}]$	$1000.00[\mathrm{~ms}]$	$0.00[\mathrm{~ms}]$
Description:	Sets the derivative-action time (Tv, D component) for the velocity controller at the A side.		

p1465[0...n]	Speed controller adaptation speed upper / n_ctrl n upper		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the upper adaptation speed of the speed controller.		
	No adaptation is effective above this speed.		
	For the proportional gain, p1460 \times p1461 is effective.		
	For the integral time, p1462 \times p1463 is effective.		
Dependency:	Refer to: p1460, p1461, p1462, p1463, p1464		
p1465[0...n]	Velocity controller adaptation velocity upper / v_ctrl n upper		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5050
	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [m/min]	1000.00 [m/min]	1000.00 [m/min]
Description:	Sets the upper adaptation velocity of the velocity controller.		
	No adaptation is effective above this velocity.		
	For the proportional gain, p1460 \times p1461 is effective.		
	For the integral time, p1462 \times p1463 is effective.		
Dependency:	Refer to: p1460, p1461, p1462, p1463, p1464		

p1465[0...n]	Speed controller adaptation speed upper / n_ctrl \mathbf{n} upper		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the upper adaptation speed of the speed controller.		
	No adaptation is effective above this speed.		
	For the proportional gain, $\mathrm{p} 1460 \times \mathrm{p} 1461$ is effective.		
	For the integral time, p1462 \times p1463 is effective.		
Dependency:	The parameter is set by the speed controller optimization. Adaptation to the application should then be subsequently made.		
	Refer to: p1460, p1461, p1462, p1463, p1464		
Note:	If the upper transition point $p 14$ point p 1464 , then the controller implemented for low speeds wit	ed controller adaptation is set to is adapted with p1461 or p1463. o change the controller paramete	values than the lower transition means that an adaptation can be

p1466[0...n]	Velocity controller derivative-action time /v_ctrl Tv		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: :-	Expert list: 1
	Min	Max	Factory setting
	$-1000.00[\mathrm{~ms}]$	$0.00[\mathrm{~ms}]$	
Description:	Sets the derivative-action time (Tv, D component) for the velocity controller at the position of the minimum natural		
	frequency.		

p1466[0...n] CI: Speed controller P-gain scaling/n_ctrl Kp scal
SERVO, SERVO_AC, Can be changed: T Calculated: -

Dyn. index: CDS, p0170
Unit group: -
Scaling: PERCENT
Max

Description: Sets the signal source for the scaling of the P gain of the speed controller. This also makes the effective P gain (including adaptations) scalable.

Access level: 3
Func. diagram: 5050
Unit selection: -
Expert list: 1
Factory setting
1

p1466[0...n]	CI: Velocity controller P gain scaling / v_ctrl Kp scal		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5050
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1

Description: \quad Sets the signal source for the scaling of the P gain of the velocity controller. This also makes the effective P gain (including adaptations) scalable.

p1466[0...n]	CI: Speed controller P-gain scaling / n_ctrl Kp scal		
VECTOR (n / M),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6050
VECTOR__AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the P gain of the speed controller. This also makes the effective P gain (including adaptations) scalable.		
p1467[0...n]	Velocity controller derivative-action time B / v_ctrl Tv B		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [ms]	1000.00 [ms]	0.00 [ms]
Description:	Sets the derivative-action time (Tv, D component) for the velocity controller at the B side.		

r1468	Velocity controller P gain effective / v_ctrl Kp eff		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective P gain of the velocity controller.		
r1468	Speed controller P-gain effective / n_ctr Kp eff		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Unit group: 17_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Nms/rad]	- [$\mathrm{Nms} / \mathrm{rad}$]	- [$\mathrm{Nms} / \mathrm{rad}$]
Description:	Displays the effective P gain of the speed controller.		
Note:	For encoderless operation and speeds less than p1755 (open-loop controlled mode) the speed controller is not active and $\mathrm{r} 1468=0$ is displayed.		
r1468	Velocity controller P gain effective / v_ctrl Kp eff		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Unit group: 24_2	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Ns / m]	- [Ns / m]	- [Ns/m]
Description:	Displays the effective P gain of the velocity controller.		
Note:	For encoderless operation and velocities less than p1755 (open-loop controlled mode) the velocity controller is not active and $\mathrm{r} 1468=0$ is displayed.		
r1468	CO: Speed controller P-gain effective / n_ctr Kp eff		
VECTOR (n/M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6040
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the effective P gain of the speed controller.		
Dependency:	For p0528 = 1, the speed controller gain is represented without any dimensions. In this case, connector output signal r1468 is increased by a factor of 100 in order to improve the resolution.		
r1469	Velocity controller derivative-action time active / v_ctrl Tv act		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the effective derivative time of the velocity controller.		

$\mathbf{p 1 4 7 0 [0 . . . n] ~}$	Speed controller encoderless operation P-gain / n_ctrl SL Kp		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5210
	P-Group: Closed-loop control	Unit group: $17 _1$	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00000[\mathrm{Nms} / \mathrm{rad}]$	$999999.00000[\mathrm{Nms} / \mathrm{rad}]$	$0.30000[\mathrm{Nms} / \mathrm{rad}]$
Description:	Sets the P gain for encoderless operation for the speed controller.		
Note:	When automatically calculating the speed controller, only the motor moment of inertia is taken into account (p0341).		
	For higher load moments of inertia (p0342 > 1 or p1498>0), you are advised to check the speed controller gain.		

p1470[0...n]	Velocity controller encoderless operation P-gain / v_ctrl SLVC Kp		
SERVO (Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5210
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: 24_2	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00000[\mathrm{Ns} / \mathrm{m}]$	$999999.00000[\mathrm{Ns} / \mathrm{m}]$	$10.00000[\mathrm{Ns} / \mathrm{m}]$
Description:	Sets the P gain for encoderless operation for the velocity controller.		
Note:	When automatically calculating the velocity controller, only the motor inertia is taken into account (p0341). For higher		
	inertias $(p 0342>1$ or p1498 >0), you are advised to check the velocity controller gain.		

p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SL Kp		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6040, 6050
VECTOR_I_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000	999999.00000	0.30000
Description:	Sets the P gain for encoderless operation for the speed controller.		
Dependency:	For p0528 = 1, the speed controller gain is represented without any dimensions.		
Note:	The product p0341 x p0342 is taken into account when automatically calculating the speed controller (p0340 $=1,3$, 4).		

p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SL Tn		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~ms}]$	$100000.0[\mathrm{~ms}]$	$20.0[\mathrm{~ms}]$
Description:	Set the integral time for encoderless operation for the speed controller.		

p1472[0...n]	Velocity controller encoderless operation integral time / v_ctrl SLVC Tn		
SERVO (Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5210
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~ms}]$	$100000.0[\mathrm{~ms}]$	$20.0[\mathrm{~ms}]$
Description:	Set the integral time for encoderless operation for the velocity controller.		

p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SL Tn		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6040, 6050
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~ms}]$	$100000.0[\mathrm{~ms}]$	$20.0[\mathrm{~ms}]$
	Set the integral time for encoderless operation for the speed controller.		
Description:	The integral component is stopped if the complete controller output or the sum of controller output and torque		
Note:	precontrol reach the torque limit.		

p1475[0...n]	Velocity controller loop gain / v_ctrl loop_gain		
HLA	Can be changed: U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~mm} / \mathrm{Vmin}]$	$20000.0[\mathrm{~mm} / \mathrm{Vmin}]$	$0.0[\mathrm{~mm} / \mathrm{Vmin}]$
Description:	Sets the loop gain of the velocity controller.		

p1475[0...n]	CI: Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB		
VECTO	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6040
	P-Group: Closed-loop control	Unit group: -	Unit selection:
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-		0
Description:	Sets the signal source for the torque setting value when starting up with motor holding brake.		
Recommendation:	To hold the actual torque when stopping the motor, you are advised to set p1400.1 $=1$. As a result, the integral component of the speed controller is frozen when changing to the open-loop controlled operating range.		
Dependency:	The switching in of the torque setting value for the motor holding brake has a higher priority than the setting of the integrator value using p1477 and p1478.		

2.2 List of parameters

Note:	The setting of the integral output of the speed controller begins after magnetizing (see p0346, r0056.4) and ends at the end of the brake control opening time p1216. A setting value of zero means that no setting procedure will take place.		
p1476[0...n]	BI: Velocity controller hold integrator / v_ctrl integ stop		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to hold the integrator for the velocity controller.		

p1476[0...n]	BI: Speed controller hold integrator / n_ctrl integ stop		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
(n/M), SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2520, 5040,
VECTOR_AC (n/M),			$5042,5210,6040$
SERVO_IAC,	P-Group: Closed-loop control	Unit group: -	Unit selection: -
VECTOR_I_AC (n/M)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description: Sets the signal source to hold the integrator for the speed controller

p1476[0...n]	BI: Velocity controller hold integrator / v_ctrl integ stop		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2520, 5040, 5042, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to hold the integrator for the velocity controller.		
p1477[0...n]	BI: Velocity controller set integrator value / v_ctrl integ set		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to set the integrator setting value (p1478).		
Dependency:	Refer to: p1478, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2.6 (integrator inhibit, speed controller).		

p1477[0...n]	BI: Speed controller set integrator value / n_ctrl integ set		
SERVO, VECTOR (n / M), SERVO_AC, VECTOR_AC (n / M), SERVO_I_AC, VECTOR_I_AC (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2520, 5040, 5042, 5210, 6040
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to set the integrator setting value (p1478).		
Dependency:	Refer to: p1478, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2. 6 (integrator inhibit, speed controller).		
p1477[0...n]	BI: Velocity controller set integrator value / v_ctrl integ set		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2520, 5040, 5042, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to set the integrator setting value (p1478).		
Dependency:	Refer to: p1478, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2. 6 (integrator inhibit, speed controller).		
p1478[0...n]	CI: Velocity controller integrator value / v_ctr integ_setVal		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the integrator setting value for the velocity controller. The signal to set this integrator setting value is interconnected via p1477.		
Dependency:	Refer to: p1477, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2.6 (integrator inhibit, speed controller).		
p1478[0...n]	CI: Speed controller integrator setting value / n_ctr integ_setVal		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the integrator setting value for the velocity controller. The signal to set this integrator setting value is interconnected via p1477.		
Dependency:	Refer to: p1477, p1479		

2.2 List of parameters

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad For the interface mode "SIMODRIVE 611 universal" ($p 2038=1$), p1477 and p1478 are used for the signal STW2.6 (integrator inhibit, speed controller).

p1478[0...n]	Cl: Velocity controller integrator value / v_ctr integ_setVal		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5040, 5042,
SERVO_I_AC (Lin)		Unit group: -	5210
	P-Group: Closed-loop control	Scaling: p2003	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1
	Min	Factory setting	
	-	0	
Description:	Sets the signal source for the integrator setting value for the velocity controller.		
	The signal to set this integrator setting value is interconnected via p1477.		
Dependency:	Refer to: p1477, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For the interface mode "SIMODRIVE 611 universal" (p2038 =1), p1477 and p1478 are used for the signal STW2.6		
	(integrator inhibit, speed controller).		

$\mathbf{p 1 4 7 8 [0 . . . n] ~}$	Cl: Speed controller integrator setting value / n_ctr integ_setVal		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6040
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description:	Sets the signal source for the integrator setting value for the velocity controller.
	The signal to set this integrator setting value is interconnected via p1477.
Dependency:	The setting value of the speed controller integrator is weighted with the scaling factor of the signal source in p1479.

In order that when setting the integrator output, only the static torque is detected, we recommend that the accelerating torque is completely precontrolled (e.g. p1496).
If p1478 is interconnected to another output other than r1482, then after magnetizing and speed controller enable, the integral output is set once if the setting command is not interconnected ($\mathrm{p} 1477=0$) .
Refer to: p1477, p1479
Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p1479[0...n]	CI: Speed controller integrator setting value scaling / n_ctrl I_val scal		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6040
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the integrator setting value $(p 1478)$ of the speed controller.		
Dependency:	Refer to: $p 1477, p 1478$		

r1480	CO: Velocity controller PID output / v_ctrl PID outp		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Display and connector output for the voltage setpoint at the output of the PID velocity controller.		
r1480	CO: Speed controller PI torque output / n_ctrl PI-M_outp		
SERVO, VECTOR	Can be changed: -	Calculated: -	Access level: 3
(n/M), SERVO_AC, VECTOR_AC (n/M), SERVO IAC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5019, 5040, 5042, 5060, 5210, 6060
VECTOR I AC (n / M)	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the PI speed controller.		
r1480	CO: Velocity controller PI force output / v_ctrl PI-F_outp		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5019, 5040, 5042, 5060, 5210
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Display and connector output for the force setpoint at the output of the PI velocity controller.		
r1481	CO: Velocity controller P component output / v_ctrl P outp		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Display and connector output for the voltage setpoint of the P component for the velocity controller.		
r1481	CO: Speed controller P torque output / n_ctrl P-M_outp		
SERVO, VECTOR (n / M), SERVO_AC, VECTOR_AC (n / M), SERVO_I_AC, VECTOR_I_AC (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 5042, 5210, 6040
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the P speed controller.		

r1481	CO: Velocity controller P force output / v_ctrl P-F_outp		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 5042,
SERVO_I_AC (Lin)		Unit group: 8_1	Unit selection: p0505
	P-Group: Closed-loop control	Scaling: p2003	Expert list: 1
	Not for motor type: REL	Max	Factory setting
	Min	$-[\mathrm{N}]$	$-[\mathrm{N}]$
	$-[\mathrm{N}]$		
Description:	Display and connector output for the force setpoint at the output of the P velocity controller.		

r1482	CO: Velocity controller I component output / v_ctrl I outp		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	$-[V]$
Description:	Display and connector output for the voltage setpoint of the I component for the velocity controller.		

r1482

SERVO, VECTOR (n / M), SERVO_AC, VECTOR_AC (n / M), SERVO_I_AC, VECTOR_I_AC (n / M)

CO: Speed controller I torque output / n_ctrl I-M_outp
Can be changed: -

Calculated: -
Dyn. index: -
Unit group: 7_1
Scaling: p2003
Max

- [Nm]

Access level: 3
Func. diagram: 5040, 5042, 5210, 6030, 6040
Unit selection: p0505
Expert list: 1 Factory setting

- [Nm]

Description: Display and connector output for the torque setpoint at the output of the I speed controller.

$\mathbf{r 1 4 8 2}$	CO: Velocity controller I force output / v_ctrl I-F_outp		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 5210
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Display and connector output for the force setpoint at the output of the I velocity controller.		
r1483	CO: Velocity controller D component output / v_ctrl D outp		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Display and connector output for the voltage setpoint of the D component for the velocity controller.		

r1484	CO: Speed controller Kp adaptation as percentage / n_ctrl Kp adap \%		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the percentage Kp adaptation of the speed controller.		
Dependency:	Refer to: p1460, p1461, p1464, p1465		
Note:	The value is referred to the set proportional gain (p1460).		
r1484	CO: Velocity controller Kp adaptation as percentage / v_ctrl Kp adap \%		
$\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the percentage Kp adaptation of the velocity controller.		
Dependency:	Refer to: p1460, p1461, p1464, p1465		
Note:	The value is referred to the set proportional gain (p1460).		
p1486[0...n]	CI: Droop compensation torque / Droop M_comp		
VECTOR (n / M), VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6030
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the compensation torque to be output within the droop calculation.		
	This parameter should be interconnected with the torque setpoint of the drive (corresponding to the selection p1488), with which load equalization should be performed.		
p1487[0...n]	Droop compensation torque scaling / Droop M_comp scal		
VECTOR (n / M), VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6030
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-2000.0 [\%]	2000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the compensation torque within the droop calculation.		

p1488[0...n]	Droop input source / Droop input source		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 6030
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description:	Sets the source for droop feedback.		
	With increasing torque, the speed setpoint is reduced (enabled using p1492), so that for mechanically coupled drives a load equalization (load compensation) is obtained.		
	A load difference compensation is also possible, if p1486 is interconnected with the torque setpoint of the other drive.		
Value:	0 : Droop feedback not connected		
	1: Droop from torque setpoint		
	2: Droop from speed controller output		
	3: Droop from integral output speed controller		
Dependency:	Refer to: p1486, p1487, p1489, r1490, p1492		
Caution: \qquad	For active acceleration precontrol of the speed controller (refer to p1496), it is not recommended that p1488 is set to 1 , as this could result in positive coupling effects. Instead of this, as source of the droop feedback, the output signal of the speed controller should be used, which generally sets the load torque.		

p1489[0...n]	Droop feedback scaling / Droop scal		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6030
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	0.500	
Description:	Sets the scaling for the droop feedback		
Dependency:	Refer to: p1486, p1487, p1488, r1490, p1492		
Note:	Example:		
	A value of 0.05 means that for a torque equal to the rated motor torque, the rated motor speed is reduced by 5%.		

r1490	CO: Droop feedback speed reduction / Droop n_reduction		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6030
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the output signal of the droop calculation. The droop feedback result is subtracted from the speed setpoint when activated (p1492).		
Dependency:	Refer to: p1486, p1487, p1488, p1489, p1492		
p1492[0...n]	BI: Droop feedback enable / Droop enable		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2520, 6030
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Enables the droop to be applied to the speed/velocity setpoint.		
Dependency:	Refer to: p1486, p1487, p1488, p1489, r1490		

Note: Even when not enabled, the droop speed is calculated but not subtracted from the setpoint speed. This makes it

 possible to subtract the result of this calculation from the speed of another drive.| r1493 | CO: Moment of inertia total / M_inertia total | | |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$ | Can be changed: - | Calculated: - | Access level: 3 |
| | Data type: FloatingPoint32 | Dyn. index: - | Func. diagram: 5042, 5210 |
| | P-Group: Closed-loop control | Unit group: 25_1 | Unit selection: p0100 |
| | Not for motor type: REL | Scaling: - | Expert list: 1 |
| | Min | Max | Factory setting |
| | - [kgm^{2}] | - [kgm^{2}] | - [kgm^{2}] |
| Description: | | | |
| | The value is calculated as follows: (p 0341 * p0342) + p1498 | | |
| | The scaling is not take into account using p1497. | | |
| | When the "moment of inertia estimator" is activated ($\mathrm{r} 0108.10=1, \mathrm{p} 1400.18=1$) and scaling is deactivated (CI: p1497 = 1), the following applies: | | |
| | The currently estimated value of the moment of inertia estimator is displayed in this parameter. | | |
| Dependency: | Refer to: p1300, p1402, p1404, | | |
| Note: | The parameterized total mome In encoderless operation or wh speed precontrol is activated. | king into account p speed precontrol | he torque precontrol. $2.4=1$) is activated, then torque- |

r1493	CO: Total mass / Total mass		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5042, 5210
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: 27_1	Unit selection: p0100
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [kg]	- [kg]	- [kg]
Description:	Display and connector output for the parameterized total mass.		
	The value is calculated as follows: (p0341 * p0342) + p1498		
	The scaling is not take into account using p1497.		
	When the "moment of inertia estimator" is activated (r0108.10 = 1, p1400.18 = 1) and scaling is deactivated (Cl p1497 = 1), the following applies:		
	The currently estimated value of the moment of inertia estimator is displayed in this parameter.		
Dependency:	Refer to: p1300, p1402, p1404, p1497		
Note:	The parameterized total mass, taking into account p1497, influences the force-velocity precontrol.		
	In encoderless operation or when the force-velocity precontrol with encoder (p1402.4 = 1) is activated, then torquevelocity precontrol is activated.		

$\mathbf{r 1 4 9 3}$	CO: Moment of inertia total, scaled / M_inert tot scal		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6031
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: $25 _1$	Unit selection: $p 0100$
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-\left[\mathrm{kgm}^{2}\right]$	$-\left[\mathrm{kgm}^{2}\right]$	$-\left[\mathrm{kgm}^{2}\right]$
Description:	Display and connector output for the parameterized total moment of inertia.		
	The value is calculated as follows: $\left(p 0341^{*} p 0342\right)+\mathrm{p} 1496$		

p1494[0...n]	Velocity controller integrator feedback time constant / v_ctr integ_fdbk T		
HLA	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group:	Unit selection:-
	Not for motor type: REL	Scaling: -	Max
	Min	Expert list: 1	

p1494[0...n]	Speed controller integrator feedback time constant / n_ctr integ_fdbk T		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	0.00 [ms]
Description:	Sets the time constant of the PT1 filter for integrator feedback.		
	The integrator of the speed controller is re-parameterized to become a PT1 filter through a feedback element (1st Order low pass filter characteristics).		
	The following applies:		
	p1494 < $2 \times \mathrm{p} 0115[1]$--> the PT1 filter is not active - the pure integrator is effective.		
	p1494 >= $2 \times$ p0115[1] --> the PT1 filter is active and has replaced the pure integrator.		
Note:	Applications:		
	Motion at zero setpoint and dominant stiction can be suppressed but this has a negative impact on the remaining setpoint-actual value difference. This can be used, for example, to avoid oscillation of a position-controlled axis at standstill (stick-slip effect) or overshoot when traversing (moving) in micrometer steps.		
	Also prevents tension/stressing for axes that are mechanically and rigidly coupled with one another (e.g. for synchronous spindles, master - slave axes).		

p1494[0...n]	Velocity controller integrator feedback time constant / v_ctr integ_fdbk T		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5042, 5210
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	0.00 [ms]
Description:	Sets the time constant of the PT1 filter for integrator feedback.		
	The integrator of the velocity controller is re-parameterized to become a PT1 filter through a feedback element (1st Order low pass filter characteristics).		
	The following applies:		
	$\mathrm{p} 1494<0.25$ ($2 \times \mathrm{p} 0115[1])$--> the PT1 filter is not active - the pure integrator is effective.		
	p1494 >= 0.25 ($2 \times \mathrm{p} 0115[1])$--> the PT1 filter is active and has replaced the pure integrator.		

Note: Applications:

Motion at zero setpoint and dominant stiction can be suppressed but this has a negative impact on the remaining setpoint-actual value difference. This can be used, for example, to avoid oscillation of a position-controlled axis at standstill (stick-slip effect) or overshoot when traversing (moving) in micrometer steps.
Also prevents tension/stressing for axes that are mechanically and rigidly coupled with one another (e.g. for synchronous spindles, master - slave axes).

p1495[0...n]	Integrator feedback velocity threshold / Integ_fdbk v_thr		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [m/min]	120000.000 [m/min]	0.010 [$\mathrm{m} / \mathrm{min}$]
Description: Dependency:	Sets the velocity threshold for the integrator feedback.		
p1495[0...n]	CI: Acceleration precontrol / a_prectrl		
VECTOR (n / M),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6031
VECTOR A AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2007	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the acceleration precontrol.		
Dependency:	The signal source for the acceleration is activated with p1400.2 $=1$.		
	For p1400.2 = 0, the acceleration precontrol is calculated from the speed setpoint change from r0062.		
	For $\mathrm{p} 1400.2=0$ and activate reference model ($\mathrm{p} 1400.3=1$) the acceleration precontrol is switched out.		
Note:	If the acceleration is entered as external signal, then the accelerating torque is calculated as follows (r1518): r1518 = acceleration (\% of p2007) / 100 \% * (p2007 * 60 s) / p0311 * r0345 / 1 s * r0333		

p1496[0...n]
VECTOR (n / M),
VECTOR_AC (n / M),
VECTOR_I_AC (n / M)

Acceleration precontrol scaling / a_prectrl scal
Can be changed: U, T
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Min
0.0 [\%]

Description:
Dependency:

Warning:

Note:

Calculated: -
Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max
10000.0 [\%]

Access level: 3
Func. diagram: 6020, 6031
Unit selection: -
Expert list: 1
Factory setting
0.0 [\%]

Sets the scaling for the acceleration precontrol of the speed/velocity controller.
When the reference model is activated ($\mathrm{p} 1400.3=1$) and for an internal acceleration precontrol ($\mathrm{p} 1400.2=0$), the acceleration precontrol is switched out (disabled). The reference model ($p 1400.3=1$) and external acceleration precontrol $(\mathrm{p} 1400.2=1)$ can be operated together.
Refer to: p0341, p0342
The acceleration precontrol r1518 is kept at the old value if the ramp-function generator tracking (r1199.5) is active or the ramp-function generator output is set (r1199.3). This is used to avoid torque peaks. Depending on the application, it may therefore be necessary to disable the ramp-function generator tracking (p1145 = 0) or the acceleration precontrol (p1496 = 0).
The acceleration precontrol is set to zero, if the Vdc control is active (r0056.14/15).
The parameter is set to 100% by the rotating measurement (refer to p1960).
The acceleration precontrol may not be used if the speed setpoint manifests significant ripple (e.g. analog setpoint) and the rounding-off in the speed ramp-function generator is disabled.
We also recommend that the precontrol mode is not used if there is gearbox backlash.

p1497[0...n]	CI: Moment of inertia scaling signal source / M_inert scal s_src		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5042, 5210, 6030, 6031
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the motor moment of inertia.		
Notice:	This parameter has no effect when the "moment of inertia estimator" function is active (r0108.10 = 1, p1400.18 = 1) .		
p1497[0...n]	CI: Mass scaling signal source / Mass scal s_src		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5042, 5210
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1

Description: Sets the signal source for scaling the motor mass.
Notice: \quad This parameter has no effect when the "moment of inertia estimator" function is active ($\mathrm{r} 0108.10=1, \mathrm{p} 1400.18=1$).

p1497[0...n]	Cl: Moment of inertia scaling signal source / M_inert scal s_src		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5042,5210,
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$			6030,6031
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	1	

p1498[0...n]	Load mass / Load mass		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: 27_1	Unit selection: p0100
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [kg]	$100000.00000[\mathrm{~kg}$]	0.00000 [kg]
Description:	Sets the load mass.		
Note:	p0341 + p1498 influence the calculation of the natural frequencies (p0352 ... p0354), of the force offset (p1532) and of the velocity controller (p1460 ... p1467) for p0340.1 = 1 or p3900 $=3$.		
p1498[0...n]	Load moment of inertia / Load M_inertia		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5042, 5210
	P-Group: Closed-loop control	Unit group: 25_1	Unit selection: p0100
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [kgm^{2}]	- [kgm^{2}]	- [kgm^{2}]
Description: Note:	Sets the load moment of inertia.		

2.2 List of parameters

p1500[0...n]	Macro Connector Inputs (CI) for force setpoints / Macro Cl F_set		
SERVO (Lin), HLA, SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	999999	0
Description:	Runs the corresponding macro files.		
	The connector inputs (CI) for the force setpoints of the appropriate command data set (CDS) are appropriately interconnected.		
	The selected macro file must be available on the memory card/device memory.		
	Example:		
	p1500 = 6 --> the macro file PM000006.ACX is run.		
Dependency:	Refer to: p0015, p0700, p1000, r8573		
Notice:	No errors were issued during quick commissioning (p3900 = 1) when writing to parameters of the QUICK_IBN group! When executing a specific macro, the corresponding programmed settings are made and become active.		
Note:	The macros in the specified Macros available as standar CI: Connector Input	played in r8573. r8573 is no in the technical documentation	xpert list of the commissioning tool. particular product.

p1501[0...n]	BI: Change over between closed-loop speed/torque control / Changeov n/M_ctrl		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
(n / M), SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2520, 6020
$\begin{aligned} & \text { VECTOR_AC (n/M), } \\ & \text { SERVO I AC. } \end{aligned}$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
VECTOR_I_AC (n / M)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for toggling between speed and torque control. 0 signal: Closed-loop speed control 1 signal: Closed-loop torque control		
Dependency:	The input connectors to enter the torque are provided using p1511, p1512 and p1513. Refer to: p1300		
Notice:	If the closed-loop torque control is not activated (p 1300) and a change is made to closed-loop torque control (p1501), OFF1 (p0840) does not have its own braking response but pulse suppression when standstill is detected (p1226, p1227).		
Note:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1501[0...n]	BI: Change over velocity/force control / Changeov n/F_ctrl		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2520, 6020
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	

Description:	Sets the signal source for toggling between velocity and force control.		
0 signal: Velocity control			
	1 signal: Force control	\quad	The input connectors to enter the force are provided using p1511, p1512 and p1513.
:---			
Dependency: \quad	\quad	Refer to: p1300	
:---			
If the closed-loop force control is not activated (p1300) and a change is made to closed-loop force control (p1501),			
Notice:	\quad	OFF1 (p0840) does not have its own braking response but pulse suppression when standstill is detected (p1226,	
:---	:---		
p1227).			

p1502[0...n]	BI: Freeze moment of inertia estimator / J_estim freeze		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to freeze the estimated moment of inertia.		
	0 signal:		
	Moment of inertia estimator active		
	1 signal:		
	Determined moment of inertia frozen.		
Dependency:	Refer to: p1300		
Note:	Only active when the "moment of inertia estimator" function module is active (r0108.10 = 1) and p1400.18=1.		
p1502[0...n]	BI: Freeze moment of inertia estimator / J_estim freeze		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to freeze the estimated moment of inertia. 0 signal:		
	Moment of inertia estimator active		
	1 signal:		
	Determined moment of inertia frozen.		
Dependency:	Refer to: p1300		
Note:	Only active when the "moment of inertia estimator" function module is active (r0108.10 = 1) and p1400.18=1. For operation with encoder, p1400.23 must also be set to 1 .		
p1503[0...n]	Cl: Torque setpoint / M_set		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6020, 6060
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the torque setpoint for torque control.		
Note:	A change is made to closed-loop torque control if, in p1300, closed-loop torque control was selected or if the selection was made using the changeover source in p1501. it is also possible to change over in operation using p1501.		

2.2 List of parameters

r1508	CO: Torque setpoint before supplementary torque / M_set bef. M_suppl		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 2
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6030, 6060,
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$		Unit group: 7_1	Unit selection: p0505
	P-Group: Closed-loop control	Scaling: p2003	Expert list: 1
	Not for motor type: REL	Max	Factory setting
	Min	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
	$-[\mathrm{Nm}]$		
Description:	Displays the torque setpoint before entering the supplementary torque.		
	For closed-loop speed control, r1508 corresponds to the speed controler output; for closed-loop torque control,		
	$r 1508$ corresponds to the torque setpoint of the signal source assigned in p1503.		

r1509	CO: Torque setpoint before torque limiting / M_set before M_lim		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5019, 5060 5610
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output The value is the sum of the co without encoder.	que setpoint befor supplementary to	evant precontrol torque, oper

r1509	CO: Force setpoint before force limiting / F_set before F_lim		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5019, 5060,
SERVO_I_AC (Lin)			5610
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	$-[N]$	$-[N]$	$-[N]$

Description: Display and connector output for the total force setpoint before force limiting.
The value is the sum of the controller output, supplementary force and where relevant precontrol force, operation without encoder.

p1511[0...n]	Cl: Force setpoint / F_set		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the force setpoint.		
Dependency:	The force setpoint can be scaled using p1512 and is only effective for p1400.14 =1.		

p1511[0...n]	CI: Supplementary torque 1/M_suppl 1		
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5060
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for supplementary torque 1.		

p1511[0...n]	CI: Supplementary force 1 / F_suppl 1		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5060
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0

p1511[0...n]	CI: Supplementary torque 1 / M_suppl 1		
VECTOR (n/M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6020,
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for supplementary torque 1.		
p1512[0...n]	CI: Force setpoint scaling / F_set scal		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description: Sets the signal source for scaling the force setpoint via p1511.
Dependency: Refer to: p1400, p1511

p1512[0...n]	CI: Supplementary torque 1 scaling / M_suppl 1 scal		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
$(\mathrm{n} / \mathrm{M})$ SERVO_AC,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5060,6060
VECTOR_AC (n/M),	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: PERCENT	Expert list: 1	
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	Not for motor type: REL	Max	Factory setting
	Min	-	0
	-		
Description:	Sets the signal source for scaling the supplementary torque 1.		

p1512[0...n]	CI: Supplementary force 1 scaling / F_suppl 1 scal		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5060, 6060
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for scaling the supplementary force 1.		

p1513[0...n]	Cl: Supplementary torque 2 / M_suppl 2		
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5060
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Max
	Min	-	Expert list: 1
	-	Factory setting	
Description:	Sets the signal source for supplementary torque 2.	0	
Note:	Supplementary torque 2 can be used for weight equalization, and for example, is included in the manufacturer-		
	specific telegram 136.		

p1513[0...n]	CI: Supplementary force 2 / F_suppl 2		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5060
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Max
	Min	-	Expert list: 1
	-	Factory setting	
Description:	Sets the signal source for supplementary force 2.	0	
Note:	Supplementary force 2 can be used for weight equalization, and for example, is included in the manufacturer-specific telegram 136.		

p1513[0...n]	Cl: Supplementary torque 2 / M_suppl 2		
VECTOR (n / M),	Can be changed: T	Calculated: -	
VECTOR_AC (n / M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Access level: 3
VECTOR_I_AC (n / M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Max
	Min	-	Expert list: 1
	-	Factory setting	

Description: Sets the signal source for supplementary torque 2.

p1514[0...n]	Supplementary torque 2 scaling / M_suppl 2 scal		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6020,6060
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	$-2000.0[\%]$	$2000.0[\%]$	$100.0[\%]$
Description:	Sets the scaling for supplementary torque 2.		

$\mathbf{r 1 5 1 5}$	Supplementary torque total / M_suppl total		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5060
	P-Group: Closed-loop control	Unit group: $7 _1$	Unit selection: 00505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
Description:	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
	Displays the total supplementary torque.		
	The displayed value is the total of supplementary torque values 1 and $2(\mathrm{p} 1511, \mathrm{p} 1512, \mathrm{p} 1513, \mathrm{p} 1514)$.		

r1515	Supplementary force total / F_suppl total		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5060
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{N}]$	$-[\mathrm{N}]$	$-[\mathrm{N}]$
Description:	Displays the total supplementary force.		
	The displayed value is the total of supplementary forces 1 and $2(\mathrm{p} 1511, \mathrm{p} 1512, \mathrm{p} 1513, \mathrm{p} 1514)$.		

r1515	Supplementary torque total / M_suppl total		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n/M)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6020, 6060
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the total supplementary torque.		
	The displayed value is the total of supplementary torque values 1 and 2 ($151511 \mathrm{p} 1512, \mathrm{p} 1513, \mathrm{p} 1514$).		
$\mathbf{r 1 5 1 6}$	CO: Supplementary torque and acceleration torque / M_suppl + M_accel		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n/M)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6060
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the total supplementary torque and the accelerating torque.		
	The displayed value is the total of the smoothed supplementary torque and the accelerating torque (p1516 = p1518[1] + r1515).		

p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
(n / M), SERVO_AC, VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5042, 5210, 6060
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC (n/M) } \end{aligned}$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	100.00 [ms]	4.00 [ms]
Description:	Sets the smoothing time constant of the accelerating torque.		
Note:	For servo drives, the following applies:		
	- For p1402.4 = 1, the highest dynamic performance is achieved with p1517 $=0 \mathrm{~ms}$.		
	- in encoderless operation, p1517 should be set >=0.5 ms; for an induction motor with current displacement rotor p1517 >= 20 ms is recommended.		
	For vector drives, the following applies:		
	e acceleration precontrol is inhibited if the smoothing is set to the maxis		

p1517[0...n]	Acceleration force smoothing time constant / F_accel T_smooth		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5042,5210
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Max
	Min	$100.00[\mathrm{~ms}]$	Fxpert list: 1
	$0.00[\mathrm{~ms}]$	$4.00[\mathrm{~ms}]$	
Description:	Sets the smoothing time constant of the accelerating force.		
Note:	For servo drives, the following applies:		
	- For p1402.4 = 1, the highest dynamic performance is achieved with p1517 = 0 ms.		

r1518[0...1]	CO: Accelerating torque / M_accel		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5042, 5210
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the accelerating torque to precontrol the speed controller for torque-speed precontrol (p1402.4=1) or in encoderless operation.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$		
Dependency:	Refer to: p0341, p0342, p1300, p1402, r1493, p1497, p1498		
r1518[0...1]	CO: Accelerating force / F_accel		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5042, 5210
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Displays the accelerating torque to precontrol the velocity controller for force- velocity precontrol (p1402.4=1) or in encoderless operation.		
Index:	[0] = Unsmoothed [1] = Smoothed		
Dependency:	Refer to: p0341, p0342, p1300, p1402, r1493, p1497, p1498		

r1518[0...1]	CO: Accelerating torque / M_accel		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6060
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the accelerating torque for precontrol of the speed controller. [0] = Unsmoothed [1] = Smoothed		
Index:			
Dependency:	Refer to: p0341, p0342, p1496		
p1520[0...n]	CO: Force limit upper/motoring / F_max upper/mot		
HLA	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [N]	20000000.00 [N]	0.00 [N]
Description:	Sets the fixed upper or force limit when motoring.		
Dependency:	Refer to: p0500, p1521, p1522, p1523, p1532, r1538, r1539		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1520[0...n]	CO: Torque limit upper/motoring / M_max upper/mot		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5620, 5630
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Sets the fixed upper torque limit or the torque limit when motoring.		
Dependency:	p1400.4 = 0: upper/lower		
	p1400.4 = 1: motoring / regenerating		
	Refer to: p0500, p1521, p1522, p1523, p1532, r1538, r1539		
Danger:	For p1400.4 = 0 (torque limiting, upper/lower) the following applies:		
I	Negative values when setting the upper torque limit (p1520 < 0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1520[0...n]	CO: Force limit upper/motoring / F_max upper/mot		
SERVO (Lin), SERVO_AC (Lin),	Can be changed: U, T	Calculated:CALC_MOD_LIM_REF Access level: 2	
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5620, 5630
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [N]	20000000.00 [N]	0.00 [N]
Description:	Sets the fixed upper or force limit when motoring.		
Dependency:	p1400.4 = 0: upper/lower		
	p1400.4 = 1: motoring / regenerating		
	Refer to: p0500, p1521, p1522, p1523, p1532, r1538, r1539		

2.2 List of parameters

p1521[0...n]	CO: Force limit lower/regenerative / F_max lower/regen		
SERVO (Lin), SERVO_AC (Lin),	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5620, 5630
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-20000000.00 [N]	1000000.00 [N]	0.00 [N]
Description:	Sets the fixed lower or force limit when regenerating.		
Dependency:	p1400.4 = 0: upper/lower		
	p1400.4 = 1: motoring / regenerating		
	Refer to: p0500, p1520, p1522, p1523, p1532		
Danger:	For p1400.4 = 0 (torque limiting, upper/lower) the following applies:		
	Positive values when setting the lower torque limit (p1521 > 0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1521[0...n]	CO: Torque limit lower / M_max lower		
VECTOR (n / M), VECTOR_AC (n / M),	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
VECTOR_I_AC (n/M)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6020, 6630
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-20000000.00 [Nm]	$1000000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Sets the fixed, lower torque limit.		
Dependency:	Refer to: p1520, p1522, p1523, p1532		
Danger:	Positive values when setting the lower torque limit (p1521 > 0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p0640).		
p1522[0...n]	CI: Force limit upper/motoring / F_max upper/mot		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	2902[5]
Description:	Sets the signal source for the upper or torque/force limit when motoring. Refer to: p1520, p1521, p1523, p1532		
Dependency:			

2.2 List of parameters

p1522[0...n]	CI: Torque limit upper/motoring / M_max upper/mot		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5609, 5620, 5630, 6630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	1520[0]
Description: Dependency:	Sets the signal source for the upper or torque/force limit when motoring.		
	p1400.4 $=1$: motoring / regenerating		
	Refer to: p1520, p1521, p1523, p1532		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
	Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
p1522[0...n]	CI: Force limit upper/motoring / F_max upper/mot		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5609, 5620, 5630, 6630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	1520[0]
Description: Dependency:	Sets the signal source for the upper or torque/force limit when motoring.		
	p1400.4 = 0: upper/lower		
	p1400.4 = 1: motoring / regenerating		
	Refer to: p1520, p1521, p1523, p1532		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
$\widehat{\Delta}$	Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
p1522[0...n]	CI: Torque limit upper / M_max upper		
VECTOR (n/M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	1520[0]
Description:	Sets the signal source for the upper torque limit.		
Dependency:	Refer to: p1520, p1521, p1523		
Danger:	Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		

p1523[0...n]	CI: Force limit lower/regenerative / F_max lower/regen		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	2902[12]
Description:	Sets the signal source for the lower or torque/force limit when regenerating. Refer to: p1520, p1521, p1522, p1532		
Dependency:			
p1523[0...n]	CI: Torque limit lower/regenerative / M_max lower/regen		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5609, 5620, 5630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	1521[0]
Description:	Sets the signal source for the lower or torque/force limit when regenerating. p1400.4 = 0: upper/lower		
Dependency:			
	p1400.4 = 1: motoring / regenerating		
	Refer to: p1520, p1521, p1522, p1532		
Danger:	For p1400.4 = 0 (torque limiting, upper/lower) the following applies:		
	Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
p1523[0...n]	CI: Force limit lower/regenerative / F_max lower/regen		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5609, 5620, 5630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
		-	1521[0]
Description:	Sets the signal source for the lower or torque/force limit when regenerating. p1400.4 = 0 upper/lower		
Dependency:			
	p1400.4 = 1: motoring / regenerating		
	Refer to: p1520, p1521, p1522, p1532		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
	Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
p1523[0...n]	CI: Torque limit lower / M_max lower		
VECTOR (n/M),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6020, 6630
VECTOR__AC (n / M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	1521[0]
Description:	Sets the signal source for the lower torque limit.		
Dependency:	Refer to: p1520, p1521, p1522		

Danger: $\widehat{1}$	Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontro manner.		
p1524[0...n]	CO: Force limit upper/motoring scaling / F_max up/mot scal		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-2000.0 [\%]	2000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the upper force limit or the force limit when motoring.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. This parameter can be freely interconnected.		
Note:			
	The value has the meaning stated above if it is interconnected from connector input p1528.		

p1524[0...n]	CO: Torque limit upper/motoring scaling / M_max up/mot scal		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5620,5630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Max
	Min	$2000.0[\%]$	Factory setting
	$-2000.0[\%]$	100.0 [\%]	
Description:	Sets the scaling for the upper torque limit or the torque limit when motoring.		
Dependency:	p1400.4 = 0: upper/lower		
	p1400.4 =1: motoring / regenerating		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	This parameter can be freely interconnected.		
	The value has the meaning stated above if it is interconnected from connector input p1528.		

p1524[0...n]	CO: Force limit upper/motoring scaling / F_max up/mot scal		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5620,5630
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Max
	Min	Expert list: 1	
	-2000.0 [\%]	Factory setting	
	Sets the scaling for the upper force limit or the force limit when motoring.	100.0 [\%]	
Description:	p1400.4 = 0: upper/lower		
Dependency:	p1400.4 = 1: motoring / regenerating		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Notice:	This parameter can be freely interconnected.		
Note:	The value has the meaning stated above if it is interconnected from connector input p1528.		

p1524[0...n]	CO: Torque limit upper scaling / M_max upper scal		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6630
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	$-2000.0[\%]$	$2000.0[\%]$	$100.0[\%]$
Description:	Sets the scaling for the upper torque limit.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

Note:	This parameter can be freely interconnected.
	The value has the meaning stated above if it is interconnected from connector input p1528.

p1525[0...n]	CO: Force limit lower/regenerative scaling / F_max lo/reg scal		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	$-2000.0[\%]$	100.0 [\%]	
	Sets the scaling for the lower force limit or the force limit when regenerating.		
Description:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	This parameter can be freely interconnected.		
	The value has the meaning stated above if it is interconnected from connector input p1528.		

p1525[0...n]	CO: Torque limit lower/regenerative scaling / M_max low/gen scal		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5620,5630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	$-2000.0[\%]$	100.0 [\%]	
	Sets the scaling for the lower torque limit or the torque limit when regenerating.		
Description:	p1400.4 = 0: upper/lower		
Dependency:	p1400.4 = 1: motoring / regenerating		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Notice:	This parameter can be freely interconnected.		
Note:	The value has the meaning stated above if it is interconnected from connector input p1528.		

p1525[0...n]	CO: Force limit lower/regenerative scaling / F_max lo/reg scal		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5620, 5630
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-2000.0 [\%]	2000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the lower force limit or the force limit when regenerating.		
Dependency:	p1400.4 = 0: upper/lower		
	p1400.4 = 1: motoring / regenerating		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	This parameter can be freely interconnected.		
	The value has the meaning stated above if it is interconnected from connector input p1528.		

p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6630
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	$-2000.0[\%]$	$2000.0[\%]$	100.0 [\%]
Description:	Sets the scaling for the lower torque limit.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

2.2 List of parameters

Note: \quad This parameter can be freely interconnected.

r1526	CO: Force limit upper/motoring without offset / F_max up w/o offs		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Display and connector output for the upper force limit of all force limits without offset.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529		
r1526	CO: Torque limit upper/motoring without offset / M_max up w/o offs		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5620, 5630
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the upper torque limit of all torque limits without offset.		
Dependency:	p1400.4 = 0: upper/lower		
	p1400.4 = 1: motoring / regenerating		
	Refer to: p1520, p1521, p1522, p1523, p1528, p1529		

r1526	CO: Force limit upper/motoring without offset / F_max up w/o offs		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5620,5630
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: $8 _1$	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	$-[N]$	$-[N]$	
Description:	Display and connector output for the upper force limit of all force limits without offset.		
Dependency:	p1400.4 =0: upper/lower		
	p1400.4 =1: motoring / regenerating		
	Refer to: $\mathrm{p} 1520, \mathrm{p} 1521, \mathrm{p} 1522, \mathrm{p} 1523, \mathrm{p} 1528, \mathrm{p} 1529$		

r1526

VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)

Calculated: -
Dyn. index: -

Unit group: 7_1
Scaling: p2003
Max

- [Nm]

Description: Display and connector output for the upper torque limit of all torque limits.
Dependency: Refer to: p1520, p1521, p1522, p1523, p1528, p1529

Access level: 3
Func. diagram: 6060, 6630, 6640

Unit selection: p0505
Expert list: 1
Factory setting

- [Nm]

r1527	CO: Force limit lower/regenerative without offset / F_max low w/o offs		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: $8-1$	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	$-[N]$	$-[N]$	$-[N]$
Description:	Display and connector output for the lower force limit of all force limits without offset.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529		

r1527	CO: Torque limit lower/regenerative without offset / M_max low w/o offs		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5620,5630
	P-Group: Closed-loop control	Unit group: $7 _1$	Unit selection: $p 0505$
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
Description:	Display and connector output for the lower torque limit of all torque limits without offset.		
Dependency:	p1400.4 $=0:$ upper/lower		
	p1400.4 $=1:$ motoring / regenerating		
	Referto: p1520, p1521, p1522, p1523, p1528, p1529		

$\mathbf{r 1 5 2 7}$
SERVO (Lin),
SERVO_AC (Lin),
SERVO_I_AC (Lin)

Dependency:

CO: Force limit lower/regenerative without offset / F_max low w/o offs

Description: Display and connector output for the lower force limit of all force limits without offset.
Can be changed: - Calculated: -
Data type: FloatingPoint32 Dyn. index:
P-Group: Closed-loop control
Not for motor type: REL
Min
$-[\mathrm{N}]$ -
p1400.4 = 0: upper/lower
p1400.4 = 1: motoring / regenerating
Refer to: p1520, p1521, p1522, p1523, p1528, p1529

VECTOR (n/M), VECTOR_AC (n / M), VECTOR_I AC (n / M)

CO: Total lower torque limit / M_max lower total
Can be changed: -
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Min

- [Nm]

Description: Display and connector output for the lower torque limit of all torque limits.
Dependency: Refer to: p1520, p1521, p1522, p1523, p1528, p1529

Calculated: -

Dyn. index: -

Unit group: 7_1
Scaling: p2003
Max

- [Nm]

Access level: 3
Func. diagram: 6060, 6630, 6640

Unit selection: p0505
Expert list: 1
Factory setting

- [Nm]

2.2 List of parameters

p1528[0...n]	Cl: Force limit upper/motoring scaling / F_max up/mot scal		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	$1524[0]$
Description:	Sets the signal source for the scaling of the upper or motoring force limit in p1522.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1528[0...n]	CI: Torque limit upper/motoring scaling / M_max up/mot scal		
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3617, 5609, 5620, 5630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1524[0]
Description:	Sets the signal source for the scaling of the upper or motoring torque limit in p1522.		
Dependency:	p1400.4 = 0: upper/lower		
	p1400.4 = 1: motoring / regenerating		
Danger:	For p1400.4 = 0 (torque limiting, upper/lower) the following applies:		
$\widehat{1}$	Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1528[0...n]	CI: Force limit upper/motoring scaling / F_max up/mot scal		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3617,5609,
SERVO_I_AC (Lin)		Unit group: -	5620, 5630
	P-Group: Closed-loop control	Scaling: PERCENT	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1

p1528[0...n]	CI: Torque limit upper scaling / M_max upper scal		
VECTOR (n / M),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1524[0]
Description:	Sets the signal source for the scaling of the upper torque limit in p 1522.		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
$\widehat{1}$	Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1529[0...n]	CI: Force limit lower/regenerative scaling / F_max lo/reg scal		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1525[0]
Description:	Sets the signal source for the scaling of the lower force limit or the regenerative force limit in p1523.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1529[0...n]	CI: Torque limit lower/regenerative scaling / M_max low/gen scal		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3617, 5609, 5620, 5630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
		-	1525[0]
Description:	Sets the signal source for the scaling of the lower torque limit or the regenerative torque limit in p1523.		
Dependency:	p1400.4 $=0$: upper/lower		
	p1400.4 = 1: motoring / regenerating		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
$\widehat{1}$	Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1529[0...n]	CI: Force limit lower/regenerative scaling / F_max lo/reg scal		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3617, 5609, 5620, 5630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1525[0]
Description:	Sets the signal source for the scaling of the lower force limit or the regenerative force limit in p 1523. p1400.4 $=0$: upper/lower p1400.4 $=1$: motoring $/$ regenerating		
Dependency:			

2.2 List of parameters

Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
!	Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1529[0...n]	CI: Torque limit lower scaling / M_max lower scal		
VECTOR (n / M),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1525[0]
Description:	Sets the signal source for the scaling of the lower torque limit in p1523.		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
Δ	Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1530[0...n]	Power limit motoring / P_max mot		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5640
	P-Group: Closed-loop control	Unit group: 14_5	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [kW]	100000.00 [kW]	0.00 [kW]
Description:	Sets the power limit when motoring.		
Dependency:	Refer to: p0500, p1531		

p1532[0...n]	CO: Force offset, force limit / F_max offset		
HLA	Can be changed: U, T	Calculated:	Access level: 3
		CALC_MOD_LIM_REF	
	Pata type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	Not for motor type: REL	Unit group: 8_1	Unit selection: p0505
	Min	Scaling: p2003	Max
	$-100000.00[\mathrm{~N}]$	$100000.00[\mathrm{~N}]$	Factory setting
			0.00 [N]
Description:	Sets the force offset for the force limit.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1532[0...n]	CO: Torque limit offset / M_max offset		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5620, 5630, 5650, 7010, 8012
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-100000.00 [Nm]	$100000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Sets the torque offset for the torque limit.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1532[0...n]	CO: Force offset, force limit / F_max offset		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5620, 5630, 5650, 7010, 8012
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-100000.00 [N]	100000.00 [N]	0.00 [N]
Description:	Sets the force offset for the force limit.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

$\mathbf{r 1 5 3 3}$	Current limit torque-generating total/lq_max total		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5640,5722
	P-Group: Displays, signals	Unit group: $6 _2$	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	$-[$ [Arms]	$-[$ Arms]	[Arms]
Description:	Displays the maximum torque/force generating current as a result if all current limits.		

r1533	Current limit force-generating total / lq_max total		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5640,5722
SERVO_I_AC (Lin)	P-Group: Displays, signals	Unit group: $6 _2$	Unit selection: $p 0505$
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	$-[$ Arms $]$	$-[$ Arms	$-[$ Arms $]$
Description:	Displays the maximum torque/force generating current as a result if all current limits.		

r1533	Current limit torque-generating total / lq_max total		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6640
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Displays, signals	Unit group: $6 _2$	Unit selection: $p 0505$
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	$-[$ Arms	$-[$ Arms $]$	- [Arms]
Description:	Displays the maximum torque/force generating current as a result if all current limits.		

r1534	CO: Total upper torque limit / M_max upper total		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5609, 5620, 5630, 5640
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the upper torque limit of all torque limits. Refer to: p1520, p1521, p1522, p1523, p1528, p1529, p1532		
Dependency:			
r1534	CO: Force limit upper total / F_max upper total		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5609, 5620, 5630, 5640
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Display and connector output for the upper force limit of all force limits. Refer to p1520, p1521, p1522, p1523, p1528, p1529, p1532		
Dependency:			
r1535	CO: Total lower torque limit / M_max lower total		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5609, 5620, 5630, 5640
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the lower torque limit of all torque limits. Refer to: p1520, p1521, p1522, p1523, p1528, p1529, p1532		
Dependency:			
r1535	CO: Force limit lower total / F_max lower total		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5609, 5620, 5630, 5640
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description: Dependency:	Display and connector output for the lower force limit of all force limits. Refer to: p1520, p1521, p1522, p1523, p1528, p1529, p1532		

2.2 List of parameters

r1536[0...1]	Torque-generating current maximum limit / Isq_max		
VECTOR (n/M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n / M), VECTOR_I_AC (n/M)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6640, 6710, 7960
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the maximum limit for the torque-generating current component. For index [0]:		
Index:	The signal limited by the Vdc cond $\begin{aligned} & {[0]=\text { Limited }} \\ & {[1]=\text { Unlimited }} \end{aligned}$	slayed here.	
r1537[0...1]	Torque-generating current minimum limit / Isq_min		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n/M), VECTOR_I_AC (n / M)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6640, 6710, 7960
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the minimum limit for the torque-generating current component. For index [0]:		
Index:	$\begin{aligned} & {[0]=\text { Limited }} \\ & {[1]=\text { Unlimited }} \end{aligned}$		

r1538	CO: Upper force limit effective / F_max upper eff		
HLA	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: $8 _1$	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{N}]$	$-[\mathrm{N}]$	$-[\mathrm{N}]$
Description:	Display and connector output for the actual effective upper force limit.		

r1538	CO: Upper effective torque limit / M_max upper eff		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5609,5650
	P-Group: Closed-loop control	Unit group: $7 _1$	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Max
	Min	$-[\mathrm{Nm}]$	Factory setting
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	
Description:	Display and connector output for the actual effective upper torque limit. 1		
Note:	The effective upper torque limit is reduced with respect to the selected upper torque limit p1520, if the current limit		
	p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.		
	The torque limit p1520 can be re-calculated using p0340 $=1,3$ or 5.		

$\overline{\mathbf{1 5 3 8}}$	CO: Upper force limit effective / F_max upper eff		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5609, 5650
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Display and connector output for the actual effective upper force limit.		
Note:	The effective, upper force limit is reduced with respect to the selected upper force limit p1520 if the current limit p0640 is reduced.		
	The force limit p1520 can be re-calculated using p0340 $=1,3$ or 5 .		
r1538	CO: Upper effective torque limit / M_max upper eff		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 2
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6020, 6640
VECTOR_1_AC (n/M)	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the actual effective upper torque limit.		
Note:	The effective upper torque limit is reduced with respect to the selected upper torque limit p1520, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.		
	The torque limit p1520 can be re-calculated using p0340 = 1, 3 or 5 .		
	This torque limit can be influenced by p0543.		
	The following applies for VECTOR:		
	- this is possibly the case for a rotating measurement (see p1960).		
	- additional variable torque limiting is possible (e.g. binector input p1540).		

r1539	CO: Lower force limit effective / F_max lower eff		
HLA	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Display and connector output for the actual effective lower force limit.		
$\overline{\mathbf{r 1 5 3 9}}$	CO: Lower effective torque limit / M_max lower eff		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5609, 5650
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the actual effective lower torque limit.		
Note:	The effective lower torque limit is reduced with respect to the selected lower torque limit p1521, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.		
	The following applies in the case of VECTOR: This may be the case for rotating measurements (see p1960).		
	The following applies in the case of VECTOR: Further variable torque limiting is possible (e.g. binector input p1541).		
	This torque limit can be influenced by p0543.		

r1539	CO: Lower force limit effective / F_max lower eff		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5609, 5650
	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Display and connector output for the actual effective lower force limit.		
Note:	The effective lower force limit is reduced with respect to the selected lower force limit p1521 if the current limit p0640 is reduced.		
	The force limit p 1520 can be re-calculated using p $0340=1,3$ or 5 .		
r1539	CO: Lower effective torque limit / M_max lower eff		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 2
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6020, 6640
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the actual effective lower torque limit.		
Note:	The effective lower torque limit is reduced with respect to the selected lower torque limit p1521, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.		
	The following applies in the case of VECTOR: This may be the case for rotating measurements (see p1960). The following applies in the case of VECTOR: Further variable torque limiting is possible (e.g. binector input p1541). The torque limit p1520 can be re-calculated using p0340 $=1,3$ or 5 .		

p1540[0...n]	CI: Torque limit speed controller upper scaling / M_max n-ctr upScal		
VECTOR (n/M),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6020, 6060
VECTOR_I_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the upper torque limiting to limit the speed controller output.		
p1541[0...n]	CI: Torque limiting speed controller lower scaling / M_max nctr lowScal		
VECTOR (n / M),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n / M), VECTOR I AC (n / M)	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6020, 6060
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output.		

p1542[0...n]	CI: Travel to fixed stop torque reduction / TfS M_red		
SERVO, HLA,	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5610
SERVO_I_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the torque reduction when traversing to a fixed stop. This value is converted into a factor and is interconnected to the scaling of the torque limits.		
Dependency:	Refer to: p1528, p1529, r1543, p1544, p1545		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1542[0...n]	CI: Travel to fixed stop force reduction / TfS F_red		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5610
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the force reduction when traversing to a fixed stop.		
Dependency:	Refer to: p1528, p1529, r1543, p1544, p1545		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
r1543	CO: Travel to fixed stop torque scaling / TfS M scal		
SERVO, HLA,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5610
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the internally converted factor to interconnect to the scaling of the torque/force limits. Refer to: p1528, p1529, p1542, p1544, p1545		
Dependency:			
$\mathbf{r 1 5 4 3}$	CO: Travel to fixed stop force scaling / TfS F scal		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5610
S	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the internally converted factor to interconnect to the scaling of the torque/force limits. Refer to: p1528, p1529, p1542, p1544, p1545		
Dependency:			

2.2 List of parameters

p1544	Travel to fixed stop evaluation torque reduction / TfS M_red eval		
SERVO, HLA,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5610
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [\%]	65535 [\%]	100 [\%]
Description:	Sets the evaluation for the torque/force reduction when traversing to a fixed stop.		
Dependency:			
Note:	4000 hex (16384 dec) in the MOMRED control word corresponds to a reduction by the percentage specified in this parameter.		
p1544	Travel to fixed stop evaluation force reduction / TfS F_red eval		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5610
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [\%]	65535 [\%]	100 [\%]
Description:	Sets the evaluation for the torque/force reduction when traversing to a fixed stop.		
Dependency:	Refer to: p1528, p1529, p1542, r1543, p1545		
Note:	4000 hex (16384 dec) in the MOMRED control word corresponds to a reduction by the percentage specified in this parameter.		
p1545[0...n]	BI: Activates travel to a fixed stop / TfS activation		
HLA	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2520, 3617, 8012
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to activate/deactivate the "travel to fixed stop" function 1: Travel to fixed stop is active 0 : Travel to fixed stop is inactive		
Dependency:	Refer to: p1542, r1543, p1544		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1545[0...n]	BI: Activates travel to a fixed stop / TfS activation		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	$\begin{aligned} & \text { Func. diagram: 2520, 3617, } \\ & 8012 \end{aligned}$
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	[0] 0
			[1] 0
Description:	Sets the signal source to activate/deactivate the "travel to fixed stop" function 1: Travel to fixed stop is active 0 . Travel to fixed stop is inactive		
Dependency:	Refer to: p1542, r1543, p1544		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1545[0...n]	BI: Activates travel to a fixed stop / TfS activation		
VECTOR (n / M),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2520, 3617, 8012
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to activate/deactivate the "travel to fixed stop" function		
	1: Travel to fixed stop is active		
	0 : Travel to fixed stop is inactive		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	EPOS uses the parameter (refer to p2686).		
	When traveling to fixed stop, the fault F07900 "motor blocked" is suppressed.		

p1546	Speed threshold motoring/regenerating / n_thresh mot/regen		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	20.00 [rpm]
Description:	Sets the speed threshold for the motoring/regenerative limit.		
	For speeds where the absolute value is less than p1546, then the following applies:		
	- For p1400.13 = 0: Motoring limit (speed threshold is compared to the speed actual value).		
	- For p1400.13 = 1: Regenerative limiting (speed threshold is compared to the speed setpoint).		

p1546	Velocity threshold motoring/regenerative / v_thresh mot/regen		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	0.20 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the velocity threshold for the motoring/regenerative limit.		
	For velocities where the absolute value is less than p1546, then the following applies:		
	- For p1400.13 = 0: Motoring limit (velocity threshold is compared to the velocity actual value).		
	- For p1400.13 = 1: Regenerative limiting (velocity threshold is compared to the velocity setp		

r1547[0...1]	CO: Torque limit for speed controller output / M_max outp n_ctrl		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6060
	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the torque limit to limit the speed controller output.		
Index:	[0] = Upper limit [1] = Lower limit		

2.2 List of parameters

r1548[0...1]	CO: Stall current limit torque-generating maximum / Isq_max stall		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: $6 _2$	Unit selection: 00505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	$-[$ Arms $]$	$-[$ Arms $]$	$-[A r m s]$
Description:	Displays the limit for the torque-generating current component using the stall calculation, the current limit of the Motor		
	Module as well as the parameterization in p0640.		
Index:	$[0]=$ Upper limit		
	$[1]=$ Lower limit		

r1549[0...1]	CO: Stall power actual value /P_stall		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5640
	P-Group: Displays, signals	Unit group: $14 _5$	Unit selection: 00505
	Not for motor type: -	Scaling: r 2004	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{kW}]$	$-[\mathrm{kW}]$	$-[\mathrm{kW}]$

Description: Displays the instantaneous stall power.
Index: $\quad[0]=$ Actual stall power value
[1] = Stall power correction value
Dependency: Refer to: p0326
Note: \quad The stall power is influenced by p0326, p0353, p0354 and p0356.

r1549[0...1]	CO: Stall power actual value / P_stall		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5640
SERVO_I_AC (Lin)	P-Group: Displays, signals	Unit group: 14_8	Unit selection: p0505
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the instantaneous stall power.		
Index:	[0] = Actual stall power value		
Dependency:	Refer to: p0326		
Note:	The stall power is influenced by p0326, p0353, p0354 and p0356.		
p1550[0...n]	BI: Transfer actual torque as torque offset / Accept act torque		
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 2
SERVO_I_AC	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	9718.23
Description:	For a positive edge, the actual torque (r0079[0]) at this instant in time is used instead of the torque offset from p1532 as long as p1550 remains at 1 .		

p1550[0...n]	Bl: Transfer actual force as force offset / Accept act force		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: -
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	9718.23

p1551[0...n]	BI: Force limit variable/fixed signal source / F_lim var/fixS_src		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin), SERVO_I_AC (Lin)	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 5620, 5630, 6060, 6630
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source to change over the force limits between variable and fixed force limit.		
	BI: p1551 = 1 signal:		
	The variable force limit applies (fixed force limit + scaling).		
	BI: p1551 = 0 signal:		
	The fixed force limit applies.		
	Example:		
	In order that for a Quick Stop (OFF3) the fixed force limit is effective, binector input: p1551 must be interconnected r0899.5.		

p1552[0...n] Stiction velocity threshold / Stiction v_thresh
HLA

2.2 List of parameters

p1552[0...n]	Cl: Torque limit upper scaling without offset / M_max up w/o offs		
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5060
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the upper torque limiting to limit the speed controller output without taking		
Notice:	into account the current and power limits.		
	Speed controller limiting is only active if a BICO interconnection is set for connector input p1552 or p1554, (different to the factory setting).		

p1552[0...n]	CI: Force limit upper scaling without offset / F_max up w/o offs		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5060
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the upper force limiting to limit the velocity controller output without taking		
into account the current and power limits.			

p1552[0...n]	CI: Torque limit upper scaling without offset / M_max up w/o offs		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6060
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1

p1553[0...n]	Stall limit scaling / Stall limit scal		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$80.0[\%]$	$130.0[\%]$	$100.0[\%]$
Description:	Sets the scaling of the stall limit for the start of field weakening.		
Danger:	If the stall current limit is increased, then the q current setpoint can exceed the stall limit; as a consequence, a		

p1554[0...n]	Stiction shutdown rate action / Stict shutdown		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	3.0 [\%]	100.0 [\%]	40.0 [\%]
Description:	Sets the shutdown rate time for the stiction compensation.		
	The force controller is shut down via the shutdown rate time somewhat before reaching the force setpoint, so that the actuating time of the control valve does not result in an overshoot.		
Dependency:	Refer to: p1400, p1552, p1555, p1556		
p1554[0...n]	CI: Torque limit lower scaling without offset / M_max low w/o offs		
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 3
SERVO I AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5060
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output without taking into account the current and power limits.		
Notice:	Speed controller limiting is only active if a BICO interconnection is set for connector input p1552 or p1554, (different to the factory setting).		
p1554[0...n]	CI: Force limit lower scaling without offset / F_max low w/o offs		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5060
(Lin)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
		-	1
Description:	Sets the signal source for the scaling of the lower force limiting to limit the velocity controller output without taking into account the current and power limits.		
Notice:	Speed controller limiting is only active if a BICO interconnection is set for connector input p1552 or p1554, (different to the factory setting).		
p1554[0...n]	CI: Torque limit lower scaling without offset / M_max low w/o offs		
VECTOR (n / M),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6060
V	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output without taking into account the current and power limits.		

2.2 List of parameters

p1555[0...n]	Stiction force velocity positive / Stiction F v pos		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: 8_2	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-100000000.0[\mathrm{~N}]$	$0.0[\mathrm{~N}]$	
Description:	Sets the force for positive velocity for the stiction compensation.		
Dependency:	Refer to: p1400, p1552, p1554, p1556		

p1555[0...n]	Cl: Power limit / P_max		
VECTOR (n / M),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6640
VECTOR_I_AC (n / M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: r2004	Max
	Min	-	Fxpert list: 1
	-	1	Factory setting
Description:	Sets the signal source for the motoring and negative regenerative power limit.		
Dependency:	Refer to: p1530, p1531	The resulting motoring power limit is the minimum from p1530 and the signal which is read in.	
Note:	The resulting regenerative power limit is the maximum from p1531 and the negative signal which is read in.		

p1556[0...n]	Stiction force velocity negative / Stiction F v neg		
HLA	Can be changed: U, T	Calculated: -	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: $8 _2$	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-100000000.0[\mathrm{~N}]$	$100000000.0[\mathrm{~N}]$	$0.0[\mathrm{~N}]$
Description:	Sets the force for negative velocity for the stiction compensation.		
Dependency:	Refer to: $\mathrm{p} 1400, \mathrm{p} 1552, \mathrm{p} 1554, \mathrm{p} 1555$		

p1556[0...n]	Power limit scaling / P_max scal		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: T	Calculated: -	Access level: 2
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6640
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	$340.28235 E 36$	Factory setting
	0.00	0.00	
Description:	Sets the scaling of the signal source for the motoring and negative regenerative power limit.		
	0 signifies no power limiting.		

p1560[0...n]	Moment of inertia estimator accelerating force threshold value / J_est F thresh		
SERVO (J_estimator,	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
Lin), SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator, Lin),	P-Group: Motor	Unit group: -	Unit selection: -
SERVO_I_AC	Not for motor type: REL	Max	Expert list: 1
(J_estimator, Lin)	Min	100.00 [\%]	Factory setting
	$0.10[\%]$	10.00 [\%]	
	Sets the threshold for the acceleration force of the moment of inertia estimator.		
Description:	The moment of inertia estimator is active above this threshold.		
	The value is referred to the rated motor force (r0333).		
Dependency:	Refer to: p1400, p1561, p1562		
Note:	The moment of inertia estimation is inaccurate at very low accelerating forces. As a consequence, below this		

p1561[0...n]	Inertia estimator change time high inertia mass / J_est t_change M		
SERVO (J_estimator,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
Lin), SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator, Lin),	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC	Scaling: -	Max	Expert list: 1
(J_estimator, Lin)	Not for motor type: REL	Min	Factory setting
	$10.00[\mathrm{~ms}]$	$500.00[\mathrm{~ms}]$	
	Sets the change time for the moment of inertia for the moment of inertia estimator.		

p1562[0...n]	Moment of inertia estimator change time load / J_est t load	
SERVO (J_estimator, Lin), SERVO_AC (J_estimator, Lin), SERVO_I_AC (J_estimator, Lin)	Can be changed: U, T Calculated: CALC_MOD_CON Data type: FloatingPoint32 Dyn. index: DDS, p0180 P-Group: Closed-loop control Unit group: - Not for motor type: REL Scaling: - Min Max $5.00[\mathrm{~ms}]$ $5000.00[\mathrm{~ms}]$	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting 10.00 [ms]
Description: Dependency:	Sets the change time for the load force for the moment of inertia estimator. Lower values mean that faster changes are possible. For a higher value, this estimated value is smoothed more significantly. Refer to: p1400, p1560, p1561	
$\begin{aligned} & \hline \text { p1562[0...n] } \\ & \text { SERVO (J_estimator), } \\ & \text { VECTOR_ } \\ & \text { (J_estimator), } \\ & \text { SERVO_AC } \\ & \text { (J_estimator), } \\ & \text { VECTOR_AC } \\ & \text { (J_estimator), } \\ & \text { SERVO_I_AC } \\ & \text { (J_estimator), } \\ & \text { VECTOR_I_AC } \\ & \text { (J_estimator) } \end{aligned}$	Moment of inertia estimator change time load / J_est t load	Access level: 3 Func. diagram: Unit selection: Expert list: 1 Factory setting 10.00 [ms]
Description: Dependency:	Sets the change time for the load torque for the moment of inertia estimator. Lower values mean that faster changes are possible. For a higher value, this estimated value is smoothed more significantly. Refer to: p1400, p1560, p1561	

p1563[0...n]	CO: Moment of inertia estimator load force positive direction / J_est F pos		
SERVO (J_estimator,	Can be changed: U, T	Calculated: -	Access level: 3
Lin), SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator,Lin), P-Group: Closed-loop control	Unit group: -	Unit selection: -	
SERVO_I_AC	Scaling: p2003	Expert list: 1	
(J_estimator, Lin)	Not for motor type: REL	Max	Factory setting
	Min	$340.28235 \mathrm{E} 36[\mathrm{~N}]$	$0.00[\mathrm{~N}]$
	$-340.28235 \mathrm{E} 36[\mathrm{~N}]$		
Description:	Display and connector output for the monitored load force in the positive traversing direction.		
	The moment of inertia estimator estimates the load force drawn while the velocity is constant.		
Dependency:	Refer to: p1400, p1560, p1561		

p1564[0...n]	CO: Mom. of inertia estimator load torque direction of rotation neg. I J_est M neg		
SERVO (J_estimator),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
SERVO AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
(J_estimator),	Not for motor type: REL	Scaling: p2003	Expert list: 1
VECTOR_AC	Min	Max	Factory setting
(J_estimator), SERVO_I_AC	-340.28235E36[Nm]	$340.28235 \mathrm{E} 36[\mathrm{Nm}]$	$0.00 \text { [Nm] }$
(J_estimator),			
VECTOR_I_AC (J_estimator)			
Description:	Display and connector output for the monitored load torque in the negative direction of rotation. The moment of inertia estimator estimates the load torque drawn while the speed is constant.		
Dependency:	Refer to: p1400, p1560, p1561		

r1566[0...n]	Flux reduction torque factor transition value / Flux red M trans		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6790
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, SESM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	The following applies for a synchronous reluctance motor:		
	Displays the transition value for the start of the evaluation of the optimum flux characteristic. The value is referred to the rated motor torque.		
Note:	The transition value corresponds with the lower limit of the flux setpoint (p1581).		
	For a lower absolute torque setpoint, the flux setpoint remains at the lower limit (p1581).		

2.2 List of parameters

p1567[0...n]	Magnetization rate time scaling / Mag Tv scale		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6790
VECTOR_I_AC (n	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [\%]	1000 [\%]	100 [\%]
Description:	The following applies for a synchronous relu Sets the scaling of the rate time Tv for dyna The value is referred to the inverse value of $\mathrm{Tv}=\mathrm{p} 1567 / 100 \% / \mathrm{p} 0310$	tance motor: mic flux increase when the torque the rated motor frequency.	uickly established.
Dependency:	Refer to: p1401		
Note:	The "Dynamic load-dependent flux boost" function can be deactivated using p1401.9 $=0$.		

r1568[0...5]	CO: Synchronous reluctance motor flux channel / RESM flux channel		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_1_AC (n / M)	P-Group: Closed-loop control	Unit group -	Unit selection: -
	Not for motor type: ASM, PMSM, SESM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for signals of the flux channel for a synchronous reluctance motor (RESM). The values are referred to the rated motor flux of the in-line axis (p 0357 * r0331).		
Index:	[0] = Setpoint before filter [1] = Optimum flux characteristic output [2] = Minimum value at low speed [3] = Dynamic load-dependent boost [4] = Field weakening value total [5] = Field weakening value precontrol		
Note:	RESM: reluctance synchronous motor (sync	ronous reluctance mod	

p1569[0...n] CI: Supplementary torque 3 / M_suppl 3
P-Group: Functions Unit group: - Unit selection: -

Access level: 2
p1569[0...n] CI: Supplementary torque 3 / M_suppl 3
(n / M), SERVO_AC,
VECTOR_AC (n / M),
SERVO_I_AC,
VECTOR_I_AC (n / M)
Data type: Unsigned32 / FloatingPoint32 Dyn. index: CDS, p0170
Not for motor type: REL Scaling: p2003

ERVO, VECTOR (n/M), SERVO_AC, VECTOR AC (n/M), VECTOR_I_AC (n/M) Min

Sets the signal source for supplementary torque 3.
Description: Dependency:
Notice:

Note:

Refer to: p3842
The signal input is after the torque limit (r1538, r1539). For vector drives, the signals that are entered are only limited by the current and power limits.
The signal input is preferably used to enter the friction characteristic. The friction compensation is also effective if the speed controller output reaches its torque limits, but the current limits have still not been reached (this only applies to vector drives).

p1569[0...n]	CI: Supplementary force 3 / F_suppl 3		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7010
SERVO__AC (Lin)	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	3841[0]
Description:	Sets the signal source for supplementary force 3.		
Dependency:	Refer to: p3842		
Notice:	The signal input is after the force limit (r1538, r1539). For vector drives, the signals that are entered are only limited by the current and power limits.		
Note:	The signal input is preferably used to enter velocity controller output reaches its force lim vector drives).	efriction characteristic. Th its, but the current limits h	mpensation is also effective if the been reached (this only applies to

p1570[0...n]	Stiction voltage pulse positive / Stiction U pos		
HLA	Can be changed: U, T	Calculated: CALC_MOD_EQU	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.000[V]$	$0.200[V]$	

p1570[0...n]	CO: Flux setpoint / Flex setp		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6722
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	50.0 [\%]	200.0 [\%]	100.0 [\%]
Description:	Sets the flux setpoint referred to rated motor flux. The following applies for a synchronous reluctance motor: Scaling the flux setpoint.		
Notice:	A BICO interconnection to a parameter	belongs to a drive data set	s on the effective data set.
Note:	For p1570 $>100 \%$, the flux setpoint increases as a function of the load from 100% (no-load operation) to the setting in p1570 (above rated motor torque), if p1580 > 0\% has been set.		
	The following applies for a synchronous reluctance motor:		
	The scaling allows the flux setpoint to be adapted when operating with load-dependent optimum flux characteristic or with constant flux setpoint.		

2.2 List of parameters

p1571[0...n]	Stiction voltage pulse negative / Stiction U neg		
HLA	Can be changed: U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10.000 [V]	0.000 [V]	-0.200 [V]
Description:	Sets the voltage pulse for stiction compensation when changing from a positive to a negative traversing direction. This compensation does not require any pressure sensors and does not use the force controller. However, the piston must be calibrated.		
Dependency:	Refer to: p1400, p1552, p1570, p1572		
Note:	The "Stiction compensation voltage pulse" function is activated via p1400.9 $=1$.		
	The duration of the voltage pulse and the magnitude in both directions is set using p1572, p1570 and p1571.		

p1571[0...n]	CI: Supplementary flux setpoint / Suppl flux setp		
VECTOR (n / M),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6725
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the supplementary flux setpoint.		
Notice:	Low flux setpoints can cause the drive to stall at higher loads. This is the reason that the flux setpoint should only be adapted for slow load changes.		
Note:	The supplementary flux setpoint is limited to +/-50\%.		
p1572[0...n]	Supplementary flux setpoint / Suppl flux setp		
HLA	Can be changed: U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	100.00 [ms]	2.00 [ms]
Description:	Separately-excited synchronous motor:		
	Sets the supplementary flux setpoint for the flux controller. The value is referred to the rated motor flux. Synchronous-reluctance motor:		
Dependency:	Refer to: p1400, p1552, p1570, p1571		
Notice:	Separately-excited synchronous motor:		
	The parameter should be set back to 0\% again for normal closed-loop control operation.		
Note:	Separately-excited synchronous motor:		
	The parameter is used to optimize the flux controller. The current model is not influenced by the setting.		

p1572[0...n]	Supplementary flux setpoint / Suppl flux setp		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6726
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	0.0 [\%]
Description:	Separately-excited synchronous motor:		
	Sets the supplementary flux setpoint for the flux controller. The value is referred to the rated motor flux. Synchronous-reluctance motor:		
	Sets the factor by which the flux is reduced when operating under no-load conditions and operating using the pulse technique.		
Notice:	Separately-excited synchronous motor:		
	The parameter should be set back to 0\% again for normal closed-loop control operation.		
Note:	Separately-excited synchronous motor:		
	The parameter is used to optimize the flux controller. The current model is not influenced by the setting.		

p1573[0...n]	Flux threshold value magnetizing / Flux thresh magnet		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6722
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	$10.0[\%]$	200.0 [\%]	100.0 [\%]
Description:	Sets the flux threshold value for enabling the speed setpoint and the end of magnetizing (r0056.4).		
Note:	The parameter only has an influence if the flux actual value reaches the threshold value p1573 more quickly during		
	magnetizing than the time set in p0346. This is generally the case when selecting fast magnetization (p1401.6).		

p1574[0...n]	Voltage reserve dynamic / U_reserve dyn		
VECTOR (n / M), VECTOR_AC (n / M),	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
VECTOR_ı_AC (n/M)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6723, 6724
	P-Group: Closed-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Vrms]	150.0 [Vrms]	10.0 [Vrms]
Description:	Sets a dynamic voltage reserve.		
Note:	In the field weakening range, it must be expected that the control dynamic performance is somewhat restricted due to the limited possibilities of controlling/adjusting the voltage. This can be improved by increasing the voltage reserve. Increasing the reserve reduces the steady-state maximum output voltage (r0071).		

p1575[0...n]	Voltage target value limit / U_tgt val lim		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6725
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$50.00[\%]$	$200.00[\%]$	
Description:	Sets the limit of the voltage target value.		
	In steady-state field weakening operation this corresponds to the required output voltage.		

2.2 List of parameters

Note: \quad The output voltage is only limited if the maximum output voltage (r 0071) minus the voltage reserve (p 1574) corresponds to a value higher than p1575.
Limiting via p1575 allows the influence of the voltage ripple of the line supply voltage to be eliminated at the operating point.

p1576[0...n]	Flux boost adaptation speed, lower / Flux boost n lower		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6725
VECTOR_I_AC (n/M)	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	0.00 [rpm]
Description:	Sets the lower adaptation speed of the flux boost.		
p1577[0...n]	Flux boost adaptation speed upper / Flux boost n upper		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6725
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.0 [\%]	10000.0 [\%]	200.0 [\%]
Description:	Sets the upper adaptation speed of the flux boost.		
Dependency:	The parameter value refers to the lower adaptation speed of the flux boost.		

p1578[0...n] Flux reduction flux decrease smoothing time / Flux red dec t_sm
SERVO, SERVO_AC, Can be changed: U, T Calculated: CALC_MOD_REG Access level: 3

Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: PMSM, SESM, REL
Min
20 [ms]

Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max
5000 [ms]
ccess level: 3
Func. diagram: 5722
Unit selection: -
Expert list: 1
Factory setting
200 [ms]

Description: Sets the smoothing time for the flux setpoint when decreasing the flux due to flux reduction (p1581 < 100%).
Dependency:
Refer to: p1579, p1581
p1578[0...n] Flux reduction flux decrease smoothing time / Flux red dec t_sm

VECTOR (n / M),
Can be changed: U, T
Data type: FloatingPoint32
Calculated: CALC_MOD_CON
Dyn. index: DDS, p0180
Unit group: -
Scaling: -

Max
5000 [ms]
Sets the smoothing time for the flux setpoint when decreasing the flux due to flux reduction (p1581<100\%).
$\begin{array}{ll}\text { Description: } & \text { Sets the smooth } \\ \text { Dependency: } & \text { Refer to: p1579 }\end{array}$

p1579[0...n]	Flux reduction flux build-up smoothing time / Flux red up t_sm		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5722
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	5000 [ms]	4 [ms]
Description:	Sets the smoothing time for the flux setpoint for the flux build-up due to flux reduction (p1581<100\%).		
Dependency:	Refer to: p1578, p1581		
Note:	An excessively long smoothing time extends the time until the maximum torque is reached from the no-load phase.		
p1579[0...n]	Flux reduction flux build-up smoothing time / Flux red up t_sm		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6791
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	5000 [ms]	4 [ms]
Description:	Sets the smoothing time for the flux setpoint for the flux build-up due to flux reduction (p1581<100\%).		
Dependency:	Refer to: p1578		
Note:	An excessively long smoothing time extends the time until the maximum torque is reached from the no-load phase.		
p1580[0...n]	Efficiency optimization / Efficiency opt.		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n/M)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6722
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [\%]	100 [\%]	0 [\%]
Description:	Sets the efficiency optimization.		
	When optimizing the efficiency, the flux setpoint of the closed-loop control is adapted as a function of the load.		
	For $\mathrm{p} 1580=100 \%$, under no-load operating conditions, the flux setpoint is reduced to 50% of the rated motor flux.		
Note:	It only makes sense to activate this function if the dynamic response requirements of the speed controller are low.		
	In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn , reduce Kp).		
	Further, the smoothing time of the flux setpoint filter (p1582) should be increased.		
$\overline{p 1581[0 \ldots n]}$ SERVO, SERVO_AC, SERVO_I_AC	Flux reduction factor / Flux red factor		
	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5722
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	20 [\%]	100 [\%]	100 [\%]
Description:	Sets the factor to which the flux is reduced under no-load conditions.		
	For a value of 100%, the flux reduction is deactivated.		
	This parameter refers to the flux saved in the field weakening characteristic.		
	By reducing the flux, the losses in induction motors can be reduced under no-load conditions or at low torques. However, the time it takes to reach the maximum torque is extended.		

Recommendation: For induction motors with closed rotor slots, we recommend that the integral time of the current controller (p 1717) is increased to three times the value, for example.
For stable operation, the maximum field-weakening factor in operation with an encoder must be less than 16 and in operation without an encoder must be less than 4 . Lower field weakening factors are recommended. The field weakening factor is calculated as follows:
(p1082 * 100 \% * 600 V) / (p0348 * p1581 * p0070)
In order to reduce losses due to magnetizing and de-magnetizing, we recommend that the smoothing times are adapted for flux decrease (p1578) and flux build-up (p1579).
In order to reduce the losses as a result of building-up and reducing the torque, we recommend that the torque setpoint is smoothed (current setpoint filter (p1656 ...) or speed actual value filter (p1441)).

Dependency:

Note: It only makes sense to activate this function if there are low dynamic requirements placed on the speed controller and there are frequent phases with a low load.
In order to avoid oscillations, if required, the speed controller parameters should be adapted (decrease Kp (p1460, p1470), increase Tn (p1462, p1472)).
When used without an encoder, flux reduction is not possible for induction motors with closed rotor slots.

p1581[0...n]	Flux reduction factor / Flux red factor		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: \cup, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, SESM, REL	Scaling:	Expert list: 1
	Min	Max	Factory setting
	0 [\%]	100 [\%]	100 [\%]
Description:	Sets the factor to which the flux is reduced under no-load conditions.		
	For a value of 100%, the flux reduction is deactivated.		
	This parameter refers to the flux saved in the field weakening characteristic.		
	By reducing the flux, the losses in induction motors can be reduced under no-load conditions or at low torques. However, the time it takes to reach the maximum torque is extended.		
Recommendation:	For induction motors with closed rotor slots, we recommend that the integral time of the current controller (p1717) is increased to three times the value, for example.		
	For stable operation, the maximum field-weakening factor in operation with an encoder must be less than 16 and in operation without an encoder must be less than 4 . Lower field weakening factors are recommended. The field weakening factor is calculated as follows:$\text { (p1082 * } 100 \text { \% * } 600 \text { V) / (p0348 * p1581 * p0070) }$		
	In order to reduce losses due to magnetizing and de-magnetizing, we recommend that the smoothing times are adapted for flux decrease (p 1578) and flux build-up (p 1579).		
	In order to reduce the losses as a result of building-up and reducing the torque, we recommend that the torque setpoint is smoothed (current setpoint filter (p1656 ...) or speed actual value filter (p1441)).		
Note:	It only makes sense to activate this function if there are low dynamic requirements placed on the speed controller and there are frequent phases with a low load.		
	In order to avoid oscillations, if required, the speed controller parameters should be adapted (decrease Kp (p1460, p1470), increase Tn (p1462, p1472)).		
	When used without an encoder, flux reduction is not possible for induction motors with closed rotor slots.		

p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6722, 6724, 6725
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	4 [ms]	5000 [ms]	15 [ms]
Description:	Sets the smoothing time for the flux setpoint.		

$\mathbf{r 1 5 8 3}$	Flux setpoint smoothed / Flux setp smooth		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6722, 6723, 6724
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the smoothed flux setpoint. The value is referred to the rated motor flux.		
p1584[0...n]	Field weakening operation flux setpoint smoothing time / Field weak T_smth		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6722
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	20000 [ms]	0 [ms]
Description:	Sets the smoothing time for the flux setpoint in the field-weakening range		
Recommendation:	Smoothing should be especially used if there is no regenerative feedback into the line supply. This means that the DC link voltage can quickly increase in regenerative operation		
Note:	Only the flux setpoint rise is smoothed		
p1585[0...n]	Flux actual value smoothing time / Flux actVal T_smth		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	0 [ms]
Description:	Sets the smoothing time for the flux actual value.		

p1585[0...n]	Flux actual value smoothing time / Flux actVal T_smth		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6726
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM	Max	Factory setting
	Min	$1000[\mathrm{~ms}]$	$0[\mathrm{~ms}]$
Description:	$0[\mathrm{~ms}]$	Sets the smoothing time for the flux actual value.	

p1586[0...n]	Field weakening characteristic scaling / Field weak scal		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$80.0[\%]$	$120.0[\%]$	$100.0[\%]$
Description:	Sets the scaling of the precontrol characteristic for the start of field weakening.		
	For values above 100% and for partial load situations, the field weakening starts at higher speeds.		

Note: If the start of field weakening is shifted to lower speeds, then the voltage reserve is increased for partial load situations.
If the start of field weakening is shifted to higher speeds, the voltage reserve is appropriately reduced so that for fast load changes, it can be expected that this will have a negative impact on the dynamic performance.

r1589	Field-weakening current precontrol value / I_FieldWeak prectr		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6724
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: $6 _2$	Unit selection: $p 0505$
	Not for motor type: ASM, SESM, REL,	Scaling: p2002	Expert list: 1
	RESM	Max	Factory setting
	Min	$-[$ Arms	- [Arms]
Description:	$-[$ Arms]	Displays the precontrol value for the field weakening current.	

p1590[0...n]	Flux controller P gain / Flux controller Kp		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5722
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: -	Max
	Min	$999999.0[A / V s]$	Expert list: 1
	$0.0[A / V s]$	Factory setting	
Description:	Sets the proportional gain for the flux controller.	$10.0[A / V s]$	
Note:	For synchronous motors, this parameters has no effect.		
	The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned.		
	When calculating controller parameters (p0340 $=4)$, this value is re-calculated.		

p1590[0...n]	Flux controller P gain / Flux controller Kp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6723
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0	999999.0	10.0
Description:	Sets the proportional gain for the flux controller.		
Note:	The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned.		
	When calculating controller parameters $(p 0340=4)$, this value is re-calculated.		

p1592[0...n]	Flux controller integral time / Flux controller Tn		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5722
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0[\mathrm{~ms}]$	10000 [ms]	
Description:	Sets the integral time for the flux controller.		
Note:	For synchronous motors, this parameters has no effect.		
	The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned.		
	When calculating controller parameters (p0340 =4), this value is re-calculated.		

p1592[0...n]	Flux controller integral time / Flux controller Tn		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6723
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	30 [ms]
Description:	Sets the integral time for the flux controller.		
Note:	The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned.		
	When calculating controller parameters (p0340 =4), this value is re-calculated.		

$\mathbf{r 1 5 9 3}$	Field weakening controller output / Field_ctrl outp		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 4
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6723,6724,
			6726
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL, RESM	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	$-[$ [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the output of the field weakening controller.		

r1593[0...1]	CO: Field weakening controller / flux controller output / Field/FI_ctrl outp		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6723, 6724, 6726
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: REL, RESM	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the output of the field weakening controller (synchronous motor) or the output of the flux controller (separately excited synchronous motor, induction motor).		

Index: \quad| $[0]$ | $=$ Pl output |
| ---: | :--- |
| $[1]$ | $=1$ output |

p1594[0...n]	Field-weakening controller P gain / Field_ctrl Kp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6724
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL,	Scaling: -	Expert list: 1
	RESM		Max
	Min	1000.00	Factory setting
	0.00	0.00	
Description:	Sets the P gain of the field-weakening controller.		

2.2 List of parameters

p1595[0...n]	Field weakening controller additional setpoint / Field_ctr add_setp		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6726
VECTOR_I_AC (n/M)	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-80.00 [\%]	50.00 [\%]	0.00 [\%]
Description:	Sets an additional setpoint for the field weakening controller. The value refers to the dynamic voltage reserve (p 1574).		
Note:	For a value equal to zero, the field weakening controller is activated when the maximum voltage, calculated with the average value of the DC link voltage - and limited using p1575-is reached.		
	Positive values mean that the field weakening controller intervenes later.		
	Negative values cause the field weakening controller to intervene earlier, so that the voltage can move away from the modulation depth limit.		

p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6723,6724
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$10[\mathrm{~ms}]$	$10000[\mathrm{~ms}]$	$50[\mathrm{~ms}]$

Description: Sets the integral-action time of the field-weakening controller.

r1597	CO: Field weakening controller output / Field_ctrl outp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Access level: 4
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Func. diagram: 6723
	Not for motor type: PMSM, REL	Scaling: PERCENT	Unit selection: -
	Min	Max	Expert list: 1
	$-[\%]$	$-[\%]$	Factory setting
Description:	Displays the output of the field weakening controller.	$-[\%]$	
	The value is referred to the rated motor flux.		

r1598	CO: Total flux setpoint / Flux setp total		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714, 6723, 6724, 6725, 6726, 8020
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective flux setpoint.		

p1599[0...n]	Flux controller excitation current difference / Flux ctr I_exc_dif		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram:
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	3.0 [\%]
Description:	If the difference lies outside the specified limit value, then the I component of the excitation current flux controller is kept. Instead of this, for the flux controller of the field-generating current, an additional I controller is switched in (integral time according to p1592).		
	If the difference again lies within the band and the I component of the flux controlle respect to time. The reduction of the I co	th, the I component of the e he field-generating current nent over time depends on	urrent flux controlle as an exponential time constant (r038

$\mathbf{p 1 6 0 0}[\mathbf{O} \ldots \mathbf{n}]$	P flux controller P gain / P flux ctrl Kp	Calculated: CALC_MOD_CON	Access level: 3
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Unit group: -	Unit selection: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Scaling: -	Expert list: 1
	Not for motor type: ASM, PMSM, REL,		
	RESM	Max	Factory setting
	Min	999999.0	10.0
Description:	0.0	Sets the proportional gain of the P flux controller for separately excited synchronous motors (SESM).	
Note:	The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned.		
	When calculating controller parameters $(p 0340=4)$, this value is re-calculated.		

p1601[0...n]	Current injection ramp time / I_inject t_ramp		
VECTOR (n / M), VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6790
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [ms]	10000 [ms]	20 [ms]
Description:	Synchronous-reluctance motor:		
	Sets the ramp-up time of the current setpoint (p 1610 , p 1611) when switching over from closed-loop controlled to open-loop controlled operation.		
	Synchronous motor:		
	Sets the ramp-down time of the current setpoint when switching over from open-loop controlled to closed-loop controlled operation.		

r1602

VECTOR (n/M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)

CO: P flux controller output / P flux ctrl outp
Can be changed: -
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: ASM, PMSM, REL, RESM

Min

- [Arms]

Displays the output of the P flux controller for separately excited synchronous motors (SESM)

2.2 List of parameters

p1603[0...n]	Field-generating current maximum / Id max		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\%]$	$0.0[\%]$	
	Sets the maximum component of the field-generating current to the permissible maximum current (r0067).		
Description:	lf value $=0.0 \%$:		
Note:	For synchronous motors, 90% is effective and for induction motors, 60%.		

p1604[0...n]	Pulse technique current limit / Pulse current lim		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL,	Scaling: -	Expert list: 1
	RESM	Max	Factory setting
	Min	$10000.00[$ Arms]	$0.00[A r m s]$
Description:	$0.00[$ Arms]	Sets the effective current limit within the pulse technique.	
Note:	The saturation characteristic of the motor defines the available operating range for the pulse technique.		

This operating range can be adjusted using the current limit.
When commissioning a catalog motor, the technique is automatically selected depending on the motor type being used.
Otherwise, the rated motor current is used as pre-assigned value.

p1605[0...n]	Pulse technique pattern configuration / Puls pattrn config		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	5	2

Description: Sets the applied test signal and evaluation technique for estimating the continuous rotor position.
Remark:
See p1750 to activate the test signal technique.
Value:

Dependency:
2p_dpm
4p_dppmm
2p_dpm_model
2p_dpm_qpm
$2 p _a p m _b p m$

Note: When commissioning a catalog motor, the technique is automatically selected depending on the motor type being used.

r1606	CO: Pulse technique pattern actual / Puls pattern act		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_I_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	5	-
Description:	Displays the currently applied test signal for estimating the continuous rotor position.		
Value:	0 0: None		
	1: 2p_dpm		
	2: 4p_dppmm		
	3: 2p_dpm_model		
	4: 2p_dpm_qpm		
	5: 2p_apm_bpm		
Dependency:	Refer to: p1605, p1750		

p1607[0...n]	Pulse technique excitation / Pulse excitation		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{mVs}]$	$20000.000[\mathrm{mVs}]$	$32.000[\mathrm{mVs}]$
Description:	Sets the excitation amplitude (voltage-time pulse) for the pulse technique for estimating the continuous rotor position.		
	For load current-dependent adaptation (p3371 ... p3373), this amplitude applies at operating point 1.		
Dependency:	Refer to: p1605, p1750, p3371, p3372, p3373		

r1608[0...8]	CO: Pulse technique response / Puls response		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: 6_5	Unit selection: p0505
	Not for motor type: ASM, SESM, REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the signal response components relating to the excitation of the pulse technique.		
Index:	$\begin{aligned} & {[0]=\text { Component } x} \\ & {[1]=\text { Component } y} \\ & {[2]=\text { Pointer length }} \\ & {[3]=\text { Component } x \text { smooth }} \\ & {[4]=\text { Component } y \text { smooth }} \\ & {[5]=\text { Component } x} \\ & {[6]=\text { Component } y} \\ & {[7]=\text { Pointer length }} \\ & {[8]=\text { Pointer length }} \end{aligned}$		
Dependency:	Refer to: p1605, p1607, p1750		
Note:	For index [0...8]:		
	The reference system of components x and y depends on the actual pattern (r1606).		
	For fixed stator excitation, the following applies: $\mathrm{x}=$ alpha, $\mathrm{y}=$ beta		
	For fixed rotor excitation, the following applies: $\mathrm{x}=\mathrm{d}, \mathrm{y}=\mathrm{q}$		
	For index [3, 4]:		
	Displays the smoothed values (smoothin	e p0045) from ind	

p1609[0...n]	I/f operation current setpoint / I/f op I_setp		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
VECTOR_I_AC (n / M)	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the stator current setpoint for operation of a separately excited synchronous motor (SESM) in operating mode I/f (p1300 = 18).		

p1610[0...n]	Torque setpoint static (sensorless) / M_set static		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6700, 6721, $\text { 6722, } 6726$
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-200.0 [\%]	200.0 [\%]	50.0 [\%]
Description:			
	This parameter is entered as a percentage referred to the rated motor torque (r0333).		
	For sensorless vector control, in the speed-controlled operating range (open loop), an absolute current is impressed. p1610 represents the maximum load that occurs at a constant setpoint speed.		
Caution:	For separately-excited synchronous motors ($\mathrm{p} 0300=5$), the parameter is also active for vector control with sensor and independent of the speed (see function diagram, 6726).		
Notice:	p1610 should always be set to at least 10% higher than the maximum steady-state load that can occur.		
Note:	For p1610 $=0 \%$, a current setpoint is calculated that corresponds to the no-load case (ASM: rated magnetizing current, RESM: no-load magnetizing current).		
	For p1610 = 100%, a current setpoint is calculated that corresponds to the rated motor torque.		
	Negative values are converted into positive setpoints in the case of induction and permanent-magnet synchronous motors as well as closed-loop controlled reluctance motors.		

p1611[0...n]	Additional acceleration torque (sensorless) / M_suppl_accel		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 2
VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6700, 6721, 6722, 6726
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	30.0 [\%]
Description:	Setting the dynamic torque setpoint for small speed ranges with sensorless vector control. This parameter is entered as a percentage referred to the rated motor torque (r0333).		
Caution:	For separately-excited synchronous motors ($\mathrm{p} 0300=5$), the parameter is also active for vector control with sensor and independent of the speed during the acceleration phase (r1199.2 = 1, see function diagram, 6726).		
Note:	When accelerating and braking p1611 is added to p1610 and the resulting total torque is converted into an appropriate current setpoint and controlled.		
	For pure accelerating torques, it is always favorable to use the torque precontrol of the speed controller (p1496).		

p1612[0...n]	Current setpoint open-loop control, encoderless / I_setCtrEncoderl		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 2
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: $6 _2$	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[A r m s]$	0.00 [Arms]	
Description:	Sets the current setpoint for controlled (open-loop) encoderless operation.		
Note:	The value is effective at speeds less than p1755 and represents a reserve for a possibly existing load torque or		
	torque error in the moment of inertia.		

p1612[0...n]	Current setpoint magnetizing open-loop controlled / Id_set ctrl		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 2
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the magnetizing current setpoint in the open-loop controlled encoderless operation. The value is only valid during the current model orientation.		
Dependency:	Refer to: p1610, p1611		
Note:	The value is effective at speeds less than p1755 and represents a reserve for a possibly existing load torque or torque error in the moment of inertia.		

$\overline{\mathbf{r 1 6 1 4}}$	EMF maximum / EMF max		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6725
	P-Group: Displays, signals	Unit group: 5_1	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual maximum possible electromotive force (EMF) of the separately excited synchronous motor.		
Dependency:			
	The maximum possible EMF depends on the following factors:		
	- Actual DC link voltage (r0070).		
	- Maximum modulation depth (p1803).		
	- Field-generating and torque-generating current setpoint.		

p1616[0...n]	Current setpoint smoothing time / I_set T_smooth		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6721, 6722,
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$		Unit group: -	Unit selection: -
	P-Group: Closed-loop control	Scaling: -	Expert list: 1
	Not for motor type: REL	Max	Factory setting
	Min	$10000[\mathrm{~ms}]$	$40[\mathrm{~ms}]$
	$4[\mathrm{~ms}]$		
Description:	Sets the smoothing time for the current/torque setpoint in the open-loop-controlled operating range in the case of		
	sensorless vector control.		

2.2 List of parameters

Note: \quad This parameter is only effective in the range where current is injected for sensorless vector control. For permanent magnet synchronous motors, the parameter is effective over the complete speed range. For induction motors, the current setpoint is calculated from p1610 and p1611 and for separately excited synchronous motors the torque setpoint is calculated from p1610 and p1611.

r1617	CO: Torque setpoint (controlled) / M_set ctrl		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6726
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM		
	Min	Max	Factory setting
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
Description:	Torque setpoint for sensorless control of the separately excited synchronous motor in the open-loop-controlled		

r1618	Current model controller precontrol / I_mod_ctrl prectrl		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: $6 _2$	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL,	Scaling: p2002	Expert list: 1
	RESM		
	Min	Max	Factory setting
	$-[$ Arms $]$	$-[$ Arms	- [Arms]
Description:	Displays the precontrol value of the current model controller.		

p1619[0...n]	Setpoint/actual value tracking threshold / SetAct track thrsh		
VECTOR (n / M),	Can be changed: \cup, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Threshold for setpoint/actual value tracking of the stator current in the q axis of the current model.		
p1620[0...n]	Stator current minimum / I_stator min		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
VECTOR_I_AC (n/M)	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10000.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	A negative value means that the field-generating stator current (d-axis) has a negative sign. The valid value is internally limited to 50% of the rated motor current (p0305).		

p1621[0...n]	Changeover speed inner cos phi = 1 / n_chngov cos phi=1		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	0.00 [rpm]
Description:	Sets the speed where a change is made If the value that is entered exceeds the ra speed range.	the inner to the outer cos phi = speed, then a change is made to	nner cos phi = 1 over the

p1622[0...n]	Field-generating current setpoint smoothing time constant / Id_setp T_smth		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1

r1623[0...1]	Field-generating current setpoint (steady-state)/ Id_set stationary		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6723,6726,
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$		6727	
	P-Group: Displays, signals	Unit group: $6 _2$	Unit selection: p0505
	Not for motor type: PMSM, REL, RESM	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	$-[A r m s]$	$-[A r m s]$	- [Arms]
Description:	Displays the steady-state field generating current setpoint (ld_set).		

$\mathbf{r 1 6 2 4}$	Field-generating current setpoint total / Id_setp total		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n/M), VECTOR_I_AC (n / M)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6640, 6721, 6723, 6727
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the limited field-generating current setpoint (ld_set).		
	This value comprises the steady-state field-generating current setpoint r1623 and a dynamic component that is only set when changes are made to the flux setpoint.		

2.2 List of parameters

p1625[0...n]	Excitation current setpoint cali	ration / I_exc_setp cal	
VECTOR (n/M), VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	200.0 [\%]	100.0 [\%]
Description:	Sets the gain factor to weight the excitation	rrent setpoint.	

r1626[0...1]	CO: Excitation current setpoint / I_exc_setp		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the calculated excitation current setpoint.		
	The following applies for index 0 :		
	For direct excitation, the value is referred to p0390. For brushless excitation, the value is referred to p0690. The following applies for index 1 :		
	The value is referred to p0390.		
Index:	[0] = Excitation current of the excitation equipment [1] = Excitation current for direct excitation		
Dependency:	Refer to: p0390, p0690		

r1627	CO: Current model load angle / I_mod load angle		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
VECTOR_I_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	- [$\left.{ }^{\circ}\right]$	- [$\left.{ }^{\circ}\right]$	- [${ }^{\text {] }}$
Description:	Displays the load angle of the current model.		
p1628[0...n]	Current model controller dynamic factor / I_mod_ctr dyn_fact		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [\%]	400 [\%]	50 [\%]
Description:	Sets the dynamic response factor for the	ent model controller.	

p1629[0...n]	Current model controller P gain / I_mod_ctrl Kp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM		
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain for the current model controller.		
	This value is automatically pre-set using p3900 or p0340 when commissioning has been completed.		

p1630[0...n]	Current model controller integral time / I_mod_ctrl Tn		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM		
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$10000.00[\mathrm{~ms}]$	$0.00[\mathrm{~ms}]$
Description:	Sets the integral time for the current model controller.		
	This value is automatically pre-set using p3900 or p0340 when commissioning has been completed.		

r1631	Current model controller P gain effective / I_mod ctrl Kp eff		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
VECTOR_I_A $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM	Max	Factory setting
	Min	-	-
Description:	-	Displays the effective P gain of the current model controller.	

r1632	Current model controller integral time effective / __mod_ctrl Tn eff		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the effective integral time of the current model controller.		
r1633	Current model flux setpoint / I_mod flux setp		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
VECTOR__AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective flux setpoint of the current model. The value is referred to the rated motor flux.		

r1634	Current model flux actual value / I_mod flux act val		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective flux actual value of the current model. The value is referred to the rated motor flux.		

r1635	Current model controller I component / I_mod_ctrl I comp		
VECTOR (n/M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: $6 _2$	Unit selection: $p 0505$
	Not for motor type: ASM, PMSM, REL,	Scaling: p2002	Expert list: 1
	RESM		
	Min	Max	Factory setting
	$-[$ Arms $]$	$-[$ Arms $]$	- [Arms]
Description:	Displays the I component of the current model controller.		

r1636	Current model controller output / l_mod_ctrl outp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Access level: 4
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: $6 _2$	Func. diagram: 6727
	Not for motor type: ASM, PMSM, REL,	Scaling: p2002	Unit selection: p0505
	RESM	Expert list: 1	
	Min	Max	Factory setting
	$-[$ Arms $]$	$-[$ Arms $]$	- [Arms]
Description:	Displays the output of the current model controller.		

r1637	Current model magnetizing current d axis / I_mod I_mag d-ax		
VECTOR (n / M), VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the magnetizing current of the current model in the d-axis.		
r1638	Current model magnetizing current q axis / I_mod I_mag q-ax		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
VECTOR___AC (n/M)	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]		
Description:	Displays the magnetizing current of the current model in the q-axis.		

r1639	CO: Current model Isq after actual value tracking / I_mod Isq track		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the stator current in the q axis after the current actual value tracking.		
p1640[0...n]	CI: Excitation current actual value signal source / I_exc_ActVal S_src		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6727
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the excitation current actual value		
r1641[0...1]	Excitation current actual value / I_exc_act val		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727, 8020
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description: Index:	Displays the excitation current actual value that is read in. [0] = Excitation current of the excitation equipment [1] = Excitation current for direct excitation		
Dependency:	Refer to: p0390		
Note:	The following applies for index 0 :		
	For direct excitation, the value is referred to p0390. For brushless excitation, the value is referred to p0690. The following applies for index 1 :		
	The value is referred to p0390.		
p1642[0...n]	Minimum excitation current / Min I_exc		
VECTOR (n/M), VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [\%]	50.0 [\%]	5.0 [\%]
Description:	Sets the minimum excitation current. This means that negative excitation currents can be avoided.		

2.2 List of parameters

p1643[0...n]	Minimum excitation current closed-loop control gain factor / I_exc_min Kp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM		
	Min	Max	Factory setting
	0.00	5.00	0.40
Description:	Sets the gain factor for the minimum excitation current, closed-loop control.		
	This is active if the excitation current is below 75% of p1642.		
Dependency:	Refer to: p 1642		

r1644	CO: Excitation current monitoring output / I_exc_monit outp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated:-	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: $6 _2$	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL,	Scaling: p2002	Expert list: 1
	RESM	Max	Factory setting
	Min	$-[$ Arms $]$	$-[$ Arms $]$
	- [Arms		
Description:	Displays the output of the excitation current monitoring for separately excited synchronous motors.		

p1645[0...7]	BI: Excitation feedback signals signal source / Exc FS S_src		
VECTOR (n/M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 6495
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	[0...6] 1
			[7] 0
Description:	Sets the signal source for the individual feedback signals from the excitation.		
Index:	[0] = Excitation ready for switching on [1] = Excitation ready [2] = Excitation operational [3] = Excitation group signal fault [4] = Excitation group signal alarm [5] = Not used [6] = Not used [7] = Excitation at the voltage limit		
Dependency:	Refer to: r1649		
p1646	Excitation monitoring time / Excit t_monit		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n/M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6495
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	2.0 [s]	1300.0 [s]	20.0 [s]
Description:	Sets the monitoring time of the excitation. After an ON command, the feedback sign	must be receive	g time.

Note: \quad After the on command for the excitation $(r 1648.0=1)$, its feedback signal must be available at r1649.1 within this monitoring time (BI: p1645[1]).
The same monitoring time is effective after the excitation is enabled for operation (r1648.3 = 1) up to the feedback signal "excitation operational" (r1649.2 = 1, BI: p1645[2])

p1647	Excitation switch-off delay time / Exc t_off		
VECTOR (n / M),	Can be changed: T	Calculated: -	Access level: 2
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6495
VECTOR_I_AC (n/M)	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [s]	5.0 [s]	0.8 [s]
Description:	Sets the switch-off delay time to shut down the excitation equipment.		
Note:	The delay time starts if, when switching off, r0863.0 $=0$.		

Note:	For bit $00:$
	This bit is set, dependent on r0863.0; exception, precharging via the Motor Module (see p0212).

2.2 List of parameters

r1651	CO: Force setpoint function generator / F_set FG		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
RVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Displays the force setpoint of the function generator.		
p1653[0...n]	Current setpoint torque-generating smoothing time minimum / lsq_s T_smth min		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6710
VECTOR_I_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [ms]	20.0 [ms]	0.1 [ms]
Description:	Sets the minimum smoothing time constant for the setpoint of the torque-generating current components.		

p1654[0...n]	Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 4
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [ms]	50.0 [ms]	4.8 [ms]
Description:	Sets the smoothing time constant for the setpoint of the torque-generating current components.		
Note:	The smoothing time does not become effective until the field-weakening range is reached.		
p1655[0...4]	CI: Current setpoint/Speed actual value filter nat. frequency tuning / I/n_setp_filt f_n		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 6700, 6710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-		1
Description:	Sets the signal source for tuning the natural frequency of the current setpoint filter 1, 2 and speed actual value filter 5.		
Index:	$\begin{aligned} & {[0]=\text { Filter } 1} \\ & {[1]=\text { Filter } 2} \\ & {[2]=\text { Reserved }} \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Filter } 5} \end{aligned}$		

p1656[0...n]	Manipulated variable filter velocity controller activation / Filt v_ctrl act		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0000 bin
Description:	Setting for activating/deactivating the manipulated variable filter for the velocity controller.		
Bit field:	Bit Signal name	1 signal	0 signal
	00 Filter 1	Active	Inactive
	01 Filter 2	Active	Inactive
	02 Filter 3	Active	Inactive
	03 Filter 4	Active	Inactive
Dependency:	Refer to: p1657, p1658, p1659, p1660, p1661, p1662, p1663, p1664, p1665, p1666, p1699		

p1656[0...n]	Activates current setpoint filter / I_setp_filt act				
SERVO, SERVO_AC,		e changed: U, T	Calculated: CALC_MOD_CON	Access level: 3	
SERVO_I_AC		type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 5710	
		up: Closed-loop control	Unit group: -	Unit selection: -	
		or motor type: -	Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0001 bin	
Description:	Setting for activating/deactivating the current setpoint filter.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Filter 1	Active	Inactive	-
		Filter 2	Active	Inactive	-
		Filter 3	Active	Inactive	-
		Filter 4	Active	Inactive	-
Dependency: Note:	The individual current setpoint filters are parameterized as of p 1657.				

2.2 List of parameters

p1657[0...n]	Current setpoint filter 1 type / I_set_filt 1 type		
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
(n/M), SERVO_AC,	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
SERVO_I_AC,	P-Group: Closed-loop control	Unit group: -	Unit selection: -
VECTOR_I_AC (n/M)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	1
Description:	Sets the current setpoint filter 1 as low pass (PT2) or general 2nd-order filter.		
Value:	1: PT2 low pass		
Dependency:	The current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 ... p1661.		
Note:	For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.		
	The denominator damping can be determined from the equation for the 3 dB bandwidth:		

p1658[0...n]	Manip. var. filter 1 velocity controller denom. natural freq. / Filt1 v_ctr fn_den		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$
Description:	Sets the denominator natural frequency for manipulated variable filter 1 of the velocity controller.		
Dependency:	Refer to: p1656, p1657, p1659, p1660, p1661, p1662, p1663, p1664, p1665, p1666		

p1658[0...n]	Current setpoint filter 1 denominator natural frequency / I_set_filt1 fn_den		
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
(n/M), SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
$\begin{aligned} & \text { VECTOR_AC (n/M), } \\ & \text { SERVO_I_AC, } \end{aligned}$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
VECTOR_I_AC (n / M)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the denominator natural frequency for current setpoint filter 1 (PT2, general filter).		
Dependency:	The current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 ... p1661.		
p1659[0...n]	Manip. variable filter 1 velocity controller denominator damping / Filt 1 v_ctr D_den		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for manipulated variable filter 1 of the velocity controller.		
Dependency:	Refer to: p1656, p1657, p1658, p1660, p1661, p1662, p1663, p1664, p1665, p1666		

p1662[0...n]	Manipulated variable filter 2 velocity controller type / Filt 2 v_ctrl type		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	1
Description:	Sets the type for manipulated variable filter 2 of the velocity controller		
Value:	1: PT2 low pass 2: \quad General 2nd order filter		
Dependency:	For p1662 = 1, the following parameters should be set: - p1656.1, p1663, p1664		
	For p1662 = 2, the following parameters should be set: - p1656.1, p1663, p1664, p1665, p1666		
Note:	For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.		
p1662[0...n]	Current setpoint filter 2 type / I_set_filt 2 type		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
(n/M), SERVO_AC,	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
SERVO_I_AC,	P-Group: Closed-loop control	Unit group: -	Unit selection: -
VECTOR_I_AC (n/M)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	1
Description:	Sets current setpoint filter 2 as lowpass filter (PT2) or general 2nd order filter.		
Value:	1: PT2 low pass		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		
Note:	For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.		

p1663[0...n]	Manip. var. filter 2 velocity controller denom. natural freq. / Filt2 v_ctr fn_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$
Description:	Sets the denominator natural frequency for manipulated variable filter 2 of the velocity controller.		
Dependency:	Refer to: p1656, p1657, p1658, p1659, p1660, p1661, p1662, p1664, p1665, p1666		

p1663[0...n]	Current setpoint filter 2 denominator natural frequency / I_set_filt2 fn_den		
SERVO, VECTOR (n / M), SERVO_AC, VECTOR_AC (n / M), SERVO_I_AC, VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the denominator natural frequency for current setpoint filter 2 (PT2, general filter).		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		
p1664[0...n]	Manip. variable filter 2 velocity controller denominator damping / Filt 2 v_ctr D_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for manipulated variable filter 2 of the velocity controller. Refer to: p1656, p1657, p1658, p1659, p1660, p1661, p1662, p1663, p1665, p1666		
Dependency:			
p1664[0...n]	Current setpoint filter 2 denominator damping / I_set_filt 2 D_den		
SERVO, VECTOR (n / M), SERVO_AC, VECTOR_AC (n / M), SERVO_I_AC, VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for current setpoint filter 2.		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		
p1665[0...n]	Manip. var. filter 2 velocity controller numerator natural freq. / Filt2 v_ctr fn_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the numerator natural frequency for manipulated variable filter 2 of the velocity controller. Refer to: p1656, p1657, p1658, p1659, p1660, p1661, p1662, p1663, p1664, p1666		
Dependency:			
p1665[0...n]	Current setpoint filter 2 numerator natural frequency / I_set_filt2 fn_num		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
(n / M), SERVO_AC, VECTOR AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
SERVO_I_AC,	P-Group: Closed-loop control	Unit group: -	Unit selection: -
VECTOR_I_AC (n/M)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the numerator natural frequency for current setpoint filter 2 (general filter).		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		

p1666[0...n]	Manip. variable filter 2 velocity controller numerator damping / Filt 2 v_ctr D_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for manipulated variable filter 2 of the velocity controller. Refer to: p1656, p1657, p1658, p1659, p1660, p1661, p1662, p1663, p1664, p1665		
Dependency:			
p1666[0...n]	Current setpoint filter 2 numerator damping / I_set_filt 2 D_num		
SERVO, VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
(n/M), SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
$\begin{aligned} & \text { VECTOR_AC }(\mathrm{n} / \mathrm{M}), \\ & \text { SERVO_I_AC, } \end{aligned}$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
VECTOR_I_AC (n/M)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for current setpoint filter 2.		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		
p1667[0...n]	Manipulated variable filter 3 velocity controller type / Filt 3 v_ctrl type		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	1
Description:	Sets the type for manipulated variable filter 3 of the velocity controller		
Value:	1: PT2 low pass		
Dependency:	For p1667 = 1, the following parameters should be set: - p1656.2, p1668, p1669		
	For p1667 = 2, the following parameters should be set:		- p1656.2, p1668, p1669, p1670, p1671
p1667[0...n]	Current setpoint filter 3 type / I_set_filt 3 type		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	1
Description:	Sets current setpoint filter 3 as lowpass filter (PT2) or general 2nd order filter.		
Value:	1: PT2 low pass		
Dependency:	Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		

p1668[0...n]	Manip. var. filter 3 velocity controller denom. natural freq. / Filt3 v_ctr fn_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the denominator natural frequency for manipulated variable filter 3 of the velocity controller. Manipulated variable filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		
Dependency:			
p1668[0...n]	Current setpoint filter 3 denominator natural frequency / I_set_filt3 fn_den		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the denominator natural frequency for current setpoint filter 3 (PT2, general filter).		
Dependency:	Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		
p1669[0...n]	Manip. variable filter 3 velocity controller denominator damping / Filt 3 v_ctr D_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for manipulated variable filter 3 of the velocity controller.		
Dependency:	Manipulated variable filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		
p1669[0...n]	Current setpoint filter 3 denominator damping / I_set_filt 3 D_den		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for current setpoint filter 3.		
Dependency:	Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		
p1670[0...n]	Manip. var. filter 3 velocity controller numerator natural freq. / Filt3 v_ctr fn_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	16000.0 [Hz$]$	1999.0 [Hz]
Description:	Sets the numerator natural frequency for manipulated variable filter 3 of the velocity controller.		
Dependency:	Manipulated variable filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		

p1670[0...n]	Current setpoint filter 3 numerator natural frequency / I_set_filt3 fn_num		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the numerator natural frequency for current setpoint filter 3 (general filter).		
Dependency:	Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		
p1671[0...n]	Manip. variable filter 3 velocity controller numerator damping / Filt 3 v_ctr D_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for manipulated variable filter 3 of the velocity controller.		
Dependency:	Manipulated variable filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		
p1671[0...n]	Current setpoint filter 3 numerator damping / I_set_filt 3 D_num		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for current setpoint filter 3.		
Dependency:	Current setpoint filter 3 is activated via p1656.2 and parameterized via p1667 ... p1671.		
p1672[0...n]	Manipulated variable filter 4 velocity controller type / Filt 4 v_ctrl type		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	1
Description:	Sets the type for manipulated variable filter 4 of the velocity controller		
Value:	1: PT2 low pass 2: \quad General 2nd order filter		
Dependency:	For p1672 = 1, the following pa - p1656.3, p1673, p1674 For $1667=2$, the following pa - p1656.3, p1673, p1674, p167	uld be set: uld be set:	

p1672[0...n]	Current setpoint filter 4 type /I_set_filt 4 type		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Max
	Min	2	Factory setting
	1	1	
Description:	Sets current setpoint filter 4 as lowpass filter (PT2) or general 2nd order filter.		
Value:	$1: \quad$ PT2 low pass		
	$2: \quad$ General 2nd order filter		
Dependency:	Current setpoint filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		

p1673[0...n]	Manip. var. filter 4 velocity controller denom. natural freq. / Filt4 v_ctr fn_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$
Description:	Sets the denominator natural frequency for manipulated variable filter 4 of the velocity controller.		
Dependency:	Manipulated variable filter 4 is activated via p1656.3 and parameterized via p1672 \ldots p1676.		

p1673[0...n]	Current setpoint filter 4 denominator natural frequency / I_set_filt4 fn_den		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the denominator natural frequency for current setpoint filter 4 (PT2, general filter).		
Dependency:	Current setpoint filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		
p1674[0...n]	Manip. variable filter 4 velocity controller denominator damping / Filt 4 v_ctr D_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for manipulated variable filter 4 of the velocity controller.		
Dependency:	Manipulated variable filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		
p1674[0...n]	Current setpoint filter 4 denominator damping / I_set_filt 4 D_den		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for current setpoint filter 4.		
Dependency:	Current setpoint filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		

p1675[0...n]	Manip. var. filter 4 velocity controller numerator natural freq. / Filt4 v_ctr fn_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz$]$	1999.0 [Hz]
Description:	Sets the numerator natural frequency for manipulated variable filter 4 of the velocity controller. Manipulated variable filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		
Dependency:			
p1675[0...n]	Current setpoint filter 4 numerator natural frequency / I_set_filt4 fn_den		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the numerator natural frequency for current setpoint filter 4 (general filter).		
Dependency:	Current setpoint filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		
p1676[0...n]	Manip. variable filter 4 velocity controller numerator damping / Filt 4 v_ctr D_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for manipulated variable filter 4 of the velocity controller.		
Dependency:	Manipulated variable filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		
p1676[0...n]	Current setpoint filter 4 numerator damping / I_set_filt 4 D_num		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for current setpoint filter 4.		
Dependency:	Current setpoint filter 4 is activated via p1656.3 and parameterized via p1672 ... p1676.		
p1677[0...n]	Speed actual value filter 5 type / n_act_filt 5 type		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC (n/M),	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 4715
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	2
Description:	Sets the speed actual value filter 5 as low pass (PT2) or general 2nd-order filter.		
Value:	1: PT2 low pass 2: General 2nd order filter		
Dependency:	The speed actual value filter is activated via p1656.4 and parameterized via p1677 ... p1681.		

2.2 List of parameters

Note: \quad For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.
The denominator damping can be determined from the equation for the 3 dB bandwidth:
f_3dB bandwidth = 2 * D_denominator * f_bandstop frequency

p1677

A_INF (Suppl cl-loop ctrl), R INF (Suppl clloop ctrl)

escription:
Value

Dependency:
Note:

Vdc actual value filter 5 type / Vdc act_filt 5 typ

Can be changed: U, T	Calculated: -	Access level: 3
Data type: Integer16	Dyn. index: -	Func. diagram: 8940
P-Group: Closed-loop control	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
1	2	2

Sets the Vdc actual value filter 5 as low pass (PT2) or as extended general 2nd order filter.
1: PT2 low pass
2: General 2nd order filter

For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.
The denominator damping can be determined from the equation for the 3 dB bandwidth:
f_3dB bandwidth = 2 * D_denominator * f_bandstop frequency

p1678[0...n]	Speed actual value filter 5 denominator natural frequency / n_act_filt5 fn_den		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4715
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the denominator natural frequency for speed actual value filter 5 (PT2, general filter).		
Dependency:	The speed actual value filter is activated via p1656.4 and parameterized via p1677 ... p1681.		
p1678	Vdc actual value filter 5 denominator natural frequency / VdcAct_flt5 fn_den		
A_INF (Suppl cl-loop ctrl), R_INF (Suppl clloop ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1000.0 [Hz]
Description:	Sets the denominator natural frequency for the Vdc actual value filter 5 (PT2, general filter).		
Dependency:	The Vdc actual value filter is activated with p1656.4 and parameterized via p1677 ... p1681.		
p1679[0...n]	Speed actual value filter 5 denominator damping / n_act_filt 5 D_den		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4715
V	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for speed actual value filter 5.		
Dependency:	The speed actual value filter is activated via p1656.4 and parameterized via p1677 .. p1681.		

p1679	Vdc actual value filter 5 denominator damping / Vdc act_flt5 D_den		
A_INF (Suppl cl-loop	Can be changed: U, T	Calculated: -	Access level: 3
ctr), R_INF (Suppl cl-	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for Vdc actual value filter 5.		
Dependency:	The Vdc actual value filter is activated with p1656.4 and parameterized via p1677 ... p1681.		
p1680[0...n]	Speed actual value filter 5 numerator natural frequency / n_act_filt5 fn_num		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4715
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the numerator natural frequency for speed actual value filter 5 (general filter).		
Dependency:	The speed actual value filter is activated via p1656.4 and parameterized via p1677 ... p1681.		
p1680	Vdc actual value filter 5 numerator natural frequency / VdcAct_flt5 fn_num		
A_INF (Suppl cl-loop ctrl), R_INF (Suppl clloop ctrI)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz$]$	1000.0 [Hz]
Description:	Sets the numerator natural frequency for the Vdc actual value filter 5 (general filter).		
Dependency:	The Vdc actual value filter is activated with p1656.4 and parameterized via p1677 ... p1681.		
p1681[0...n]	Speed actual value filter 5 numerator damping / n_act_filt 5 D_num		
VECTOR (n/M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4715
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for speed actual value filter 5.		
Dependency:	The speed actual value filter is activated via p1656.4 and parameterized via p1677 ... p1681.		
p1681	Vdc actual value filter 5 numerator damping / Vdc act_flt5 D_num		
A_INF (Suppl cl-loop ctrl), R_INF (Suppl clloop ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.010
Description:	Sets the numerator damping for Vdc actual value filter 5.		
Dependency:	The Vdc actual value filter is activated with p1656.4 and parameterized via p1677 ... p1681.		

2.2 List of parameters

p1699	Filter data acceptance / Filt data accept		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Activates data acceptance for parameter changes for the filter. p1699 = 0:		
	The new filter data are immediately accepted. p1699 = 1 :		
Dependency:	Velocity setpoint filter 1, 2 (p1414 and following)		
	Velocity actual value filter (p1413, p1446 and following)		
	Manipulated variable filter velocity controller 1, 2 (p1656 and following)		
	Manipulated variable filter (p1800 and following)		
	Precontrol filter (p1721 and following)		
p1699	Filter data acceptance / Filt data accept		
SERVO, VECTOR (n / M), SERVO_AC, VECTOR_AC (n / M), SERVO_I_AC, VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Activates data acceptance for parameter changes for the filter. p1699 = 0:		
	The new filter data are immediately accepted. p1699 $=1$:		
	The new filter data are only acces	his parameter is reset.	
Dependency:	Speed setpoint filter 1, 2 (p1414 and following)		
	Speed actual value filter (p1413, p1446 and following)		
	Current setpoint filter $1 . . .4$ (p1656 and following)		
	Current setpoint filter $5 \ldots 10$ (function module, p5200 and following)		
	APC filter (APC function module, p3704 and following)		
	Refer to: p1414, p1656, p5200		
p1700[0...n]	Force controller loop gain / F_ctrl loop_gain		
HLA	Can be changed: U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [N / V]	1000000000.0 [N/V]	0.0 [N / V]
Description:	Sets the loop gain for the force		
Dependency:	Refer to: p1400, p1715, p1717	, r1719, p1719, p1720	

p1701[0...n]	Current controller reference model dead time / I_ctrRefMod t_dead		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5714
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	1.000	1.000
Description:	Sets the fractional dead time for the current controller reference model. This parameter emulates the computing dead time of the proportionally controlled current control loop.		
Note:	Dead time $=$ p1701 * p0115[0]		
p1702[0...n]	Isd current controller precontrol scaling / Isd_ctr_prectrScal		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6714
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	70.0 [\%]
Description:	Sets the scaling of the dynamic current controller precontrol for the flux-generating current component Isd.		
Note:	The parameter is effective for permanent and separately excited synchronous motors.		
p1703[0...n]	Isq current controller precontrol scaling / Isq_ctr_prectrScal		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 4
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	0.0 [\%]
Description:	Sets the scaling of the dynamic current controller precontrol for the torque/force-generating current component Isq.		

p1703[0...n]	Isq current controller precontrol scaling / Isq_ctr_prectrScal		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6714
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	70.0 [\%]
Description:	Sets the scaling of the dynamic current controller precontrol for the torque/force-generating current component Isq.		
p1704[0...n]	Isq current controller precontrol EMF scaling / Isq_ctrl EMF scal		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6714, 6726
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	100.0 [\%]
Description:	Sets the scaling of the EMF precontrol for	Isq current controller.	

p1705[0...n]	Flux setpoint/actual value tracking threshold / Flux track thresh		
VECTOR (n/M), VECTOR_AC (n/M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6714, 6726
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	100.0 [\%]
Description:	Threshold for the setpoint - actual value tracking of the EMF precontrol of the Isq current controller.		
p1710[0...n]	Current controller adaptation in-line axis starting point Kp / Id_adapt pt Kp		
VECTOR (n / M),	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	6000.00 [Arms]	0.00 [Arms]
Description:	Sets the starting point of the current-dependent current controller adaptation where the current controller gain p1720 is effective.		
Dependency:	Refer to: p1720		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	For p1712 $=100 \%$ or p1402.2 $=0$, the current controller adaptation is disabled and p1720 is effective over the entire range.		

p1711[0...n] Current ctrl adaptation in-line axis starting point Kp adapted/Id_adap pt Kp adap

VECTOR (n / M),
Calculated: CALC_MOD_REG Access level: 3
Data type: FloatingPoint32
Dyn. index: MDS, p0130
Unit
P-Group: Motor
Not for motor type: ASM, PMSM, SESM,
Scaling: -
Func. diagram: -

REL
Min Max Factory setting
0.00 [Arms] 6000.00 [Arms] 0.00 [Arms]

Description: Sets the starting point of the current-dependent current controller adaptation where the adapted current controller gain p1720 $\times \mathrm{p} 1712$ is effective.
Dependency:
Notice:
Note: \quad For p1712 $=100 \%$ or p1402.2 $=0$, the current controller adaptation is disabled and p1720 is effective over the entire range.

p1712[0...n]	Current controller adaptation in-line axis p gain adaptation / Id_adapt Kp adapt		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, SESM,	Scaling: -	Expert list: 1
	REL		
	Min	Max	Factory setting
	$0.00[\%]$	$1000.00[\%]$	$100.00[\%]$
Description:	Sets the factor for the current controller P gain in the adaptation range (d-current > p1711).		
	The value is referred to p1720.		
Dependency:	Refer to: p1710, p1711, p1720		

Notice: When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
Note: \quad For p1712 $=100 \%$ or $\mathrm{p} 1402.2=0$, the current controller adaptation is disabled and p1720 is effective over the entire range.

p1715[0...n]	Force controller P gain / F_ctrl Kp		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10000.000	0.000
Description:	Sets the proportional gain for the force controller.		
Dependency:	Refer to: p1400, p1700, p1717, r1718, p1718, r1719, p1719, p1720		
p1715[0...n]	Current controller P gain / I_ctrl Kp		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5714, 7017
	P-Group: Closed-loop control	Unit group: 18_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [V/A]	100000.000 [V/A]	0.000 [V/A]
Description:	Sets the proportional gain of the current controller for the lower adaptation current range.		
	This value is automatically pre-set using p3900 or p0340 when commissioning has been completed.		
Dependency:	Refer to: p0391, p0392, p0393		
Note:	For p0393 $=100 \%$, the current controller adaptation is disabled and p1715 is effective over the entire range.		
p1715[0...n]	Current controller P gain / I_ctrl Kp		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6700, 6714, 7017
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain of the current controller for the lower adaptation current range. This value is automatically pre-set using p3900 or p0340 when commissioning has been completed.		
Dependency:	Refer to: p0391, p0392, p0393		
Note:	For p 0393 = 100%, the current controller adaptation is disabled and p1715 is effective over the entire range.		
p1716[0...n]	Force controller P gain weakening / F_ctrl Kp red		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [\%]	100.0 [\%]	40.0 [\%]
Description:	Sets the weakening of the proportional gain for large actuating signals for the force controller. The setting value specifies what percentage of a P component of 10 V is weakened.		
Dependency:	Refer to: p1715		

p1717[0...n]	Force controller integral time / F_ctrl Tn		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	2000.00 [ms]	40.00 [ms]
Description:	Sets the integral time of the force controller.		
Dependency:	Refer to: p1400, p1700, p1715	8, r1719, p1719, p1720	

p1717[0...n]	Current controller integral-action time / I_ctrl Tn		
SERVO, VECTOR	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
(n / M), SERVO_AC, VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5714, 6700, 6714,7017
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC (n/M) } \end{aligned}$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	2.00 [ms]
Description:	Sets the integral-action time of the current controller.		
Dependency:	Refer to: p1715		
p1718[0...n]	Force controller D component smoothing time constant / F_ctrl D comp T		
HLA	Can be changed: T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.250 [ms]	100.000 [ms]	0.500 [ms]
Description: Dependency:	Sets the smoothing time constant of the D component for the force controller.		

r1718	CO: Isq controller output / Isq_ctrl outp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: $5 _1$	Unit selection: 00505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V \mathrm{Vrms}]$	$-[V \mathrm{rms}]$	$-[V \mathrm{Vms}]$
Description:	Displays the actual output of the Isq current controller (torque/force generating current, PI controller).		
	The value contains the proportional and integral components of the PI controller.		

p1719[0...n]	Force controller derivative-action time / F_ctrl t_deriv		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-10000.0[\mathrm{~ms}]$	$0.0[\mathrm{~ms}]$	
Description:	Sets the derivative-action time for the force controller.		
Dependency:	Refer to: $\mathrm{p} 1400, \mathrm{p} 1700, \mathrm{p} 1715, \mathrm{p} 1717, \mathrm{rl1718}, \mathrm{p} 1718, \mathrm{p} 1720$		

r1719	Isq controller integral component / Isq_ctrl I_comp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V r m s]$	$-[V r m s]$	$-[V r m s]$
Description:	Displays the integral component of the Isq current controller (torque/force-generating current, PI controller).		

p1720[0...n]	Force controller precontrol factor / F_ctr prectr fact		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\%]$	$120.0[\%]$	$100.0[\%]$
Description:	Sets the factor for the velocity precontrol of the force controller.		

p1720[0...n]	Current controller d axis p gain / Id_ctrl Kp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, SESM,	Scaling: -	Expert list: 1
	REL	Max	Factory setting
	Min	100000.000	0.000
	0.000		
Description:	Sets the proportional gain of the d-current controller for the lower adaptation current range.		
	This value is automatically pre-set using p3900 or p0340 when commissioning has been completed.		

p1721[0...n]	Precontrol filter activation / Prectrl_filt act			
HLA	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 4970	
	P-Group: Closed-loop control	Unit group: -	Unit selection: -	
	Not for motor type: REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0000 bin	
Description:	Setting for activating/deactivating the precontrol filter.			
Bit field:	$\begin{array}{ll}\text { Bit } & \text { Signal name } \\ 00 & \text { Activate filter }\end{array}$	$1 \text { signal }$ Yes	0 signal No	FP
Dependency:	Refer to: p1699, p1722, r1724, p1724, r1725, p1725, p1726, p1727			
p1722[0...n]	Precontrol filter type / Prectrl_filt type			
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3	
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 4970	
	P-Group: Closed-loop control	Unit group: -	Unit selection: -	
	Not for motor type: REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	1	2	1	
Description:	Sets the precontrol filter as low pass (PT2) or as general 2nd-order filter.			
Value:	1: PT2 low pass 2: \quad General 2 nd order filte			
Dependency:	The precontrol filter is activated	and parameterized via p1721 ...		

2.2 List of parameters

Note:	For an extended general 2nd order filter, by denominator, i.e. bandstop frequency, a ba the bandstop frequency is completely supp The denominator damping can be determin f_3dB bandwidth = 2 * D_denominator * f_b	inserting the same natural frequen dstop filter is implemented. If the n ssed. d from the equation for the 3 dB ndstop frequency	in both the numerator and in the rator damping of zero is selected, width:
p1722[0...n]	Current controller d axis integra	me / l_ctrl d-axis Tn	
VECTOR (n/M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	2.00 [ms]
Description:	Sets the integral time of the d-current cont		

r1723	CO: Isd controller output / Isd_ctrl outp		
VECTOR (n / M) ,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual output of the Isd current controller (flux-generating current, PI controller). The value contains the proportional and integral components of the PI controller.		

p1724[0...n]	Precontrol filter denominator natural frequency / Prectr_filt fn_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the denominator natural frequency for the precontrol filter (PT2, general filter).		
Recommendation:	The precontrol filter is activated via p1721.0 and parameterized via p1722 ... p1727.		
Dependency:	Refer to: p1721		
r1724	Isd controller integral component / Isd_ctrl I_comp		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
VECTOR__AC (n/M)	P-Group: Closed-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the integral component of the Isd current controller (flux-generating current, PI controller).		

p1725[0...n]	Precontrol filter denominator damping / Prectrl_filt D_den		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for the precontrol filter (PT2, general filter).		
Dependency:	The precontrol filter is activated via p1721.0 and parameterized via p1722 ...p1727.		
	Refer to: p1721		

r1725	Isd controller integral component limit / Isd_ctrl I_limit		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: $5 _1$	Unit selection: p 0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V \mathrm{Vrms}]$	$-[V \mathrm{rms}]$	$-[\mathrm{Vrms}]$
Description:	Displays the limit value for the integral component of the Isd current controller.		

p1726[0...n]	Precontrol filter numerator natural frequency / Prectr_filt fn_num		
HLA	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the numerator natural frequency for the precontrol filter (general filter).		
Dependency:	Refer to: p1721		
Note:	The precontrol filter is activated via p1721.0 and parameterized via p1722 ... p1727.		
p1726[0...n]	Quadrature arm decoupling scaling / Transv_decpl scal		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6714
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	75.0 [\%]
Description:	Sets the scaling of the quadrature arm decoupling		
Note:	This parameter is ineffective for sensorless vector control. In this case, p1727 is always used. If p1726 is set to 0 , then the quadrature de-coupling is deactivated. The integral component of the Isd current controller remains effective in the complete speed control range.		

p1727[0...n]	Precontrol filter numerator damping / Prectrl_filt D_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4970
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for precontrol filter.		

2.2 List of parameters

Dependency:	The precontrol filter is activated via p1721.0 and parameterized via p1722 ... p1727.		
p1727[0...n]	Quadrature arm decoupling at voltage limit scaling / TrnsvDecpIVmaxScal		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6714
VECTOR_I_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	50.0 [\%]
Description:	Sets the scaling of quadrature arm decoupling when the voltage limit is reached.		
r1728	De-coupling voltage in-line axis / U_dir-axis_decoupl		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
VECTOR_1_AC (n/M)	P-Group: Closed-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual output of the quadrature channel de-coupling for the d axis.		

r1729	De-coupling voltage quadrature axis / U_quad_decoupl		
VECTOR (n / M), VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual output of the quadrature channel de-coupling for the q axis.		
p1730[0...n]	Isd controller integral component shutdown threshold / Isd ctrl Tn shutd		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	30 [\%]	150 [\%]	30 [\%]
Description:	Sets the speed threshold for deactivating the integral component of the Isd controller.		
	The d current controller is only effective as P controller for speeds greater than the threshold value. Instead of the integral component, the quadrature arm decoupling is effective.		
Warning: \dagger	For settings above 80%, the d current controller is active up to the field weakening limit. When operated at the voltage limit, this can result in an unstable behavior. In order to avoid this, the dynamic voltage reserve p1574 should be increased.		
Note:	The parameter value is referred to the synchronous rated motor speed.		

p1731[0...n]	Isd controller combination current time component / Isd ctr l_combi T1		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL,	Scaling: -	Expert list: 1
	RESM	Max	Factory setting
	Min	$10000.00[\mathrm{~ms}]$	0.00 [ms]
	$0.00[m s]$		
Description:	Sets the time constant to calculate the d current DC component difference (combination current) to add to the d		
	current controller actual value.		

r1732	CO: Direct-axis Voltage setpoint / Direct U set		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5700,5714,
	P-Group: Closed-loop control	Unit group: 5_1	6714,5718
	Not for motor type: REL	Scaling: p2001	Unit selection: p0505
	Min	Max	Expert list: 1
	$-[V r m s]$	$-[V r m s]$	Factory setting
	Display and connector output for the direct axis voltage setpoint Ud.	-[Vrms]	

r1732[0...1]	CO: Direct-axis voltage setpoint / Direct U set		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5700,5714,
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$		6714,5718	
	P-Group: Closed-loop control	Unit group: $5 _1$	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V r m s]$	$-[V r m s]$	- [Vrms]
Description:	Display and connector output for the direct axis voltage setpoint Ud.		
Index:	$[0]=$ Unsmoothed		
	$[1]=$ Smoothed with p0045		

r1733	CO: Quadrature-axis voltage setpoint / Quad U set		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5019,5700,
			5714
	P-Group: Closed-loop control	Unit group: $5 _1$	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V r m s]$	$-[V r m s]$	$-[V r m s]$
Description:	Display and connector output for the quadrature axis voltage setpoint Uq.		

r1733[0...1]	CO: Quadrature-axis voltage setpoint / Quad U set		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714, 6731
	P-Group: Closed-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display and connector output for the quadrature axis voltage setpoint Uq. [0] = Unsmoothed [1] = Smoothed with p0045		
Index:			
p1734[0...n]	Isq current controller precontrol eddy current compensation drop / Isq_ctr_prctr drop		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	10.0 [\%]
Description:	Sets the component of the current drop as a result of eddy currents for the dynamic current controller precontrol.		
p1735[0...n]	Isq current controller prectrl eddy current comp time constant / Isq_ctr_prectr T		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	5.00 [ms]	0.75 [ms]

Description: Sets the time constant for eddy current compensation for dynamic current controller precontrol.

p1740[0...n]	Gain resonance damping for encoderless closed-loop control / Gain res_damp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Max
	Min	10.000	Factory setting
	0.000	0.025	
Description:	Defines the gain of the controller for resonance damping for operation with sensorless vector control in the range that		
	current is injected.		

p1744[0...n]	Motor model speed threshold stall detection / MotMod n_thr stall		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	100.00 [rpm]
Description:	Sets the speed threshold value to If the adaptation controller output 1.	alled motor. parameterized speed difference	en in status word r 1408.11 is set $=$
Dependency:	If a stalled drive is detected (r1408 Refer to: p2178	fault F07902 is output after the de	time set in p2178.

Note:	Speed monitoring is only effective in operation with a speed encoder (refer to p1300).
	Stalling is also identified if steps/jumps occur in the speed signal, which exceed the value in p0492.

p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1
	Min	Factory setting	
	$0.0[\%]$	5.0 [\%]	
Description:	Sets the fault threshold in order to detect a motor that has stalled.		
	If the error signal (r1746) exceeds the parameterized error threshold, then status signal r1408.12 is set to 1.		
Dependency:	If a stalled drive is detected (r1408.12 = 1), fault F07902 is output after the delay time set in p2178.		
	Refer to: p2178		
Note:	Monitoring is only effective in the low-speed range (below p1755 * (100\% - p1756)).		

r1746	Motor model error signal stall detection / MotMod sig stall		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	$-[\%]$	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Signal to initiate stall detection		
Note:	The signal is not calculated while magnetizing and only in the low speed range (below p1755* $(100 \%-p 1756))$.		

p1747[0...n]	Motor model pulse technique transition speed/MotMod puls tech n		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: ASM, PMSM, SESM,	Scaling: -	Expert list: 1
	REL		
	Min	Max	Factory setting
	$0.00[r p m]$	$210000.00[\mathrm{rpm}]$	$0.00[\mathrm{rpm}]$
Description:	Sets the transition (corner) speed for the smooth and bumpless transition into the small signal motor model for		
	encoderless operation of the synchronous-reluctance motor (RESM).		
Note:	RESM: reluctance synchronous motor (synchronous reluctance motor)		

p1748[0...n]	Motor model lower changeover speed n_set -> n_act / MotMod low n_chng		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_1_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	90.0 [\%]	50.0 [\%]
Description:	Sets the lower speed for the transition "n_set -> n_act" in encoderless operation. This value is entered as a percentage referred to p 1749 .		
Dependency:	Refer to: p1749, p1752		

p1749[0...n]	Motor model upper changeover speed / increase changeover speed / Up/incr n_chngov		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	99.0 [\%]	50.0 [\%]
Description:	Separately excited synchronous motor:		
	Sets the upper speed for the transition "n_set -> n_act" in sensorless operation.		
	This value is entered as a percentage of p1755.		
	Induction motor without speed encoder:		
	Depending on the machine data, the drive has calculated a minimum value of the operating frequency for rugged operation.		
	If the minimum value is greater than the lower changeover limit parameterized with p1755*(1-2*p1756), then the difference is displayed using p1749 * p1755. The parameter value cannot be changed.		
Dependency:	Refer to: p1748, p1752, p1755, p1756		

Do not use bit $6=1$ if the motor can be slowly reversed by the load at the torque limit. Long delay times due to blocking (p2177 > p1758) can cause the motor to stall. In this case you should deactivate the function or use closedloop control throughout the speed range (note the information re bit $2=1$).

Note:

Bit $0 \ldots 3$ only have influence for sensorless vector control, bit 4 only for vector control with encoder. Bit 2 is preassigned depending on p0500.
For bit $2=1$:
The sensorless vector control is effective down to zero frequency. A change is not made into the open-loop speed controlled mode.
This operating mode is possible for passive loads. These include applications where the load itself does not generate any active torque and therefore only acts reactively to the drive torque of the induction motor.
If bit $2=1$, then bit 3 is automatically set to 1 . Manual de-selection is possible and may be sensible if the saturation characteristic (p1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.
When the bit is set, the selection of bits 0 and 1 is ignored.
For bit $2=0$:
If the model feedback is deactivated ($\mathrm{p} 1784=0$), with bit $2=0$, then bit 3 is also automatically set to 0 .
For bit $5=1$:
The selection of the test signal injection is only relevant for synchronous reluctance motors (RESM) and permanent magnet synchronous motors (PMSM).
In the pulse enable, changing bit 5 is always rejected.
When p1750.5 is selected, initially p1810.3 is set, and then a system power up is requested via F1040 to configure the power unit component in the oversampling mode.
When deactivating p1750.5, p1810.3 remains unchanged. Therefore, to undo the configuration of the power unit components from the oversampling mode
(after manually deselecting p1750 bit 5), then initially p1810 bit 3 must be manually deleted and then a manual warm restart initiated.
As an alternative to a warm restart: save the parameters and carry out a POWER ON (switch-off/switch-on).
When the function "safety without encoder" (p9306/p9506) is activated, this setting is not permissible and results in monitoring errors.
For bit $6=1$:
The following applies for sensorless vector control of induction motors:
For a blocked motor (see p2175, p2177) the time condition in p1758 is bypassed and a change is not made into open-loop controlled operation.
The following applies for sensorless vector control of synchronous motors:
For a blocked motor (see p2175, p2177), the speed ramp-function generator is held in open-loop speed controlled operation, and a switchover is not made into closed-loop controlled operation.
For bit $7=1$:
The following applies for sensorless vector control of induction motors:
If the changeover limits are parameterized too low (p1755, p1756), then they are automatically increased to rugged values by the absolute amount p1749 * p1755.
The effective time condition for changing over into open-controlled operation is obtained from the minimum of p 1758 and 0.5 * $\mathrm{rO384}$.
Activation can make sense for applications that demand a high torque at low frequencies and therefore low speed gradients.
Adequate parameterization must be ensured (p1610, p1611).
For bit $8=1$: no influence on the functionality of bits $0,1,2$
The following applies for sensorless vector control of induction motors:
Changeover into open-loop speed controlled operation is no longer dependent on the speed setpoint (except for OFF3), but instead is essentially dependent on time condition p1758. As a consequence, a drive can be started or reversed in closed-loop speed controlled operation with setpoints from an external control system, if these briefly lie in the open-loop speed control range.

2.2 List of parameters

r1751	Motor model status / MotMod status				
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n/M)	Can be changed: - C		lated: -	Access level: 3	
	Data type: Unsigned32		index: -	Func. diagram: -	
	P-Group: Closed-loop control U		group: -	Unit selection: -	
	Not for motor type: SESM, REL S		g: -	Expert list: 1	
	Min M			Factory setting	
	- -	-		-	
Description:	Displays the status of the motor model.				
Bit field:		Signal name	1 signal	0 signal	
		Controlled operation	Active	Inactive	6721
		Set ramp-function generator	Active	Inactive	-
		Stop RsLh adaptation	Yes	No	-
	03	Feedback	Active	Inactive	-
		Encoder operation	Active	Inactive	-
		Holding angle	Yes	No	-
		Acceleration criterion	Active	Inactive	-
		Set angular integrator PMSM	Yes	No	-
		Stop Kt adaptation PMSM	Yes	No	-
		PollD active PMSM encoderless	Yes	No	-
		I injection PMSM	Yes	No	-
		Speed controller output cannot be set to zero	Yes	No	-
		Rs adapt waits	Yes	No	-
		Motor operation	Yes	No	-
		Stator frequency sign	Positive	Negative	
		Torque sign	Motor mode	Regenerative mode	-
		Pulse injection active PMSM	Yes	No	-
		Operation with rugged model feedback	Enabled	Inhibited	-
		Operation of the current model with current feedback	Enabled	Inhibited	-
		Current feedback in the current model	Active	Inactive	-
		Rugged increase of the changeover limits	Active	Inactive	-
		Motor blocked (RFG stop) PMSM	No	Yes	-
Note:					
	For bit 17:				
	Displays the enabled status of the rugged model feedback (p1784).				
	The feedback is used to increase the parameter ruggedness of the motor model and is effective in the operating range of the two-component closed loop current control.				
	For bit 18:				
	Displays the status when enabling the differential current feedback in the current model for operation with encoder. The function is automatically enabled with p1784 >0 or p1731>0.				
	The feedback is used for a rugged change between the current model and complete machine model with active rugged model feedback and combination current.				
	For bit 19:				
	Displays the currently active stator circuit feedback in current model operation.				
	For bit 20:				
	Displays the currently effective increase of the changeover limits by the value p1749 * p1755.				
	For bit 21:				
	For a blocked synchronous motor, the speed ramp-function generator is held in the open-loop speed controlled operating range if the torque setpoint reaches the torque limit and the speed is less than the threshold value in p2175.				

p1752[0...n]	Motor model changeover speed operation with encoder / MotMod n_chgov enc	
SERVO, SERVO_AC,	Can be changed: U, T Calculated: CALC_MOD_REG	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32 Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL Scaling: -	Expert list: 1
	Min Max	Factory setting
	0.00 [rpm] 210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the speed to change over the motor model for operation with encoder.	
Dependency:	Refer to: p1756	
Note:	Induction motor (ASM):	
	The motor model is influenced for speeds greater than p1752.	
	Synchronous motor (SRM):	
	A monitoring function (F07412) is activated for speeds greater than p1752.	
	The motor model is additionally influenced when kT adaptation is activated (p1780.3 $=1$).	

p1752[0...n]	Motor model with encoder changeover velocity / MotMod enc v_chgov		
SERVO (Lin),	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~m} / \mathrm{min}]$	$1000.00[\mathrm{~m} / \mathrm{min}]$	$1000.00[\mathrm{~m} / \mathrm{min}]$
Description:	Sets the velocity to change over the motor model for operation with encoder.		
Dependency:	Refer to: p1756		
Note:	A monitoring function (F07412) is activated for velocities greater than p1752.		
	The motor model is additionally influenced when kT adaptation is activated $(\mathrm{p} 1780.3=1)$.		

p1752[0...n]	Motor model changeover speed operation with encoder / MotMod n_chgov enc		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the speed to change over the motor model for operation with encoder.		
Dependency:	In U/f characteristic mode the parameter is of no significance.		
	Using the friction characteristic for operation with encoder:		
	When changing the motor model changeover speed p1752, the points along the friction characteristic should be recalculated ($\mathrm{p} 0340=5$) and the friction characteristic recorded again (p 3845). For slight changes, only the associated friction characteristic points must be recorded (see p3844).		
	Refer to: p1756		

p1753[0...n] Motor model changeover speed hysteresis operation with encoder / MotMod n_chgovHysE

VECTOR (n / M),
VECTOR_AC (n / M), VECTOR_I_AC (n / M)

Can be changed: U, T
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Min
0.0 [\%]

Sets the hysteresis for the changeover speed of the motor model for operation with speed encoder.
Description:
Dependency

Calculated: CALC_MOD_REG
Dyn. index: DDS, p0180
Unit group: - Unit selection: -
Scaling: - Expert list: 1
Max Factory setting
90.0 [\%]

Access level: 3
Func. diagram: 0.0 [\%]

Refer to: p1752

The value refers to p 1752 .
In the case of separately excited synchronous motors, the lower hysteresis value is calculated with p1752 * p1753; in the case of all other types of motor, p 1752 * ($1-\mathrm{p} 1753$) is used.

p1754[0...n]	Flux angle difference smoothing time / Angle diff T_smth		
VECTOR (n/M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6733
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, REL	Scaling: -	Maxpert list: 1
	Min	Factory setting	
	$0.1[\mathrm{~ms}]$	5.0 [ms]	
	Sets the smoothing time constant to filter the main flux angle difference from the voltage and current models.		
	The filtered value is included in the calculation of the total flux angle.		
	PMSM:		
	Sets the smoothing time constant to display the angular difference between the motor model an encoder.		
	In the case of a separately excited synchronous motor (SESM) and sensorless vector control, the parameter must be		
	set to the minimum value to improve motor model changeover.		
	PMSM: permanent-magnet synchronous motor		
	SESM: separately excited synchronous motor		

p1755[0...n]	Motor model changeover speed encoderless operation / MotMod \mathbf{n} _chgSnsorl		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: $3 _1$	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Max
	Min	Expert list: 1	
	$0.00[r p m]$	Factory setting	
Description:	Sets the speed to change over the motor model to encoderless operation.	$210000.00[\mathrm{rpm}]$	
Dependency:	Refer to: p1756		
Note:	The changeover speed applies for the changeover between open-loop and closed-loop control mode.		

p1755[0...n]	Motor model changeover velocity encoderless operation / MotMod v_chgSnsorl		
SERVO (Lin),	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
SERVO_I_AC (Lin)	P-Group: Closed-loop control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [m/min]	1000.00 [m/min]	1000.00 [m/min]
Description:	Sets the velocity to change over the motor model to encoderless operation.		
Dependency:	Refer to: p1756		
Note:	The changeover velocity applies for the changeover between open-loop and closed-loop control mode.		
p1755[0...n]	Motor model changeover speed encoderless operation / MotMod n_chgSnsorl		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1

Description: Sets the speed to change over the motor model to encoderless operation.
Dependency: In U/f characteristic mode the parameter is of no significance.
Refer to: p1749, p1756

2.2 List of parameters

Note:	Only for ASM and PSM in encoderless operation:
The settling range starts at $0.5^{*} \mathrm{p} 1755^{*} \mathrm{p} 1756$.	
For ASM, it ends at p1755 * p1756, or for p1755, if p1759 is at the maximum value.	
For PSM it always ends at p1755 * p1756.	

p1758[0...n]	Motor model changeover delay time closed/open-loop control / MotMod t cl_op		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_1_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	100 [ms]	10000 [ms]	1000 [ms]
Description:	Sets the minimum time for falling below the changeover speed when changing from closed-loop controlled operation to open-loop controlled operation.		
Dependency:	The wait time has no significance if the setpoint speed before the ramp-function generator lies in the open-loop speed controlled operating range. In this case, the change is made without any delay.		
	Refer to: p1755, p1756		
Note:	If p 1758 is changed, commissioning must be selected in order to validate the value for the blocking monitoring.		

$\mathbf{p 1 7 6 0 [0 . . . n] ~}$	Motor model with encoder speed adaptation Kp / MotMod wE n_ada Kp		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	100000.000	1000.000
Description:	Sets the proportional gain Kp of the controller for speed adaptation with encoder		

p1761[0...n]	Motor model with encoder speed adaptation Tn / MotMod wE n_ada Tn		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0[m s]$	$1000[\mathrm{~ms}]$	4 [ms]
Description:	Sets the integral-action time Tn of the controller for speed adaptation with encoder		

r1762[0...1]	Motor model deviation component $1 /$ MotMod dev comp 1		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6721,6730,
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$		Unit group: -	Unit selection: -
	P-Group: Closed-loop control	Scaling: -	Expert list: 1
	Not for motor type: SESM, REL	Max	Factory setting
	Min	-	
	-		
Description:	Induction motor (ASM):		
	Displays the referred imaginary system deviation for the adaptation circuit of the motor model.		
	Permanent-magnet synchronous motor (PMSM):		
	Displays the system deviation for speed adaptation.		
	$r 1762[0]:$ Angular deviation [rad-el] of the estimated EMF.		
	$r 1762[1]:$ Angular deviation [rad-el] of the low-level signal response for pulse technique.		
	$[0]=$ Deviation model 1		
	$[1]=$ Deviation model 2		

r1763	Motor model deviation component 2 / MotMod dev comp 2		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Induction motor (ASM):		
	Displays the referred real system deviation for the adaptation circuit of the motor model.		
	Permanent-magnet synchronous motor (PMSM):		
	Not used.		

p1764[0...n]	Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6730
VECTOR_I_AC (n / M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	100000.000	1000.000
Description:	Sets the proportional gain of the controller for speed adaptation without encoder.		

r1765[0...1]	Motor model speed adaptation Kp effective / MotM n_ada Kp act		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the effective proportional gain of the controller for the speed adaptation.		
Index:	$[0]=$ Model_1		
	$[1]=$ Model_2		

2.2 List of parameters

p1766[0...n]	Motor model voltage model calculation enable / U_mod calc enab		
VECTOR (n/M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	90.0 [\%]	50.0 [\%]
Description:	Sets the speed to enable the voltage model to calculate the speed actual value. This value is entered as a percentage referred to p1752.		
	For separately excited synchronous motors without encoder, the parameter is referred to p1748.		
Dependency:	Refer to: p1748, p1752		
p1767[0...n]	Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn		
VECTOR (n/M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6730
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [ms]	200 [ms]	4 [ms]
Description:	Sets the integral time of the controller for	d adaptation without encoder	

r1768[0...1]	Motor model speed adaptation Vi effective / MotM n_ada Vi act		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Index:	Displays the effective gain of the integral component of the controller for speed adaptation.[0] = Model_1		
p1769[0...n]	Motor model changeover delay time closed-loop control / MotMod t cl_ctrl		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the wait time for a transition from open-loop controlled to closed-loop controlled operation after twice the lower changeover speed p1755 * (1 - p1756 / 100%) has been exceeded - and below the upper switchover speed p1755		
Dependency:	Refer to: p1755, p1756		
Note:	With p1759 $=0 \mathrm{~ms}$ and above p1755, the delay time becomes ineffective and the model changeover is determined by the output frequency only (changeover for p 1755).		

r1770[0...2]	CO: Motor model speed adaptation proportional component / MotMod n_adapt Kp		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6730
VECTOR_I_AC (n / M)	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: SESM, REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the P component of the controller for speed adaptation.		
Index:	$\begin{aligned} & {[0]=\text { Summed signal }} \\ & {[1]=\text { Model_1 }} \\ & {[2]=\text { Model_2 }} \end{aligned}$		

$\mathbf{r 1 7 7 1}$
VECTOR (n / M),
VECTOR_AC (n / M),
VECTOR_I_AC (n / M)

Description:

CO: Motor model speed adaptation I comp. / MotMod n_adapt Tn
Can be changed: - Calculated: - Access level: 3
Data type: FloatingPoint32 Dyn. index: - Func. diagram: 6730

P-Group: Closed-loop control Not for motor type: SESM, REL Min

- [rpm]

Displays the I component of the controller for speed adaptation.

r1773[0...1]	Motor model slip speed / MotMod slip		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: 3_1	Unit selection: p0505
	Not for motor type: SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays estimated (speed) signals of the motor model. r1773[0]: Displays the estimated (mechanical) slip of the motor model. r1773[1]: Displays the estimated input speed of the motor model.		
Index:	$[0]=\text { Slip speed estimated }$ [1] = Speed estimated		

p1774[0...n]	Motor model offset voltage compensation alpha/ MotMod offs comp A		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-5.000[V]$	$5.000[\mathrm{~V}]$	$0.000[\mathrm{~V}]$
Description:	Sets the offset voltage in the alpha direction; this compensates the offset voltages of the drive converter/inverter at		
	low speeds. The value is valid for the rated (nominal) pulse frequency of the power unit.		
Note:	The value is pre-set during the rotating measurement.		

p1775[0...n]	Motor model offset voltage compensation beta / MotMod offs comp B		
VECTOR (n/M),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-5.000 [V]	5.000 [V]	0.000 [V]
Description:	Sets the offset voltage in the beta direction; this compensates the offset voltages of the drive converter/inverter at low speeds. The value is valid for the rated (nominal) pulse frequency of the power unit.		
Note:	The value is pre-set during the rotating meas	urement.	

r1776[0...6]	Motor model status signals / MotMod status sig		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the internal status signals of the motor model:		
	Index 0: Changeover ramp between current and voltage models		
	Index 1: Changeover ramp for model feedback (only encoderless induction motors)		
	Index 2: Changeover ramp for zero frequency range (only encoderless induction motors)		
	Index 3: Transition ramp actual speed from speed setpoint to model value (SESM without encoder)		
	Index 4: Speed controller enable (SESM without encoder)		
	Index 5: Transition ramp between current and voltage models (SESM without encoder)		
	Index 6: Transition ramp for EMF deviation at PLL input (PMSM without encoder)		
Index:	[0] = Changeover ramp motor model		
	[1] = Changeover ramp model tracking		
	[2] = Changeover ramp zero frequency encoderless ASM		
	[3] = Changeover ramp actual speed SESM without encoder		
	[4] = Enable speed controller SESM without encoder		
	$[5]=$ Changeover ramp motor model SESM without encoder$[6]=$ Changeover ramp motor model PMSM without encoder		
Note:	Indices 3 through 5 are only relevant in the case of encoderless control of separately excited synchro		

r1778	Motor model flux angle difference / MotMod ang diff		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	- [${ }^{\circ}$	- [${ }^{\circ}$	- [$\left.{ }^{\circ}\right]$
Description:	Induction motor (ASM):		
	Displays the difference between the motor model flux angle and the transformation angle.		
	Permanent-magnet synchronous motor (PMSM):		
	Displays the angular difference between motor model and encoder.		
Dependency:	A setting for smoothing the display can be made using p1754.		
Notice:	The display only makes sense for corrected actual value inversion, encoder pulse number and pole pair number. Example:		
	Moving in encoderless operation at a speed not equal to zero and without load.		
	--> Check the sign of r0061 and r0063. If the sign is not equal, then change p0410.0.		
	--> Check the stationary value of r0061 and r0063. If the value is not equal, change the encoder pulse number (p0408) or pole pair number (p0314).		

r1778	Motor model flux angle difference / MotMod ang diff		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	- [${ }^{\circ}$	- [${ }^{\circ}$]	- [${ }^{\text {] }}$
Description:	Induction motor (ASM):		
	Displays the difference between the motor model flux angle and the transformation angle.		
	Permanent-magnet synchronous motor (PMSM):		
	Displays the angular difference between motor model and encoder.		
Dependency:	A setting for smoothing the display can be made using p1754.		

$\mathbf{r 1 7 7 9}$	Motor model absolute flux / MotMod abs flux		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL,	Scaling: PERCENT	Expert list: 1
	RESM		
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	$-[\%]$
Description:	Displays the absolute value of the flux of the motor model.		

p1780[0...n]	Motor/converter model adaptation configuration / MotMod adapt conf				
SERVO (Ext M_ctrl), SERVO_AC (Ext M_ctrl), SERVO_I_AC (Ext M_ctrl)		be changed: U, T Ca	Calculated: -	Access level: 3	
		ype: Unsigned16 Dy	Dyn. index: DDS, p0180	Func. diagram: -	
		up: Closed-loop control Un	Unit group: -	Unit selection: -	
		or motor type: REL Sc	Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000000100101000 bin	
Description:	Set Indu Per	the configuration for the adaptation circuit of tion motor (ASM): Rs, Rr (only for operation anent-magnet synchronous motor (PMSM):	e motor model. ith encoder), Lh and l	ompensa	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Select motor model PMSM kT adaptation	Yes	No	-
		Reserved	Yes	No	-
		Reserved	Yes	No	-
		Compensation voltage emulation error in the drive converter		No	-
	09	kT (iq) characteristic active	Yes	No	-
Caution:	For the PMSM kT adaptation (p 1780.3) as well as the compensation of the voltage emulation error (p1780.8) and for the $\mathrm{kT}(\mathrm{iq})$ characteristic (p1780.9), the function module "Extended torque control" (r0108.1) should be activated.				
Note:	ASM: Induction motor				
	PMSM: permanent-magnet synchronous motor				
	The kT adaptation is only active at a speed greater than the changeover speed with encoder (p1752).				
	The kT adaptation and the kT characteristic can be simultaneously selected.				
	For kT adaptation (p1780.3 = 1):				
	- the kT adaptation is only active at a speed greater than the changeover speed with encoder (p1752).				
	- if the electrical configuration (e.g. Motor Module, cable routing) or the pulse frequency (p 1800) changes, then a new identification run must be carried out.				
	- To identify the voltage emulation error the Motor Module should still be warm.				
	- the motor temperature (r 0035) should not change significantly (i.e. it should not be identified immediately after a load duty cycle).				
	For kT(iq) characteristic (p1780.9 = 1):				
	- for the $\mathrm{kT}(\mathrm{iq})$ characteristic $\mathrm{kT}(\mathrm{iq})=\mathrm{kT}+\mathrm{kT} 3$ * $\mathrm{iq} \wedge 2+\mathrm{kT} 5$ * $\mathrm{iq} \wedge 4+\mathrm{kT7}{ }^{*} \mathrm{iq}{ }^{\wedge} 6$, the parameters must first be identified (p1959.6 = 1, kT: p0316, kT3: p0646, kT5: p0647, kT7: p0647).				

p1785[0...n]	Motor model Lh adaptation Kp / MotMod Lh Kp		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.100
Description:	Sets the proportional gain for the Lh adaptation of the motor model for an induction motor (ASM).		
p1786[0...n]	Motor model Lh adaptation integral time / MotMod Lh Tn		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [ms]	10000 [ms]	100 [ms]
Description:	Sets the integral time for the Lh adaptation of the motor model for an induction motor (ASM).		

r1787[0...n]	Motor model Lh adaptation corrective value / MotMod Lh corr		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL,	Scaling: -	Expert list: 1
	RESM		Factory setting
	Min	Max	$-[\mathrm{mH}]$

Description: Displays the corrective value for the Lh adaptation of the motor model for an induction motor (ASM).
Dependency: Refer to: p0826, p1780
Note:
The adaptation result is reset if the magnetizing inductance of the induction motor is changed (p0360, r0382). This also happens when changing over the data set if a different motor is not being used (p0826).
The display of the inactive data sets is only updated when changing over the data set.
r1791
VECTOR (n / M),
VECTOR_AC (n / M),
VECTOR_I_AC (n / M)

r1792	Motor model Lh adaptation switch-on slip / MotMod Lh fslip		
VECTOR (n/M), VECTOR_AC (n/M), VECTOR_I_AC (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the switch-on slip frequency for the Lh adaptation for the induction motor (ASM).		
p1795[0...n]	Motor model kT adaptation smoothing time / MotMod kT T_smth		
SERVO (Ext M_ctrl), SERVO_AC (Ext M_ctrl), SERVO_I_AC (Ext M_ctrl)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [ms]	10000 [ms]	100 [ms]
Description:	Sets the smoothing time of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PMSM).		
Dependency:	Refer to: p1780, r1797		
p1795[0...n]	Motor model kT adaptation integral time / MotMod kT Tn		
VECTOR (n/M), VECTOR_AC (n / M), VECTOR_I_AC (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6731
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [ms]	10000 [ms]	100 [ms]
Description:	Sets the integral time of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PMSM).		
$\overline{\mathrm{r} 1797}$	Motor model kT adaptation corrective value / MotMod kT corr		
SERVO (Ext M_ctrl, Lin), SERVO_AC (Ext M_ctrl, Lin), SERVO_I_AC (Ext M_ctrl, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [N/Arms]	- [N/Arms]	- [N/Arms]
Description:	Displays the corrective value of the kT adaptation of the motor model for a permanent magnet synchronous motor (PMSM).		
Dependency:	Refer to: p1780, p1795		

r1797	Motor model kT adaptation corrective value / MotMod kT corr		
SERVO (Ext M_ctrl),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Ext	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
M_ctrl), SERVO_I_AC (Ext M_ctrl)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Nm / A]	- [Nm / A]	- [Nm / A]
Description:	Displays the corrective value of the kT adaptation of the motor model for a permanent magnet synchronous motor (PMSM).		
Dependency:	Refer to: p1780, p1795		
r1797[0...n]	Motor model kT adaptation corrective value / MotMod kT corr		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6731
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Nm / A]	- [Nm / A]	- [Nm / A]
Description:	Displays the corrective value of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PMSM).		
Dependency:	Refer to: p0826, p1780		
Note:	The display of the inactive data sets is only updated when changing over the data set.		
p1798[0...n]	Motor model pulse technique speed adaptation Kp / MotMod PulsTech Kp		
VECTOR (n/M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	1000.000	1.000
Description:	Sets the proportional gain Kp for speed adaptation with active pulse technique for the estimation of the continuous rotor position.		
p1799[0...n]	Motor model pulse technique speed adaptation Tn / MotMod PulsTech Tn		
VECTOR (n / M), VECTOR_AC (n/M), VECTOR_I_AC (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	10 [ms]
Description:	Sets the integral time Tn for speed adaptation with active pulse technique for the estimation of the continuous rotor position for a synchronous reluctance motor.		

p1800[0...n]	Manipulated variable filter activation / ManVarFilt act			
HLA	Can be changed: U, T	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func.	
	P-Group: Closed-loop control	Unit group: -	Unit	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	0000	
Description:	Setting for activating/deactivating the manipulated variable filter.			
Bit field:	Bit Signal name 00 Activate filter	1 signal Yes	0 signal No	FP
Dependency:	The manipulated variable filter is parameterized from p1801 and higher. Refer to: p1699, r1801, p1801, p1802, p1803, p1804, p1805			
p1800[0...n]	Pulse frequency setpoint / Pulse freq setp			
SERVO, SERVO_AC,	Can be changed: \cup, T	Calculated: CALC_MOD_ALL	Acces	
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func	
	P-Group: Modulation	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	1.000 [kHz]	32.000 [kHz]	4.000	
Description:	Sets the pulse frequency for the converter. This parameter is pre-set to the rated converter value when the drive is first commissioned.			
Dependency:	The pulse frequency can, depe a) $p 1800=1000 /(p 0115[0]$ * b) $p 1800=1000$ * $n / p 0115[0]$ Example: p0115[0] $=125 \mu \mathrm{~s}$-> p1800 $=$ p0115[0] = $125 \mu \mathrm{~s}$-> p1800 = Possible setting values can be Refer to: r0110, r0111, p0112,	current controller sampling time , 4,5 $3,4, \ldots$ Hz (from equation a) m equation b) 114 (if $\mathrm{p} 0009=\mathrm{p} 0010=0$). p0115, r0193, p0230, p1817	115[0]) as	va
Note:	The maximum possible pulse frequency is also determined by the power unit being used.			
	When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (derating, refer to r0067).			
	If p1800 is changed while commissioning (p 0009 , $\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of $p 1800$ have been changed by a parameter that was set when the drive was commissioned (e.g. p1082).			
	For encoderless operation (p1404 $=0$ or p1300 $=20$), the following conditions apply:			
	$\mathrm{p} 1800=1 /(\mathrm{n}$ * p0115[0]) with $\mathrm{n}=2,3,4$			
	or			
	p 1800 >= $\mathrm{n} / \mathrm{p} 0115[0], \mathrm{n}=1,2, \ldots$			
	For motors with a low power rating (<300 W) we recommend that p1800 is set acc. to the second condition.			
	Although, pulse frequencies p1800 $=1 /(n * p 0115[0])$ with $n=3$ or 4 are possible, for $p 0115[0]>62.5 \mu \mathrm{~s}$, they result in unsteady closed-loop control and should be avoided.			
	For motors with a low leakage i	is not permissible to set the pulse	equency	

p1800[0...n]	Pulse frequency setpoint / Pulse freq setp		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8021
VECTOR_I_AC	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.000 [kHz]	16.000 [kHz]	4.000 [kHz]
Description:	Sets the pulse frequency for the converter.		
	This parameter is pre-set to the rated converter value when the drive is first commissioned.		
Dependency:	The pulse frequency can, depending on the current controller sampling time ($\mathrm{p} 0115[0]$) assume the following values: $\mathrm{p} 1800=1000 /(\mathrm{p} 0115[0] * 2)$		
	or		
	$\mathrm{p} 1800=\mathrm{n}$ * $1000 / \mathrm{p} 0115[0]$ with $\mathrm{n}=1,2,3, \ldots$		
	Example:		
	p0115[0] = 250 s --> p1800 = 2, 4, 8, 12, 16 kHz		
	Possible setting values can be taken from r0114 (if p0009 = p0010 = 0).		
	Minimum pulse frequency: p1800 >= 12 * p1082 * r0313 / 60		
	If p0092 $=1$ the sampling times p0115 and the pulse frequency p1800 are checked every time the parameters are downloaded, and reset to the initial values if necessary. This check can be deactivated by setting p0092 = 0 (making this setting does not influence isochronous PROFIBUS operation).		
	The pulse frequency cannot be changed when motor data identification is active (p1910). If the pulse frequency is set asynchronously to the current controller sampling time (p 1810.12), the following limit applies:		
	p1800 <= 1000 * $2 / \mathrm{p} 0115[0]$		
	If wobbulation is selected (p1810.2), the pulse frequency can only be changed as part of pulse enabling to values with the following ratio:		
	a) p1800<= $1000 / \mathrm{p} 0115[0]$ for p1811>0\%		
	b) $\mathrm{p} 1800<=1000$ * $2 / \mathrm{p} 0115[0]$ for $\mathrm{p} 1811=0 \%$		
	When the pulses are inhibited		
	p1800 > $1000 / \mathrm{p} 0115[0]->\mathrm{p} 1811=0$		
	$\mathrm{p} 1800>1000$ * $2 / \mathrm{p} 0115[0]->1810.2=0$ and p1811 $=0$		
	(applicable for all indices)		
	Refer to: r0110, r0111, p0112, p0113, r0114, p0115, r0193, p0230, p1817		
Notice:	The pulse frequency p1800 can also be asynchronously set to the current controller sampling time (0.05 kHz increment). To do this, p1810.12 must be set to 1 (secondary condition, see p1810).		
	Effects:		
	- switching over the gating unit (p1810.2).		
	- activating the current actual value correction (p1840.0).		
	- minimum pulse frequency 1000 * $0.5 / \mathrm{p} 0115[0]$.		
	- maximum pulse frequency 1000 * 2 / p0115[0].		
	- fluctuating deadtimes and dynamic performance in the current control loop.		
	- increased level of current ripple in the current display.		
Note:	The maximum possible pulse frequency is also determined by the power unit being used.		
	When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (derating, refer to r0067).		
	When using output reactors - maximum 4 kHz	When using output reactors and dv/dt filters (see p0230), the following restrictions apply:	apply:
	- maximum double rated pulse frequency (2.5 or 4 kHz)		
	- maximum rated pulse frequency for chassis converters with set property bit r0193.14		
	When using a sine-wave filter as output filter ($\mathrm{p} 0230=3$), then the pulse frequency cannot be set below the minimum value required for the filter.		

For an external sine-wave filter ($\mathrm{p} 0230=4$), then the minimum pulse frequency is calculated as follows:
f_puls_min $=1.6 /(2$ * Pi * root (p0233 * p0234 * p0235))

- p0233 in H
- p0234 in F

In this case, the pulse frequency must be a multiple of the inverse value of the current controller sampling time (p0115[0]).
If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3$), then the pulse frequency cannot be changed below the minimum value required for the filter.
If $p 1800$ is changed while commissioning ($p 0009, p 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1800 have been changed by a parameter that was set when the drive was commissioned (e.g. p1082).

p1800

A_INF, R_INF

Pulse frequency / Pulse frequency

Can be changed: U, T	Calculated: -
Data type: FloatingPoint32	Dyn. index: -
P-Group: Modulation	Unit group:
Not for motor type: -	Scaling: -
Min	Max
$1.000[\mathrm{kHz}]$	$16.000[\mathrm{kHz}]$

Access level: 4
Func. diagram: 8021
Unit selection: -
Expert list: 1
Factory setting
8.000 [kHz]

Description:

Dependency: The switching frequency can only be changed so that it remains an integer multiple of the current controller sampling rate ($\mathrm{p} 0115[0]$). For $\mathrm{p} 1810.12=1$, pulse frequency p1800 can also be asynchronously set to the current controller sampling time (increment width, 0.05 kHz).
The minimum pulse frequency is always half the value of the current controller sampling rate (current controller frequency). Further, whether a setting value is actually permissible also depends on the line filter being used (p0220).
Danger: An incorrectly set line filter (p 0220) - and a consequentially incorrect setting of the pulse frequency (p 1800), which does not match the actually connected line filter (Active Interface Module, AIM) can result in significant damage to the line filter and the converter. Further, this represents a fire hazard.
Notice: \quad The following should be noted for an asynchronous pulse frequency $(p 1810.12=1)$:

- fluctuating deadtimes and dynamic performance in the current control loop.
- increased level of current ripple in the current display.

Note: \quad The Power Unit being used defines the maximum possible pulse frequency.

p1801[0...n]	Manipulated variable filter type / ManVarFilt type		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 4966
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	1
Description:	Sets the manipulated variable filter as low pass (PT2) or as extended general 2nd order filter.		
Value:	1: PT2 low pass 2: General 2nd order filter		
Dependency:	The manipulated variable filter Refer to: p1800	a p1800.0 and parameteriz	$301 \text {... p1805. }$
Note:	For an extended general 2nd o denominator, i.e. bandstop freq the bandstop frequency is comp The denominator damping can f_3dB bandwidth = 2 * D_deno	inserting the same natural fr dstop filter is implemented. ssed. d from the equation for the ndstop frequency	in both the numerator and in the erator damping of zero is selected, width:

r1801	Actual pulse frequency / Pulse freq act		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	$-[\mathrm{kHz}]$	Factory setting
	$-[\mathrm{kHz}]$	$-[\mathrm{kHz}]$	
Description:	Display and connector output for the actual converter switching frequency.		
Note:	The selected pulse frequency (p1800) may be reduced if the drive converter has an overload condition (p0290).		
	The value can be displayed up to 12 current controller sampling times later than when it is actually effective, because		
	it is not transferred in every current controller sampling time.		

r1801

Actual pulse frequency / Pulse freq act

A_INF, S_INF, R_INF
Can be changed: -
Calculated: -
Dyn. index: - Func. diagram: -
P-Group: Displays, signals
Not for motor type: -
Min

- [kHz]

Display and connector output for the actual converter switching frequency.
When pulse frequency wobbulation is active (p 1810), then the center switching frequency is displayed.
Description:

Notice:
The displayed frequency value is not valid in the SmartMode.
Note: \quad The displayed frequency always corresponds to the inverted duration of the switching period, which is decisive for selecting a suitable line filter (p0220).
The displayed frequency value is therefore not dependent on whether flattop modulation or space vector modulation is selected ($\mathrm{p} 1810, \mathrm{p} 3410$).

p1802[0...n]	Manipulated variable filter denominator natural frequency / ManVarFilt fn_den		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4966
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the denominator natural frequency for manipulated variable filter (PT2, general filter).		
Dependency:	The manipulated variable filter is activated via p1800.0 and parameterized via p1801 ... p1805.		
	Refer to: p1800		
p1802[0...n]	Modulator mode / Modulator mode		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: T	CALC_MOD_LIM_REF	
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	19	0
Description:	Sets the modulator mode.		
Value:	0: Automatic changeover SVM/FLB		
	1: Flat top modulation (FLB)		
	2. Space vector modulatio		
	3: SVM without overcontr		
	4: SVM/FLB without overc		
	5: SVM with pulse frequen		
	6: SVM/FLB with pulse fre	ction	
	7: \quad No edge modulation up		
	8: \quad No edge modulation up		
	9: Edge modulation		
	19: Optimized pulse pattern		
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), or if the power unit firmware is not able to calculate edge modulation (r0192.0 $=0$), then only space vector modulation without overcontrol can be set as modulation type (p1802 = 3).		
	For permanent-magnet synchronous motors and chassis power units, the following applies:		
	Edge modulation or optimized pulse pattern can only be used, if p1810 bit $2=1$ is set.		
	Refer to: r0192, p0230, p7003		
Notice:	If the pulse patterns are enabled with overmodulation option (p1802 < 3) or edge modulation (p1802 > 6), then the current actual value correction is automatically activated (p1840.0 $=0$).		
Note:	When modulation modes are enabled that could lead to overmodulation ($p 1802=0,1,2,5,6$), the modulation depth must be limited using p1803 (default p1803 < 100%). The higher the overmodulation, the greater the current ripple and torque ripple.		
	When changing p1802[x], the values for all of the other existing indices are also changed.		
	p1802 = 7, 8 should be used if the drive is operated below 100 Hz or 60 Hz , and it is necessary to avoid changing over to edge modulation. Above these output frequencies, the modulation depth remains limited so that there the full output voltage of the edge modulation is not reached.		
	The setting p1802 = 19 is only released for chassis power units and SIMOTICS FD motors.		

2.2 List of parameters

p1802[0...n]	Modulator mode / Modulator mode		
VECTOR (F3E), VECTOR_AC (F3E), VECTOR_I_AC (F3E)	Can be changed: T	Calculated: CALC_MOD_LIM_REF	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4	4
Description:	Sets the modulator mode.		
Value:	0: Automatic changeover SVM/FLB		
	2: Space vector modulation (SVM)		
	3: SVM without overcontrol		
	4: SVM/FLB without overcontrol		
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only space vector modulation without overcontrol can be selected as modulation type ($\mathrm{p} 1802=3$).		
	Refer to: r0192, p0230, p7003		
Note:	When modulation modes are enabled that could lead to overmodulation ($p 1802=0,2$), the modulation depth must be limited using p1803 (default p1803 < 100%). The higher the overmodulation, the greater the current ripple and torque ripple.		
	When changing p1802[f the other existing indices	nged.

p1803[0...n]	Manipulated variable filter denominator damping/ManVar_filt D_den		
HLA	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4966
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for the manipulated variable filter (PT2, general filter).		
Dependency:	The manipulated variable filter is activated via p1800.0 and parameterized via p1801 ... p1805.		
	Refer to: p1800		

p1803[0...n]	Maximum modulation depth / Modulat depth max		
VECTOR, VECTOR_AC,	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6723
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	20.0 [\%]	150.0 [\%]	100.0 [\%]
Description:	Defines the maximum modulation depth.		
Note:	p1803 $=100 \%$ is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay).		
	If optimized pulse patterns are enabled (edge modulation), then the modulation depth is limited to below the output frequency of 28 Hz as there is no optimized pulse pattern in this range.		

p1803[0...n]	Maximum modulation depth / Modulat depth max		
VECTOR (F3E), VECTOR_AC (F3E),	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
VECTOR_I_AC (F3E)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6723
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	20.0 [\%]	150.0 [\%]	106.0 [\%]
Description: Note:	$p 1803=100 \%$ is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay).		
p1804[0...n]	Manipulated variable filter numerator natural freq. / ManVarFilt fn_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4966
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the numerator natural frequency for the manipulated variable filter (general filter).		
Dependency:	The manipulated variable filter is activated via p1800.0 and parameterized via p1801 ... p1805.		Refer to: p1800
p1804[0...n]	Filter time constant smoothed modulation index / T_filt mod_idx sm		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_-AC	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	10.0 [ms]
Description:	Filter time constant for the smoothed modulation index to change over the modulator mode.		

p1805[0...n]	Manipulated variable filter numerator damping / ManVarFilt D_num		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4966
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for the manipulated variable filter (general filter).		
Dependency:	The manipulated variable filter is activated via p1800.0 and parameterized via p1801 ... p1805.		
p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_1_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	0.0 [ms]
Description:	Sets the filter time constant for the DC link voltage.		

2.2 List of parameters

r1807	Actual DC link voltage to calculate the modulation depth / VdcActValMod_depth		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Displays, signals	Unit group: $5 _2$	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	$-[V]$
Description:	DC link voltage that is used to convert the setpoint voltage into an equivalent modulation depth.		

r1808	DC link voltage actual value for U_max calculation / Vdc act val U_max		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Displays, signals	Unit group: $5 _2$	Unit selection: 00505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	$-[V]$
Description:	DC link voltage used to determine the maximum possible output voltage.		

r1809	CO: Modulator mode actual / Modulator mode act		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	9	-
Description:	Displays the effective modulator mode.		
Value:	1: Flat top modulation (FLB)		
	2. Space vector modulation (SVM)		
	3: Edge modulation from $28 \mathrm{~Hz} ; 23: 3$		
	4: Edge modulation from $28 \mathrm{~Hz} ; 19: 1$		
	5: Edge modulation from $60 \mathrm{~Hz} ; 17: 3$		
	6: Edge modulation from $60 \mathrm{~Hz} ; 17: 1$		
	7: Edge modulation from 100 Hz ; 9:2		
	8: Edge modulation from $100 \mathrm{~Hz} ; 9: 1$		
	9: Optimized pulse pattern		

$\overline{\mathrm{p} 1810}$	Modulator configuration / Modulator config					
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: T		Calculated: -		Acces	
	Data type: Unsigned16		Dyn. index: -		Func diagram:	
	P-Group: Modulation		Unit group: -		Unit selection: -	
	Not for motor type: -		Scaling: -		Expert list: 1	
	Min		Max		Factory setting	
	-		-		0000000000000000 bin	
Description:	Sets the configuration for the modulator.					
Bit field:		Signal name DC link voltage compensation in the power unit.		1 signal	0 signal	FP
					No	-
	11	Current controller d		Yes	No	-

Note:

For bit 11:
Prerequisite:

- firmware version 4.4 or higher for the Control Unit and power unit.
- booksize or S120 Combi power unit (r0192.27 = 1).
- current controller sampling time p0115[0\} >= $62.5 \mu \mathrm{~s}$.
- for a Double Motor Module the two drive controls must be operated with the same current controller sampling time ($\mathrm{p} 0115[0]$). Otherwise, the higher current controller dynamics can only be activated on the drive with the longer sampling time.
- it is not permissible that the "safety without encoder" is activated (p9306/p9506).

The following changes are necessary after changing bit 11

- computing dead time ($\mathrm{p} 0118=20.5 \mu \mathrm{~s}$ for bit $11=1, \mathrm{p} 0118=0 \mu \mathrm{~s}$ for bit $11=0$).
- controller gains (p1715, p1460).
- with p0340 $=4$ computing dead time and controller gains can be automatically pre-assigned. It may be necessary to still optimize the speed controller.
Before commissioning for the first time ($\mathrm{p} 3925.0=0$ for all data sets) this parameter is automatically pre-assigned to the optimum value.

$\overline{p 1810}$ VECTOR_AC, VECTOR_I_AC

Description: Bit field:

Modulator configuration / Modulator config	
Can be changed: U, T	Calculated: -
Data type: Unsigned16	Dyn. index: -
P-Group: Modulation	Unit group: -
Not for motor type: -	Scaling: -
Min	Max

Sets the configuration for the modulator.
1 signal 0 signa

Bit $1=0$ can only be set when the pulses are inhibited and for $\mathrm{r0192.14}=1$.
Bit 2 can only be set to 1 subject to the following prerequisites:

- Pulse inhibit
- r0192.16 = 1
- p1800<2 x 1000/p0115[0]

Bit 12 can only be changed subject to the following prerequisites:

- preconditions, the same as bit $2=1$
- p1810.3 = 0

For fast current changes, bit $15=1$ together with $\mathrm{p} 1802=0,2$ and p1803>106\% result in a significant increase in the torque ripple. As a consequence, increasing the modulation limit must be checked on an application for application basis.

2.2 List of parameters

Note:

For bit $00=0$:
Voltage limitation from the minimum of the DC link voltage (lower ripple in the output current, reduced output voltage).
For bit $00=1$:
Voltage limitation from averaged DC link voltage (higher output voltage with increased ripple in the output current).
The selection is only valid if the DC link compensation is not performed in the Control Unit (bit $1=0$).
For bit $01=0$:
DC link voltage compensation in the modulator.
For bit $01=1$:
DC link voltage compensation in the current control.
For bit $02=0$:
A gating unit that does not permit wobbulation is used.
Edge modulation is not possible for a parallel connection with a single-winding system (p7003 = 0).
Bit 02 cannot be set to 0 if bit $12=1$.
For bit $02=1$:
A gating unit that permits wobbulation is used.
For a wobbulation amplitude $\mathrm{p} 1811=0$, the maximum possible pulse frequency in $\mathrm{p} 1800=2 \times 1000 / \mathrm{p} 0115[0]$.
For a wobbulation amplitude p1811>0, the maximum possible pulse frequency in p1800 $=1000 / \mathrm{p} 0115[0]$.
If optimized pulse patterns has been activated (p1802>6), then a parameter save is required and switch off and switch on again. This is displayed using a message (F01040).
For bit $03=1$:
The actual current value sensing and the determination of the valve ON times takes place with a double current controller clock cycle and phase offset.
The activation is only possible with $\mathrm{r} 0192.23=1$ and $\mathrm{p} 1810.12=0$ - and takes effect the next time the system is powered up.
For bit $08=1$:
Above the frequency threshold r1836[0], the pulse frequency is switched to the value in p1800. Below r1836[0] (minus the hysteresis), the pulse frequency is reduced to the next possible pulse frequency (see r0114).
For bit $09=1$:
Above the frequency threshold r1836[1], the pulse frequency is increased to the next possible value. Below r1836[1] (minus the hysteresis), the pulse frequency is reduced to the next possible pulse frequency.
If bit 8 is set to 0 , bit 9 is automatically reset.
For bit $10=0$:
Pulse-locking function activated.
For bit $10=1$:
Pulse-dropping function activated.
For bit $12=0$:
The pulse frequency p1800 can also be synchronously set to the current controller clock cycle (see r0114).
Bit 12 can only be set from 1 to 0 if the pulse frequency p1800 is set synchronously to the current controller clock cycle. In this case, the gating unit is not switched over.
For bit $12=1$:
The pulse frequency p1800 can also be asynchronously set to the current controller clock cycle. In this case, the effects should be observed (see p1800).
If bit 12 is set to 1 , then the gating unit is automatically switched over (p1810.2 $=1$). If this is not possible (see above), then bit 12 cannot be set to 1 .
Bit 12 cannot be set to 1 , if p1810.3 $=1$ is set.
For bit $15=1$:
For $\mathrm{p} 1802=0,2$ and $\mathrm{p} 1803>106 \%$, dynamically, a modulation depth of more than 106% is permitted. When p 1803 is increased, the dynamic modulation depth reserve p1574 should be increased so that the maximum output voltage r0071 approximately remains the same. For U/f control, the overcontrol in p1381 can be separately reduced.

2.2 List of parameters

	13	Compute software gating unit on Control Unit	Yes	No	
	14	Activate optimized pulse pattern	Yes	No	
	15	Activate flat-top modulation	Yes	No	
Dependency:	The modulator configuration is overwritten when the power unit (p0201) or the line filter type (p 0220) is changed. It is possible that special settings required for the modulator must be newly set.				
Notice:	For bit $02=1$:				
	The wobble function influences the quality of the current control (grid droop operation with p5401 = 1 is not influenced). This is the reason that the risk of faults due to overcurrent increases for applications with the highest dynamic response in the overload range,				
	For booksize drive units, the following additionally applies:				
	This function involves additional computing time. It may be necessary to reduce the number of DO objects computed on the same Control Unit, or longer sampling times must be used (observe the messages). For example, a clock setting p0115[0] $=125 \mu \mathrm{~s}$ is not possible.				
	For bit $13=1$:				
	This function involves additional computing time. It may be necessary to reduce the number of DO objects computed on the same Control Unit, or longer sampling times must be used (observe the messages).				
Note:	For bit 02, 05, 14, 15 :				
	The setting can only be changed when the pulses are inhibited.				
	For bit $02=0$:				
	A gating unit that does not permit wobbulation is used.				
	For bit $02=1$ (only permissible for $0192.16=1$):				
	A gating unit that permits wobbulation is used.				
	The frequency range of the wobbulation function is set using p1811.				
	The Smart Mode (p3400.0 = 1) is not permissible - and results in F6050.				
	For bit $04=0$ (only valid for bit $2=1$):				
	The pulse frequency wobbulation amplitude (p1811) is enabled.				
	For bit $04=1$ (only valid for bit $2=1$):				
	The pulse frequency wobbulation amplitude (p1811) is disabled.				
	For bit $05=1$ (only permissible for r0192.19 = 1):				
	Reserved.				
	For bit 06 (only valid for bit $05=1$):				
	Reserved.				
	For bit 07 (only valid for bit $05=1$):				
	Reserved.				
	For bit $10=0$:				
	The pulse-locking function is activated.				
	For bit $10=1$:				
	The pulse-dropping function is activated.				
	For bit 12:				
	Reserved.				
	For bit $13=0$:				
	The gating unit is separately calculated in each power unit.				
	For bit $13=1$ (only permissible for r0192.26 = 1):				
	The gating unit is calculated in the Control Unit.				
	The Smart Mode (p3400.0 = 1) is not permissible - and results in F6050.				
	For bit 14:				
	Reserved.				
	For bit $15=0$:				
	To deactivate flat-top control mode, p3400.1 also needs to be set to 0 .				
	For bit $15=1$:				
	Flat-top control mode is active regardless of the setting for p3400.1.				

p1811[0...n]	Pulse frequency wobbulation amplitude / Puls wobb ampl	
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T Calculated: -	Access level: 3
	Data type: FloatingPoint32 Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Modulation Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	0 [\%] 20 [\%]	0 [\%]
Description:	Sets the amplitude of the statistical wobbulation signal. This signal is used to vary the pulse frequency to create a more pleasant sound.	
Note:	p1811 > 0 is possible, if the following applies:	
	- configuration: p1810.2 = 1 (wobbulation activated)	
	- pulse frequency: p1800<= 1000 / p0115[0]	
	- output filter, filter type: p0230<3 (no sine-wave filter)	

p1811

A_INF, S_INF, R_INF
Pulse frequency wobbulation amplitude / Puls wobb ampl
Can be changed: T Calculated:
Data type: FloatingPoint32
P-Group: Modulation
Not for motor type: -
Min
0 [\%]
$\begin{array}{ll}\text { Description: } & \text { Sets the amplitude of the statistical wobbulation signal. } \\ \text { This signal is used to vary the pulse frequency to create a more pleasant sound. }\end{array}$
$\begin{array}{ll}\text { Description: } & \text { Sets the amplitude of the statistical wobbulation signal. } \\ \text { This signal is used to vary the pulse frequency to create a more pleasant sound. }\end{array}$
Dependency: The modulator configuration is overwritten when the power unit (p 0201) or the line filter type (p 0220) is changed. It is possible that special settings required for the modulator must be newly set.

Note: \quad It is only possible to modify the parameter for p1810.2 $=1$ (wobbulation activated).
The change between the selected wobble width and the wobble width zero is also possible in operation with the pulses enabled (p1810.4).

p1812	BI: Offset calibration output current measurement / Off_calibr I_outp		
VECTOR,	Can be changed: T	Calculated: -	Access level: 4
VECTOR_AC,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source to activate/deactivate offset calibration for output current measurement.		
Caution: \uparrow	The absence of offset calibration can have a negative effect on control properties. Offset calibration must be performed before switching on the power unit for the first time after POWER ON.		
Note:	Offset calibration is only performed with pulses suppressed and can take up to one second.		
p1814[0...n]	Vdc filter dead band for modulation switchover / Vdc filt dead band		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	12.0 [\%]	0.0 [\%]
Description:	Sets the filter dead bandwidth for the DC link voltage signal to switch over the modulation type for optimized pulse patterns.		

2.2 List of parameters

Recommendation: For power units with controlled regenerative line feedback, a value of approximately 2% is recommended. For all other power units, a value of approximately 8% (as a result of the increased DC link voltage ripple under load).

Description:		Sets manual setting and overwriting of automatically determined phase shift for "offset clocking".
		For p1816 = -1, the following applies:
		Automatic mode. The phase shift value is automatically determined.
		For p1816 = $0 \ldots 16$, the following applies:
		Manual mode. The user should define the phase shift value as follows:
		1. PWM cycle (1/p1800) > current controller cycle (p0115[0])
		The power unit executes a phase shift from Tshift = current controller cycle (p0115[0]) * p1816.
		2. PWM cycle (1/p1800) <= current controller clock cycle (p0115[0])
		For p1816 >= 1, the power unit executes a phase shift from Tshift $=$ PWM cycle/2.
	Dependency:	Refer to: r0116, p1800, p1819

2.2 List of parameters

p1817	Minimum ratio, pulse frequency to the output frequency / Min f_puls / f_max		
VECTOR,	Can be changed: C2(2)	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	8.3	15.0	12.0
Description:	Sets the minimum ratio between the pulse frequency and the output frequency.		
Notice:	If the ratio between the pulse frequency and the output frequency is reduced, then oscillations can occur in the output current that can result in significant levels of current ripple with the appropriate negative effects.		
Note:	When the maximum speed is changed, the pulse frequency p1800 is automatically limited to this minimum ratio. It is not permissible to reduce the pulse frequency if this would result in this ratio being undershot.		

Phase for PWM generation configuration / Ph for PWM config

$\mathbf{p 1 8 1 8}$
CU_I, CU_NX_CX,
CU_S_AC_DP,
CU_S_AC_PN,
CU_S12O_PN,
CU_S15OPN,
CU_S12ODP,
CU_S15O_DP,
CU_I_D410
Description:

Dependency:
CU I, CU NX CX
CUSAC-PN, CU_S120_PN, CU_S150_PN, CU S150 DP,

Description:

Note:

Can be changed: \rceil
Data type: Integer16
P-Group: Modulation
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
1

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Sets the phase shift for offset clocking.
For the first active power unit, it is specified whether clocking is to start at 0° (value $=0$) or 180° (value $=1$). All other active power units are clocked alternately according to the setting made here.
Refer to: p1819
A change only becomes effective after a POWER ON.
The parameter is not influenced by setting the factory setting.

Phase for PWM generation / Ph for PWM
Can be changed: U, T Calculated: -
Data type: Integer16 Dyn. index: -
P-Group: Modulation Unit group: -
Not for motor type: - Scaling: -
Min Max
-1
Display for "offset clocking".
Depending on the particular case, the value is interpreted differently:
Case 1:
The PWM clock cycle (1/p1800[D]) is greater than the current controller clock cycle ($\mathrm{p} 115[0]$) and the ratio between the PWM clock cycle and the current controller clock cycle and is an integer and even multiple of it (e.g. p0115[0] = $125 \mu \mathrm{~s}, \mathrm{p} 1800[\mathrm{D}]=4 \mathrm{kHz}, 2 \mathrm{kHz}, 1 \mathrm{kHz}$).
The value displayed refers to:

- the phase shift in the current-controller cycles to be executed by the power unit.

Case 2:
The PWM clock cycle (1/p1800[D]) is less than or equal to the current controller clock cycle (p0115[0]) and the ratio between the current controller clock cycle and the PWM clock cycle is an integer and even multiple of it (e.g. $\mathrm{p} 0115[0]=125 \mu \mathrm{~s}, \mathrm{p} 1800[\mathrm{D}]=8 \mathrm{kHz}, 16 \mathrm{kHz}$.
The value 1 displayed means that:

- the power unit is to apply a phase shift of 180° (from the PWM cycle).

A value of 0 displayed on all power units of the drive line-up means the following:

- the general conditions of the "offset clocking" (see p1815) are not fulfilled, i.e. no power unit is clocked with an offset.
Dependency: \quad Refer to: p0108, r0108, p0115, p1800, p1815, p1816, p1818

2.2 List of parameters

Note:	For reasons of compatibility, the parameter is an adjustable parameter. However, it functions solely as a display parameter. This means that factory setting -1 no longer has any significance and is only available for reasons of compatibility.		
p1819	Phase for PWM generation / Ph for PWM		
A_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1	16	0
Description:	Display for "offset clocking".		
	Depending on the particular case, the value is interpreted differently:		
	Case 1:		
	The PWM clock cycle is greater than the current controller clock cycle ($\mathrm{p} 0115[0]$) and the ratio between the PWM clock cycle and the current controller clock cycle and is an integer and even multiple of it (e.g. p0115[0] = $125 \mu \mathrm{~s}$, pulse frequency $=4 \mathrm{kHz}, 2 \mathrm{kHz}$).		
	The value displayed refers to:		
	- the phase shift in the current-controller cycles to be executed by the power unit.		
	The PWM clock cycle is less than or equal to the current controller clock cycle (p0115[0]) and the ratio between the current controller clock cycle and the PWM clock cycle is an integer and even multiple of it (e.g. p0115[0] = $125 \mu \mathrm{~s}$, pulse frequency $=8 \mathrm{kHz}, 16 \mathrm{kHz}$).		
	The value 1 displayed means that:		
	- the power unit is to apply a phase shift of 180° (from the PWM cycle).		
	A value of 0 displayed on all power units of the drive line-up means the following:		
	- the general conditions of the "offset clocking" (see p1815) are not fulfilled, i.e. no power unit is clocked with an offset.		
Dependency:	Refer to: p0108, r0108, p0115, p1800, p1815, p1816, p1818		
Note:	For reasons of compatibility, the parameter is an adjustable parameter. However, it functions solely as a display parameter. This means that the minimum value -1 no longer has any significance and is only available for reasons of compatibility.		
p1820[0...n]	Invert output voltage / U_output inv		
HLA	Can be changed: C2(3)	Calculated: C	Access level: 3
	Data type: Integer16	Dyn. index: D	Func. diagram:
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to invert the output voltage.		
	This means that with the same setpoint, the piston direction is reversed without inverting the encoder actual value.		
Value:	0: OFF		
	1: ON		
Note:	This setting can only be changed when the controller is inhibited.		

p1820[0...n]	Reverse the output phase sequence / Outp_ph_seq rev		
VECTOR,	Can be changed: $\mathrm{C} 2(3)$	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 6732
TOR_1	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	If the motor does not rotate in the required direction, then the output phase sequence can be reversed using this parameter. This means that with the same setpoint, the motor direction is reversed without reversing the encoder actual value.		
Value:	$\begin{array}{ll} 0: & \text { OFF } \\ \text { 1: } & \text { ON } \end{array}$		
Dependency:	Refer to: p1821		
Caution:	For 12-pulse converters changes by 60° as the sig Changing the direction us consequence, the limit pro	for system 2, for a directio changes. This can be ad is not recognized by the " Direction) from r9733 no	n reversal, the phase offset 1810.15. tion without encoder". As a ctions.
Note:	This setting can only be p1821 can be used to rev	ulses are inhibited. uence and encoder actual	

p1821[0...n]	Direction / Direction		
HLA	Can be changed: C2(3)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Min for motor type:	Max	Expert list: 1
	0	1	Factory setting
Description:	Setting to change the direction.	0	

p1821[0...n]	Direction of rotation / Dir of rot		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: C2(3)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 4704, 4710, 4711, 4715, 5730, 6730, 6731, 6732
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	If the parameter is changed, it reverses the direction of rotation of the motor and the encoder actual value without changing the setpoint.		
Value:	0: Clockwise 1: Counter-clockwise		
Dependency:	Refer to: F07434		
Notice:	An appropriate fault is output for a drive data set changeover where the direction of rotation changes and the pulses are enabled.		
	After changing parameter p1821, the direction of rotation is not automatically adapted in the safety area. The following parameters can be used to set the direction of rotation for safety monitoring:		
	-SI Motion encoder configuration safety functions - position actual value sign change (p9516.1/p9316.1, only active for operation with encoder)		
	-SI Motion gearbox direction of rotation reversal (p9539/p9339, also active for encoderless operation)		
Note:	For operation with the phase sequence U/V/W, the direction of rotation is defined when viewing the face side of the motor output shaft.		
	When changing the direction of rotation, the rotating field direction of the current controller is reversed. The speed actual value (e.g. r0063) is also reversed so that the control sense is kept and internally causing the direction of rotation to be reversed with the same setpoint. Further, the position actual values of the actual encoder are reversed (e.g. r0482[0...2]).		

p1821[0...n]	Direction / Direction		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: C2(3)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 4704, 4710, 4711, 4715, 5730, 6730, 6731, 6732
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to change the dire If the parameter is changed changing the setpoint.	irection of rotation of the m	he encoder actual value without

Value: 0 : Clockwise

1: Counter-clockwise
Dependency: Refer to: F07434
Notice: \quad For a drive data set changeover with differently set direction and pulse enable, an appropriate fault is output. After changing parameter p1821, the direction of rotation is not automatically adapted in the safety area. The following parameters can be used to set the direction of rotation for safety monitoring:
-SI Motion encoder configuration safety functions - position actual value sign change (p9516.1/p9316.1, only active for operation with encoder)
-SI Motion gearbox direction of rotation reversal (p9539/p9339, also active for encoderless operation)

Note: \quad For operation with the phase sequence $U / V / W$, the direction is defined when viewing the face side of the motor output shaft.
When changing the direction, the rotating field direction of the current controller is reversed. The actual velocity (e.g. r0063) is also reversed so that the control sense is kept and internally causing the direction of rotation to be reversed with the same setpoint. Further, the position actual values of the actual encoder are reversed (e.g. r0482[0...2]).
For VECTOR, the following applies:
p1820 can be used to reverse the direction of the motor without reversing the encoder actual value.

p1821[0...n]	Direction of rotation / Dir of rot		
VECTOR, VECTOR AC, VECTOR_I_AC	Can be changed: C2(3)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 4704, 4710, 4711, 4715, 5730, 6730, 6731, 6732
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to change the direction of rotation If the parameter is changed, it reverses th changing the setpoint.	direction of rotation of the	e encoder actual value without

Value: 0 : Clockwise
1: Counter-clockwise

Dependency:
Danger:
Refer to: F07434
When using external speed actual values for the speed controller (see p1440), for a direction of rotation change ($p 1821=1$), then its polarity must also be changed (e.g. for drive object ENCODER via p0410). Otherwise, a positive coupling can occur in the speed control loop and the drive would then be accelerated up to the speed limit.
For 12-pulse converters with 30° offset angle for system 2, for a direction of rotation reversal, the phase offset changes by 60° as the sign of the angle offset changes. This can be adapted in p1810.15.
Caution:

An appropriate fault is output for a drive data set changeover where the direction of rotation changes and the pulses are enabled.
After changing parameter p1821, the direction of rotation is not automatically adapted in the safety area. The following parameters can be used to set the direction of rotation for safety monitoring:
-SI Motion encoder configuration safety functions - position actual value sign change (p9516.1/p9316.1, only active for operation with encoder)
-SI Motion gearbox direction of rotation reversal (p9539/p9339, also active for encoderless operation)
Note: \quad For operation with the phase sequence U/V/W, the direction of rotation is defined when viewing the face side of the motor output shaft.
When changing the direction of rotation, the rotating field direction of the current controller is reversed. The speed actual value (e.g. r0063) is also reversed so that the control sense is kept and internally causing the direction of rotation to be reversed with the same setpoint. Further, the position actual values of the actual encoder are reversed (e.g. r0482[0...2]).
p1820 can be used to reverse the direction of the motor without reversing the encoder actual value.

p1821[0...n]	Direction of rotation / Dir of rot		
VECTOR (n / M),	Can be changed: C2(3)	Calculated: -	Access level: 3
VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Data type: Integer16	Dyn. index: DDS, p0180	$\begin{aligned} & \text { Func. diagram: } 4704,4710, \\ & 4711,4715,5730,6730,6731, \\ & 6732 \end{aligned}$
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to change the direction of rotation. If the parameter is changed, it reverses the changing the setpoint.	irection of rotation of the	he encoder actual value without

[^2]
2.2 List of parameters

Dependency:	Refer to: p6278
	Refer to: F07434
Danger:	When using external speed actual values for the speed controller (see p1440), for a direction of rotation change ($\mathrm{p} 1821=1$), then its polarity must also be changed (e.g. for drive object ENCODER via p0410). Otherwise, a positive coupling can occur in the speed control loop and the drive would then be accelerated up to the speed limit.
Caution:	For 12-pulse converters with 30° offset angle for system 2, for a direction of rotation reversal, the phase offset changes by 60° as the sign of the angle offset changes. This can be adapted in p1810.15. When using a separately excited synchronous machine with reverse field excitation, when setting p1821, it must be checked as to whether the phase sequence of the exciter converter must also be changed.
Notice:	An appropriate fault is output for a drive data set changeover where the direction of rotation changes and the pulses are enabled. After changing parameter p1821, the direction of rotation is not automatically adapted in the safety area. The following parameters can be used to set the direction of rotation for safety monitoring: -SI Motion encoder configuration safety functions - position actual value sign change (p9516.1/p9316.1, only active for operation with encoder) -SI Motion gearbox direction of rotation reversal (p9539/p9339, also active for encoderless operation)
Note:	For operation with the phase sequence U/V/W, the direction of rotation is defined when viewing the face side of the motor output shaft. When changing the direction of rotation, the rotating field direction of the current controller is reversed. The speed actual value (e.g. r0063) is also reversed so that the control sense is kept and internally causing the direction of rotation to be reversed with the same setpoint. Further, the position actual values of the actual encoder are reversed (e.g. r0482[0...2]). p1820 can be used to reverse the direction of the motor without reversing the encoder actual value.

p1822
SERVO, VECTOR,
Can be changed: T

Data type: Unsigned32
P-Group: -
Not for motor type: -
Min
500 [ms]
Dyn. index: -
Unit group: -
Scaling: -
Max Factory setting
540000 [ms]

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
1000 [ms]

Description: Sets the tolerance time for line phase monitoring for blocksize power units.
If a line phase fault is present for longer than this tolerance time, then a corresponding fault is output.
Dependency: Refer to: F30011
Notice: \quad When operating with a failed line phase, depending on the active power, values higher than the default value can either immediately damage the power unit or damage it over the long term.
Note: \quad For the setting p1822 = maximum value, line phase monitoring is deactivated.
p1825 Converter valve threshold voltage / Threshold voltage
VECTOR, Can be changed: U, T

Data type: FloatingPoint32
P-Group: Modulation
Not for motor type: -
Min
0.0 [Vrms]

Calculated: CALC_MOD_ALL
Dyn. index: -
Unit group: -
Scaling: -
Max
100.0 [Vrms]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0.6 [Vrms]

Description: Sets the threshold voltage drop of the valves (power semiconductor devices) to be compensated.
Note:

p1827	Infeed compensation valve lockout time operating mode / INFcomp t_lockMode		
A_INF, S_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Factory setting
	Min	1	0
	0		
Description:	Sets the operating mode for the compensation of the valve lockout time.		
Value:	$0: \quad$ Compensation valve lockout time deactivated		
	$1: \quad$ Compensation valve lockout time activated		
Note:	The compensation is always active, independent of the value of this parameter if the closed-loop control is activated		
	to suppress circulating currents (p7035) for power units connected in parallel.		

p1828	Compensation valve lockout time phase U/Comp t_lock ph U		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	$0.00[\mu \mathrm{~s}]$	$0.00[\mu \mathrm{~s}]$	
	Sets the valve lockout time to compensate for phase U.		
Description:	Deadtime compensation is deactivated with p7003 $=2$.		
Notice:	The value is automatically calculated in the motor data identification routine.		
Note:	For type PM340 power units, the value is limited to $3.98 \mu \mathrm{~s}$.		

p1829	Compensation valve lockout time phase V / Comp t_lock ph V		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	1000000.00 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase V.		
Notice:	Deadtime compensation is deactivated with p7003 $=2$.		
Note:	For type PM340 power units, the value is limited to $3.98 \mu \mathrm{~s}$.		
p1830[0...n]	Factor plane adaptation positive / Fact pl_adap pos		
HLA	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4965, 4970, 4975
	P-Group: Motor	Unit group: -	Unit selection:-
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	200.0 [\%]	100.0 [\%]
Description:	Sets the factor for the plane compensation in the positive direction.		
Dependency:	Refer to: p1831		

2.2 List of parameters

p1833[0...n]	Transition point compensation Q1 positive zero range / Trans pt Q1 pos		
HLA	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4966, 4975
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.01 [\%]	95.00 [\%]	0.01 [\%]
Description:	Sets the flow rate Q for point 1 positive (zero range) of the transition point compensation.		
	The characteristic for the transition point compensation comprises the following value pairs:		
	Flow rate (Q) / voltage (U)		
	Positive range:		
	- p1833 / p1834 --> Point 1 pos (zero range), rounding p1835		
	- p1839 / p1840--> Point 2 pos, rounding p1841		
	- p1845 / p1846 --> Point 3 pos (saturation)		
	Negative range:		
	- p1836 / p1837 --> Point 1 neg (zero range), rounding p1838		
	- p1842 / p1843 --> Point 2 neg, rounding p1844		
	- p1847 / p1848 --> Point 3 neg (saturation)		
Dependency:	Refer to: p1834, p1835		

r1833[0...2] Setpoints phase currents for HW current control / Setp_I

A_INF, S_INF, R_INF
Can be changed: Data type: FloatingPoint32
P-Group: Modulation
Not for motor type: -
Min

- [A]

Description: Displays the phase setpoint currents for hardware current control.
Index:
[0] = Phase U
[1] = Phase V
[2] = Phase W
p1834[0...n] Transition point compensation U1 positive zero range / Trans pt U1 pos
HLA
Can be changed: C2(3), U, T
Calculated: CALC_MOD_REG
Access level: 3
Data type: FloatingPoint32
Dyn. index: DDS, p0180
Func. diagram: 4966, 4975
P-Group: Motor
Unit group: - Unit selection: -
Not for motor type: -
Scaling: -
Expert list: 1
Min Max Factory setting
0.00 [\%] 95.00 [\%] 0.00 [\%]

Description: Sets the voltage U for point 1 positive (zero range) of the transition point compensation.
The characteristic for the transition point compensation comprises the following value pairs:
Flow rate (Q) / voltage (U)
Positive range:

- p1833 / p1834 --> Point 1 pos (zero range), rounding p1835
- p1839 / p1840 --> Point 2 pos, rounding p1841
- p1845 / p1846 --> Point 3 pos (saturation)

Negative range:

- p1836 / p1837 --> Point 1 neg (zero range), rounding p1838
- p1842 / p1843 --> Point 2 neg, rounding p1844
- p1847 / p1848 --> Point 3 neg (saturation)

Dependency: Refer to: r1833, p1833, p1835

2.2 List of parameters

p1835[0...n]	Transition point compensation rounding 1 positive zero range / Trans pt rnd 1 pos		
HLA	Can be changed: C2(3), U, T	Calculated: -	Access level: 3

p1835[0...1]	Pulse frequency reduction switchover frequency shift / f_puls_red f_sw		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram:
VECTOR_I_AC (n/M)	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Hz]	800.00 [Hz$]$	$0.00[\mathrm{~Hz}]$
Description:	Frequency to shift the switchover frequency r1836 for pulse frequency reduction.		
	The parameter value reduces the switchover frequency threshold with the same parameter index.		
Index:	[0] = Frequency limit 1 [1] = Frequency limit 2		
Dependency:	Refer to: r1836, p1836		

p1836[0...n] Transition point compensation Q1 negative zero range / Trans pt Q1 neg
Calculated: CALC_MOD_REG

Data type: FloatingPoint32 Dyn. index: DDS, p0180
P-Group: Motor
Not for motor type: -

Min

0.01 [\%]

Unit group: -
Scaling: -
Max
95.00 [\%]

Func. diagram: 4966, 4975
Unit selection: -
Expert list: 1
Factory setting
0.01 [\%]

Description: Sets the flow rate Q for point 1 negative (zero range) of the transition point compensation.
Dependency: Refer to: r1837, p1837, r1838, p1838

2.2 List of parameters

Note: If the Control Unit is operated with a PM240-2 with hardware STO (HW-STO), then the following assignments are obtained for the two HW-STO input terminals:
Input terminal STO_A -> r1838.4 switch-off signal path lower Input terminal STO_B -> r1838.3 switch-off signal path upper The bits that are not written to are used for internal diagnostics.

r1838.0... 15	CO/BO: Gating unit status word 1 / Gating unit ZSW1				
A_INF, S_INF, R_INF	Can be changed: -		Calculated: - Acces		
	Data type: Unsigned16		Dyn. index: - Func.		
	P-Group: Modulation		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and BICO output for status word 1 of the power unit.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Fault time-critical	ON	OFF	-
		Gating unit mode bit 0	ON	OFF	-
		Pulse enable	ON	OFF	-
		Upper switch-off signal path	ON	OFF	-
		Lower switch-off signal path	ON	OFF	-
		Gating unit mode bit 1	ON	OFF	-
		Gating unit mode bit 2	ON	OFF	-
	07	Current lim	ON	OFF	-
		Current limiting 2	ON	OFF	-
	09	Overcurrent	ON	OFF	-
		Gating unit state bit 0	ON	OFF	-
		Gating unit state bit 1	ON	OFF	-
		Gating unit state bit 2	ON	OFF	-
		Alarm status bit 0	ON	OFF	-
		Alarm status bit 1	ON	OFF	-
		Diagnostics 24 V	ON	OFF	-
p1839[0...n]	Transition point compensation Q2 positive / Trans pt Q2 pos				
HLA	Can be changed: C2(3), U, T		Calculated: CALC_MOD_REG Acces		
	Data type: FloatingPoint32		Dyn. index: DDS, p0180 Func.		
	P-Group: Motor		Unit group: - Unit s		
	Not for motor type: -		Scaling: - Exper		
	Min		Max	Factory setting	
	0.20 [\%]		95.00 [\%]	10.00 [\%]	
Description:	Sets the flow rate Q for point 2 positive of the transition point compensation.				
Dependency:	Refer to: p1840, r1841, p1841				
p1840[0...n]	Transition point compensation U2 positive / Trans pt U2 pos				
HLA	Can be changed: C2(3), U, T		Calculated: CALC_MOD_REG Acces		
	Data type: FloatingPoint32		Dyn. index: DDS, p0180 Func.		
	P-Group: Motor		Unit group: - Unit sele		
	Not for motor type: -		Scaling: - Expert		
	Min		Max	Factory setting	
	0.00 [\%]		95.00 [\%]	10.00 [\%]	
Description:	Sets the voltage U for point 2 positive of the transition point compensation.				
Dependency:	Refer to: p1839, r1841, p1841				

p1843[0...n]	Transition point compensation U2 negative / Trans pt U2 neg		
HLA	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4966, 4975
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	95.00 [\%]	10.00 [\%]
Description:	Sets the voltage U for point 2 negative of the transition point compensation.		
Dependency:	Refer to: p1842, p1844		
Note:	During operation (pulses enabled) the configuration cannot be changed by changing over drive data sets.		
p1844[0...n]	Transition point compensation rounding 2 negative / Trans pt rnd 2 neg		
HLA	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4966, 4975
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	30.00 [\%]	2.50 [\%]
Description:	Sets the rounding for point 2 negative of the transition point compensation.		
Dependency:	Refer to: p1842, p1843		
p1845[0...n]	Transition point compensation Q3 positive saturation / TransPt Q3 pos sat		
HLA	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4975
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.20 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the flow rate Q for point 3 positive (saturation) of the transition point compensation.		
Dependency:	Refer to: p1846		
p1845[0...n]	Actual value correction evaluation factor Lsig / ActVal_cor ev Lsig		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	10.00	1.00
Description:	Sets the weighting factor for the leakage inductance of the L-R element of the actual value correction.		
Dependency:	Refer to: p0391, p0392, p0393		
Note:	The load-dependent adaptation of the leakage inductance of the current actual value correction is defined using p0391 ... p0393.		
p1846[0...n]	Transition point compensation U3 positive saturation / TransPt U3 pos sat		
HLA	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4975
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.20 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the voltage U for point 3 positive (saturation) of the transition point compensation.		
Dependency:	Refer to: p1845		

2.2 List of parameters

p1846[0...n]	Actual value correction damping factor / ActV_corr D_factor	
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T Calculated: - Data type: FloatingPoint32 Dyn. index: DDS, p0180 P-Group: Modulation Unit group: - Not for motor type: - Scaling: - Min Max 0.00 10.00	Access level: 4 Func. diagram: - Unit selection: - Expert list: 1 Factory setting 1.00
Description:	Sets the damping factor for the actual value correction. The factor multiplies the TO/Tsig ratio in the feedback branch of the LR element.	
$\begin{aligned} & \text { p1847[0...n] } \\ & \text { HLA } \end{aligned}$	Transition point compensation Q3 negative saturation / Tra	Pt Q3 neg sat Access level: 3 Func. diagram: 4975 Unit selection: - Expert list: 1 Factory setting 100.00 [\%]
Description: Dependency:	Sets the flow rate Q for point 3 negative (saturation) of the transition point comp Refer to: r1848, p1848	sation.
$\begin{aligned} & \text { p1848[0...n] } \\ & \text { HLA } \end{aligned}$	Transition point compensation U3 negative saturation / Tra	Pt U3 neg sat Access level: 3 Func. diagram: 4975 Unit selection: - Expert list: 1 Factory setting 100.00 [\%]
Description: Dependency:	Sets the voltage U for point 3 negative (saturation) of the transition point compensation. Refer to: p1847	
$\begin{aligned} & \hline \mathbf{r 1 8 4 8 [0 . . . 5]} \\ & \text { VECTOR, } \\ & \text { VECTOR_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	Actual value correction phase currents / ActVal_corr I_ph	Access level: 4 Func. diagram: - Unit selection: - Expert list: 1 Factory setting
Description: Index:	Displays phase correction currents as well as the drive converter phase currents [0] = Harmonics phase U [1] = Harmonics phase V [2] = Harmonics phase W [3] = Measured value phase U [4] = Measured value phase V [5] = Measured value phase W	

$\mathbf{p 1 9 0 0}$
VECTOR,
VECTOR_AC,
VECTOR_I_AC

Description:

Value:

Motor data identification and rotating measurement / MotID and rot meas		
Can be changed: $\mathrm{C} 2(1), \mathrm{T}$	Calculated: -	Access level: 1
Data type: Integer16	Dyn. index: -	Func. diagram: -
P-Group: Motor identification	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	2	2

Sets the motor data identification and speed controller optimization.
p1900 = 0:
Function inhibited.
p1900 $=2$:
Induction motors --> set p1910 = 1 and p1960 = 0
Permanent-magnet or separately excited synchronous motors --> set p1910 = 1, p1990 = 1 and p1960 $=0$
When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next switch-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.
For permanent-magnet or separately excited synchronous motors, the encoder is adjusted with the next switch-on command. The motor must be free to rotate and rotates through 1.5 revolutions of the motor encoder.

Notice:

Note:

Dependency:

0 : Inhibited
2: Identify motor data (stationary)
In the simulation mode, the parameter cannot be written into.
When selecting the motor data identification routine, the drive data set changeover is suppressed.
Refer to: p1272, p1300, p1910
Refer to: F07990, A07991
If there is a motor holding brake, it must be open (p1215 = 2).
To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
It is not permissible to activate write protection during the motor identification (p7761).
During the rotating measurement it is not possible to save the parameters (p0971, p0977).
The motor and control parameters of the vector control are only optimally set when both measurements are carried out (initially at standstill, and then with the motor rotating). The measurement with rotating motor is not performed for p1300 < 20 (U/f controls).
An appropriate alarm is output when the parameter is set.
The switch-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it.
The duration of the measurements can lie between 0.3 s and several minutes. This time is, for example, influenced by the motor size and the mechanical conditions.
p1900 is automatically set to 0 after the motor data identification routine has been completed.
For a reluctance motor, a pole position identification is carried out during the stationary measurement. As a consequence, faults that occur can also be assigned to the pole position identification.
For U/f control (p1300), identification with speed controller optimization does not make sense (e.g. p1900 = 1).

p1900	Motor data identification and rotating measurement / MotID and rot meas		
$\begin{aligned} & \text { VECTOR }(\mathrm{n} / \mathrm{M}), \\ & \text { VECTOR_AC }(\mathrm{n} / \mathrm{M}), \\ & \text { VECTOR_I_AC }(\mathrm{n} / \mathrm{M}) \end{aligned}$	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	2
Description:	Sets the motor data identification and speed controller optimization.		
	The motor identification should first be performed with the motor stationary (p1900 = 1, 2; also refer to p1910). Based on this, additional motor and control parameters can be determined using the motor data identification with the motor rotating (p1900 = 1, 3; also refer to p1960); not for p1300<20.		
	Function inhibited.		
	p1900 = 1		
	Induction motors --> set p1910 = 1 and p1960 = 0, 1, 2 depending on p1300		
	Permanent-magnet or separately excited synchronous motors --> set p1910 = 1, p1990 = 1 and p1960 $=0,1,2$ depending on p1300		
	When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next switch-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.		
	For permanent-magnet or separately excited synchronous motors, the encoder is adjusted with the next switch-on command. The motor must be free to rotate and rotates through 1.5 revolutions of the motor encoder.		
	With the following switch-on command, a rotating motor data identification routine is carried out - and in addition, a speed controller optimization by making measurements at different motor speeds.		
	p1900 $=2$:		
	Induction motors --> set p1910 $=1$ and p1960 $=0$		
	Permanent-magnet or separately excited synchronous motors --> set p1910 $=1, \mathrm{p} 1990=1$ and p1960 $=0$		
	When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next switch-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.		
	For permanent-magnet or separately excited synchronous motors, the encoder is adjusted with the next switch-on command. The motor must be free to rotate and rotates through 1.5 revolutions of the motor encoder.		
	p1900 $=3$:		
	Sets p1960 $=0,1,2$ depending on p1300		
	This setting should only be selected if the motor data identification was already carried out at standstill.		
	When the drive enable signals are present, with the next switch-on command, a rotating motor data identification routine is carried out - and in addition, speed controller optimization by taking measurements at different motor speeds.		
Value:	0: Inhibited		
	1: Motor data ident. (stationary) and sp. contr. op		
	2: Identify motor data (stationary)		
	3: Optimize speed controller (rotating)		
Dependency:	In the simulation mode, the parameter cannot be written into.		
	When selecting the motor data identification routine, the drive data set changeover is suppressed.		
	Refer to: p1272, p1300, p1910, p1960, p1990		
	Refer to: A07980, A07981, F07982, F07983, F07984, F07985, F07986, A07987, F07988, F07990, A07991		
Notice:	If there is a motor holding brake, it must be open (p1215 = 2).		
	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).		
	It is not permissible to activate write protection during the motor identification (p7761).		
	During the rotating measurement it is not possible to save the parameters (p0971, p0977). p1900 $=3$:		

2.2 List of parameters

Note: \quad The motor and control parameters of the vector control are only optimally set when both measurements are carried out (initially at standstill, and then with the motor rotating). The measurement with rotating motor is not performed for p1300<20 (U/f controls)
An appropriate alarm is output when the parameter is set.
The switch-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it.
The duration of the measurements can lie between 0.3 s and several minutes. This time is, for example, influenced by the motor size and the mechanical conditions.
p1900 is automatically set to 0 after the motor data identification routine has been completed.
For a reluctance motor, a pole position identification is carried out during the stationary measurement. As a consequence, faults that occur can also be assigned to the pole position identification.
For U/f control (p1300), identification with speed controller optimization does not make sense (e.g. p1900 = 1).

p1901	Test pulse evaluation configuration / Test puls config			
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: T	Calculated: CALC_MOD_ALL	Acces	
	Data type: Unsigned32	Dyn. index: -	Func	
	P-Group: Motor identification	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factory	
	- -	-	0000 b	
Description:	Sets the configuration for the test pulse evaluation.			
	Bit 00: Check for conductor-to-conductor short circuit once/always when the pulses are enabled.			
	Bit 01: Check for ground fault once/always when the pulses are enabled.			
	Bit 02: Activation of the tests selected using bit 00 and/or bit 01 each time the pulses are enabled			
Recommendation:	If the ground fault test is incorrectly initiated because the motor is not at a complete standstill, then the pulse cancellation delay time (p 1228) should be increased.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Phase short-circuit test pulse active	Yes	No	-
	01 Ground fault detection test pulse active	Yes	No	-
	02 Test pulse at each pulse enable	Yes	No	-
Dependency:	The ground fault test is only possible when the motor is stationary, and is therefore only realized when flying restart is deactivated ($\mathrm{p} 1200=0$) .			
	When a sine-wave filter is connected, the short-circuit and the ground fault test are deactivated, as the filter could be excited by the test pulse.			
	Refer to: p0287			
Note:	If a conductor-to-conductor short-circuit is detected during the test, this is displayed in r1902.1.			
	If a ground fault is detected during the test, this is displayed in r1902.2.			
	For bit $02=0$:			
	If the test was successful once after POWER ON (see r1902.0), it is not repeated.			
	For bit $02=1$:			
	The test is not only performed after POWER ON, but also each time the pulses are enabled.			

r1902	Test pulse evaluation status / Test puls ev stat				
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -		Calculated: - Access level: 2		
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status of the test pulse evaluation.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Short-circuit test su	d Yes	No	-
	01	Phase short-circuit	Yes	No	-
		Ground fault test su	ed Yes	No	-
	03	Ground fault detect	Yes	No	-
		Identification pulse minimum pulse wid	the Yes	No	-

Note:
If the ground fault test was selected, but not successfully performed, then sufficient current was not be able to be
For bit 04:
A test pulse longer than one sampling time has occurred

p1903 HLA	BI: Data identification control / Data ident ctrl		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source to control For p1903 = 1 signal, the following - data identification is started usi For p1903 $=0$ signal, the following - data identification is selected u The following generally applies: - when data identification is runn	cation (moving m 1 or 1. -1 or 1 ; howev tion can be can	cuted with p1903 = p1903 $=0$ signal

$\mathbf{p 1 9 0 5}$
VECTOR ($n / M)$,
VECTOR_AC (n / M),
VECTOR_I_AC (n / M)

Parameter tuning selection / Par tuning select		
Can be changed: C2(1), T	Calculated: -	Access level: 1
Data type: Integer16	Dyn. index: -	Func. diagram: -
P-Group: Motor identification	Unit group: -	Unit selection: -
Not for motor type: ASM, REL	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	90	0

Description: The fine encoder calibration should be started during the first commissioning or after the encoder is replaced.
The fine calibration starts when the pulses are enabled and performs a rotating measurement (approximately 1 minute). In this case, a setpoint speed of at least 40% of the motor rated speed must be entered, and the torque must be less than half of the motor rated torque.
The phases of the fine calibration of displayed using alarm A07976.
The fine calibration ends with the calculation of p0431 for the following pulse inhibit.
p1905 is automatically set to 0 at the end of the fine calibration.
Value:
0 : Inactive
90: Fine encoder calibration

2.2 List of parameters

Dependency: If the motor encoder adjustment has not been performed ($p 3925.4=0$) or the encoder calibration is activated ($p 1990$ $!=0$), then encoder fine calibration is prevented

Refer to: p1272, p1910, p1960, p1990
Refer to: A07976
Notice: During encoder fine calibration, the motor must be operated without a load - and if a motor holding brake is being used, this must be opened.
Note: \quad For p1905 = 90 and with the pulses not enabled, the function is only executed the next time that the pulses are enabled.
When selecting the encoder fine calibration, the changeover of the motor data sets is suppressed.

p1909	Data identification without enabling activation / Data ID w/o enab				
HLA	Can be changed: U, T		ulated: CALC_MOD_ALL	Access	
	Data type: Unsigned16 D		index: -	Func. d	
	P-Group: Motor identification U		group: -	Unit se	
	Not for motor type: - S		ng: -	Expert	
	Min M			Factory	
	-	-		0000 bi	
Description:	Activates the stationary data identification without enable.				
Bit field:		Signal name	1 signal	0 signal	FP
		Pressure sensors execute offset calibration	Yes	No	-
		Execute piston calibration	Yes	No	-
Dependency:	Refer to: p1910				
Note:	The offset calibration is immediately started when writing to p 1909 . The associated bit is automatically reset if the function was executed.				

The precondition for the offset calibration is that the pressure at all of the pressure sensors is zero. The offset is entered in p0241, p0243 and p0245.
For bit 01:
The precondition is that the cylinder must have been completely retracted (piston at the A side). The position offset is entered in p0476.

p1909[0...n]	Motor data identification control word / MotlD STW				
SERVO, SERVO_AC,	Can be changed: T Ca		ulated: CA	Access level: 3	
SERVO_I_AC	Data type: Unsigned16 Dy		index: MD	Func. diagram: -	
	P-Group: Motor identification Un		group: -	Unit selection: -	
	Not for motor type: - S		ng: -	Expert list: 1	
	Min M			Factory setting	
	- -			0010011100000000 bin	
Description:	Sets the configuration for the motor data identification.				
Recommendation:	For the stationary motor data identification, if a motor holding brake is being used it should be opened and the motor finely synchronized before the measurement. This should only be done if it can be safely carried out and no external forces can act on the motor. This determines the angular commutation offset (p1909.13, p0431).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	08	Measure D inductance	Yes	No	-
	09	Measure Q inductance	Yes	No	-
	10	Magnetizing field inductance and measure rotor resistance	Yes	No	-
	13	Measure commutation angle and direction of rotation	Yes	No	-
	14	Determining the voltage emulation error	Yes	No	-
Dependency:	Refer to: p1910, r1912, r1913, r1915, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953				

Note:	For an induction motor (ASM) the following bits: 8, 9, 10, 13 are effective
For a synchronous motor (SRM) the following bits: 8, 9, 13, 14 are effective	
For bit 14:	

- the display of the phase voltage actual values (r0089), the actual active power value (r0082) and the torque actual value ($\mathrm{rO080}$) is significantly more accurate after successfully determining the voltage emulation error.
- the voltage emulation errors should be identified with the Motor Module in the warm state.
- the motor temperature (r0035) should not change significantly (i.e. it should not be identified immediately after a load duty cycle).

$\mathbf{p 1 9 0 9 [0 . . . n] ~}$	Motor data identification control word / MotID STW		
SERVO (Ext M_ctrl,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
Lin), SERVO_AC (Ext	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
M_ctrl, Lin),	P-Group: Motor identification	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: -	Max	Expert list: 1
M_ctrl, Lin)	Min	Factory setting	
	-	0110011100000000 bin	
Description:	Sets the configuration for the motor data identification.		
Recommendation:	For the stationary motor data identification, if a motor holding brake is being used it should be opened and the motor finely synchronized before the measurement. This should only be done if it can be safely carried out and no external		
	forces can act on the motor. This determines the angular commutation offset (p1909.13, p0431).		

Bit field:	Bit	Signal name	$\mathbf{1}$ signal	Yes	0 signal
	08	Measure D inductance	Yes	No	
	09	Measure Q inductance	No		
10	Magnetizing field inductance and measure	Yes	No		
	13	rotor resistance	Measure commutation angle and direction	Yes	No
	14	of rotation	Netermining the voltage emulation error	Yes	No

Dependency: Refer to: p1910, r1912, r1913, r1915, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953

Note: \quad For an induction motor (ASM) the following bits: 8, 9, 10, 13 are effective
For a synchronous motor (SRM) the following bits: 8, 9, 13, 14 are effective
For bit 14:

- the display of the phase voltage actual values (r0089), the actual active power value (r0082) and the force actual value ($\mathrm{rO080}$) is significantly more accurate after successfully determining the voltage emulation error.
- the voltage emulation errors should be identified with the Motor Module in the warm state.
- the motor temperature (r0035) should not change significantly (i.e. it should not be identified immediately after a load duty cycle)

p1909[0...n]	Motor data identification control word / MotID STW		
SERVO (Ext M_ctrl),	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_AC (Ext	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
(Ext M ctrl)	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0110011100000000 bin
Description:	Sets the configuration for the motor data identification.		
Recommendation:	For the stationary motor data identification, if a motor holding brake is being used it should be opened and the motor finely synchronized before the measurement. This should only be done if it can be safely carried out and no external forces can act on the motor. This determines the angular commutation offset (p 1909.13 , p 0431).		

Bit field:

Bit	Signal name	1 signal	0 signal	FP
08	Measure D inductance	Yes	No	
09	Measure Q inductance	Yes	No	-
10	Magnetizing field inductance and measure rotor resistance	Yes	No	-
13	Measure commutation angle and direction of rotation	Yes	No	-
14	Determining the voltage emulation error	Yes	No	-

2.2 List of parameters

Dependency: Refer to: p1910, r1912, r1913, r1915, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953

Note:

 For an induction motor (ASM) the following bits: 8, 9, 10, 13 are effective For a synchronous motor (SRM) the following bits: 8, 9, 13, 14 are effective For bit 14:- the display of the phase voltage actual values (r0089), the actual active power value (r0082) and the torque actual value (r0080) is significantly more accurate after successfully determining the voltage emulation error.
- the voltage emulation errors should be identified with the Motor Module in the warm state.
- the motor temperature (r0035) should not change significantly (i.e. it should not be identified immediately after a load duty cycle)

p1909[0...n]	Motor data identification control word / MotID STW		
SERVO (Lin),	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
SERVO_I_AC (Lin)	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	-	Factory setting
Description:	-	Sets the configuration for the motor data identification.	0010011100000000 bin
Recommendation:	For the stationary motor data identification, if a motor holding brake is being used it should be opened and the motor finely synchronized before the measurement. This should only be done if it can be safely carried out and no external		
	forces can act on the motor. This determines the angular commutation offset (p1909.13, p0431).		

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	08	Measure D inductance	Yes	No	-
	09	Measure Q inductance	Yes	No	-
	10	Magnetizing field inductance and measure rotor resistance	Yes	No	-
	13	Measure commutation angle and direction of rotation	Yes	No	-
	14	Determining the voltage emulation error	Yes	No	-
Dependency:	Ref	to: p1910, r1912, r1913, r1915, r1925, r1927	r1932, r1	r1936, r19	p1953
Note:		induction motor (ASM) the following bits: 8	9, 10, 13 a		
		synchronous motor (SRM) the following bits:	8, 9, 13, 14		
		14:			
		display of the phase voltage actual values (r (r0080) is significantly more accurate after	89), the a ccessfully	value (r00 oltage emu	actual
		voltage emulation errors should be identified	with the Mo	warm state	
		motor temperature (r0035) should not chang duty cycle).	significantly	t be identif	fter a

p1909[0...n]	Motor data identification control word / MotID STW				
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: T		Calculated: CALC_MOD_ALL	Acces	
	Data type: Unsigned32		Dyn. index: MDS, p0130	Func	
	P-Group: Motor identification		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	$\begin{aligned} & 00000 \\ & 00000 \end{aligned}$	
Description:	Sets the configuration for the motor data identification.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Stator inductance estimate no measurement	Yes	No	-
	01	Cl.-loop current control w/ dead-beat controller	Yes	No	-
	02	Rotor time constant estimate no measurement	Yes	No	-
	03	Leakage inductance estimate no measurement	Yes	No	-

2.2 List of parameters

Recommendation:	For motors with brakes, the brake should be opened before carrying out the stationary motor data identification routine ($\mathrm{p} 1215=2$) as long as this can be done without incurring any danger. The commutation angle and the direction of rotation are also determined.
	Motor data identification is not required for catalog motors and DRIVE-CLiQ motors. It is recommended to increase the torque accuracy or for third-party motors.
Dependency:	Refer to: p1909, r1912, r1913, r1915, r1925, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953 Refer to: F07990, A07991, F07993
Caution:	For motors without brake or with the brake open (p1215 = 2), for the stationary (zero speed) measurement, the motor may rotate slightly.
Note:	If there is a motor holding brake, it must be open (p1215 = 2).
	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
	Motor data identification can only be selected when the pulses of all of the drive objects of the Control Unit have been suppressed. After selection, all of the other drive objects of the Control Unit are interlocked so that they cannot be switched on until the motor data identification has been completed or de-selected.
	After a started motor identification is ended, the parameter is automatically reset to 0 .
	A motor data identification that is presently being carried out can be terminated with p1910 $=0$.

$\mathbf{p 1 9 1 0}$
VECTOR,
VECTOR_AC,
VECTOR_I_AC

Value:

Dependency: \quad Quick commissioning" must be carried out ($\mathrm{p} 0010=1$) before executing the motor data identification routine! In the simulation mode, the parameter cannot be written into. When selecting the motor data identification routine, the drive data set changeover is suppressed.
Refer to: p1272, p1900
Refer to: F07990, A07991

Notice:	After the motor data identification $(\mathrm{p} 1910>0)$ has been selected, alarm A07991 is output and a motor data
identification routine is carried out as follows at the next switch-on command:	
- current flows through the motor and a voltage is present at the drive converter output terminals.	
- during the identification routine, the motor shaft can rotate through a maximum of half a revolution.	
- however, no torque torque is generated.	
If there is a motor holding brake, it must be open ($\mathrm{p} 1215=2$).	
Note: \quad To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).	
When setting p1910, the following should be observed:	
1. "With acceptance" means:	
The parameters specified in the description are overwritten with the identified values and therefore have an influence	
on the controller setting.	
2. "Without acceptance" means:	
The identified parameters are only displayed in the range r1912 \ldots r r1926. The controller settings remain unchanged.	
3. p1910 = $3,4,5$ can only be selected for induction motors.	
4. For settings 27 and 28 , the AVC configuration set using p1840 is active.	
The switch-on command must remain set during a measurement and after the measurement has been completed,	
the drive automatically resets it. The duration of the measurements can lie between 0.3 s and several minutes. This	
time is mainly influenced by the motor size. At the end of the motor data identification, p1910 is automatically set to 0,	
if only the stationary measurement is selected, then p1900 is also reset to 0 , otherwise, the rotating measurement is	
activated.	

p1911

VECTOR, VECTOR_AC, VECTOR_I_AC

Phases to be identified number / Ph to ident qty	
Can be changed: T	Calculated: -
Data type: Integer16	Dyn. index: -
P-Group: Motor identification	Unit group: -
Not for motor type: -	Scaling: -
Min	Max
1	3
Sets the number of phases to be identified.	
1: $\quad 1$ phase U	
2: 2 phases U, V	
$3:$	3 phases U, V, W

Access level: 4

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
1
Description:
Value:
phase
3 phases U, V, W
Note: When identifying with several phases, the accuracy increases and also the time it takes to make the measurement.

r1912

SERVO, SERVO_AC,

Stator resistance identified / R_stator ident

SERVO_I_AC

Data type: FloatingPoint32
P-Group: Motor identification
Not for motor type: -
Min

- [ohm]

Description:
Dependency:

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

- [ohm]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

- [ohm]

r1912[0...2]	Identified stator resistance / R_stator ident		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[o \mathrm{hm}]$	$-[o h m]$	$-[\mathrm{hm}]$

Description: Displays the identified stator resistance.
Index:
[0] = Phase U
[1] = Phase V
[2] = Phase W

2.2 List of parameters

r1914[0...2]	Identified total leakage inductance / L_total_leak ident		
VECTOR,	Can be changed: -	Calculated: -	
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Access level: 4
VECTOR_I_AC	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	
	Displays the identified total leakage inductance.		
Description:	$[0]=$ Phase U		
Index:	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1915	Stator inductance identified / L_stator ident		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the identified stator inductance.		
Dependency:	Refer to: p1909, p1910, r1912	r1927, r1932, r	1936, r1950, r1951

r1915[0...2]	Identified nominal stator inductance / L_stator ident		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	
Description:	Displays the nominal stator inductance identified.		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1916[0...2]	Identified stator inductance 1 / L_stator 1 ident		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$
Description:	Displays the stator inductance identified for the 1st point of the saturation characteristic.		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1917[0...2]	Identified stator inductance 2 / L_stator 2 ident		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	
	Displays the stator inductance identified for the 2nd point of the saturation characteristic.		
Description:	$[0]=$ Phase U		
Index:	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1918[0...2]	Identified stator inductance 3/L_stator 3 ident		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	
	Displays the stator inductance identified for the 3rd point of the saturation characteristic.		
Description:	$[0]=$ Phase U		
Index:	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1919[0...2]	Identified stator inductance 4 / L_stator 4 ident		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the stator inductance identified for the 4 th point of the saturation characteristic. [0] = Phase U [1] = Phase V [2] = Phase W		
Index:			

r1920[0...2]	Identified dynamic leakage inductance / L_leak dyn ident		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$
Description:	Displays the identified dynamic total leakage inductance.		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1921[0...2] Identified dynamic leakage inductance 1 / L_leak 1 dyn id

VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group: -	Unit selection:
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[m H]$	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$

Description: Displays the identified dynamic leakage inductance 1.
Index:
$[0]=$ Phase U
$[1]=$ Phase V
$[2]=$ Phase W
r1922[0...2] Identified dynamic leakage inductance 2 / L_leak 2 dyn id

VECTOR,
VECTOR_AC,
VECTOR_I_AC
Data type: FloatingPoint32
P-Group: Motor identificati
Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Not for motor type: -
Min

- [mH]

Displays the identified dynamic leakage inductance 2.
Description: Index:
[0] = Phase U
[1] = Phase V
[2] = Phase W

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1

Max Factory setting
$-[\mathrm{mH}] \quad-[\mathrm{mH}]$

- [mH]

r1923[0...2]	Identified dynamic leakage inductance 3/L_leak 3 dyn id		
VECTOR,	Can be changed: -	Calculated:-	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	
	Displays the identified dynamic leakage inductance 3.		
Description:	$[0]=$ Phase U		
Index:	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1924[0...2]	Identified dynamic leakage inductance 4/L_leak 4 dyn id		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	
	Displays the identified dynamic leakage inductance 4.		
Description:	$[0]=$ Phase U		
Index:	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1925	Threshold voltage identified / U_threshold ident		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 4
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the identified threshold voltage of the power unit.		
Dependency:	Refer to: p1909, p1910, r1912, r1913, r1915, r1927, r1932, r1933, r1934, r1935, r1936, r1950, r1951, p1952, p1953		

r1925[0...2]	Identified threshold voltage / U_threshold ident		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[V \mathrm{Vrms}]$	$-[V \mathrm{rms}]$	
Description:	Displays the identified IGBT threshold voltage.		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

2.2 List of parameters

r1926[0...2]	Identified effective valve lockout time / t_lock_valve id		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mu \mathrm{s}]$	$-[\mu \mathrm{s}]$	
Description:	Displays the identified effective valve lockout time.		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1927	Rotor resistance identified / R_rotor ident		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[o h m]$	$-[o h m]$	
Description:	Displays the identified rotor resistance.		
Dependency:	Refer to: $\mathrm{p} 1909, \mathrm{p} 1910, \mathrm{r} 1912, \mathrm{r} 1913, \mathrm{r} 1915, \mathrm{r} 1925, \mathrm{r} 1932, \mathrm{r} 1933, \mathrm{r} 1934, \mathrm{r} 1935, \mathrm{r} 1936, \mathrm{r} 1950, \mathrm{r} 1951, \mathrm{p} 1952, \mathrm{p} 1953$		

r1927[0...2]	Identified rotor resistance / R_rotor ident		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	$-[o h m]$	Factory setting
	$-[o h m]$	- [ohm]	
Description:	Displays the identified rotor resistance (for separately-excited synchronous motors: damping resistance).		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1929[0...2]	Identified cable resistance / R_cable ident		
VECTOR,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Motor identification	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{ohm}]$	$-[\mathrm{ohm}]$	$-[\mathrm{ohm}]$

Description: Displays the identified cable resistance.

Index: \quad| $[0]$ | $=$ Phase U |
| ---: | :--- |
| | $[1]=$ Phase V |
| | $[2]=$ Phase W |

r1935[0...20]	Identification current / I_ident		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the identification current for the identification of the q-inductance ($[0 \ldots 9]$) as well as the torque constant ([10]) and the torque characteristic ([11...20]).		
Index:	[0] = q inductance identification current [1] = q inductance identification current [2] = q inductance identification current [3] = q inductance identification current [4] = q inductance identification current m [5] = q inductance identification current m [6] = q inductance identification current [7] = q inductance identification current m [8] = q inductance identification current m [9] = q inductance identification current m [10] = Torque constant identification curr [11] = Torque characteristic identification [12] = Torque characteristic identification [13] = Torque characteristic identification [14] = Torque characteristic identification [15] = Torque characteristic identification [16] = Torque characteristic identification [17] = Torque characteristic identification [18] = Torque characteristic identification [19] = Torque characteristic identification [20] = Torque characteristic identification	uring point 1 uring point 2 uring point 3 uring point 4 uring point 5 uring point 6 uring point 7 uring point 8 uring point 9 uring point 10 ent measuring ent measuring ent measuring ent measuring ent measuring ent measuring ent measuring ent measuring ent measuring ent measuring	
Dependency:	Refer to: p1909, p1910, r1934, p1959, p1960		
Note:	- the Lq characteristic consists of the value pairs from r1934 and r1935 with the same index.		
	- the torque constant is identified with the current r1935[10] and displayed in r1937[0]. If the reluctance torque constant is identified (p1959.7 = 1), the torque constant is identified with 150% rated current (p0305), otherwise with 100% rated current.		
	- the torque characteristic (r1937[1...10]) is identified in the range between the rated current (p0305) and the maximum current (p 0640) (r1935[11...20]).		
r1935[0...20]	Identification current / I_ident		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: - Data type: FloatingPoint32	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the identification current for the identification of the q -inductance ([0...9]) as well as the force constant ([10]) and the force characteristic ([11...20]).		
Index:	[0] q q inductance identification current measuring point 1		
	[1] $=\mathrm{q}$ inductance identification current measuring point 2		
	[2] = q inductance identification current measuring point 3		
	[3] = q inductance identification current measuring point 4		
	[4] = q inductance identification current measuring point 5		
	[5] = q inductance identification current measuring point 6		
	[6] $=\mathrm{q}$ inductance identification current measuring point 7		
	[7] $=\mathrm{q}$ inductance identification current measuring point 8		
	[8] = q inductance identification current measuring point 9		
	[9] = q inductance identification current measuring point 10		
	[10] = Force constant identification curre		
	[11] = Force characteristic identification current measuring point 1		

	[12] = Force characteristic identification current measuring point 2
	[13] = Force characteristic identification current measuring point 3
	[14] = Force characteristic identification current measuring point 4
	[15] = Force characteristic identification current measuring point 5
	[16] = Force characteristic identification current measuring point 6
	[17] = Force characteristic identification current measuring point 7
	[18] = Force characteristic identification current measuring point 8
	[19] = Force characteristic identification current measuring point 9
	[20] = Force characteristic identification current measuring point 10
Dependency:	Refer to: p1909, p1910, r1934, p1959, p1960
Note:	- the Lq characteristic consists of the value pairs from r1934 and r1935 with the same index.
	- the force constant is identified with the current r1935[10] and displayed in r1937[0]. If the reluctance force constant is identified ($p 1959.7=1$), the force constant is identified with 150% rated current (p 0305), otherwise with 100% rated current.

- the force characteristic ($\mathrm{r} 1937[1 \ldots 10]$) is identified in the range between the rated current (p 0305) and the maximum current (p0640) (r1935[11...20]).

r1935[0...9]	q inductance identification current / Lq I_ident		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	$-[$ Arms $]$	Factory setting
	$-[$ Arms $]$	$-[$ Arms $]$	
Description:	Displays the identification current to identify the q inductance ([0...9]).		
Dependency:	Refer to: r1934, p1959, p1960		
Note:	The Lq characteristic consists of the value pairs from r1934 and r1935 with the same index.		

r1936	Magnetizing inductance identified / L_H ident		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the identified magnetizing inductance(gamma equivalent circuit diagram).		
Dependency:	Refer to: p1909, p1910, r1913, r1915, r1927, p1959, p1960, r1962, r1963		
Note:	This value corresponds to the value of the transformed magnetizing inductance (r0382).		

r1937[0...10] Torque constant identified / kT ident

SERVO_I_AC
Data type: FloatingPoint32
P-Group: Motor identification
Not for motor type: -
Min

- [Nm/A]

Displays the identified torque constant/torque characteristic over the q current.
Description:
Index:
[0] = Torque constant identified
[1] = Torque characteristic identified measuring point 1
[2] = Torque characteristic identified measuring point 2
[3] = Torque characteristic identified measuring point 3
[4] = Torque characteristic identified measuring point 4
[5] = Torque characteristic identified measuring point 5
[6] = Torque characteristic identified measuring point 6
[7] = Torque characteristic identified measuring point 7

Access level: 3
Func. diagram: -
Unit selection: p0100
Expert list: 1
Factory setting

- [Nm/A]

2.2 List of parameters

	$\begin{aligned} & {[8]=\text { Torque characteristic identified measuring point } 8} \\ & {[9]=\text { Torque characteristic identified measuring point } 9} \\ & {[10]=\text { Torque characteristic identified measuring point } 10} \end{aligned}$
Dependency:	Refer to: r1938, r1939, p1959, p1960, r1969
Note:	- the value in r1937[0] corresponds to the torque constant (p 0316) and was identified with the current in r1935[10]. If the reluctance torque is identified ($\mathrm{p} 1959.7=1$), the torque constant is identified with 150% rated current (p 0305), otherwise with 100% rated current.
	- if indices r1937[1...10] are not equal to zero, they show the values of the torque characteristic identified for the current in r1935[11...20]. The torque characteristic is identified in the range between rated current (p0305) and maximum current (p0640).

r1937[0..10]	Force constant identified / kT ident		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: 29_1	Unit selection: p0100
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [N/Arms]	- [N/Arms]	- [N/Arms]
Description:	Displays the identified force constant.		
Index:	[0] = Force constant identified		
	[1] = Force characteristic identified measuring point 1		
	[2] = Force characteristic identified measuring point 2		
	[3] = Force characteristic identified measuring point 3		
	[4] = Force characteristic identified measuring point 4		
	[5] = Force characteristic identified measuring point 5		
	[6] = Force characteristic identified measuring point 6		
	[7] = Force characteristic identified measuring point 7		
	[8] = Force characteristic identified measuring point 8		
	[9] = Force characteristic identified measuring point 9		
	[10] = Force characteristic identified measuring point 10		
Dependency:	Refer to: r1938, r1939, p1959, p1960, r1969		
Note:	- the value in r1937[0] corresponds to the force constant (p0316) and was identified with the current in r1935[10]. If the reluctance force constant is identified ($\mathrm{p} 1959.7=1$), the force constant is identified with 150% rated current (p0305), otherwise with 100% rated current.		

r1938	Voltage constant ident		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the identified voltage		
Dependency:	Refer to: r1937, r1939, p1959,		
Note:	This value corresponds to the	(p 0317).	
$\mathbf{r 1 9 3 8}$	Voltage constant iden		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Vrms s/m]	- [Vrms s/m]	- [Vrms s/m]
Description:	Displays the identified voltage		
Dependency:	Refer to: r1937, r1939, p1959,		
Note:	This value corresponds to the	nt (p0317).	

p1953[0...n]	Voltage emulation error current offset / U_error I_offset		
SERVO (Ext M_ctrl),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Ext	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(Ext M ctrl)	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [A]	100.000 [A]	0.000 [A]
Description:	Sets the current offset to compensate the voltage emulation error.		
Dependency:	Refer to: p1952		
Note:	The voltage emulation error is calculated and compensated for every phase according to the following formula: u_error = u0 *i/ (abs(i) + i0)		
	u0: This is set in p1952.		
	i0: This is set in p 1953.		
	i: Phase current to which the emulation error u_error belongs.		
	For p1954 not equal to zero, p1952 refers to a DC link voltage of 600V, and the formula is.		

p1955[0..3]	Valve identification voltage / Valve ident U		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [V]	10.00 [V]	[0] 0.00 [V]
			[1] 10.00 [V]
			$\text { [2] } 2.00 \text { [V] }$
			[3] 2.00 [V]
Description:	Sets the voltage to identify the valve characteristic.		
Index:	[1] = Measuring range end [2] = Travel positive		
Dependency:	Refer to: p1956, p1957, p1958,	1, r1961, r1962	
Note:	The characteristic is measure To move to a suitable starting	and negative p1955[2] or -p	p1955[0] to p195

2.2 List of parameters

p1956[0...1]	Valve identification measuring distance / Valve ident dist		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\%]$	$100.0[\%]$	$[0] 10.0[\%]$
			$[1] 90.0[\%]$

Description: Sets the range for the maximum measuring distance for valve identification

Index:

[0] = Minimum
[1] = Maximum
Dependency: Refer to: p1955, p1957, p1958, p1960, p1961, r1961, r1962
Note: \quad The parameter is referred to the maximum valve stroke (p 0313).
The values are only effective when the piston position is known (r1407.3 = 1).

p1957[0...1]	Valve identification measured value / Valve ident val		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1000	$[0] 100$
			$[1] 4$

Description: Sets the measured value for valve identification.

Index:

[0] = Number
[1] = Standstill identification encoder pulses
Dependency: Refer to: p1955, p1956, p1958, p1960, p1961, r1961, r1962
Note: For index [0]:
The entered value is used for the positive and negative ranges.
For index [1]:
Standstill is identified if these encoder pulses are not passed within the standstill monitoring time.

p1958[0...4]	Valve identification time / Valve ident t		
HLA	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [s]	100.00 [s]	[0] 0.10 [s]
			[1] 0.10 [s]
			[2] 0.10 [s]
			[3] 4.00 [s]
			[4] 4.00 [s]
Description:	Sets the times for valve identification.		
Index:	[0] = Ramp time		
	[1] = Settling time		
	[2] = Measuring time		
	[3] = Standstill time		
	[4] = Wait time		
Dependency:	Refer to: p1955, p1956, p1957	1, r1961, r1962	

p1959[0...n]	Data identification moving configuration / Dat_id mov config		
HLA	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0000000100111111 bin
Description:	Sets the configuration for data identification with movement.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 Control sense correction	Yes	No
	01 Valve offset correction	Yes	No
	02 Automatic piston calibration	Yes	No
	03 Automatic traversing range detection	Yes	No
	04 Automatic characteristic identification	Yes	No
	05 Stiction forces	Yes	No
	08 System pressure correction for characteristic identification	Yes	No
Dependency:	Refer to: F07988		
Notice:	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).		
Note:			

In order to automatically correct the control sense for the velocity controller, the complete traversing distance must be free. When required, p1820 is automatically adapted.
For bit 01:
The drive moves to correct the valve offset. When required, p1832 is automatically adapted.
For bit 02:
Full automatic piston calibration, the drive must either be referenced, or must be equipped with an absolute encoder. Further, the complete traversing distance must be free.
For piston calibration, the drive is traversed to the end stop (completely inserted) with a negative search voltage ($\mathrm{p} 1955[3]$) and the associated absolute position entered in p0476.
For bit 03:
For automatic traversing range identification, the drive must either be referenced (homed), or must be equipped with an absolute encoder. Further, the piston must have been calibrated and the complete traversing distance must be free.
To prepare for the identification of the characteristic, the possible traversing range is determined. To do this, the drive is traversed to the right-hand and left-hand end stops with the search voltage (p1955[3...4]) and the position with distance reserve is entered into p1956.
If there are pressure sensors, then the correct interconnection for pressure measurements A and B is checked. For bit 04:
For automatic characteristic identification, the drive must either be referenced (homed), or must be equipped with an absolute encoder. Further, the piston must have been calibrated and the free traversing range must have been entered in p1956.
The drive traverses with different valve voltages and takes into account p1958.
For bit 05:
The drive is moved with a positive and negative velocity, and the measured stiction forces are entered into p1555 and p1556.
For bit 06:
The drive is traversed to both end stops. In so doing, the dead volume and the loop gain of the force control loop is measured, and entered into p0314 and p0315.
For bit 08:
For the automatic characteristic identification (p1959.4), the measured velocity with the measured system pressure is converted to the average system pressure; this means that system pressure fluctuations hardly influence the measurement. The system pressure as well as pressures A and B must be measured. The conversion is not performed if the pressure measurements are not available. If the pressure measurements do not measure the specified pressures, then the conversion must be deactivated in order to avoid any errors.

p1959[0...n]	Moving measurement configuration / Mov meas config					
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)			Calculated: CALC_MOD_ALL	Access level: 3		
	Can be changed: T Data type: Unsigned16			Func. d		
	P-Group: Motor identification U		Unit group: -	Unit selection:		
	Not for motor type: REL S		Scaling: -	Expert list: 1		
	Min Max		Max	Factory setting		
	- -			0000111011100111 bin		
Description:	Sets the configuration of the moving measurement.					
Recommendation:	A direction inhibit should not be activated for the moving measurement ($\mathrm{p} 1959.14=1$ and $\mathrm{p} 1959.15=1$) as long as this can be done without incurring any danger. This means that the identification is complete and more accurate.					
	When the direction inhibit is activated, the reluctance force constant (p1959.7) is not identified and the angular commutation offset ($\mathrm{p} 1959.10, \mathrm{p} 0431$) is inaccurately determined. The reluctance force constant (p 1959.7) is also not identified in encoderless operation.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	00	Identify periodic position error	Yes	No		
	01	Identify the saturation characteristic	Yes	No	-	
	02	Identify the moment of inertia	Yes	No	-	
	05	Identify the q inductance	Yes	No	-	
	06	Identify the force constant	Yes	No	-	
		Identify the reluctance force constant	Yes	No		
		Identify the q inductance at the test stand	Yes	No	-	
		Identify the magnetizing current/ magnetizing inductance	Yes	No	-	
	10	Identify commutation angle and direction	Yes	No	-	
	11	Identify rotor resistance	Yes	No		
		Positive direction permitted	Yes	No		
		Negative direction permitted	Yes	No	-	
Dependency:	Refer to: p1958, p1960					
Notice:	The step p1959.8 (identify q inductance on the test stand) may only be selected if the drive can be kept at zero speed or at a fixed velocity either using a test stand or other mechanical measures.					
	During steps p1959.2 (identifying the moment of inertia) and p1959.6 (identifying the force constant) the Vdc_min controller is disabled (p 1240).					
	During step p1959.7 (identifying the reluctance force constant) the Vdc_min controller and Vdc_max controller are disabled (p 1240).					
Note:	For an induction motor (ASM), the following bits 1, 2, 5, 8, 9, 10, 14, 15 are effective					
	For a synchronous motor (SRM), the following bits $2,5,6,7,8,10,14$, 15 are effective For bit 00:					
	This function is only active when the "Cogging torque compensation" function module is activated (r0108.22 $=1$). The motor should not be operated with any mounted load.					
	For bit 05:					
	For "motor holding brake the same as sequence control" (p1215 = 1 or 3), the Lq characteristic is only measured up to approximately the rated motor current (p0305) instead of up to the current limit (p0640). Before carrying out the rotation measurement for motors with brake, the brake should be opened (p1215 $=2$) - as long as this can be done without incurring any danger.					
	For bit 10:					
	If the motor holding brake is set just the same as the sequence control ($\mathrm{p} 1215=1$ or 3), the commutation angle and the direction of rotation are not measured. Before carrying out the rotation measurement for motors with brake, the brake should be opened (p1215 = 2) - as long as this can be done without incurring any danger.					
	For bit 14, 15:					
	The following applies for bit 14 and $15=0$:					
	When the function module "extended setpoint channel" is activated (r0108.8 = 1) , the direction inhibit of the setpoint channel becomes effective. No direction of inhibit is effective if the function module is inactive.					
	The following applies for minimum bit $14=1$ or bit $15=1$:					
	The direction inhibit set in p1959 becomes effective.					

p1960	Moving measurement selection / Mov meas sel		
HLA	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-3	1	0
Description:	Activates the moving measurement.		
Value:	-3: Accept identified Ch parameters -1: \quad Start data identification without Ch transfer 0 : Inactive/cancel 1: \quad Start data identification with transfer		
Dependency:	Refer to: p1955, p1956, p1957, p1958, p1961, r1961, r1962		
	Refer to: F07990, A07991, F07993		
Notice:	The drive moves after data identification with movement has been activated and enabled. In this case the force limiting is not active.		
	If it is not permissible that the complete traversing range is traversed, then the following must be executed before the start:		
	- deselect automatic traversing range detection (p1959.3 = 0).		
	- deselect automatic piston calibration (p1959.2 = 0).		
	- calibrate the piston manually.		
	- manually enter the traversing range limits (p1956).		
	For the identification of the characteristic (p1959.4), the velocities are traversed up to the maximum velocity, depending on the setting in p1955[0...1].		
p1960	Rotating measurement selection / Rot meas sel		
SERVO, SERVO_AC, SERVO_I_AC		Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-3	1	0
Description: Value:	Activates the rotating measurement.		
	-3: Accept identified parameters		
	-2: Acknowledge encoder	al value (F07993)	
	-1: \quad Start motor data identi	acceptance	
	0: Inactive/inhibit		
	1: Start motor data identification with acceptance		
Recommendation:	Before carrying out the rotation measurement for motors with brake, the brake should be opened (p1215 = 2) - as long as this can be done without incurring any danger. The commutation angle and the direction are also determined.		
	Motor data identification is not required for catalog motors and DRIVE-CLiQ motors. It is recommended to increase the torque accuracy or for third-party motors.		
Dependency:	Refer to: r1934, r1935, r1936, r1937, r1938, r1939, r1947, r1948, p1958, p1959, r1962, r1963, r1969		
	Refer to: F07990, A07991, F07993		
	For the rotating measurement, the motor is accelerated up to the maximum speed. Only the parameterized current limit (p 0640) and the maximum speed (p 1082) are effective.		
	The behavior of the motor can be influenced using the direction inhibit (p 1959.14 , p1959.15) and the ramp-up/ramp down time (p 1958).		
Notice:	If there is a motor holding brake, it must be open (p1215=2).		
	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).		
Note:	The rotating measurement can only be selected when the pulses of all of the drive objects of the Control Unit have been suppressed. After selection, all of the other drive objects of the Control Unit are interlocked so that they cannot be switched on until the rotating measurement has been completed or de-selected.		
	When the rotating measurement is activated ($\mathrm{p} 1960=1$), it is not possible to save the parameters ($\mathrm{p} 0971, \mathrm{p} 0977$).		

$\mathbf{p 1 9 6 0}$
SERVO (Lin),
SERVO_AC (Lin),
SERVO_I_AC (Lin)

Moving measurement selection / Mov meas sel		
Can be changed: T	Calculated: -	Access level: 2
Data type: Integer16	Dyn. index: -	Func. diagram: -
P-Group: Motor identification	Unit group: -	Unit selection: -
Not for motor type: REL	Scaling: -	Expert list: 1
Min	Max	Factory setting
-3	1	0

Description:	Activates the moving measurement.	
Value:	$-3: \quad$ Accept identified parameters	
	$-2: \quad$ Acknowledge encoder inversion actual value (F07993)	
	$-1: \quad$ Start motor data identification without acceptance	
	$0: \quad$ Inactive/inhibit	
Recommendation:	1:	Start motor data identification with acceptance carrying out the rotation measurement for motors with brake, the brake should be opened $(\mathrm{p} 1215=2)-$ as

Dependency: Refer to: r1934, r1935, r1936, r1937, r1938, r1939, r1947, r1948, p1958, p1959, r1962, r1963, r1969 Refer to: F07990, A07991, F07993

Danger:	For the moving measurement, the motor is accelerated up to the maximum velocity. Only the parameterized current
,	limit (p0640) and the maximum velocity (p 1082) are effective.
	The behavior of the motor can be influenced using the direction inhibit (p1959.14, p1959.15) and the ramp-up/rampdown time (p1958).
Notice:	If there is a motor holding brake, it must be open (p1215=2).
	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
Note:	The moving measurement can only be selected when the pulses of all of the drive objects of the Control Unit have been suppressed. After selection, all of the other drive objects of the Control Unit are interlocked so that they cannot be switched on until the moving measurement has been completed or de-selected.
	When the moving measurement is activated ($\mathrm{p} 1960=1$), it is not possible to save the parameters (p 0971 , p0977).

p1960
VECTOR, VECTOR_AC, VECTOR_I_AC

Rotating measurement selection / Rot meas sel

Can be changed: T
Data type: Integer16
P-Group: Motor identification
Not for motor type: REL
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
4

Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Description:

Value:
Sets the rotating measurement.
The rotating measurement is carried out after the next switch-on command.
The setting possibilities of the parameter depend on the open-loop/closed-loop control mode (p 1300).
p1300 < 20 (U/f open-loop control):
It is not possible to select rotating measurement or speed controller optimization.
p1300 = 20, 22 (encoderless operation):
Only rotating measurement or speed controller optimization can be selected in the encoderless mode.
p1300 = 21, 23 (operation with encoder):
Both versions (encoderless and with encoder) of the rotating measurement and speed controller optimization can be selected.

0:	Inhibited
1:	Rotating measurement in encoderless operation
2:	Rotating measurement with encoder
3:	Speed controller optimization in encoderless operation
4:	Speed controller optimization with encoder

2.2 List of parameters

Dependency:	Before the rotating measurement is carried out, the motor data identification routine ($p 1900, \mathrm{p} 1910$, r3925) should have already been done.
	In the simulation mode, a value of 1 cannot be written into the parameter.
	When selecting the rotating measurement, the drive data set changeover is suppressed.
	When selecting rotating measurement (with the exception for $\mathrm{p} 1959.13=1$) the following BICO parameters are set to standard values, and after the measurement has been completed, are reset back to the original parameter assignments:
	p1020 ... p1023, p1070, p1075, p1138, p1139, p1140 ... p1143, p1155, p1160, p1437, p1476, p1477
	Refer to: p1272, p1300, p1900, p1959, p1967, r1968
	Refer to: A07987
Danger:	For drives with a mechanical system that limits the distance moved, it must be ensured that this is not reached during the rotating measurement. If this is not the case, then it is not permissible that the measurement is carried out.
Notice:	If there is a motor holding brake, it must be open (p1215 = 2).
	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
	During the rotating measurement it is not possible to save the parameters (p0971, p0977).
Note:	When the rotating measurement is activated, it is not possible to save the parameters (p0971, p0977).
	Parameter changes are automatically made for the rotating measurement (e.g. p1120); this is the reason that up to the end of the measurement, and if no faults are present, no manual changes should be made.
	The ramp-up and ramp-down times (p1120, p1121) are limited, for the rotating measurement, to 900 s .
	For speed controller optimization with encoder ($p 1960=2,4$), the speed controller for encoderless operation is also pre-assigned (p1470, p1472).
	Depending on whether the speed controller optimization is carried out with or without encoder, different $\mathrm{Kp} / \mathrm{Tn}$ adaptations of the speed controller are set (p 1464 , p 1465). If the drive should be controlled with as well as without speed encoder, then we recommend the use of two drive data sets (p 0180). These can then be executed with different speed controller adaptations.

r1961[0...511]	Valve identification voltage characteristic / Valve ID char U		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the voltage values for the valve characteristic.		
Dependency:	Refer to: p1955, p1956, p1957, p1958, p1960, r1962		
Note:	The valve characteristic consists of the value pairs from r1961 and r1962 with the same index.		
p1961	Saturation characteristic speed to determine / Sat_char n determ		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_1_AC (n / M)	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	26 [\%]	75 [\%]	40 [\%]
Description:	Sets the speed to determine the saturation characteristic and the encoder test.		
	The percentage value is referred to p0310 (rated motor frequency).		
Dependency:	Refer to: p0310, p1959		
	Refer to: F07983		
Note:	The saturation characteristics should be determined at an operating point with the lowest possible load.		

r1962[0...511]	Valve identification characteristic velocity / Valve ID char v		
HLA	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the velocity values for the valve characteristic.		
Dependency:	Refer to: p1955, p1956, p1957, p1958, p1960, p1961, r1961		
Note:	The valve characteristic consists of the value pairs from r1961 and r1962 with the same index.		
r1962[0...9]	Saturation characteristic magnetizing current identified / Sat_char I_mag		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the magnetizing currents of the identified saturation characteristic. The values are referred to r0331.		
Dependency:	Refer to: p1959, p1960, r1963		
Note:	The saturation characteristic consists of the value pairs from p1962 and p1963 with the same index.		
r1962[0...4]	Saturation characteristic magnetizing current / Sat_char l_mag		
VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the magnetizing currents of the identified saturation characteristic. The values are referred to r0331.		
	After they have been determined, the values are transferred to p0366 ... p0369.		
Index:	$\begin{aligned} & {[0]=\text { Value } 1} \\ & {[1]=\text { Value } 2} \\ & {[2]=\text { Value } 3} \\ & {[3]=\text { Value } 4} \\ & {[4]=\text { Value } 5} \end{aligned}$		
Dependency:	Refer to: r0331		
r1963[0...511]	Valve identification system pressure characteristic / Valve ID char pp		
HLA	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [bar]	- [bar]	
Description:	Displays the system pressure actual values for the valve characteristic.		
Note:	The valve characteristic consists of the value pairs from r1961 and r1963 with the same index.		

r1963[0...9]	Saturation characteristic stator flux identified / Sat_char flux		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: - Data type: FloatingPoint32 P-Group: Motor identification Not for motor type: PMSM, REL, RESM Min - [\%]	Calculated: Dyn. index: Unit group: Scaling: - Max - [\%]	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [\%]
Description: Dependency: Note:	Displays the stator flux of the identified saturation characteristic. The values are referred to the stator flux at the magnetizing current (r0331).		
$\overline{\mathrm{r} 1963[0 . . .4]}$ VECTOR (n / M), VECTOR_AC (n / M), VECTOR_I_AC (n / M)	Saturation characteristic magne Can be changed: - Data type: FloatingPoint32 P-Group: Motor identification Not for motor type: PMSM, REL, RESM Min - [\%]	zing induct Calculated: Dyn. index: Unit group: - Scaling: - Max - [\%]	__main Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [\%]
Description: Index:	Displays the magnetizing inductances of th The values are referred to r0382. [0] = Value 1 [1] = Value 2 [2] = Value 3 [3] = Value 4 [4] = Value 5	identified satur	
Dependency:	Refer to: r0382		

r1964[0...511]	Valve identification characteristic force / Valve ID char F		
HLA	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: 8_1	Unit selection: p0505
	Not for motor type: RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{N}]$	$-[\mathrm{N}]$	$-[\mathrm{N}]$

Description: Displays the force actual values for the valve characteristic.
Note: \quad The valve characteristic consists of the value pairs from r1961 and r1964 with the same index.

p1965	Speed_ctrl_opt speed / n_opt speed		
$\begin{aligned} & \text { VECTOR }(n / M), \\ & \text { VECTOR_AC }(n / M), \\ & \text { VECTOR_I_AC }(n / M) \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [\%]	75 [\%]	40 [\%]
Description:	Sets the speed for the identification of the moment of inertia and the vibration test. Induction motor:		
	The percentage value is referred to p0310 (rated motor frequency).		
	Synchronous motor:		
	The percentage value is referred to the minimum from p0310 (rated motor frequency) and p1082 (maximum speed).		
Dependency:	Refer to: p0310, p1959		
	Refer to: F07984, F07985		
Note:	In order to calculate the inertia, sudden speed changes are carried out - the specified value corresponds to the lower speed setpoint. This value is increased by 20% for the upper speed value.		
	The q leakage inductance (refer to p1959.5) is determined at zero speed and at 50% of p1965-however, with a maximum output frequency of 15 Hz and at a minimum of 10% of the rated motor speed.		

$\mathbf{p 1 9 6 7}$
VECTOR (n / M),
VECTOR_AC (n / M),
VECTOR_I_AC (n / M)

 Speed_ctrl_opt dynamic factor / n_opt dyn_factor
 Can be changed: U, T Calculated: CALC_MOD ALL
 Data type: FloatingPoint32 Dyn. index: -
 P-Group: Motor identification Unit group: -
 Not for motor type: REL Scaling: -
 Min Max

Description: Sets the dynamic response factor for speed controller optimization. After optimization, the dynamic response achieved is displayed in r 1968.
Dependency: Refer to: p1959, r1968
Refer to: F07985
Note: For a rotating measurement, this parameter can be used to optimize the speed controller.
p1967 = 100%--> speed controller optimization according to a symmetric optimum.
p1967 > 100 \% --> optimization with a higher dynamic response (Kp higher, Tn lower).
If the actual dynamic response (see r1968) is significantly reduced with respect to the required dynamic response
(p1967), then this can be as a result of mechanical load oscillations. If, in spite of this load behavior, a higher dynamic
response is required, then the oscillation test ($\mathrm{p} 1959.4=0$) should be deactivated and the measurement repeated.

r1968	Speed_ctrl_opt dynamic factor actual / n_opt dyn_fact act		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Acces
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func.
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Motor identification	Unit group: -	Unit s
	Not for motor type: REL	Scaling: -	Max
	Min	$-[\%]$	$-[\%]$
	$-[\%]$		
Description:	Displays the dynamic factor which is actually achieved for the vibration test		
Dependency:	Refer to: p1959, p1967		
	Refer to: F07985		
Note:	This dynamic factor only refers to the control mode of the speed controller set in p1960.		

$\mathbf{r 1 9 6 9}$
VECTOR (n / M),
VECTOR_AC (n / M),
VECTOR_I_AC (n / M)

Speed_ctrl_opt moment of inertia determined / n_opt M_inert det

Can be changed: - Calculated: - Access level: 4
Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
P-Group: Motor identification Unit group: 25_1 Unit selection: p0100
Not for motor type: REL Scaling: - Expert list: 1
Min Max Factory setting
$-\left[\mathrm{kgm}^{2}\right] \quad-\left[\mathrm{kgm}^{2}\right] \quad-\left[\mathrm{kgm}^{2}\right]$

Description:	Displays the determined moment of inertia of the drive.
	After it has been determined, the value is transferred to $\mathrm{p} 0341, \mathrm{p} 0342$.
Dependency:	IEC drives $(\mathrm{p} 0100=0)$: unit $\mathrm{kg} \mathrm{m}^{\wedge}{ }^{\wedge} 2$
	NEMA drives $(\mathrm{p} 0100=1)$: unit $\mathrm{lb} \mathrm{ft}^{\wedge} 2$
	Refer to: $\mathrm{p} 0341, \mathrm{p} 0342, \mathrm{p} 1959$
	Refer to: F07984

[kgm²]

r1970[0...1]	Speed_ctrl_opt vibration test vibration frequency determined / \mathbf{n} _opt f_vib det		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$

Description: Displays the vibration frequencies determined by the vibration test.
Index:

Dependency:
[0] = Frequency low
[1] = Frequency high
Refer to: p1959
Refer to: F07985

r1971[0...1]	Speed_ctrl_opt vibration test standard deviation determined / n_opt std_dev det		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1
	Min	$-[\mathrm{Hz}]$	Factory setting
	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$	
Description:	Displays the standard deviations of the vibration frequencies determined by the vibration test		
Index:	$[0]=$ Standard deviation of low frequency		
	$[1]=$ Standard deviation of high frequency		
Dependency:	Refer to: p1959		
	Refer to: F07985		

r1972[0...1]	Speed_ctrI_opt vibration test number of periods determined / n_opt per_qty det		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the period number determined by the vibration test.		
Index:	$[0]=$ No. of periods of the low frequency		
Dependency:	$[1]=$ No. of periods of the high frequency		
	Refer to: p1959		
	Refer to: F07985		

r1973[0...1]	Encoder pulse number identified / Pulse No. ident		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the identified encoder pulse number/grid spacing. For index [0]:		
	Rotating motors: Displays the identified encoder pulse number (per revolution).		
	Linear motors: Encoder pulse number per meter. Grid division = 1/p1973 [meter].		
	For index [1]:		
	Rotating motors: No significance.		
	Linear motors: Identified grid division in nm .		
Index:	[0] = Rotating motor encoder pulse number [1] = Linear motor grid division in nm		
Notice:	Due to the measuring accuracy (approx. 5%) only the approximate value is shown in p 1973 and may not be directly transferred into p0407 or p0408. An incorrect pole pair number (r0313, p0314) or pole pair width (p 0315) results in an incorrect value in p 1973 .		
Note:	A negative signal indicates an	rity of the encod	

2.2 List of parameters

$\overline{\mathbf{1 9 7 3}}$	Rotating measurement encoder test pulse number determined / n_opt puls no. det		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: Integer32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC (n/	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of pulses determined during the vibration test.		
Note:	A negative signal indicates an incorrect polarity of the encoder signal.		
p1974	Speed_ctrl_opt saturation characteristic rotor flux maximum / n_opt rot_fl max		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	104 [\%]	120 [\%]	120 [\%]
Description:	Sets the maximum flux setpoint to measure the saturation characteristic.		

2.2 List of parameters

Value:	$1: \quad$ Voltage pulsing 1st harmonics
	$4: \quad$ Voltage pulsing 2-stage
	$6: \quad$ Voltage pulsing 2-stage inverse
	$8: \quad$ Voltage pulsing 2nd harmonic inverse
	$10: \quad$ DC current injection
Dependency:	$12: \quad$ Rotor position sensing VSM for SESM with incremental encoder
	When commissioning a catalog motor, the technique is automatically selected depending on the motor type being
	used.
	In the simulation mode, the parameter cannot be written into.
	Refer to: p0325, p0329, p1272, p1780
	Refer to: F07969
	For p1980 $=1,4,6,8:$
	Voltage pulse technique cannot be applied to separately excited synchronous motors (p0300 = 5) and for for
	operation with sine-wave output filters (p0230).
	For p1980 =12:
	This technique can only be applied for separately excited synchronous motors (SESM) with voltage measurement
	(VSM).
	The rotor position identification technique ($\mathrm{p} 1980=12$) cannot be used for permanent-magnet synchronous motors.

p1981[0...n]	PollD distance max / PollD distance max		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [${ }^{\circ}$]	180 [${ }^{\circ}$]	$\left.10{ }^{\circ}{ }^{\circ}\right]$
Description:	Sets the maximum distance (electrical angle) when carrying out the pole position identification routine. If this distance (travel) is exceeded, an appropriate fault is output.		
Dependency:	Refer to: p0325, p0329, p1980, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p1993, p1994, p1995, p1996, p1997		
	Refer to: F07995		
Notice:	Value $=180^{\circ}$: Monitoring is deactivated.		
Note:	PolID: Pole position identification		
p1982[0...n]	PollD selection / PollD selection		
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Activates the pole position identification routine to determine the commutation angle and to carry out a plausibility check.		
Value:	$0:$ Pole position identification off 1: Pole position identification for commutation 2: Pole position identification for plausibility check		
Recommendation:	For p1982 = 1:		
	This is used for synchronous motors with motor encoder without absolute data.		
	The information/data regarding the absolute commutation angle is supplied via a track C/D, Hall sensors, an absolute encoder or from the pole position identification routine.		
	This is used for synchronous motor with motor encoder with absolute data to check this data.		
Dependency:	Refer to: p0325, p0329, p1980 p1996, p1997, p3090, p3091,	3, r1984, r1985, r1986, r1987, p p3094, p3095, p3096, r3097	r1992, p1993, p1994, p1995,
Note:	Polld: Pole position identificati		

p1982[0...n]	PollD selection / PollD selection		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: ASM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Activates the pole position identification routine to determine the commutation angle and to carry out a plausibility check.		
Value:	$\begin{array}{ll}\text { 0: } & \text { Pole position identification off } \\ \text { 1: } & \text { Pole position identification for commutation } \\ \text { 2: } & \text { Pole position identification for plausibility check }\end{array}$		
Recommendation:	For p1982 = 1:		
	This is used for synchronous motors with motor encoder without absolute data.		
	The information/data regarding the absolute commutation angle is supplied via a track C/D, Hall sensors, an absolute encoder or from the pole position identification routine.		
	For separately excited synchronous motors, the position identification is realized using the voltage measurement of a Voltage Sensing Module VSM (p1980 = 12). If there is no VSM then the setting is not possible.		
	For p1982 = 2:		
	This is used for synchronous motor with motor encoder with absolute data to check this data.		
	With p1982 $=2$, each time the pulses are enabled it is checked whether the absolute position supplied from the encoder does not exceed a deviation of 45 degrees to the identified pole wheel position.		
	Not possible for separately excited synchronous motors.		
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p1993, p1994, p1995, p1996, p1997, p3090, p3091, p3092, p3093, p3094, p3095, p3096, r3097		
Note:	For encoderless operation, the pole position identification routine is selected with p1780.6		
p1983	Polld test / Polld test		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Starts the pole position identification routine for test purposes. p1983 = 1 :		
	Start of pole position identification. The parameter is set to zero automatically on completion of the identification process.		
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1982, r1984, r1985, r1986, r1987, p1990, r1992, p1993, p1994, p1995, p1996, p1997, p3090, p3091, p3092, p3093, p3094, p3095, p3096, r3097		
Notice:	For p1983 = 1 and if the pulses are not enabled, then the function is only executed the next time that the pulses are enabled.		
Note:	When this test is executed, it does not influence the commutation angle.		
r1984	PollD angular difference / PollD ang diff		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [${ }^{\circ}$]	- [${ }^{\circ}$]	- [${ }^{\circ}$]
Description:	Displays the angular difference between the actual electrical commutation angle and the angle determined by the pole position identification.		

2.2 List of parameters

Dependency: Refer to: p0325, p0329, p1980, p1981, p1982, p1983, r1985, r1986, r1987, p1990, r1992, p1993, p1994, p1995, p1996, p1997, p3090, p3091, p3092, p3093, p3094, p3095, p3096, r3097
Note:
PolID: Pole position identification
When the pole position identification routine is executed several times using p1983, the spread of the measured values can be determined using this value. At the same position, the spread should be less than 2 degrees electrical.

r1984	PollD angular difference / PollD ang diff		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: ASM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [${ }^{\circ}$]	- [${ }^{\circ}$]	- [${ }^{\circ}$]
Description:	Displays the angular difference between the actual electrical commutation angle and the angle determined by the pole position identification.		
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1982, p1983, r1985, r1986, r1987, p1990, r1992, p1993, p1994, p1995, p1996, p1997, p3090, p3091, p3092, p3093, p3094, p3095, p3096, r3097		
Note:	PolID: Pole position identification		
	When the pole position identification routine is executed several times using p1983, the spread of the measured values can be determined using this value. At the same position, the spread should be less than 2 degrees electrical		
r1985	Chld v/U characteristic velocity measured / Chid v/U v meas		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the measured v/U characteristics in m/min.		
Dependency:	Refer to: p1960		
Note:	The values for the characteristic of the last identification routine are output every 1 ms in order to record signals (e.g. trace).		

r1985	PollD saturation curve / Polld sat_char		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the saturation curve of the pole position identification (saturation technique).		
	Displays the current characteristic of the pole position identification routine (elasticity technique).		
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1982, p1983, r1984, r1986, r1987, p1990, r1992, p1993, p1994, p1995, p1996, p1997, p3090, p3091, p3092, p3093, p3094, p3095, p3096, r3097		
Note:	PolID: Pole position identification		
	Regarding the saturation technique:		
	The values for the characteristic of the last saturation-based pole position identification routine are output every 1 ms in order to record signals (e.g. trace).		

r1985	PollD saturation curve / PollD sat_char		
VECTOR (n / M),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: ASM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the saturation curve of the pole position identification (saturation technique).		
	Displays the current characteristic of the pole position identification routine (elasticity technique).		
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1982, p1983, r1984, r1986, r1987, p1990, r1992, p1993, p1994, p1995, p1996, p1997, p3090, p3091, p3092, p3093, p3094, p3095, p3096, r3097		
Note:	PolID: Pole position identification		
	Regarding the saturation technique:		
	The values for the characteristic of the last saturation-based pole position identification routine are output every 1 m in order to record signals (e.g. trace).		

r1986	Chld v/U characteristic velocity parameterized / ChId v/U v par		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the parameterized v/U characteristics in m/min.		
Dependency:	Refer to: p1960, p3030, p3031, p3033, p3034, p3035, p3036, p3037, p3038, p3039, p3040, p3041, p3042, p3043, p3044, p3045, p3046, p3047, p3048, p3075		
Note:	The values for the characteristic of the last identification routine are output every 1 ms in order to record signals (e.g. trace).		
$\overline{\mathbf{1 9 8 6}}$	PollD saturation characteristic 2 / PolelD sat_curve 2		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the pole position characteristic of the elasticity-based pole position identification routine.		
	The values for the characteristic of the last pole position identification routine are output every 1 ms in order to record signals (e.g. trace).		
Dependency:	Refer to: p3090, p3091, p3092, p3093, p3094, p3095, p3096, r3097		
Note:	PolID: Pole position identification		
r1987	Chld v/U characteristic voltage / ChId v/U U		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the voltage of the v/U characteristics in V unit.		
Dependency:	Refer to: p1960		
Note:	The values for the characteristic of the last identification routine are output every 1 ms in order to record signals (e.g. trace).		

r1987	PollD trigger characteristic / PollD trig_char		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the trigger characteristic of the pole position identification routine.		
	The values for the characteristic of the last pole position identification routine are output every 1 ms in order to record signals (e.g. trace).		
	The values for trigger characteristic and saturation characteristic are always output in synchronism from a time perspective.		
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1982, p1983, r1984, r1985, r1986, p1990, r1992, p1993, p1994, p1995, p1996, p1997, p3090, p3091, p3092, p3093, p3094, p3095, p3096, r3097		
Note:	PolID: Pole position identification		
	The following information and data can be taken from the trigger characteristic.		
	- the value -100% marks the angle at the start of the measurement.		
	- the value $+100 \%$ marks the commutation angle determined from the pole position identification routine.		

p1990	Encoder adjustment determine angular commutation offset / Enc_adj det ang		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	This function is only required for synchronous motors and can be started when commissioning for the first time or after replacing an encoder.		
	The function acts on the active motor data set.		
	When adjusting the encoder, the angular commutation offset is determined and transferred into p0431.		
	Alarm A07971 is output while the angular commutation offset is being determined.		
	p 1990 is automatically set to 0 after the angular commutation offset has been determined.		
	p1990 = 0: Deactivated		
	p1990 = 1: Activated with transfer		

Dependency:	Refer to: p0325, p0329, p0431, p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1999
	Refer to: A07971
Danger:	For recommendation 3:
	When performing this measurement there is a danger of coming into contact with system parts that are at a high (hazardous) electrical voltage.
	This measurement may only be performed by authorized service personnel.
Warning:	The motor can move in an uncontrolled fashion.
I	To determine the angular commutation offset, pulses must be immediately enabled after p1990 $=1$. For commutation with a zero mark - or with distance-coded zero marks - the drive must also be traversed over the zero mark or over two zero marks. If a POWER ON is carried out before activating the pulse enable and where relevant before passing the zero mark, then after powering up p1990 = 0, and the commutation angle is not determined.
Notice:	When the pulses are enabled, the function is immediately executed with p1990 = 1; otherwise, the next time that the pulses are enabled.
	In order to prevent an incorrect orientation of the electrical pole position (uncontrolled motor movement), the automatically determined angular commutation offset (p0431) should, for reasons of safety, be checked using one of the following recommendations:
	Recommendation 1:
	Set encoderless operation ($\mathrm{p} 1300=20$ or $\mathrm{p} 1404=0$), de-select pole position identification ($\mathrm{p} 1982=0$), operate under no-load conditions with a speed > p1755, correct the actual value inversion (p0410.0) (e.g. r0061 = r0063), read the angular error in r 1778 ; the result in $r 1778$ should be approximately 0 , for $\|\mathrm{r} 1778\|>2$ degrees, add the value to p0431 - taking into account the sign - and enter in p0431.
	Recommendation 2:
	Set current limit to 0 (p0640 = 0), activate travel to fixed stop (p1545 = 1); record r0089[0] (phase voltage) and r0093 (pole position, electrically scaled), (e.g. trace) while the motor is being externally moved.
	When doing this, the rising zero crossing of the phase voltage must coincide with the step $360^{\circ}-->0^{\circ}$ from r0093.
	Recommendation 3:
	Measure phase voltage U (measure phase U with respect to a virtual neutral point created using 3 resistors) and r0093 (pole position, electrically scaled).
	When doing this, the rising zero crossing of the phase voltage must coincide with the step $360{ }^{\circ}-{ }^{-}>0^{\circ}$ from r0093.
	Recommendation 4:
	Determine the average value from several results of a pole position identification routine executed as test (p1983) at various electrical angles and add the value to p0431-taking into account the sign and enter into p0431.
Note:	If fault F07414 is present, the following applies:
	First set p1990 to 1, then acknowledge the fault and then issue the enable signals.
p1990	Encoder adjustment determine angular commutation offset / Enc_adj det ang
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: T Calculated: - Access level: 2
	Data type: Integer16 Dyn. index: - Func. diagram: -
	P-Group: Motor identification Unit group: - Unit selection: -
	Not for motor type: ASM Scaling: - Expert list: 1
	Min Max Factory setting
	030
Description:	This function is only required for synchronous motors and can be started when commissioning for the first time or after replacing an encoder.
	The function acts on the active motor data set.
	Alarm A07971 is output while the angular commutation offset is being determined. p 1990 is automatically set to 0 after the angular commutation offset has been determined.
	For p1990 = 1 (encoder adjustment with transfer), the following applies:
	The angular commutation offset is determined and transferred into p0431.
	For p1990 = 2 (encoder adjustment for checking), the following applies:
	The angular commutation offset is determined and is not transferred into p0431. For a deviation of more than 6° electrical, fault F07413 is output.
	For p1990 = 3 (encoder adjustment in operation), the following applies:
	PollD procedure runs before the zero mark detection. The angular commutation offset is determined and transferred into p0431. A fine adjustment (p1905) is then optionally possible.

2.2 List of parameters

Value:	0: Deactivated		
	1: Activated with transfer		
	2: Activated for checking		
	3: Activates encoder adjustment in operation		
Dependency:	In the simulation mode, the parameter cannot be written into.		
	When selecting the encoder adjustment, the changeover of the drive data sets is suppressed.		
	Encoder adjustment is only carried out if the function module for "speed/torque control" is activated (r0108.2 = 1). Refer to: p0325, p0329, p0431, p1272, p1900		
Caution: \leqq	When the encoder is being adjusted, the motor must be operated without a load - and if a motor holding brake is being used, this must be opened.		
p1991[0...n]	Motor changeover angular commutation correction / Ang_com corr		
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-180 [${ }^{\circ}$]	180 [$\left.{ }^{\circ}\right]$	$\left.0{ }^{\circ}{ }^{\circ}\right]$
Description:	Sets the angle that is added to the commutating angle.		
Caution: \leqq	If the angular correction is not correctly set, when changing over and with closed-loop torque control, the motor can accelerate to high speeds in spite of the fact that a setpoint of zero has been entered.		
p1991[0...n]	Motor changeover angular commutation correction / Ang_com corr		
VECTOR, VECTOR AC, VECTOR_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: ASM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-180[${ }^{\circ}$]	180 [$\left.{ }^{\circ}\right]$	$\left.0{ }^{\circ}{ }^{\circ}\right]$
Description:	Sets the angle that is added to the commutating angle.		
Caution: 介	If the angular correction is not correctly set, when changing over and with closed-loop torque control, the motor can accelerate to high speeds in spite of the fact that a setpoint of zero has been entered.		

r1992.0... 15 CO/BO: PollD diagnostics / PollD diag

SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting

Description: Display and BICO output for the diagnostics information of the pole position identification (polID)

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Critical encoder fault occurred	Yes	No	-
02	Encoder parking active	Yes	No	-
05	Encoder fault Class 1	Yes	No	-
06	Encoder fault Class 2	Yes	No	-
07	Pole position identification for encoder	Yes		-
	carried out		No	
08	Fine synchronization carried out	Yes	No	-
09	Coarse synchronization carried out	Yes	No	-
10	Commutation information available	Yes	No	-
11	Speed information available	Yes	No	-
12	Position information available	Yes	No	-
15	Zero mark passed	Yes		

Dependency:	Refer to: p0325, p0329, p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, p1993, p1994, p1995,
Note:	The data of p1992 are updated in a 4 ms cycle.
	Fast changes of the encoder status word bits can be better investigated using p7830 and following.
	PollD: Pole position identification

r1992.0.. 15	CO/BO: PollD diagnostics / PollD	diag		
SERVO (Lin),	Can be changed: -	Calculated: -	Acces	
SERVO_AC (Lin),	Data type: Unsigned16	Dyn. index: -	Func	
	P-Group: -	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	-	
Description:	Display and BICO output for the diagnostics in	information of the	ntification	
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Critical encoder fault occurred	Yes	No	-
	02 Encoder parking active	Yes	No	-
	05 Encoder fault Class 1	Yes	No	-
	06 Encoder fault Class 2	Yes	No	-
	07 Pole position identification for encoder carried out	Yes	No	-
	08 Fine synchronization carried out	Yes	No	-
	09 Coarse synchronization carried out	Yes	No	-
	10 Commutation information available	Yes	No	-
	11 Velocity information available	Yes	No	-
	12 Position information available	Yes	No	-
	15 Zero mark passed	Yes	No	-
Dependency:	Refer to: p0325, p0329, p1980, p1981, p1982 p1996, p1997, p3090, p3091, p3092, p3093,	$\begin{aligned} & \text { 2, p1983, r1984, } \\ & \text { p3094, p3095, p } \end{aligned}$	87, p1990	
Note:	The data of p1992 are updated in a 4 ms cycl			
	Fast changes of the encoder status word bits PolID: Pole position identification	can be better inv	7830 and	

p1993[0...n] PolID motion-based current / PolID I mot_bas

SERVO, SERVO_AC, Can be changed: U, T
SERVO_I_AC
Data type: FloatingPoint32
P-Group: Motor identification
Not for motor type: -
Min
0.00 [Arms]

Description: Sets the current when executing the motion-based pole position identification.
Dependency: Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p1994, p1995, p1996, p1997
Note: PolID mot: Motion-based pole position identification

p1995[0...n]	PoIID motion-based gain / PollD kp mot_bas		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: 17_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000 [$\mathrm{Nms} / \mathrm{rad}$]	999999.0000 [$\mathrm{Nms} / \mathrm{rad}$]	0.3000 [$\mathrm{Nms} / \mathrm{rad}$]
Description: Dependency: Note:	Sets the gain when executing Refer to: p1980, p1981, p1982 PollD mot: Motion-based pole	sed pole position identification. 4, r1985, r1986, r1987, p1990, r1992 fication	p1993, p1994, p1996, p1997
p1995[0...n]	PoIID motion-based gain / PolID kp mot_bas		
SERVO (Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: 24_2	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000 [Ns / m]	$999999.0000[\mathrm{Ns} / \mathrm{m}]$	10.0000 [Ns / m]
Description: Dependency: Note:	Sets the gain when executing the Refer to: p1980, p1981, p1982, Polld mot: Motion-based pole	ed pole position identification. 4, r1985, r1986, r1987, p1990, r1 fication	p1993, p1994, p1996, p1997
p1996[0...n]	PollD motion-based integral time / PoIID Tn mot_bas		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	500.0 [ms]	2.0 [ms]
Description: Dependency: Note:	Sets the integral time when ex Refer to: p1980, p1981, p1982 The value 0 deactivates the I Once the integral time has bee electrical). PollD mot: Motion-based pole	tion-based pole position identific 4, r1985, r1986, r1987, p1990, r1992, motion is increased during the fication	p1993, p1994, p1995, p1997 ification (a minimum of 90°
p1997[0...n]	PoIID motion-based smoothing time / PolID t_sm mot_bas		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	50.0 [ms]	0.0 [ms]
Description:	Sets the smoothing time when executing the motion-based pole position identification.		
Dependency:	Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p1993, p1994, p1995, p1996		
Note:	Polld mot: Motion-based pole position identification		

p1998[0...n]	PollD circle center point / Polld circ center		
VECTOR (n / M),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC (n/M)	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000 [A]	10000.0000 [A]	0.0000 [A]
Description:	Determined current offset to determine the speed (RESM).		
Dependency:	Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p1993, p1994, p1995, p1996		
Note:	RESM: reluctance synchronous motor (synchronous reluctance motor)		
p1999[0...n]	Ang. commutation offset calibr. and PollD scaling / Com_ang_offs scal		
VECTOR (n / M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n / M),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
VECTOR_I_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [\%]	5000 [\%]	100 [\%]
Description:	Sets the scaling for the runtime of the automatic encoder calibration and of the pole position identification technique in which the current is injected.		
Dependency:	Refer to: p0341, p0342		
Caution:	For p1999 > 100% (setting large moments of inertia) the following applies:		
/	There is no locked rotor monitoring (F07970 fault value 2).		
.	The plausibility check of the encoder signal (F07970 fault value 4) only checks the sign.		
Note:	For high moments of inertia, it is practical to scale the runtime of the calibration higher.		
p2000	Reference velocity / v_ref		
HLA	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.600 [m/min]	600.000 [m/min]	120.000 [m/min]
Description:	Sets the reference quantity for velocity.		
	All velocities specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	Refer to: p0500, p2001, p2002, p2003, r2004		
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	Example 1:		
	The signal of an analog input (e.g. r4055[0]) is connected to a velocity setpoint (e.g. p1155[0]). The actual percentage input value is cyclically converted into the absolute velocity setpoint using the reference velocity (p2000). Example 2:		
	The setpoint from PROFIBUS (r2060[1]) is connected to a velocity setpoint (e.g. p1155[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 40000000 hex. This percentage value is converted to the absolute velocity setpoint via reference velocity (p 2000).		

p2000	Reference speed reference frequency / n_ref f_ref		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index:-	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	6.00 [rpm]	210000.00 [rpm]	3000.00 [rpm]
Description:	Sets the reference quantity for speed and frequency.		
	All speeds or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	Refer to: p0500, p2001, p2002, p2003, r2004		
Note:	For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$.		
	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	Example 1:		
	The signal of an analog input (e.g. r4055[0]) is connected to a speed setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute speed setpoint using the reference speed (p 2000).		
	The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000).		

$\mathbf{p 2 0 0 0}$
SERVO (Lin),
SERVO_AC (Lin),
SERVO_I_AC (Lin)

Description:

Dependency:
Note: \quad For the automatic calculation $(\mathrm{p} 0340=1, \mathrm{p} 3900>0)$ an appropriate pre-assignment is only made if the parameter is at the factory setting.
If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
Example 1:
The signal of an analog input (e.g. r4055[0]) is connected to a velocity setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute velocity setpoint using the reference velocity (p2000). Example 2:
The setpoint from PROFIBUS (r2050[1]) is connected to a velocity setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute velocity setpoint via reference velocity (p2000).

p2000	Reference speed reference frequency / n_ref f_ref		
VECTOR,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Communications	Unit selection: -	
	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	

p2000	Reference frequency /f_ref		
A_INF, S_INF, R_INF,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
B_INF	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	$1000.00[\mathrm{~Hz}]$	Factory setting
Description:	$0.10[\mathrm{~Hz}]$	$50.00[\mathrm{~Hz}]$	
	Sets the reference quantity for the frequency.		
	All frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		

p2000	Reference speed reference frequency / n_ref f_ref		
TM41	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	6.00 [rpm]	210000.00 [rpm]	3000.00 [rpm]
Description:	Sets the reference quantity for speed and frequency.		
	All speeds or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	Refer to: p2001, p2002, p20		

Note: \quad For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$.
If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
Example 1:
The signal of an analog input (e.g. r4055[0]) is connected to a speed setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute speed setpoint using the reference speed (p 2000).
Example 2:
The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000).

p2000	Reference speed reference frequency / n_ref f_ref		
ENC	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	6.00 [rpm]	210000.00 [rpm]	3000.00 [rpm]
Description:	Sets the reference quantity for speed and frequency.		
	All speeds or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
p2000	Reference velocity reference frequency / v_ref f_ref		
ENC (Lin_enc)	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.60 [$\mathrm{m} / \mathrm{min}$]	600.00 [m/min]	120.00 [m/min]
Description:	Sets the reference quantity for velocity and frequency.		
	All velocities or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
	The following applies: Reference frequency (in Hz) = reference velocity (in ($\mathrm{m} / \mathrm{min}$) / 60)		
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		

p2001	Reference voltage / Reference voltage		
HLA	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [V]	100000 [V]	1000 [V]
Description:	Sets the reference quantity for voltages.		
	All voltages specified as relative value are referred to this reference quantity. This also applies for direct voltage values (= rms value) like the DC link voltage.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
Note:	If a BICO interconnection is are used as internal convers	een different physical quantities,	the particular reference quantities

2.2 List of parameters

Notice:	If various DDS are used with different motor data, then the reference quantities remain the same as these are not changed over with the DDS. The resulting conversion factor should be taken into account (e.g. for trace records).
	Example:
	p2002 = 100 A
	Reference quantity 100 A corresponds to 100 \%
	p0305[0] = 100 A
	Rated motor current 100 A for MDS0 in DDS0 --> 100 \% corresponds to 100% of the rated motor current
	p0305[1] = 50 A
	Rated motor current 50 A for MDS1 in DDS1 --> 100 \% corresponds to 200% of the rated motor current
Note:	For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$.

SERVO:
Pre-assigned value for $\mathrm{p} 0338>0.001$ is p 0338 , otherwise 2 * p 0305 .
VECTOR:
Pre-assigned value is p0640.
If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
For infeed units, the rated line current, which is obtained from the rated power and parameterized rated line supply voltage ($\mathrm{p} 2002=\mathrm{r0206} / \mathrm{p} 0210 / 1.73$) is pre-assigned as the reference quantity.
Example:
The actual value of a phase current (r0069[0]) is connected to a test socket (e.g. p0771[0]). The actual current value is cyclically converted into a percentage of the reference current (p 2002) and output according to the parameterized scaling.

p2003	Reference force /F_ref		
HLA	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit selection: p0505	
	Not for motor type: -	Max	Expert list: 1

p2003 Reference torque / M_ref

SERVO, VECTOR,	Can be changed: T
SERVO_AC,	Data type: FloatingPoint32
VECTOR AC,	Pa

SERVO I AC, P-Group: Communications

VECTOR_I_AC, TM41 Not for motor type: -

Min
0.01 [Nm]

Calculated: CALC_MOD_ALL
Dyn. index: -
Unit group: 7_2
Scaling: -
Max
20000000.00 [Nm]

Access level: 3
Func. diagram: -
Unit selection: p0505
Expert list: 1
Factory setting
$1.00[\mathrm{Nm}]$

Description:

All torques specified as relative value are referred to this reference quantity.
The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).

Note: \quad For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$.
SERVO:
Pre-assigned value for p0338 and p0334 > 0.001 is p0338 * p0334, otherwise 2 * p0333.
VECTOR:
Pre-assigned value is 2 * p0333.
If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
Example:
The actual value of the total torque (r0079) is connected to a test socket (e.g. p0771[0]). The actual torque is cyclically converted into a percentage of the reference torque (p2003) and output according to the parameterized scaling.

r2004

Reference power / P_ref
HLA

Data type: FloatingPoint32
P-Group: Communications
Not for motor type: -

Min

- [kW]

Calculated: -

Dyn. index: -
Unit group: 14_10
Scaling: -
Max
$-[k W]$

Access level: 3
Func. diagram: -
Unit selection: p0505
Expert list: 1
Factory setting

- [kW]

Description: Displays the reference quantity for power.
All power ratings specified as relative value are referred to this reference quantity.
The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).

Dependency:

This value is calculated as follows:
Calculated from the torque x speed (rotating) or from the force x velocity (linear).
Refer to: p2000, p2001, p2002, p2003
Note: If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
The reference power is calculated as follows:
-2 * Pi * reference speed / 60 * reference torque (rotating)

- reference velocity / 60*reference force (linear)

p2005	Reference angle / Reference angle		
SERVO, VECTOR,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Communications	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF,	Min	Max	Factory setting
B_INF, TM41	$\left.90.00{ }^{[}\right]$	$\left.180.00{ }^{[}\right]$	$\left.90.00{ }^{\circ}{ }^{\circ}\right]$
Description:	Sets the reference quantity for angle.		
	All angles specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
Note:	For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$.		
	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		

p2006 Reference temperature / Ref temp

SERVO, VECTOR,
HLA, SERVO_AC, VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC,
A_INF, S_INF, R_INF,
B_INF, TM41
Description:

Reference temperature / Ref temp

Can be changed: T
Data type: FloatingPoint32
P-Group: Communications
Not for motor type: -
Min
$50.00\left[{ }^{\circ} \mathrm{C}\right]$

Calculated: CALC_MOD_ALL
Dyn. index: -
Unit group: 21_1
Scaling: -
Max
$300.00\left[{ }^{\circ} \mathrm{C}\right]$

Access level: 3
Func. diagram: -
Unit selection: p0505
Expert list: 1
Factory setting
$100.00\left[{ }^{\circ} \mathrm{C}\right.$]

Sets the reference quantity for temperature
All temperatures specified as relative value are referred to this reference quantity.
The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).

p2006	Reference temperature / Ref temp		
TM31, TM120, TM150	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$50.00\left[{ }^{\circ} \mathrm{C}\right]$	$300.00\left[{ }^{\circ} \mathrm{C}\right]$	$100.00\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the reference quantity for temperature.		
	All temperatures specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		

p2007	Reference acceleration / a_ref		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, TM41	Can be changed: T Data type: FloatingPoint32 P-Group: Communications Not for motor type: - Min 0.01 [rev/s ${ }^{2}$]	Calculated: CALC_MOD_ALL Dyn. index: - Unit group: - Scaling: - Max $500000.00\left[\mathrm{rev} / \mathrm{s}^{2}\right]$	Access level: 3 Func. diagram: - Unit selection: - Expert list: 1 Factory setting $0.01\left[\mathrm{rev} / \mathrm{s}^{2}\right]$
Description:	Sets the reference quantity for acceleration rates. All acceleration rates specified as relative value are referred to this reference quantity. The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
Note:	For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$. If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. The reference acceleration is calculated as follows: Reference speed (p 2000) converted from $1 / \mathrm{min}$ to $1 / \mathrm{s}$ divided by 1 s --> p2007 = p2000 [rpm] / (60 [s/min] * 1 [s])		
p2007	Reference acceleration / a_ref		
SERVO (Lin), HLA, SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: T Data type: FloatingPoint32 P-Group: Communications Not for motor type: - Min 0.01 [$\mathrm{m} / \mathrm{s}^{2}$]	Calculated: CALC_MOD_ALL Dyn. index: - Unit group: 22_1 Scaling: - Max $10000.00\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	Access level: 3 Func. diagram: - Unit selection: p0505 Expert list: 1 Factory setting 0.01 [$\mathrm{m} / \mathrm{s}^{2}$]
Description:	Sets the reference quantity for acceleration rates. All acceleration rates specified as relative value are referred to this reference quantity. The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
Note:	For the automatic calculation (p0340 $=1$, not inhibited from being overwritten using physical quantities, then the particular ref The reference acceleration is calculated Reference speed (p2000) converted from --> p2007 = p2000 [rpm] / (60 [s/min] * 1	poo >0) an appropriate pre-assig $573=1$. If a BICO interconnectio nce quantities are used as intern fllows: min to $1 / \mathrm{s}$ divided by 1 s	nt is only made if the parameter is established between different nversion factor.

2.2 List of parameters

r2019[0...7]	Comm IF error statistics / Comm err	
CU_I, CU_S_AC_DP,	Can be changed: -	Calculated: -
CU_S_AC_PN,	Data type: Unsigned32	Access level: 4
CU_S120_PN,	P-Group: Communications	Uunc. diagram: -
CU_S150_PN,	Not for motor type: -	Unit group: -
CU_S120_DP,	Scaling: -	Expert list: 1
CU_S150_DP,	Min	Max
CU_I_D410	-	-
Description:	Displays the receive errors at the commissioning interface (RS232).	-
Index:	$[0]=$ Number of error-free telegrams	
	$[1]=$ Number of rejected telegrams	
	$[2]=$ Number of framing errors	
	$[3]=$ Number of overrun errors	
	$[4]=$ Number of parity errors	
	$[5]=$ Number of starting character errors	
	$[6]=$ Number of checksum errors	
	$[7]=$ Number of length errors	

p2020	Field bus interface baud rate / Field bus baud		
CU_S_AC_DP,	Can be changed: T	Calculated: -	Access level: 2
CU_S120_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	4	8	8
Description:	Sets the baud rate for the fieldbus interface USS.		
Value:	4: 2400 baud		
	5: 4800 baud		
	6: 9600 baud		
	7: 19200 baud		
	8: 38400 baud		
Note:	Fieldbus IF: Fieldbus interface		
	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
	The parameter is set to the factory setting when the protocol is reselected.		

p2021	Field bus interface address / Field bus address		
CU_S_AC_DP,	Can be changed: T	Calculated: -	Access level: 2
CU_S120_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram:
CU_S150_DP	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	31	0
Description:	Displays or sets the address for the fieldbus interface USS.		
	The address can be set as follows:		
	1) Using the address switch on the Control Unit.		
	--> p2021 displays the address setting.		
	--> A change only becomes effective after a POWER ON.		
	address switch.		
	--> The address is saved in a non-volatile fashion using the function "copy from RAM to ROM".		
	--> A change only becomes effective after a POWER ON.		
Dependency:	Refer to: p2030		

Note:	Changes only become effective after POWER ON.
The parameter is not influenced by setting the factory setting.	
	The parameter is set to the factory setting when the protocol is reselected.

2.2 List of parameters

p2030	Field bus interface protocol selection / Field bus protocol		
CU_S_AC_DP,	Can be changed: T	Calculated: -	Access level: 1
CU_S120_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S150_DP	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	3	6	3
Description:	Sets the communication protocol for the field bus interface.		
Value:	$\begin{array}{ll}\text { 3: } & \text { PROFIBUS } \\ \text { 6: } & \text { USS (X140) }\end{array}$		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p2030	Field bus interface protocol selection / Field bus protocol		
CU_S_AC_PN,	Can be changed: T	Calculated: -	Access level: 1
CU_S120_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	7	13	7
Description:	Sets the communication protocol for the field bus interface.		
Value:	$\begin{array}{ll}\text { 7: } & \text { PROFINET } \\ \text { 10: } & \text { EtherNet/IP } \\ \text { 13: } & \text { Modbus TCP }\end{array}$		
Note:	Changes only become effective after POWER ON.		

r2032	Master control control word effective / PcCtrl STW eff				
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -		Calculated: - Acces		
	Data type: Unsigned16		Dyn. index: - Func.		
	P-Group: Displays, signals		Unit group: -	Unit selection:	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the effective control word 1 (STW1) of the drive for the master control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	ON/OFF1	Yes	No	-
	01	OC / OFF2	Yes	No	-
	02	OC / OFF3	Yes	No	-
		Enable operation	Yes	No	-
		Enable ramp-function generator	Yes	No	-
		Start ramp-function generator	Yes	No	-
		Enable speed setpoint	Yes	No	-
		Acknowledge fault	Yes	No	-
	08	Jog bit 0	Yes	No	3030
	09	Jog bit 1	Yes	No	3030
		Master control by PLC	Yes	No	-
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control word/setpoints can be transferred from another automation device.				
Note:	OC: Operating condition				
r2032	Master control control word effective / PcCtrl STW eff				
SERVO (Lin),	Can be changed: -		Calculated: -	Access level: 2	
SERVO_AC (Lin),	Data type: Unsigned16		Dyn. index: -	Func. diagram: -	
SERVO_I_AC (Lin)	P-Group: Displays, signals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the effective control word 1 (STW1) of the drive for the master control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	ON/OFF1	Yes	No	-
	01	OC / OFF2	Yes	No	-
	02	OC / OFF3	Yes	No	-
	03	Enable operation	Yes	No	-
	04	Enable ramp-function generator	Yes	No	-
	05	Start ramp-function generator	Yes	No	-
	06	Enable velocity setpoint	Yes	No	-
	07	Acknowledge fault	Yes	No	
	08	Jog bit 0	Yes	No	3030
	09	Jog bit 1	Yes	No	3030
	10	Master control by PLC	Yes	No	-
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control word/setpoints can be transferred from another automation device.				
Note:	OC: Operating condition				

2.2 List of parameters

r2032	Master control control word effective / PcCtrl STW eff				
A_INF, S_INF, R_INF, B_INF	Can be changed: - Data type: Unsigned16 P-Group: Displays, signals Not for motor type: - Min		Calculated: -	Access level: 2	
			Dyn. index: -	Func. diagram: -	
			Unit group: -	Unit selection: -	
			Scaling: -	Expert list: 1	
			Max	Factory setting	
			-	-	
Description:	Displays the effective control word 1 (STW1) of the drive for the master control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		ON/OFF1	Yes	No	-
		OC / OFF2	Yes	No	-
		Enable operation	Yes	No	-
		Acknowledge fault	Yes	No	-
		Master control by PLC	Yes	No	-
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control word/setpoints can be transferred from another automation device.				
Note:	OC: Operating condition				
p2035	Fieldbus interface USS PIV drive object number / Fieldbus USS DO_no				
CU_S_AC_DP,	Can be changed: U, T		Calculated: -	Access level: 2	
CU_S120_DP,	Data type: Integer16		Dyn. index: -	Func. diagram: -	
CU_S150_DP	P-Group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	1		62	2	
Description:	Sets the drive object number for communication via the field bus interface (USS).				
Dependency:	Refer to: p0978				
Note:	p2035 defines the destination for USS parameter requests (PIV).				
	p0978[0] defines the destination for USS process data (PZD).				
	The parameter is available globally on all drive objects.				
	The parameter is not influenced by setting the factory setting.				
p2037	IF1 PROFIdrive STW1.10 = 0 mode / IF1 PD STW1.10=0				
SERVO, VECTOR, hLA, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM41, ENC	Can be changed: T		Calculated: -	Access level: 3	
	Data type: Integer16		Dyn. index: -	Func. diagram: -	
	P-Group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	0		2	0	
Description:	Sets the processing mode for PROFIdrive STW1.10 "master control by PLC".				
	Generally, control world 1 is received with the first receive word (PZD1) (this is in conformance to the PROFIdrive profile). The behavior of STW1.10 $=0$ corresponds to that of the PROFIdrive profile. For other applications that deviate from this, the behavior can be adapted using this particular parameter.				
Value:		Freeze setpoints and Freeze setpoints and sis Do not freeze setpoints	cess sign-of-life		
Recommendation:	Do	t change the setting p20			
Note:	$\begin{aligned} & \text { If the } \\ & \text { p20 } \end{aligned}$	STW1 is not transferred 7 should be set to 2 .	e PROFIdrive w	10 "master	then

p2038	IF1 PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode		
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Displays the interface mode of the PROFIdrive control words and status words.		
Value:	0: SINAMICS 1: SIMODRIVE 611 universal 2: VIK-NAMUR		
Dependency:	Refer to: p0922, p2079		
Notice:	The parameter is protected and cannot be changed.		
Note:	For telegram selection p0922 $(\mathrm{p} 2079)=102,103,105,106,116,118,125,126,136,138,139$, then p2038 is automatically set $=1$. When another telegram is selected, then p2038 is automatically set $=0$.		

p2038	IF1 PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode		
SERVO (EPOS, Pos	Can be changed: T	Calculated: -	Access level: 3
ctrl), SERVO_AC	Data type: Integer16	Dyn. index: -	Func. diagram: -
(EPOS, Pos ctrl)	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	0	Factory setting
	0	0	
Description:	Displays the interface mode of the PROFIdrive control words and status words.		
Value:	0: SINAMICS		
Dependency:	Refer to: p0922, p2079		
Notice:	The parameter is protected and cannot be changed.		

p2038	IF1 PROFIdrive STW/ZSW interface mode /PD STW/ZSW IF mode		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0

Description: Displays the interface mode of the PROFIdrive control words and status words.

Value:

0 : SINAMICS
1: SIMODRIVE 611 universal
2: VIK-NAMUR
Dependency: Refer to: p0922, p2079
Notice: \quad The parameter is protected and cannot be changed.
Note: \quad For telegram selection p0922 $(\mathrm{p} 2079)=20$, then p2038 is automatically set $=2$.
When another telegram is selected, then p2038 is automatically set $=0$.

p2038	IF1 PROFIdrive STW/ZSW interface mode /PD STW/ZSW IF mode		
VECTOR (EPOS, Pos	Can be changed: T	Calculated: -	Access level: 3
ctrl), VECTOR_AC	Data type: Integer16	Dyn. index: -	Func. diagram: -
(EPOS, Pos ctrl)	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Factort list: 1
	Min setting		
	0	0	0
Description:	Displays the interface mode of the PROFIdrive control words and status words.		
Value:	$0: \quad$ SINAMICS		
Dependency:	Refer to: p0922, p2079		
Notice:	The parameter is protected and cannot be changed.		
Note:	For p0922 (p2079) $=7,9,110,111$, p2038 is automatically set to 0 and cannot be changed.		

p2039	Select debug monitor interface / Debug monit select		
CU_I, CU_I_D410	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Scaling: -
	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
Description:	0	1	

p2039	Select debug monitor interface / Debug monit select		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 4
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CUS120_PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Max	Expert list: 1
CU_S120_DP,	3	Factory setting	
CU_S150_DP	Min	0	
	0		
Description:	Sets the serial interface for the debug monitor.		
	The serial interface for the debug monitor is COM1 (X140) or COM2 (internal).		
	Value $=0:$ COM2 (internal)		
	Value $=1:$ COM1 (X140), commissioning protocol is deactivated		
	Value $=2:$ COM2 (internal)		
	Value $=3:$ Reserved		

p2040	COMM INT monitoring time / COMM INT t_monit		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_I_D410, CU_LINK	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0[\mathrm{~ms}]$	1999999 [ms $]$	$[\mathrm{ms}]$
Description:	Sets the monitoring time to monitor the process data received via the internal communications interface.		
	If no process data is received within this time, then an appropriate message is output.		
Note:	Value $=0:$ Monitoring is deactivated.		

2.2 List of parameters

p2044	IF1 PROFIdrive fault delay / IF1 PD fault delay		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2410
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_I_AC, } \end{aligned}$	P-Group: Communications	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A INF, S_INF, R_INF,	Min	Max	Factory setting
B_INF, TM41, ENC	0 [s]	100 [s]	0 [s]
Description:	The time until the fault is initiated can be used by the application. This means that is is possible to respond to the failure while the drive is still operational (e.g. emergency retraction).		
Dependency:	Refer to: r2043		

p2045	CI: PB/PN clock synchronous controller sign-of-life signal source /
	PB/PN ctrSoL s_src

CU_I, CU_NX_CX,
CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN,
CU_S150_PN,
CU_S120_DP,
CU_S150_DP,
CU_I_D410, SERVO, VĒ̄TOR (n / M), HLA, SERVO_AC, VECTOR_AC $(\mathrm{n} / \mathrm{M})$, SERVO_I_AC, VECTOR_I_AC (n / M), TM41, ENC

Description

Dependency
Notice:

Can be changed: T
Data type: Unsigned32 / Integer16
P-Group: Communications
Not for motor type: -
Min

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

Access level: 3
Func. diagram: 2410
Unit selection: -
Expert list: 1
Factory setting

p2047	PROFIBUS additional monitoring time / PB suppl t_monit		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S120_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2410
CU_S150_DP	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	0 [ms]	0 [ms]	
	Sets the additional monitoring time to monitor the process data received via PROFIBUS.		
Description:	Enables short bus faults to be compensated.		
	If no process data is received within this time, then an appropriate message is output.		
Recommendation:	In the isochronous mode, the additional monitoring time should not be set.		
Note:	For controller STOP, the additional monitoring time is not effective.		

p2048	IF1 PROFIdrive PZD sampling time / IF1 PZD t_sample		
CU_I, CU_NX_CX,	Can be changed: C 1 (3)	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	1.00 [ms]	16.00 [ms]	4.00 [ms]
Description:	Sets the sampling time for the cyclic interface 1 (IF1).		
Note:	The system only permits certain sampling times and after writing to this parameter, displays the value that has actually been set.		
For clock cycle synchronous operation, the specified bus cycle time applies (Tdp).			
p2049	PROFIdrive isochronous operation asynchronous participation / Isochron async		
SERVO, VECTOR, SERVO_I_AC, VECTOR_I_AC	Can be changed: C 1 (3)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting for asynchronous participation in isochronous operation.		
	For p2049 = 1:		
	The axis only asynchronously participates in isochronous PROFIdrive operation.		
	The control sampling times of this axis are not included in the bus cycle time check (Tdp), in the time of the actual value sensing (Ti) and in the time of the setpoint sensing (To).		
	For p2049 = 0:		
	No effect on the setting in p0092.		
Value:	0: No 1: Yes		
Dependency:	Refer to: p0092		
Caution:	Restrictions for asynchronous participation in isochronous PROFIBUS operation:		
	- the setpoints are effective at undefined instant in time (deviating from To). As a consequence, interpolating operation with other axes is not possible, for example.		
	- the actual values are read at undefined instant in time (deviating from Ti). As a consequence, the actual values cannot be used to control other axes, for example.		

r2050[0..19]	CO: IF1 PROFIdrive PZD receive word / IF1 PZD recv word		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN, CU S120 PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: 4000H	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	-
Description:	Connector output to interconnect PZD (setpoints) with word format received from the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		

2.2 List of parameters

	[11] = PZD 12
	[12] = PZD 13
	[13] = PZD 14
	[14] = PZD 15
	[15] = PZD 16
	[16] = PZD 17
	[17] = PZD 18
	[18] = PZD 19
	[19] = PZD 20
Note:	IF1: Interface 1

r2050[0...19]	CO: IF1 PROFIdrive PZD receive word / IF1 PZD recv word		
SERVO, HLA,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: 2440, 2468
SERVO_I_AC, TM41	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output to interconnect PZD (setpoints) with word format received from the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] $=$ PZD 18$[18]$		
	[19] = PZD 20		
Dependency:	Refer to: r2060		
Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.		
	A BICO interconnection for a single PZD can only take place either on r2050 or r2060.IF1: Interface 1		
Note:			

r2050[0...31]
VECTOR,
VECTOR_AC, VECTOR_I_AC

Description: Connector output to interconnect PZD (setpoints) with word format received from the fieldbus controller.
Index:
[0] = PZD 1
[1] = PZD 2
[2] $=$ PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7

r2050[0...4]	CO: IF1 PROFldrive PZD receive word / IF1 PZD recv word		
TM31, TM15DI_DO,	Can be changed: -	Calculated: -	Access level: 3
TM120, TM150, TB30	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output to interconnect PZD (setpoints) with word format received from the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
Note:	IF1: Interface 1		
r2050[0...3]	CO: IF1 PROFldrive PZD receive word / IF1 PZD recv word		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2440, 2468
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output to interconnect PZD (setpoints) with word format received from the fieldbus controller.		
Index:	$[0]=$ PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
Dependency:	Refer to: r2060		
Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.		
	A BICO interconnection for a single PZD can only take place either on r2050 or r2060.		
Note:	IF1: Interface 1		
p2051[0...24]	CI: IF1 PROFIdrive PZD send word / IF1 PZD send word		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: 4000H	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		

	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	IF1: Interface 1		
p2051[0...27]	CI: IF1 PROFIdrive PZD send word / IF1 PZD send word		
SERVO, HLA,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 2470
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000 H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
Dependency:	Refer to: p2061		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	IF1: Interface 1		

2.2 List of parameters

p2051[0...31]	CI: IF1 PROFIdrive PZD send word / IF1 PZD send word		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 2470
VECTOR_I_AC	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	[30] = PZD 31		
	[31] = PZD 32		
Dependency:	Refer to: p2061		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:			

p2051[0...9] CI: IF1 PROFIdrive PZD send word / IF1 PZD send word

B_INF
Data type: Unsigned32 / Integer16
P-Group: Communications
Not for motor type: -
Min
,

Description: Selects the PZD (actual values) with word format to be sent to the fieldbus controller.
Index:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7

	$\begin{aligned} & \text { [7] = PZD } 8 \\ & \text { [8] = PZD } 9 \\ & {[9]=\text { PZD } 10} \end{aligned}$		
Notice: Note:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2051[0...4]	CI: IF1 PROFIdrive PZD send word / IF1 PZD send word		
TM31, TM15DI_DO, TM120, TM150, TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	IF1: Interface 1		
p2051[0...11]	CI: IF1 PROFIdrive PZD send word / IF1 PZD send word		
ENC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 2470
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
Dependency:	Refer to: p2061		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	IF1: Interface 1		

r2053[0...31]	IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word			
VECTOR,	Can be changed: -	Calculated: -	Access	
VECTOR_AC,	Data type: Unsigned16	Dyn. index: -	Func.	
VECTOR_I_AC	P-Group: Communications	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the PZD (actual values) with word format sent to the fieldbus controller.			
Index:	[0] = PZD 1			
	[1] = PZD 2			
	[2] = PZD 3			
	[3] = PZD 4			
	[4] = PZD 5			
	[5] = PZD 6			
	[6] = PZD 7			
	[7] = PZD 8			
	[8] = PZD 9			
	[9] = PZD 10			
	[10] = PZD 11			
	[11] = PZD 12			
	[12] = PZD 13			
	[13] = PZD 14			
	[14] = PZD 15			
	[15] = PZD 16			
	[16] = PZD 17			
	[17] = PZD 18			
	[18] = PZD 19			
	[19] = PZD 20			
	[20] = PZD 21			
	[21] = PZD 22			
	[22] = PZD 23			
	[23] = PZD 24			
	[24] = PZD 25			
	[25] = PZD 26			
	[26] = PZD 27			
	[27] = PZD 28			
	[28] = PZD 29			
	[29] = PZD 30			
	[30] = PZD 31			
	[31] = PZD 32			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Bit 0	ON	OFF	-
	01 Bit 1	ON	OFF	-
	02 Bit 2	ON	OFF	-
	03 Bit 3	ON	OFF	-
	04 Bit 4	ON	OFF	-
	05 Bit 5	ON	OFF	-
	06 Bit 6	ON	OFF	-
	07 Bit 7	ON	OFF	-
	08 Bit 8	ON	OFF	-
	09 Bit 9	ON	OFF	-
	10 Bit 10	ON	OFF	-
	11 Bit 11	ON	OFF	-
	12 Bit 12	ON	OFF	-
	13 Bit 13	ON	OFF	-
	14 Bit 14	ON	OFF	-
	15 Bit 15	ON	OFF	-
Dependency:	Refer to: p2051, p2061			
Note:	IF1: Interface 1			

r2053[0...9]	IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word				
A_INF, S_INF, R_INF,	Can	be changed: -	Calculated: -	Acces	
B_INF	Dat	type: Unsigned16	Dyn. index: -	Func.	
	P-G	oup: Communications	Unit group: -	Unit se	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the PZD (actual values) with word format sent to the fieldbus controller.				
Index:	[0] = PZD 1				
	[1] = PZD 2				
	[2] = PZD 3				
	[3] = PZD 4				
	[4] = PZD 5				
	[5] = PZD 6				
	[6] = PZD 7				
	[7] = PZD 8				
	[8] = PZD 9				
	[9] = PZD 10				
Bit field:		Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
		Bit 2	ON	OFF	-
		Bit 3	ON	OFF	-
		Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
		Bit 10	ON	OFF	-
		Bit 11	ON	OFF	-
		Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
		Bit 15	ON	OFF	-
Note:	IF1: Interface 1				
r2053[0...4]	IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word				
TM31, TM15DI_DO, TM120, TM150, TB30	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Communications		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	- -			-	
Description:	Displays the PZD (actual values) with word format sent to the fieldbus controller.				
Index:	[0] = PZD 1				
	[1] = PZD 2				
	[2] = PZD 3				
	[3] = PZD 4				
	[4] = PZD 5				

2.2 List of parameters

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1:	Interface 1			
r2053[0...11]	IF1	ROFIdrive diagn	send word / I	word	
ENC	Can	be changed: -	Calculated: -	Access	
	Data	type: Unsigned16	Dyn. index: -	Func.	
	P-Gr	up: Communications	Unit group: -	Unit se	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max	Factory	
	-		-	-	
Description:	Disp	ays the PZD (actual val	frmat sent to the		
Index:	[0] =	PZD 1			
	[1] $=$	PZD 2			
	[2] $=$	PZD 3			
	[3] $=$	PZD 4			
	[4] $=$	PZD 5			
	[5] =	PZD 6			
	[6] =	PZD 7			
	[7] $=$	PZD 8			
	[8] $=$	PZD 9			
	[9]	PZD 10			
	[10]	PZD 11			
	[11]	PZD 12			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refe	to: p2051, p2061			
Note:	IF1:	Interface 1			

2.2 List of parameters

r2057	PROFIBUS address switch diagnostics / PB addr sw diag		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_S150_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
$\begin{aligned} & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Dependency:	Displays the setting of the PROFIBUS address switch "DP ADDRESS" on the Control Unit.		
Notice:	The display is updated after switching on, and not cyclically.		
r2058[0...139]	COMM INT receive configuration data / C INT E_config_dat		
CU_I, CU_NX_CX, CU_I_D410, CU_LINK	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the configuration data received via COMM BOARD.		
r2059[0...7]	COMM INT identification data / C INT ident_dat		
CU_I, CU_NX_CX, CU_I_D410, CU_LINK	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the identification data of the COMM BOARD.		
Note:	Index 0: CB data structure version (e.g.: $100=\mathrm{V} 1.00$).		
	Index 1: CB driver version (e.g.: $100=\mathrm{V} 1.00$).		
	Index 2: Company, (e.g.: $42=$ Siemens).		
	Index 3: Device type		
	Index 4: Firmware version.		
	Index 5: Firmware date (year).		
	Index 6: Firmware date (day/month).		
r2060[0...18]	CO: IF1 PROFIdrive PZD receive double word / IF1 PZD recv DW		
SERVO, HLA, SERVO_AC, SERVO_I_AC, TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: 2440, 2468
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000 H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output to interconnect PZD (setpoints) with double word format received from the fieldbus controller.		
Index:	[0] = PZD $1+2$		
	[1] $=$ PZD $2+3$		
	[2] $=$ PZD $3+4$		
	[3] $=$ PZD $4+5$		
	[4] $=$ PZD $5+6$		
	[5] $=$ PZD $6+7$		
	[6$]=$ PZD $7+8$		
	$[7]=$ PZD $8+9$		
	$[8]=$ PZD $9+10$		

	[9] = PZD $10+11$		
	[10] = PZD $11+12$		
	[11] = PZD $12+13$		
	[12] = PZD $13+14$		
	[13] = PZD $14+15$		
	[14] = PZD $15+16$		
	[15] = PZD $16+17$		
	[16] = PZD $17+18$		
	[17] = PZD $18+19$		
	[18] = PZD $19+20$		
Dependency: Notice:	Refer to: r2050		
	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.		
	A BICO interconnection for a single PZD can only take place either on r2050 or r2060.		
	A maximum of 4 indices of the "trace" function can be used.		
Note:	IF1: Interface 1		
r2060[0..30]	CO: IF1 PROFIdrive PZD receive double word / IF1 PZD recv DW		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer32	Dyn. index: -	Func. diagram: 2440, 2468
ECTOR_1_AC	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output to interconnect PZD (setpoints) with double word format received from the fieldbus controller.		
Index:	[0] = PZD $1+2$		
	[1] = PZD $2+3$		
	[2] = PZD $3+4$		
	[3] = PZD $4+5$		
	[4] = PZD $5+6$		
	[5] = PZD $6+7$		
	[6] = PZD $7+8$		
	[7] = PZD $8+9$		
	[8] = PZD $9+10$		
	[9] = PZD 10 + 11		
	[10] = PZD $11+12$		
	[11] = PZD $12+13$		
	[12] = PZD $13+14$		
	[13] = PZD $14+15$		
	[14] = PZD $15+16$		
	[15] = PZD $16+17$		
	[16] = PZD $17+18$		
	[17] = PZD $18+19$		
	[18] = PZD $19+20$		
	[19] = PZD $20+21$		
	[20] = PZD $21+22$		
	[21] = PZD $22+23$		
	[22] = PZD $23+24$		
	[23] = PZD $24+25$		
	[24] = PZD $25+26$		
	[25] = PZD $26+27$		
	[26] = PZD $27+28$		
	[27] = PZD $28+29$		
	[28] = PZD $29+30$		
	[29] = PZD $30+31$		
	[30] = PZD $31+32$		
Dependency:	Refer to: r2050		

2.2 List of parameters

Notice: Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.
A BICO interconnection for a single PZD can only take place either on r2050 or r2060.
A maximum of 4 indices of the "trace" function can be used.
Note:
IF1: Interface 1

r2060[0...2]	CO: IF1 PROFIdrive PZD receive double word / IF1 PZD recv DW		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: 2440,2468
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000 H	Expert list: 1
	Min	Max	Factory setting
	-	-	-

Description: Connector output to interconnect PZD (setpoints) with double word format received from the fieldbus controller.

Index: \quad| $[0]$ | $=$ PZD $1+2$ |
| ---: | :--- |
| | $[1]=$ PZD $2+3$ |
| | $[2]=$ PZD $3+4$ |

Dependency: Refer to: r2050

Notice: Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.
A BICO interconnection for a single PZD can only take place either on r2050 or r2060.
Note: IF1: Interface 1

p2061[0...26]	CI: IF1 PROFIdrive PZD send double word / IF1 PZD send DW		
SERVO, HLA,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 2470
SERVO_I_AC, TM41	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description: Selects the PZD (actual values) with double word format to be sent to the fieldbus controller.
Index:
[0] = PZD $1+2$
[1] $=$ PZD $2+3$
[2] $=$ PZD $3+4$
[3] $=$ PZD $4+5$
[4] $=$ PZD $5+6$
[5] = PZD $6+7$
$[6]=$ PZD $7+8$
[7] $=$ PZD $8+9$
[8] $=$ PZD $9+10$
[9] = PZD $10+11$
[10] = PZD $11+12$
[11] = PZD $12+13$
[12] = PZD $13+14$
[13] = PZD $14+15$
[14] = PZD $15+16$
[15] = PZD $16+17$
[16] = PZD $17+18$
[17] = PZD $18+19$
[18] = PZD $19+20$
[19] $=$ PZD $20+21$
[20] = PZD $21+22$
[21] $=$ PZD $22+23$
[22] $=$ PZD $23+24$
[23] = PZD $24+25$
[24] = PZD $25+26$
[25] = PZD $26+27$
[26] = PZD $27+28$
Dependency: Refer to: p2051

Notice: \quad A BICO interconnection for a single PZD can only take place either on p2051 or p2061. The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: IF1: Interface 1

p2061[0...30]	CI: IF1 PROFldrive PZD send double word / IF1 PZD send DW		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 2470
VECTOR_I_AC	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) with double word format to be sent to the fieldbus controller.		
Index:	[0] = PZD $1+2$		
	[1] = PZD $2+3$		
	[2] = PZD $3+4$		
	[3] = PZD $4+5$		
	[4] = PZD $5+6$		
	[5] = PZD $6+7$		
	[6] = PZD $7+8$		
	[7] = PZD $8+9$		
	[8] = PZD $9+10$		
	[9] = PZD $10+11$		
	[10] = PZD $11+12$		
	[11] = PZD $12+13$		
	[12] = PZD $13+14$		
	[13] = PZD $14+15$		
	[14] = PZD $15+16$		
	[15] = PZD $16+17$		
	[16] = PZD $17+18$		
	[17] = PZD $18+19$		
	[18] = PZD $19+20$		
	[19] = PZD $20+21$		
	[20] = PZD $21+22$		
	[21] = PZD $22+23$		
	[22] = PZD $23+24$		
	[23] = PZD $24+25$		
	[24] = PZD $25+26$		
	[25] = PZD $26+27$		
	[26] = PZD $27+28$		
	[27] = PZD $28+29$		
	[28] = PZD $29+30$		
	[29] = PZD $30+31$		
	[30] = PZD $31+32$		
Dependency:	Refer to: p2051		
Notice:	A BICO interconnection for a single PZD can only take place either on p2051 or p2061.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	IF1: Interface 1		

2.2 List of parameters

p2061[0...10]	CI: IF1 PROFIdrive PZD send double word / IF1 PZD send DW		
ENC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 2470
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000 H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) with double word format to be sent to the fieldbus controller.		
Index:	[0] = PZD $1+2$		
	[1] $=$ PZD $2+3$		
	[2] = PZD $3+4$		
	[3] $=$ PZD $4+5$		
	[4] $=$ PZD $5+6$		
	[5] = PZD 6 + 7		
	$[6]=$ PZD $7+8$		
	[$7 \mathrm{l}=\mathrm{PZD} 8+9$		
	[8] $=$ PZD $9+10$		
	[9] = PZD 10 + 11		
	[10] = PZD $11+12$		
Dependency:	Refer to: p2051		
Notice:	A BICO interconnection for a single PZD can only take place either on p2051 or p2061.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	IF1: Interface 1		

r2063[0...26] IF1 PROFIdrive diagnostics PZD send double word / IF1 diag send DW
SERVO, HLA,
SERVO_AC,
SERVO_I_AC, TM41

Can be changed: -	Calculated: -	Access level: 3
Data type: Unsigned32	Dyn. index: -	Func. diagram: 2450, 2470
P-Group: Communications	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	-

Description: Displays the PZD (actual values) with double word format sent to the fieldbus controller.
Index:
$[0]=$ PZD $1+2$
$[1]=$ PZD $2+3$
$[2]=$ PZD $3+4$
$[3]=$ PZD $4+5$
$[4]=$ PZD $5+6$
$[5]=$ PZD $6+7$
$[6]=$ PZD $7+8$
$[7]=$ PZD $8+9$
$[8]=$ PZD $9+10$
$[9]=$ PZD $10+11$
$[10]=$ PZD $11+12$
$[11]=$ PZD $12+13$
$[12]=$ PZD $13+14$
$[13]=$ PZD $14+15$
$[14]=$ PZD $15+16$
$[15]=$ PZD $16+17$
$[16]=$ PZD $17+18$
$[17]=$ PZD $18+19$
$[18]=$ PZD $19+20$
$[19]=$ PZD $20+21$
$[20]=$ PZD $21+22$
$[21]=$ PZD $22+23$
$[22]=$ PZD $23+24$
$[23]=$ PZD $24+25$
$[24]=$ PZD $25+26$
$[25]=$ PZD $26+27$
$[26]=$ PZD $27+28$

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-
	26	Bit 26	ON	OFF	-
	27	Bit 27	ON	OFF	-
	28	Bit 28	ON	OFF	-
	29	Bit 29	ON	OFF	-
	30	Bit 30	ON	OFF	-
	31	Bit 31	ON	OFF	-
Notice:	A maximum of 4 indices of the "trace" function can be used. IF1: Interface 1				
Note:					
r2063[0..30]	IF1 PROFIdrive diagnostics PZD send double word / IF1 diag send DW				
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: - Data type: Unsigned32 P-Group: Communications		Calculated: -	Access level: 3	
			Dyn. index: -	Func. diagram: 2450, 2470	
			Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the PZD (actual values) with double word format sent to the fieldbus controller.				
Index:					
	$\text { [1] = PZD } 2+3$				
	[2] = PZD $3+4$				
	[3] = PZD $4+5$				
	[4] $=$ PZD $5+6$				
	[5] = PZD 6 + 7				
	[6] $=$ PZD $7+8$				
	[7] = PZD $8+9$				
	[8] = PZD $9+10$				
	[9] = PZD $10+11$				
	$[10]=\text { PZD } 11+12$				
	$[11]=\text { PZD } 12+13$				
	[12] = PZD $13+14$				
	[13] = PZD $14+15$				
	[14] = PZD $15+16$				
	[15] = PZD $16+17$				
	[16] = PZD $17+18$				
	[17] = PZD $18+19$				
	[18] = PZD $19+20$				

2.2 List of parameters

Bit field:	$[19]$ $[20]$ $[21]$ $[22]$ $[23]$ $[24]$ $[25]$ $[26]$ $[27]$ $[28]$ $[29]$ $[30]$	$\begin{aligned} & =\text { PZD } 20+21 \\ & =\text { PZD } 21+22 \\ & =\text { PZD } 22+23 \\ & =\text { PZD } 23+24 \\ & =\text { PZD } 24+25 \\ & =\text { PZD } 25+26 \\ & =\text { PZD } 26+27 \\ & =\text { PZD } 27+28 \\ & =\text { PZD } 28+29 \\ & =\text { PZD } 29+30 \\ & =\text { PZD } 30+31 \\ & \text { = PZD } 31+32 \end{aligned}$			
	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-
	26	Bit 26	ON	OFF	-
	27	Bit 27	ON	OFF	-
	28	Bit 28	ON	OFF	-
	29	Bit 29	ON	OFF	-
	30	Bit 30	ON	OFF	-
	31	Bit 31	ON	OFF	-
Notice:	A m	aximum of 4 indices of th	n can be used.		
Note:		Interface 1			
r2063[0...10] IF1 PROFIdrive diagnostics PZD send double word/ IF1 diag send					
ENC	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2450, 2470	
	P-Group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description: Index:	Displays the PZD (actual values) with double word format sent to the fieldbus controller.				
	[0] = PZD $1+2$				
	[1] $=$ PZD $2+3$				
	[2] $=$ PZD $3+4$				
	[3] $=$ PZD $4+5$				
	[4] $=$ PZD $5+6$				
	[5] $=$ PZD $6+7$				

	[6] [7] [8] [9] [10]	PZD $7+8$ PZD $8+9$ PZD $9+10$ PZD $10+11$ PZD $11+12$			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-
	26	Bit 26	ON	OFF	-
	27	Bit 27	ON	OFF	-
	28	Bit 28	ON	OFF	-
	29	Bit 29	ON	OFF	-
	30	Bit 30	ON	OFF	-
	31	Bit 31	ON	OFF	-
Notice:	A maximum of 4 indices of the "trace" function can be used.				
Note:	IF1: Interface 1				
r2064[0...7]	PB/PN diagnostics clock cycle synchronism / PB/PN diag clock				
CU_I, CU_NX_CX,	Can be changed: -		Calculated: -	Acces	
CU_S_AC_DP,	Data type: Integer32		Dyn. index: -	Func.	
CU_S120_PN,	P-Group: Communications		Unit group: -	Unit se	
CU_S150_PN,	Not for motor type: -		Scaling: -	Expert	
CU_S120_DP,	Min		Max	Factor	
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-		ax	-	
Description:	Displays the last parameter received from the PROFIBUS/PROFINET controller for clock synchronism. The parameters for clock synchronism are created when configuring the bus and are transferred at the start of cyclic operation from the controller to the device.				
Index:	[0] = Clock synchronous mode activated				
	[1] = Bus cycle time (Tdp) [$\mu \mathrm{s}$]				
	[2] = Master cycle time (Tmapc) [$\mu \mathrm{s}$]				
	[3] = Instant of actual value acquisition (Ti) [$\mu \mathrm{s}$]				
	[4] = Instant of setpoint acquisition (To) [$\mu \mathrm{s}$]				
	[5] = Data exchange interval (Tdx) [$\mu \mathrm{s}$]				
	[6] = PLL window (Tpll-w) [1/12 $\mu \mathrm{s}$]				
	[7] = PLL delay time (Tpll-d) [1/12 $\mu \mathrm{s}$]				

2.2 List of parameters

p2070	IF1 PROFIdrive supplementary telegram receive beginning / Suppl_tele rec beg		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: 2423
VECTOR_I_AC	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	0	0	0
Description:	Sets the beginning for the first supplementary telegram (p8864, p60122) in receive words (r2050, r2060).		
Dependency:	Refer to: p0922, p2071, p2079, p8864, p60122		
Note:	For setting p0922/p2079, the value is preset to the end of the PZD telegram.		
	For p0922 equal to 999 and p2079 not equal to 999 , the preset value can be increased.		
	The value must be set again after changing p0922/p2079.		

p2071	IF1 PROFIdrive supplementary telegram send beginning / Suppl_tel send beg		
SERVO, HLA,	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: 2423
SERVO_I_AC	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	26	0

Description: Sets the beginning for the first supplementary telegram (p8864, p60122) in receive words (p2051, p2061).
Dependency: Refer to: p0922, p2070, p2079, p60122
Note: \quad For setting p0922/p2079, the value is preset to the end of the PZD telegram.
For p0922 equal to 999 and p2079 not equal to 999, the preset value can be increased.
The value must be set again after changing p0922/p2079.

r2074[0..19]	IF1 PROFIdrive diagnostics bus address PZD receive / IF1diag addr recv		
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, SERVO, HLA, SERVO_AC, SERVO_I_AC, TM41	Can be changed: - Data type: Unsigned16 P-Group: Communications Not for motor type: - Min	Calculated: - Dyn. index: Unit group: Scaling: - Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting
Description: Index:	Displays the PROFIBUS address of $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & {[10]=\text { PZD } 11} \\ & \text { [11] = PZD } 12 \\ & {[12]=\text { PZD } 13} \\ & {[13]=\text { PZD } 14} \\ & \text { [14] = PZD } 15 \\ & {[15]=\text { PZD } 16} \\ & {[16]=\text { PZD } 17} \\ & \text { [17] = PZD } 18 \\ & {[18]=\text { PZD } 19} \\ & {[19]=\text { PZD } 20} \end{aligned}$	der from which) is received.
Note:	IF1: Interface 1 Value range: $0-125$: Bus address of the sender 65535: Not assigned		

r2074[0...31] IF1 PROFIdrive diagnostics bus address PZD receive / IF1diag addr recv

VECTOR, VECTOR_AC, VECTOR_I_AC

Can be changed: -
Data type: Unsigned16
P-Group: Communications
Not for motor type: -
Min

Displays the PROFIBUS address of the sender from which the process data (PZD) is received.
Description:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16

	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	[30] = PZD 31		
	[31] = PZD 32		
Note:	IF1: Interface 1		
	Value range:		
	0-125: Bus address of the sender		
	65535: Not assigned		
r2074[0...9] IF1 PROFIdrive diagnostics bus address PZD receive / IF1diag addr recv			
$\begin{aligned} & \text { A_INF, S_INF, R_INF, } \\ & \text { B_INF } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFIBUS address of the sender from which the process data (PZD) is received.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
Note:	IF1: Interface 1		
	Value range:		
	0-125: Bus address of the sender		
	65535: Not assigned		
r2074[0..4] IF1 PROFIdrive diagnostics bus address PZD receive / IF1diag addr recv			
TM31, TM15DI_DO, TM120, TM150, TB30	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Index:	Displays the PROFIBUS address of the sender from which the process data (PZD) is received.		
	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		

2.2 List of parameters

Note:	IF1: Interface 1		
	Value range:		
	0-125: Bus address of the sender		
	65535: Not assigned		
r2074[0...3]	IF1 PROFIdrive diagnostics	ddress PZD	g addr recv
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFIBUS address of the sender from which the process data (PZD) is received.		
Index:	$[0]=$ PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
Note:	IF1: Interface 1		
	Value range:		
	0-125: Bus address of the sender		
	65535: Not assigned		

r2075[0..19]	IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
CU_S120_PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
CU_S150_DP, CU_I_D410, SERVO, HLA, SERVO_AC, SERVO_I_AC, TM41	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		

r2075[0...31]	IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	[30] = PZD 31		
	[31] = PZD 32		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		
r2075[0...9] IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv			
$\begin{aligned} & \text { A_INF, S_INF, R_INF, } \\ & \text { B_INF } \end{aligned}$	Can be changed: - Calculated: - Access level: 3		
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- -		-
Description: Index:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output).		
	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		

2.2 List of parameters

	$[6]=$ PZD 7
	$[7]=$ PZD 8
	$[8]=$ PZD 9
	$[9]=$ PZD 10
Note: \quad	IF1: Interface 1
	Value range:
	$0-242:$ Byte offset
	65535: Not assigned

r2075[0...4]	IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv		
TM31, TM15DI_DO,	Can be changed: -	Calculated: -	Access level: 3
TM120, TM150, TB30	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output).		
Index:	[0] = PZD 1		
	$[1]=\text { PZD } 2$		
	$\text { [2] = PZD } 3$		
	[3] = PZD 4		
	[4] = PZD 5		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		

r2075[0...3]	IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD byte offset in the PROFldrive receive telegram (controller output).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		

r2076[0...24]	IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
CU_S_S 120 _PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive send telegram (controller input).		
Index:			
	$\text { [2] = PZD } 3$		
	$\text { [3] = PZD } 4$		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		

r2076[0...27] IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send

SERVO_AC,
SERVO_I_AC, TM41

Can be changed: - Calculated: - Access level: 3
Data type: Unsigned16
P-Group: Communications
Not for motor type: -
Min

Displays the PZD byte offset in the PROFIdrive send telegram (controller input).
Description Index:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13

2.2 List of parameters

	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		
r2076[0...31]	IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send		
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive send telegram (controller input).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	$[29]=$ PZD 30$[30]=$ PZD 31		
	[31] = PZD 32		

r2076[0...11]	IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive send telegram (controller input).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		

r2077[0..15]	PROFIBUS diagnostics peer-to-peer data transfer addresses / PB diag peer addr		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_S120_DP,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_DP	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Maxing:	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the addresses of the slaves (peers) where peer-to-peer data transfer has been configured via PROFIBUS.		

p2079	IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext		
CU_I_D410	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	390	999	999
Description:	Sets the send and receive telegram.		
	Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded.		
Value:	390: SIEMENS telegram 390, PZD-2/2		
	391: SIEMENS telegram 391, PZD-3/7		
	392: SIEMENS telegram 392, PZD-3/15		
	393: SIEMENS telegram 393, PZD-4/21		
	394: SIEMENS telegram 394, PZD-3/3		
	395: SIEMENS telegram 395, PZD-4/25		
	396: SIEMENS telegram 396, PZD-20/21		
	999: Free telegram configuration with BICO		

Note: | For p0922 < 999 the following applies: |
| :--- |
| p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are |
| inhibited. |
| For p0922 = 999 the following applies: |
| p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set. |
| For p0922 = 999 and p2079 < 999 the following applies: |
| The interconnections contained in the telegram are inhibited. However, the telegram can be extended. |

p2079

CU_I, CU_NX_CX,
CU_S_AC_DP,

CU_S_AC_PN,
CU_S120_PN,
CU_S150_PN,
CU_S120_DP,
CU_S150_DP
IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext

Can be changed: T
Data type: Integer16
P-Group: Communications
Not for motor type: -
Min
390

Calculated: -
Dyn. index: - Func. diagram: -
Unit group: - Unit selection: -
Scaling: - Expert list: 1

999
Factory setting
999

Description:

Value:
Sets the send and receive telegram. Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded.
390: SIEMENS telegram 390, PZD-2/2

391: SIEMENS telegram 391, PZD-3/7
392: SIEMENS telegram 392, PZD-3/15
393: SIEMENS telegram 393, PZD-4/21
394: SIEMENS telegram 394, PZD-3/3
395: SIEMENS telegram 395, PZD-4/25
999: Free telegram configuration with BICO
Note:
p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are inhibited.
For p0922 = 999 the following applies:
p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set.
For p0922 = 999 and p2079 < 999 the following applies:
The interconnections contained in the telegram are inhibited. However, the telegram can be extended.

p2079

HLA
Can be changed:
Data type: Integer16
P-Group: Communications
Not for motor type: -
Min
166

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
999

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
999

Description:

Value:

Dependency:
Note:

Sets the send and receive telegram.
Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded.
166: SIEMENS telegram 166, PZD-14/20
999: Free telegram configuration with BICO
Refer to: p0922
For p0922 < 999 the following applies:
p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are inhibited.
For p0922 = 999 the following applies:
p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set.
For p0922 = 999 and p2079 < 999 the following applies:
The interconnections contained in the telegram are inhibited. However, the telegram can be extended.

p2079	IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext		
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 3
SERVO_I_AC	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	1		999

p2079	IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext		
SERVO (EPOS, Pos	Can be changed: T	Calculated: -	Access level: 3
ctrl, Spin_diag),	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR (EPOS, n/M,	P-Group: Communications	Unit group: -	Unit selection: -
Pos ctrl), SERVO_AC	Not for motor type: -	Scaling: -	Expert list: 1
(EPOS, Pos ctrl,	Spin_diag),	Min	Max
VECTOR_AC (EPOS, 7	999	Factory setting	
n/M, Pos ctrl)	7		999

Description:	Sets the send and receive telegram. Value:
	Contrary to p0922, a telegram can be selected
	$7: \quad$ Standard telegram 7, PZD-2/2
	$9: \quad$ Standard telegram 9, PZD-10/5
	$110: \quad$ SIEMENS telegram 110, PZD-12/7
	$111:$ SIEMENS telegram 111, PZD-12/12
	$999: \quad$ Free telegram configuration with BICO
Dependency:	Refer to: p0922

Note:
For p0922 < 999 the following applies:
inhibited.
For p0922 $=999$ the following applies:
p2079 can be freely set. If p2079 is also set to 999 , then all of the interconnections can be set.
For p0922 = 999 and p2079 < 999 the following applies:
The interconnections contained in the telegram are inhibited. However, the telegram can be extended.

p2079

SERVO (Pos ctrl,
Spin_diag), VECTOR
(n / M, Pos ctrl),
SERVO_AC (Pos ctrl,
Spin_diag),
VECTOR_AC (n/M,
Pos ctrl)
Description:

Value:
Dependency:
Note:

IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext

Dyn. index: - Func. diagram: -
Unit group: - Unit selection: Scaling: - Expert list: 1
999

Access level: 3
Unit selection: -

Factory setting
999

Data type: Integer16
P-Group: Communications
Not for motor type: -
Min
999
999

Max
999

Sets the send and receive telegram. Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded. 999: Free telegram configuration with BICO
Refer to: p0922
For p0922 < 999 the following applies:
p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are inhibited.
For p0922 = 999 the following applies:
p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set.
For p0922 = 999 and p2079 < 999 the following applies:
The interconnections contained in the telegram are inhibited. However, the telegram can be extended.

p2079	IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext		
SERVO (Spin_diag),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: - S	Scaling: -	Expert list: 1
	Min M	Max	Factory setting
	1	999	999
Description:	Sets the send and receive telegram.		
	Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded.		
Value:	1: Standard telegram 1, PZD-2/2		
	2: Standard telegram 2, PZD-4/4		
	3: Standard telegram 3, PZD-5/9		
	4: Standard telegram 4, PZD-6/14		
	5: Standard telegram 5, PZD-9/9		
	6: Standard telegram 6, PZD-10/14		
	102: SIEMENS telegram 102, PZD-6/10		
	103: SIEMENS telegram 103, PZD-7/15		
	105: SIEMENS telegram 105, PZD-10/10		
	106: SIEMENS telegram 106, PZD-11/15		
	116: SIEMENS telegram 116, PZD-11/19		
	118: SIEMENS telegram 118, PZD-11/19		
	125: SIEMENS telegram 125, PZD-14/10		
	126: SIEMENS telegram 126, PZD-15/15		
	136: SIEMENS telegram 136, PZD-15/19		
	138: SIEMENS telegram 138, PZD-15/19		
	139: SIEMENS telegram 139, PZD-15/19		
	220: SIEMENS telegram 220, PZD-10/10		
	999: Free telegram configuration with BICO		
Dependency:	Refer to: p0922		

2.2 List of parameters

Note: \quad For p0922 < 999 the following applies:
p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are inhibited.
For p0922 = 999 the following applies:
p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set.
For p0922 = 999 and p2079 < 999 the following applies:
The interconnections contained in the telegram are inhibited. However, the telegram can be extended.

$\mathbf{p 2 0 7 9}$
VECTOR,
VECTOR_AC,
VECTOR_I_AC

IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext		
Can be changed: T	Calculated: -	Access level: 3
Data type: Integer16	Dyn. index: -	Func. diagram: -
P-Group: Communications	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
1	999	999

Description: \quad Sets the send and receive telegram. \quad Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded.

Value:	$1:$	Standard telegram 1, PZD-2/2
	$2:$	Standard telegram 2, PZD-4/4
$20:$	Standard telegram 20, PZD-2/6	
	$220:$	SIEMENS telegram 220, PZD-10/10
	$352:$	SIEMENS telegram 352, PZD-6/6
	$999:$	Free telegram configuration with BICO
Dependency:	Refer to: p0922	
Note:	For p0922 < 999 the following applies:	
	p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are	

For p0922 = 999 the following applies:
p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set.
For p0922 = 999 and p2079 < 999 the following applies:
The interconnections contained in the telegram are inhibited. However, the telegram can be extended.
p2079
VECTOR (n / M),
VECTOR_AC (n / M),
VECTOR_I_AC (n / M)

IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext
VECTOR (n / M),
VECTOR AC (n / M),
Can be changed: $T \quad$ Calculated: - Access level. 3
Data type: Integer16 Dyn. index: - Func. diagram: -
P-Group: Communications Unit group: - Unit selection: -
Not for motor type: - Scaling: - Expert list: 1
Min Max Factory setting

1
$999 \quad 999$
Description: Sets the send and receive telegram.
Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded.
Value:

1:	Standard telegram 1, PZD-2/2
2:	Standard telegram 2, PZD-4/4
3:	Standard telegram 3, PZD-5/9
4:	Standard telegram 4, PZD-6/14
20:	Standard telegram 20, PZD-2/6
220:	SIEMENS telegram 220, PZD-10/10
352:	SIEMENS telegram 352, PZD-6/6
999:	Free telegram configuration with BICO
Refer to: p0922	

Note:	For p0922 < 999 the following applies: p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are inhibited. For p0922 = 999 the following applies: p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set. For p0922 = 999 and p2079 < 999 the following applies: The interconnections contained in the telegram are inhibited. However, the telegram can be extended.
p2079	IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext
$\begin{aligned} & \text { A_INF, S_INF, R_INF, } \\ & \text { B_INF } \end{aligned}$	Can be changed: T Calculated: - Access level: 3 Data type: Integer16 Dyn. index: - Func. diagram: - P-Group: Communications Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 370 999 999
Description: Value:	Sets the send and receive telegram. Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded. 370: SIEMENS telegram 370, PZD-1/1 371: SIEMENS telegram 371, PZD-5/8 999: Free telegram configuration with BICO
Dependency: Note:	Refer to: p0922 For p0922 < 999 the following applies: p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are inhibited. For p0922 = 999 the following applies: p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set. For p0922 = 999 and p2079 < 999 the following applies: The interconnections contained in the telegram are inhibited. However, the telegram can be extended.
p2079	IF1 PROFldrive PZD telegram selection extended / IF1 PZD telegr ext
TM41	Can be changed: T Calculated: - Access level: 3 Data type: Integer16 Dyn. index: - Func. diagram: - P-Group: Communications Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 3 999 999
Description:	Sets the send and receive telegram. Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded.
Value:	$\begin{array}{ll}\text { 3: } & \text { Standard telegram 3, PZD-5/9 } \\ \text { 999: } & \text { Free telegram configuration with BICO }\end{array}$
Dependency:	Refer to: p0922
Note:	For p0922 < 999 the following applies: p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are inhibited. For p0922 = 999 the following applies: p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set. For p0922 = 999 and p2079 < 999 the following applies: The interconnections contained in the telegram are inhibited. However, the telegram can be extended.

2.2 List of parameters

p2079	IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext		
ENC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	81	999	999
Description:	Sets the send and receive telegram. Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded.		
Value:	81: SIEMENS telegram 81, PZD-2/6 82: SIEMENS telegram 82, PZD-2/7 83: SIEMENS telegram 83, PZD-2/8 999: Free telegram configuration with BICO		
Dependency:	Refer to: p0922		
Note:	For p0922 = 999 the following applies: p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set. For p0922 = 999 and p2079 < 999 the following applies: The interconnections contained in the telegram are inhibited. However, the telegram can be extended.		
p2080[0...15]	BI: Binector-connector converter status word 1 / Bin/con ZSW1		
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CUSS120_DP, } \\ & \text { CUS150_DP, } \\ & \text { CU_I_D410, SERVO, } \\ & \text { VECTOR, HLA, } \\ & \text { SERVO_AC, } \\ & \text { VECTOR_AC, } \\ & \text { SERVO_IAC, } \\ & \text { VECTOR_I_AC, } \\ & \text { A_INF, SINF, R_INF, } \\ & \text { B_INF, TM31, TM41, } \\ & \text { TM15DI_DO, TM120, } \\ & \text { TM150, TB30, ENC } \end{aligned}$	Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Communications Not for motor type: - Min	Calculated: Dyn. index: Unit group: Scaling: Max -	Access level: 3 Func. diagram: 2472 Unit selection: - Expert list: 1 Factory setting 0
Description:	Selects bits to be sent to the PROFIdrive controller. The individual bits are combined to form status word 1.		
Index:	$\begin{aligned} & {[0]=\text { Bit } 0} \\ & {[1]=\text { Bit } 1} \\ & {[2]=\text { Bit } 2} \\ & {[3]=\text { Bit } 3} \\ & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \\ & {[6]=\text { Bit } 6} \\ & {[7]=\text { Bit } 7} \\ & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$		

Dependency:	Refer to: p2088, r2089
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

2.2 List of parameters

p2082[0...15]	BI: Binector-connector converter status word 3 / Bin/con ZSW3		
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S102_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_IID410, SERVO, } \\ & \text { VECTOR, HLA, } \\ & \text { SERVO_AC, } \\ & \text { VECTOR_AC, } \\ & \text { SERVO_IAC, } \\ & \text { VECTOR_IAC, } \\ & \text { A_INF, S_INF, R_INF, } \\ & \text { BINF, TM31, TM41, } \\ & \text { TM15DI_DO, TM120, } \\ & \text { TM150, TB30, ENC } \end{aligned}$	Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Communications Not for motor type: - Min	Calculated: Dyn. index: Unit group: - Scaling: - Max -	Access level: 3 Func. diagram: 2472 Unit selection: - Expert list: 1 Factory setting 0
Description: Index:	Selects bits to be sent to the PRO The individual bits are combined to $\begin{aligned} & {[0]=\text { Bit } 0} \\ & {[1]=\text { Bit } 1} \\ & {[2]=\text { Bit } 2} \\ & {[3]=\text { Bit } 3} \\ & {[4]=\text { Bit } 4} \\ & {[5]=\text { Bit } 5} \\ & {[6]=\text { Bit } 6} \\ & {[7]=\text { Bit } 7} \\ & {[8]=\text { Bit } 8} \\ & {[9]=\text { Bit } 9} \\ & {[10]=\text { Bit } 10} \\ & {[11]=\text { Bit } 11} \\ & {[12]=\text { Bit } 12} \\ & {[13]=\text { Bit } 13} \\ & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$	troller. status word 3.	
Dependency: Notice:	Refer to: p2088, r2089 The parameter may be protected	of p0922 or p2	
p2083[0...15] CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, SERVO, VECTOR, HLA, SERVO_AC, vector_ac, SERVO_I_AC, VECTOR_IAC, A_INF, S_INF, R_INF, B_INF, TM31, TM41, TM15DI_DO, TM120, TM150, TB30, ENC	BI: Binector-connector co Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Communications Not for motor type: - Min	status word Calculated: Dyn. index: Unit group: Scaling: - Max -	N4 Access level: 3 Func. diagram: 2472 Unit selection: - Expert list: 1 Factory setting 0
Description:	Selects bits to be sent to the PROFIdrive controller. The individual bits are combined to form free status word		

2.2 List of parameters

p2088[0...4]	Invert binector-connector converter status word / Bin/con ZSW inv				
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM31, TM41, TM15DI_DO, TM120, TM150, TB30, ENC	-	e changed: U, T		0000000000000000 bin	
Description: Index:	Sett [0] [1] [2] [3] [4]	g to invert the individu Status word 1 Status word 2 ree status word 3 Free status word 4 ree status word 5	of the binector-		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
	01	Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-
	11	Bit 11	Inverted	Not inverted	-
	12	Bit 12	Inverted	Not inverted	-
	13	Bit 13	Inverted	Not inverted	-
	14	Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-

r2090.0... 15	BO: IF1 PROFIdrive PZD1 receive bit-serial / IF1 PZD1 recv bitw				
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM31, TM41, TM15DI_DO, TM120, TM150, TB30, ENC	Can Dat P-G Not Min	changed: - type: Unsigned16 up: Communications or motor type: -	Calculated: - Dyn. index: - Unit group: - Scaling: - Max	Acces Func. Unit Exper Facto	
Description:		tor output for bit-serial oller.	f PZD1 (normal	received	
Bit field:	Bit 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	Signal name Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15	1 signal ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON	0 signal OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	FP
Note:		erface 1			

	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:		Interface 1			
r2092.0... 15	BO	F1 PROFIdrive P	bit-serial / IF	bitw	
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410, SERVO, } \\ & \text { VECTOR, HLA, } \\ & \text { SERVO_AC, } \\ & \text { VECTOR_AC, } \\ & \text { SERVO_IAC, } \\ & \text { VECTOR_IAC, } \\ & \text { TM41, ENC } \end{aligned}$	Can Dat P-G Not Min	be changed: type: Unsigned16 oup: Communications or motor type: -	Calculated: - Dyn. index: - Unit group: - Scaling: - Max	Acces Func. Unit se Expert Factor	
Description:		cor output for bit-serial	f PZD3 received	drive contro	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:		Interface 1			

r2093.0... 15	BO: IF1 PROFIdrive PZD4 receive bit-serial / IF1 PZD4 recv bitw				
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, TM41, ENC	Can Data P-G Not Min	be changed: type: Unsigned16 up: Communications motor type: -	Calculated: - Dyn. index: - Unit group: - Scaling: - Max	Acces Func. Unit se Expert Factor	
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1: Interface 1				

r2094.0... 15	BO: Connector-binector converter binector output / Con/bin outp				
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM31, TM41, TM15DI_DO, TM120, TM150, TB30, ENC	Can Data P-G Not Min	be changed: - type: Unsigned16 oup: Communications or motor type: -	Calculated: - Dyn. index: Unit group: - Scaling: - Max	Acces Func. Unit s Exper Factor	
Description:	Binector output for bit-serial onward interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[0].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
		Bit 2	ON	OFF	
		Bit 3	ON	OFF	-
		Bit 4	ON	OFF	

	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refe	to: p2099			
r2095.0... 15	BO	Connector-binec	r binector ou	Outp	
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF B_INF, TM31, TM41, TM15DI_DO, TM120, TM150, TB30, ENC	Can Data P-Gr Not Min	be changed: - type: Unsigned16 up: Communications or motor type: -	Calculated: - Dyn. index: Unit group: Scaling: - Max	Acces Func. Unit se Expert Factor	
Description:	Bine The	tor output for bit-serial ZD is selected via p20	of a PZD word re	ROFIdrive	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refe	to: p2099			

2.2 List of parameters

Note: \quad From the signal source set via the connector input, the corresponding lower 16 bits are converted.

p2100[0...19]	Change fault response fault number / Chng resp F_no		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8050,8075
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	65535	Factory setting
Description:	0	Selects the faults for which the fault response should be changed	
Dependency:	The fault is selected and the required response is set under the same index.		
	Refer to: p2101		
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been		
	resolved.		

p2101[0...19]	Change fault res	Chng res	
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, TM31, TM17, TM15, TM15DI_DO, TM120, TM150, TB30, TM54F_MA, TM54F_SL, ENC, HUB, CU_LINK	Can be changed: U, T Data type: Integer16 P-Group: Messages Not for motor type: - Min 0	Calculated: Dyn. index: Unit group: Scaling: - Max 0	Access level: 3 Func. diagram: 8050, 8075 Unit selection: - Expert list: 1 Factory setting 0
Description: Value: Dependency: Notice:	Sets the fault response 0: NONE The fault is selected and For the following cases, - fault number does not - Message type is not "f - fault response is not p	se is set under -parameterize $=0$). fault number.	a fault:
Note:	Re-parameterization is resolved.	is present. Th	s effective after the fault has

2.2 List of parameters

2.2 List of parameters

p2105	BI: 3rd acknowledge faults / 3rd	knowledge	
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, TM31, TM17, TM15, TM15DI_DO, TM120, TM150, TB30, TM54F_MA, TM54F_SL, ENC, HUB, CU_LINK	Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Messages Not for motor type: - Min	Calculated: - Dyn. index: Unit group: Scaling: - Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting 0
Description: Note:	Sets the third signal source to acknowledge faults. A fault acknowledgment is triggered with a $0 / 1$ signal.		
p2105[0...n]	BI: 3rd acknowledge faults / 3rd acknowledge		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM41	Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Messages Not for motor type: - Min	Calculated: - Dyn. index: CDS, p0170 Unit group: - Scaling: - Max	Access level: 3 Func. diagram: 2546, 8060 Unit selection: - Expert list: 1 Factory setting 0
Description: Note:	Sets the third signal source to acknowledge A fault acknowledgment is triggered with a	faults. 1 signal.	
p2106 CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, TM31, TM17, TM15, TM15DI_DO, TM120, TM150, TB30, TM54F_MA, TM54F_SL, ENC, HUB, CU_LINK	BI: External fault 1 / External fau Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Messages Not for motor type: - Min	1 Calculated: Dyn. index: Unit group: Scaling: - Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting 1
Description: Dependency: Note:	Sets the signal source for external fault 1. Refer to: F07860 An external fault is triggered with a 0 signal. If this fault is output at the Control Unit, then it is transferred to all existing drive objects.		
$\overline{p 2106[0 \ldots n]}$ SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM41	BI: External fault 1 / External fau Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Messages Not for motor type: - Min	1 Calculated: - Dyn. index: CDS, p0170 Unit group: - Scaling: - Max	Access level: 3 Func. diagram: 2546 Unit selection: - Expert list: 1 Factory setting 1
Description: Dependency:	Sets the signal source for external fault 1. Refer to: F07860		

2.2 List of parameters

Note:	An external fault is triggered with a 0 signal.
If this fault is output at the Control Unit, then it is transferred to all existing drive objects.	

p2107

CU_I, CU_NX_CX,
CU_S_AC_DP,
CU_S_AC_PN,
CU_S120_PN,
CU_S150_PN,
CU_S120_DP,
CU_S150_DP,
CU_I_D410, TM31,
TM17, TM15,
TM15DI_DO, TM120
TM150, TB30,
TM54F_MA,
TM54F_SL, ENC
HUB, CU_LINK
Description:
Dependency:
Note:

BI: External fault 2 / External fault 2
Can be changed: U, T
Data type: Unsigned32 / Binary
P-Group: Messages
Not for motor type: -
Min

Calculated:
Dyn. index: -
Unit group: -
Scaling: -

Max

Access level: 3
Func. diagram:
Unit selection: -
Expert list: 1
Factory setting

Sets the signal source for external fault 2.
Refer to: F07861
An external fault is triggered with a 0 signal.
If this fault is output at the Control Unit, then it is transferred to all existing drive objects.

p2107[0...n]	Bl: External fault $2 /$ External fault 2		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2546
VECTOR_AC,	P-Group: Messages	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Max
VECTOR_I_AC,	-	Fxpert list: 1	
A_INF, S_INF, R_INF,	Min	Factory setting	
B_INF, TM41	-	1	
Description:	Sets the signal source for external fault 2.		
Dependency:	Refer to: F07861		
Note:	An external fault is triggered with a 0 signal.		
	If this fault is output at the Control Unit, then it is transferred to all existing drive objects.		

p2108	BI: External fault 3 / Exte		
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, TM31, TM17, TM15, TM15DI_DO, TM120, TM150, TB30, TM54F_MA, TM54F_SL, ENC, HUB, CU_LINK	Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Messages Not for motor type: - Min	Calculated: - Dyn. index: - Unit group: - Scaling: - Max	Access level: 3 Func. diagram: - Unit selection: Expert list: 1 Factory setting 1
Description:	Sets the signal source for extern External fault 3 is initiated by the - BI: p2108 negated - BI: p3111 - BI: p3112 negated	ND logic operation:	
Dependency:	Refer to: p3110, p3111, p3112 Refer to: F07862		
Note:	An external fault is triggered with If this fault is output at the Contro	is transferred to a	ects.

p2108[0...n]	BI: External fault 3 / External fault 3		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2546
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external fault 3.		
	External fault 3 is initiated by the following AND logic operation:		
	- BI: p2108 negated		
	- BI: p3111		
	- BI: p3112 negated		
Dependency:	Refer to: p3110, p3111, p3112		
	Refer to: F07862		
Note:	An external fault is triggered with a 0 signal.		
	If this fault is output at the Control Unit, then it is transferred to all existing drive objects.		
r2109[0...63]	Fault time removed in milliseconds / t_flt resolved ms		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8050, 8060
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the fault was removed.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2114, r2130, r2133, r2136, r3115, r3120, r3122		
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		

r2110[0..63]	Alarm number / Alarm number		
All objects	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8065
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	This parameter is identical to r2122.		
p2111	Alarm counter / Alarm counter		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8050, 8065
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Number of alarms that have occurred after the last reset.		
Dependency:	When p2111 is set to 0 , - all of the alarms of the - the alarm buffer [0...7] Refer to: r2110, r2122, r	ed: e gone [0...7]	alarm history [8...63].
Note:	The parameter is reset to		

2.2 List of parameters

p2116	BI: External alarm 2 / External alar	(2	
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, TM31, TM17, TM15, TM15DI_DO, TM120, TM150, TB30, TM54F_MA, TM54F_SL, ENC, HUB, CU_LINK	Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Messages Not for motor type: - Min	Calculated: - Dyn. index: - Unit group: - Scaling: - Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting 1
Description: Dependency: Note:	Sets the signal source for external alarm 2. Refer to: A07851 An external alarm is triggered with a 0 signal.		
$\overline{p 2116[0 \ldots n]}$ SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM41	BI: External alarm 2 / External ala Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Messages Not for motor type: - Min	m 2 Calculated: - Dyn. index: CDS, p0170 Unit group: - Scaling: - Max	Access level: 3 Func. diagram: 2546 Unit selection: - Expert list: 1 Factory setting 1
Description: Dependency: Note:	Sets the signal source for external alarm 2. Refer to: A07851 An external alarm is triggered with a 0 signal.		
p2117 CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, TM31, TM17, TM15, TM15DI_DO, TM120, TM150, TB30, TM54F_MA, TM54F_SL, ENC, HUB, CU_LINK	BI: External alarm 3 / External ala Can be changed: U, T Data type: Unsigned32 / Binary P-Group: Messages Not for motor type: - Min	m 3 Calculated: - Dyn. index: - Unit group: - Scaling: - Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting 1
Description: Dependency: Note:	Sets the signal source for external alarm 3. Refer to: A07852 An external alarm is triggered with a 0 signal.		

2.2 List of parameters

p2117[0...n]	BI: External alarm 3 / External alarm 3		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2546
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO I AC, } \end{aligned}$	P-Group: Messages	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF,	Min	Max	Factory setting
B_INF, TM41			1
Description:	Sets the signal source for external alarm 3.		
Dependency:	Refer to: A07852		
Note:	An external alarm is triggered with a 0 signal.		
p2118[0...19]	Change message type message number / Chng type msg_no		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8050, 8075
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Selects faults or alarms for which the message type should be changed.		
Dependency:	Selects the fault or alarm selection and sets the required type of message realized under the same index. Refer to: p2119		
Note:	Re-parameterization is also possible if a message is present. The change only becomes effective after the message has gone.		
p2119[0...19]	Change message type type / Change type type		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 8050, 8075
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	3	1
Description:	Sets the message type for the selected fault or alarm.		
Value:	$\begin{array}{ll} \text { 1: } & \text { Fault (F) } \\ \text { 2: } & \text { Alarm (A) } \\ \text { 3: } & \text { No message (N) } \end{array}$		
Dependency:	Selects the fault or alarm selection and sets the required type of message realized under the same index. Refer to: p2118		
Note:	Re-parameterization is also possible if a message is present. The change only becomes effective after the message has gone.		
	The message type can only be changed for messages with the appropriate identification (exception, value $=0$). Example: F12345(A) --> Fault F12345 can be changed to alarm A12345. In this case, the message number that may be possibly entered in p2100[0...19] and p2126[0...19] is automatically removed.		

r2120	CO: Sum of fault and alarm buffer changes / Sum buffer changed		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8065
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the sum of all of the fault and alarm buffer changes in the drive unit.		
Dependency:	Refer to: r0944, r2121		
r2121	CO: Counter alarm buffer changes / Alrm buff changed		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8065
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	This counter is incremented every time the alarm buffer changes.		
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125		
r2122[0..63]	Alarm code / Alarm code		
All objects	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8050, 8065
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of alarms that have occurred.		
Dependency:	Refer to: r2110, r2123, r2124, r2125, r2134, r2145, r2146, r3121, r3123		
Notice:	The properties of the alarm buffer should be taken from the corresponding product documentation.		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	Alarm buffer structure (general principle):		
	r2122[0], r2124[0], r2123[0], r2125[0] --> alarm 1 (the oldest)		
	r2122[7], r2124[7], r2123[7], r2125[7] --> Alarm 8 (the latest)		
	When the alarm buffer is full, the alarms that have gone are entered into the alarm history:		
	r2122[8], r2124[8], r2123[8], r2125[8] --> Alarm 1 (the latest)		
	r2122[63], r2124[63], r2123[63], r2125[63] --> alarm 56 (the oldest)		

r2123[0...63]	Alarm time received in milliseconds / t_alarm recv ms		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8050, 8065
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the alarm occurred.		
Dependency:	Refer to: r2110, r2114, r2122, r2124, r2125, r2134, r2145, r2146, r3121, r3123		
Notice:	The time comprises r2145 (days) and r2123 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		

r2124[0...63]	Alarm value / Alarm value		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: 8050, 8065
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays additional information about the active alarm (as integer number).		
Dependency:	Refer to: r2110, r2122, r2123, r2125, r2134, r2145, r2146, r3121, r3123		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		
r2125[0...63]	Alarm time removed in milliseconds / t_alarm res ms		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8050, 8065
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the alarm was cleared.		
Dependency:	Refer to: r2110, r2114, r2122, r2123, r2124, r2134, r2145, r2146, r3121, r3123		
Notice:	The time comprises r2146 (days) and r2125 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		
p2126[0...19]	Change acknowledge mode fault number / Chng ackn F_no		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8050, 8075
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Selects the faults for which the acknowledge mode is to be changed		
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index Refer to: p2127		
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.		
p2127[0...19]	Change acknowledge mode mode / Chng ackn mode		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 8050, 8075
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	3	1
Description:	Sets the acknowledge mode for selected fault.		
Value:	$\begin{array}{ll}\text { 1: } & \text { Acknowledgment only using } \\ \text { 2: } & \text { Ack IMMEDIATELY after th } \\ \text { 3: } & \text { Acknowledgment only for P }\end{array}$	ON use has been re HIBIT	
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index Refer to: p2126		

Notice:	It is not possible to re-parameterize the acknowledge mode for a fault in the following cases:
	- fault number does not exist (exception value $=0$).
	- Message type is not "fault" (F).
	- Acknowledge mode is not permissible for the set fault number.
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.
	The acknowledge mode can only be changed for faults with the appropriate identification.
	Example:
	F12345 and acknowledge mode = IMMEDIATELY (POWER ON)
	--> The acknowledge mode can be changed from IMMEDIATELY to POWER ON.

p2128[0...15]	Faults/alarms trigger selection / F/A trigger sel		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8050,8070
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
Description:	0	65535	0
Dependency:	Sets the faults/alarms for which a trigger signal should be generated in r2129.0...15.		
	If the fault/alarm set in p2128[0...15] occurs, then the particular binector output r2129.0...15 is set.		
	Refer to: r 2129		

r2129.0... 15	CO/BO: Faults/alarms trigger word / F/A trigger word			
All objects	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Messages	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Display and BICO output for the trigger signals of the faults/alarms set in p2128[0...15].			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Trigger signal p2128[0]	ON	OFF	-
	01 Trigger signal p2128[1]	ON	OFF	-
	02 Trigger signal p2128[2]	ON	OFF	-
	03 Trigger signal p2128[3]	ON	OFF	-
	04 Trigger signal p2128[4]	ON	OFF	-
	05 Trigger signal p2128[5]	ON	OFF	-
	06 Trigger signal p2128[6]	ON	OFF	-
	07 Trigger signal p2128[7]	ON	OFF	-
	08 Trigger signal p2128[8]	ON	OFF	-
	09 Trigger signal p2128[9]	ON	OFF	-
	10 Trigger signal p2128[10]	ON	OFF	-
	11 Trigger signal p2128[11]	ON	OFF	-
	12 Trigger signal p2128[12]	ON	OFF	-
	13 Trigger signal p2128[13]	ON	OFF	-
	14 Trigger signal p2128[14]	ON	OFF	-
	15 Trigger signal p2128[15]	ON	OFF	-
Dependency:	If the fault/alarm set in p2128[0...15] occurs, then the particular binector output r2129.0... 15 is set.			
Note:	CO: r2129 = 0 --> None of the selected messages has occurred.			
	CO: r2129 > 0 --> At least one of the selected messages has occurred.			

2.2 List of parameters

r2130[0...63]	Fault time received in days / t_fault recv days		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8060
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the system runtime in days when the fault occurred.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2114, r2133, r2136, p3100, r3115, r3120, r3122		
Notice:	The time comprises r 2130 (days) and r0948 (milliseconds).		
	The time display depends on the selected mode (p 3100).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
r2131	CO: Actual fault code / Act fault code		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8060
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the code of the oldest active fault.		
Dependency:	Refer to: r3131, r3132		
Note:	0 : No fault present.		
r2132	CO: Actual alarm code / Actual alarm code		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8065
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the code of the last alarm that occurred. 0 : No alarm present.		
Note:			

r2133[0...63]	Fault value for float values / Fault val float		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8060
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-

Description: Displays additional information about the fault that occurred for float values.
Dependency: Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2136, r3115
Note: The buffer parameters are cyclically updated in the background (refer to status signal in r 2139).

r2134[0...63]	Alarm value for float values / Alarm value float				
All objects	Can	e changed: -	Calculated: -	Acces	
	Dat	type: FloatingPoint32	Dyn. index: -	Func.	
		up: Messages	Unit group: -	Unit se	
		or motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays additional information about the active alarm for float values.				
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2145, r2146, r3121, r3123				
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).				
r2135.0... 15	CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2				
All objects	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2548	
	P-Group: Displays, signals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and BICO output for the second status word of faults and alarms.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Fault encoder 1	Yes	No	-
	01	Fault encoder 2	Yes	No	-
	02	Fault encoder 3	Yes	No	-
	12	Fault motor overtemp	Yes	No	8016
	13	Fault power unit therm	Yes	No	8021
	14	Alarm motor overtemp	Yes	No	8016
	15	Alarm power unit therm	Yes	No	8021

r2136[0...63] Fault time removed in days / t_flt resolv days

All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8060
	P-Group: Messages	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
Description:	-	Maxplays the system runtime in days when the fault was removed.	
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2114, r2130, r2133, r3115, r3120, r3122		
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		

2.2 List of parameters

r2138.7... 15	CO/BO: Control word faults/alarms / STW fault/alarm			
All objects	Can be changed: -	Calculated: -	Access	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Displays, signals	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Display and BICO output for the control word of faults and alarms.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	07 Acknowledge fault	Yes	No	8060
	10 External alarm 1 (A07850) effective	Yes	No	8065
	11 External alarm 2 (A07851) effective	Yes	No	8065
	12 External alarm 3 (A07852) effective	Yes	No	8065
	13 External fault 1 (F07860) effective	Yes	No	8060
	14 External fault 2 (F07861) effective	Yes	No	8060
	15 External fault 3 (F07862) effective	Yes	No	8060
Dependency:	Refer to: p2103, p2104, p2105, p2106, p2107, p2108, p2112, p2116, p2117, p3110, p3111, p3112			
r2139.0... 15	CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1			
All objects	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2548	
	P-Group: Displays, signals	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factory setting	
	-	-		
Description:	Display and BICO output for status word 1 of faults and alarms.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Being acknowledged	Yes	No	-
	01 Acknowledgment required	Yes	No	-
	03 Fault present	Yes	No	8060
	05 Safety message present	Yes	No	-
	06 Internal message 1 present	Yes	No	-
	07 Alarm present	Yes	No	8065
	08 Internal message 2 present	Yes	No	-
	11 Alarm class bit 0	High	Low	-
	12 Alarm class bit 1	High	Low	-
	13 Maintenance required	Yes	No	-
	14 Maintenance urgently required	Yes	No	-
	15 Fault gone/can be acknowledged	Yes	No	-
Note:	For bit 03, 05, 07:			
	These bits are set if at least one fault/alarm occurs. Data is entered into the fault/alarm buffer with delay. For this reason, the fault/alarm buffer should only be read if, after "Fault active" or "Alarm active" occurs, a change is also identified in the buffer (r0944, r9744, r2121).			
	For bit 06, 08:			
	These status bits are used for internal diagnostic purposes only.			
	For bit 12, 11:			
	These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.			

p2140[0...n]	Hysteresis speed $2 / \mathrm{n}$ _hysteresis 2				
SERVO, VECTOR, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3		
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010		
SERVO_IAC,	P-Group: Messages	Unit group: 3_1	Unit selection: p0505		
	Not for motor type: -	Scaling: -	Expert list: 1		
	Min	Max	Factory setting		
	0.00 [rpm]	300.00 [rpm]	90.00 [rpm]		
Description:	Sets the hysteresis speed (bandwidth) for the following signals: "\|n_act	< = speed threshold value 2" (BO: r2197.1) "\|n_act	> speed threshold value 2" (BO: r2197.2)		
Dependency:	Refer to: p2155, r2197				

p2140[0...n]	Hysteresis velocity 2 / v_hysteresis 2		Access level: 3		
SERVO (Lin), SERVO_AC (Lin),	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF			
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010		
	P-Group: Messages	Unit group: 4_1	Unit selection: p0505		
	Not for motor type: -	Scaling: -	Expert list: 1		
	Min	Max	Factory setting		
	0.00 [m/min]	10.00 [m/min]	0.90 [$\mathrm{m} / \mathrm{min}$]		
Description:	Sets the hysteresis velocity (bandwidth) for the following signals: "\|n_act	< = velocity threshold value 2" (BO: r2197.1) "\|n_act	> velocity threshold value 2" (BO: r2197.2)		
Dependency:	Refer to: p2155, r2197				

p2141[0...n]	Speed threshold 1 / n_thresh val 1		
SERVO, VECTOR, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	5.00 [rpm]
Description: Dependency:	Sets the speed threshold value for the signal "f or n comparison value reached or exceeded" (BO: r2199.1) Refer to: p2142, r2199		

p2141[0...n]	Velocity threshold value 1 / v_thresh val 1		
SERVO (Lin), SERVO_AC (Lin),	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	0.05 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the velocity threshold value for the signal "f or n comparison value reached or exceeded" (BO: r2199.1). Refer to: p2142, r2199		
Dependency:			

2.2 List of parameters

p2142[0...n]	Hysteresis speed 1 / n_hysteresis 1		
SERVO, VECTOR, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Messages	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	300.00 [rpm]	2.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the signal "f or n / v comparison value reached or exceeded" (BO: r2199.1).		
Dependency:	Refer to: p2141, r2199		

p2142[0...n]	Hysteresis speed 1 / n_hysteresis 1		
SERVO (Lin), SERVO_AC (Lin),	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [m/min]	10.00 [m/min]	0.02 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the hysteresis speed (bandwidth) for the signal "f or n / v comparison value reached or exceeded" (BO: r2199.1).		
Dependency:	Refer to: p 2141 , r2199		

p2144[0...n]	BI: Motor stall monitoring enable (negated) / Mot stall enab neg		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8012
VECTOR_AC, SERVO_IAC,	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the negated enable ($0=$ enable) of the motor stall monitoring.		
Dependency:	Refer to: p2163, p2164, p2166, r2197, r2198		
	Refer to: F07900		
Note:	When interconnecting the enable signal with r 2197.7 then the stall signal is suppressed if there is no speed setpoint actual value deviation.		

r2145[0...63]	Alarm time received in days /t_alarm recv days		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8065
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the system runtime in days when the alarm occurred.		
Dependency:	Refer to: r2110, r2114, r2122, r2123, r2124, r2125, r2134, r2146, r3121, r3123		
Notice:	The time comprises r2145 (days) and r2123 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		

r2146[0...63]	Alarm time removed in days / t_alarm res days		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8065
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the system runtime in days when the alarm was cleared.		
Dependency:	Refer to: r2110, r2114, r2122, r2123, r2124, r2125, r2134, r2145, r3121, r3123		
Notice:	The time comprises r2146 (days) and r2125 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
p2147	Delete fault buffer of all drive objects / Del fault buffer		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: 8060
CU_S_AC_PN, CU S120 PN,	P-Group: Displays, signals	Unit group:	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	1	0
Description:	Setting to delete the fault buffer of all existing drive objects.		
Value:	0 : Inactive		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136		
Note:	p 2147 is automatically set to 0 after execution.		
p2148[0...n]	BI: RFG active / RFG active		
SERVO, VECTOR SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: U, T	CALC_MOD_LIM_REF	
	Data type: Unsigned32 / Binary P-Group: Messages	Dyn. index: CDS, p0170	Func. diagram: 8011
		Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
			0
Description:	Sets the signal source for the signal "ramp-function generator active" for the following signals/messages: "Speed setpoint - actual value deviation within tolerance t_on" (BO: r2199.4) "Ramp-up/ramp-down completed" (BO: r2199.5)		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The binector input is automatically pre-assigned to r1199.2.		
	The following applies for SERVO:		
	The pre-assignment using the automatic calculation of the motor/control parameters in the drive ($00340=1,3,5$) is only realized if, at the instant of the calculation, the "setpoint channel" function module is active (r0108.8 = 1). If the calculation in p0340 is not selected when downloading parameters, then the parameter is not pre-assigned.		

2.2 List of parameters

p2149[0...n]	Monitoring configuration / Monit config				
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T		Calculated: - Access level: 3		
	Data type: Unsigned16		Dyn. index: DDS, p0180	Func. diagram: -	
	P-Group: Messages		Unit group: -	Unit selection: -	
	Not for motor type: - S		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	- -		-	0000000000000000 bin	
Description:	Sets the configuration for messages and monitoring functions.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Enable alarm A07903	Yes	No	8011
		Load monitoring only in the 1st quadrant	nt Yes	No	8013
		Reserved			-
		Automatic parameterization carried out $(p 0340=1, p 3900>0)$	Yes	No	-
Dependency:	Refer to: r2197				
	Refer to: A07903				
Note:	For bit 00:				
	Alarm A07903 is output when the bit is set with $\mathrm{r} 2197.7=0$ (n_set <> n_act). For bit 01:				

When the bit is set, the load monitoring is only executed in the 1st quadrant as a result of the positive characteristic parameters (p2182 ... p2190).
For bit 03:
When the bit is set, r2197.1 and r2197.2 are determined using separate hysteresis functions.
For bit 15:
The bit indicates whether the automatic parameterization ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) for the parameters of the extended monitoring functions was carried out.
If the bit is not set (e.g. when the configuration is activated (p0108.15)), the parameterization is automatically carried out during booting even if r3925.0 is already 1.

p2149[0...n]	Monitoring configuration / Monit config			
VECTOR, VECTOR_AC, VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: -	
	P-Group: Messages U	Unit group: -	Unit selection: -	
	Not for motor type: - S	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0000000000000001 bin	
Description:	Sets the configuration for messages and monitoring functions.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Enable alarm A07903	Yes	No	8011
	01 Load monitoring only in the 1st quadrant	nt Yes	No	8013
	03 Reserved			-
	06 Enable underspeed monitoring	Yes	No	8010
	15 Automatic parameterization carried out $(p 0340=1, p 3900>0)$	Yes	No	-
Dependency:	Refer to: 2197			
	Refer to: A07903			
Note:	For bit 00:			
	Alarm A07903 is output when the bit is set with r2197.7 = 0 (n_set <> n_act). For bit 01:			
	When the bit is set, the load monitoring is only executed in the 1st quadrant as a result of the positive characteristic parameters (p2182 ... p2190).			
	For bit 03:			
	When the bit is set, r2197.1 and r2197.2 are determined using separate hysteresis functions.			

For bit 06:
When the bit is set, with r2197.1 = 1 (n _act < p2155 speed threshold value 2), then alarm A08721 is output, and with r2199.0 $=1$ ($n _$act $<$p2161 speed threshold value 3), then fault F07822 is output.
For separately excited synchronous motors (without encoder) in torque control (p 1501 set), the underspeed speed monitoring is automatically activated if conditions ($\mathrm{p} 0300=5, \mathrm{p} 1300=20$) for the automatic pre-assignment of the threshold values during commissioning ($\mathrm{p} 0340=1$) are fulfilled.
The alarm threshold p2155 is preassigned with 1.5^{*} p1755-and the fault threshold p2161, with p1755.
For bit 15:
The bit indicates whether the automatic parameterization ($\mathrm{p} 0340=1, p 3900>0$) for the parameters of the extended monitoring functions was carried out.
If the bit is not set (e.g. when the configuration is activated (p0108.15)), the parameterization is automatically carried out during booting even if r3925.0 is already 1.

p2150[0...n]	Hysteresis speed 3 / n_hysteresis 3		Access level: 3	
SERVO, VECTOR, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF		
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010, 8011	
SERVO_IAC, VECTOR I AC	P-Group: Messages	Unit group: 3_1	Unit selection: p0505	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [rpm]	300.00 [rpm]	2.00 [rpm]	
Description:	Sets the hysteresis speed (bandwidth) for the following signals:			
	"\|n_act	< speed threshold value 3" (BO: r2199.0)		
	"n_set >= 0" (BO: r2198.5)			
	"n_act >= 0" (BO: r2197.3)			
Dependency:	Refer to: p2161, r2197, r2199			

p2150[0...n]	Hysteresis velocity 3 /v_hysteresis 3		Access level: 3	
SERVO (Lin), SERVO_AC (Lin),	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF		
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010, 8011	
	P-Group: Messages	Unit group: 4_1	Unit selection: p0505	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [$\mathrm{m} / \mathrm{min}$]	3.00 [m/min]	0.02 [$\mathrm{m} / \mathrm{min}$]	
Description:	Sets the hysteresis velocity (bandwidth) for the following signals:			
	"\|n_act	< speed threshold value 3" (BO: r2199.0)		
	"n_set >= 0" (BO: r2198.5)			
	"n_act >= 0" (BO: r2197.3)			
Dependency:	Refer to: p2161, r2197, r2199			

p2151[0...n]	CI: Speed setpoint for messages/signals / n_set for msg			
SERVO, SERVO_AC,	Can be changed: T	Calculated: -	Access level: 3	
SERVO_I_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 8011	
	P-Group: Messages	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: p2000	Expert list: 1	
	Min	Max	Factory setting	
	-	-	1438[0]	
Description:	Sets the signal source for the speed setpoint for the following messages:			
	"Speed setpoint - actual value deviation within tolerance t_off" (BO: r2197.7)			
	"Ramp-up/ramp-down completed" (BO: r2199.5)			
	"\|n_set	< p2161" (BO: r2198.4)		
	"n_set > 0" (BO: r2198.5)			
Dependency:	Refer to: r2197, r2198, r2199			

2.2 List of parameters

p2151[0...n]	CI: Velocity setpoint for messages/signals / v_set for msg		
SERVO (Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 8011
SERVO_I_AC (Lin)	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	1438[0]
Description:	Sets the signal source for the velocity setpoint for the following messages: "Velocity setpoint - actual value deviation within tolerance t_off" (BO: r2197.7) "Ramp-up/ramp-down completed" (BO: r2199.5)$\begin{aligned} & \text { "\|v_set\| < p2161" (BO: r2198.4) } \\ & \text { "v_set > 0" (BO: r2198.5) } \end{aligned}$		
Dependency:	Refer to: r2197, r2198, r2199		
p2151[0...n]	CI: Speed setpoint for messages/signals / n_set for msg		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 8011
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	1170[0]
Description:	Sets the signal source for the speed setpoint for the following messages: "Speed setpoint - actual value deviation within tolerance t_off" (BO: r2197.7) "Ramp-up/ramp-down completed" (BO: r2199.5) $\begin{aligned} & \text { "\|n_set\| < p2161" (BO: r2198.4) } \\ & \text { "n_set > 0" (BO: r2198.5) } \end{aligned}$		
Dependency:	Refer to: r2197, r2198, r2199		
p2153[0...n]	Velocity actual value filter time constant / v_act_filt T		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000000 [ms]	0 [ms]
Description:	Sets the time constant of the PT1 element to smooth the speed / velocity actual value. The smoothed actual speed/velocity is compared with the threshold values and is only used for messages and signals.		
Dependency:	Refer to: r2169		

p2153[0...n]	Speed actual value filter time constant / n_act_filt T		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010
SERVO I AC,	P-Group: Messages	Unit group: -	Unit selection:
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000000 [ms]	0 [ms]
Description:	The smoothed actual speed/velocity is compared with the threshold values and is only used for messages and signals.		
Dependency:	Refer to: r2169		

p2153[0...n]	Velocity actual value filter time constant / v_act_filt T				
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3		
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010		
SERVO_I_AC (Lin)	P-Group: Messages	Unit group: -	Unit selection: -		
	Not for motor type: -	Scaling: -	Expert list: 1		
	Min	Max	Factory setting		
	0 [ms]	1000000 [ms]	0 [ms]		
Description:	The smoothed actual speed/velocity is compared with the threshold values and is only used for messages and signals.				
Dependency:	Refer to: r2169				
p2154[0...n]	CI: Speed setpoint 2 / n_set 2				
SERVO, VECTOR SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: T	Calculated: -	Access level: 3		
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 8010		
	P-Group: Messages	Unit group: -	Unit selection: -		
	Not for motor type: -	Scaling: p2000	Expert list: 1		
	Min	Max	Factory setting		
	-	-	0		
Description:	Sets the signal source for speed setpoint 2.				
	The sum of p2151 and p2154 is used for the following messages/signals:				
	"Speed setpoint - actual value deviation within tolerance t_off" (r2197.7)				
	"Speed setpoint - actual value deviation within tolerance t_on" (r2199.4)				
	"Ramp-up/ramp-down completed" (r2199.5)				
Dependency:	Refer to: p2151, r2197, r2199				
p2154[0...n]	CI: Velocity setpoint 2 / v_set 2				
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: T Data type: Unsigned32 / FloatingPoint32	Calculated: -	Access level: 3		
		Dyn. index: CDS, p0170	Func. diagram: 8010		
	P-Group: Messages	Unit group: -	Unit selection: -		
	Not for motor type: -	Scaling: p2000	Expert list: 1		
	Min	Max	Factory setting		
	- -		0		
Description:	Sets the signal source for the velocity setpoint 2.				
	The sum of p2151 and p2154 is used for the following messages/signals:				
	"Velocity setpoint - actual value deviation within tolerance t_off" (r2197.7)				
	"Velocity setpoint - actual value deviation within tolerance t_on" (r2199.4)				
	"Ramp-up/ramp-down completed" (r2199.5)				
Dependency:	Refer to: p2151, r2197, r2199				
p2155[0...n]	Speed threshold 2 / n_thresh val 2				
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3		
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010		
	P-Group: Messages	Unit group: 3_1	Unit selection: p0505		
	Not for motor type: -	Scaling: -	Expert list: 1		
	Min	Max	Factory setting		
	0.00 [rpm]	210000.00 [rpm]	900.00 [rpm]		
Description:	Sets the speed threshold value for the follo "\|n_act < = speed threshold value 2" (BO: "	n_act	> speed threshold value 2" (BO: r2	ing messages: (197.1) (2)	
Dependency:	Refer to: p2140, r2197				

2.2 List of parameters

p2155[0...n]	Velocity threshold value 2 / v_thresh val 2		Access level: 3	
SERVO (Lin), SERVO_AC (Lin),	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF		
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010	
	P-Group: Messages	Unit group: 4_1	Unit selection: p0505	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	9.00 [$\mathrm{m} / \mathrm{min}$]	
Description:	Sets the velocity threshold value for the following messages: " \mid v_act\| < = velocity threshold value 2" (BO: r2197.1) "\|v act	> velocity threshold value 2" (BO: r2197.2)		
Dependency:	Refer to: p2140, r2197			

p2156[0...n]	On delay comparison value reached /t_on cmpr val rchd		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010
VECTOR_AC,	P-Group: Messages	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	$10000.0[\mathrm{~ms}]$	$0.0[\mathrm{~ms}]$
	$0.0[\mathrm{~ms}]$		
Description:	Sets the switch-in delay time for the signal "comparison value reached" (BO: r2199.1).		
Dependency:	Refer to: p2141, p2142, r2199		

p2161[0...n]	Speed threshold 3 / n_thresh val 3			
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010, 8011	
	P-Group: Messages	Unit group: 3_1	Unit selection: p0505	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [rpm]	210000.00 [rpm]	5.00 [rpm]	
Description:	Sets the speed threshold value for the signal "\|n_act	< speed threshold value 3" (BO: r2199.0).		
Dependency:	Refer to: p2142, r2199			
p2161[0...n]	Velocity threshold value 3 / v_thresh val 3			
SERVO (Lin), SERVO_AC (Lin),	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3	
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010, 8011	
	P-Group: Messages	Unit group: 4_1	Unit selection: p0505	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	0.05 [m/min]	
Description:	Sets the velocity threshold value for the signal "\|v_act	< velocity threshold value 3" (BO: r2199.0).		
Dependency:	Refer to: p2142, r2199			
p2161[0...n]	Speed threshold 3 / n_thresh val 3			
VECTOR, VECTOR_AC,	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3	
VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010, 8011	
	P-Group: Messages	Unit group: 3_1	Unit selection: p0505	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [rpm]	210000.00 [rpm]	5.00 [rpm]	
Description:	Sets the speed threshold value for the signal "\|n_act	< speed threshold value 3" (BO: r2199.0).		
Dependency:	Refer to: p2142, r2199			
Caution:	The threshold monitoring function is deactivated with p2161 $=0.0$.			
Note:	The parameter is used as fault threshold for underspeed monitoring			
	Monitoring for an underspeed condition is automatically activated internally for encoderless separately-excited synchronous motors in closed-loop torque controlled operation ($p 0300=5, p 1300=20, p 1501=1$ signal) - and can be manually activated with p2149.6 $=1$.			
	For separately excited synchronous motors, when exiting commissioning ($\mathrm{p} 0340=5$), this parameter is automatically assigned p1755.			

p2162[0...n]	Hysteresis speed n_act > n_max / Hyst n_act>n_max		
SERVO, VECTOR, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	60000.00 [rpm]	0.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the signal "n_act > n_max" (BO: r2197.6).		
Dependency:	Refer to: r1084, r1087, r2197		

2.2 List of parameters

Notice: \quad For p0322 $=0$, the following applies: p2162 <=0.1 * p0311
For p0322 > 0, the following applies: p2162 <= 1.02 * p0322-p1082
If one of the conditions is violated, p2162 is appropriately and automatically reduced when exiting the commissioning mode.
Note: \quad For a negative speed limit (r1087) the hysteresis is effective below the limit value and for a positive speed limit (r 1084) above the limit value.
If significant overshoot occurs in the maximum speed range (e.g. due to load shedding), you are advised to increase the dynamic response of the speed controller (if possible). If this is insufficient, the hysteresis p2162 can only be increased by more than 10% of the rated speed when the maximum speed (p 0322) of the motor is sufficiently greater than the speed limit p1082.

p2162[0...n]	Hysteresis velocity v_act > v_max / Hyst v_act>v_max		
SERVO (Lin), HLA,	Can be changed: U, T	Calculated:	Access level: 2
SERVO_AC (Lin),		CALC_MOD_LIM_REF	
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Unit group: $4 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: -	Max
	Min	$1000.00[\mathrm{~m} / \mathrm{min}]$	Fxpert list: 1

p2163[0...n]	Velocity threshold value 4 / v_thresh val 4		
HLA	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	0.90 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the velocity threshold value for the "velocity setpoint - actual value deviation in tolerance t_off" message (BO: r2197.7).		
Dependency:	Refer to: p2164, p2166, r2197		
p2163[0...n]	Speed threshold 4 / n_thresh val 4		
SERVO, VECTOR, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8011
SERVO_I_AC, VECTOR I AC	P-Group: Messages	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	90.00 [rpm]
Description:	Sets the speed threshold value for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2164, p2166, r219		

p2166[0...n]	Off delay v_act = v_set / t_del_off n_i=n_so		
HLA	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-off delay time for the "velocity setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2163, p2164, r2197		
p2166[0...n]	Off delay n_act = n_set / t_del_off n_i=n_so		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8011
SERVO_I_AC,	P-Group: Messages	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-off delay time for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2163, p2164, r2197		

p2166[0...n]	Off delay v_act = v_set /t_del_off n_i=n_so		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8011
SERVO_I_AC (Lin)	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	$10000.0[\mathrm{~ms}]$	Factory setting
	$0.0[\mathrm{~ms}]$	200.0 [ms]	
Description:	Sets the switch-off delay time for the "velocity setpoint - actual value deviation in tolerance t_off" signal/message		
	(BO: r2197.7).		
Dependency:	Refer to: p2163, p2164, r2197		

p2167[0...n]	Switch-on delay n_act = n_set / t_on n_act=n_set		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8011
SERVO_I_AC,	P-Group: Messages	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-on delay for the "speed setpoint - actual value deviation in tolerance t_on" signal/message (BO: r2199.4).		
p2167[0...n]	On delay v_act = v_set / t_on n_act=n_set		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8011
SERVO_I_AC (Lin)	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-on delay for the "speed setpoint - actual value deviation in tolerance t_on" signal/message (BO: r2199.4).		

r2169	CO: Actual velocity smoothed signals / v_act smth message	
HLA	Can be changed: - Calculated: - Data type: FloatingPoint32 Dyn. index: - P-Group: Messages Unit group: 4_1 Not for motor type: - Scaling: p2000 Min Max $-[\mathrm{m} / \mathrm{min}]$ $-[\mathrm{m} / \mathrm{min}]$	Access level: 2 Func. diagram: - Unit selection: p0505 Expert list: 1 Factory setting - [m/min]
Description: Dependency:	Display and connector output of the smoothed velocity actual value for messages. Refer to: p2153	
r2169 SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	CO: Actual speed smoothed signals / n_act smth message	Access level: 2 Func. diagram: 8010 Unit selection: p0505 Expert list: 1 Factory setting - [rpm]
Description: Dependency:	Display and connector output of the smoothed speed actual value for messages. Refer to: p2153	
$\overline{\mathrm{r} 2169}$ SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	CO: Actual velocity smoothed signals / v_act smth message	Access level: 2 Func. diagram: 8010 Unit selection: p0505 Expert list: 1 Factory setting - [m/min]
Description: Dependency:	Display and connector output of the smoothed velocity actual value for messages. Refer to: p2153	
$\overline{\text { p2174[0...n] }}$ SERVO, SERVO_AC, SERVO_I_AC	Torque threshold value 1 / M_thresh val 1	Access level: 2 Func. diagram: 8012 Unit selection: p0505 Expert list: 1 Factory setting 5.13 [Nm]
Description: Dependency:	Sets the torque threshold value for the signal "Torque setpoint < torque threshold v Refer to: p2195, r2198	value 1" (BO: r2198.10).
p2174[0...n] SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Force threshold value 1/F_thresh val 1 Can be changed: U, T Calculated: - Data type: FloatingPoint32 Dyn. index: DDS, p0180 P-Group: Messages Unit group: 8_1 Not for motor type: - Scaling: - Min Max $0.00[\mathrm{~N}]$ $20000000.00[\mathrm{~N}]$	Access level: 2 Func. diagram: 8012 Unit selection: p0505 Expert list: 1 Factory setting 1000.00 [N]
Description: Dependency:	Sets the force threshold value for the signal "force setpoint < force threshold value Refer to: p2195, r2198	1" (BO: r2198.10).

p2174[0...n]	Torque threshold value $1 / \mathrm{M}$ _thresh val 1		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Unit group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	5.13 [Nm]
Description:	Sets the torque threshold value for the messages:		
	"Torque setpoint < torque threshold value 1 and n _set reached" (BO: r2198.9)		
	"Torque setpoint < torque threshold value 1" (BO: r2198.10)		
	"Torque setpoint > torque threshold value 1" (BO: r2198.13)		
Dependency:	Refer to: p2195, r2198		

p2175[0...n]	Motor blocked velocity threshold / Mot lock v_thresh		
HLA	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [m/min]	1000.00 [m/min]	1.20 [m/min]
Description:	Sets the velocity threshold for the message "Motor locked".		
Dependency:	Refer to: p2177		

p2175[0...n]	Motor blocked speed threshold / Mot lock n_thresh		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	120.00 [rpm]
Description:	Sets the speed threshold for the message "Motor blocked" (BO: r2198.6).		
Dependency:			
	Refer to: F07900		
p2175[0...n]	Motor blocked velocity threshold / Mot lock v_thresh		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	1.20 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the velocity threshold for the message "Motor blocked" (BO: r2198.6).		
Dependency:	Refer to: p0500, p2177, r2198		
	Refer to: F07900		

p2175[0...n]	Motor blocked speed threshold / Mot lock n_thresh		
VECTOR, VECTOR_AC,	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	120.00 [rpm]
Description:	Sets the speed threshold for the message "Motor blocked" (BO: r2198.6).		
Dependency:	Refer to: p0500, p2177, r2198		
	Refer to: F07900		
Note:	The following applies for sensorless vector control for induction motors:		
	At low speeds in open-loop speed controlled operation (see p1755, p1756), a blocked motor cannot be detected.		
	The following applies for sensorless vector control for permanent magnet synchronous motors:		
	At low speeds in open-loop speed controlled operation (see p1755, p1756), a blocked motor can only be detected if $\mathrm{p} 2175=\mathrm{p} 1755$, and p1750.6 is set to 1 .		
p2177[0...n]	Motor blocked delay time / Mot lock t_del		
HLA	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	65.000 [s]	1.000 [s]
Description:	Sets the delay time for the message "Motor locked".		
Dependency:	Refer to: p0500, p2175, r2198		
	Refer to: F07900		
p2177[0...n]	Motor blocked delay time / Mot lock t_del		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	65.000 [s]	1.000 [s]
Description:	Sets the delay time for the message "Motor blocked" (BO: r2198.6).		
Dependency:	Refer to: p0500, p2175, r2198		
	Refer to: F07900		
p2177[0...n]	Motor blocked delay time / Mot lock t_del		
VECTOR, VECTOR_AC,	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	65.000 [s]	1.000 [s]
Description:	Sets the delay time for the message "Motor blocked" (BO: r2198.6).		
Dependency:	Refer to: p0500, p2175, r2198		
	Refer to: F07900		

Note: \quad The following applies for sensorless vector control:
At low speeds a locked motor can only be detected if no change is made to open-loop speed controlled operation. If this is the case, the value in p2177 must be reduced accordingly ($\mathrm{p} 2177<\mathrm{p} 1758$) before time p2177 has elapsed in order to detect the locked state reliably.
As countermeasure, it is generally also possible to set p1750.6. This is only not permitted if the drive is slowly reversed by the load at the torque limit (speed below p1755 for longer than p1758).

p2178[0...n]	Motor stalled delay time / Mot stall t_del		
VECTOR,	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
VECTOR_I_AC	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$	
	Sets the delay time for the message "Motor stalled" (BO: r2198.7).		
Description:	Refer to: $\mathbf{r 2 1 9 8}$		
Dependency:			

p2181[0...n]	Load monitoring response / Load monit resp		
SERVO (Ext msg),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Ext msg),	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 8013
SERVO_AC (Ext msg), VECTOR AC (Ext	P-Group: Messages	Unit group: -	Unit selection: -
msg), SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Ext msg),	Min	Max	Factory setting
$\begin{aligned} & \text { VECTOR_I_AC (Ext } \\ & \text { msg) } \end{aligned}$	0	6	0
Description:	Sets the response when evaluating the load monitoring.		
Value:	0 : Load monitoring disabled		
	1: A07920 for torque/speed too low		
	2: A07921 for torque/speed too high		
	3: A07922 for torque/speed out of tolerance		
	4: F07923 for torque/speed t		
	5: F07924 for torque/speed too high		
	6: F07925 for torque/speed out of tolerance		
Dependency:	Refer to: p2182, p2183, p2184, p2185, p2186, p2187, p2188, p2189, p2190, p2192, r2198		
	Refer to: A07920, A07921, A07922, F07923, F07924, F07925		
Note:	The response to the faults F07923 ... F07925 can be set.		
	This parameter setting has no effect on the generation of fault F07936.		

p2182[0...n]	Load monitoring velocity threshold 1 / v_thresh 1		
SERVO (Ext msg, Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Ext msg,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
(Ext msg, Lin)	P-Group: Messages	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	0.05 [m/min]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds:		
	p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2183, p2184, p2185, p2186		
	Refer to: A07926		
Note:	In order that the load monitoring can reliably respond, the speed threshold p2182 should always be set lower than the minimum motor speed to be monitored.		

p2182[0...n]	Load monitoring speed threshold value 1 / n_thresh 1		
SERVO (Ext msg),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Ext msg),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
SERVO_AC(Extmsg), VECTOR AC (Ext	P-Group: Messages	Unit group: 3_1	Unit selection: p0505
msg), SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Ext msg),	Min	Max	Factory setting
VECTOR_I_AC (Ext	0.00 [rpm]	210000.00 [rpm]	150.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2183, p2184, p2185, p2186		
	Refer to: A07926		
Note:	In order that the load monito minimum motor speed to be	espond, the speed thresho	hould always be set low

p2183[0...n]	Load monitoring velocity threshold 2 / v_thresh 2		
SERVO (Ext msg, Lin), SERVO_AC (Ext msg, Lin), SERVO_I_AC (Ext msg, Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	0.05 [m/min]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2184, p2187, p2188		
	Refer to: A07926		

p2183[0...n] Load monitoring speed threshold value $2 /$ n_thresh 2

SERVO (Ext msg), VECTOR (Ext msg), SERVO_AC (Ext msg) VECTOR_AC (Ext msg), SERVO_I_AC (Ext msg), VECTOR_I_AC (Ext msg)

Description:

Can be changed: U, T
Data type: FloatingPoint32
P-Group: Messages
Not for motor type: -
Min
0.00 [rpm]

Calculated: -
Dyn. index: DDS, p0180
Unit group: 3_1
Scaling: -
Max
210000.00 [rpm]

Access level: 3

Func. diagram: 8013
Unit selection: p0505
Expert list: 1
Factory setting
900.00 [rpm]

Sets the speed/torque envelope curve for load monitoring.
The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds:
p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)
p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)
p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)
The following applies: p2182 < p2183 < p2184
Refer to: p2182, p2184, p2187, p2188
Refer to: A07926

p2184[0...n]	Load monitoring velocity threshold 3 / v_thresh 3		
SERVO (Ext msg, Lin), SERVO_AC (Ext msg, Lin), SERVO_I_AC (Ext msg, Lin)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mathrm{m} / \mathrm{min}$]	1000.00 [m/min]	0.05 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_ttreshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2183, p2189, p2190		
	Refer to: A07926		
Note:	In order that the load monitoring can reliably respond, the speed threshold p2184 should always be set higher than the maximum motor speed to be monitored.		

p2184[0...n]	Load monitoring speed threshold value 3 / n_thresh 3		
SERVO (Ext msg),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Ext msg),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
SERVO_AC(Extmsg), VECTOR AC (Ext	P-Group: Messages	Unit group: 3_1	Unit selection: p0505
msg), SERVVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Ext msg),	Min	Max	Factory setting
VECTOR_I_AC (Ext	0.00 [rpm]	210000.00 [rpm]	1500.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2183, p2189, p2190		
	Refer to: A07926		
Note:	In order that the load monitoring can reliably respond, the speed threshold p2184 should always be set higher than the maximum motor speed to be monitored.		

p2185[0...n]	Load monitoring force threshold 1 upper / F_thresh 1 upper		
SERVO (Ext msg, Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Ext msg,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
Lin), SERVO_I_AC	P-Group: Messages	Unit group: 8_1	Unit selection: p0505
(Ext msg, Lin)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~N}]$	$100000.00[\mathrm{~N}]$	$100000.00[\mathrm{~N}]$
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2185 > p2186		
	Refer to: p2182, p2186		
	Refer to: A07926		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		

p2185[0...n]	Load monitoring torque threshold 1 upper / M_thresh 1 upper		
SERVO (Ext msg),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Ext msg),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
SERVO_AC (Ext msg), VECTOR AC (Ext	P-Group: Messages	Unit group: 7_1	Unit selection: p0505
msg), SERVVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Ext msg),	Min	Max	Factory setting
VECTOR_I_AC (Ext msg)	0.00 [Nm]	20000000.00 [Nm]	$10000000.00[\mathrm{Nm}]$
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2185 > p2186		
	Refer to: p2182, p2186		
	Refer to: A07926		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2186[0...n]	Load monitoring force threshold 1 lower / F_thresh 1 lower		
SERVO (Ext msg, Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Ext msg,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
(Ext msg, Lin)	P-Group: Messages	Unit group: 8_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [N$]$	100000.00 [N]	0.00 [N$]$
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2186 < p2185		
	Refer to: p2182, p2185		
	Refer to: A07926		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2186[0...n]	Load monitoring torque threshold 1 lower / M_thresh 1 lower		
SERVO (Ext msg),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Ext msg),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
SERVO_AC (Ext msg), VECTOR AC (Ext	P-Group: Messages	Unit group: 7_1	Unit selection: p0505
msg), SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Ext msg),	Min	Max	Factory setting
$\begin{aligned} & \text { VECTOR_I_AC (Ext } \\ & \text { msg) } \end{aligned}$	0.00 [Nm]	$20000000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2186 < p2185		
	Refer to: p2182, p2185		
	Refer to: A07926		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2187[0...n]	Load monitoring force threshold 2 upper / F_thresh 2 upper		
SERVO (Ext msg, Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Ext msg,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
(Ext msg, Lin)	P-Group: Messages	Unit group: 8_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [N]	100000.00 [N]	100000.00 [N]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2187 > p2188		
	Refer to: p2183, p2188		
	Refer to: A07926		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		

p2187[0...n]	Load monitoring torque threshold 2 upper / M_thresh 2 upper		
SERVO (Ext msg),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Ext msg),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
VECTOR AC (Ext	P-Group: Messages	Unit group: 7_1	Unit selection: p0505
msg), SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Ext msg),	Min	Max	Factory setting
VECTOR_I_AC (Ext	0.00 [Nm]	20000000.00 [Nm]	10000000.00 [Nm]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring. The following applies: p2187 > p2188		
Dependency:			
	Refer to: p2183, p2188		
	Refer to: A07926		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2188[0...n]	Load monitoring force threshold 2 lower / F_thresh 2 lower		
SERVO (Ext msg, Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Ext msg,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
(Ext msg, Lin)	P-Group: Messages	Unit group: 8_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [N]	100000.00 [N$]$	0.00 [N]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring. The following applies: p2188 < p2187		
Dependency:			
	Refer to: $\mathrm{p} 2183, \mathrm{p} 2187$		
	Refer to: A07926		
Note:	The lower envelope curve is defined by $\mathrm{p} 2186, \mathrm{p} 2188$ and p2190.		
p2188[0...n]	Load monitoring torque threshold 2 lower / M_thresh 2 lower		
SERVO (Ext msg),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Ext msg),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
VECTOR_AC (Ext	P-Group: Messages	Unit group: 7_1	Unit selection: p0505
msg), SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Ext msg),	Min	Max	Factory setting
$\begin{aligned} & \text { VECTOR_I_AC (Ext } \\ & \text { msg) } \end{aligned}$	0.00 [Nm]	$20000000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2188 < p2187		
	Refer to: p2183, 2187		
	Refer to: A07926		
Note:	The lower envelope curve is defined by $\mathrm{p} 2186, \mathrm{p} 2188$ and p2190.		
p2189[0...n]	Load monitoring force threshold 3 upper / F_thresh 3 upper		
SERVO (Ext msg, Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Ext msg,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
(Ext msg, Lin)	P-Group: Messages	Unit group: 8_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [N]	100000.00 [N$]$	100000.00 [N]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2189 > p2190		
	Refer to: p2184, p2190		
	Refer to: A07926		
Note:	The upper envelope curve is	5, p2187 and p2189.	

p2189[0...n]	Load monitoring torque threshold 3 upper / M_thresh 3 upper		
SERVO (Ext msg),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Ext msg),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
SERVO_AC (Ext msg), VECTOR AC (Ext	P-Group: Messages	Unit group: 7_1	Unit selection: p0505
msg), SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Ext msg),	Min	Max	Factory setting
$\begin{aligned} & \text { VECTOR_I_AC (Ext } \\ & \text { msg) } \end{aligned}$	0.00 [Nm]	$20000000.00[\mathrm{Nm}]$	$10000000.00[\mathrm{Nm}]$
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2189 > p2190		
	Refer to: p2184, p2190		
	Refer to: A07926		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2190[0...n]	Load monitoring force threshold 3 lower / F_thresh 3 lower		
SERVO (Ext msg, Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Ext msg,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
(Ext msg, Lin)	P-Group: Messages	Unit group: 8_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [N]	100000.00 [N]	0.00 [N$]$
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2190<p2189		
	Refer to: p2184, p2189		
	Refer to: A07926		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2190[0...n]	Load monitoring torque threshold 3 lower / M_thresh 3 lower		
SERVO (Ext msg),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Ext msg),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
VECTOR_AC (Ext	P-Group: Messages	Unit group: 7_1	Unit selection: p0505
msg), SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Ext msg),	Min	Max	Factory setting
$\begin{aligned} & \text { VECTOR_I_AC (Ext } \\ & \text { msg) } \end{aligned}$	0.00 [Nm]	$20000000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2190 < p2189		
	Refer to: p2184, p2189		
	Refer to: A07926		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2192[0...n]	Load monitoring delay time / Load monit t_del		
SERVO (Ext msg),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Ext msg),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
VECTOR_AC (Ext	P-Group: Messages	Unit group: -	Unit selection: -
msg), SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Ext msg),	Min	Max	Factory setting
$\begin{aligned} & \text { VECTOR_I_AC (Ext } \\ & \text { msg) } \end{aligned}$	0.00 [s]	65.00 [s]	10.00 [s]
Description:	Sets the delay time to evaluate the load monitoring.		

p2194[0...n]	Torque threshold value 2 / M_thresh val 2		
SERVO, VECTOR, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	90.00 [\%]
Description:	Sets the torque threshold value for the message "Torque utilization < torque threshold value 2" (BO: r2199.11). The message "torque setpoint < p2174" (BO: r2198.10) and "torque utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired.		
Dependency:	Refer to: r0033, p2195, r219		

p2194[0...n]	Force threshold value 2 / F_thresh val 2		
SERVO (Lin), SERVO_AC (Lin),	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	90.00 [\%]
Description:	Sets the force threshold value for the signal "force utilization < force threshold value 2" (BO: r2199.11). The message "force setpoint < p2174" (BO: r2198.10) and "force utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired.		
Dependenc	Refer to: r0033, p2195, r219		

p2195[0...n]	Torque utilization switch-off delay / M_util t_off		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
VECTOR_AC,	P-Group: Messages	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	$1000.0[\mathrm{~ms}]$	$800.0[\mathrm{~ms}]$
	$0.0[\mathrm{~ms}]$		
Description:	Sets the switch-off delay time for the negated signal "run-up completed".		
	The message "torque setpoint < p2174" (BO: r2198.10) and "torque utilization < p2194" (BO: r2199.11) are only		
	evaluated after the run-up and the delay time has expired.		
Dependency:	Refer to: p2174, p2194		

p2195[0...n]	Force utilization switch-off delay / F_util t_off		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	800.0 [ms]
Description:	The message "force setpoint < p2174" (BO: r2198.10) and "force utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired.		
Dependency:	Refer to: p2174, p2194		

r2197.1... 13 CO/BO: Status word monitoring 1 / ZSW monitor 1

SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC

Description: Bit field:

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max -

Display and BICO output for the first status word of the monitoring functions.

Bit	Signal name	1 signal	0 signal	FP
01	\mid n_act <= speed threshold value 2 p2155	Yes	No	8010
02	\mid n_act \gg speed threshold value 2 p2155	Yes	No	8010
03	n_act >= 0	Yes	No	8011
06	\mid n_act $>$ n_max	No	8010	
07	Speed setpoint - actual value deviation in tolerance t_off	Yes	No	8011
13	\|n_act $>$ n_max (F07901)	Yes	No	-

2.2 List of parameters

Note:

For bit 01, 02:
The threshold value is set in p2155 and the hysteresis in p2140.
For bit 03:
The hysteresis is set in p 2150 .
For bit 06:
The hysteresis is set in p2162.
For bit 07:
The threshold value is set in p2163 and the hysteresis is set in p2164.
For bit 13 :
Only for internal Siemens use.

r2197.1... 13	CO/BO: Status word monitoring 1 / ZSW monitor 1					
SERVO (Lin),		e changed: - Calc	Calculated: -	Access level: 2		
SERVO_AC (Lin),		type: Unsigned16 Dyn	Dyn. index: -	Func. diagram: 2534		
		up: Messages Unit	Unit group: -	Unit selection: -		
		or motor type: - Scal	Scaling: -	Expert list: 1		
	Min		Max	Factory setting		
	-	-	-	-		
Description:	Display and BICO output for the first status word of the monitoring functions.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
		\mid v_act ${ }^{\text {< }}$ = velocity threshold value 2 p 2155	Yes	No	8010	
		$\mid \mathrm{v}$ _act\| > velocity threshold value 2 p2155	Yes	No	8010	
		$v_{\text {_ }}$ act $>=0$	Yes	No	8011	
		\|v_act	> v_max	Yes	No	8010
		Velocity setpoint - actual value deviation in tolerance t_off	Yes	No	8011	
		$\mid \mathrm{v}$ _act $\mid>$ v_max (F07901)	Yes	No	-	
Note:	For bit 01, 02:					
	The threshold value is set in p2155 and the hysteresis in p2140.					
	For bit 03:					
	The hysteresis is set in p2150.					
	For bit 06:					
	The hysteresis is set in p2162.					
	For bit 07:					
	The threshold value is set in p2163 and the hysteresis is set in p2164.					
	For bit 13:					
	Only for internal Siemens use.					

Note:

For bit 10:
The torque threshold value 1 is set in p2174.
For bit 12:
This bit is reset after the fault cause disappears, even if the fault itself is still present.

r2198.4... 12	CO/BO: Status word monitoring 2 / ZSW monitor 2				
SERVO (Lin),	Can be changed: -	Calculated: -	Acces		
SERVO_AC (Lin),	Data type: Unsigned16	Dyn. index: -	Func.		
SERVO_1_AC (Lin)	P-Group: Messages	Unit group: -	Unit s		
	Not for motor type: -	Scaling: -	Exper		
	Min	Max	Factor		
	- -	-	-		
Description:	Display and BICO output for the second status word of the monitoring functions.				
Bit field:	Bit Signal name	1 signal	0 signal	FP	
	04 \|n_set	< p2161	Yes	No	8011
	05 v_set > 0	Yes	No	8011	
	06 Motor blocked	Yes	No	8012	
	10 Force setpoint < force threshold value 1	1 Yes	No	8012	
	11 Load in the alarm range	Yes	No	8013	
	12 Load in the fault range	Yes	No	8013	
Note:	For bit 10:				
	The force threshold value 1 is set in p2174.				

r2198.4... 12	CO/BO: Status word monitoring 2 / ZSW monitor 2				
VECTOR,	Can be changed: -	Calculated: -	Acces		
VECTOR_AC,	Data type: Unsigned16	Dyn. index: -	Func.		
	P-Group: Messages	Unit group: -	Unit s		
	Not for motor type: -	Scaling: -	Exper		
	Min	Max	Factory		
	-	-	-		
Description:	Display and BICO output for the second status word of the monitoring functions.				
Bit field:	Bit Signal name	1 signal	0 signal	FP	
	04 \|n_set	< p2161	Yes	No	8011
	05 n_set > 0	Yes	No	8011	
	06 Motor blocked	Yes	No	8012	
	07 Motor stalled	Yes	No	8012	
	$10 \quad \mid \mathrm{M}$ _set \mid < torque threshold value 1	Yes	No	8012	
	11 Load in the alarm range	Yes	No	8013	
	12 Load in the fault range	Yes	No	8013	
Note:	For bit 10:				
	The torque threshold value 1 is set in p2174.				
	For bit 12:				
	This bit is reset after the fault cause disappears, even if the fault itself is still present.				

2.2 List of parameters

p2201[0...n]	CO: Technology controller fixed value 1 / Tec_ctrl fix val1		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950, 7951
SERVO_AC	P-Group: Technology	Unit group: 9_1	Unit selection: p0595
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC (Tech_ctrl),	-200.00 [\%]	200.00 [\%]	10.00 [\%]
$\begin{aligned} & \text { VECTOR_I_AC } \\ & \text { (Tech_ctrl) } \end{aligned}$			
Description:	Sets the value for fixed value 1 of the technology controller.		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2202[0...n]	CO: Technology controller fixed value 2 / Tec_ctr fix val 2		
SERVO (Tech_crr),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950, 7951
(Tech_ctrl),	P-Group: Technology	Unit group: 9_1	Unit selection: p0595
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)	-200.00 [\%]	200.00 [\%]	20.00 [\%]
Description:	Sets the value for fixed value 2 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2203[0...n]	CO: Technology controller fixed value 3 / Tec_ctr fix val 3		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl), SERVO AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950, 7951
(Tech_ctrl),	P-Group: Technology	Unit group: 9_1	Unit selection: p0595
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC (Tech_ctr), VECTOR_I_AC (Tech_ctrl)	-200.00 [\%]	200.00 [\%]	30.00 [\%]
Description:	Sets the value for fixed value 3 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2204[0...n]	CO: Technology controller fixed value 4 / Tec_ctr fix val 4		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950, 7951
SERVO_AC (Tech_ctrl),	P-Group: Technology	Unit group: 9_1	Unit selection: p0595
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
$\begin{aligned} & \text { SERVO_I_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_IAC } \\ & \text { (Tech_ctrl) } \end{aligned}$	-200.00 [\%]	200.00 [\%]	40.00 [\%]
Description:	Sets the value for fixed value 4 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a	belongs to a drive data set	s on the effective data set.

p2205[0...n]	CO: Technology controller fixed value 5 / Tec_ctr fix val 5		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
SERVO_AC	P-Group: Technology	Unit group: $9 _1$	Unit selection: p0595
(Tech_ctrl),	Not for motor type: -	Scaling: PERCENT	Expert list: 1
VECTOR_AC	Min	Max	Factory setting
(Tech_ctrl),	$-200.00[\%]$	50.00 [\%]	
SERVO_I_AC			
(Tech_ctrl),			
VECTOR_I_AC	Sets the value for fixed value 5 of the technology controller.		
(Tech_ctrl)	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Description:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Dependency:			

p2206[0...n] CO: Technology controller fixed value 6 / Tec_ctr fix val 6

VECTOR (Tech_ctrl), Data type: FloatingPoint32
SERVO_AC
(Tech_ctrl),
VECTOR AC
(Tech_ctrl),
SERVO_I_AC
(Tech_ctrl),
VECTOR I AC
(Tech_ctrl)
Description:
Dependency:
Notice:

p2207[0...n]	CO: Technology controller fixed value 7 / Tec_ctr fix val 7		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
SERVO_AC (Tech_ctrl),	P-Group: Technology	Unit group: 9_1	Unit selection: p0595
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)	-200.00 [\%]	200.00 [\%]	70.00 [\%]
Description:	Sets the value for fixed value 7 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2208[0...n]	CO: Technology controller fixed value 8 / Tec_ctr fix val 8		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
(Tech_ctrl),	P-Group: Technology	Unit group: 9_1	Unit selection: p0595
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)	-200.00 [\%]	200.00 [\%]	80.00 [\%]
Description:	Sets the value for fixed value 8 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2212[0...n]	CO: Technology controller fixed value 12 / Tec_ctr fix val 12		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
(Tech_ctrl),	P-Group: Technology	Unit group: 9_1	Unit selection: p0595
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
$\begin{aligned} & \text { SERVO_I_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_I_AC } \\ & \text { (Tech_ctrl) } \end{aligned}$	-200.00 [\%]	200.00 [\%]	120.00 [\%]
Description:	Sets the value for fixed value 12 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

2.2 List of parameters

p2220[0...n]	BI: Technology controller fixed value selection bit 0/Tec_ctrl sel bit 0		
SERVO (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 3
VECTOR (Tech_ctrl),	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 7950, 7951
SERVO_AC	P-Group: Commands	Unit group: -	Unit selection: -
(Tech_ctrl),	Not for motor type: -	Scaling: -	Expert list: 1
VECCOR_AC	Min	Max	Factory setting
(Tech_ctrI),	-	0	
SERVO_AC	-		

VECTOR_I_AC
(Tech_ctrl)

Description: Sets the signal source to select a fixed value of the technology controller. Dependency: Refer to: p2221, p2222, p2223

p2221[0...n]	BI: Technology controller fixed value selection bit 1/Tec_ctrl sel bit $\mathbf{1}$		
SERVO (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 3
VECTOR (Tech_ctrl),	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 7950, 7951
SERVO_AC	P-Group: Commands	Unit group: -	Unit selection: -
(Tech_ctrl),	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_AC	Min	Max	Factory setting
(Tech_ctrl),	-	0	
SERVO_I_AC	-		

VECTOR_I_AC
(Tech_ctrl)

Description: Sets the signal source to select a fixed value of the technology controller.
Dependency: Refer to: p2220, p2222, p2223

p2222[0...n]	BI: Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2		
SERVO (Tech_crrl),	Can be changed: T	Calculated: -	Access level: 3
VECTOR (Tech_ctrl),	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 7950, 795
(Tech ctrl),	P-Group: Commands	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC	-	-	0

VECTOR_I_AC
(Tech_ctrl)

Description: Sets the signal source to select a fixed value of the technology controller.
Dependency: Refer to: p2220, p2221, p2223

p2223[0...n]	BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3		
SERVO (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 3
VECTOR (Tech_ctrl),	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 7950, 7951
SERVO_AC (Tech ctrl),	P-Group: Commands	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
$\begin{aligned} & \text { SERVO_I_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_IAC } \\ & \text { (Tech_ctrl) } \end{aligned}$	-	-	0
Description: Dependency:	Sets the signal source to select a fixed value of the technology controller. Refer to: p2220, p2221, p2222		
Dependency:			

r2224	CO: Technology controller fixed value effective / Tec_ctr Fix	Val eff
```SERVO (Tech_ctrl), VECTOR (Tech_ctrl), SERVO_AC (Tech_ctrl), VECTOR_AC (Tech_ctrl), SERVO_I_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)```	Can be changed: - Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: Technology Unit group: 9_1   Not for motor type: - Scaling: PERCENT   Min Max   $-[\%]$ $-[\%]$	Access level: 2   Func. diagram: 7950, 7951   Unit selection: p0595   Expert list: 1   Factory setting - [\%]
Description: Dependency:	Display and connector output for the selected and active fixed value of the technology controller. Refer to: r2229	
r2225.0	CO/BO: Technology controller fixed value selection status	ord / Tec_ctr FixVal ZSW
```SERVO (Tech_ctrl), VECTOR (Tech_ctrl), SERVO_AC (Tech_ctrl), VECTOR_AC (Tech_ctrl), SERVO_I_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)```	Can be changed: - Calculated: -   Data type: Unsigned16 Dyn. index: -   P-Group: Technology Unit group: -   Not for motor type: - Scaling: -   Min Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting
Description: Bit field:	Display and BICO output for the status word of the fixed value selection of the	echnology controller.
r2229	Technology controller number actual / Tec_ctrl No. act	
```SERVO (Tech_ctrl), VECTOR (Tech_ctrl), SERVO_AC (Tech_ctrl), VECTOR_AC (Tech_ctrl), SERVO_I_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)```	Can be changed: - Calculated: -   Data type: Unsigned32 Dyn. index: -   P-Group: Technology Unit group: -   Not for motor type: - Scaling: -   Min Max   - -	Access level: 2   Func. diagram: 7950   Unit selection: -   Expert list: 1   Factory setting
Description:   Dependency:	Displays the number of the selected fixed setpoint of the technology controller. Refer to: r2224	

### 2.2 List of parameters





### 2.2 List of parameters



## r2245

CO: Technology controller mot. potentiometer setpoint before RFG / Tec_ctr mop befRFG

SERVO (Tech_ctrl), VECTOR (Tech ctrl),
SERVO_AC (Tech_ctrl), VECTOR_AC (Tech_ctrl), SERVO_IAC
(Tech_ctrl),
VECTOR_I_AC
(Tech_ctrl)
Description:

Dependency:

Calculated: -
Dyn. index: -
Unit group: 9_1
Scaling: PERCENT
Max

- [\%]

Access level: 2
Func. diagram: 7954
Unit selection: p0595
Expert list: 1
Factory setting

- [\%]
- [\%]

Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator of the technology controller.
Refer to: r2250


p2248[0...n]	Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown		
SERVO (Tech_ctrl),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7954
(Tech ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
$\begin{aligned} & \text { SERVO_I_AC } \\ & \text { (Tech_ctrl), } \end{aligned}$	0.0 [s]	1000.0 [s]	10.0 [s]
VECTOR_I_AC   (Tech_ctrl)			
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: p2247		
Note:	The time is referred to $100 \%$.		
	When the initial rounding-off is activated (p2230.2 = 1) the ramp-down is correspondingly extended.		


r2250	CO: Technology controller motorized potentiometer setpoint after RFG / Tec_ctr mop aftRFG		
SERVO (Tech_ctrl),	Can be changed: -	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7954
(Tech ctrl),	P-Group: Technology	Unit group: 9_1	Unit selection: p0595
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
$\begin{aligned} & \text { SERVO_I_AC } \\ & \text { (Tech_ctrl), } \end{aligned}$	- [\%]		
VECTOR_I_AC   (Tech_ctrl)			
Description:	Displays the effective setpoint after the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: r2245		


p2252	Technology controller configuration / Tec_ctrl config			
SERVO (Tech_ctrl), VECTOR (Tech_ctrl), SERVO_AC (Tech_ctrl), VECTOR_AC (Tech_ctrl), SERVO_IAC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)	Can be changed: $U, T$   Data type: Unsigned16   P-Group: Modulation   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max	Access   Func.   Unit se   Expert   Factory   00000	
Description:   Bit field:	Sets the configuration of the technology co   Bit Signal name   00 Ramp-up/down time independent of setpoint sign   01 Integrator independent of Kp   02 Output signal without ramp active   03 Actual value limit   07 Activate Kp adaptation   08 Activate Tn adaptation	roller.   1 signal   Yes   Yes   Yes   Yes   Yes   Yes	0 signal   No   No   No   No   No   No	$\begin{aligned} & \text { FP } \\ & - \\ & - \\ & - \\ & - \\ & 7958 \\ & 7958 \end{aligned}$
Dependency:   Note:	Refer to: p2257, p2258, p2267, p2268, p22   For bit $00=0$ :   The ramp-down time (p2258) switches to th changes. When the sign changes, the outp   For bit $00=1$ :   When r2260 exhibits a positive gradient, the ramp-down time (p2258) is active. The sign   For bit $01=0$ :   The integration time of the PID controller is   For bit 01 = 1 :   The integration time of the PID controller is   For bit $02=0$ :   When the PID controller is deactivated via p p2293.   For bit $02=1$ :   When the PID controller is deactivated via   For bit $03=0$ :   The actual values are not limited by p2267   For bit $03=1$ :   The actual values are limited by p2267 and	, p2285   ramp-up time (p2257) whe signal is kept at zero for o   ramp-up time ( p 2257 ) is ac or r2260 does not have any   valuated with the gain facto   dependent of the gain fact   200, the output signal r229   200 , the output signal r229   nd p2268.   2268.	gn for the o metic cycle.   en it exhibits on the ramp   2280) (p228   $35=$ integra   uced to zero   directly to z	ient, the $0>0 .$   wn time
p2253[0...n]   SERVO (Tech_ctrl), VECTOR (Tech_ctrl), SERVO_AC (Tech_ctrl), VECTOR_AC (Tech_ctrl), SERVO_I_AC (Tech_crr), VECTOR_I_AC (Tech_ctrl)	CI: Technology controller setpoi   Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: Unsigned32 / FloatingPoint32   P-Group: Technology   Not for motor type: -   Min	1 / Tec_ctrl setp 1   Calculated: -   Dyn. index: CDS, p0170   Unit group: -   Scaling: PERCENT   Max	Access   Func.   Unit se   Expert   Factory 0	
Description:   Dependency:	Sets the signal source for the setpoint 1 of the technology controller.   Refer to: p2254, p2255			


p2254[0...n]	CI: Technology controller setpo	2 / Tec_ctrl setp 2	
SERVO (Tech_ctrl),   VECTOR (Tech_ctrl),   SERVO_AC   (Tech_ctrl),   VECTOR_AC   (Tech_ctrl),   SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	Can be changed: $U, T$   Data type: Unsigned32 / FloatingPoint32   P-Group: Technology   Not for motor type: -   Min	Calculated: -   Dyn. index: CDS, p0170   Unit group: -   Scaling: PERCENT   Max	Access level: 3   Func. diagram: 7958   Unit selection: -   Expert list: 1   Factory setting   0
Description: Dependency:	Sets the signal source for the setpoint 2 of the technology controller. Refer to: p2253, p2256		
p2255	Technology controller setpoint 1 scaling / Tec_ctrl set1 scal		
SERVO (Tech_ctrl),   VECTOR (Tech_ctrl),   SERVO_AC   (Tech_ctrl),   VECTOR_AC   (Tech_ctrl),   SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	Can be changed: U, T   Data type: FloatingPoint32   P-Group: Technology   Not for motor type: -   Min   0.00 [\%]	Calculated: -   Dyn. index:   Unit group: -   Scaling: -   Max   100.00 [\%]	Access level: 3   Func. diagram: 7958   Unit selection: -   Expert list: 1   Factory setting $100.00 \text { [\%] }$
Description:   Dependency:	Sets the scaling for the setpoint 1 of the technology controller. Refer to: p2253		
p2256	Technology controller setpoint 2 scaling / Tec_ctrl set2 scal		
SERVO (Tech_ctrl),   VECTOR (Tech_ctrl),   SERVO_AC   (Tech_ctrl),   VECTOR_AC   (Tech_ctrl),   SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P-Group: Technology   Not for motor type: -   Min $0.00 \text { [\%] }$	Calculated: -   Dyn. index:   Unit group: -   Scaling: -   Max   100.00 [\%]	Access level: 3   Func. diagram: 7958   Unit selection: -   Expert list: 1   Factory setting $100.00 \text { [\%] }$
Description: Dependency:	Sets the scaling for the setpoint 2 of the technology controller.   Refer to: p2254		
p2257	Technology controller ramp-up time / Tec_ctrl t_ramp-up		
SERVO (Tech_ctrl),   VECTOR (Tech_ctrl),   SERVO_AC   (Tech_ctrl),   VECTOR_AC   (Tech_ctrl),   SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	Can be changed: U, T   Data type: FloatingPoint32   P-Group: Technology   Not for motor type: -   Min   0.00 [s]	Calculated:   Dyn. index:   Unit group:   Scaling: -   Max   650.00 [s]	Access level: 2   Func. diagram: 7958   Unit selection: -   Expert list: 1   Factory setting   1.00 [s]
Description:   Dependency:   Note:	Sets the ramp-up time of the technology controller.   Refer to: p2252, p2258   The ramp-up time is referred to $100 \%$.		

### 2.2 List of parameters

p2258	Technology controller ramp-down time / Tec_ctrl t_ramp-dn		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
SERVO_AC	Unit group: -	Unit selection: -	
(Tech_ctrl),	P-Group: Technology	Scaling: -	Expert list: 1
VECTOR_AC	Not for motor type: -	Max	Factory setting
(Tech_ctrl),	Min	$650.00[\mathrm{~s}]$	$1.00[\mathrm{~s}]$
SERVO_I_AC	$0.00[\mathrm{~s}]$		
(Tech_ctrl),			
VECTOR_I_AC			
(Tech_ctrl)			
Description:	Sets the ramp-down time of the technology controller.		
Dependency:	Refer to: p2252, p2257		
Note:	The ramp-down time is referred to $100 \%$.		

r2260 CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG

VECTOR (Tech_ctrl), Data type: FloatingPoint32
SERVO AC
(Tech_ctrl),
VECTOR AC
(Tech_ctrl),
SERVO_IAC
(Tech_ctrl),
VECTOR_I_AC
(Tech_ctrl)
Description: Sets the setpoint after the ramp-function generator of the technology controller.

p2261	Technology controller setpoint filter time constant / Tec_ctrl set T		
SERVO (Tech_ctrl),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
(Tech ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC   (Tech_ctr),   VECTOR_I_AC   (Tech_ctrl)	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the setpoint filter (PT1) of the technology controller.		
r2262	CO: Technology controller setpoint after filter / Tec_ctr set aftFlt		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl), SERVO AC (Tech_ctrl), VECTOR_AC (Tech_crr), SERVO_IAC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)	Can be changed: -   Data type: FloatingPoint32   P-Group: Technology   Not for motor type: -   Min   - [\%]	Calculated: -   Dyn. index: -   Unit group: 9_1   Scaling: PERCENT   Max   - [\%]	Access level: 3   Func. diagram: 7958   Unit selection: p0595   Expert list: 1   Factory setting   - [\%]
Description:	Display and connector output	d setpoint after the se	) of the technology


p2263	Technology controller type / Tec_ctrl type		
SERVO (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 3
VECTOR (Tech_ctrl),	Data type: Integer16	Dyn. index: -	Func. diagram: 7958
(Tech ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	0	1	0
Description:	Sets the type of technology controller.		
Value:	0: D component in   1: $\quad D$ component in		


p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7958
SERVO_AC	P-Group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl),	Not for motor type: -	Scaling: PERCENT	Expert list: 1
VECTOR_AC	Max	Factory setting	
(Tech_ctrl),	Min	-	0

(Tech_ctr),
(Tech ctrl)
Description: Sets the signal source for the actual value of the technology controller.

p2265	Technology controller actual value filter time constant / Tec_ctrl act T		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
SERVO_AC	P-Group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl),	Scaling: -	Expert list: 1	
VECTOR_AC	Not for motor type: -	Max	Factory setting
(Tech_ctrl),	Min	$60.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$
SERVO_I_AC	$0.000[\mathrm{~s}]$		
(Tech_ctrl),    VECTOR_I_AC    (Tech_ctrl)    Description: Sets the time constant for the actual value filter (PT1) of the technology controller.			

## r2266

SERVO (Tech_ctrl),
VECTOR (Tech_ctrl),
SERVO_AC
(Tech_ctrl),
VECTOR_AC
(Tech_ctrl), SERVO_I_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)
Description:

CO: Technology controller actual value after filter / Tec_ctr act aftFlt

Can be changed: -
Data type: FloatingPoint32
P-Group: Technology
Not for motor type: -
Min

- [\%]

Calculated: -
Dyn. index: -
Unit group: 9_1
Scaling: PERCENT
Max

- [\%]

Access level: 2
Func. diagram: 7958
Unit selection: p0595
Expert list: 1
Factory setting
[\%]

[^3]
### 2.2 List of parameters

p2267	Technology controller upper limit actual value / Tec_ctrl u_lim act		
SERVO (Tech_ctrl), VECTOR (Tech_ctrl), SERVO_AC (Tech_ctrl), VECTOR_AC (Tech_ctrl), SERVO_I_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)	Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: Technology   Not for motor type: -   Min -10000.00 [\%]	Calculated: -   Dyn. index: -   Unit group: 9_1   Scaling: PERCENT   Max   10000.00 [\%]	Access level: 3   Func. diagram: 7958   Unit selection: p0595   Expert list: 1   Factory setting $200.00 \text { [\%] }$
Description:   Dependency:   Notice:   Note:	Sets the upper limit for the actual value signal of the technology controller.   Refer to: p2252, p2264, p2265, p2271   Refer to: F07426   If the actual value exceeds this upper limit, this results in fault F07426.   Limiting only active for p2252.3=1.		
p2268   SERVO (Tech_ctrl),   VECTOR (Tech_ctrl),   SERVO_AC   (Tech_ctrl),   VECTOR_AC   (Tech_ctrl),   SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	Technology controlle   Can be changed: U, T   Data type: FloatingPoint32   P-Group: Technology   Not for motor type: -   Min -10000.00 [\%]	actual value / Te   Calculated: -   Dyn. index: -   Unit group: 9_1   Scaling: PERCENT   Max   10000.00 [\%]	act   Access level: 3   Func. diagram: 7958   Unit selection: p0595   Expert list: 1   Factory setting -200.00 [\%]
Description:   Dependency:   Notice:   Note:	Sets the lower limit for the actual value signal of the technology controller.   Refer to: p2252, p2264, p2265, p2271   Refer to: F07426   If the actual value falls below this lower limit, this results in fault F07426.   Limiting only active for p2252.3 = 1 .		
p2269   SERVO (Tech_ctrl),   VECTOR (Tech_ctrl),   SERVO_AC   (Tech_ctrl),   VECTOR_AC   (Tech_ctrl),   SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	Technology controlle   Can be changed: U, T   Data type: FloatingPoint32   P-Group: Technology   Not for motor type: -   Min   0.00 [\%]	value / Tech_ct   Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   500.00 [\%]	Access level: 3   Func. diagram: 7958   Unit selection: -   Expert list: 1   Factory setting $100.00 \text { [\%] }$
Description:   Dependency:   Note:	Sets the scaling factor for the actual value of the technology controller.   Refer to: p2264, p2265, p2267, p2268, p2271   For $100 \%$, the actual value is not changed.		



## r2272

SERVO (Tech_ctr),
VECTOR (Tech_ctrl),
SERVO AC
(Tech_ctrl),
VECTOR AC
(Tech_ctrl),
SERVO_IAC
(Tech_ctr),
VECTOR I AC
(Tech_ctrl)

Description: Display and connector output for the scaled actual value signal of the technology controller.
Dependency:

CO: Technology controller actual value scaled / Tech_ctrl act scal

Dyn. index:
Unit group: 9_1
Scaling: PERCENT
Max

- [\%]

Access level: 2
Func. diagram: 7958
Unit selection: p0595
Expert list: 1
Factory setting

- [\%]
(Tech_ctrl),

Data type: FloatingPoint32
P-Group: Technology
Not for motor type: -
Min

- [\%]


### 2.2 List of parameters



p2286[0...n]	BI: Hold technology controller integrator / Tec_ctr integ hold		
SERVO (Tech_crl),	Can be changed: T	Calculated: -	Access level: 3
VECTOR (Tech_ctrl),	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 7958
SERVO_AC	Unit group: -	Unit selection: -	
(Tech_ctrl),	P-Group: Technology	Scaling: -	Expert list: 1
VECTOR_AC	Not for motor type: -	Max	Factory setting
(Tech_ctrl),	Min	-	0
SERVO_I_AC -   (Tech_ctrr),    VECTOR_I_AC    (Tech_ctrl)    Description: Sets the signal source to hold the integrator for the technology controller.			


p2289[0...n]	CI: Technology controller precontrol signal / Tec_ctr prectr_sig		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7958
(Tech ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	-	-	0


p2291	CO: Technology controller maximum limiting / Tec_ctrl max_lim		
SERVO (Tech_ctrl),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
(Tech ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the technology controller.		
Dependency:	Refer to: p2292		
Caution:   A	The maximum limit must always be greater than the minimum limit (p2291 > p2292).		


p2292	CO: Technology controller minimum limiting / Tec_ctrl min_lim		
SERVO (Tech_ctrl),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
(Tech ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_IAC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the minimum limit of the technology controller.		
Dependency:	Refer to: p2291		
Caution:	The maximum limit must always be greater than the minimum limit (p2291>p2292).		

### 2.2 List of parameters

p2293	Technology controller ramp-up/ramp-down time / Tec_ctr t_RU/RD		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
SERVO_AC	P-Group: Technology	Unit group: -	Expert list: 1
(Tech_ctrl),	Scaling: -	Factory setting	
VECTOR_AC	Not for motor type: -	Max	$1.00[\mathrm{~s}]$
(Tech_ctrl),	Min	$100.00[\mathrm{~s}]$	
SERVO_I_AC $0.00[\mathrm{~s}]$   (Tech_ctrl),    VECTOR_I_AC    (Tech_ctrl)    Description: Sets the ramping time for the output signal of the technology controller.   Dependency: Refer to: p2291, p2292    Note: The time refers to the set maximum and minimum limits (p2291, p2292).			


$\mathbf{r 2 2 9 4}$	CO: Technology controller output signal / Tec_ctrl outp_sig		
SERVO (Tech_crrl),	Can be changed: -	Calculated: -	Access level: 2
VECTOR (Tech_crl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
SERVO_AC	P-Group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl),	Not for motor type: -	Scaling: PERCENT	Expert list: 1
VECTORAC	Max	Factory setting	
(Tech_ctrl),	Min	$-[\%]$	$-[\%]$
SERVO_I_AC	$-[\%]$		

VECTOR I AC
(Tech_ctrl)
Description: Display and connector output for the output signal of the technology controller.
Dependency: Refer to: p2295

p2295	CO: Technology controller output scaling / Tec_ctrl outp scal		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
SERVO_AC	P-Group: Technology	Unit group: -	Unit selection: -
(Tech_ctrl),	Not for motor type: -	Scaling: PERCENT	Expert list: 1
VECTOR_AC	Max	Factory setting	
(Tech_ctrl),	Min	$100.00[\%]$	$100.00[\%]$
SERVO_IAC	$-100.00[\%]$		

VECTOR_I_AC
(Tech_ctrl)
Description: Sets the scaling for the output signal of the technology controller.
p2296[0...n] CI: Technology controller output scaling / Tec_ctrl outp scal

VECTOR (Tech_ctrl),
SERVO AC
(Tech_ctrl),
VECTOR_AC
(Tech_ctrl),
SERVO_IAC
(Tech_ctrl),
VECTOR_I_AC
(Tech_ctrl)
Description: Sets the signal source for the scaling value of the technology controller.
Dependency:

Calculated: -
Dyn. index: CDS, p0170
Unit group: -
Scaling: PERCENT
Max

- 2295[0]

Access level: 2
Func. diagram: 7958
Unit selection: -
Expert list: 1
Factory setting

p2297[0...n]	CI: Technology controller maxim	m limit signal sour	trMaxLimS_src
SERVO (Tech_ctrl),   VECTOR (Tech_ctrl),   SERVO_AC   (Tech_ctrl),   VECTOR_AC   (Tech_ctrl),   SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: Unsigned32 / FloatingPoint32   P-Group: Technology   Not for motor type: -   Min	Calculated: -   Dyn. index: CDS, p0170   Unit group: -   Scaling: PERCENT   Max	Access level: 2   Func. diagram: 7958   Unit selection: -   Expert list: 1   Factory setting 2291[0]
Description:   Dependency:	Sets the signal source for the maximum lim   Refer to: p2291	ng of the technology con	
$\begin{aligned} & \hline \text { p2298[0...n] } \\ & \text { SERVO (Tech_ctrl), } \\ & \text { VECTOR (Tech_ctrl), } \\ & \text { SERVO_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_AC } \\ & \text { (Tech_ctrl), } \\ & \text { SERVO_IAC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_IAC } \\ & \text { (Tech_ctrl) } \end{aligned}$	CI: Technology controller minim   Can be changed: $U, T$   Data type: Unsigned32 / FloatingPoint32   P-Group: Technology   Not for motor type: -   Min	m limit signal source   Calculated: -   Dyn. index: CDS, p0170   Unit group: -   Scaling: PERCENT   Max	ctrl min_l s_s   Access level: 2   Func. diagram: 7958   Unit selection: -   Expert list: 1   Factory setting   2292[0]
Description:   Dependency:	Sets the signal source for the minimum lim   Refer to: p2292	g of the technology contro	
$\begin{aligned} & \hline \text { p2299[0...n] } \\ & \text { SERVO (Tech_ctrl), } \\ & \text { VECTOR (Tech_ctrl), } \\ & \text { SERVO_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_AC } \\ & \text { (Tech_ctrl), } \\ & \text { SERVO_IAC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_IAC } \\ & \text { (Tech_ctrl) } \end{aligned}$	CI: Technology controller limit   Can be changed: $U, T$   Data type: Unsigned32 / FloatingPoint32   P-Group: Technology   Not for motor type: -   Min	set / Tech_ctrl lim   Calculated: -   Dyn. index: CDS, p0170   Unit group: -   Scaling: PERCENT   Max	Access level: 2   Func. diagram: 7958   Unit selection: -   Expert list: 1   Factory setting   0
Description:	Sets the signal source for the offset of the out	tput limiting of the technol	
p2306	Technology controller system d	ation inversion /	sDev inv
SERVO (Tech_ctrl), VECTOR (Tech_ctrl), SERVO_AC (Tech_ctrl), VECTOR AC (Tech_ctrl), SERVO_I_AC (Tech_ctrl), VECTOR_I_AC (Tech_ctrl)	Can be changed: $T$   Data type: Integer16   P-Group: Technology   Not for motor type: -   Min   0	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   1	Access level: 3   Func. diagram: 7958   Unit selection: -   Expert list: 1   Factory setting   0
Description:	Setting to invert the system deviation of the   The setting depends on the type of control	echnology controller. op.	
Value:	0: $\quad$ No inversion   1: Inversion		
Caution:   介	If the actual value inversion is incorrectly s become unstable and can oscillate!	cted, then the closed-loop	h the technology contr

### 2.2 List of parameters

Note:	The correct setting can be determined as follows:
- inhibit the technology controller ( $\mathrm{p} 2200=0$ ).	
- increase the motor speed and in so doing, measure the actual value signal (of the technology controller).	
- if the actual value increases with increasing motor speed, then the inversion should be switched out.	
- if the actual value decreases with increasing motor speed, then the inversion should be set.	
If value $=0$ :	
The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor).	
If value $=1$ :	
The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).	


p2310	CI: Technology controller Kp adaptation input value signal source / Kp adapt inp s_src		
SERVO (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7959
(Tech_ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
$\begin{aligned} & \text { SERVO_I_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_I_AC } \\ & \text { (Tech_ctrl) } \end{aligned}$	-	-	0
Description: Dependency:	Sets the signal source for the input value of the adaptation of proportional gain Kp for the technology controller. Refer to: p2252, p2311, p2312, p2313, p2314, p2315, r2316		



p2313	Technology controller Kp adaptation lower starting point / Kp adapt lower pt		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7959
SERVO_AC (Tech_ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description:	Sets the lower starting point for the adaptation of proportional gain Kp for the technology controller.		
Dependency:	Refer to: p2310, p2311, p2312, p2314, p2315, r2316		
Caution:	The upper starting point must be set higher than the lower starting point (p2314 > p2313).		
Note:	Kp adaptation is activated with p2252.7 $=1$.		
p2314	Technology controller Kp adaptation upper starting point / Kp adapt upper pt		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl), SERVO AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7959
(Tech_ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	0.00 [\%]	400.00 [\%]	100.00 [\%]
Description:	Sets the upper activation point for the adaptation of proportional gain Kp for the technology controller. Refer to: p2310, p2311, p2312, p2313, p2315, r2316		
Dependency:			
Caution:	The upper starting point must be set higher than the lower starting point (p2314 > p2313).		
Note:	Kp adaptation is activated with p2252.7 = 1 .		
p2315	CI: Technology controller Kp adaptation scaling signal source / Kp adapt scal s_s		
SERVO (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 3
VECTOR (Tech_ctrl),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7959
(Tech_ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
$\begin{aligned} & \text { SERVO_I_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_I_AC } \\ & \text { (Tech_ctrl) } \end{aligned}$	-	-	1
Description:	Sets the signal source to scale the results of the adaptation of the proportional gain Kp for the technology controller.		
Dependency:	Refer to: p2310, p2311, p2312, p2313, p2314, r2316		
Note:	Kp adaptation is activated with p2252.7 $=1$.		

### 2.2 List of parameters



p2319	Technology controller Tn adaptation upper value / Tn adapt upper val		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7959
SERVO_AC   (Tech_ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC   (Tech_ctrl),	0.000 [s]	60.000 [s]	10.000 [s]
VECTOR_I_AC   (Tech_ctrl)			
Description:	Sets the upper value for the adaptation of integral time Tn for the technology controller.		
Dependency:	Refer to: p2317, p2318, p2320, p2321, r2322		
Caution:	The upper value must be set higher than the lower value (p2319 > p2318).		
Note:	Tn adaptation is activated with p2252.8 = 1.		
p2320	Technology controller Tn adaptation lower starting point / Tn adapt lower pt		
SERVO (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl), SERVO AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7959
(Tech_ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC   (Tech_ctrl),	0.00 [\%]	400.00 [\%]	0.00 [\%]
VECTOR_I_AC   (Tech_ctrl)			
Description:	Sets the lower activation point for the adaptation of integral time Tn for the technology controller.		
Dependency:	Refer to: p2317, p2318, p2319, p2321, r2322		
Caution:	The upper starting point must be set higher than the lower starting point (p2321 > p2320).		
Note:	Tn adaptation is activated with p2252.8 $=1$.		
p2321	Technology controller Tn adaptation upper starting point / Tn adapt upper pt		
SERVO (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7959
(Tech_ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC   (Tech_ctrl),	0.00 [\%]	400.00 [\%]	100.00 [\%]
VECTOR_I_AC   (Tech_ctrl)			
Description:	Sets the upper activation point for the adaptation of integral time Tn for the technology controller.		
Dependency:	Refer to: p2317, p2318, p2319, p2320, r2322		
Caution:	The upper starting point must be set higher than the lower starting point (p2321 > p2320).		
Note:	Tn adaptation is activated with p2252.8 $=1$.		

### 2.2 List of parameters

r2322	CO: Technology controller Tn adaptation output / Tn adapt output		
SERVO (Tech_ctrl),	Can be changed: -	Calculated: -	Access level: 2
VECTOR (Tech_ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7959
(Tech ctrl),	P-Group: Technology	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl),	Min	Max	Factory setting
SERVO_I_AC   (Tech_ctrl),   VECTOR_I_AC   (Tech_ctrl)	- [s]	- [s]	- [s]
Description:	Display and connector output for the output signal of the adaption of integral time Tn for the technology controller.		
Dependency:	Refer to: p2252, p2317, p2318, p2319, p2320, p2321		
Note:	Tn adaptation is activated with p2252.8 $=1$.		

## r2349.0... 13 CO/BO: Technology controller status word / Tec_ctrl ZSW

Can be changed: - Calculated: -
VECTOR (Tech_ctrl)
SERVO_AC
(Tech_ctrl),
VECTOR AC
(Tech_ctrl),
SERVO_I_AC

Dyn. index: -
Unit group: -
Scaling: -
Max
-
-
(Tech_ctrl),
VECTOR_I_AC
(Tech_ctrl)
Description: Display and BICO output for the status word of the technology controller.
Bit field:

Bit	Signal name	1 signal	0 signal	FP
00	Technology controller deactivated	Yes	No	-
01	Technology controller limited	Yes	No	-
02	Technology controller motorized potentiometer limited max	Yes	No	-
03	Technology controller motorized potentiometer limited min	Yes	No	-
04	Technology controller speed setpoint total in setpoint channel	Yes	No	-
05	Technology controller RFG bypassed in the setpoint channel	Yes	No	-
06	Technology controller starting value at the current limit	No	Yes	-
07				-
08	Technology controller actual value at the minimum	Yes	No	-
09	Technology controller actual value at the maximum	Yes	No	-
10	Technology controller output at the minimum	Yes	No	-
11	Technology controller output at the maximum	Yes	No	-
12	Fault response active	Yes	No	-
13	Technology controller limiting enable	Yes	No	-


p2369	BI: Closed-loop cascade control, control word / Csc_ctrl STW		
VECTOR (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
(Tech_ctrl),	P-Group: -	Unit group: -	Unit selection: -
VECTOR_IAC	Not for motor type: -	Scaling: -	Expert list: 1
(Tech_ctrl)	Max	Factory setting	
	-	-	0

Description: Sets the signal source for the selection of the "Switch in motor" function.
When the function is selected, monitoring of the switches is deactivated with the "bypass" function. This means that the power unit can be connected to other motors via an external control without switch monitoring responding.

p2502[0...n]	LR encoder assignment / Encoder assignment		
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	Can be changed: $\mathrm{C} 2(25)$	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 4010
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	1
Description:	Setting to assign the encoder.   The actual value preprocessing and the closed-loop position control are carried out using the assigned encoder.		
Value:	0: No encoder   1: Encoder 1   2: Encoder 2   3: Encoder 3		
Dependency:	Refer to: p0187, p0188, p0189		
Notice:	For the setting p2502 $=0$ (no encoder), closed-loop position control is not possible. This setting is only practical as supportive measure to implement encoderless closed-loop speed control (e.g. if the motor encoder is defective).		
Note:	The assigned encoder ( $\mathrm{p} 2502=1,2,3$ ) must be allocated an encoder data set ( $\mathrm{p} 0187, \mathrm{p} 0188, \mathrm{p} 0189$ ).		
p2503[0...n]	LR length unit LU per $10 \mathrm{~mm} / \mathrm{LU}$ per 10 mm		
SERVO (APC, Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (APC, Pos ctrl), VECTOR_AC (Pos ctrl), SERVO_I_AC (APC)	Can be changed: $\mathrm{C} 2(25)$	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: 4010
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling:	Expert list: 1
	Min	Max	Factory setting
	1 [LU]	2147483647 [LU]	10000 [LU]
Description:	Sets the neutral length units LU per 10 mm .		
	Therefore, for a linear scale, a reference is established between the physical arrangement and the neutral length units LU used in the drive.		
	Example:		
	Linear scale, 10 mm should be broken down to units of $\mu \mathrm{m}$ (i.e. $1 \mathrm{LU}=1 \mu \mathrm{~m}$ ). --> p2503 $=10000$		
Note:	The assignment to the grid spacing can LU: Length Unit	chieved using this for a rot	th linear encoder.


p2504[0...n]	LR motor/load motor distanc	ot/load motor dis	
SERVO (APC, Lin, Pos ctrl), SERVO_AC (APC, Lin, Pos ctrl), SERVO_I_AC (APC, Lin)	Can be changed: $\mathrm{C} 2(25)$	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: 4010, 4704, 4711
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	1048576	1
Description:	Sets the motor distance for the gearbox factor between the motor shaft and load shaft.   Gearbox factor = motor distance (p2504) / load path (p2505)		
Dependency:	Refer to: p0432, p0433, p2505		
Note:	The gearbox factor between the encoder shaft and the motor shaft is set using p0432 and p0433.		
p2504[0...n]	LR motor/load motor revolutions / Mot/load motor rev		
SERVO (APC, Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (APC, Pos ctrl), VECTOR_AC (Pos ctrl), SERVO_I_AC (APC)	Can be changed: $\mathrm{C} 2(25)$	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: 4010, 4704, 4711
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	1048576	1
Description:	Sets the motor revolutions for the gearbox factor between the motor shaft and load shaft. Gearbox factor = motor revolutions (p2504) / load revolutions (p2505)		
Dependency:	Refer to: p0432, p0433, p2505		
Note:	The gearbox factor between the encoder shaft and the motor shaft is set using p0432 and p0433.		
p2505[0...n]	LR motor/load load revolutions / Mot/load load rev		
SERVO (APC, Pos ctrl), VECTOR (Pos (trl), SERVO_AC (APC, Pos ctrl), VECTOR_AC (Pos ctrl), SERVO_I_AC (APC)	Can be changed: C2(25)	Calculated: -	Access level: 1
	Data type: Integer32	Dyn. index: DDS, p0180	Func. diagram: 4010, 4704, 4711
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1048576	1048576	1
Description:	Sets the load revolutions for the gearbox factor between the motor shaft and load shaft. Gearbox factor $=$ motor revolutions (p2504) / load revolutions (p2505)		
Dependency:	Refer to: p0432, p0433, p2504		
Note:	The gearbox factor between the encoder shaft and the motor shaft is set using p0432 and p0433.		
p2506[0...n]	LR length unit LU per load path / LU per load path		
SERVO (APC, Lin, Pos ctrl), SERVO_AC (APC, Lin, Pos ctrl), SERVO_I_AC (APC, Lin)	Can be changed: $\mathrm{C} 2(25)$	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: 4010
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling:	Expert list: 1
	Min	Max	Factory setting
	1 [LU]	2147483647 [LU]	10000 [LU]
Description:	Sets the neutral length units LU per load path.		
	Rotary encoder, ballscrew with $10 \mathrm{~mm} /$ revolution, 10 mm should be broken down to units of $\mu \mathrm{m}$ (i.e. $1 \mathrm{LU}=1 \mu \mathrm{~m}$ ).   --> One load path corresponds to 10000 LU $\text { --> p2506 = } 10000$		

Note: $\quad$ The position controller can only process position setpoints in the interpolator clock cycle (IPO clock cycle) in integer length units (LU, Length Unit). This is the reason that speed setpoints that are not a multiple integer of 1 LU per IPO clock cycle can only be realized as an average. The result speed setpoint steps are especially noticeable for a high loop gain or when the precontrol is active. Increasing p2506 counteracts this behavior.
p2506[0...n]

SERVO (APC, Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (APC, Pos ctrl), VECTOR_AC (Pos ctrl), SERVO_I_AC (APC)

Description:

LR length unit LU per load revolution / LU per load rev
Can be changed: C2(25)
Data type: Unsigned32
P-Group: Closed loop position control
Not for motor type: -
Min
1 [LU]
Sets the neutral length units LU per load revolution.
Therefore, for a rotary encoder, a reference is established between the physical arrangement and the neutral length units LU used in the drive.
Example:
Rotary encoder, ballscrew with $10 \mathrm{~mm} /$ revolution, 10 mm should be broken down to units of $\mu \mathrm{m}$ (i.e. $1 \mathrm{LU}=1 \mu \mathrm{~m}$ ).
--> One load revolution corresponds to 10000 LU
--> p2506 = 10000
Note: The position controller can only process position setpoints in the interpolator clock cycle (IPO clock cycle) in integer length units (LU, Length Unit). This is the reason that speed setpoints that are not a multiple integer of 1 LU per IPO clock cycle can only be realized as an average. The result speed setpoint steps are especially noticeable for a high loop gain or when the precontrol is active. Increasing p2506 counteracts this behavior.

Access level: 1
Func. diagram: 4010
Unit selection: -
Expert list: 1
Factory setting
10000 [LU]
p2507[0...n] LR absolute encoder adjustment status / Abs_enc_adj stat
SERVO (EPOS, Pos
ctrl), VECTOR (EPOS,
Pos ctrl), SERVO_AC
(EPOS, Pos ctrl),
VECTOR_AC (EPOS,
Pos ctrl) Min
Can be changed: C2(25), U, T
Data type: Integer16
P-Group: Closed loop position control
Not for motor type: -

0

## Calculated: -

Dyn. index: EDS, p0140
Unit group: -
Scaling: -
Max
4

Activates the adjustment and display of the status of the adjustment for absolute encoders.
For p2507 = 2:
This initiates encoder adjustment. The status is displayed using the other values.
For p2507 = 4:
This means that the encoder adjustment offset (p2525) can be directly accepted after new commissioning, without having to approach the adjustment point.

## Value:

Dependency:
Caution:


0 : Error occurred while adjusting
1: Absolute encoder not adjusted
Absolute encoder not adjusted and encoder adjustment initiated
Absolute encoder adjusted
Absolute encoder adjustment by accepting the offset
Refer to: p2525, p2598, p2599, p2733
For rotating absolute encoders, when adjusting, a range is set up symmetrically around zero with half of the encoder range, within which the position must be re-established after switch-off/switch-on. In this range, it is only permissible that the encoder overflows.
After the adjustment has been completed, it must be guaranteed that the range is not exited. The reason for this is that outside the range, there is no clear reference any longer between the encoder actual value and mechanical system.
If the reference point ( Cl : p 2598 ) lies in this range, then the position actual value is set when adjusting to the reference point. Otherwise, adjustment is canceled with F07443.
There is no overflow for linear absolute encoders. This means that after the adjustment, the position can be reestablished in the complete traversing range after switch-off/switch-on. When adjusting, the position actual value is set to the reference point.
For p2507 = 4:
For an adjustment where the offset is accepted, the position actual value manifests a step.

Note: $\quad$ The data (p0971, p0977) must be retentively saved to permanently accept the determined position offset (p2525) and the number of the drive data set (p2733).
This adjustment can only be initiated for an absolute encoder.

p2508[0...3]	BI: LR activate reference mark search / Ref_mark act		
SERVO (Pos ctrl),	Can be changed: $\mathrm{C} 2(25)$, T	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 4010
SERVO_AC (Pos ctrl), VECTOR AC (Pos	P-Group: Closed loop position control	Unit group: -	Unit selection: -
ctrl)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the function "activate reference mark search".		
Index:	$\begin{aligned} & {[0]=\text { Position control }} \\ & {[1]=\text { Encoder } 1} \\ & {[2]=\text { Encoder } 2} \\ & {[3]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p0490, p0495, p2502, p2509, r2684		
	Refer to: A07495		
Notice:	When activating the function "set position actual value" while the function "reference mark search" is activated, then the function "reference mark search" is automatically deactivated.		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established:		
	B1: p2508[0] = r2684.0		
	The function can only be activated using a $0 / 1$ signal if no reference function is active (r2526.2).		
	If "reference mark search" and "measuring probe evaluation" are simultaneously activated, then no function is activated and the actual function is interrupted.		



p2510[0...3]	BI: LR selecting measuring probe evaluation / MT_eval select		
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	Can be changed: $\mathrm{C} 2(25)$, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3615, 4010
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the measuring probe.   1 signal = measuring probe 2 is activated for binector input p2509 $=0 / 1$ edge .   0 signal $=$ measuring probe 1 is activated for binector input p2509 $=0 / 1$ edge.		
Index:	$\begin{aligned} & {[0]=\text { Position control }} \\ & {[1]=\text { Encoder } 1} \\ & {[2]=\text { Encoder } 2} \\ & {[3]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p2502, p2509, p2511		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established:		
	B1: p2509[0] = r2684.1		
	The measuring probe is selected at the 0/1 signal transition at r2684.1 (flying referencing active).		



p2512[0...3]	BI: LR pos. actual value preprocessing activate corr. value (edge) / ActVal_prepCorrAct		
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	Can be changed: $\mathrm{C} 2(25)$, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 4010, 4015
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the function "activate position actual value preprocessing, corrective value (edge)". 0/1 signal:		
	The correction value available via Cl : p 2513 is activated.		
Index:	$\begin{aligned} & {[0]=\text { Position control }} \\ & {[1]=\text { Encoder } 1} \\ & {[2]=\text { Encoder } 2} \\ & {[3]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p2502, p2513, r2684		

### 2.2 List of parameters

Note: $\quad$ When the function module "basic positioner" $(r 0108.4=1)$ is activated, the following BICO interconnection is established:

BI: p2512[0] = r2684.7

p2513[0...3]	CI: LR Position actual value preprocessing corrective value / Act val_prep corr		
SERVO (Pos ctrl),	Can be changed: C 2 (25), T	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 4010, 4015
SERVO_AC (Pos ctr)), VECTOR AC (Pos	P-Group: Closed loop position control	Unit group: -	Unit selection: -
ctrl)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the corrective value for position actual value preprocessing.		
Index:	$\begin{aligned} & {[0]=\text { Position control }} \\ & {[1]=\text { Encoder } 1} \\ & {[2]=\text { Encoder } 2} \\ & {[3]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p2502, p2512, r2521, r2685		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established:		
	CI: p2513[0] = r2685		
	For binector input: $\mathrm{p} 2512[0]=0 / 1$ signal, the position actual value (CO: $\mathrm{r} 2521[0]$ ) is corrected corresponding to the value via connector input: p2513[0]. In so doing, the sign of the corrective value present is taken into account.		


p2514[0...3]	BI: LR activate position actual value setting / s_act setting act		
SERVO (Pos ctrl),	Can be changed: C2(25), T	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 4010
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: -	Unit selection: -
VECTOR_AC (Pos	Not for motor type: -	Scaling: -	Expert list: 1
ctrl)	Min	-	Factory setting
	-	0	

Description: Sets the signal source to activate the function "set position actual value".
Index: [0] = Position control
[1] = Encoder 1
[2] = Encoder 2
[3] = Encoder 3
Dependency: Refer to: p2502, p2515
Refer to: A07495, A07497

Warning:	As long as the position actual value is set, encoder increments that are received are not evaluated. In this state, any
position difference cannot be corrected!	
Notice:	When the function "set position actual value" is activated while the function "reference mark search" or "measuring
	probe evaluation" is activated, then the corresponding function is deactivated.

Note: $\quad$ BI: p2514 $=1$ signal:
The position actual value is set to the setting value in CI: p2515. Alarm A07497 "position setting value activated" is output. Encoder increments that are received in the meantime, are not taken into account.
BI: p2514 = 1/0 signal:
The position actual value preprocessing is activated and is based on the setting value.

p2515[0...3]	CI: LR position actual setting setting value / s_act set setVal		
SERVO (Pos ctrl),	Can be changed: $\mathrm{C} 2(25), \mathrm{T}$	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 4010
SERVO_AC (Pos ctrl), VECTOR AC (Pos	P-Group: Closed loop position control	Unit group: -	Unit selection: -
ctrl)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setting value of the function "setting position actual value".		
Index:	$\begin{aligned} & {[0]=\text { Position control }} \\ & {[1]=\text { Encoder } 1} \\ & {[2]=\text { Encoder } 2} \\ & {[3]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p2502, p2514		


p2516[0..3]	CI: LR position offset / Position offset		
SERVO (Pos ctrl),	Can be changed: $\mathrm{C} 2(25), \mathrm{T}$	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 4010
SERVO_AC (Pos ctr), VECTOR AC (Pos	P-Group: Closed loop position control	Unit group: -	Unit selection: -
ctrl)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the position offset.		
Index:	$\begin{aligned} & {[0]=\text { Position control }} \\ & {[1]=\text { Encoder } 1} \\ & {[2]=\text { Encoder } 2} \\ & {[3]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p2502, r2667		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established:   CI: p2516[0] = r2667		


p2517[0...2]	LR direct measuring probe 1 / Direct MT 1		
SERVO (Dig IO, Pos ctrl)	Can be changed: C2(25), U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 4010
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	51	0
Description:	Sets the input terminal for direct measuring probe 1.		
	The direct measuring probe can either be parameterized as a non-cyclic (value $1 \ldots 8$ ) or a cyclic (value $11 \ldots$ 18) measuring probe.		
	After it has been activated via binector input: $\mathrm{p} 2509=0 / 1$ signal, the non-cyclic measuring probe measures once and can be used with EPOS.		
	After it has been activated via the p2509 = 1 signal, the cyclic measuring probe measures cyclically and cannot be used with EPOS.		
	In order to process signals faster, the direct measuring probe bypasses the handshake technique via the encoder control word and encoder status word.		

Value:
No measuring probe
DI/DO 9 (X122.10/X121.8)
DI/DO 10 (X122.12/X121.10)
DI/DO 11 (X122.13/X121.11)
DI/DO 13 (X132.10/X131.2)
DI/DO 14 (X132.12/X131.4)
DI/DO 15 (X132.13/X131.5)
DI/DO 8 (X122.9/X121.7)
DI/DO 12 (X132.9/X131.1)

### 2.2 List of parameters



p2517[0..2]	LR direct measuring probe 1 / Direct MT 1		
SERVO (Pos ctrl),	Can be changed: C2(25), U, T	Calculated: -	Access level: 3
VECTOR (Pos ctrl),	Data type: Integer16	Dyn. index: -	Func. diagram: 4010
SERVO_AC (Pos ctrr),	P-Group: Closed loop position control	Unit group: -	Unit selection: -
VECTOR_AC (Pos	Not for motor type: -	Scaling: -	Expert list: 1
ctrl)	Min	Max	Factory setting
	0	18	0

Description: Sets the input terminal for direct measuring probe 1.
The direct measuring probe can either be parameterized as a non-cyclic (value 1 ... 8) or a cyclic (value 11 ... 18) measuring probe.
After it has been activated via binector input: p2509 $=0 / 1$ signal, the non-cyclic measuring probe measures once and can be used with EPOS.
After it has been activated via the p2509 = 1 signal, the cyclic measuring probe measures cyclically and cannot be used with EPOS.

In order to process signals faster, the direct measuring probe bypasses the handshake technique via the encoder control word and encoder status word

## Value:

No measuring probe
DI/DO 9 (X122.10/X121.8)
DI/DO 10 (X122.12/X121.10)
DI/DO 11 (X122.13/X121.11)
DI/DO 13 (X132.10/X131.2)
DI/DO 14 (X132.12/X131.4)
DI/DO 15 (X132.13/X131.5)
DI/DO 8 (X122.9/X121.7)
DI/DO 12 (X132.9/X131.1)
DI/DO 9 cyclic
DI/DO 10 cyclic
DI/DO 11 cyclic
DI/DO 13 cyclic
DI/DO 14 cyclic


### 2.2 List of parameters

Dependency:
Caution:


Note:
Refer to: p0490, p0728, p2509, p2510, p2511
In order to prevent incorrect measurement values, these parameters may not be written during an active measurement.

To select the values:
For CX32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual). Regarding the terminal designation:
The first designation is valid for CU320, the second for CU310.
DI/DO: Bidirectional Digital Input/Output
The terminal must be set as input (p0728).
If a parameter change is rejected, a check should be performed as to whether the input terminal is already being used in p0488, p0489, p0493, p0494, p0495, p0580 or p0680.
Direct measurement via p2518 has a higher priority than measurements via p0489.
For the direct measuring probe evaluation, the DP clock cycle must be integer multiple of the position controller clock cycle.

p2518[0...2]	LR direct measuring probe 2 / Direct MT 2	
SERVO (Pos ctrl),	Can be changed: C2(25), U, T	Calculated: -
VECTOR (Pos ctrl),	Data type: Integer16	Dyn. index: -
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: -
VECTOR_AC (Pos	Not for motor type: -	Scaling: -
ctrl)	Min	Max
	0	18

Access level: 3
Func. diagram: 4010
Unit selection: -
Expert list: 1
Factory setting
0

Description: Sets the input terminal for direct measuring probe 2.
The direct measuring probe can either be parameterized as a non-cyclic (value $1 \ldots 8$ ) or a cyclic (value $11 \ldots$ 18) measuring probe.
After it has been activated via binector input: p2509 $=0 / 1$ signal, the non-cyclic measuring probe measures once and can be used with EPOS.
After it has been activated via the p2509 = 1 signal, the cyclic measuring probe measures cyclically and cannot be used with EPOS.
In order to process signals faster, the direct measuring probe bypasses the handshake technique via the encoder control word and encoder status word.

## Value:

Dependency:
Caution:


Note: $\quad$ DI/DO: Bidirectional Digital Input/Output $\quad$ The terminal must be set as input (p0728). $\quad$| If a parameter change is rejected, a check should be performed as to whether the input terminal is already being |
| :--- |
| used in p0488, p0489, p0493, p0494, p0495, p0580 or p0680. |
| Direct measurement via p2518 has a higher priority than measurements via p0489. |
| For the direct measuring probe evaluation, the DP clock cycle must be integer multiple of the position controller clock |
| cycle. |

p2519[0...n]	LR position actual value preprocessing config. DDS changeover / s_act config DDS		
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	Can be changed: C2(25), U, T	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	5	1
Description:	Sets the behavior of the position actual value preprocessing for the position controller for a DDS changeover. For p2519 = 1:		
	In the following cases, for a DDS changeover, the actual position actual value becomes invalid and the reference point is reset:		
	- the EDS effective for the closed-loop position control changes.		
	- the encoder assignment changes (p2502).		
	- the mechanical relationships change (p2503 ... p2506).		
	- the direction of rotation changes (p1821).		
	For absolute encoders, the status of the adjustment (p2507) is also reset if the same absolute encoder remains selected for the closed-loop position control, but the mechanical relationships or the direction of rotation have changed.		
	In the operation state, in addition, a fault (F07494) is generated.		
Notice:	The remaining setting values are intended for expanded functionality.		
Note:	The behavior for a DDS changeover is determined using the value of p2519 in the target data set.		



Note: $\quad$ When the function module "basic positioner" $(r 0108.4=1)$ is activated, the following BICO interconnection is established:
CI: p0480[0] = r2520[0], CI: p0480[1] = r2520[1] and CI: p0480[2] = r2520[2]


r2522[0...3]	CO: LR velocity actual value / v_act		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrr),	Data type: Integer32	Dyn. index: -	Func. diagram: 4010
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [1000 LU/min]	- [1000 LU/min]	- [1000 LU/min]
Description:	Display and connector output for the actual position actual value determined by the velocity actual value preprocessing.		


Index:	$[0]=$ Position control
	$[1]=$ Encoder 1
	$[2]=$ Encoder 2
	$[3]=$ Encoder 3
Dependency:	Refer to: p2502, r2526
Note:	r2526.0 $=1$--> The velocity actual value in r2522[0] for the position control is valid.
	r2527.0 $=1$--> The velocity actual value in r2522[1] for encoder 1 is valid.
	r2528.0 $=1$--> The velocity actual value in r2522[2] for encoder 2 is valid.
	$r 2529.0=1$--> The velocity actual value in r2522[3] for encoder 3 is valid.


r2523[0...3]	CO: LR measured value / Measured value		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Integer32	Dyn. index: -	Func. diagram: 4010
SERVO_AC (Pos ctr), VECTOR AC (Pos	P-Group: Closed loop position control	Unit group: -	Unit selection: -
ctrl) -	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [LU]	- [LU]	- [LU]
Description:	Display and connector output for the value determined by the function "reference mark search" and "measuring probe evaluation".		
Index:	$\begin{aligned} & {[0]=\text { Position control }} \\ & {[1]=\text { Encoder } 1} \\ & {[2]=\text { Encoder } 2} \\ & {[3]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p2502, r2526		

Note: $\quad$| r2526.2 $=1$--> The measured value in $r 2523[0]$ for the position control is valid. |
| :--- |
| r2527.2 $=1$--> The measured value in $r 2523[1]$ for encoder 1 is valid. |
|  |
| r2528.2 $=1$--> The measured value in $r 2523[2]$ for encoder 2 is valid. |
|  |
| r2529.2 $=1$--> The measured value in $r 2523[3]$ for encoder 3 is valid. |

r2524	CO: LR LU/mm / LU/mm		
SERVO (Lin, Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
SERVO_AC (Lin, Pos	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3630,4010
ctrl)	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[$ LUU	$-[\mathrm{LU}]$	
Description:	Display and connector output for the internal length units LU/mm.		
Dependency:	Refer to: p0404		


r2524	CO: LR LU/revolution / LU/re		
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	Can be changed: -   Data type: FloatingPoint32   P-Group: Closed loop position control   Not for motor type: -   Min   - [LU]	Calculated: -   Dyn. index:   Unit group:   Scaling: -   Max   - [LU]	Access level: 1   Func. diagram: 3630, 4010   Unit selection: -   Expert list: 1   Factory setting   - [LU]
Description:   Dependency:	Display and connector output for the internal length units LU/motor revolution. Refer to: p0404		
p2525[0...n]   SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	CO: LR encoder adjustment   Can be changed: C2(25), T   Data type: Unsigned32   P-Group: Closed loop position control   Not for motor type: -   Min   0 [LU]	/ Enc_adj offset   Calculated: -   Dyn. index: EDS, p0140   Unit group: -   Scaling: -   Max   4294967295 [LU]	Access level: 4   Func. diagram: 4010   Unit selection: -   Expert list: 1   Factory setting   0 [LU]
Description:   Dependency:   Note:	Position offset when adjusting the absolute encoder. Refer to: p0404, p2507, p2733		



### 2.2 List of parameters

	05	Fixed stop outside window	Yes	No
			3617,	
	06	Position controller output limited	Yes	Nes
07	Request tracking mode	No		
Dependency:	08	Clamping active when traveling to fixed stop	Yes	No
Note:	Refer to: r2521, r2522, r2523	Yes	No	
	For bit 04:		4015	
	The signal is influenced via p2634.			
	For bit 05:			
	The signal is influenced via p2635.			


r2527.0...2	CO/BO: LR actual value sensing status word encoder 1/ ActValSensZSW enc1		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: -	Unit selection: -
VECTOR_AC (Pos	Not for motor type: -	Scaling: -	Expert list: 1
ctrl)	Min	-	Fax


Description:	Display and BICO output for the status word of the position actual value sensing from encoder 1.				
Bit field:	Bit	Signal name	$\mathbf{1}$ signal	0 signal	

## r2528.0... 2

 SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)| CO/BO: LR actual value sensing status word encoder 2 / ActValSensZSW enc2 |  |  |
| :--- | :--- | :--- |
| Can be changed: - | Calculated: - | Access level: 1 |
| Data type: Unsigned16 | Dyn. index: - | Func. diagram: - |
| P-Group: Closed loop position control | Unit group: - | Unit selection: - |
| Not for motor type: - | Scaling: - | Expert list: 1 |
Min	Max	Factory setting

Description: Display and BICO output for the status word of the position actual value sensing from encoder 2.

Bit field:	Bit	Signal name	$\mathbf{1}$ signal	Yes	0 signal
	00	Position actual value valid	Yes	No	
	01	Referencing active	Yes	No	
	02	Measured value valid	No		

r2529.0... 2
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)

Description: Bit field:

CO/BO: LR actual value sensing status word encoder 3 / ActValSensZSW enc3
Can be changed: - Calculated: - Access level: 1
Data type: Unsigned16 Dyn. index: - Func. diagram: -
P-Group: Closed loop position control Unit group: - Unit selection: -
Not for motor type: - Scaling: -
Min Max
-

Expert list: 1
Factory setting

Display and BICO output for the status word of the position actual value sensing from encoder 3.

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Position actual value valid	Yes	No	-
01	Referencing active	Yes	No	-
02	Measured value valid	Yes	No	-


p2530	CI: LR position setpoint / s_set		
SERVO (EPOS, Pos ctrl), VECTOR (EPOS,   Pos ctrl), SERVO_AC (EPOS, Pos ctrl), VECTOR_AC (EPOS, Pos ctrl)	Can be changed: C 2 (25), T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 4015, 4020
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the position setpoint of the position controller.		
Dependency:	Refer to: r2665		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established:		
	BI: p2530 = r2665		

p2531
SERVO (EPOS, Pos
ctrl), VECTOR (EPOS, Pos ctrl), SERVO_AC (EPOS, Pos ctrl), VECTOR_AC (EPOS,
Pos ctrl) M

Description: Sets the signal source for the velocity setpoint of the position controller.
Dependency:
Note:

Can be changed: C2(25), T
Data type: Unsigned32 / Integer32
P-Group: Closed loop position control
Not for motor type: -
Min

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

Refer to: r2666
When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is

CI: LR velocity setpoint / v_set

Access level: 1
Func. diagram: 4015
Unit selection: -
Expert list: 1
Factory setting 0 established:
BI: p2531 = r2666


p2534[0...n]	LR velocity precontrol factor / v_prectrl fact		
SERVO (Lin, Pos ctrl),	Can be changed: C2(25), U, T	Calculated: -	Access level: 1
SERVO_AC (Lin, Pos	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4015, 4025
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Setting to activate and weight the velocity precontrol value. Value $=0 \%$--> The precontrol is deactivated.		
Dependency:	Refer to: p2535, p2536, r2563		
Note:	When the axis control loop is optimally set as well as a precisely determined equivalent time constant of the velocity control loop, the precontrol factor is $100 \%$.		


p2534[0...n]	LR speed precontrol factor / n_prectrl fact		
SERVO (Pos ctrl),	Can be changed: $\mathrm{C} 2(25), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4015, 4025
VECTOR_AC (Pos	P-Group: Closed loop position control	Unit group: -	Unit selection: -
ctrl)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Setting for activation and weighting of the speed precontrol value.		
Dependency:	Refer to: p2535, p2536, r2563		
Note:	When the axis control loop is optimally set as well as a precisely determined equivalent time constant of the speed control loop, the precontrol factor is $100 \%$.		


p2535[0...n]	LR velocity precontrol symmetrizing filter dead time / v_prectrFlt t_dead		
SERVO (Lin, Pos ctrl),	Can be changed: $\mathrm{C} 2(25), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
SERVO_AC (Lin, Pos	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4015
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	2.00	0.00
Description:	Sets the "fractional" dead time to emulate the timing behavior of the velocity control loop. The selected multiplier refers to the position controller clock cycle (dead time= p2535 * p0115[4]).		
Dependency:	Refer to: p0115, p2536		
Notice:	When velocity precontrol is active (p2534>0\%), the following applies: In addition to the set dead time (p2535), internally two position controller clock cycles are effective. When velocity precontrol is inactive (p2534 = $0 \%$ ), the following applies:   No dead time is effective (p2535 and internal).		
Note:	Together with p2536, the timing behavior of the velocity control loop can be emulated.		
p2535[0...n]	LR speed precontrol symmetrizing filter dead time / n_prectrFlt t_dead		
SERVO (Pos ctrl),	Can be changed: $\mathrm{C} 2(25), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4015
VECTOR AC (Pos)	P-Group: Closed loop position control	Unit group: -	Unit selection: -
ctrl)	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	2.00	0.00
Description:	Sets the "fractional" dead time to emulate the timing behavior of the speed control loop.   The selected multiplier refers to the position controller sampling time (dead time $=$ p2535 * $00115[4]$ ).		
Dependency:	Refer to: p0115, p2536		


Notice:	When speed precontrol is active (p2534>0\%), the following applies:   In addition to the set dead time (p2535), internally two position controller sampling times are effective. When speed precontrol is inactive (p2534 = $0 \%$ ), the following applies:   No dead time is effective (p2535 and internal).		
Note:	Together with p2536, the timing behavior of the closed-loop control loop can be emulated.		
p2536[0...n]	LR velocity precontrol symme	g filter PT1 / v_p	
SERVO (Lin, Pos ctrl), SERVO_AC (Lin, Pos ctrl)	Can be changed: $\mathrm{C} 2(25), \mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P-Group: Closed loop position control   Not for motor type: -   Min   0.00 [ms]	Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   100.00 [ms]	Access level: 1   Func. diagram: 4015   Unit selection: -   Expert list: 1   Factory setting   0.00 [ms]
Description:   Dependency:   Notice:   Note:	Sets a PT1 filter to emulate the timing behavior of the velocity control loop Refer to: p2535   When velocity precontrol is inactive (p2534 = $0 \%$ ), the following applies: If a PT1 filter has been set, it is not effective.		
$\overline{\mathrm{p} 2536[0 \ldots \mathrm{n}]}$   SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	LR speed precontrol symmetriz   Can be changed: C2(25), U, T   Data type: FloatingPoint32   P-Group: Closed loop position control   Not for motor type: -   Min   0.00 [ms]	g filter PT1 / n_prect   Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   100.00 [ms]	1   Access level: 1   Func. diagram: 4015   Unit selection: -   Expert list: 1   Factory setting $0.00 \text { [ms] }$
Description:   Dependency:   Notice:   Note:	Sets a PT1 filter to emulate the timing behavior of the closed-speed contro Refer to: p2535   When speed precontrol is inactive (p2534 = $0 \%$ ), the following applies: If a PT1 filter has been set, it is not effective.		
p2537   SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	CI: LR position controller adapt   Can be changed: C2(25), T   Data type: Unsigned32 / FloatingPoint32   P-Group: Closed loop position control   Not for motor type: -   Min	ion / Adaptation   Calculated: -   Dyn. index: -   Unit group: -   Scaling: PERCENT   Max	Access level: 1   Func. diagram: 4015   Unit selection: -   Expert list: 1   Factory setting   1
Description:   Dependency:	Sets the signal source for the adaptation of the proportional gain of the position controller. Refer to: p2538		
p2538[0...n]   SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	LR proportional gain / Kp   Can be changed: C2(25), U, T   Data type: FloatingPoint32   P-Group: Closed loop position control   Not for motor type: -   Min   0.000 [1000 rpm]	Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   300.000 [1000 rpm]	Access level: 1   Func. diagram: 4015   Unit selection: -   Expert list: 1   Factory setting   1.000 [1000 rpm]
Description:   Dependency:	Sets the proportional gain ( P gain, position loop gain, Kv factor) of the position controller. Refer to: p2537, p2539, p2555, r2557, r2558		

Note: $\quad$ The proportional gain is used define at which traversing velocity which following error is obtained (without precontrol) Low proportional gain:
Slow response to a setpoint - actual value difference, the following error becomes large.
High proportional gain:
Fast response to the setpoint - actual value difference, the following error becomes small.

p2539[0...n]	LR integral time / Tn		
SERVO (Pos ctrl),	Can be changed: C2(25), U, T	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4015
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: -	Unit selection: -
VECTOR_AC (Pos	Not for motor type: -	Scaling: -	Max
ctrl)	Min	$100000.00[\mathrm{~ms}]$	Factory setting
	$0.00[\mathrm{~ms}]$	$0.00[\mathrm{~ms}]$	
Description:	Setting to activate the integral time of the position controller. 1		
	Value =0 ms --> The I component of the position controller is deactivated.		
Dependency:	Refer to: p2538, r2559		


p2540	CO: LR position controller output velocity limit / LR_outp v_lim		
SERVO (Lin, Pos ctrl),	Can be changed: C2(25), U, T	Calculated: -	Access level: 3
SERVO_AC (Lin, Pos	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4015
ctrl)	P-Group: Closed loop position control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Max
	Min	$1000.000[\mathrm{~m} / \mathrm{min}]$	Factory setting
	$0.000[\mathrm{~m} / \mathrm{min}]$	$1000.000[\mathrm{~m} / \mathrm{min}]$	
Description:	Setting and connector output for the velocity limit of the position controller output.		
Dependency:	Refer to: p2541		


p2540	CO: LR position controller output speed limit / LR_outp n_lim		
SERVO (Pos ctrl),	Can be changed: C2(25), U, T	Calculated: -	Access level: 3
VECTOR (Pos ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4015
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: $3 _1$	Unit selection: p0505
VECTOR_AC (Pos	Not for motor type: -	Scaling: p2000	Expert list: 1
ctrl)	Min	Max	Factory setting
	$0.000[r p m]$	$210000.000[r p m]$	210000.000 [rpm]
	Setting and connector output for the speed limit of the position controller output.		
Description:	Refer to: p2541		


p2541	CI: LR position controller output velocity limit signal source / LR_out v_lim S_src		
SERVO (Lin, Pos ctrl),	Can be changed: C2(25), T	Calculated: -	Access level: 1
SERVO_AC (Lin, Pos	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 4015
ctrl)	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Max
	Min	-	Factory setting
	-	2540[0]	
Description:	Sets the signal source for the position controller output limit.		
Dependency:	Refer to: p2540		


p2541	CI: LR position controller output speed limit signal source / LR_out n_lim S_src		
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	Can be changed: $\mathrm{C} 2(25)$, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	2540[0]
Description:	Sets the signal source for the position controller output limit.		
Dependency:			
p2542	LR standstill window / Standstill window		
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	Can be changed: C2(25), U, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 4020
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [LU]	2147483647 [LU]	200 [LU]
Description:	Sets the standstill window for the standstill monitoring function.   After the standstill monitoring time expires, it is cyclically checked whether the difference between the setpoint and actual position is located within the standstill window and, if required, an appropriate fault is output.		
	Value =0 --> The standstill monitoring is deactivated.		
Dependency:	Refer to: p2543, p2544		
	Refer to: F07450		
Note:	The following applies for the setting of the standstill window and positioning window: Standstill window (p2542) >= positioning window (p2544)		


p2543
SERVO (Pos ctrl),
VECTOR (Pos ctrl),
SERVO_AC (Pos ctrl),
VECTOR_AC (Pos
ctrl)

Description: Sets the standstill monitoring time for the standstill monitoring function.
After the standstill monitoring time expires, it is cyclically checked whether the difference between the setpoint and actual position is located within the standstill window and, if required, an appropriate fault is output.
Dependency: Refer to: p2542, p2545
Refer to: F07450
Note: $\quad$ The following applies for the setting of the standstill and positioning monitoring time: Standstill monitoring time (p2543) <= positioning monitoring time (p2545)

p2544
SERVO (Pos ctrl),
VECTOR (Pos ctrl),
SERVO_AC (Pos ctr),
VECTOR_AC (Pos
ctrl)

Description:

LR positioning window / Pos window
Can be changed: C2(25), U, T Calculated: -
Data type: Unsigned32
P-Group: Closed loop position control
Not for motor type: -
Min
0 [LU]
Sets the positioning window for the positioning monitoring function.
After the positioning monitoring time expires, it is checked once as to whether the difference between the setpoint and actual position lies within the positioning window and if required an appropriate fault is output.
Value $=0$--> The positioning monitoring function is deactivated.

### 2.2 List of parameters

Dependency:	Refer to: p2542, p2545, r2684
	Refer to: F07451
Note:	The following applies for the setting of the standstill and positioning window:
	Standstill window (p2542) >= positioning window (p2544)


p2545	LR positioning monitoring time /t_pos_monit		
SERVO (Pos ctrl),	Can be changed: C2(25), U, T	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4020
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: -	Unit selection: -
VECTOR_AC (Pos	Not for motor type: -	Max	Expert list: 1
ctrl)	Min	Factory setting	
	0.00 [ms]	100000.00 [ms]	
	Sets the positioning monitoring time for the positioning monitoring.		


p2546[0...n]	LR dynamic following error monitoring tolerance / s_delta_monit tol		
SERVO (Pos ctrl),	Can be changed: $\mathrm{C} 2(25), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: 4025
VECTOR AC (Pos	P-Group: Closed loop position control	Unit group: -	Unit selection: -
ctrl)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [LU]	2147483647 [LU]	1000 [LU]
Description:	Sets the tolerance for the dynamic following error monitoring.   If the dynamic following error (r2563) exceeds the selected tolerance, then an appropriate fault is output. Value $=0$--> The dynamic following error monitoring is deactivated.		
Dependency:	Refer to: r2563, r2684		
	Refer to: F07452		
Note:	The tolerance bandwidth is intended to prevent the dynamic following error monitoring incorrectly responding due to operational control sequences (e.g. during load surges).		


p2547	LR cam switching position 1 /	position 1	
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	Can be changed: $\mathrm{C} 2(25), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Integer32	Dyn. index: -	Func. diagram: 4025
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2147483648 [LU]	2147483647 [LU]	0 [LU]
Description:	Sets the cam switching position 1.		
Dependency:	Refer to: p2548, r2683		
Caution:	Only after the axis has been referenced can it be guaranteed that the cam switching signals when output have a "true" position reference.		
Note:	Position actual value <= cam switching position 1 --> r2683.8 = 1 signal   Position actual value >cam switching position 1 --> r2683.8 $=0$ signal		


p2548	LR cam switching position 2 / Cam position 2		
SERVO (Pos ctrl),	Can be changed: $\mathrm{C} 2(25), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Integer32	Dyn. index: -	Func. diagram: 4025
SERVO_AC (Pos ctr), VECTOR AC (Pos	P-Group: Closed loop position control	Unit group: -	Unit selection: -
ctrl)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2147483648 [LU]	2147483647 [LU]	0 [LU]
Description:	Sets the cam switching position 2.		
Dependency:	Refer to: p2547, r2683		
Caution: $\uparrow$	Only after the axis has been referenced can it be guaranteed that the cam switching signals when output have a "true" position reference.		
Note:	Position actual value <= cam switching position 2 --> r2683.9 $=1$ signal		
	Position actual value > cam switching position $2-$-- r2683.9 $=0$ signal		


p2549	BI: LR enable 1 / Enable 1		
SERVO (Pos ctrl),	Can be changed: C2(25), T	Calculated: -	Access level: 1
VECTOR (Pos crr),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 4015
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: -	Unit selection: -
VECTOR_AC (Pos	Not for motor type: -	Scaling: -	Expert list: 1
ctrl)	Min	Factory setting	
	-	899.2	
Description:	Sets the signal source for the position controller enable 1.		
Dependency:	Refer to: ro899, p2550		
Note:	The position controller is enabled by the following AND logic operation:		
	- BI: p2549		
	- BI: p2550		

p2550[0...n] BI: LR enable 2 / Enable 2

SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)

Description:
Dependency:
Note:

## Calculated: -

Dyn. index: CDS, p0170
Unit group: -
Scaling: -
Max
-

Access level: 1
Func. diagram: 4015
Unit selection: -
Expert list: 1
Factory setting 0
Sets the signal source for the position controller enable 2.
Refer to: p2549
The position controller is enabled by the following AND logic operation:

- BI: p2549
- BI: p2550

When the "Position control" or "Basic positioner" function module is activated, the following BICO interconnection is established:

- BI: p2550 = 1

p2551
SERVO (Pos ctrl),
VECTOR (Pos ctrl),
SERVO_AC (Pos ctrl),
VECTOR_AC (Pos
ctrl)

Description: Sets the signal source for the "setpoint fixed" signal. BI: p2551 = 1 signal:
The end of the positioning operation on the setpoint side is signaled and the positioning and standstill monitoring activated.
BI: p2551 = 0 signal:
The start of a positioning operation or tracking mode on the setpoint side is signaled and the positioning and standstill monitoring deactivated.
Dependency: Refer to: p2554, r2683
Note:
When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established:
BI: p2551 = r2683.2

## p2552

SERVO (Pos ctrl), VECTOR (Pos ctrl),
SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)

## Description:

## Dependency:

Note:

BI: LR setpoint signal fixed / Mess setp fixed		
Can be changed: $\mathrm{C} 2(25)$, T	Calculated: -	Access level: 1
Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 4020
P-Group: Closed loop position control	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	0


BI: p2551 = 1 signal:	
The end of the positioning operation on the setpoint side is signaled and the positioning and standstill monitoring	
activated.	
BI: p2551 = 0 signal:	
The start of a positioning operation or tracking mode on the setpoint side is signaled and the positioning and standstill	
monitoring deactivated.	
Dependency:	Refer to: p2554, r2683
Note: $\quad$	When the function module "basic positioner" $(r 0108.4=1)$ is activated, the following BICO interconnection is
established:	
BI: $\mathrm{p} 2551=\mathrm{r} 2683.2$	


BI: LR signal travel to fixed stop active / Signal TfS act		
Can be changed: C2(25), T	Calculated: -	Access level: 1
Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 4025
P-Group: Closed loop position control	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	0

Sets the signal source for the signal "travel to fixed stop active".
BI: p2552 = 1 signal:
The activity associated with travel to fixed stop is signaled and the detection of the fixed stop is started via the maximum following error (p2634).
Refer to: r2683
When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established:
BI: p2552 = r2683.14

p2553
SERVO (Pos ctrl),
VECTOR (Pos ctrl),
SERVO_AC (Pos ctrl),
VECTOR_AC (Pos
ctrl)


Description:	Sets the signal source for the signal "fixed stop reached".
BI: p2553 = 1 signal:	
	When the fixed stop is reached, this is signaled and the fixed stop monitoring window is activated.
Dependency:	Refer to: r 2683
Note:	When the function module "basic positioner" $(r 0108.4=1)$ is activated, the following BICO interconnection is
established:	
BI: $\mathrm{p} 2553=r 2683.12$	


p2554	BI: LR signal traversing command active / Sig trav_cmnd act		
SERVO (Pos ctrl),	Can be changed: C 2 (25), T	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 4020
SERVO_AC (Pos ctrl), VECTOR AC (Pos	P-Group: Closed loop position control	Unit group: -	Unit selection: -
ctrl) -	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the signal "tr BI: p2554 = 1 signal:   It is signaled that positioning is active "setpoint fixed" (p2551).	ing command   refore the posit	ot activated with the signal
Dependency:	Refer to: p2551, r2684		
Note:	When the function module "basic positio established: BI: p2554 = r2684.15	$(r 0108.4=1) i$	BICO interconnection is


p2555	CI: LR LU/revolution LU/mm / LU/rev LU/mm		
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	Can be changed: C 2 (25), T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	2524[0]
Description:	Sets the signal source for the reference of the internal length units LU to motor revolution for rotary encoders and to mm for linear encoders.		
Dependency:	Refer to: p0404, r2524		
Note:	The signal value is used to convert the length unit to the speed or velocity setpoint.		
r2556	CO: LR position setpoint after setpoint smoothing / s_set after interp		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Integer32	Dyn. index: -	Func. diagram: 4015
VECTOR_AC (Pos	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [LU]	- [LU]	- [LU]
Description:	Display and connector output for the position setpoint after setpoint smoothing.		
r2557	CO: LR position controller input system deviation / LR_inp sys dev		
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dyn. index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [LU]	- [LU]	- [LU]
Description:	Display and connector output for the difference between the position setpoint and the position actual value at the position controller input.		


r2558	CO: LR position controller output P component / LR_outp P comp		
SERVO (Lin, Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
SERVO_AC (Lin, Pos	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4015
ctrl)	P-Group: Closed loop position control	Unit group: $4-1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
Description:	Display and connector output for the P component at the output of the position controller (velocity setpoint).		


r2558	CO: LR position controller output P component / LR_outp P comp		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4015
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: 3_1	Unit selection: p0505
VECTOR_AC (Pos	Not for motor type: -	Scaling: p2000	Expert list: 1
ctrl)	Min	Max	Factory setting
	$-[r p m]$	$-[r p m]$	$-[r p m]$
	Display and connector output for the P component at the output of the position controller (speed setpoint).		


r2559	CO: LR position controller output I component / LR_outp I comp		
SERVO (Lin, Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
SERVO_AC (Lin, Pos	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4015
ctrl)	P-Group: Closed loop position control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
Description:	Display and connector output for the I component at the output of the position controller (velocity setpoint).		


r2559	CO: LR position controller output I component / LR_outp I comp		
SERVO (Pos ctir)	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4015
SERVO_AC (Pos ctrl), VECTOR AC (Pos	P-Group: Closed loop position control	Unit group: 3_1	Unit selection: p0505
ctrl)	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the I component at the output of the position controller (speed setpoint).		


r2560	CO: LR velocity setpoint / v_set		
SERVO (Lin, Pos ctrl), Can be changed: -	Calculated: -	Access level: 1	
SERVO_AC (Lin, Pos	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4015
ctrl)	P-Group: Closed loop position control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
	Display and connector output for the velocity setpoint after limiting (CI: p2541).		



r2563	CO: LR following error dynamic model / Follow error dyn		
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	Can be changed: -	Calculated:	Access level: 1
	Data type: Integer32	Dyn. index: -	Func. diagram: 4025
	P-Group: Closed loop position control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [LU]	- [LU]	- [LU]
Description:	Display and connector output for the dynamic following error.		
	This value is the deviation, corrected by the velocity-dependent component, between the position setpoint and the position actual value.		
Note:	For p2534 >= $100 \%$ (precontrol activated) the following applies:		
	The dynamic following error (r2563) corresponds to the system deviation (r2557) at the position controller input.		
	For $0 \%<\mathrm{p} 2534<100 \%$ (precontrol activated) or p2534 $=0 \%$ (precontrol deactivated) the following applies:		
	The dynamic following error ( r 2563 ) is the deviation between the measured position actual value and a value that is calculated from the position setpoint via a PT1 model. This compensates the system-related velocity-dependent system deviation for a P controller.		


r2564	CO: LR force precontrol value / F_prectrl val		
SERVO (Lin, Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
SERVO_AC (Lin, Pos	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4015
ctrl)	P-Group: Closed loop position control	Unit group: $8 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{N}]$	$-[\mathrm{N}]$	
Description:	Display and connector output for the force setpoint.		
Dependency:	Refer to: p1511, p1512		
Note:	The force precontrol value is the derivation over time of the velocity precontrol value and is referred to a high inertia		


r2564	CO: LR torque precontrol value / M_prectrl val		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4015
VECTOR AC (Pos	P-Group: Closed loop position control	Unit group: 7_1	Unit selection: p0505
ctrl)	Not for motor type: -	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [ Nm ]	- [ Nm ]	- [ Nm ]
Description:	Display and connector output for the torque precontrol value.		
Dependency:	Refer to: p1511, p1512		
Note:	The torque precontrol value is the derivation over time of the speed precontrol value and is referred to a moment of inertia of $1 \mathrm{kgm}^{\wedge} 2 / 2 \mathrm{PI}$. When using the precontrol, then this should be evaluated corresponding to the actual moment of inertia.		


r2565	CO: LR following error actual / Following err act		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Integer32	Dyn. index: -	Func. diagram: 4015
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: -	Unit selection: -
VECTOR_AC (Pos	Not for motor type: -	Scaling: -	Expert list: 1
ctrl)	Min	$-[$ FU $]$	Factory setting
	$-[$ [LU]		
Description:	Display and connector output for the actual following error.		
	This value is the deviation between the position setpoint - after fine interpolation - and the position actual value.		


Notice:	When speed precontrol is active (p2534>0\%), the following applies:
To calculate this value, the position setpoint is delayed by two position controller sampling times.	
When speed precontrol is inactive (p2534 $=0 \%$ ), the following applies:	
To calculate this value, the position setpoint is delayed by two position controller clock cycles.	


r2566	LR velocity input precontrol / v inp prectrl		
SERVO (Lin, Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
SERVO_AC (Lin, Pos	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4015
	P-Group: Closed loop position control	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the velocity at the input of the precontrol channel.		
Note:	This display parameter is used for diagnostics even when the precontrol is inactive (p2534 = 0\%).		


r2566	LR speed input precontrol / $\mathbf{n}$ inp prectrl		
SERVO (Pos ctrl),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4015
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: $3 _1$	Unit selection: p0505
VECTOR_AC (Pos	Not for motor type: -	Scaling: p2000	Expert list: 1
ctrl)	Min	Max	Factory setting
	$-[r p m]$	$-[r p m]$	$-[r p m]$
		Displays the speed at the input of the precontrol channel.	
Description:	This display parameter is used for diagnostics even when the precontrol is inactive (p2534 $=0 \%)$.		


p2567[0...n]	LR force precontrol mass / F_prectrl mass		
SERVO (Lin, Pos ctrl),	Can be changed: C2(25), U, T	Calculated: -	Access level: 3
SERVO_AC (Lin, Pos	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4015
	P-Group: Closed loop position control	Unit group: 27_1	Unit selection: p0100
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000000 [kg]	$100000.000000[\mathrm{~kg}]$	1.000000 [kg]
Description:	Sets the mass for the force precontrol.		
Dependency:	Refer to: p2534, r2564		
Note:	When calculating the force precontrol value (r2654), the derivation over time of the speed precontrol value is multiplied by p2567.		
	For reasons associated with the compatibility to earlier firmware releases, the factory setting for p2567=1 kg. This means that CO: r2564 remains, as standard, the derivation over time of the velocity precontrol value and refers, as before, to a weight of 1 kg . For force precontrol, the mass can now be directly entered into p2567 (instead of subsequently evaluating the precontrol value).		


p2567[0...n]	LR torque precontrol moment of inertia / M_prectr M_inertia		
SERVO (Pos ctrl),	Can be changed: C2(25), U, T	Calculated: -	Access level: 3
VECTOR (Pos ctrl),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4015
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: 25_1	Unit selection: p0100
VECTOR_AC (Pos	Not for motor type: -	Scaling: -	Expert list: 1
ctrl)	Min	Max	Factory setting
	$0.000000\left[\mathrm{kgm}^{2}\right]$	$100000.000000\left[\mathrm{kgm}^{2}\right]$	$0.159155\left[\mathrm{kgm}^{2}\right]$
Description:	Sets the moment of inertia for the torque precontrol.		
Dependency:	Refer to: $\mathrm{p} 2534, \mathrm{r} 2564$		

Note: $\quad$ When calculating the torque precontrol value (r2654), the time derivation of the speed precontrol value is multiplied by 2 PI * 2567 .
For reasons associated with the compatibility to earlier firmware versions, the factory setting for $\mathrm{p} 2567=1 \mathrm{kgm} \mathrm{k}^{\wedge} 2 / 2$ PI. This means that CO: r2564 remains as standard the derivation over time of the speed precontrol value and is referred, as before, to a moment of inertia of $1 \mathrm{kgm}^{\wedge} 2 / 2 \mathrm{PI}$. For torque precontrol, the moment of inertia can now be directly entered into p2567 (instead of subsequently evaluating the precontrol value).
p2568
SERVO (EPOS),
VECTOR (EPOS),
SERVO_AC (EPOS),
VECTOR_AC (EPOS)

BI: EPOS STOP cam activation / STOP cam act
Can be changed: $\mathrm{C} 2(17), \mathrm{T}$
Calculated: -
Data type: Unsigned32 / Binary
Dyn. index: -
Access level: 1

P-Group: Basic positioner
Not for motor type: -
Unit group: -
Scaling: -
Max
Func. diagram: 3630
Unit selection: -
Expert list: 1
Factory setting
0
Description: Sets the signal source to activate the function "STOP cam".
BI: p2568 = 1 signal
--> The evaluation of the STOP cam minus (BI: p2569) and STOP cam plus (BI: p2570) is active.
Dependency: Refer to: p2569, p2570
Note: The traversing range can also be limited using software limit switches.

## p2569

SERVO (EPOS),
VECTOR (EPOS),
SERVO_AC (EPOS), VECTOR_AC (EPOS)

## BI: EPOS STOP cam minus / STOP cam minus

Can be changed: C2(17), T Calculated: -
Data type: Unsigned32 / Binary Dyn. index: -
Func. diagram: 3630
P-Group: Basic positioner
Not for motor type: -
Scaling: -
Unit selection: -

Min
Max
-

## Description:

Recommendation:
Sets the signal source for the STOP cam in the negative direction of travel.
Set the OFF3 ramp-down time (p1135) so that after the axis reaches the STOP cam at maximum velocity, the braking distance traveled by the axis is not greater than the distance that is available.
Sets message 07491 as alarm (A07491):
Set the maximum deceleration ( p 2573 ), so that the axis, after reaching the STOP cam at the maximum velocity, does not move through a higher braking travel than is actually available.
Dependency:
Caution:
Refer to: p1135, p2568, p2570, p2573, r2684
Refer to: F07491
The STOP cams are low active.
Sets message 07491 as fault (F07491):
For a 0 signal, the drive stops with the OFF3 ramp-down time (p1135), status signal r2684.13 = 1 is set, saved and the corresponding fault is output. After the fault has been acknowledged, only motion moving away from the STOP cam is permitted.
For a $0 / 1$ signal and valid travel direction, when the STOP cam is exited, this is detected and the status signal r2684.13 is set to 0 .
Sets message 07491 as alarm (A07491):
For a 0 signal, the axis is stopped with the maximum deceleration (p2573), status signal r2684.13 is set to 1 , saved and the appropriate alarm is output. Only motion away from the STOP cam is permitted.
For a $0 / 1$ signal and valid travel direction, when the STOP cam is exited, this is detected and the status signal r2684.13 is set to 0 and the alarm is deleted.


### 2.2 List of parameters

Note:	The maximum acceleration appears to exhibit jumps (without jerk).
"Traversing blocks" operating mode:	
The programmed acceleration override (p2619) acts on the maximum acceleration.	
"Direct setpoint input/MDI" mode:	
	The acceleration override is effective (p2644, 4000 hex $=100 \%$ ).
	"Jog" and "search for reference" modes
	No acceleration override is active. The axis starts with the maximum acceleration.

## p2573 EPOS maximum deceleration / -a_max

SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)

Can be changed: C2(17), T
Data type: Unsigned32
P-Group: Basic positioner
Not for motor type: -

## Min

1 [1000 LU/s ${ }^{2}$ ]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
2000000 [1000 LU/s²]

Access level: 1

Sets the maximum deceleration for the "basic positioner" function (EPOS). Refer to: p2620, p2645
The maximum deceleration appears to exhibit jumps (without jerk).
"Traversing blocks" operating mode:
The programmed deceleration override (p2620) acts on the maximum deceleration.
"Direct setpoint input/MDI" mode:
The deceleration override is effective (p2645, 4000 hex = $100 \%$ ).
"Jog" and "search for reference" modes
No deceleration override is effective. The axis breaks with the maximum deceleration.

## p2574

SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)

EPOS jerk limiting / Jerk lim
Can be changed: C2(17), U, T
Data type: Unsigned32
P-Group: Basic positioner
Not for motor type: -
Min
1 [1000 LU/s ${ }^{3}$ ]

## Calculated: -

Dyn. index: -
Unit group: -
Scaling: -
Max
100000000 [1000 LU/s ${ }^{3}$ ]

Access level: 1
Func. diagram: 3635
Unit selection: -
Expert list: 1
Factory setting
10000 [1000 LU/s ${ }^{3}$ ]

Description:
Dependency:
Note:

Sets the jerk limiting
Refer to: p2572, p2573, p2575
The jerk limiting is internally converted into a jerk time as follows:
Jerk time $\operatorname{Tr}=\max (\mathrm{p} 2572, \mathrm{p} 2573) / \mathrm{p} 2574$
The jerk time is internally limited to 1000 ms and is rounded-off to an integer multiple of the sampling time positioning (p0115[5]).
The jerk time is valid for the acceleration and deceleration phases also for unequal maximum acceleration (p2572) and maximum deceleration (p2573).
For unequal maximum acceleration and maximum deceleration, the motion is not optimal from a time perspective as the jerk limit cannot be used for the lower of the two values.
If, in the travel profile, the acceleration time without jerk limiting is shorter than jerk time Tr, then motion with jerk limiting is not time-optimized.
For traversing motion with a direct transition between acceleration and deceleration (i.e. jerk time is greater than the constant velocity phase), jerk can increase up to twice the parameterized jerk.
CONTINUE_FLYING with direction reversal acts internally just like a CONTINUE_WITH_STOP without the "position reached" being set. Without jerk limiting, this behavior can hardly be noticed as, when reversing, the position setpoint is only kept at zero for one interpolator clock cycle.
For block change enable CONTINUE_WITH_STOP, jerk limiting results in a longer delay time.


Note:	The following applies for the setting of the software limit switch:
	Software limit switch minus < software limit switch plus


p2579	Cl: EPOS software limit switch plus signal source / SW limSwPlus S_src		
SERVO (EPOS),	Can be changed: C2(17), T	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 3630
SERVO_AC (EPOS),	P-Group: Basic positioner	Unit group: -	Unit selection: -
VECTOR_AC (EPOS)	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	-	2581[0]	
Description:	Sets the signal source for the software limit switch plus.		
Dependency:	Refer to: p2578, p2580, p2581, p2582		
	Refer to: A07470, A07478, A07480, F07482		
Notice:	A change to the software limit switch becomes immediately effective.		
	lf the software limit switch is changed, then this results in the positions in the traversing blocks being checked.		
Note:	The following applies for the setting of the software limit switch:		
	Software limit switch minus < software limit switch plus		


$\mathbf{p 2 5 8 0}$
SERVO (EPOS),
VECTOR (EPOS),
SERVOAC (EPOS),
VECTOR_AC (EPOS)

Description: Sets the software limit switch, in the negative direction of travel.
Dependency: Refer to: p2578, p2579, p2581, p2582

p2581	CO: EPOS software limit switch plus / SW lim switch plus	
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: C2(17), U, T Calculated: -   Data type: Integer32 Dyn. index: -   P-Group: Basic positioner Unit group: -   Not for motor type: - Scaling: -   Min Max   -2147482648 [LU] 2147482647 [LU]	Access level: 1   Func. diagram: 3630   Unit selection: -   Expert list: 1   Factory setting   2147482647 [LU]
Description:   Dependency:	Sets the software limit switch, in the positive direction of travel.   Refer to: p2578, p2579, p2580, p2582	
p2582   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	BI: EPOS software limit switch activation / SW lim sw act	Access level: 1   Func. diagram: 3630   Unit selection: -   Expert list: 1   Factory setting   0
Description:   Dependency:   Caution:	Sets the signal source to activate the "software limit switch".   Refer to: p2578, p2579, p2580, p2581   Software limit switch effective:   - axis is referenced $(r 2684.11=1)$ and BI: p2582 $=1$ signal.   Software limit switch ineffective:   - modulo correction active (BI: p2577 = 1 signal).   - search for reference is executed.	



p2585	EPOS jog 1 setpoint velocity / Jog 1 v_set	
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: C2(17), U, T Calculated: -   Data type: Integer32 Dyn. index: -   P-Group: Basic positioner Unit group: -   Not for motor type: - Scaling: -   Min Max   $-40000000[1000 \mathrm{LU} / \mathrm{min}]$ 40000000 [1000 LU/min]	Access level: 1   Func. diagram: 3610   Unit selection: -   Expert list: 1   Factory setting   -300 [1000 LU/min]
Description:   Dependency:	Sets the setpoint velocity for jog 1.   Refer to: p2587, p2589, p2591	
p2586   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	EPOS jog 2 setpoint velocity / Jog 2 v_set    Can be changed: C2(17), U, T Calculated: -   Data type: Integer32 Dyn. index: -   P-Group: Basic positioner Unit group: -   Not for motor type: - Scaling: -   Min Max   $-40000000[1000 \mathrm{LU} / \mathrm{min}]$ $40000000[1000 \mathrm{LU} / \mathrm{min}]$	Access level: 1   Func. diagram: 3610   Unit selection: -   Expert list: 1   Factory setting   300 [1000 LU/min]
Description:   Dependency:	Sets the setpoint velocity for jog 2.   Refer to: p2588, p2590, p2591	
p2587   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	EPOS jog 1 traversing distance / Jog 1 distance    Can be changed: C2(17), U, T Calculated: -   Data type: Unsigned32 Dyn. index: -   P-Group: Basic positioner Unit group: -   Not for motor type: - Scaling: -   Min Max   $0[L U]$ 2147482647 [LU]	Access level: 1   Func. diagram: 3610   Unit selection: -   Expert list: 1   Factory setting   1000 [LU]
Description:   Dependency:   Note:	Sets the traversing distance for incremental jog 1.   Refer to: p2585, p2589, p2591   Incremental jog 1 is started with BI: p2591 = 1 signal and BI: p2589 $=0 / 1$ signal.   With BI: p2589 $=0$ signal, incremental jog is interrupted.	


p2588	EPOS jog 2 traversing distance / Jog 2 distance		
SERVO (EPOS),	Can be changed: C2(17), U, T	Calculated: -	
VECTOR (EPOS),	Data type: Unsigned32	Dyn. index: -	Func. diagram: 3610
SERVO_AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
VECTOR_AC (EPOS)	Scaling: -	Expert list: 1	
	Not for motor type: -	Max	Factory setting
	Min	2147482647 [LU]	1000 [LU]
	$0[$ LU]		
Description:	Sets the traversing distance for incremental jog 2.		
Dependency:	Refer to: p2586, p2590, p2591		
Note:	Incremental jog 2 is started with BI: p2591 = 1 signal and BI: p2590 = $0 / 1$ signal.		
	With BI: p2590 = 0 signal, incremental jogging is interrupted.		


p2589	BI: EPOS jog 1 signal source / Jog 1 S_src		
SERVO (EPOS),	Can be changed: C 2 (17), T	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3610, 3625
SERVO_AC (EPOS),   VECTOR AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for jog 1.		
Dependency:	When jogging, the axis is accelerated or b BI: p2591 = 0 signal   The axis endlessly moves with the setpoin BI: p2591 = 1 signal   The axis traverses through a parameterized   Refer to: p2572, p2573, p2585, p2587, p2		celeration (p2572/p2573).   ocity, jog 1 (p2587).
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2590	BI: EPOS jog 2 signal source / Jog 2 S_src		
SERVO (EPOS),	Can be changed: $\mathrm{C} 2(17)$, T	Calculated: -	Access level: 1
VECTOR (EPOS),   SERVO AC (EPOS)	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3610, 3625
VECTOR_AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for jog 2.		
Dependency:	When jogging, the axis is accelerated or b BI: p2591 = 0 signal   The axis endlessly moves with the setpoin BI: p2591 = 1 signal   The axis traverses through a parameterized   Refer to: p2572, p2573, p2586, p2588, p2	ed with the maximelo distance (p2586) 1	celeration (p2572/p2573).   ocity, jog 2 (p2588).
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2591	BI: EPOS jogging incremental / Jog incr		
SERVO (EPOS),	Can be changed: C 2 (17), T	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3610
VECTOR_AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for jogging incremental.		
Dependency:	Refer to: p2585, p2586, p2587, p2588, p2589, p2590		
p2593	CI: EPOS LU/revolution LU/mm / LU/rev LU/mm		
SERVO (EPOS),	Can be changed: C 2 (17), T	Calculated: -	Access level: 3
VECTOR (EPOS),   SERVO AC (EPOS)	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 3630
VECTOR_AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	2524[0]
Description:	Sets the signal source for the reference of the internal length units LU to motor revolution for rotary encoders and to mm for linear encoders.		

### 2.2 List of parameters

Dependency:	Refer to: p0404, r2524, p2594
Note:	The signal value is used to convert the length unit to the speed or velocity setpoint.


p2594[0...2]	CI: EPOS Maximum velocity externally limited / v_Max ext lim		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: $\mathrm{C} 2(17), \mathrm{T}$   Data type: Unsigned32 / FloatingPoint32   P-Group: Basic positioner   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Unit group: -   Scaling: p2000   Max	Access level: 3   Func. diagram: 3630   Unit selection: -   Expert list: 1   Factory setting   0
Description: Index:	Sets the signal source for the externally limited maximum velocity.   [0] = Setpoint limit absolute   [1] = Setpoint limiting positive   [2] = Setpoint limiting negative		
Dependency: Warning:	Refer to: r2524, p2571, p2593   In order that the externally limited velocity can be effective for the EPOS operating modes, connector input p2593 must be correctly interconnected.		
p2595	BI: EPOS referencing start / Ref start		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS),	Can be changed: $\mathrm{C} 2(17), \mathrm{T}$   Data type: Unsigned32 / Binary	Calculated:   Dyn. index:	Access level: 1   Func. diagram: 3612, 3625, 3614
TOR_AC (EPOS)	P-Group: Basic positioner Not for motor type: Min	Unit group: -   Scaling: -   Max	Unit selection: -   Expert list: 1   Factory setting   0
Description:	Sets the signal source to start the "search for reference" or "flying referencing".   BI: p2595 = 0/1 signal   Referencing is started.   BI: p2595 $=1 / 0$ signal   Referencing is interrupted.		
Dependency:	Refer to: p2597, p2598, p2599, r2684		
Notice:   Note:	The parameter may be protected as a resul Search for reference (BI: p2597 = 0 signal) The reference point approach can only be been completed.   With the start, where relevant, the state sig Flying referencing (BI: p2597 = 1 signal): With the start, the state signal "reference p	of p0922 or p207   tivated (0/1 edge)   al "reference poin   int set" (r2684.11)	anged.   tion that is being processed has reset.
p2596	BI: EPOS set reference point / Set ref_pt		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: $\mathrm{C} 2(17), \mathrm{T}$   Data type: Unsigned32 / Binary   P-Group: Basic positioner   Not for motor type: -   Min	Calculated:   Dyn. index:   Unit group: -   Scaling: -   Max	Access level: 1   Func. diagram: 3612   Unit selection: -   Expert list: 1   Factory setting   0
Description:   Dependency:   Notice:	Sets the signal source for the "set reference point".   Refer to: p2598, p2599, r2684		

Note: $\quad$ Reference point setting is effective in the following operating states:

- in the basic state.
- for FIXED STOP with progress condition END (corresponds to the initial state).
- for traversing block interrupted via BI: p2640 = 0 signal (intermediate stop).
- for EPOS not enabled (BI: p2656 = 0 signal) and position actual value valid (BI: p2658 = 1 signal).

p2597	BI: EPOS referencing type selection / Ref_typ select		
SERVO (EPOS),	Can be changed: C2(17), T	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3612,3614,
SERVO_AC (EPOS),		3625	
VECTOR_AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	-	0	
Description:	Sets the signal source to select referencing type.		
	1 signal: Flying referencing		
	0 signal: Search for reference		
Dependency:	Refer to: p2595		
Note:	Referencing is activated as follows:		
	- Select the referencing type (BI: p2597)		
	- Start referencing (BI: p2595 $=0 / 1$ signal)		


p2598[0...3]	CI: EPOS reference point coordinate signal source / Ref_pt coord S_src		
SERVO (EPOS, Pos	Can be changed: C2(25), T	Calculated: -	Access level: 1
ctrl), VECTOR (EPOS,	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 3612,3614
Pos ctrl), SERVO_AC	P-Group: Closed loop position control	Unit group: -	
(EPOS, Pos ctrl), Not for motor type: - Scaling: -   VECTOR_AC (EPOS, Unit selection: -    Pos ctrl) Min -   Max Factory setting     -      $[0] 2599[0]$     $[1] 0$     $[2] 0$			




## p2602

SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)

EPOS flying referencing outer window / Outer window
Can be changed: $\mathrm{C} 2(17), \mathrm{U}, \mathrm{T}$
Data type: Integer32
P-Group: Basic positioner
Not for motor type: -
Min
0 [LU]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
2147482647 [LU]

Description: Sets the outer window for flying referencing.
Value $=0$ :
The evaluation of the outer window is deactivated.
Dependency:

Notice:

Refer to: p2597, r2684
Refer to: A07489
The inner window must be set so that it is smaller than the outer window.

Access level: 1
Func. diagram: 3614
Unit selection: -
Expert list: 1
Factory setting
0 [LU]



p2610	EPOS search for ref. tol. bandwidth for distance to zero mark / Tol_band to ZM		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: $\mathrm{C} 2(17), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 3612
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [LU]	2147482647 [LU]	2147482647 [LU]
Description:	Sets the tolerance bandwidth for the distance to the zero mark		
	The zero mark is evaluated within the maximum distance between the reference cam and zero mark (p2609) minus the tolerance bandwidth for the distance to the zero mark (p2610).		
Dependency:	Refer to: p2609		
p2611	EPOS search for reference approach velocity reference point / v_appr ref_pt		
$\begin{aligned} & \text { SERVO (EPOS), } \\ & \text { VECTOR (EPOS), } \\ & \text { SERVO_AC (EPOS), } \\ & \text { VECTOR_AC (EPOS) } \end{aligned}$	Can be changed: C2(17), U, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 3612
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [1000 LU/min]	40000000 [1000 LU/min]	300 [1000 LU/min]
Description:	Sets the approach velocity after detecting the zero mark to approach the reference point.		
Dependency:	Refer to: p2595, p2597, p2604, p2607, p2609, p2610		
Note:	When traversing to the reference point, the velocity override is not effective.		
p2612	BI: EPOS search for reference reference cam / Ref_cam		
$\begin{aligned} & \text { SERVO (EPOS), } \\ & \text { VECTOR (EPOS), } \\ & \text { SERVO_AC (EPOS), } \\ & \text { VECTOR_AC (EPOS) } \end{aligned}$	Can be changed: C 2 (17), T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3612
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the reference cam.		
Dependency:	Refer to: p2607		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2613	BI: EPOS search for reference reversing cam minus / Rev minus		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: C 2 (17), T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3612
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the reversing cam in the negative direction of travel. 1 signal: Reversing cam not reached.		
Dependency:	Refer to: p2614		
Note:	If, during the search for reference from the reversing cam minus and plus, a 0 signal is detected, then the axis remains stationary (at standstill).		


p2614	BI: EPOS search for reference reversing cam plus / Rev plus		
SERVO (EPOS),	Can be changed: C2(17), T	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3612
SERVO_AC (EPOS),	P-Group: Basic positioner	Unit group: -	Unit selection: -
VECTOR_AC (EPOS)	Sot for motor type: -	Max	Expert list: 1
	Min	-	Factory setting
	-	1	
Description:	Sets the signal source for the reversing cam in the negative direction of travel.		
	1 signal: Reversing cam not reached.		
Dependency:	0 signal: Reversing cam reached.		
Rofer to: p2613	If, during the search for reference from the reversing cam minus and plus, a 0 signal is detected, then the axis		
	remains stationary (at standstill).		


p2615	EPOS maximum number of traversing blocks / Trav_block qty max		
SERVO (EPOS),	Can be changed: C2(17)	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned8	Dyn. index: -	Func. diagram: 3616
SERVO_AC (EPOS),	P-Group: Basic positioner	Unit group: -	Unit selection: -
VECTOR_AC (EPOS)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	64	
Description:	Sets the maximum number of traversing blocks that are available.		
Dependency:	Refer to: p2616, p2617, p2618, p2619, p2620, p2621, p2622, p2623, p2624		



p2621[0...n]
SERVO (EPOS),
VECTOR (EPOS),
SERVO_AC (EPOS),
VECTOR_AC (EPOS)

Description:

## EPOS traversing block task / Trav_block task

Can be changed: C2(17), U, T Calculated: -
Data type: Integer16
P-Group: Basic positioner
Not for motor type: -
Min
1 9
Sets the required task for the traversing block.

Dyn. index: p2615
Unit group: -
Scaling: -
Max
9

## Access level: 1

Func. diagram: 3616
Unit selection: -
Expert list: 1
Factory setting
1

### 2.2 List of parameters

Value:	$1:$	POSITIONING
	$2:$	FIXED STOP
	$3:$	ENDLESS_POS
	$4:$	ENDLESS_NEG
	$5:$	WAITING
	$6:$	GOTO
	$7:$	SET_O
	$8:$	RESET_O
Dependency:	$9:$	JERK
	The number of indices depends on p2615.	
	Refer to: p2615, p2616, p2617, p2618, p2619, p2620, p2622, p2623, p2624	

p2622[0...n] EPOS traversing block task parameter / Trav_blck task_par

SERVO (EPOS),
VECTOR (EPOS),
SERVO_AC (EPOS),
VECTOR_AC (EPOS)
Can be changed: C2(17), U, T
Calculated: -
Dyn. index: p2615
Unit group: -
Scaling: -
Max
2147483647

Access level: 1
Func. diagram: 3616
Unit selection: -
Expert list: 1
Factory setting

Description: Sets additional information/data of the appropriate task for the traversing block.
Dependency: The number of indices depends on p2615.
Refer to: p2615, p2616, p2617, p2618, p2619, p2620, p2621, p2623, p2624
Note:
The following should be set depending on the task:
FIXED STOP: Clamping torque and clamping force (rotary 0... 65536 [0.01 Nm], linear 0... 65536 [N])
WAIT: Delay time [ms]
GOTO: Block number
SET_O: 1, 2 or 3 - set direct output 1, 2 or 3 (both)
RESET_O: 1, 2 or 3 - reset direct output 1 , 2 or 3 (both)
JERK: 0-deactivate, 1 - activate

p2623[0...n]	EPOS traversing block task mode / Trav_block mode		
SERVO (EPOS),	Can be changed: $\mathrm{C} 2(17), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned16	Dyn. index: p2615	Func. diagram: 3515, 3616
SERVO_AC (EPOS), VECTOR_AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the influence of the task for the traversing block.		
	Value $=0000$ cccc bbbb aaaa		
	cccc: Positioning mode		
	cccc = 0000 --> ABSOLUTE		
	cccc = 0001 --> RELATIVE		
	cccc = 0010 --> ABS_POS (only for a rotary axis with modulo correction)		
	cccc = 0011 --> ABS_NEG (only for a rotary axis with modulo correction)		
	bbbb: Progression condition		
	bbbb = 0000 --> END		
	bbbb $=0001$--> CONTINUE WITH STOP		
	bbbb $=0010$--> CONTINUE FLYING		
	bbbb = 0011 --> CONTINUE EXTERNAL		
	$\mathrm{bbbb}=0100$--> CONTINUE EXTERNAL WAIT		
	$\mathrm{bbbb}=0101$--> CONTINUE EXTERNAL ALARM		
	aaaa: IDs		
	aaaa $=000 \mathrm{x}$--> show/hide block ( $\mathrm{x}=0$ : show, $\mathrm{x}=1$ : hide)		
Dependency:	The number of indices depends on p2615.		
	Refer to: p2615, p2616, p2617, p	9, p2620, p2621, p26	


p2624
SERVO (EPOS),
VECTOR (EPOS),
SERVOAC (EPOS),
VECTOR_AC (EPOS)


EPOS traversing block sorting / Trav_block sort		
Can be changed: C2(17), U, T	Calculated: -	Access level: 1
Data type: Unsigned16	Dyn. index: -	Func. diagram: 3616
P-Group: Basic positioner	Unit group: -	Unit selection: -
Not for motor type: -	Max	Expert list: 1
Min	1	Factory setting
0		0
Sets the traversing blocks for sorting corresponding to their block number.		
Procedure: Set p2624 = $0-->1$.		
Sorting is started and the parameters are automatically reset to zero once the operation has been completed.		
Refer to: p2615, p2616, p2617, p2618, p2619, p2620, p2621, p2622, p2623		
After sorting, the traversing blocks are written at the beginning of the memory in increasing sequence without any		
gaps.		


p2625	BI: EPOS traversing block selection bit 0 / Trav_blk sel bit 0		
SERVO (EPOS),	Can be changed: $\mathrm{C} 2(17)$, T	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3616, 3640
VECTOR AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the traversing block, bit 0 .		
Dependency:	Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks.		
	Refer to: p2626, p2627, p2628, p2629, p2630		

## p2626

SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)

BI: EPOS traversing block selection bit 1 / Trav_blk sel bit 1

## p2627

SERVO (EPOS),
VECTOR (EPOS),
SERVO_AC (EPOS), VECTOR_AC (EPOS)

Description: Dependency:

Can be changed: C2(17), T Calculated:
Data type: Unsigned32 / Binary Dyn. index: -
P-Group: Basic positioner Unit group: -
Not for motor type: - Scaling: -
Min Max Factory setting -
Sets the signal source to select the traversing block, bit 1.
Dependency: $\quad$ Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks.
Refer to: p2625, p2627, p2628, p2629, p2630
BI: EPOS traversing block selection bit $2 /$ Trav_blk sel bit 2

Can be changed: C2(17), T Calculated: -
Data type: Unsigned32 / Binary Dyn. index: -
P-Group: Basic positioner Unit group: -
Not for motor type: - Scaling: -
Min

Max

## Access level: 1

Func. diagram: 3616, 3640
Unit selection: -
Expert list: 1 0

-     - 

Sets the signal source to select the traversing block, bit 2.
Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks.
Refer to: p2625, p2626, p2628, p2629, p2630

p2628	BI: EPOS traversing block selection bit 3 / Trav_blk sel bit 3		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: $\mathrm{C} 2(17), \mathrm{T}$   Data type: Unsigned32 / Binary   P-Group: Basic positioner   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   -	Access level: 1   Func. diagram: 3616, 3640   Unit selection: -   Expert list: 1   Factory setting   0
Description:   Dependency:	Sets the signal source to select the traversing block, bit 3 .   Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks.   Refer to: p2625, p2626, p2627, p2629, p2630		
p2629   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	BI: EPOS traversing blo   Can be changed: $\mathrm{C} 2(17), \mathrm{T}$   Data type: Unsigned32 / Binary   P-Group: Basic positioner   Not for motor type: -   Min	on bit 4 / Tr   Calculated:   Dyn. index: -   Unit group: -   Scaling: -   Max   -	Access level: 1   Func. diagram: 3616, 3640   Unit selection: -   Expert list: 1   Factory setting   0
Description:   Dependency:	Sets the signal source to select the traversing block, bit 4.   Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks.   Refer to: p2625, p2626, p2627, p2628, p2630		
p2630   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	BI: EPOS traversing blo   Can be changed: C2(17), T   Data type: Unsigned32 / Binary   P-Group: Basic positioner   Not for motor type: -   Min	on bit 5 / Tr   Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   -	Access level: 1   Func. diagram: 3616, 3640   Unit selection: -   Expert list: 1   Factory setting   0
Description: Dependency:	Sets the signal source to select the traversing block, bit 5 .   Binector inputs p2625, p2626, p2627, p2628, p2629 and p2630 are used to select one of the maximum of 64 traversing blocks.   Refer to: p2625, p2626, p2627, p2628, p2629		
p2631   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	BI: EPOS activate trave   Can be changed: C2(17), T   Data type: Unsigned32 / Binary   P-Group: Basic positioner   Not for motor type: -   Min	(0 -> 1) / Tr   Calculated:   Dyn. index:   Unit group: -   Scaling: -   Max   -	Access level: 1   Func. diagram: 3616, 3625   Unit selection: -   Expert list: 1   Factory setting   0
Description:   Dependency:   Notice:	Sets the signal source for "activ B1: p2631 $=0 / 1$ signal The traversing task, selected us Refer to: p2625, p2626, p2627, The parameter may be protecte	ng task". ... p2630, is st , p2630, p2640, of p0922 or p20	nged.

Note: $\quad$ To start a traversing block, the axis must be referenced (r2684.11 = 1).
The status signal r2684.12 $=0 / 1$ signal is used for acknowledgment.
A traversing task can be influenced using the following signals:

- intermediate stop via BI: p2640.
- reject traversing task via BI: p2641.

p2632	EPOS external block change evaluation / Ext BlckChg eval		
SERVO (EPOS),	Can be changed: $\mathrm{C} 2(17)$, T	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Integer16	Dyn. index: -	Func. diagram: 3615, 3616
VECTOR_AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the mode to evaluate "external block change".		
Value:	0 : External block change via the measuring probe   1: External block change via BI: p2633		
Dependency:	Refer to: p2623, p2633, r2677, r2678		
Note:	In the mode "external block change via measuring probe" (p2632 = 0), the following applies:		
	When starting a traversing block with the block change enable CONTINUE_EXTERNAL, CONTINUE_EXTERNAL_WAIT and CONTINUE_EXTERNAL_ALARM an activated "flying referencing" is interrupted. After ending the block, "flying referencing" must be re-activated via BI: $\mathrm{p} 2595=0 / 1$ signal.		

BI: EPOS external block change (0 -> 1) / Ext BlckChg (0->1)
p2633
SERVO (EPOS),
VECTOR (EPOS),
SERVO_AC (EPOS),
VECTOR_AC (EPOS)

Can be changed: $\mathrm{C} 2(17), \mathrm{T} \quad$ Calculated: -
Data type: Unsigned32 / Binary
P-Group: Basic positioner
Not for motor type: -
Min -

Sets the signal source for "external block change".
BI: p2633 $=0 / 1$ signal
Dependency: $\quad$ The evaluation of the signal is only active p2632 $=1$.
Refer to: p2623, p2632, p2640, p2641, r2677, r2678
Notice: The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:

A $0 / 1$ edge initiates a flying block change in the subsequent traversing block.
When the external block change is identified, the actual position is saved in r2678.
A traversing task can be influenced using the following signals:

- intermediate stop via BI: p2640.
- reject traversing task via BI: p2641.

p2634[0...n]	EPOS fixed stop maximum following error / Following err max		
SERVO (Pos ctrl),	Can be changed: C2(25), U, T	Calculated: -	Access level: 1
VECTOR (Pos ctrl),	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: 3617,4025
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: -	Unit selection: -
VECTOR_AC (Pos	Not for motor type: -	Scaling: -	Max
ctrl)	Min	2147482647 [LU]	Fxpert list: 1
	$0[\mathrm{LU}]$	Factory setting	
	Sets the following error to detect the "fixed stop reached" state (r2526.4).		
Description:	Refer to: r2526, p2621, r2675		
Dependency:	The state "fixed stop reached" is detected if the following error exceeds the theoretically calculated following error		
Note:	value by p2634.		

### 2.2 List of parameters

p2635
SERVO (Pos ctrl),
VECTOR (Pos ctrl),
SERVO_AC (Pos ctrl),
VECTOR_AC (Pos
ctrl)
Description:
Dependency:
Note:
p2637
SERVO (EPOS),
VECTOR (EPOS),
SERVO_AC (EPOS),
VECTOR AC (EPOS)


EPOS fixed stop monitoring window / Fixed stop monit		
Can be changed: C2(25), U, T	Calculated: -	Access level: 1
Data type: Unsigned32	Dyn. index: -	Func. diagram: 3617,4025
P-Group: Closed loop position control	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0[L U]$	$100[L U]$	
Sets the monitoring window of the actual position after the fixed stop is reached.		
Refer to: r2526, r2683		
Refer to: F07484		
If, after the fixed stop is reached, the end stop shifts in either the positive or negative direction by more than the value   set here, then BO: r2526.5 is set to 1 and an appropriate message is output.		

BI: EPOS fixed stop reached / Fixed stop reached

Can be changed: $\mathrm{C} 2(17), \mathrm{T}$
Data type: Unsigned32 / Binary
P-Group: Basic positioner
Not for motor type: -
Min
-

Sets the signal source for the feedback signal "fixed stop reached".
B1: p2637 = 1 signal
Fixed stop is reached.
B1: p2637 = 0 signal
Fixed stop is not reached.
Dependency: Refer to: r2526, p2634
Notice: $\quad$ The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: reached). This signal is influenced via p2634 (EPOS fixed stop, maximum following error).

p2638	BI: EPOS fixed stop outside the monitoring window / Fixed stop outside		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: $\mathrm{C} 2(17), \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3616, 3617
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	2526.5
Description:	Sets the signal source for the feedback signal "fixed stop outside the monitoring window".		
	BI: p2638 = 1 signal		
	Fixed stop is located outside the monitoring window.		
	BI: p2638 $=0$ signal		
	Fixed stop is inside the monitoring window.		
Dependency:	Refer to: r2526, p2635		
Note:	The identification of "fixed stop outside the monitoring window" is, for the factory setting, dependent on signal BO: r2526.5 (fixed stop outside window). This signal is influenced via p2635 (EPOS fixed stop monitoring window).		



p2641	BI: EPOS reject traversing task (0 signal) / Trav_task reject		
SERVO (EPOS),	Can be changed: $\mathrm{C} 2(17)$, T	Calculated: -	Access level: 1
VECTOR (EPOS), SERVO_AC (EPOS),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3616, 3620, 3625
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for "do not reject traversing task/reject traversing task".   BI: p2641 = 1 signal   Do not reject traversing task.   BI: p2641 = 0 signal   Reject traversing task.		
Dependency:	Refer to: p2631, p2640, p2647, p2649		
Caution:	For BI: p2649 = 1 signal, the following applies:		
$\$$	Motion starts without any explicit control signal.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	This signal is only effective in the modes "traversing blocks" and "direct setpoint input/MDI".		
p2642	CI: EPOS direct setpoint input/MDI position setpoint / MDI s_set		
SERVO (EPOS),	Can be changed: $\mathrm{C} 2(17)$, T	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 3618
VECTOR_AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	2690[0]
Description:	Sets the signal source for the position setpoint in the mode "direct setpoint input/MDI".		
Dependency:	Refer to: p2648, p2649, p2650, p2690		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Depending on p2649, the position setpoint is either transferred continuously or edge-triggered. The position setpoint input is interpreted as length unit [LU].		
p2643	CI: EPOS direct setpoint input/MDI velocity setpoint / MDI v_set		
SERVO (EPOS),	Can be changed: $\mathrm{C} 2(17), \mathrm{T}$	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 3618
VECTOR AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	2691[0]
Description:	Sets the signal source for the velocity setpoint in the "direct setpoint input/MDI mode".		
Dependency:	Refer to: p2649, p2650, p2691		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Depending on p2649, the velocity setpoint is either transferred continuously or edge-triggered. The velocity setpoint input is interpreted as [1000 LU/min].		


p2644	CI: EPOS direct setpoint input/MDI acceleration override / MDI a_over		
SERVO (EPOS),	Can be changed: $\mathrm{C} 2(17), \mathrm{T}$	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 3618
SERVO_AC (EPOS),   VECTOR_AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
		-	2692[0]
Description:	Sets the signal source for the acceleration override in the operating mode "direct setpoint input/MDI".		
Dependency:	Refer to: p2649, p2650, p2692		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Depending on p2649, the acceleration override is either transferred continuously or edge-triggered.		
p2645	CI: EPOS direct setpoint input/MDI deceleration override / MDI -a_over		
SERVO (EPOS),	Can be changed: C2(17), T	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 3618
VECTOR_AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	2693[0]
Description:	Sets the signal source for the deceleration override in the operating mode "direct setpoint input/MDI".		
Dependency:	Refer to: p2649, p2650, p2693		
Notice:	If, when calculating the traversing profile, it is identified that the target position with the programmed deceleration override cannot be reached without reversing the direction, then when accepting the dynamic values, the larger deceleration override is accepted and becomes effective.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Depending on p2649, the deceleration override is either transferred continuously or edge-triggered. The signal value 4000 hex ( 16384 dec ) corresponds to $100 \%$.		


p2646	CI: EPOS velocity override / v_over		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: C2(17), T	Calculated: -	Access level: 1
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 3630
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
			1
Description:	Sets the signal source for the velocity override.   This velocity override is effective in the following operating modes "direct setpoint input/MDI", "traversing blocks", "jogging" and "search for reference" (when approaching the reference cam).		
Dependency:	Refer to: p2571, p2585, p2586, p2605, p2618, p2643, r2681		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The effective override (r2681) can differ from the specified override due to limits (e.g. maximum velocity).		
p2647	BI: EPOS direct setpoint input/MDI selection / MDI selection		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: $\mathrm{C} 2(17)$, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3620, 3625, 3640
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the operating mode "direct setpoint input/MDI".		
Dependency:	Refer to: p2640, p2641, p2642, p2643, p2644, p2645, p2646, p2648, p2649, p2650, p2651, p2652, p2653		

### 2.2 List of parameters

Note: In this mode, using BI: p2653 it is possible to make a flying changeover between setting-up and positioning In this mode, even if the axis is not referenced $(r 2684.11=0)$ relative positioning is possible.
p2648
SERVO (EPOS),
VECTOR (EPOS),
SERVO_AC (EPOS),
VECTOR_AC (EPOS)

BI: EPOS direct setpoint input/MDI positioning type / MDI pos_type		
Can be changed: C2(17), T	Calculated: -	Access level: 1
Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3620
P-Group: Basic positioner	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	0


Description:	Sets the signal source for the positioning type in the mode "direct setpoint input/MDI".
	BI: p2648 = 1 signal
	Absolute positioning is selected.
	BI: p2648 = 0 signal
	Relative positioning is selected.
Dependency:	Refer to: p2649, p2650, p2654
	Refer to: A07461, F07488
Notice:	Absolute positioning:
	To traverse, the reference point must be set (r2684.11 = 1).
	Relative positioning:
	To traverse, it is not necessary that the reference point is set.
Note:	Depending on p2649, the positioning type is either transferred continuously or edge-triggered.
	Binector input p2648 is only evaluated when connector input p2654 $=0$. If p2654 is a value other than 0 , the
positioning type is evaluated by means of the set signal source.	

## p2649

SERVO (EPOS),
VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)

BI: EPOS direct setpoint input/MDI transfer type selection / MDI trans_type sel
Can be changed: C2(17), T
Calculated: -
Data type: Unsigned32 / Binary
P-Group: Basic positioner
Not for motor type: -
Min

Dyn. index: -
Unit group: -
Scaling: -
Max

Access level: 1
Func. diagram: 3620
Unit selection: -
Expert list: 1
Factory setting

Description: Sets the signal source to define how values are transferred in the operating mode "direct setpoint input/MDI". BI: p2649 = 1 signal
Values are continually transferred (refer to parameter under dependency).
BI: p2649 $=0$ signal
The values are transferred for BI : p2650 = 0/1 signal.
Dependency: Refer to: p2642, p2643, p2644, p2645, p2648, p2650, p2651, p2652
Caution:

Note:

p2650	BI: EPOS direct setpoint input/MDI setpoint acceptance edge / MDI setp_accept		
SERVO (EPOS),	Can be changed: C2(17), T	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3620
SERVO_AC (EPOS),	P-Group: Basic positioner	Unit group: -	Unit selection: -
VECTOR_AC (EPOS)	Scaling: -	Expert list: 1	
	Not for motor type: -	Max	Factory setting
	Min	-	0
	-		
Description:	Sets the signal source to accept the values for edge-triggered selection (BI: p2649 $=0$ signal) in the operating mode		
	"direct setpoint input/MDI".		
	BI: p2650 $=0 / 1$ signal and BI: p2649 $=0$ signal		
	Values are accepted, edge-triggered (refer to parameter under dependency).		

Dependency: Refer to: p2640, p2641, p2642, p2643, p2644, p2645, p2648, p2649, p2651, p2652, r2684
Notice: $\quad$ The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

Note: The status signal r2684.12 = 0/1 signal is used for acknowledgment.
The operating mode "direct setpoint input/MDI" can be influenced via the following signals:

- intermediate stop via BI: p2640.
- reject traversing task via BI: p2641.


## p2651

SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)

BI: EPOS direct setpoint input/MDI direction selection, positive / MDI dir_sel pos		
Can be changed: $\mathrm{C} 2(17)$, T	Calculated: -	Access level: 1
Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3620
P-Group: Basic positioner	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	0

Description:
Dependency:
Note:
Sets the signal source for the positive direction selection in the operating mode "direct setpoint input/MDI". Refer to: p2576, p2648, p2649, p2650, p2652, p2653, p2654
The following applies for "setting-up":

- the traversing direction can be entered using this binector input.
- if both directions (p2651, p2652) are selected, then the axis remains stationary (zero speed).
- if both directions (p2651, p2652) are de-selected, then the axis remains stationary (zero speed).

The following applies for "positioning":
Using binector inputs p2651 and p2652, when the modulo correction (BI: p2577 = 1 signal) is activated and for absolute positioning (BI: p2648 = 1 signal), the traversing direction is specified as follows:
BI: p2651 / BI: p2652
0 signal / 0 signal: Absolute positioning through the shortest distance.
1 signal / 0 signal: Absolute positioning in the positive direction.
0 signal / 1 signal: Absolute positioning in the negative direction.
1 signal / 1 signal: Absolute positioning through the shortest distance.

## p2652

SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)

BI: EPOS direct setpoint input/MDI direction selection negative / MDI dir_sel neg		
Can be changed: C2(17), T	Calculated: -	Access level: 1
Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 3620
P-Group: Basic positioner	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	0

## Description:

Dependency

## Note:

Sets the signal source for the negative direction selection in the operating mode "direct setpoint input/MDI".
Refer to: p2576, p2648, p2649, p2650, p2651, p2653, p2654
The following applies for "setting-up":

- the traversing direction can be entered using this binector input.
- if both directions (p2651, p2652) are selected, then the axis remains stationary (zero speed).
- if both directions (p2651, p2652) are de-selected, then the axis remains stationary (zero speed).

The following applies for "positioning":
Using binector inputs p2651 and p2652, when the modulo correction (BI: p2577 = 1 signal) is activated and for absolute positioning (B1: p2648 = 1 signal), the traversing direction is specified as follows:
BI: p2651 / BI: p2652
0 signal / 0 signal: Absolute positioning through the shortest distance.
1 signal / 0 signal: Absolute positioning in the positive direction.
0 signal / 1 signal: Absolute positioning in the negative direction.
1 signal / 1 signal: Absolute positioning through the shortest distance.

### 2.2 List of parameters



p2655[0...1]	BI: EPOS select tracking mode / Sel tracking mode		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: $\mathrm{C} 2(17), \mathrm{T}$   Data type: Unsigned32 / Binary   P-Group: Basic positioner   Not for motor type: -   Min	Calculated: -   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 1   Func. diagram: 3635   Unit selection:   Expert list: 1   Factory setting   [0] 1   [1] 2526.7
Description:	Sets the signal source to select tracking mode.   BI: p2655[0] or BI: p2655[1] = 1 signal   Tracking mode after withdrawing the enable signal from EPOS (BI: p2656 = 0 signal).   BI: p2655[0] or BI: p2655[1] = 0 signal   No tracking mode after withdrawing the enable signal from EPOS (BI: p2656 = 0 signal).		
Dependency:   Notice:   Note:	Refer to: p2656   The parameter may be protected as a result of p0922 or p2079 and cannot be changed. For the following events, independent of the signal that is present, tracking mode is selected: - after booting.   - after a $0 / 1$ signal at binector input p2658 (feedback signal, EPOS position actual value valid).   - while a fault is present.		
p2656   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	BI: EPOS enable basic pos   Can be changed: $\mathrm{C} 2(17), \mathrm{T}$   Data type: Unsigned32 / Binary   P-Group: Basic positioner   Not for motor type: -   Min	/ EPOS ena   Calculated:   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 3   Func. diagram: 3635   Unit selection: -   Expert list: 1   Factory setting   2526.3
Description: Dependency:	Sets the signal source to enable the basic positioner.   BI: p2656 = 1 signal   The basic positioner is enabled.   BI: p2656 $=0$ signal   The basic positioner is not enabled.		
p2657   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	CI: EPOS position actual va   Can be changed: $\mathrm{C} 2(17), \mathrm{T}$   Data type: Unsigned32 / Integer32   P-Group: Basic positioner   Not for motor type: -   Min	sition setti   Calculated:   Dyn. index: -   Unit group: -   Scaling: -   Max	t/set value   Access level: 3   Func. diagram: 3610, 3616   3620, 3635   Unit selection: -   Expert list: 1   Factory setting $2521[0]$
Description:   Dependency:   Note:	Sets the signal source for the position actual value/position setting value.   Refer to: r2521, p2658   In the tracking mode, the position setpoint is taken from this connector input.		

### 2.2 List of parameters

p2658	BI: EPOS position actual value valid feedback signal / Pos va	eedb
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: C2(17), T Calculated: -   Data type: Unsigned32 / Binary Dyn. index: -   P-Group: Basic positioner Unit group: -   Not for motor type: - Scaling: -   Min Max	Access level: 3   Func. diagram: 3635   Unit selection: -   Expert list: 1   Factory setting $2526.0$
Description:   Dependency: Note:	Sets the signal source for the feedback signal "position actual value is valid".   BI: p2658 = 1 signal   The position actual value received via Cl : p 2657 is valid.   BI: p2658 = 0 signal   The position actual value received via Cl : p 2657 is invalid.   Refer to: r2526, p2657   While a 0 signal is present, the position setpoint ( p 2665 ) is held at the value of 0 .	
p2659   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	BI: EPOS referencing active feedback signal / Ref act fdbk	Access level: 3   Func. diagram: 3612   Unit selection: -   Expert list: 1   Factory setting   2526.1
Description: Dependency:	Sets the signal source for the feedback signal "referencing active".   BI: p2659 = 1 signal   Referencing is active.   BI: p2659 = 0 signal   Referencing is not active.   Refer to: r2526	
p2660   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	CI: EPOS measured value referencing / Meas val ref	Access level: 3   Func. diagram: 3612, 3614   Unit selection: -   Expert list: 1   Factory setting   2523[0]
Description:   Dependency:	Sets the signal source for the measured value for the function "referencing".   Refer to: r2523	



### 2.2 List of parameters

r2665	CO: EPOS position setpoint / s_set	
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: - Calculated: -   Data type: Integer32 Dyn. index: -   P-Group: Basic positioner Unit group: -   Not for motor type: - Scaling: -   Min Max   $-[L U]$ $-[L U]$	Access level: 1   Func. diagram: 3635   Unit selection: -   Expert list: 1   Factory setting   - [LU]
Description: Dependency: Note:	Displays the actual absolute position setpoint.   Refer to: p2530   As standard, the following BICO interconnection is established: CI: p2530 $=$ r2665	
$\overline{\text { r2666 }}$   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	CO: EPOS velocity setpoint / v_set    Can be changed: - Calculated: -   Data type: Integer32 Dyn. index: -   P-Group: Basic positioner Unit group: -   Not for motor type: - Scaling: -   Min Max   $-[1000 \mathrm{LU} / \mathrm{min}]$ $-[1000 \mathrm{LU} / \mathrm{min}]$	Access level: 1   Func. diagram: 3635   Unit selection: -   Expert list: 1   Factory setting   - [1000 LU/min]
Description:   Dependency:   Note:	Displays the actual velocity setpoint.   Refer to: p2531   As standard, the following BICO interconnection is established: CI: p2531 = r2666	
r2667   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	CO: EPOS backlash compensation value / Backlash value	Access level: 1   Func. diagram: 3635   Unit selection: -   Expert list: 1   Factory setting   - [LU]
Description:   Dependency:   Note:	Displays the actual effective value for backlash compensation.   Refer to: p2516   As standard, the following BICO interconnection is established: CI: p2516 = r2667	
r2669   SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	CO/BO: EPOS actual operating mode / Op mode act	Access level: 1   Func. diagram: 3625, 3630   Unit selection: -   Expert list: 1   Factory setting
Description:	Displays the actual active operating mode.   Value $=00$ hex -> no operating mode active   Value $=01$ hex -> jogging active   Value $=02$ hex $->$ search for reference active   Value $=04$ hex $->$ traversing blocks active   Value $=08$ hex -> Positioning for direct setpoint input/MDI active   Value $=10$ hex -> Setting-up for direct setpoint input/MDI active   Value $=20$ hex $->$ flying referencing active	
Dependency:	Refer to: p2589, p2590, p2595, p2631, p2647, p2653	



## r2671

SERVO (EPOS),
VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)

CO: EPOS actual position setpoint / s_set act
Can be changed: - Calculated: -
Data type: Integer32
Dyn. index: -
P-Group: Basic positioner
Unit group: -
Scaling: -
Min
Max
Access level: 1
Func. diagram: 3610, 3616, 3620
Unit selection: -
Expert list: 1
Factory setting

- [LU]
- [LU]
- [LU]

Description:	Displays the position setpoint presently being processed.
Note:	A position of 0 is displayed for non position-related tasks (e.g. ENDLESS_POS, ENDLESS_NEG).

## r2672

SERVO (EPOS),
VECTOR (EPOS),
SERVO AC (EPOS),
VECTOR_AC (EPOS)

CO: EPOS actual velocity setpoint / v_set act		
Can be changed: -	Calculated: -	Access level: 1
Data type: Integer32	Dyn. index: -	Func. diagram: 3610,3612,
		3616,3620
P-Group: Basic positioner	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$-[1000$ LU/min $]$	$-[1000 \mathrm{LU} / \mathrm{min}]$	$-[1000 \mathrm{LU} / \mathrm{min}]$
Displays the velocity setpoint presently being processed.		

### 2.2 List of parameters

r2673	CO: EPOS actual acceleration override / a_over act		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3610, 3612, 3616, 3620
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the acceleration override presently being processed.		
Note:	An override of 100\% is effective in the "jogging" and "search for reference" operating modes.		
r2674	CO: EPOS actual deceleration override / -a_over act		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3610, 3612, 3616, 3620
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the deceleration override presently being processed.		
Note:	An override of 100\% is effective in the "jogging" and "search for reference" operating modes.		
r2675	CO: EPOS actual task / Task act		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 3616
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	9	-
Description:	Display and connector output for the order presently being processed.		
Value:			
	1: POSITIONING		
	2: FIXED STOP		
	3: ENDLESS_POS		
	4: ENDLESS_NEG		
	5: WAITING		
	6: GOTO		
	7: SET_O		
	8: RESET_O		
	9: JERK		
Dependency:	Refer to: p2621		


r2676	CO: EPOS actual task parameter / Task para act		
SERVO (EPOS),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Integer32	Dyn. index: -	Func. diagram: 3616
SERVO_AC (EPOS),	P-Group: Basic positioner	Unit group: -	Unit selection: -
VECTOR_AC (EPOS)	Scaling: -	Expert list: 1	
	Not for motor type: -	Max	Factory setting
	Min	-	-
	-		
Description:	Displays the task parameter presently being processed in the "traversing blocks" operating mode.		
Dependency:	Refer to: p2622		

Note: $\quad$ The following is displayed depending on the task: $\quad$| FIXED STOP: Clamping torque $(0 \ldots 65536[0.01 \mathrm{Nm}])$ or clamping force $(0 \ldots 65536[\mathrm{~N}])$ |
| :--- |
| WAIT: Delay time $[\mathrm{ms}]$ |
| GOTO: Block number |
| SET_O: $1,2,3$--> direct output 1,2 or 3 (both) is set |
| RESET_O: $1,2,3$--> direct output 1,2 or 3 (both) is reset |
| JERK: 0 --> deactivate, 1 --> activate |

r2677	CO: EPOS actual task mode / Task mode act		
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 3616
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the task mode presently being processed.		
Dependency:	Refer to: p2623		
r2678	CO: EPOS external block change actual position / Ext BlckChg s_act		
SERVO (EPOS),   VECTOR (EPOS),   SERVO_AC (EPOS),   VECTOR_AC (EPOS)	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dyn. index: -	Func. diagram: 3615, 3616, 3620
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [LU]	- [LU]	- [LU]
Description:	Displays the actual position for the following events:   - external block change via measuring probe (p2632 = 0, BI: p2661 $=0 / 1$ signal).   - external block change via BI: p2633 (p2632 = 1, BI: p2633 = 0/1 signal).   - activate traversing task (BI: p2631 = 0/1 signal).		
Dependency:	Refer to: p2631, p2632, p2633, p2661		


r2680	CO: EPOS clearance reference cam and zero mark / Clearance cam/ZM		
SERVO (EPOS),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Integer32	Dyn. index: -	Func. diagram: 3612
SERVO_AC (EPOS),	P-Group: Basic positioner	Unit group: -	Unit selection: -
VECTOR_AC (EPOS)	Scaling: -	Expert list: 1	
	Not for motor type: -	Max	Factory setting
	Min	$-[L U]$	$-[L U]$
	$-[L U]$		
Description:	Displays the clearance determined between the reference cam and zero mark in the search for reference.		

## r2681

SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)

CO: EPOS velocity override effective / v_over effective
Can be changed: -
Data type: FloatingPoint32
P-Group: Basic positioner
Not for motor type: -
Min

- [\%]

Displays the actual effective velocity override.
Refer to: p2571, p2646
The effective override can differ from the specified override due to limits (e.g. p2571, maximum velocity).

### 2.2 List of parameters



r2683.0... 14	CO/BO: EPOS status word 1 / POS_ZSW1				
SERVO (Pos ctrl), VECTOR (Pos ctrl), SERVO_AC (Pos ctrl), VECTOR_AC (Pos ctrl)	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned16		Dyn. index: -	Func. di	
	P-Group: Closed loop position control		Unit group: -	Unit sel	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factory	
	-		-	-	
Description: Bit field:	Displays status word 1 for the basic positioner (EPOS).				
		Signal name	1 signal	0 signal	FP
	00	Tracking mode active	Yes	No	$\begin{aligned} & 3635, \\ & 4020 \end{aligned}$
		Velocity limiting active	Yes	No	3630
	02	Setpoint fixed	Yes	No	3635
	03	Set position reached	Yes	No	3635
	04	Axis moves forward	Yes	No	3635
	05	Axis moves backward	Yes	No	3635
	06	Software limit switch minus reached	Yes	No	3635
	07	Software limit switch plus reached	Yes	No	3635
	08	Position actual value <= cam switching position 1	Yes	No	4025
	09	Position actual value <= cam switching position 2	Yes	No	4025
		Direct output 1 via traversing block	Yes	No	3616
		Direct output 2 via traversing block	Yes	No	3616
	12	Fixed stop reached	Yes	No	3616,
					3617
	13	Fixed stop clamping torque reached	Yes	No	$\begin{aligned} & 3616, \\ & 3617 \end{aligned}$
		Travel to fixed stop active	Yes	No	$\begin{aligned} & 3616, \\ & 3617 \end{aligned}$
Dependency:	Refer to: 2684				
Note:	For bit 02, 04, 05, 06, 07:				
	This signals designate the state after jerk limiting.				
	For bits 08, 09:				
	These signals are generated in the "closed-loop position control" function module.				
r2684.0... 15	CO/BO: EPOS status word 2 / POS_ZSW2				
SERVO (Pos ctrl),	Can be changed: -		Calculated: -	Access	
VECTOR (Pos ctrl),	Data type: Unsigned16		Dyn. index: -	Func.	
VECTOR_AC (Pos	P-Group: Closed loop position control		Unit group: -	Unit sel	
ctrl)	Not for motor type: -		Scaling: -	Expert I	
	Min		Max	Factory	
	-		-	-	
Description:	Displays status word 2 for the basic positioner (EPOS).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Search for reference active	Active	Not active	3612
	01	Flying referencing active	Active	Not active	3614
	02	Referencing active	Active	Not active	-
	03	Printing mark outside outer window	Yes	No	3614
	04	Axis accelerating	Yes	No	3635
	05	Axis decelerating	Yes	No	3635
	06	Jerk limiting active	Yes	No	3635
	07	Activate correction	Yes	No	3635
	08	Following error in tolerance	Yes	No	4025
	09	Modulo correction active	Yes	No	-
	10	Target position reached	Yes	No	4020

### 2.2 List of parameters

11	Reference point set	Yes	No	3612,   3614,            12	Acknowledgment traversing block activated
		Yes		No	3630
				3616,	
13	STOP cam minus active	Yes	No	3620	
14	STOP cam plus active	Yes	No	3630	
15	Traversing command active		No	3630	
					3635

## Note:

For bit 02:
The "referencing active" signal is an OR logic operation of "search for reference active" and "flying referencing active".
For bit 00 ... 07 and 11 ... 14 :
These signals are generated in the function module "basic positioner".
For bit 08:
The signal is generated in the "closed-loop position control" function module.

r2685	CO: EPOS corrective value / Correction value		
SERVO (EPOS),	Can be changed: -	Calculated: -	Access level: 1
VECTOR (EPOS),	Data type: Integer32	Dyn. index: -	Func. diagram: 3635
SERVO_AC (EPOS),	P-Group: Basic positioner	Unit group: -	Unit selection: -
VECTOR_AC (EPOS)	Scaling: -	Expert list: 1	
	Not for motor type: -	Max	Factory setting
	Min	$-[$ LU $]$	$-[$ LU $]$
	$-[$ [LU]		
Description:	Displays the corrective value for the position actual value.		
Dependency:	Refer to: r2684		
Note:	As standard, the following BICO interconnection is established: CI: p2513 = r2685		
	Using this value, for example, modulo corrections are carried out.		


r2686[0...1]	CO: EPOS force limit effective / F_limit eff		
SERVO (EPOS, Lin), SERVO_AC (EPOS, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3616, 3617
	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:			
	Displays the effective upper force limiting when traversing to fixed stop (referred to $\mathrm{Cl}: \mathrm{p} 1522, \mathrm{Cl}: \mathrm{p} 1523$ ). r2686[1]:		
	Displays the effective lower force limiting when traversing to fixed stop (referred to $\mathrm{Cl}: \mathrm{p} 1522, \mathrm{Cl}$ : p 1523 ).		
Index:	$\begin{aligned} & {[0]=\text { Upper }} \\ & {[1]=\text { Lower }} \end{aligned}$		
Dependency:	Refer to: p1520, p1521, p1522, p1523, r2676		
Note:	As standard, the following BICO interconnections are established:		
	CI: p1528 = r2686[0]		
	CI: p1529 = r2686[1]		



r2689[0...1]	CO: EPOS position feedback signal display / Pos_FS display		
SERVO (EPOS),	Can be changed: -	Calculated: -	Access level: 3
VECTOR (EPOS),	Data type: Unsigned32	Dyn. index: -	Func. diagram: 3616
VECTOR AC (EPOS)	P-Group: Basic positioner	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output for the traversing block number for position feedback signal.		
	Here, the block number of the traversing blocks is displayed bit-coded, whose absolute target positions lie within the tolerance window around the actual position.		
Index:	$\begin{aligned} & {[0]=\text { Position feedback signal low }} \\ & {[1]=\text { Position feedback signal high }} \end{aligned}$		
Dependency:	This parameter is only active when the "Position feedback signal" function is activated (p2584.0 = 1). Refer to: p2584, p2688		
Note:	CO: r2689[0]:		
	Bit-coded display of traversing block numbers 0 to 31		
	CO: r2689[1]:		
	Bit-coded display of traversing block numbers 32 to 63		



## p2692

SERVO (EPOS),
VECTOR (EPOS),
SERVO_AC (EPOS),
VECTOR_AC (EPOS)
CO: EPOS acceleration override, fixed setpoint / a_over fixed val

Data type: FloatingPoint32
Dyn. index: -
Func. diagram: 3618
P-Group: Basic positioner
Not for motor type: -
Unit group: - Unit selection: -
Not for motor type: - Scaling: -
Min Max
0.100 [\%] 100.000 [\%] 100.000 [\%]

Description:
Dependency:
Note:
Sets a fixed setpoint for the acceleration override.
Refer to: p2572, p2644
As standard, the following BICO interconnection is established: CI: p2644 $=$ r2692
The percentage value refers to the maximum acceleration (p2572).


p2695	CI: LR supplementary setpoint velocity / Suppl setp vel		
SERVO (EPOS, Pos	Can be changed: C2(25), T	Calculated: -	Access level: 1
ctrl), VECTOR (EPOS,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
(EPOS, Pos ctrl),	P-Group: Closed loop position control	Unit group: -	Unit selection: -
VECTOR_AC (EPOS,	Not for motor type: -	Scaling: -	Expert list: 1
Pos ctrl)	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the supplementary velocity setpoint of the position controller.		
Dependency:	Refer to: r2666		
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established:		
	BI: p2695 = r2697		

## r2696

SERVO (EPOS),
VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)

CO: EPOS position setpoint fine resolution / s_set fine res
Can be changed: -
Calculated: -
Dyn. index: - Func. diagram: -
Unit group: - Unit selection: -
Scaling: - Expert list: 1
Max Factory setting

- [LU]
- [LU]

Description: Display and connector output for the actual absolute position setpoint (floating point component).
Dependency: Refer to: r2665, p2694
Note: As standard, the following BICO interconnection is established:
CI: p2694 = r2696

r2697	CO: EPOS velocity setpoint fine resolution / v_set fine res
SERVO (EPOS), VECTOR (EPOS), SERVO_AC (EPOS), VECTOR_AC (EPOS)	Can be changed: - Calculated: - Access level: 1   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Basic positioner Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $-[1000$ LU/min $]$ $-[1000 \mathrm{LU} / \mathrm{min}]$ $-[1000 \mathrm{LU} / \mathrm{min}]$
Description: Dependency: Note:	Display and connector output for actual velocity setpoint (floating point component).   Refer to: r2666   As standard, the following BICO interconnection is established:   Cl: p2695 = r2697
r2700   SERVO, VECTOR, hLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, TM41, ENC	CO: Reference speed/reference frequency / n_ref/f_ref     Can be changed: - Calculated: - Access level: 2   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting
Description:	Display and connector output for the reference quantity for speed and frequency (p2000).   All speeds or frequencies specified as relative value are referred to this reference quantity.   The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).   This parameter has the unit rpm.   The following applies:   Reference frequency (in Hz ) $=$ reference speed (in rpm) / 60
Dependency:   Note:	Refer to: p2000   This BICO parameter provides the numerical value of the reference quantity p2000 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.   This BICO parameter is not suitable for interconnecting for cyclic communication.
r2700	CO: Reference velocity/reference frequency actual / v_ref/f_ref act
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: - Calculated: - Access level: 2   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:	Display and connector output for the actual reference quantity for velocity and frequency.   All velocities or frequencies specified as relative value are referred to this reference quantity.   The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).   The following applies:   Reference frequency (in Hz ) = reference velocity (in $\mathrm{m} / \mathrm{min}$ ) / 60
Dependency:	Refer to: p2000
Note:	This parameter represents the numerical value of the reference quantity in the currently selected units and is only available for interconnection with Drive Control Chart (DCC).   If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.   Example 1:   The signal of an analog input (e.g. r4055[0]) is connected to a velocity setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute velocity setpoint using the reference velocity ( p 2000 ).

Example 2:
The setpoint from PROFIBUS (r2050[1]) is connected to a velocity setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute velocity setpoint via reference velocity (p2000).


r2700	CO: Reference frequency actual / f_ref act		
S_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output of the actual reference quantity for the frequency (p2000).		
	All frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).		
	This parameter has the unit Hz .		
Dependency:	Refer to: p2000		
Note:	This BICO parameter provides the numerical value of the reference quantity p2000 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.		
	This BICO parameter is not suitable for interconnecting for cyclic communication.		

## r2700

ENC (Lin_enc)

Description:

### 2.2 List of parameters

Note:	This BICO parameter provides the numerical value of the reference quantity p2000 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.   This BICO parameter is not suitable for interconnecting for cyclic communication.
r2701	CO: Reference voltage / Reference voltage
HLA	Can be changed: - Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
	P-Group: - Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	- -
Description:	Display and connector output of the reference quantity for voltages p2001.
	All voltages specified as relative value are referred to this reference quantity.
	The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).
	This parameter has the unit V .
Dependency:	Refer to: p2001
Note:	This BICO parameter provides the numerical value of the reference quantity p2001 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.
	This BICO parameter is not suitable for interconnecting for cyclic communication.

## r2701

SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC, B_INF, TM41

## CO: Reference voltage / Reference voltage

Description: Connector output of the reference quantity for voltages p2001.

## Dependency

Can be changed:
Data type: FloatingPoint32
P-Group: -
Not for motor type: -
Min
-

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

## Access level: 3

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

All voltages specified as relative value are referred to this reference quantity.
The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).
This parameter has the unit Vrms.
Note: This BICO parameter provides the numerical value of the reference quantity p2001 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.
This BICO parameter is not suitable for interconnecting for cyclic communication.

## r2702

SERVO, VECTOR,
CO: Reference current / Reference current
HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM41

## Description:

Dependency:
Note:

Can be changed: -
Data type: FloatingPoint32
P-Group: -
Not for motor type: -
Min
-

Connector output of the reference quantity for currents p2002.
All currents specified as relative value are referred to this reference quantity.
The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).
This parameter has the unit Arms.
Refer to: p2002
This BICO parameter provides the numerical value of the reference quantity p2002 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.
This BICO parameter is not suitable for interconnecting for cyclic communication.

r2703	CO: Reference torque / Reference torque		
SERVO, VECTOR,   SERVO_AC,   VECTOR AC,   SERVO_IAC,   VECTOR_I_AC, TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output of the reference quantity p2003 for torque (r0108.12 = 0) or force (r0108.12 $=1$ ).		
	All torques specified as relative values (r0108.12 = $)$ or forces (r0108.12 = 1 ) are referred to this reference quantity.		
	The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).		
	The unit of this parameter is the same as the unit selected for p2003.		
Dependency:	p0505, r0108.12		
	Refer to: p2003		
Note:	This BICO parameter provides the numerical value of the reference quantity p2003 in the currently selected unit as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.		
	This BICO parameter is not suitable for interconnecting for cyclic communication.		
r2703	CO: Reference force actual / Ref force cur		
SERVO (Lin), HLA, SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: -   Data type: FloatingPoint32	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual reference quantity for forces.		
	All forces specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	p0505, r0108.12		
	Refer to: p2003		
Note:	This BICO parameter represents the numerical value of the reference quantity in the currently selected units and is only available for interconnection with Drive Control Chart (DCC).		
	This BICO parameter is not suitable for interconnecting for cyclic communication.   If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	Example:		
	The actual value of the total force ( $\mathrm{r} 0079[0]$ ) is connected to a test socket (e.g. p0771[0]). The actual force is cyclically converted into a percentage of the reference force ( p 2003 ) and output according to the parameterized scaling.		


r2704	CO: Reference power / Reference power		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_I_AC, } \end{aligned}$	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF,	Min	Max	Factory setting
B_INF, TM41	-	-	-
Description:	Connector output of the reference quantity for powers p2004.		
	All power ratings specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).		
	The unit of this parameter is the same as the unit selected for p2004.		
Dependency:	This value is calculated as Refer to: r2004	for the infeed and	or closed-loop con

### 2.2 List of parameters

Note: | This BICO parameter provides the numerical value of the reference quantity p2004 in the currently selected unit as a |
| :--- |
| connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted |
| unchanged from this connector output in DCC. |
| This BICO parameter is not suitable for interconnecting for cyclic communication. |
| The reference power is calculated as follows: |
| -2 * Pi * reference speed $/ 60$ * reference torque (motor) |
|  |
| - reference voltage * reference current * root(3) (infeed) |



r2706	CO: Reference temperature / Reference temp		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC, SERVO I AC,	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF,	Min	Max	Factory setting
$\begin{aligned} & \text { B_INF, TM } 31 \text {, TM } 41 \text {, } \\ & \text { TM120, TM150 } \end{aligned}$		-	-
Description:	Connector output of the reference quantity for temperatures.		
	All temperatures specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).		
	This parameter has the unit degree Celsius.		
Note:	This BICO parameter provides the numerical value of the reference quantity for the temperature as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC.		
	This BICO parameter is not suitable for interconnecting for cyclic communication.		

## r2707

SERVO, VECTOR
HLA, SERVO_AC,
VECTOR AC,
SERVO_IAC, P-Group:-
VECTOR_I_AC, TM41 Not for motor type: -
Min
CO: Reference acceleration / Ref accel

Connector output of the reference quantity for accelerations p2007.
All acceleration rates specified as relative value are referred to this reference quantity.
The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).
The unit of this parameter is the same as the unit selected for p2007.
Dependency: r0108.12, p0505
Refer to: p2007

This BICO parameter provides the numerical value of the reference quantity p2007 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value in the currently selected unit can be adopted unchanged from this connector output in DCC.
This BICO parameter is not suitable for interconnecting for cyclic communication.

p2720[0...n]	Load gear configuration / Load gear config				
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(1,4)$		Calculated: -	Access level: 1	
HLA, SERVO_AC,	Data type: Unsigned32		Dyn. index: DDS, p0180	Func. diagram: -	
SERVO I AC,	P-Group: Encoder		Unit group: -	Unit selection: -	
VECTOR_I_AC	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000 bin	
Description:	Sets the configuration for position tracking of a load gear.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Load gear activate posid	Yes	No	-
	01	Axis type	Linear axis	Rotary axis	-
	02	Load gear reset position	Yes	No	-

Note: $\quad$ For the following events, the non-volatile, saved position values are automatically reset:

- when an encoder replacement has been identified.
- when changing the configuration of the Encoder Data Set (EDS).
- when adjusting the absolute encoder again

p2721[0...n]	Load gear rotary absolute encoder revolutions virtual / Abs rot rev		
SERVO, VECTOR,	Can be changed: C2(1, 4)	Calculated: -	Access level: 1
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: -
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_IAC, } \end{aligned}$	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4194303	0
Description:	Sets the number of rotations that can be resolved for a rotary absolute encoder with activated position tracking of the load gear.		
Dependency:	This parameter is only of significance for an absolute encoder (p0404.1 = 1) with activated position tracking of the load gear (p2720.0 = 1) .		
Note:	The resolution that is set must be able to be represented using r2723.		
	For rotary axes/modulo axes, the following applies:		
	This parameter is pre-set with p0421 when activating position tracking and can be changed.		
	For linear axes, the following applies:		
	This parameter is pre-assigned with p0421 when activating position tracking, expanded by 6 bits for multiturn information (maximum number of overflows) and cannot be changed.		


p2722[0...n]	Load gear position tracking tolerance window / Pos track tol		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(1,4)$	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_AC, SERVO_IAC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	4294967300.00	0.00
Description:	Sets a tolerance window for position tracking.		
	After the system is switched on, the difference between the saved position and the actual position is determined, and depending on this, the following is initiated:		
	Difference within the tolerance window --> The position is reproduced as a result of the encoder actual value.		
	Difference outside the tolerance window --> An appropriate message is output.		
Dependency:	Refer to: F07449		

### 2.2 List of parameters

Caution: Rotation, for example through a complete encoder range is not detected.

Note: The value is entered in integer (complete) encoder pulses.
For p2720.0 = 1, the value is automatically pre-assigned quarter of the encoder range.
Example:
Quarter of the encoder range $=(p 0408$ * p 0421$) / 4$
It is possible that the tolerance window may not be able to be precisely set due to the data type (floating point number with 23 bit mantissa).

r2723[0...n]	CO: Load gear absolute value / Load gear abs_val		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 1
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: 4010,4704
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Factory setting	
	-	-	
Description:	Displays the absolute value after the load gear.		
Notice:	The encoder position actual value must be requested using the encoder control word Gn_STW. 13.		
Note:	The increments are displayed in the format the same as r0483.		


r2724[0...n]	CO: Load gear position difference / Load gear pos diff		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 1
HLA, SERVO_AC,	Data type: Integer32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting

Description: Displays the position difference before the load gear between switching off and switching on.
Note: The increments are displayed in the same format as for r0483/r2723.
If the measuring gear of the motor encoder is not activated, the position difference should be read in encoder increments.

If the measuring gear of the motor encoder is activated, the position difference is converted using the measuring gear factor.


p2733[0...n]	CO: LR encoder adjustment DDS / Enc_adjust DDS		
SERVO (Pos ctrl),	Can be changed: C2(25), T	Calculated: -	Access level: 4
VECTOR (Pos ctrl),	Data type: Unsigned8	Dyn. index: EDS, p0140	Func. diagram: 4010
SERVO_AC (Pos ctrl),	P-Group: Closed loop position control	Unit group: -	Unit selection: -
VECTOR_AC (Pos	Not for motor type: -	Scaling: -	Expert list: 1
ctrl)	Min	Max	Factory setting
	0	255	0
Description:	Number of the drive data set when adjusting the absolute encoder.		
Dependency:	Refer to: p0404, p2507, p2525		
Note:	This DDS number is only relevant for absolute encoders.		
	The drive determines the value when adjusting the absolute encoder and the user should not change it.		
	DDS: Drive Data Set		


p2810[0..1]	BI: AND logic operation inputs / AND inputs	
SERVO, VECTOR,	Can be changed: T	Calculated: -
HLA, SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: -
VECTOR_AC,	P-Group: Functions	Unit group: -
SERVO_I_AC,	Not for motor type: -	Scaling: -
VECTOR_I_AC	Min	Max
	-	
	Sets the signal sources for the inputs of the AND logic operation.	
Description:	Refer to: r2811	
Dependency:	[0]: AND logic operation, input $1-->$ the result is displayed in r2811.0.	
Note:	[1]: AND logic operation, input $2-->$ the result is displayed in r2811.0.	


r2811.0	CO/BO: AND logic operation result / AND result		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2634
VECTOR_AC,	P-Group: Functions	Unit group: -	Unit selection: -
SERVO_IAC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	-	-	-
Description:	Display and BICO output for the result of the AND logic operation.	1 signal	Yes
Bit field:	Bit Signal name		No
	00 AND condition fulfilled		
Dependency:	Refer to: p2810		FP

p2816[0...1] BI: OR logic operation inputs / OR inputs

SERVO VECTOR
Can be changed: $T$
Data type: Unsigned32 / Binary
P-Group: Functions
Not for motor type: -
Min

-     - 

Sets the signal sources for the inputs of the OR logic operation.
$\begin{array}{ll}\text { Description: } & \text { Sets the signal } \\ \text { Dependency: } & \text { Refer to: r2817 }\end{array}$
Note:
[0]: OR logic operation, input 1 --> the result is displayed in r2817.0.
[1]: OR logic operation, input 2 --> the result is displayed in r2817.0.

Access level: 2
Func. diagram: 2634
Unit selection: -
Expert list: 1
Factory setting 0

### 2.2 List of parameters




p2900[0...n]	CO: Fixed value 1 [	1 [\%]	
SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P-Group: Setpoints   Not for motor type: -   Min   -10000.00 [\%]	Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: PERCENT   Max   10000.00 [\%]	Access level: 3   Func. diagram: 1021   Unit selection:   Expert list: 1   Factory setting $0.00 \text { [\%] }$
Description:   Dependency:   Notice:   Note:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. The value can be used to interconnect a scaling function (e.g. scaling the main setpoint).		s on the effective data set. tpoint).
p2900	CO: Fixed value 1 [\%] / Fixed value 1 [\%]		
A_INF (Dyn. grid support, Line transf, Suppl cl-loop ctrl), R_INF (Dyn. grid support, Line transf, Suppl cl-loop ctrl)	Can be changed: U, T   Data type: FloatingPoint32   P-Group: Setpoints   Not for motor type: -   Min -10000.00 [\%]	Calculated: -   Dyn. index: -   Unit group: -   Scaling: PERCENT   Max   10000.00 [\%]	Access level: 3   Func. diagram: 1021   Unit selection: -   Expert list: 1   Factory setting $0.00 \text { [\%] }$
Description:   Dependency:   Notice:   Note:	Setting and connector outpu Refer to: p2901, r2902, p2930 A BICO interconnection to a The value can be used to int	entage value. elongs to a drive data set ing function (e.g. scaling th	s on the effective data set.


p2901[0...n]	CO: Fixed value 2 [\%] / Fixed value 2 [\%]		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 1021
VECTOR_AC,	P-Group: Setpoints	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: PERCENT	Expert list: 1
VECTOR_I_AC	Min	Factory setting	
	$-10000.00[\%]$	0.00 [\%]	
	Setting and connector output for a fixed percentage value.		
Description:	Refer to: p2900, p2930		
Dependency:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Notice:	The value can be used to interconnect a scaling function (e.g. scaling of the supplementary setpoint)		

## p2901

A_INF (Dyn. grid support, Line transf,
Suppl cl-loop ctrl)
R_INF (Dyn. grid
support, Line transf
Suppl cl-loop ctrl)

Description:
Dependency
Notice:
Note:

## CO: Fixed value 2 [\%] / Fixed value 2 [\%]

Can be changed: $U, T$
Data type: FloatingPoint32
P-Group: Setpoints
Not for motor type: -
Min
-10000.00 [\%]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: PERCENT
Max
10000.00 [\%]

Access level: 3
Func. diagram: 1021
Unit selection: -
Expert list: 1
Factory setting
0.00 [\%]

Setting and connector output for a fixed percentage value.
Refer to: p2900, p2930
A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.
The value can be used to interconnect a scaling function (e.g. scaling of the supplementary setpoint)

### 2.2 List of parameters

r2902[0...14]	CO: Fixed values [\%] / Fixed values [\%]		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -   Data type: FloatingPoint32   P-Group: Setpoints   Not for motor type: -   Min - [\%]	Calculated: -   Dyn. index: -   Unit group: -   Scaling: PERCENT   Max - [\%]	Access level: 1   Func. diagram: 1021   Unit selection: -   Expert list: 1   Factory setting - [\%]
Description: Index:	Display and connector outp   [0] = Fixed value +0 \%   [1] = Fixed value $+5 \%$   [2] = Fixed value +10 \%   [3] = Fixed value +20 \%   [4] = Fixed value $+50 \%$   [5] = Fixed value $+100 \%$   [6] = Fixed value $+150 \%$   [7] = Fixed value $+200 \%$   [8] = Fixed value -5 \%   [9] = Fixed value -10 \%   [10] = Fixed value -20 \%   [11] = Fixed value -50 \%   [12] = Fixed value -100 \%   [13] = Fixed value -150 \%   [14] = Fixed value -200 \%	used percentage values.	
Dependency:	Refer to: p2900, p2901, p2930		
Note:	The signal sources can, for example, be used to interconnect scalings.		
p2930[0...n]	CO: Fixed value F [N] / Fixed value F [N]		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Setpoints	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-100000.00 [N]	100000.00 [ N$]$	0.00 [ N$]$
Description:   Dependency:   Notice:   Note:	Setting and connector outpu   Refer to: p2900, p2901, r29   A BICO interconnection to a   The value can, for example	value.   belongs to a drive data set connect a supplementary f	s on the effective data set.
p2930[0...n]	CO: Fixed value M [Nm] / Fixed value M [Nm]		
SERVO, VECTOR,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 1021
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_I_AC, } \end{aligned}$	P-Group: Setpoints	Unit group: 7_1	Unit selection: p0505
VECTOR_I_AC	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-100000.00 [Nm]	$100000.00[\mathrm{Nm}]$	0.00 [ Nm ]
Description:	Setting and connector output for a fixed torque value.		
Dependency:	Refer to: p2900, p2901, r2902		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The value can, for example, be used to interconnect a supplementary torque.		


p2930[0...n]	CO: Fixed value F [N] / Fixed value F [N]		
SERVO (Lin),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 1021
	P-Group: Setpoints	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-100000.00 [ N ]	100000.00 [ N$]$	0.00 [ N$]$
Description:	Setting and connector output for a fixed force value.		
Dependency:	Refer to: p2900, p2901, r2902		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The value can, for example, be used to interconnect a supplementary force.		
r2969[0...6]	Flux model value display / Psi_mod val displ		
VECTOR ( $\mathrm{n} / \mathrm{M}$ ),   VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ),   VECTOR_I_AC (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the values of the direct access flux model for the synchronous reluctance motor (RESM) for diagnostic purposes.		
	Valid values are only displayed when the pulses are inhibited.		
	For index [0]:		
	Displays the entered direct axis current id in Arms:		
	For index [1, 2, 3]:		
	Displays the saturation curves of the direct axis flux psid(id, iq):		
	- r2969[1]: flux in Vsrms with respect to the direct axis current for iq $=0$		
	- r2969[2]: flux in Vsrms with respect to the direct axis current for iq $=0.5$ * p2950		
	- r2969[3]: flux in Vsrms with respect to the direct axis current for iq $=$ p2950		
	For index [4, 5, 6]:		
	Displays the relative error of the current inversion (id(psid, iq) - id) / p2950:		
	- r2969[4]: error with respect to direct axis current for iq $=0$		
	- r2969[5]: error with respect to direct axis current for iq $=0.5$ * p2950		
	- r2969[6]: error with respect to direct axis current for iq = p2950		
Index:	[0] = d-current		
	[1] = d-flux iq0		
	[2] = d-flux iq1		
	[3] = d-flux iq2		
	[4] = d-current error iq0		
	[5] = d-current error iq1		
	[6] = d-current error iq2		
Note:	RESM: reluctance synchronous motor (sync	ronous reluctance motor)	


p3011[0...n]	MotID current control adaptation lower starting point identified / I_adapt low ident		
SERVO, SERVO_AC,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	6000.00 [Arms]	0.00 [Arms]
Description:	Starting point of the current-dependent current controller adaptation determined by the motor data identification routine.		
Dependency:	Refer to: p0356, p0391, p0392, p0393, r1934, r1935, p1960		
p3012[0...n]	MotID current control adaptation upper starting point identified / I_adapt up ident		
SERVO, SERVO_AC,	Can be changed: $U, T$	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	6000.00 [Arms]	0.00 [Arms]
Description:	Starting point of the current-dependent current controller adaptation for the upper point determined by the motor data identification routine.		
	This value can be changed after the identification and accepted in p0392 with p1910/p $1960=-3$.		
Dependency:	Refer to: p0356, p0391, p0392, p0393, r1934, r1935, p1960		


p3013[0...n]	Motld current controller adaptation P gain identified / I_adapt Kp ident		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\%]$	$1000.00[\%]$	$0.00[\%]$
Description:	Factor for the P gain of the current controller in the adaptation range determined by the motor data identification		
	routine. The value is referred to p1715.		
	This value can be changed after the identification and accepted in p0393 with p1910/p1960 $=-3$.		


p3016	Motld torque constant identified / kT ident		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: 28_1	Unit selection: p0100
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{Nm} / \mathrm{A}]$	$100.00[\mathrm{Nm} / \mathrm{A}]$	$0.00[\mathrm{Nm} / \mathrm{A}]$
Description:	Torque constant for the synchronous motor determined by the motor data identification.		
	This torque constant can be changed after the identification and accepted in p0316 with p1910/p1960 = -3.		
Dependency:	Refer to: $\mathrm{p} 0316, \mathrm{rO334}, \mathrm{r} 1937, \mathrm{p} 1960$		



p3027	Motld optimum load angle identified / phi_load opt ident		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: U, T   Data type: FloatingPoint32   P-Group: Motor identification   Not for motor type: ASM, SESM, REL   Min   $0.0\left[^{\circ}\right]$	Calculated: CALC_MOD_ALL   Dyn. index: -   Unit group: -   Scaling: -   Max   $135.0\left[{ }^{\circ}\right]$	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   $0.0\left[^{\circ}\right]$
Description: Dependency:	Optimum load angle for a synchronous motor determined by the motor data identification.   This optimum load angle can be changed after the identification and accepted in p0327 with p1910/p1960 $=-3$.		
p3028   SERVO, SERVO_AC, SERVO_I_AC	Motld reluctance torque consta   Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P-Group: Motor identification   Not for motor type: ASM, SESM, REL Min   $-1000.00[\mathrm{mH}]$	identified / kT_reluct ide   Calculated: CALC_MOD_ALL   Dyn. index: -   Unit group: -   Scaling: -   Max   $1000.00[\mathrm{mH}]$	Access level: 3   Func. diagram:   Unit selection:   Expert list: 1   Factory setting $0.00[\mathrm{mH}]$
Description:	Reluctance torque constant for a synchronous motor determined by the motor data identification. This reluctance torque constant can be changed after the identification and accepted in p0328 with p1910/p1960 = 3.		
$\begin{aligned} & \hline \text { p3028 } \\ & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$	Motld reluctance force constan   Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P-Group: Motor identification   Not for motor type: ASM, SESM, REL Min $-1000.00[\mathrm{mH}]$	dentified / kT_reluct iden   Calculated: CALC_MOD_ALL   Dyn. index: -   Unit group: -   Scaling: -   Max   1000.00 [mH]	Access level: 3   Func. diagram:   Unit selection:   Expert list: 1   Factory setting   0.00 [ mH ]
Description: Dependency:	Reluctance force constant for a synchronous motor determined by the motor data identification. This reluctance force constant can be changed after the identification and accepted in p0328 with p1910/p1960 $=-3$.		
p3030 HLA	Chld factor plane adaptation p   Can be changed: U, T   Data type: FloatingPoint32   P-Group: Motor identification   Not for motor type: -   Min   10.00 [\%]	tive / Chld pl_adap pos   Calculated: CALC_MOD_ALL   Dyn. index: -   Unit group: -   Scaling: -   Max   200.00 [\%]	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   100.00 [\%]
Description: Dependency:	Sets the factor for the plane compensation in the positive direction from the characteristic identification. This value corresponds to p1830 of the drive data set selected for the identification.		



Bit field:	$\begin{aligned} & \text { Bit } \\ & 00 \end{aligned}$	Signal name Invert velocity actual value	$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$	$0 \text { signal }$ No	FP   4710,   4711,   4715
	01	Invert position actual value	Yes	No	4704
Dependency:	Ref	to: p0410, p1910, p1960			
p3033		transition point com	Q1 positiv	ChId	
HLA		be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access	
	Dat	type: FloatingPoint32	Dyn. index: -	Func.	
	P-G	oup: Motor identification	Unit group: -	Unit se	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max	Factory	
	0.01		95.00 [\%]	0.01 [\%	
Description:		ays the flow rate $Q$ for point fication.	zero range) of the	ompensa	cteristic
		value corresponds to p1833 of	data set selected	tion.	
Dependency:	Ref	to: r1833, p1833			
p3034		transition point com	on U1 positiv	ChId	
HLA		be changed: $U, T$	Calculated: -	Access	
		type: FloatingPoint32	Dyn. index: -	Func.	
		up: Motor identification	Unit group: -	Unit se	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
	0.00	\%]	95.00 [\%]	0.00 [\%	
Description:		ays the voltage $U$ for point 1 fication.	ro range) of the	mpensatio	teristic
	This	value corresponds to p1834 of	data set selected	tion.	
Dependency:	Ref	to: p1834			
p3035		transition point com	on rounding	ge /	pos
HLA		be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access	
		type: FloatingPoint32	Dyn. index: -	Func.	
		oup: Motor identification	Unit group: -	Unit se	
		or motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
	0.00		30.00 [\%]	0.00 [\%	
Description:	Dis ider	ays the rounding for point 1 pos fication.	ro range) of the trand	mpensation	eristic
	This	value corresponds to p1835 of	data set selected	ton.	
Dependency:	Ref	to: p1835			
p3036		dransition point com	Q1 negative	/ Chid tr	
HLA	Can	be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access	
		type: FloatingPoint32	Dyn. index: -	Func.	
		oup: Motor identification	Unit group: -	Unit se	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
	0.01		95.00 [\%]	0.01 [\%	
Description:	$\begin{aligned} & \text { Disp } \\ & \text { ider } \end{aligned}$	ays the flow rate $Q$ for point fication.	(zero range) of th	compensat	acteristic
	This	value corresponds to p1836 of	data set selected	tion.	
Dependency:		to: r1836, p1836			


p3037	Chid transition point compensation U1 negative zero range / Chid tr pt U1 neg		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	95.00 [\%]	0.00 [\%]
Description:	Displays the voltage $U$ for point 1 negative (zero range) of the transition point compensation from the characteristic identification.   This value corresponds to p 1837 of the drive data set selected for the identification.		
Dependency:	Refer to: r1837, p1837		
p3038	ChId transition point compensation rounding 1 neg. zero range / Chld TrPtRnd 1 neg		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	30.00 [\%]	0.00 [\%]
Description:	Displays the rounding for point 1 negative (zero range) of the transition point compensation from the characteristic identification.		
	This value corresponds to p1838 of the drive data set selected for the identification.		
Dependency:	Refer to: r1838, p1838		
p3039	ChId transition point compensation Q2 positive / Chid tr pt Q2 pos		
HLA	Can be changed: $U$, $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.02 [\%]	95.00 [\%]	10.00 [\%]
Description:	Displays the flow rate Q for point 2 positive of the transition point compensation from the characteristic identification. This value corresponds to p1839 of the drive data set selected for the identification.		
Dependency:	Refer to: p1839		
p3040	ChId transition point compensation U2 positive / Chld tr pt U2 pos		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	95.00 [\%]	10.00 [\%]
Description:	Displays the voltage U for point 2 positive of the transition point compensation from the characteristic identification. This value corresponds to p1840 of the drive data set selected for the identification.		
Dependency:	Refer to: p1840		



p3042	Motld load moment of inertia identified / Load mom ident		
SERVO, SERVO_AC,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: 25_1	Unit selection: p0100
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ $\mathrm{kgm}^{2}$ ]	- [ $\mathrm{kgm}^{2}$ ]	- [ $\mathrm{kgm}^{2}$ ]
Description:	Load moment of inertia determined by the motor data identification.		
	This load moment of inertia can be changed after the identification and accepted in p1498 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0342, p1498, p1960, r1969		
Note:	For p1910/p1960 $=-3$, p0342 is set to 1 (ratio between the total and motor).		
p3042	Motld load mass identified / Load mass ident		
SERVO (Lin),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: 27_1	Unit selection: p0100
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [kg]	- [kg]	- [kg]
Description:	Load mass determined by the motor data identification.		
	This load mass can be changed after the identification and accepted in p1498 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0342, p1498, p1960, r1969		
Note:	For p1910/p1960 $=-3$, p0342 is set to 1 (ratio between the total and motor).		
p3043	ChId transition point compensation U2 negative / ChId tr pt U2 neg		
HLA	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	95.00 [\%]	0.00 [\%]
Description:	Displays the voltage U for point 2 negative of the transition point compensation from the characteristic identification. This value corresponds to p1843 of the drive data set selected for the identification.		
Dependency:	Refer to: p1843		
p3044	ChId transition point compensation rounding 2 negative / ChId TrPtRnd 2 neg		
HLA	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	30.00 [\%]	0.00 [\%]
Description:	Displays the rounding for point 2 negative of the transition point compensation from the characteristic identification. This value corresponds to p1844 of the drive data set selected for the identification.		
Dependency:	Refer to: p1844		



p3046	Motld force characteristic kT3	T3 ident	
SERVO (Ext M_ctrl, Lin), SERVO_AC (Ext M_ctrl, Lin), SERVO_I_AC (Ext M_ctrl, Lin)	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P-Group: Motor identification   Not for motor type: ASM, SESM, REL Min	Calculated: CALC_MOD_ALL   Dyn. index: -   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram: -   Unit selection: -   Expert list: 1   Factory setting
Description: Dependency:	Coefficient $\mathrm{kT3}$ for the force characteristic for a synchronous linear motor determined by the motor data identification. This coefficient can be changed after the identification and accepted in p0646 with p1910/p1960 $=-3$.   Refer to: p0645, p0646, p0647, p0648, p1960, p3045, p3047, p3048		
p3046   SERVO (Ext M_ctrl), SERVO_AC (Ext M_ctrl), SERVO_I_AC (Ext M_ctrl)	Motld torque characteristic kT3   Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: Motor identification   Not for motor type: ASM, SESM, REL Min	entified / kT3 ident   Calculated: CALC_MOD_ALL   Dyn. index: -   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting
Description: Dependency:	Coefficient kT3 for the torque character This coefficient can be changed after the Refer to: p0645, p0646, p0647, p0648,	or a synchronous motor determ ntification and accepted in p06 0, p3045, p3047, p3048	the motor data identification. p1910/p1960 = -3
p3047	Chld transition point compensation Q3 negative saturation / Chid TrPt Q3 neg S		
HLA	Can be changed: U, T   Data type: FloatingPoint32   P-Group: Motor identification   Not for motor type: -   Min   0.20 [\%]	Calculated: CALC_MOD_ALL   Dyn. index: -   Unit group: -   Scaling: -   Max   100.00 [\%]	Access level: 3   Func. diagram: -   Unit selection: -   Expert list: 1   Factory setting $100.00 \text { [\%] }$
Description:	Displays the flow rate $Q$ for point 3 negative (saturation) of the transition point compensation from the characteristic identification.   This value corresponds to p1845 of the drive data set selected for the identification.		
p3047	Motld force characteristic kT5 identified / kT5 ident		
SERVO (Ext M_ctrl, Lin), SERVO_AC (Ext M_ctrl, Lin), SERVO_I_AC (Ext M_ctrl, Lin)	Can be changed: U, T   Data type: FloatingPoint32   P-Group: Motor identification   Not for motor type: ASM, SESM, REL Min	Calculated: CALC_MOD_ALL   Dyn. index: -   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram: -   Unit selection: -   Expert list: 1   Factory setting
Description: Dependency:	Coefficient kT5 for the force characteristic for a synchronous linear motor determined by the motor data identification This coefficient can be changed after the identification and accepted in p0647 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0645, p0646, p0647, p0648, p1960, p3045, p3046, p3048		

### 2.2 List of parameters

p3047	ristic k	T5 id	
SERVO (Ext M_crrl),   SERVO_AC (Ext   M_ctrl), SERVO_I_AC   (Ext M_ctrI)	Can be changed: U, T   Data type: FloatingPoint32   P-Group: Motor identification   Not for motor type: ASM, SESM, REL Min	Calculated: CALC_MOD_ALL   Dyn. index: -   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting
Description: Dependency:	Coefficient kT5 for the torque characteristic for a synchronous motor determined by the motor data identification. This coefficient can be changed after the identification and accepted in p0647 with p1910/p1960 $=-3$.		
p3048 HLA	ChId transition point compens   Can be changed: U, T   Data type: FloatingPoint32   P-Group: Motor identification   Not for motor type: -   Min   0.20 [\%]	U3 negative saturatio   Calculated: CALC_MOD_ALL   Dyn. index: -   Unit group: -   Scaling: -   Max   100.00 [\%]	Chld TrPt U3 neg S   Access level: 3   Func. diagram: -   Unit selection: -   Expert list: 1   Factory setting $100.00 \text { [\%] }$
Description: Dependency:	Displays the voltage $U$ for point 3 negative (saturation) of the transition point compensation from the characteristic identification.		
p3048   SERVO (Ext M_ctrl, Lin), SERVO_AC (Ext M_ctrl, Lin), SERVO_I_AC (Ext M_ctrl, Lin)	Motld force characteristic kT7   Can be changed: U, T   Data type: FloatingPoint32   P-Group: Motor identification   Not for motor type: ASM, SESM, REL Min	ntified / kT7 ident   Calculated: CALC_MOD_ALL   Dyn. index: -   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting
Description: Dependency:	Coefficient $\mathrm{kT7}$ for the force characteristic This coefficient can be changed after the Refer to: p0645, p0646, p0647, p0648, p	a synchronous linear motor ntification and accepted in p0 0, p3045, p3046, p3047	ed by the motor data identification. ר p1910/p1960 = -3.
p3048   SERVO (Ext M_ctrl), SERVO_AC (Ext M_ctrl), SERVO_I_AC (Ext M_ctrl)	Motld torque characteristic kT   Can be changed: U, T   Data type: FloatingPoint32   P-Group: Motor identification   Not for motor type: ASM, SESM, REL Min	dentified / kT7 ident   Calculated: CALC_MOD_ALL   Dyn. index: -   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting
Description: Dependency:	Coefficient $\mathrm{kT7}$ for the torque characteristic for a synchronous motor determined by the motor data identification. This coefficient can be changed after the identification and accepted in p0648 with p1910/p1960 $=-3$.		


p3049[0...n]	Motld Speed at start of field weakening identified / ident		
SERVO, SERVO_AC,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [rpm]	210000.00000 [rpm]	0.00000 [rpm]
Description:	Speed at the start of field weakening determined by the motor data identification.		
Dependency:	Refer to: p0348, p1910, p1960		
p3049[0...n]	Motld Speed at start of field weakening identified / v_Fieldweak ident		
SERVO (Lin),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
SERVO_I_AC (Lin)	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [m/min]	1300.00000 [m/min]	0.00000 [ $\mathrm{m} / \mathrm{min}$ ]
Description:	Velocity at the start of field weakening determined by the motor data identification.		
Dependency:	Refer to: p0348, p1910, p1960		
p3050[0...n]	Motorld stator resistance identified / R_stator ident		
SERVO, SERVO_AC,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: 16_1	Unit selection: p0349
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [ohm]	2000.00000 [ohm]	0.00000 [ohm]
Description:	Stator resistance determined by the motor data identification.		
	This stator resistance can be changed after the identification and accepted in p0350 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0350, p1910, r1912		
p3054[0...n]	Motld rotor resistance identified / R_rotor ident		
SERVO, SERVO_AC,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: 16_1	Unit selection: p0349
	Not for motor type: PMSM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [ohm]	300.00000 [ohm]	0.00000 [ohm]
Description:	Rotor resistance for an induction motor determined by the motor data identification.		
Dependency:	Refer to: p0354, p0625, p1910, r1927, p1960		
Note:	The parameter is not used for synchronous motors (p0300 = 2xx).		


p3056[0...n]	Motld stator leakage inductance identified / L_stator leak		
SERVO, SERVO_AC,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: 15_1	Unit selection: p0349
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [mH]	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Stator leakage inductance determined by the motor data identification.		
	This stator leakage inductance can be changed after the identification and accepted in p0356 with p1910/p1960 = -3.		
Dependency:	Refer to: p0356, p1910, r1932		
p3058[0...n]	Motld rotor leakage inductance identified / L_rotor leak		
SERVO, SERVO_AC,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: 15_1	Unit selection: p0349
	Not for motor type: PMSM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00000[\mathrm{mH}]$	$1000.00000[\mathrm{mH}]$	0.00000 [mH]
Description:	Rotor leakage induction for an induction motor determined by the motor data identification.		
	This rotor leakage inductance can be changed after the identification and accepted in p0358 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0358, p1910, r1932		
p3060[0...n]	Motld magnetizing inductance identified / Motld Lh ident		
SERVO, SERVO_AC,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: 15_1	Unit selection: p0349
	Not for motor type: PMSM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [mH]	$10000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Magnetizing inductance for an induction motor determined by the motor data identification.   This magnetizing inductance can be changed after the identification and accepted in p0360 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p0360, p1910, r1936, p1960		
p3065	MotID periodic position error amplitude 1 / MotID pos err amp1		
SERVO	Can be changed: $U, T$	Calculated: -	Access level: 3
(Cog_M_comp),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
(Cog_M_comp),	P-Group: Motor identification	Unit group: -	Unit selection: -
SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Cog_M_comp)	Min	Max	Factory setting
	0.0	20000.0	0.0
Description:	Determined amplitude to compensate periodic position errors in fine pulses for the error with one sinusoidal period per mechanical revolution.   The value is determined by the motor data identification routine.		
Dependency:	Refer to: p5250, p5265		
Note:	This value can be changed after the identification and accepted in p5265 with p1910/p1960 $=-3$.		



### 2.2 List of parameters



p3081	Motld flux controller integral time identified / Flux ctrl Tn ident		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: PMSM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	0 [ms]
Description:	Integral time of the flux controller for an induction motor determined by the motor data identification. This integral time can be changed after the identification and accepted in p1592 with p1910/p1960 = -3.		
Dependency:	Refer to: p1592, p1910		
p3082	Motld current controller P gain identified / I_ctrl Kp ident		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: 18_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [V/A]	100000.000 [V/A]	0.000 [V/A]
Description:	P gain of the current controller determined by the motor data identification.		
	This P gain can be changed after the identification and accepted in p 1715 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p1715, p1910		
p3083	Chld maximum positive velocity / Chld v_max pos		
HLA	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [m/min]	1300.000 [m/min]	0.000 [m/min]
Description:	Displays the maximum velocity for the positive direction from the characteristic identification.   This value corresponds to the maximum possible value in p1083 of the drive data set selected for the identification.		
Dependency:	Refer to: p1083		
p3083	Motld current controller integral time identified / I_ctrl Tn ident		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	0.00 [ms]
Description:	Integral time of the current controller determined by the motor data identification.		
Dependency:	Refer to: p1717, p1910		


p3086	ChId maximum negative velocity / Chid v_max neg		
HLA	Can be changed: $U, T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1300.000 [ $\mathrm{m} / \mathrm{min}$ ]	0.000 [ $\mathrm{m} / \mathrm{min}$ ]	0.000 [m/min]
Description:	Displays the maximum velocity for the negative direction from the characteristic identification. This value corresponds to the minimum possible value in p1086 of the drive data set selected for the identification.		
Dependency:	Refer to: p1086		
p3088	Motld Motor model changeover speed operation with encoder ident. / MotMod n_chgSnsorl		
SERVO, SERVO_AC,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [rpm]	210000.00000 [rpm]	0.00000 [rpm]
Description:	Changeover speed for the motor model with encoder determined by the motor data identification. This changeover speed can be changed after the identification and accepted in p1752 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p1752, p1910		
p3088	Motld Motor model changeover vel. operat. with encod. ident. / v_chg Ident encod		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: U, T   Data type: FloatingPoint32   P-Group: Motor identification	Calculated: CALC_MOD_ALL	Access level: 3
		Dyn. index: -	Func. diagram: -
		Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [m/min]	1300.00000 [m/min]	0.00000 [ $\mathrm{m} / \mathrm{min}$ ]
Description:	Changeover velocity for the motor model with encoder determined by the motor data identification. This changeover velocity can be changed after the identification and accepted in p1752 with p1910/p1960 $=-3$.		
Dependency:	Refer to: p1752, p1910		
p3090[0...n]	PolID elasticity-based configuration / PolID el config		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_CON	Access level: 3
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0000 bin
Description:	Sets the configuration for the elasticity-based pole position identification.		
	Depending on the mechanical design (sequence: motor - encoder - brake) and on the braking force, the pole position identification routine can result in deflections with a different control sense.		
	For bit $00=0$ :		
	The deflection caused by the pole position identification acts in the positive control sense.		
	For bit $00=1$ :		
	The deflection caused by the pole position identification acts in the negative control sense.   This can only occur for a linear measuring system if a brake is installed between the machine and the measuring system and the brake is powerful enough to do this.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 Sign change	Yes	No


Dependency:	Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3091, p3092, p3093, p3094, p3095, p3096, r3097		
	Refer to: F07995		
Note:	PollD el: pole position identification, elasticity-based		
p3091[0...n]	PollD elasticity-based ramp time / PollD el t_ramp		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	250.0 [ms]
Description:	Sets the ramp time for the current increase when executing the elasticity-based pole position identification. The current is ramped up in order to reduce the mechanical load on the machine.		
Dependency:	Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3090, p3092, p3093, p3094, p3095, p3096, r3097		
	Refer to: F07995		
Note:	PollD el: pole position identification, elasticity-based		
p3092[0...n]	PollD elasticity-based wait time / PollD el t_wait		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	100.0 [ms]
Description:	Sets the wait time between two measurements when executing the elasticity-based pole position identification. The wait time between two measurements is necessary in order to avoid mechanical resonance effects.		
Dependency:	Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3090, p3091, p3093, p3094, p3095, p3096, r3097		
	Refer to: F07995		
Note:	PoIID el: pole position identification, elasticity-based		
p3093[0...n]	PollD elasticity-based measurement number / PollD el meas		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	6	56	12
Description:	Sets the number of measuring operations when executing the elasticity-based pole position identification. When the value is increased, the result is more accurate, however, the identification takes longer.		
Dependency:	Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3090, p3091, p3092, p3094, p3095, p3096, r3097		
	Refer to: F07995		
Note:	PollD el: pole position identific	-based	


p3094[0...n]	PoIID elasticity-based deflection expected / PolID el defl exp		
SERVO, SERVO_AC,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000 [ $\left.{ }^{\circ}\right]$	$\left.90.0000{ }^{\circ}\right]$	0.0030 [ ${ }^{\circ}$ ]
Description:	Sets the expected deflection when executing the elasticity-based pole position identification. The following setting makes sense: p3094 < p3095		
Dependency:	```Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3090, p3091, p3092, p3093, p3095, p3096, r3097```		
	Refer to: F07995		
Note:	Polld el: pole position identification, elasticity-based		
p3094[0...n]	PoIID elasticity-based deflection expected / PoIID el defl exp		
SERVO (Lin),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_CON	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000 [mm]	90.0000 [mm]	0.0030 [mm]
Description:	Sets the expected deflection when executing the elasticity-based pole position identification. The following setting makes sense: p3094 < p3095		
Dependency:	```Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3090, p3091, p3092, p3093, p3095, p3096, r3097```		
	Refer to: F07995		
Note:	Polld el: pole position identification, elasticity-based		
p3095[0...n]	PolID elasticity-based deflection permissible / PoIID el defl exp		
SERVO, SERVO_AC,	Can be changed: $U, T$	Calculated: CALC_MOD_CON	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000 [ $\left.{ }^{\circ}\right]$	$\left.90.0000{ }^{\circ}\right]$	1.0000 [ $\left.{ }^{\circ}\right]$
Description:	Sets the permissible deflection when executing the elasticity-based pole position identification. The following setting makes sense: p3094 < p3095		
Dependency:	Refer to: p1980, p1981, p1982, p1983, r1984, r1985, r1986, r1987, p1990, r1992, p3090, p3091, p3092, p3093, p3094, p3096, r3097		
	Refer to: F07995		
Note:	Polld el: pole position identification, elasticity-based		
p3095[0...n]	PolID elasticity-based deflection permissible / PoIID el defl exp		
SERVO (Lin),	Can be changed: $U, T$	Calculated: CALC_MOD_CON	Access level: 3
SERVO_AC (Lin), SERVO AC (Lin)	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000 [mm]	90.0000 [mm]	1.0000 [mm]
Description:	Sets the permissible deflection when executing the elasticity-based pole position identification. The following setting makes sense: p3094 < p3095		



### 2.2 List of parameters

PolID el: pole position identification, elasticity-based
For bit $00 \ldots 15:$
Displays the actual status of the elasticity-based pole position identification.
For bits $16 \ldots 23:$
Displays the status for the background state machine.
For bits $24 \ldots 31:$
Displays the status for the time slices state machine.


p3101[0...1]	Setting UTC time / Set UTC time		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Min	Max	Factory setting
CU_S120_DP,	4294967295	0	

Description: Setting the UTC time.
This means that the drive system is synchronized to the time specified by the time master.
To start p3101[1] must be written to followed by p3101[0]. After writing to p3101[0], the UTC time is accepted.

Index:	$[0]=$ Milliseconds
	$[1]=$ Days

Dependency: Refer to: p3100

r3102[0..1]	Displaying UTC time / Display UTC time		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Min	Max	Factory setting
CU_S120_DP,	-	-	
CU_S150_DP,	-		
CU_I_D410	Displaying the current UTC time.		
Description:	$[0]=$ Milliseconds		
Index:	$[1]=$ Days		




	26:	UTC+7 (WIB)		
	27:	UTC+8 (CST)		
	28:	UTC+8:30 (PYT)		
	29:	UTC+8:45 (ACW		
	30:	UTC+9 (JST)		
	31:	UTC+9:30 (ACS		
	32:	UTC+10 (AEST)		
	33:	UTC+10:30 (ACD		
	34:	UTC+11 (AEDT)		
	35:	UTC+12 (ANAT)		
	36:	UTC+13 (NZDT)		
	37:	UTC+13:45 (CHA		
	38:	UTC+14 (LINT)		
Dependency:	Refer to: p3103			
r3107[0...3]	UTC synchronization time out of tolerance / UTC t_sync out tol			
CU_I, CU_NX_CX,		changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,		pe: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S120_PN,		p: -	Unit group: -	Unit selection: -
CU_S150_PN,		motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min		Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-		-	-
Description:	Displays the last synchronizing event that was out of tolerance.   [ 0 ] = Milliseconds after sync   [1] = Days after sync   [2] = Milliseconds before sync   [3] = Days before sync			
Index:				
Dependency:	Refer to: p3109			
	Refer to: A01099			
Note:	For r3107[0, 1]:			
	Displays the UTC time after synchronization.			
	For 3107[2, 3]:			
	Displays the UTC time before synchronization.			
r3108[0...1]	UTC synchronization deviation / UTC sync_dev			
CU_I, CU_NX_CX,		changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,		pe: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S120_PN,		p: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not	motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min		Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$			-	
Description:	Displays the absolute value of the last synchronization deviation that was determined.   [0] = Milliseconds   [1] = Days			
Index:				
p3109	UTC synchronization tolerance / UTC sync tol			
CU_I, CU_NX_CX,	Can	changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,		pe: Unsigned16	Dyn. index: -	Func. diagram: -
CUS S 120 PN,			Unit group: -	Unit selection: -
CU_S150_PN,		motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min		Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0 [		10000 [ms]	$100 \text { [ms] }$
Description:	Sets the tolerance for time of day synchronization.			
	When this tolerance is exceeded, an appropriate alarm is output.			
Dependency:	Refer to: A01099			

### 2.2 List of parameters

p3110	External fault 3 switch-on delay / Ext fault 3 t_on	
All objects	Can be changed: U, T Calculated: -   Data type: Unsigned16 Dyn. index: -   P-Group: Messages Unit group: -   Not for motor type: - Scaling: :-   Min Max   $0[\mathrm{~ms}]$ $1000[\mathrm{~ms}]$	Access level: 3   Func. diagram: 2546   Unit selection: -   Expert list: 1   Factory setting   0 [ms]
Description:   Dependency:	Sets the delay time for external fault 3 .   Refer to: p2108, p3111, p3112   Refer to: F07862	
p3111   CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, TM31, TM17, TM15, TM15DI_DO, TM120, TM150, TB30, TM54F_MA, TM54F_SL, ENC, HUB, CU_LINK	BI: External fault 3 enable / Ext fault 3 enab	Access level: 3   Func. diagram: 2546   Unit selection: -   Expert list: 1   Factory setting   1
Description:	Sets the signal source for the enable signal of external fault 3.   External fault 3 is initiated by the following AND logic operation:   - BI: p2108 negated   - BI: p3111   - BI: p3112 negated   Refer to: p2108, p3110, p3112   Refer to: F07862	
p3111[0...n]   SERVO, VECTOR,   hLA, SERVO_AC,   VECTOR_AC,   SERVO_IAC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM41	BI: External fault 3 enable / Ext fault 3 enab	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   1
Description:	Sets the signal source for the enable signal of external fault 3.   External fault 3 is initiated by the following AND logic operation:   - BI: p2108 negated   - BI: p3111   - BI: p3112 negated	
Dependency:	Refer to: p2108, p3110, p3112   Refer to: F07862	


p3112	BI: External fault 3 enable negated / Ext flt 3 enab neg			
CU_I, CU_NX_CX,   $C U$ S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   CU_I_D410, TM31,   TM17, TM15,   TM15DI_DO, TM120,   TM150, TB30,   TM54F_MA,   TM54F_SL, ENC,   HUB, CU_LINK	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: Unsigned32 / Binary   P-Group: Messages   Not for motor type: -   Min	Calculated:   Dyn. index:   Unit group: -   Scaling: -   Max	Acces   Func.   Unit se   Expert   Factor   0	
Description:	Sets the signal source for the negated enable signal of external fault 3. External fault 3 is initiated by the following AND logic operation:   - BI: p2108 negated   - BI: p3111   - BI: p3112 negated			
Dependency:	Refer to: p2108, p3110, p3111   Refer to: F07862			
p3112[0...n]	BI: External fault 3 enable negated / Ext flt 3 enab neg			
SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_IAC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM41	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: Unsigned32 / Binary   P-Group: Messages   Not for motor type: -   Min	Calculated: -   Dyn. index: CDS, p0170   Unit group: -   Scaling: -   Max	Acces   Func.   Unit se   Expert   Factor   0	
Description:	Sets the signal source for the negated enable signal of external fault 3. External fault 3 is initiated by the following AND logic operation:   - BI: p2108 negated   - BI: p3111   - BI: p3112 negated			
Dependency:	Refer to: p2108, p3110, p3111   Refer to: F07862			
r3113.0... 15	CO/BO: NAMUR message bit bar / NAMUR bit bar			
All objects	Can be changed: -   Data type: Unsigned16   P-Group: Messages   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max	Access   Func.   Unit se   Expert   Factory	
Description:	Display and BICO output for the status of the NAMUR message bit bar.   The faults and alarms are assigned to the appropriate signaling/message classes and influence a specific message bit.			
Bit field:	Bit Signal name   00 Fault converter information electronics/software error	$1 \text { signal }$ Yes	0 signal   No	
	01 Network fault	Yes	No	-
	02 DC link overvoltage	Yes	No	-
	03 Fault drive converter power electronics	Yes	No	-
	04 Drive converter overtemperature	Yes	No	-
	05 Ground fault	Yes	No	-

### 2.2 List of parameters

06	Motor overload	Yes	No	-
07	Bus error	Yes	No	
08	External safety-relevant shutdown	Yes	No	-
09	Mot encoder fault	Yes	No	-
10	Error communication internal	Yes	No	-
11	Fault infeed	Yes	No	-
15	Other faults	Yes	No	-

Note:
For bit 00:
Hardware or software malfunction was identified. Carry out a POWER ON of the component involved. If it occurs again, contact Technical Support.
For bit 01:
A line supply fault has occurred (phase failure, voltage level, ...). Check the line supply / fuses. Check the supply voltage. Check the wiring.
For bit 02:
The DC link voltage has assumed an inadmissibly high value. Check the dimensioning of the system (line supply, reactor, voltages). Check the infeed settings.
For bit 03:
An inadmissible operating state of the power electronics was identified (overcurrent, overtemperature, IGBT failure,
...). Check that the permissible load cycles are maintained. Check the ambient temperatures (fan).
For bit 04:
The temperature in the component has exceeded the highest permissible limit. Check the ambient temperature / control cabinet cooling.
For bit 05:
A ground fault / inter-phase short-circuit was detected in the power cables or in the motor windings. Check the power cables (connection). Check the motor.

For bit 06:
The motor was operated outside the permissible limits (temperature, current, torque, ...). Check the load cycles and limits that have been set. Check the ambient temperature / motor cooling.
For bit 07:
The communication to the higher-level control system (internal coupling, PROFIBUS, PROFINET, ...) is either faulted or interrupted. Check the state of the higher-level control system. Check the communication connection/wiring. Check the bus configuration / clock cycles.
For bit 08:
A safety operation monitoring function (Safety) has detected an error.
For bit 09:
When evaluating the encoder signals (track signals, zero marks, absolute values, ...) an illegal signal state was detected. Check the encoder / state of the encoder signals. Observe the maximum frequencies.
For bit 10:
The internal communication between the SINAMICS components is faulted or interrupted. Check the DRIVE-CLiQ wiring. Ensure an EMC-compliant design. Observe the maximum permissible quantity structure / clock cycles. For bit 11:
The infeed is faulted or has failed. Check the infeed and the surroundings (line supply, filter, reactors, fuses, ...). Check the closed-loop infeed control.

For bit 15:
Group fault. Determine the precise cause of the fault using the commissioning tool.

r3114.9...11	CO/BO: Messages status word global / Msg ZSW global		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 2
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Displays, signals	Unit group: -	Unit selection: -
CU_S120_PN,	Sot for motor type: -	Max	Expert list: 1
CU_S150_PN,	Min	Factory setting	
CU_S120_DP,	-	-	
CU_S150_DP,	-		
CU_I_D410			
Description:	Displays the global status word for messages.		
	The appropriate bit is set if at least one message is present at the drive objects.		


Bit field:		Signal name	1 signal	0 signal	FP
		Group alarm present	Yes	No	8065
	10	Group fault present	Yes	No	8060
	11	Safety group message present	Yes	No	-
Note:	The status bits are displayed with delay.				
r3115[0...63]	Fault drive object initiating / F DO initiating				
All objects	Can be changed: -		Calculated: -	Acces	
	Data type: Integer32		Dyn. index: -	Func. diagram: 8050, 8060	
	P-Group: Messages		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the drive object number of the initiating drive object for this fault as integer number. Value $=63$ :				
	The fault was initiated by the drive object itself.				
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3120, r3122				
Notice:	The values of this parameter are only saved in a volatile fashion and are lost when switching off or for a warm restart.				
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).				
	The structure of the fault buffer and the assignment of the indices is shown in r0945.				
p3116	BI: Suppress automatic acknowledgment / Ackn suppress				
CU_I, CU_NX_CX, CU S AC DP,	Can be changed: U, T		Calculated: -	Access level: 3	
	Data type: Unsigned32 / Binary		Dyn. index: -	Func. diagram: -	
CU_S120_PN,	P-Group: Messages		Unit group: -	Unit selection: -	
CU_S150_PN,	Not for motor type: -		Scaling: -	Expert list: 1	
CU_S120_DP,	Min		Max	Factory setting	
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-		-		
Description:	Sets the signal source for the automatic acknowledgment of Control Unit faults.				
	BI: p3116 = 0 signal				
	Acknowledgeable faults are automatically acknowledged on the Control Unit.				
	Control Unit faults with LOCAL propagation are passed on to the first active drive object.				
	BI: p3116 = 1 signal				
	Acknowledgeable faults are not automatically acknowledged on the Control Unit.				
	Control Unit faults with LOCAL propagation are not passed on.				
Dependency:	Refer to: p2102, p2103, p2104, p2105, p3981				
Note:	When selecting a standard telegram, the BICO interconnection for control signal STW1.10 (master control by PLC) is automatically established.				
p3117	Change safety message type / Ch. Sl mess type				
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: C1(1)		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Messages		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	0		1	0	
Description:	Sets the re-parameterization of all safety messages for faults and alarms.				
	The relevant message type during changeover is selected by the firmware.				
	0: Safety messages are not re-parameterized				
	1: Safety messages are re-parameterized				
Note:	A change only becomes effective after a POWER ON.				


r3120[0..63]	Component fault / Comp fault		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8060
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the component of the fault which has occurred.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3122		
Note:	Value = 0: Assignment to a component not possible.		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
r3121[0..63]	Component alarm / Comp alarm		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8065
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the component of the alarm which has occurred.		
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r2145, r2146, r3123		
Note:	Value $=0$ : Assignment to a component not possible.		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		


r3122[0...63]	Diagnostic attribute fault / Diag_attr fault			
All objects	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Messages	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the diagnostic attribute of the fault which has occurred.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Hardware replacement recommended	Yes	No	-
	15 Message has gone	Yes	No	-
	16 PROFIdrive fault class bit 0	High	Low	-
	17 PROFIdrive fault class bit 1	High	Low	-
	18 PROFIdrive fault class bit 2	High	Low	-
	19 PROFIdrive fault class bit 3	High	Low	-
	20 PROFldrive fault class bit 4	High	Low	-
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3120			
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).			
	The structure of the fault buffer and the assignment of the indices is shown in r0945.			
	For bits $20 . . .16$ :			
	Bits 20, 19, 18, 17, $16=0,0,0,0,0-->$ PROFldrive message class 0 : not assigned			
	Bits 20, 19, 18, 17, $16=0,0,0,0,1$--> PROFldrive message class 1: hardware fault/software error			
	Bits 20, 19, 18, 17, $16=0,0,0,1,0-->$ PROFIdrive message class 2 : line fault			
	Bits 20, 19, 18, 17, $16=0,0,0,1,1$--> PROFIdrive message class 3 : supply voltage fault			
	Bits 20, 19, 18, 17, $16=0,0,1,0,0$--> PROFIdrive message class 4: DC link fault			
	Bits 20, 19, 18, 17, $16=0,0,1,0,1-->$ PROFIdrive message class 5: power electronics faulted			
	Bits 20, 19, 18, 17, $16=0,0,1,1,0-->$ PROFldrive message class 6: overtemperature electronic components			

Bits $20,19,18,17,16=0,0,1,1,1$--> PROFldrive message class 7 : ground fault/phase fault detected
Bits 20, 19, 18, 17, $16=0,1,0,0,0$--> PROFIdrive message class 8: motor overload
Bits 20, 19, 18, 17, $16=0,1,0,0,1-->$ PROFIdrive message class 9: communication error to the higher-level control Bits 20, 19, 18, 17, $16=0,1,0,1,0$--> PROFldrive message class 10 : safe monitoring channel has identified an error
Bits $20,19,18,17,16=0,1,0,1,1$--> PROFIdrive message class 11: incorrect position actual value/speed actual value or not available
Bits 20, 19, 18, 17, $16=0,1,1,0,0$--> PROFIdrive message class 12: internal (DRIVE-CLiQ) communication error
Bits 20, 19, 18, 17, $16=0,1,1,0,1$--> PROFIdrive message class 13 : infeed unit faulted
Bits 20, 19, 18, 17, $16=0,1,1,1,0-->$ PROFIdrive message class 14: braking controller/Braking Module faulted
Bits 20, 19, 18, 17, $16=0,1,1,1,1$--> PROFIdrive message class 15 : line filter faulted
Bits $20,19,18,17,16=1,0,0,0,0$--> PROFIdrive message class 16 : external measured value/signal state outside the permissible range
Bits $20,19,18,17,16=1,0,0,0,1$--> PROFIdrive message class 17 : application/technology function faulted
Bits 20, 19, 18, 17, $16=1,0,0,1,0$--> PROFIdrive message class 18: error in the parameterization/configuration/commissioning sequence
Bits 20, 19, 18, 17, $16=1,0,0,1,1$--> PROFIdrive message class 19: general drive fault
Bits $20,19,18,17,16=0,1,1,0,0-->$ PROFIdrive message class 20 : auxiliary unit faulted

r3123[0...63]	Diagnostic attribute alarm / Diag_attr alarm				
All objects	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 8065	
	P-Group: Messages		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-			-	
Description:	Displays the diagnostic attribute of the alarm which has occurred.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Hardware replacement recommended	Yes	No	-
	11	Alarm class bit 0	High	Low	-
	12	Alarm class bit 1	High	Low	-
	13	Maintenance required	Yes	No	-
	14	Maintenance urgently required	Yes	No	-
	15	Message has gone	Yes	No	-
	16	PROFIdrive fault class bit 0	High	Low	-
	17	PROFIdrive fault class bit 1	High	Low	-
	18	PROFIdrive fault class bit 2	High	Low	-
	19	PROFIdrive fault class bit 3	High	Low	-
	20	PROFIdrive fault class bit 4	High	Low	-
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r2145, r2146, r3121				
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).				
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.				
	For bit 12, 11:				
	These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.				
	For bits $20 . . .16$ :				
	Bits 20, 19, 18, 17, $16=0,0,0,0,0$--> PROFIdrive message class 0 : not assigned				
	Bits $20,19,18,17,16=0,0,0,0,1-->$ PROFldrive message class 1: hardware fault/software error				
	Bits $20,19,18,17,16=0,0,0,1,0-->$ PROFIdrive message class 2 : line fault				
	Bits $20,19,18,17,16=0,0,0,1,1$--> PROFIdrive message class 3 : supply voltage fault				
	Bits 20, 19, 18, 17, $16=0,0,1,0,0$--> PROFIdrive message class 4: DC link fault				
	Bits 20, 19, 18, 17, $16=0,0,1,0,1$--> PROFIdrive message class 5: power electronics faulted				
	Bits 20, 19, 18, 17, $16=0,0,1,1,0$--> PROFIdrive message class 6: overtemperature electronic components				
	Bits $20,19,18,17,16=0,0,1,1,1-->$ PROFIdrive message class 7 : ground faul/phase fault detected				
	Bits 20, 19, 18, 17, $16=0,1,0,0,0$--> PROFldrive message class 8: motor overload				
	Bits $20,19,18,17,16=0,1,0,0,1-->$ PROFIdrive message class 9 : communication error to the higher-level con				

### 2.2 List of parameters

Bits $20,19,18,17,16=0,1,0,1,0-->$ PROFldrive message class 10 : safe monitoring channel has identified an error

Bits 20, 19, 18, 17, $16=0,1,0,1,1$--> PROFIdrive message class 11 : incorrect position actual value/speed actual value or not available
Bits 20, 19, 18, 17, $16=0,1,1,0,0-->$ PROFIdrive message class 12: internal (DRIVE-CLiQ) communication error Bits 20, 19, 18, 17, $16=0,1,1,0,1$--> PROFIdrive message class 13: infeed unit faulted
Bits 20, 19, 18, 17, $16=0,1,1,1,0$--> PROFldrive message class 14: braking controller/Braking Module faulted
Bits 20, 19, 18, 17, $16=0,1,1,1,1-->$ PROFIdrive message class 15 : line filter faulted
Bits $20,19,18,17,16=1,0,0,0,0$--> PROFIdrive message class 16 : external measured value/signal state outside the permissible range
Bits 20, 19, 18, 17, $16=1,0,0,0,1$--> PROFIdrive message class 17: application/technology function faulted
Bits 20, 19, 18, 17, $16=1,0,0,1,0$--> PROFIdrive message class 18: error in the parameterization/configuration/commissioning sequence
Bits 20, 19, 18, 17, $16=1,0,0,1,1$--> PROFIdrive message class 19: general drive fault
Bits 20, 19, 18, 17, $16=0,1,1,0,0$--> PROFIdrive message class 20 : auxiliary unit faulted

r3131	CO: Actual fault value / Act fault val					
All objects	Can	e changed: -		lated: -	Access	
	Data	type: Integer32	Dyn.	index: -	Func.	
	P-Gr	up: Messages	Unit	group: -	Unit se	
	Not $f$	or motor type: -	Scal	ng: -	Expert	
	Min		Max		Factory	
	-		-		-	
Description:	Displays the fault value of the oldest active fault.					
Dependency:	Refer to: r2131, r3132					
r3132	CO: Actual component number / Comp_no act					
All objects	Can be changed: -		Calculated: - Acces			
	Data type: Integer32		Dyn. index: -		Func. diagram: 8060	
	P-Group: Messages		Unit group: -		Unit selection: -	
	Not for motor type: -		Scaling: -		Expert list: 1	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the component number of the oldest fault that is still active.					
Dependency:	Refer to: r2131, r3131					
p3135	Suppress active fault / Supp act flt					
SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM41	Can be changed: U, T		Calculated: -		Access level: 4	
	Data type: Unsigned32		Dyn. index: -		Func. diagram: 8060	
	P-Group: Messages		Unit group: -		Unit selection: -	
	Not for motor type: -		Scaling: -		Expert list: 1	
	Min		Max		Factory setting	
	-		-		0000000000000000 bin	
Description:	Sets the suppression of r2139.3 "Fault present" for certain fault responses.					
Bit field:		Signal name		1 signal	$0 \text { signal }$OFF	FP
		Suppression of fault	ER	ON		
		Suppression of fault			OFF	-
Dependency:	Refer to: p0491, r2139					
Note:	Depending on the suppression of a fault reaction in this parameter, r2139.1 "Acknowledgment required" is set when at least one fault occurs.					
	For bit 08:					
	The suppression is only effective if p0491 $=1$.					


p3201[0...n]	Excitation current outside the tolerance threshold value / I_exc n Tol thresh		
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [\%]	100.0 [\%]	10.0 [\%]
Description:	Sets the threshold value for the "excitation current outside tolerance" message for the excitation current monitoring. If the absolute value of the difference between the excitation current setpoint and actual value (r1641-r1626) exceeds the threshold value and the hysteresis is longer than the selected delay time, then fault F07913 is output. This fault is withdrawn when the threshold voltage is undershot.		
Dependency:	Refer to: r1626, r1641, p3202, p3203		
	Refer to: F07913		
Note:	The monitoring function is only carried out for separately excited synchronized motors (p0300 = 5).		
p3202[0...n]	Excitation current outside the tolerance hysteresis / I_exc n Tol hyst		
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [\%]	100.0 [\%]	10.0 [\%]
Description:	Sets the hysteresis for the "excitation current outside tolerance" message for the excitation current monitoring.		
Dependency:	Refer to: p3201, p3203		
	Refer to: F07913		
Note:	The monitoring function is only carried out for separately excited synchronized motors (p0300 = 5).		
p3203[0...n]	Excitation current outside the tolerance delay time / I_exc n Tol t_del		
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [s]	10.0 [s]	1.0 [s]
Description:	Sets the delay time for the "excitation current outside tolerance" message for the excitation current monitoring.		
Dependency:	Refer to: p3201, p3202		
	Refer to: F07913		
Note:	The monitoring function is only carried out for separately excited synchronized motors (p0300 = 5).		


p3204[0...n]	Flux outside the tolerance threshold value / Flux n tol thresh		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [\%]	100.0 [\%]	10.0 [\%]
Description:	Sets the threshold value for the "flux outside the tolerance" message for the flux monitoring.   If the absolute value of the difference between the flux setpoint and actual value (r0083-r0084) falls below the threshold value with hysteresis longer than the selected delay time, then fault F07914 is output.   This fault is withdrawn when the threshold voltage is undershot.		
Dependency:	Refer to: r0083, r0084, p3205, p3206		
	Refer to: F07914		
Note:	The monitoring function is only carried out for separately excited synchronized motors ( $\mathrm{p} 0300=5$ ). The flux monitoring is only active after magnetizing (r0056.4 = 1).		


p3205[0...n]	Flux outside the tolerance hysteresis / Flux $\mathbf{n}$ tol hyst		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [\%]	50.0 [\%]	10.0 [\%]
Description:	Sets the hysteresis for the "flux outside tolerance" message for the flux monitoring.		
Dependency:	Refer to: p3204, p3206		
	Refer to: F07914		
Note:	The monitoring function is only carried out for separately excited synchronized motors ( $\mathrm{p} 0300=5$ ). The flux monitoring is only active after magnetizing (r0056.4 = 1).		


p3206[0...n]	Flux outside tolerance delay time / Flux n tol t_del		
VECTOR,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [s]	10.0 [s]	5.0 [s]
Description:	Sets the delay time for the "flux outside tolerance" message for the flux monitoring.		
Dependency:	Refer to: p3204, p3205		
	Refer to: F07914		
Note:	The monitoring function is only carried out for separately excited synchronized motors ( $\mathrm{p} 0300=5$ ). The flux monitoring is only active after magnetizing (r0056.4 = 1).		


p3207[0...n]	Zero current signal threshold value / I_0_sig thresh		
VECTOR,   VECTOR_AC,	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 3
VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Unit group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.01 [Arms]	10000.00 [Arms]	1.00 [Arms]
Description:	Sets the threshold value for the zero current signal for the zero current monitoring.   If the absolute current falls below the threshold value then r2199.6 is set to 1 after the delay time has expired. The bit is reset if the threshold value and the hysteresis are exceeded again.		
Dependency:	Refer to: r2199, p3208, p3209		
Note:	The monitoring function is only carried out for separately excited synchronized motors (p0300 = 5).		
	The monitoring is only carried out for speeds less than the speed threshold value in p2161 (r2199.0 = 1).		


p3208[0...n]	Zero current signal hysteresis / I_0_sig hyst		
VECTOR, VECTOR_AC,	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 3
VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Unit group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.01 [Arms]	10000.00 [Arms]	1.00 [Arms]
Description:	Sets the hysteresis for the zero current signal for the zero current monitoring.		
Dependency:	Refer to: p3207, p3209		
Note:	The monitoring function is only carried out for separately excited synchronized motors ( $0300=5$ ).		
	The monitoring is only carried out for speeds less than the speed threshold value in p2161 (r2199.0 = 1).		


p3209[0...n]	Zero current signal delay time / I_0_sig t_del		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [s]	10.00 [s]	0.02 [s]
Description:	Sets the delay time for the zero current signal for the zero current monitoring.		
Dependency:	Refer to: p3207, p3208		
Note:	The monitoring function is only carried out for separately excited synchronized motors ( $\mathrm{p} 0300=5$ ).		
	The monitoring is only carried out for speeds less than the speed threshold in p 2161 (r2199.0 = 1).		


$\mathbf{p 3 2 3 3 [ 0 . . . n ] ~}$	Torque actual value filter time constant / M_act_filt T		
SERVO (Ext msg),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (Ext msg),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
SERVO_AC (Ext msg),	P-Group: Messages	Unit group: -	Unit selection: -
VECTOR_AC (Ext	Not for motor type: -	Scaling: -	Expert list: 1
msg), SERVO_I_AC	Max	Factory setting	
(Ext msg),	Min	$1000000[\mathrm{~ms}]$	0 [ms]
VECTOR_I_AC (Ext	$0[\mathrm{~ms}]$		
msg)	Sets the time constant for the PT1 element to smooth the torque actual value.		
Description:	The smoothed torque actual value is compared with the threshold values and is only used for messages and signals.		


p3235	Phase failure signal motor monitoring time / Ph_fail t_monit		
SERVO, VECTOR,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Messages	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	2000 [ms]	320 [ms]
Description:	Sets the monitoring time for phase failure detection of the motor.		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.		
Note:	Monitoring is only effective for blocksize and booksize power units.		
	For p3235 $=0$ the function is deactivated.		
	For VECTOR, the following applies:		
	The monitoring is automatically deactivated during a flying restart for a motor that is still rotating.		


p3236[0...n]	Speed threshold value 7 / n_thresh val 7		
VECTOR,   VECTOR_AC,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated:   CALC_MOD_LIM_REF	Access level: 3
VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	3000.00 [rpm]	100.00 [rpm]
Description:   Dependency:	Sets the speed threshold value for the signal "speed deviation model/external in tolerance" (BO: r2199.7). Refer to: r1443, r2169, r2199, p3237		


p3237[0...n]	Hysteresis speed 7 / n_hysteresis 7		
VECTOR,   VECTOR_AC,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated:   CALC_MOD_LIM_REF	Access level: 3
VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	200.00 [rpm]	2.00 [rpm]
Description:   Dependency:	Sets the hysteresis speed for the signal "speed deviation model/external" (BO: r2199.7). Refer to: r2199, p3236		
p3238[0...n]	OFF delay n_act_motor model = n_act external / t_del n_a = n_ext		
VECTOR,	Can be changed: $U, T$	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [s]	100.0 [s]	3.0 [s]
Description:	Sets the OFF delay for the signal "speed deviation model/external in tolerance" (BO: r2199.7). The smoothed actual speed of the motor model r 2169 is compared with the externally measured speed r1443 (threshold value p3236).		
Dependency:	Refer to: p3236, p3237		


$\overline{p 3240[0 \ldots n]}$   VECTOR (Ext msg), VECTOR_AC (Ext msg), VECTOR_I_AC (Ext msg)	CI: I2t input value signal source / I2t in_value s_src		
	Can be changed: T	Calculated: -	Access level: 4
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 8022
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input value of the freely parameterizable 12 t monitoring.		
Dependency:	Refer to: p3241, p3242, p3243, r3244		
Notice:	To activate the freely parameterizable I 2 t m   - the function module "Extended messages   - the maximum duration must be set greate	nitoring, the following appli monitoring" must be activate than zero (p3242 > 0).	$17=1)$.
Note:	Application example:		
	Excitation current monitoring for the separately excited synchronous motor.		
p3241[0...n]	Permissible I2t continuous value / Perm l2t cont val		
VECTOR (Ext msg), VECTOR_AC (Ext msg), VECTOR_I_AC (Ext msg)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8022
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the permissible continuous value of the freely parameterizable l2t monitoring.		
	The integrator value in r3244 decreases if the value received via connector input p3240 is higher than the value set in p3241.		
	The integrator value in r3244 increases if the value received via connector input p3240 is less than the value set in p3241.		
Dependency:	Refer to: p3240, p3242, p3243, r3244		


p3242[0...n]	12t maximum duration / 12t max_dur		
VECTOR (Ext msg), VECTOR_AC (Ext msg ), VECTOR_I_AC (Ext msg)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8022
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [s]	3600.00 [s]	0.00 [s]
Description:	Sets the maximum duration for $100 \%$ overload (corresponding to p3241+100\%) of the freely parameterizable I 2 t monitoring.		
	Setting example:		
	Operation should be possible at $150 \%$ of the input quantity for a duration of 3 s for a permissible continuous value p3241 = 110 \%.		
	As a consequence, the following settings value is obtained:		
	$\mathrm{p} 3242=((150 \times 150-110 \times 110) /((100+110) \times(100+110)-110 \times 110) \times 3 \mathrm{~s}=0.975 \mathrm{~s}$		
Dependency:	Refer to: p3240, p3241, p3243, r3244		
Notice:	For p3242 = 0, the freely parameterizable I2t monitoring is deactivated.		
Note:	After this time expires for $100 \%$ overload, fault F07824 is output and status bit r2199.14 is set.		
	For lower overload conditions, the permissible duration extends corresponding to the specified setting example.		

### 2.2 List of parameters

p3243[0...n]	I2t alarm threshold / I2t alarm thresh		
VECTOR (Ext msg),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC (Ext	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8022
(Ext msg)	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	99.90 [\%]	50.00 [\%]
Description:	Sets the alarm threshold for the I2t integrator value (r3244) scaled to $100 \%$. When the alarm threshold is reached, alarm A07823 is output and status bit r2199.13 is set.		
Dependency:	Refer to: p3240, p3241, p3242, r3244		
r3244	CO: Actual I2t integrator value / Act I2t integ_val		
VECTOR (Ext msg),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (Ext	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8022
(Ext msg)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual integrator value of the freely parameterizable $12 t$ monitoring. The value is scaled, so that the maximum permissible overload is reached at $100 \%$.		
Dependency:	Refer to: p3240, p3241, p3242, p3243		


p3290	Variable signaling function start / Var sig start			
SERVO, HLA,   SERVO_AC,   SERVO_I_AC	Can be changed: U, T	Calculated: -	Access lev	
	Data type: Unsigned8	Dyn. index: -	Func. diag	
	P-Group: -	Unit group: -	Unit selec	
	Not for motor type: -	Scaling: -	Expert lis	
	Min	Max	Factory se	
	-	-	0010 bin	
Description:	Settings for start/stop and the comparison type for the variable signaling function.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Activate function	Active	Not active	-
	01 Comparison with sign	With sign	Without sign	-
Dependency:	Refer to: p3291, p3292, p3293, r3294, p3295, p3296, p3297, p3298, p3299 Refer to: A02085			
Notice:	The parameters of the variable message function are only checked and become effective when starting. Otherwise, an alarm is output.			

p3291 CI: Variable signaling function signal source / Var sig S_src
SERVO, HLA, Can be changed: U, T Calculated: - Access level: 3

Description: Sets the signal source for the variable signaling function.

Dependency:
Notice:

Refer to: p3290, p3292, p3293
This parameter is only checked and becomes effective when restarting the variable message function.
Note:
For p3291 = 1: (internal Siemens):
In this case, the signal source is defined via the memory address (p3292) and the data type (p3293).
As the memory address can be different for each version, it must always be redetermined.
Procedure:

- set the memory address and data type (p3292, p3293).
- establish the BICO interconnection ( $\mathrm{p} 3291=1$ ).

$\mathbf{p 3 2 9 2}$
SERVO, HLA
SERVO_AC,
SERVO_I_AC

Description: Sets the address of the signal source for the variable signaling function.

Dependency:	Refer to: p3290, p3291
Caution:	The software can crash if an incorrect address and data type are set.


Notice:
Note:
p3293
SERVO, HLA,
SERVO_AC,

Description: Sets the data type of the signal source for the variable signaling function.
Value:

Dependency:
Caution:
This parameter is only checked and becomes effective when restarting the variable message function.
Note: $\quad$ This parameter should only be set for p3291 $=1$.

p3293	Variable signaling function signal source data type / Var sig S_src type		
SERVO, HLA,	Can be changed: U, T	Calculated: -	Access level: 4
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: 5301
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	7	0
Description:	Sets the data type of the signal source for the variable signaling function.		
Value:	0: Unknown		
	1: U8, Unsigned8		
	2: I8, Signed8		
	3: U16, Unsigned16		
	4: I16, Signed16		
	5: U32, Unsigned32		
	6: I32, Signed32		
	7: Float, FloatingPoint32		
Dependency:	Refer to: p3290, p3291		
Caution:	The software can crash if an in	s and data type	
Notice:	This parameter is only checked	effective when	e message function.
Note:	This parameter should only be	$=1$.	


r3294	BO: Variable signaling function output signal /Var sig outp_sig		
SERVO, HLA,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: 5301
SERVO_I_AC	P-Group: -	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	-	Factory setting
	-	-	
Description:	Display and binector output of the output signal for the variable signaling function.		
Dependency:	Refer to: p3290, p3291, p3295, p3296, p3297, p3298		


p3295	Variable signaling function threshold value / Var sig thresh_val		
SERVO, HLA,	Can be changed: $U, T$	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5301
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.000
Description:	Sets the threshold value for the variable signaling function.   Refer to: p3290		
Dependency:			
Notice:	This parameter is only checked and becomes effective when restarting the variable message function.		
p3296	Variable signaling function hysteresis / Var sig hyst		
SERVO, HLA,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5301
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	340.28235E36	0.000
Description:	Sets the hysteresis for the variable signaling function.		
Dependency:	Refer to: p3290		
Notice:	This parameter is only checked and becomes effective when restarting the variable message function.		
p3297	Variable signaling function pickup delay / Var sig t_pickup		
SERVO, HLA,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 5301
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the pickup delay for the variable signaling function.		
Dependency:	Refer to: p3290		
Notice:	This parameter is only checked and becomes effective when restarting the variable message function. Values that do not comply with the following condition are rejected:		
Note:	For a value of 0 , the pickup delay is disabled.   The output signal is set if the condition for the 1 signal is fulfilled for longer than the selected time.		
p3298	Variable signaling function dropout delay / Var sig t_dropout		
SERVO, HLA SERVO AC, SERVO_I_AC	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 5301
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the dropout delay for the variable signaling function.		
Dependency:	Refer to: p3290		
Notice:	This parameter is only check Values that do not comply wit Dropout delay (p3298) >= sa	effective when condition are rej 299)	e message function.
Note:	For a value of 0 , the dropout delay is disabled.		
	The output signal is reset if the condition for the 0 signal is fulfilled for longer than the selected time.		


p3299	Variable signaling function sampling time / Var sig t_sample		
SERVO, HLA,	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5301
SERVO_I_AC	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.000 [ms]	4.000 [ms]	4.000 [ms]
Description:	Sets the sampling time for the variable signaling function.		
Dependency:	Refer to: p3290		
Notice:	This parameter is only checked and becom The following must apply for the setting: Sampling time (p3299) <= pickup delay (p3	effective when restarting 97), dropout delay (p3298)	e message function.
Note:	$1.000,2.000,3.000,4.000$		
r3313	Efficiency optimization 2 optimum flux / Optimum flux		
VECTOR ( $n / M$ ),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6722, 6837
VECTOR_1_AC (n/M)	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the calculated, optimum flux.		
Dependency:	Refer to: p1401, p3315, p3316		
Note:	The function is activated via p1401.14 $=1$.		
p3315[0...n]	Efficiency optimization 2 minimum flux limit value / Min flux lim val		
VECTOR (n/M),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6722, 6837
VECTOR_1_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	200.0 [\%]	50.0 [\%]
Description:	Sets the minimal limit value for the calculated optimum flux.		
Dependency:	Refer to: p1401, r3313, p3316		
Note:	The function is activated via p1401.14 $=1$.		
p3316[0...n]	Efficiency optimization 2 maximum flux limit value / Max flux lim val		
VECTOR ( $\mathrm{n} / \mathrm{M}$ ),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6722, 6837
VECTOR_1_AC (n/M)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: PMSM, SESM, REL, RESM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	200.0 [\%]	110.0 [\%]
Description:	Sets the maximum limit value for the calculated optimum flux.		
Dependency:	Refer to: p1401, r3313, p3315		
Note:	The function is activated via p1401.14 $=1$.		


p3320[0...n]	Fluid flow machine power point 1 / Fluid_mach P1		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	25.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 1 as a [\%].		
	The characteristic comprises the following value pairs:		
	Power (P)/ speed (n)		
	p3320 / p3321 --> point 1 (P1/n1)		
	p3322 / p3323 --> point 2 (P2 / n2)		
	p3324 / p3325 --> point 3 (P3/n3)		
	p3326 / p3327 --> point 4 (P4/n4)		
	p3328 / p3329 --> point 5 (P5 / n5)		
Dependency:	Refer to: r0041, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed. The energy saved is displayed in r0041.		


p3321[0...n]	Fluid flow machine speed point 1/Fluid_mach n1		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	0.00


Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.
	This parameter specifies the speed ( n ) of point 1 as a [\%].
	The characteristic comprises the following value pairs:
	Power (P) / speed ( n )
	p3320 / p3321 --> point 1 (P1/n1)
	p3322 / p3323 --> point 2 ( $\mathrm{P} 2 / \mathrm{n} 2)$
	p3324 / p3325 --> point 3 (P3 / n3)
	p3326 / p3327 --> point 4 (P4/n4)
	p3328 / p3329 --> point 5 (P5 / n5)
Dependency:	Refer to: r0041, p3320, p3322, p3323, p3324, p3325, p3326, p3327, p3328, p3329
Note:	The reference value for power and speed is the rated power/rated speed.
	The energy saved is displayed in r0041.


p3322[0...n]	Fluid flow machine power point 2 / Fluid_mach P2		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	100.00	Factory setting
	0.00	50.00	
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the		
	characteristic is required.		
	This parameter specifies the power $(P)$ of point 2 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3323, p3324, p3325, p3326, p3327, p3328, p3329		

Note: $\quad$ The reference value for power and speed is the rated power/rated speed.
The energy saved is displayed in r0041.

p3323[0...n]	Fluid flow machine speed point 2 / Fluid_mach n2		
VECTOR,	Can be changed: $U, T$	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	25.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed ( n ) of point 2 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3324, p3325, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		


p3324[0...n]	Fluid flow machine power point 3 / Fluid_mach P3		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	77.00

Description: $\quad$ For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.
This parameter specifies the power ( P ) of point 3 as a [\%].
Dependency: Refer to: r0041, p3320, p3321, p3322, p3323, p3325, p3326, p3327, p3328, p3329
Note: $\quad$ The reference value for power and speed is the rated power/rated speed.
The energy saved is displayed in r0041.

p3325[0...n]	Fluid flow machine speed point 3 / Fluid_mach n3		
VECTOR,	Can be changed: $U$, $T$	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	50.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed ( n ) of point 3 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is display		


p3326[0...n]	Fluid flow machine power point 4 / Fluid_mach P4		
VECTOR,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	92.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 4 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displaye		


p3327[0...n]	Fluid flow machine speed point 4 / Fluid_mach n4		
VECTOR,	Can be changed: $U, T$	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	75.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed ( n ) of point 4 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is display		


p3328[0...n]	Fluid flow machine power point 5 / Fluid_mach P5		
VECTOR,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	100.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 5 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		


p3329[0...n]	Fluid flow machine speed point $5 /$ Fluid_mach $\mathbf{n 5}$		
VECTOR,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Factory setting	
	0.00	100.00	100.00

Note: $\quad$ The reference value for power and speed is the rated power/rated speed.
The energy saved is displayed in r0041.

p3370[0...n]	Pulse technique configuration / Pulse config				
VECTOR ( $\mathrm{n} / \mathrm{M}$ ),   VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ),   VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: U, T C		Calculated: CALC_MOD_CON	Access level: 4	
	Data type: Unsigned16		Dyn. index: DDS, p0180	Func. diagram: -	
		up: Closed-loop control U	Unit group: -	Unit selection: -	
		or motor type: ASM, SESM, REL S	Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-	-	-	0000 bin	
Description:	Sel	t possible pulse technique configurations.			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Select pulse techniques excitation adaptation	Yes	No	-
		Select pulse techniques offset correction	n Yes	No	-
	02	Offset correction only close to no-load operation	Yes	No	-
Dependency:	Ref	to: p3371, p3372, p3373			


p3371[0...n]	Pulse technique excitation starting point 1/Pulse excit pt 1		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[A r m s]$	0.00 [Arms]	
Description:	Sets application point 1 for the load current-dependent adapted value of the excitation amplitude of the pulse		
	technique.		
Dependency:	Refer to: p1607, p3372, p3373		
Note:	The active excitation amplitude at application point 1 is specified by the setting value p1607.		


p3372[0...n]	Pulse technique excitation starting point 2 / Pulse excit pt 2		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[A r m s]$	0.00 [Arms]	
Description:	Sets application point 2 for the load current-dependent adapted value of the excitation amplitude of the pulse		
	technique.		
Dependency:	Refer to: p1607, p3371, p3373		
Note:	The active excitation amplitude at application point 2 is specified by the setting value (p3373 *p1607).		


p3373[0...n]	Pulse technique excitation adaptation / Pulse excit scale		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0[\%]$	$1000[\%]$ [\%]	
Description:	Sets the adaptation value at application point 2 of the load current-dependent adapted excitation amplitude of the		
	pulse technique.		
Dependency:	Refer to: p1607, p3371, p3372		
Note:	The active excitation amplitude at application point 2 is $(\mathrm{p} 3373 * p 1607)$.		


r3374	CO: Pulse technique excitation actual / Pulse excit actual		
VECTOR (n/M),   VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ),   VECTOR_I_AC (n/M)	Can be changed: -   Data type: FloatingPoint32   P-Group: Displays, signals   Not for motor type: ASM, SESM, REL   Min $-[m \mathrm{Vs}]$	Calculated: -   Dyn. index: -   Unit group:   Scaling: -   Max   - [mVs]	Access level: 3   Func. diagram:   Unit selection:   Expert list: 1   Factory setting [mVs]
Description:   Dependency:	Display and connector output for the currently active excitation amplitude of the pulse technique. Refer to: p1605, p1607, p1750, p3371, p3372, p3373		
r3375[0...3]   VECTOR (n/M), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	CO: Pulse technique response   Can be changed: -   Data type: FloatingPoint32   P-Group: Displays, signals   Not for motor type: ASM, SESM, REL   Min   - [A]	w values / Pu   Calculated: -   Dyn. index: -   Unit group: 6_5   Scaling: p2002   Max   - [A]	Access level: 4   Func. diagram: -   Unit selection: p0505   Expert list: 1   Factory setting   - [A]
Description: Index:	Displays the signal response raw values to the excitation of the pulse technique.   [ 0 ] = Phase R   [1] = Phase S   [2] = Alpha changed   [3] = Beta changed		
Dependency:	Refer to: p1605, p1607, p1750		
r3376[0...2]   VECTOR (n/M),   VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ),   VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Pulse technique model paramet   Can be changed: -   Data type: FloatingPoint32   P-Group: Displays, signals   Not for motor type: ASM, SESM, REL Min	s / Pulse mod   Calculated:   Dyn. index: -   Unit group: -   Scaling: -   Max	Access level: 4   Func. diagram:   Unit selection:   Expert list: 1   Factory setting
Description: Index:	Displays the parameters of the pulse model.   Pulse reluctances are displayed in the unit [ $\mathrm{A} / \mathrm{Vs}$ ].   [ 0 ] = Pulse reluctance total   [1] = Pulse reluctance difference   [2] = Pulse reluctance cross		
r3377[0...2]   VECTOR (n/M), VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Pulse technique signals / Pulse   Can be changed: -   Data type: FloatingPoint32   P-Group: Displays, signals   Not for motor type: ASM, SESM, REL Min	ignals   Calculated:   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 4   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting
Description:   Index:	Displays signals of the pulse technique.   [ 0 ] = Offset correction correction component   [1] = Level relationship A priority   [2] = Anisotropy factor		



### 2.2 List of parameters

	$\begin{aligned} & 8: \\ & 9: \\ & 10: \\ & 11: \\ & 12: \end{aligned}$	Voltage ramp-up active   Operation   Shutdown running   Identification running   Magnetization/black start running			
	Infeed status internal BIC / INF state int				
B_INF	Can   Data   P-G   Not   Min   0	be changed: -   type: Integer16   up: Closed-loop control   or motor type: -	lated: -   index: -   group: -   g: -	Access   Func. di   Unit sele   Expert li   Factory	
Description: Value:	Disp $0:$ $1:$ $2:$ $3:$ $4:$ $5:$ $6:$	ays the internal status of the infeed module   Initialization   Fault   No ON command Offset measurement running   ON delay active Precharging running Operation			
r3405.0...7	CO/BO: Infeed status word / Inf ZSW				
SERVO (Tech_ctrl), SERVO_AC (Tech_ctrl), SERVO_I_AC (Tech_ctrl), A_INF, S_INF, R_INF	Ca Dat P-G No Min	be changed: -   type: Unsigned16   up: Closed-loop control   or motor type: -	lated: -   index: -   group: -   g: -	Access   Func. di   Unit sele   Expert li   Factory	
Description:	Display and BICO output for the status word of the infeed unit.				
Bit field:		Signal name   Smart Mode active   Vdc controller active   Phase failure detected   Current limit reached   Infeed operates in generator/motor mode   Motor mode inhibited   Generator mode inhibited   DC link undervoltage alarm threshold undershot	1 signal   Yes   Yes   Yes   Yes   Regenerative mode   Yes   Yes   Yes	0 signal   No   No   No   No   Motor mode   No   No   No	FP
Dependency:	Refer to: A06810				
Note:	For Sma For The For The The - the 9 9). - the - ala - ala For The For An	00:   Mode is activated with p3400.0.   01:   C link voltage closed-loop control is activa 02:   it is set if alarm A06205 (phase failure), A0 it is reset for the following events: infeed had reached the normal operating st   pulse enable is withdrawn due to a fault or m A06206 is reset.   A A06208 is reset.   03:   resent current limit is displayed in r0067.   04:   tive current setting r0078 >= 0 means infeed s regenerative operation in generator mod	with parameters p34   06 (current asymmetry)   again after a phase failu ching off with OFF1/   peration in motor mo	nd p3513.   06208 (voltag   as been bypa   active curren	p34   < 0

For bit 05:
The motor mode inhibit is activated with p3532.
For bit 06:
The generator mode inhibit is activated with p3533.
For bit 07:
When the alarm threshold is fallen below, alarm A06810 is output and r3405.7 is set $=1$.
The alarm threshold is obtained from the sum of the undervoltage threshold r0296 and offset p0279. As a consequence, the alarm threshold is only effective for p0279>0.
Monitoring only takes place when operational.
The following applies for states r3402 <= 5 and r3402 $=12$ : r3405.7 $=0$.

r3405.1... 8	CO/BO: Status word DC link control / ZSW Vdc_ctrl			
VECTOR (Tech_ctrl),	Can be changed: -	Calculated: -	Acces	
VECTOR_AC	Data type: Unsigned16	Dyn. index: -	Func.	
(Tech_ctri), VECTOR I AC	P-Group: Closed-loop control	Unit group: -	Unit s	
(Tech_ctrl)	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	-	
Description:	Display and BICO output for the status word of the DC link voltage control.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	01 Vdc controller active	Yes	No	-
	08 Vdc controller selected	Yes	No	-
Dependency:	Refer to: A06810			
Note:	For bit 01:			
	DC link voltage control is disabled and enabled with p3513.			
	For bit $08=1$ :			
	DC link voltage control is selected using p3513.			


r3405.7	CO/BO: Infeed status word / Inf ZSW			
B_INF	Can be changed: -	Calculated: -	Access	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Closed-loop control	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factory	
	-	-	-	
Description:	Display and BICO output for the status word of the infeed unit.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	07 DC link undervoltage alarm threshold undershot	Yes	No	-
Dependency:	Refer to: A06810			
Note:	For bit 07:			
	When the alarm threshold is fallen below, alarm A06810 is output and r3405.7 is set $=1$.			
	The alarm threshold is obtained from the sum of the undervoltage threshold r0296 and offset p0279. As a consequence, the alarm threshold is only effective for p0279 > 0 .			
	Monitoring only takes place when operational.			
	The following applies for states r3402 <= 5 and r3402 = 12: $\mathrm{r} 3405.7=0$.			


p3409	Infeed line frequency se	f_line_mod	
A_INF, S_INF, R_INF	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	1
Description:	Sets the mode to detect the line supply frequency.		
Value:	0 : Line supply frequency setting $50 / 60 \mathrm{~Hz}$ off   1: Line supply frequency setting $50 / 60 \mathrm{~Hz}$ on		
Dependency:	Refer to: p0211, p0284, p0285		
	Refer to: A06350, A06351, F06500		
Note:	For p3409 = 1, the following applies:		
	After operation has been enabled, the rated line supply frequency (p0211) is automatically set to a value of 50 Hz or 60 Hz corresponding to the currently measured frequency. This means that the parameter value of p0211 is, under certain circumstances, changed.		
	For p3409 $=0$, the following applies:		
	The system does not change parameter p0211.		
p3410	Infeed identification method / INF Ident_type		
A_INF, S_INF, R_INF		Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	6	5
Description: Value:	Sets the line and DC link parameter identification routine for the infeed module.		
	0 : Identification (Id) off		
	1: Activate identification (Id)		
	2: Set controller settings		
	3: Save identification and controller settings		
	4: Save identification and controller settings with $L$ adap		
	5: Reset save Id and controller setting with $L$ adaptation		
	6: Set robust current controller, C-identification and save		
Dependency:	Refer to: r3411, r3412, r3414, p3415, p3416, p3417, p3421, p3422, p3424, p3555, p3560, p3614		
	Refer to: A06400		
Notice:	For p3410 $=1,3,4,5,6$, alarm A06400 is output, indicating that after the next pulse enable the set identification will take place.		
	The line and DC link adaptation is not permissible for Smart Line Modules in the chassis format.		
	During identification, no additional loads may be switched-in/switched out.		
	Mode p3410 $=6$ is only permissible in conjunction with line filters p0220 $>110$.		
Note:	p3410 is automatically set to 0 after an identification run has been completed.		
	When p3410 = 1 an identification run for the total inductance and DC link capacitance is initiated when the pulses are next enabled. The results are displayed in r3411 and r3412. If a Voltage Sensing Module (VSM) is connected, then the line inductance (r3414) is also measured. The infeed then goes into the ready for switching on state.		
	For $p 3410=2$, the data ( $\mathrm{r} 3411, \mathrm{r} 3412$ and r 3414 ) determined during the identification run ( $\mathrm{p} 3410=1$ ) are transferred into p3421, p3422 and p3424. The control loop parameters are suitably scaled to achieve a rugged controller setting ( p 3425 ); the fast controller response ( $\mathrm{p} 3555[2]$ ) and the current actual value smoothing ( p 3614 ) are pre-set. Calculations for the controller are then repeated. The user must save the data in a non-volatile fashion so that the new controller setting is effective the next time that the system is switched on.   When p3410 $=3$ an identification run for the inductance and DC link capacitance is initiated when the pulses are next enabled. Data determined during the identification (r3411, r3412, r3414) are used, as described under p3410 $=2$ for the setting of p3421, p3422, p3424, p3425, p3555 as well as p3614, and the controller is re-calculated. All of the parameters for the infeed module are then automatically stored in a non-volatile memory. The infeed continues to operate without any interruption with the new controller parameters.		

When p3410 $=4$ an identification run for the inductance and DC link capacitance is initiated when the pulses are next enabled. Data determined during the identification ( r 3411 , $\mathrm{r} 3412, \mathrm{r} 3414$ ) are used, as described under $\mathrm{p} 3410=2$ for the setting of p3421, p3422, p3424, p3425, p3555 as well as p3614, and the controller is re-calculated. The line inductance identification is then repeated, if p3415[1] > p3514[0]. If the inductance measured the second time is lower than the first, the parameters are written to the current controller adaptation (p3620, p3622). All of the parameters for the infeed module are then automatically stored in a non-volatile memory. The infeed continues to operate without any interruption with the new controller parameters.
For p3410 $=5$, the same measurements and write operations are always carried-out as for p3410=4. However, initially the controller setting is reset by writing the default values dependent on the power unit to p3421, p3422 and p3424 - and setting p3425[0...1] = $100 \%$. Further, before the measurements are carried out, a brief identification run is executed to coarsely set the controller.
For p3410 $=6$, with the next pulse enable, the system will initiate identification of the DC link capacitance. The data (r3412) determined during the identification is used to set the Vdc controller (p3422). All of the parameters for the infeed module are then automatically stored in a non-volatile fashion. The infeed continues to operate without any interruption with the new controller parameters. This identification mode is used to achieve a robust closed-loop control setting, and is only permissible in conjunction with p0220 > 110.


### 2.2 List of parameters

r3414[0...1]	Infeed line supply inductance identified / INF t_line ident		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the identified line supply inductance.		
	The value corresponds to the total inductance between the stiff line supply and the connection point of the Voltage Sensing Module (VSM), and also includes a line-side reactor integrated in the line filter.		
Index:	$\begin{aligned} & {[0]=\operatorname{Run} 1} \\ & {[1]=\operatorname{Run} 2} \end{aligned}$		
Dependency:	Refer to: p3410		
Notice:	The value is only automatically determined for the line supply identification (p3410 > 0), if operation with a Voltage Sensing Module is selected ( $\mathrm{p} 3400.5=1$ ). Otherwise, r3414 $=0$ is displayed.		
Note:	The value measured in the first identification run is displayed in $\mathrm{r} 3414[0]$ (for $p 3410=1,3,4,5$ ). This value is transferred to p3421.		
	The value measured in the second identification run is displayed in r3414[1] (for p3410 $=4,5$ ).		
	For a parallel connection, the inductance data corresponds to operation with just one power unit. A line-side filter reactor ( p 0228 ) is taken into account in the calculation.		
	For the inductance of the commutating reactor, the following applies.		
	r3411-r3414		
p3415[0..1]	Infeed excitation current L identification / INF I_exc L-ident		
A_INF, S_INF, R_INF	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.00 [\%]	75.00 [\%]	20.00 [\%]
Description:	Sets the magnitude of the excitation frequency for the L identification.		
	The setting is made as a percentage of the maximum power unit current (r0209).		
Index:	$\begin{aligned} & {[0]=\operatorname{Run} 1} \\ & {[1]=\operatorname{Run} 2} \end{aligned}$		
Dependency:	Refer to: p3410, r3411, p3421, p3620, p3622		
Notice:	To correctly identify the current level (p3410 $=4,5$ ) depending on the reactor inductance, the following must apply: p3415[0] < p3415[1]		
	For A_INF booksize units, the following applies:		
	The interrelationship between the reactor inductance and the current magnitude should be measured. Generally, the factory setting of $p 3415[0]$ and $p 3415[1]$ should be kept.		
	For chassis units and S_INF booksize units, the following applies:		
	Generally, there is only a very low inter-relationship between the reactor inductance and the current magnitude. This means that for the factory setting $\mathrm{p} 3415[0]=\mathrm{p} 3415[1]=20 \%$, i.e. run 2 is not executed.		
Note:	The reactive current for identification run 1 is set in p3415[0] (basic controller setting).		
	The reactive current for identification run 2 is set in p3415[1] (adaptation of the current controller when reducing the reactor inductance with increasing current magnitude).		



p3422	DC link capacitance total / C_DC tot		
VECTOR (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
(Tech_ctrl),	P-Group: Closed-loop control	Unit group: -	Unit selection: -
VECTOR_AC	Not for motor type: -	Max	Expert list: 1
(Tech_ctrl)	Min	Factory setting	
	$0.20[\mathrm{mF}]$	$2.00[\mathrm{mF}]$	
Description:	Sets the total DC link capacitance for closed-loop voltage control.		
	The capacitance of one power unit is pre-assigned to this value. The value should be adapted according to the		
	number of power units.		
Note:	The controller setting for the DC link voltage controller is derived from this value.		


p3424	Infeed line supply inductance / INF L_line		
A_INF, S_INF, R_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Fxpert list: 1
	Min	$1000.000[\mathrm{mH}]$	$0.001[\mathrm{mH}]$
	$0.001[\mathrm{mH}]$		
Description:	Sets the line supply inductance.		
	This parameter is preassigned depending on p0225 and p0228.		
Dependency:	Refer to: p0223, p0225, p3410, p3425, p3622		
Note:	The controller setting is derived from this value and p3425.		
	The value can be automatically determined using the identification (p3410) if operation with a Voltage Sensing		
	Module is selected. Otherwise, p3424 is set to p3421 - p0223.		
	For a parallel connection, the inductance data is applicable for operation with just one power unit.		


p3425[0...5]	Infeed control loop parameter scaling / INF par scal		
A_INF, S_INF, R_INF	Can be changed: $T$	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Setting of the scaling factors for controller parameters p3421, p3422, p3424, p3562 and p3617.		
Index:	[ 0 ] = Inductance value for clos   [1] = Capacitance value for clo   [2] = Inductance value for deco   [3] = Inductance value for line   [4] = Integral time current cont   [5] = Integral time Vdc control		
Dependency:	Refer to: p3410, p3421, p3422, p3424, p3614		
Note:	For index [0, 1]:		
	p3425 is automatically and optimally set when setting the controller parameters with the line supply data identification p3410 >= 2 .		
	As the line supply inductance (p3424) increases in comparison to the total inductance (p3421), lower values must be selected for p3425. This means that the control is adapted to weak line supplies with high relative short-circuit voltage $u k$ or high line supply inductance (refer to p3614).		
	The scaled control loop parameters become effective for closed-loop control, i.e. the products p3421 * p3425[0] and p3422 * $3425[1]$ represent the controller setting.		

For index [2]:
Sets the inductance value, which is used for the calculations in the decoupling block of the closed-loop current control.
The value of $100 \%$ corresponds to the inductance p3421 * p3425[0].
Setting values between $100 \%$ and $200 \%$ are recommended for fluctuating line fault levels.
For index [3]:
Sets the value for the line inductance, which is used for the calculations in the line (grid) model of the PLL.
The value of $100 \%$ corresponds to inductance p3424.
Setting values up to $4 x$ of p0223 are recommended for fluctuating line fault levels.
For index [4]:
The dynamic performance of the current control is defined by the scaling p3425[4] * p3617.
An optimized setting of p3425[4] is automatically realized by setting the controller parameters with the line data identification p3410 >= 2 .
For index [5]:
The dynamic performance of the Vdc control is defined by the scaling p3425[5] *p3562.
An optimized setting of p3425[5] is automatically realized by setting the controller parameters with the line data identification p3410 >= 2 .

p3440	Smart Mode configuration / Smart Mode config				
A_INF, S_INF, R_INF		be changed: T Cal	lated: -	Acces	
		type: Unsigned16 Dyn	index: -	Func.	
		up: Closed-loop control Unit	group: -	Unit s	
		or motor type: - Sca	ng: -	Exper	
	Min	Max		Factory	
	-	-		0001 b	
Description:	Sets the configuration of the Smart Mode.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Soft Pulse Mode	ON	OFF	-
	01	Extended Smart Mode	ON	OFF	-
	02	De-select automatic line identification after POWER ON	Yes	No	-
Notice:	For bit 00:				
	This parameter influences the line harmonics for regenerative operation.				
	For operation with Active Interface Module (AIM) the soft-pulse mode must be activated.				
	For bit 01:				
	Operating BLM and SLM together (mixed operation) with bit $01=1$ is not permissible.				
Note:	For bit 00:				
	When the pulsed mode for Smart Mode is deactivated, when regenerating, higher phase current gradients occur. For Smart Line Modules in the "chassis" format, pulsed operation is not effective.				
	For bit 01:				
	For active Extended Smart Mode, for partial load operation, the line reactive power requirement must be reduced and the average value of the DC link voltage increased.				
	At rated load and overload, the operating behavior is equivalent to the Smart Mode (p3440.1 = 0).				
	For bit 02 (only effective for bit $01=1$ ):				
	This line supply identification is only effective in the Extended Smart Mode (it should not be confused with the line supply identification using p3410).				
	The values for inductance and DC link capacitance are required for the Extended Smart Mode (p3448[0...1]).				
	Automatic line supply identification must be deselected (p3440.2 = 1) when manually entering p3448[0...1].				
	When automatic line supply identification is selected (p3440.2 = 0) , these values are determined at the first pulse enable after each POWER ON and saved in p3448[0...1].				
	A new line supply identification with the next pulse enable can be initiated by setting p3440.2 = 1 and then by setting p3440.2 back to $=0$.				

### 2.2 List of parameters

p3441[0...1]	Smart Mode Vdc ctrl Kp/Tn / SLM Vdc_ctrl Kp/Tn		
A_INF, S_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the standardized proportional gain (index 0 ) and the integral time (index 1 ) for the DC link voltage controller (Vdc controller) in Smart Mode.		
Index:	[ 0 ] = Proportional gain   [1] = Integral time		
Note:	A value of 100\% corresponds to the basic setting derived from loop control parameters (p0115, p3409, p3448[1]).		
p3442[0...1]	Smart Mode smoothing times / SLM t_smooth		
A_INF, S_INF, R_INF	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	20.00 [ms]	[0] 0.25 [ms]
			[1] 1.00 [ms]
Description:	Sets the time constant for PT1 filtering of the DC link voltage for the Vdc controller (index 0 ) and the monitored DC link load current (index 1) in Smart Mode.		
Index:	$\begin{aligned} & {[0]=\mathrm{DC} \text { link voltage actual value }(\mathrm{r} 3445)} \\ & {[1]=\text { Monitored DC link load current }(\mathrm{r} 3446[2])} \end{aligned}$		
Dependency:	Refer to: r3445, r3446		
p3443[0...1]	Smart Mode line commutation current threshold values / SLM line com I_thr		
A_INF, S_INF, R_INF	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	1000.00 [\%]	[0] 100.00 [\%]
			[1] 200.00 [\%]
Description:	Sets the current threshold values for the deactivation (index 0 ) and activation (index 1 ) of line commutation in Smart Mode.		
Index:	$\begin{aligned} & {[0]=\text { Deactivation }} \\ & {[1]=\text { Activation }} \end{aligned}$		
Note:	A value of $100 \%$ corresponds to the minimum feedback load current derived from the loop control parameters (p0210, p0211, p3409, p3448[0], p3432) without infeed components.		
	To avoid frequent changeovers in operation close to the changeover point, the value for activation (index 1) must be significantly higher than the value for deactivation (index 0 ).		





### 2.2 List of parameters

	For index [2]:   When synchronizing, the linearity of the phase angle is determined in order to check the line quality, and for instance, to detect whether a phase has failed (A06205, F06500). The setting value is used to scale this linearity measured value.   Setting values less than $100 \%$ reduce the sensitivity of the line supply check, for example.   A setting value of $0 \%$ deactivates scaling.	
p3458[0...1]	Infeed PLL smoothing time / INF PLL t_smooth	
A_INF, S_INF, R_INF	Can be changed: U, T Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: Closed-loop control Unit group: -   Not for motor type: - Scaling: -   Min Max   $1.0[\mathrm{~ms}]$ $1000.0[\mathrm{~ms}]$	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   [0] 23.1 [ms]   [1] 9.1 [ms]
Description: Index:   Note:	Sets the smoothing time for the line supply PLL.   [0] = Encoderless operation line supply frequency smoothing time   [1] = VSM operation line supply frequency smoothing time   It may be necessary to reduce the smoothing time for weak line supplies with hig otherwise a risk of brief orientation errors and the infeed could fail.	equency fluctuations. There is
r3460   A_INF, S_INF, R_INF	Infeed PLL system deviation / INF PLL sys_dev    Can be changed: - Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: Closed-loop control Unit group: -   Not for motor type: - Scaling: -   Min Max   $-\left[^{\circ}\right]$ $-\left[{ }^{\circ}\right]$	Access level: 4   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   - [ ${ }^{\circ}$ ]
Description:	Displays the PLL system deviation.	
r3461	Infeed PLL system deviation after filtering / INF PLL sys_dev	
A_INF, S_INF, R_INF	Can be changed: - Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: Closed-loop control Unit group: -   Not for motor type: - Scaling: -   Min Max   $-\left[^{\circ}\right]$ $-\left[{ }^{\circ}\right]$	Access level: 4   Func. diagram: -   Unit selection: -   Expert list: 1   Factory setting   - [ ${ }^{\circ}$ ]
Description:   Dependency:	Displays the PLL system deviation after filtering.   Refer to: p3458	
p3462[0...2]	Infeed phase failure detection times / INF ph_fail_det t	
A_INF, S_INF, R_INF	Can be changed: $T$ Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: Closed-loop control Unit group: -   Not for motor type: - Scaling: -   Min Max   $0.00[\mathrm{~s}]$ $10000.00[\mathrm{~s}]$	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   [0] 0.00 [s]   [1] 3.00 [s]   [2] 60.00 [s]
Description: Index:	Sets the time values for phase failure detection and current symmetry monitoring.   [0] = Line fault max. duration   [1] = Current symmetry rms value smoothing time   [2] = Current symmetry fault delay time	


Dependency:	Refer to: p3465, r3466		
	Refer to: F06200, A06205, A06206, F06207		
Note:	For index [0]:		
	Sets the maximum permissible wait time for the line supply to return after identifying a line fault.		
	This parameter is used to define how long alarm A06205 may be continuously present. Fault F06200 is output after the wait time has expired.		
	For p3462[0] = 0, the following applies:		
	The time monitoring is deactivated. Fault F06200 is only output, if in addition to A06205, an additional message is initiated with a stop response.		
	For index [1]:		
	Sets the smoothing time to calculate the rms phase current values (r3466) for the current symmetry monitoring (p3465).		
	The smoothing time is internally limited to 30 s .		
	For index [2]:		
	Sets the delay time between the Alarm A06206 being permanently active until Fault F06207 is output for the current symmetry monitoring (p3465).		
p3463	Infeed phase failure detection line supply angle change / INF ph_fail phi		
A_INF, S_INF, R_INF	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-180.0 [ ${ }^{\circ}$ ]	180.0 [ $\left.{ }^{\circ}\right]$	15.0 [ ${ }^{\text {] }}$
Description:	If the line supply angle (angle between the line supply phases) suddenly changes by this value, then a phase failure is assumed. The pulses are then inhibited for 10 ms .		
Dependency:	Refer to: A06205		

p3465[0...5] Infeed current symmetry monitoring thresholds / INF I_sym thresh

A_INF, S_INF, R_INF
Can be changed: U, T
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min
0.0 [\%]
Calculated: -

Dyn. index: -
Unit group: -
Scaling: -
Max
200.0 [\%]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
[0] 60.0 [\%]
[1] 100.0 [\%]
[2] 25.0 [\%]
[3] 90.0 [\%]
[4] 100.0 [\%]
[5] 12.5 [\%]

Description:	Sets scaling values for monitoring the symmetry between the phase currents (r3466).
	The monitoring serves to identify continuous line phase failures in regular operation.
	The monitoring for the current-controlled mode is deactivated if one of the indices $0,1,2$ is set to zero.
	The monitoring for the Smart Mode is deactivated if one of the indices 3, 4, 5 is set to zero.
Index:	[0] = Closed-loop control activation minimum current
	[1] = Closed-loop control activation maximum current
	[2] = Closed-loop control alarm asymmetry
	[3] = Smart Mode activation minimum current
	[4] = Smart Mode activation maximum current
	[5] = Smart Mode asymmetry alarm
Dependency:	Refer to: p3462, r3466
	Refer to: A06205, F06207
Notice:	Current symmetry monitoring is deactivated if the dynamic grid support ( p 5501 ) or the grid droop control ( p 5401 ) is activated. In these operating cases, asymmetrical loads should also be supplied.
	The negative phase sequence system control (p3640) controls the current asymmetry - and includes an additional symmetry monitoring of the output voltage (p3647).

### 2.2 List of parameters

The smoothing time constant for the phase current rms values $\mathrm{r} 3466[0,1,2]$ can be set with $p 3462[1]$.
For index [0, 1]:
Sets the current thresholds for activating symmetry monitoring in current-controlled operation ( $p 3400.0=0$ ).
Monitoring is active if at least one rms phase current value r3466 is greater than p3465[0] * r0207 - and at least one
rms phase current value is less than p3465[1] * r0207.
For index [2]:
Sets the alarm threshold for the symmetry of the phase currents in the current-controlled mode.
The ratio between the lowest and highest rms phase current is monitored (r3466). The thus defined symmetry
relationship decreases with increasing asymmetry - and always lies in the range of $0 . .100 \%$.
In operation (r3452 >= 4) the following applies:
If the symmetry relationship is less than threshold p3465[2], then alarm A06206 is output and status bit r3405.2 = 1 is
set.
If the alarm threshold is permanently exceeded for the time p3462[2], then the device is switched off with fault
F06207.
For index [3, 4]:
Sets the current thresholds for activating symmetry monitoring in the Smart Mode (p3400.0 = 1).
The monitoring function is always active if at least one phase current rms value (r3466) is greater than p3465[3] *
r0207 - and at least one phase current rms value is less than p3465[4] * r0207.
For index [5]:
Sets the alarm threshold for the symmetry of the phase currents in the Smart Mode.
The ratio between the lowest and highest rms phase current is monitored (r3466). The thus defined symmetry
relationship decreases with increasing asymmetry - and always lies in the range of $0 . . .100 \%$.
In operation (r3452 >= 4) the following applies:
If the symmetry relationship is less than threshold p3465[5], then alarm A06206 is output and status bit r3405.2 = 1 is
set.
If the alarm threshold is permanently exceeded for the time p3462[2], then the device is switched off with fault
F06207.

r3466[0...2]	CO: Infeed phase current rms value smoothed / INF I_ph rms sm		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the smoothed rms values of the measured phase currents.		
Index:	$\begin{aligned} & {[0]=\text { Phase } \mathrm{U}} \\ & {[1]=\text { Phase } \mathrm{V}} \\ & {[2]=\text { Phase } \mathrm{W}} \end{aligned}$		
Dependency:	Refer to: p3462, p3465		
	Refer to: A06206, F06207		
Note:	The smoothed rms values are used to monitor the symmetry of the phase currents (p3465).		
	The smoothing time constant is set with p3462[1].		

## r3467[0...3] CO: Infeed current alpha/beta / INF I a/b

A_INF, S_INF, R_INF Can be changed: -
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min

- [A]

Display and connector output for the line current in alpha/beta components
$\begin{array}{ll}\text { Description: } & {[0]=\text { Alpha }} \\ \text { Index: } & {[1]=\text { Beta }}\end{array}$
[1] = Beta
[2] = Alpha
[3] = Beta

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

- [A]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

- [A]

Note:	For index [0, 1]:   Displays the line current at the input terminals of the line filter.   For index [2, 3]:   Displays the line current at the input terminals of the power unit.		
r3468[0...5]	CO: Infeed voltage alp	U a/b	
A_INF, S_INF, R_INF	Can be changed: -   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   - [V]	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   - [V]	Access level: 3   Func. diagram: -   Unit selection:   Expert list: 1   Factory setting   - [V]
Description: Index:	Display and connector output f components. $\begin{aligned} & {[0]=\text { Alpha }} \\ & {[1]=\text { Beta }} \\ & {[2]=\text { Alpha }} \\ & {[3]=\text { Beta }} \\ & {[4]=\text { Alpha }} \\ & {[5]=\text { Beta }} \end{aligned}$	ply voltage at the input term	he line filter in alpha/beta
Note:	For index [0, 1]:   The input terminals of the line measure the line supply voltag   For operation with VSM (p3400.5   The voltage measured values   For encoderless operation with   The estimated values of the vo are displayed in r3468.   For index [2, 3]:   The basic fundamental amplitu   The values are only valid when   For index [4, 5]:   The basic fundamental amplitu   The values are only valid when	nfeeds, the connection poin   lowing applies:   2, transformed into the alp $00.5=0$ ), the following app line supply model of the   ked inverter output voltage nabled.   age source calculated usin nabled.	oltage Sensing Module (VSM) to   ystem are displayed in r3468.   ormed into the alpha/beta system   layed.   odel are displayed.
p3469[0...n]	Latch delay time correction, zero crossover detection / t_latch corr PLL		
A_INF, S_INF, R_INF	Can be changed: T   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min $-10000.0[\mu \mathrm{~s}]$	Calculated: -   Dyn. index: PDS, p0120   Unit group: -   Scaling: -   Max   10000.0 [ $\mu \mathrm{s}$ ]	Access level: 4   Func. diagram: -   Unit selection: -   Expert list: 1   Factory setting $0.0[\mu \mathrm{~s}]$
Description: Note:	Calibration value for the RC filter of the zero crossover detection of the line supply voltage in the power unit. When p3469 $=0$, a new calibration is performed the next time identification is carried out with p3410 $=4$ or 5 . The calibration value is stored in the EEPROM of the power unit because it is a characteristic of the power unit.		
r3470	CO: Infeed active curr	I_act filter	
A_INF, R_INF	Can be changed: -   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   - [Arms]	Calculated: -   Dyn. index: -   Unit group: 6_2   Scaling: p2002   Max   - [Arms]	Access level: 3   Func. diagram: -   Unit selection: p0505   Expert list: 1   Factory setting   - [Arms]
Description:   Dependency:	Displays the active current requirement due to the line filter.   Refer to: r0038, p0221, p0222		


Note:	With respect to the line supply, the sum of the active currents of the power unit (p0078) and line filter (r3470) are effective.   The active current demand of the line filter is taken into account when calculating the power factor (r0038). The magnitude of the line filter active current depends on the capacitance (p0221) and the resistance (p0222) of the line filter.
r3471	CO: Infeed reactive current filter / INF I_reactiveFilt
A_INF, R_INF	Can be changed: - Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Closed-loop control Unit group: 6_2 Unit selection: p0505   Not for motor type: - Scaling: p2002 Expert list: 1   Min Max Factory setting   $-[$ Arms $]$ $-[A r m s]$ - [Arms]
Description:	Displays the reactive current requirement as a result of the line filter.   The reactive current requirement of a line filter is covered by the controlled infeed/regenerative feedback so that the converter always operates with a power factor of 1 compared to the line.
Dependency:   Note:	Refer to: r0038, r0075, r0076, p0221   With respect to the line supply, the sum of the reactive currents of the power unit ( p 0076 ) and line filter (r3471) are effective.   The reactive current requirement of the line filter is taken into account when calculating the power factor (r0038).   The amount of the reactive current depends on the capacitance ( p 0221 ) of the line filter that is automatically parameterized when a line filter is selected (p0220).   If the line phases are reversed and the line voltage therefore has a negative orientation ( $\mathrm{r} 0066<0$ ), it should be noted that the sign of the reactive current is reversed.
p3472[0...4]	Line supply PLL line supply voltage smoothing time / Line PLL U_It_sm
A_INF, S_INF, R_INF	Can be changed: $U, T$ Calculated: - Access level: 4   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Closed-loop control Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $1.0[\mathrm{~ms}]$ $30000.0[\mathrm{~ms}]$ $[0] 200.0[\mathrm{~ms}]$     $[1] 100.0[\mathrm{~ms}]$     $[2] 5000.0[\mathrm{~ms}]$    $[3] 8.0[\mathrm{~ms}]$     $[4] 8.0[\mathrm{~ms}]$
Description: Index:	Sets the smoothing time of the line supply voltage for the line supply PLL.   [0] = Encoderless operation line supply voltage smoothing time   [1] = VSM operation line supply voltage smoothing time   [2] = Detection line supply undervoltage smoothing time   [3] = Detection line supply overvoltage smoothing time   [4] = Detection line supply voltage step smoothing time
Dependency:	Refer to: p3400
Note:	For the precontrol of the line supply voltage, a smoothed value of the line supply voltage is used in the closed-loop control. p3472[0]:   Sets the PT1 time constant to smooth the line supply voltage for operation without VSM (p3400.5 = 0). p3472[1]:   Sets the PT1 time constant to smooth the line supply voltage for operation with VSM (p3400.5 = 1). p3472[2]:   Sets the smoothing time constant to slowly detect a line supply undervoltage (F06100). p3472[3]:   Sets the smoothing time constant to quickly detect line supply overvoltages for phase failure (A06205). p3472[4]:   Sets the smoothing time constant to quickly adapt the line supply precontrol for line supply voltage steps.


p3473[0...3]	CI: cos phi display current signal source / cos phi I S_src		
A_INF (cos phi),   R_INF (cos phi)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 8951
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	-	-	[0] 3467[0]
			[1] 3467[1]
			[2] 3467[2]
			[3] 3467[3]
Description:	Sets the signal source for the current for the cos phi display.		
Index:	[0] = Alpha subsystem 1   [1] = Beta subsystem 1   [2] = Alpha subsystem 2   [3] = Beta subsystem 2		
Dependency:	Refer to: r3467		
Note:	Using p3475.1, the signal source format can be converted over from alpha/beta space vector coordinates to a 3conductor representation. With this setting, measured values can be directly interconnected from the Voltage Sensing Module (VSM) (e.g. r5471[0]).		
	For index [0]:		
	Current alpha (current phase 1) for r3478[0] space vector 1.		
	For index [1]:		
	Current beta (current phase 2) for r3478[0] space vector 1.		
	For index [2]:		
	Current alpha (current phase 1) for r3478[1] space vector 2.		
	For index [3]:		
	Current beta (current phase 2) for r3478[1] space vector 2.		
p3474[0...3]	CI: cos phi display voltage signal source / cos phi U S_src		
A_INF (cos phi),   R_INF (cos phi)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 8951
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
		-	[0] 3468[0]
			[1] 3468[1]
			[2] 3468[2]
			[3] 3468[3]
Description:	Sets the signal source for the voltage for the cos phi display.		
Index:	[0] = Alpha subsystem 1   [1] = Beta subsystem 1   [2] = Alpha subsystem 2   [3] = Beta subsystem 2		
Dependency:	Refer to: r3468		
Note:	Using p3475.1, the signal source format can be converted over from alpha/beta space vector coordinates to a 3conductor representation. With this setting, measured values from the Voltage Sensing Module (VSM) can be directly interconnected (e.g. r5461[0]).		
	For index [0]:		
	Voltage alpha (voltage phase-phase 12) for r3478[0] space vector		
	For index [1]:		
	Voltage beta (voltage phase-phase 23) for r3478[0] space vector 1.		
	For index [2]:		
	Voltage alpha (voltage phase-phase 12) for r3478[1] space vector 2.		
	For index [3]:		
	Voltage beta (voltage phase-phase 23) for	478[1] space vector	

### 2.2 List of parameters



Note:	The following definition of the signs corresponds with that used in the relevant standards relating to line supplies (e.g. VDE-AR-4105).   For under-excited operation (negative reactive current: r0076 < 0), the following applies:   Lower output voltage or lagging current is identified with a positive sign.   For over-excited operation (positive reactive current: r0076>0), the following applies:   Higher output voltage or leading current is identified with a negative sign.
r3478[0...1]	CO: cos phi display absolute actual value / cos phi actVal abs
A_INF (cos phi),	Can be changed: - Calculated: - Access level: 3
R_INF (cos phi)	Data type: FloatingPoint32 Dyn. index: - Func. diagram: 8951
	P-Group: Displays, signals Unit group: - Unit selection: -
	Not for motor type: - Scaling: p2001 Expert list: 1
	Min Max Factory setting
	- - -
Description:	Display and connector output for the absolute value of the offset factor (cos phi).   The offset factor cos phi is defined as the cosine of the phase angle between the sinusoidal oscillation of the voltage and of the current of the fundamental frequency.
Index:	[0] = Space vector 1   [1] = Space vector 2
Notice:	The current and voltage signals must come from the same line supply to which the Active Line Module is connected (identical line frequency).   p3475.2 can be used to compensate if the phase sequence is reversed with respect to the Active Line Module connection terminals.



p3481	Infeed standby controller dynamic response / INF res_ctrl dyn		
A_INF, R_INF	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	7.5 [ms]
Description:	Sets the dynamic response of the reserve controller for the modulation depth. As the smoothing time increases, the response of the DC link voltage tracking becomes slower.		
Dependency:	Refer to: p3480, r3485		
r3485	Infeed standby controller output / INF res_ctrl outp		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the reserve controller output for the modulation depth.		
	The DC link voltage is increased by this voltage value - the summed setpoint for the DC link voltage is output in r0088.		
	The summed setpoint is limited to the maximum steady-stage DC link voltage ( p 0280 ).		
Dependency:	Refer to: p3480, p3481		
p3490	Infeed delay time OFF1 command / INF t_del OFF1		
A_INF, S_INF, R_INF, B_INF	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8732, 8832, 8932
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000000.0 [ms]	0.0 [ms]
Description:	Sets the delay time for the ON/OFF1 command of the infeed. After ON/OFF1 $=0$ the infeed remains in operation for the specified time		
Dependency:	Refer to: p0840		
Notice:	The ON/OFF1 command of the infeed can be interrupted.		
Note:	This parameter is only relevant if a Motor Module and the infeed are controlled by the same OFF command. In this case, the delay time and the stop ramp time of the motor can be coordinated with one another.		
p3491	Infeed l-offset measurement monitoring time / INF I_offs t_monit		
A_INF, S_INF, R_INF	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8832, 8932
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	65000 [ms]	2000 [ms]
Description:	Sets the monitoring time for the current-offset measurement of the power unit.   The time is started with the normal end of the measurement. If the measurement is invalid and if no valid measurement can be taken within the monitoring period (phase currents too high), an appropriate message is generated.		
Note:	Set this parameter to 0 to allow	the delay when run	



r3496[0...1]	CO: cos phi display actual value / cosphi disp ActVal		
A_INF (cos phi),	Can be changed: -	Calculated: -	Access level: 3
R_INF (cos phi)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8951
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1


p3508	Infeed step-up factor maximum / Step-up factor max		
A_INF, R_INF	Can be changed: C2(2), T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	3.00	Factory setting
	1.60	1.60	
Description:	Sets the maximum permissible step-up factor for the power unit used in conjunction with the line filter parameterized		
	in p0220[0].		

### 2.2 List of parameters

Note:	The maximum step-up factor determines the maximum ratio between the DC link voltage setpoint (p3510) and the unit supply voltage ( p 0210 ).
	The input of the DC link voltage setpoint (p3510) is limited corresponding to the permissible step-up factor (p3508): p3510 <= p0210 * p3508.
	Pre-setting values:
	380 ... 480 V booksize units without Active Interface Module: 1.60
	380 ... 480 V booksize units with Active Interface Module (p0220 = 41 ... 45): 2.00
	380 ... 480 V chassis units: 2.00
	$500 . .690 \mathrm{~V}$ chassis units: 2.00
	Maximum values:
	380 ... 480 V booksize units without Active Interface Module: 1.60
	380 ... 480 V booksize units with Active Interface Module (p0220 = 41 ... 45): 2.00
	380 ... 480 V chassis units: 2.00
	$500 . .690 \mathrm{~V}$ chassis units: 2.00
	When the filter setting ( p 0220 ) is changed, then the setting of the maximum step-up factor ( p 3508 ) is also automatically adapted.


p3510 DC link voltage setpoint / Vdc setp

VECTOR (Tech_ctrl),	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7960
(Tech_ctrl),	P-Group: Closed-loop control	Unit group: $5 _2$	Unit selection: $p 0505$
VECTOR_I_AC	Not for motor type: -	Scaling: p2001	Expert list: 1
(Tech_ctrl)	Min	Max	Factory setting
	$100.00[\mathrm{~V}]$	$1600.00[\mathrm{~V}]$	$600.00[\mathrm{~V}]$
	Sets the setpoint for the DC link voltage on the motor side.		


p3511	CI: Infeed DC link voltage supplementary setpoint / INF Vdc Z_set		
SERVO (Tech_crrl),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 8940
(Tech_ctrl),	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC	Scaling: p2001	Expert list: 1	
(Tech_ctrl), A_INF,	Not for motor type: -	Max	Factory setting
R_INF	Min	-	0
	-		
Description:	Sets the signal source for the supplementary setpoint for the DC link voltage.		
Dependency:	Refer to: p3510		


p3511	CI: DC link voltage supplementary setpoint / Vdc Z_set		
VECTOR (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7960
(Tech_ctrl),	P-Group: Closed-loop control	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: p2001	Expert list: 1
(Tech_ctrl)	Max	Factory setting	
	Min	-	0
	-		
Description:	Sets the signal source for the supplementary setpoint for the DC link voltage on the motor side.		
Dependency:	Refer to: p3510		

p3513
SERVO (Tech_ctrl),

BI: Voltage-controlled operation inhibit / U_ctrl op inhib

SERVO AC
(Tech_ctrl),
SERVO_I_AC
(Tech_ctrl)

Description: Sets the signal source for inhibiting the voltage-controlled mode of the infeed.
Dependency: Refer to: p3400, r3405
Notice:

Note: Parameter being prepared.
The DC link voltage must be controlled by a different component at the DC link; otherwise this results in an overvoltage or undervoltage condition.

Calculated: -
Dyn. index: -
Func. diagram: 8940

Scaling: -
Max
,
-

For this firmware version, the technology controller "DC link voltage controller" is not supported.
The current controller remains active and can be controlled by means of its setpoint inputs (p3515, p3610). This binector input is used to change over between master operation ( 0 signal) and slave operation ( 1 signal) operation and vice versa.

VECTOR (Tech_ctrl),
VECTOR_AC
(Tech_ctrl),
VECTOR_I_AC
(Tech_ctrl)

## Description:

BI: Voltage-controlled operation inhibit / U_ctrl op inhib
Can be changed: $\mathrm{U}, \mathrm{T} \quad$ Calculated: - Access level: 3
Data type: Unsigned32 / Binary Dyn. index:

P-Group: - Unit group: -
Not for motor type: - Scaling: -
Min Max
Sets the signal source for disabling DC link voltage control on the motor side.

Access level: 3
Func. diagram: 7960
Unit selection: -
Expert list: 1
Factory setting
1

### 2.2 List of parameters

p3513	BI: Voltage-controlled operation inhibit / U_ctrl op inhib		
A_INF, R_INF	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 8940
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for inhibiting the voltage-controlled mode of the infeed.   Refer to: p3400, r3405		
Dependency:			
Notice:	The DC link voltage must be controlled by a different component at the DC link; otherwise this results in an overvoltage or undervoltage condition.		
Note:	The current controller remains active and can be controlled by means of its setpoint inputs (p3515, p3610). This binector input is used to change over between master operation ( 0 signal) and slave operation ( 1 signal) operation and vice versa.		
p3514	Infeed supplementary active current steady-state / INF I_sup_eff stat		
A_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2000.00 [Arms]	2000.00 [Arms]	0.00 [Arms]
Description:	Sets a steady-state supplementary setpoint for the active line supply current. Refer to: p3515		
Dependency:			
p3515	CI: Infeed supplementary active current / INF I_suppl act		
A_INF, R_INF	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the supplementary setpoint of the active current.		
Dependency:	Refer to: p3514		
p3516	Infeed current distribution factor / INF I_distr_factor		
A_INF, R_INF	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:   Dependency:	Sets the factor to be multiplied by the active current setpoint for the current controller. Refer to: p3579		


r3517	CO: Infeed active current controller unlimited setpoint / INF I_act ctrl set		
SERVO (Tech_ctrl),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8940
$\begin{aligned} & \text { (Tech_ctrl), } \\ & \text { SERVO_I_AC } \end{aligned}$	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
(Tech_ctrl), A_INF,	Not for motor type: -	Scaling: p2002	Expert list: 1
R_INF	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the unlimited setpoint of the active current controller.		
	For a master-slave infeed configuration, the master retrieves this setpoint and distributes it to all of the slaves. The slaves operate in the current-controlled mode.		


r3517	CO: DC link controller active current setpoint /Vdc I_act set		
VECTOR (Tech_ctrl),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6220,7960
(Tech_ctrl),	P-Group: Closed-loop control	Unit group: $6 _2$	Unit selection: p0505
VECTOR_AC	Not for motor type: -	Scaling: p2002	Expert list: 1
(Tech_ctrl)	Min	Max	Factory setting
	$-[$ [Arms $]$	$-[$ Arms $]$	
	Display and connector output for the unlimited setpoint of the active current controller of the DC link voltage control		
Description:	on the motor side.		


p3519[0...3]	Cl: Infeed precontrol power (scaled) / INF prectrl P scal		
SERVO (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 2
SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
(Tech_ctrl),	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC	Scaling: r2004	Expert list: 1	
(Tech_ctrl), A_INF,	Not for motor type: -	Max	Factory setting
R_INF	Min	-	0
	-		
Description:	Sets the signal source for power precontrol.		
Dependency:	Refer to: p3521	Closed-loop control of the DC link voltage is improved by precontrolling the power required for the other components.	
Note:			


p3519[0...3]	CI: DC link precontrol power (scaled) / Vdc prectrl P scal		
VECTOR (Tech_ctrl),	Can be changed: T	Calculated: -	Access level: 2
VECTOR_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram:
(Tech_ctrl),   VECTOR I AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
(Tech_ctrl)	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for power precontrol.		
Dependency:	Refer to: p3521		
Note:	Closed-loop control of the DC link voltage is A scaled quantity is expected so that the var into account. The scaling factors are used to	mproved by preco ous power referen adapt the scaling	required for the oth of the drive objects

### 2.2 List of parameters

p3520[0...3]	CI: Infeed precontrol power (not scaled) / INF prctr P n Scal		
SERVO (Tech_ctrl),	Can be changed: $T$	Calculated: -	Access level: 2
SERVO_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
(Tech_ctrl), SERVO I AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
(Tech_ctrl), A_INF,	Not for motor type: -	Scaling: -	Expert list: 1
R_INF	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for power precontrol.		
Dependency:	Refer to: p3521		
Note:	Closed-loop control of the DC link voltage is improved by precontrolling the power required for the other modules.		
	A non-scaled quantity is expected so that the various power reference values (r2004) of the drive objects do not have to be taken into account. The scaling factors are used to adapt the scaling (p3521).		


p3520[0...3]	CI: DC link precontrol power (not scaled) / Vdc pre-ctrl P		
VECTOR (Tech_ctrl),	Can be changed: $T$	Calculated: -	Access level: 2
VECTOR_AC	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7960
$\begin{aligned} & \text { (Tech_ctrl), } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
(Tech_ctrl)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for power precontrol.		
Dependency:	Refer to: p3521		
Note:	Closed-loop control of the DC link voltage is improved by precontrolling the power required for the other modules.		
	A non-scaled quantity is expected so that the various power reference values (r2004) of the drive objects do not have to be taken into account. The scaling factors are used to adapt the scaling ( p 3521 ).		


p3521[0...3]	Infeed precontrol pow	F prectrl P s	
SERVO (Tech_ctrl),   SERVO_AC   (Tech_ctrl),   SERVO_IAC   (Tech_ctrl), A_INF,   R_INF	Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   -100000.00000 [\%]	Calculated: -   Dyn. index: -   Unit group: -   Scaling: PERCENT   Max   100000.00000 [\%]	Access level: 2   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   100.00000 [\%]
Description:   Dependency:	Sets the scaling factor for the power precontrol.   Refer to: p3520		
$\begin{aligned} & \hline \text { p3521[0...3] } \\ & \text { VECTOR (Tech_ctrl), } \\ & \text { VECTOR_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_IAC } \\ & \text { (Tech_ctrl)) } \end{aligned}$	DC link precontrol pow   Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   -100000.00000 [\%]	/ Vdc prectrl P sc   Calculated: -   Dyn. index: -   Unit group: -   Scaling: PERCENT   Max   100000.00000 [\%]	Access level: 2   Func. diagram: 7960   Unit selection: -   Expert list: 1   Factory setting   100.00000 [\%]
Description:   Dependency:   Note:	Sets the scaling factor for the power precontrol.   Refer to: p3520		




p3525	Infeed inductive reactive current limit / I_re_lim ind		
A_INF (Dyn. grid	Can be changed: U, T	Calculated: -	
support, Line transf,	Data type: FloatingPoint32	Dyn. index: -	Access level: 3
Suppl cl-loop ctr),	P-Group: Closed-loop control	Unit group: -	Func. diagram: -
R_INF (Dyn. grid	Scaling: -	Unit selection: -	
support, Line transf,	Not for motor type: -	Max	Expert list: 1
Suppl cl-loop ctrl)	Min	$0.00[\%]$	Factory setting
	-100.00 [\%]	$-100.00[\%]$	
Description:	Sets the limit for the controlled inductive reactive current (r0076 < 0).		
	The value is referred to the maximum current r0209[0].		
Dependency:	Refer to: r0209, p0209, p3524, r3535, r3536		



p3528	CI: Infeed current limit motoring scaling / INF I_lim mot scal		
A_INF, R_INF	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the current limit when motoring ( p 3530 ) to limit the line active current. Refer to: p3530		
Dependency:			
Note:	The effective current limit is given by the product of p3530 * CI: p3528		
p3529	CI: Infeed current limit regenerative scaling / INF I_lim gen scal		
A_INF, R_INF	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the current limit when generating ( p 3531 ) to limit the line active current.		
Dependency:	Refer to: p3530		
Note:	The effective current limit is given by the product of p3531 * CI: p3529.		
p3530	Infeed current limit motoring / INF I_lim mot		
A_INF, R_INF	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.00 [Arms]	100000.00 [Arms]	10000.00 [Arms]
Description:	Sets the motoring limit for the active line current.		
	The currently effective current limit is displayed in r0067[0].		
Dependency:	Refer to: r0067, p3532		
Notice:	If this limit is selected lower than the maximum current permissible for the power unit (r0067), the infeed can no longer provide its full controlled power. Operating faults of the infeed can occur due to the resulting DC link undervoltage.		
	For self-commutated infeeds, the DC link voltage decreases if more power is drawn from the DC link by the connected load than can be supplied by the line because of the power unit maximum current or a limit in p3530. If the DC link voltage decreases down to the rectified value, then the complete current - necessary to cover the required active power - flows, uncontrolled into the rectifier circuit via the diodes.		
	This is the reason that, for physical reasons, the value in p3530 cannot act as current limit that is always maintained. The value forms a current threshold from which point onwards the DC link energy is used as buffer for brief power fluctuations.		
Note:	If Smart Mode is activated ( $\mathrm{p} 3400.0=1$ ), the setting in this parameter is not active.		
p3531	Infeed current limit regenerative / INF I_limit regen		
A_INF, R_INF	Can be changed: $U$, $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-100000.00 [Arms]	-1.00 [Arms]	-10000.00 [Arms]
Description:	Sets the limit for the active line supply current when regenerating. The currently effective current limit is displayed in r0067[1].		




r3554[0...1]	Infeed Vdc controller output / INF Vdc_ctrl outp		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the DC link voltage controller output (Vdc controller).		
Index:	$\begin{aligned} & {[0]=1 \text { output }} \\ & {[1]=\text { PI output }} \end{aligned}$		
p3555[0...5]	Infeed Vdc controller integral component fast intervention / Vdc_ctr l-compFast		
A_INF, S_INF, R_INF	Can be changed: $T$	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	200.00 [\%]	[0] 2.00 [\%]
			[1] 102.00 [\%]
			[2] 0.00 [\%]
			[3] 5.00 [\%]
			[4] 100.00 [\%]
			[5] 0.00 [\%]
Description:	Sets the fast Vdc controller intervention for a step-like decrease of the DC link voltage due to a high motor load of the infeed.		
	The Vdc controller fast intervention is deactivated for p3555[5] $=0 \%$ or p3560 < 100\% or p0225 > 0.5 * p0223.		
	For a line supply and DC link identification ( $\mathrm{p} 3410>=2$ ) the level of the fast controller intervention ( $\mathrm{p} 3555[2]$ ) is automatically adapted to the line supply inductance.		
Recommendation:	Precise system knowhow is required when correctly changing this parameter!		
	- generally, the fast controller intervention is used to improve the control behavior for high-speed load changes. The function can therefore always be deactivated with $\mathrm{p} 3555[5]=0 \%$ if no peak load duty cycles are required in the application.		
	- using p3555[0], the calculation of the modulation depth is determined in the case of high system deviations also when the controller intervention is deactivated. This is the reason that $\mathrm{p} 3555[0]$ should generally not be changed.		
Index:	[0] = Intervention threshold 1: Vdc deviation from the setpoint		
	[1] = Intervention threshold 2: Vdc difference to the rectified value		
	$[2]=$ Fast intervention automatic scaling$[3]=$ Fast intervention precontrol		
	[4] = Fast intervention timeout		
	[5] = Fast intervention manual scaling		
Note:	p3555[0]:		
	Vdc system deviation as a percentage of the setpoint of the DC link voltage (first condition to initiate fast controller intervention). The threshold is also used to internally change over the modulation depth calculation for high system deviations and should therefore generally not be changed!		
	p3555[1]:		
	Vdc threshold as a percentage of the rectified value of the actual line supply voltage (second condition to initiate the fast controller intervention). Both threshold conditions must be fulfilled to initiate the controller intervention.		
	Percentage overall level of the fast intervention (scaling factor). For a line supply identification with p3410 $>=2$, the factor is automatically adapted or, for weak line supplies with a high inductance, set to 0 .		
	Percentage correction of the precontrol for a fast voltage dip (dead time compensation).		

p3555[4]:
Percentage minimum time between two controller interventions ( $100 \%$ corresponds to 100 ms ). If high load change frequencies occur with the application, the minimum time between two controller interventions can be reduced using p3555[4].
p3555[5]:
Percentage overall level of the fast intervention (scaling factor). With p3555[5] $=0$, the fast controller intervention is inhibited. For weak line supplies with a high inductance, it makes sense to deactivate the fast intervention.

p3560	Infeed Vdc controller proportional gain / INF Vdc_ctrl Kp		
SERVO (Tech_ctrl),   SERVO_AC   (Tech_ctrl),   SERVO_I_AC   (Tech_ctrI), A_INF, R_INF	Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   0.01 [\%]	Calculated:   Dyn. index:   Unit group: -   Scaling: -   Max   1000.00 [\%]	Access level: 2   Func. diagram: 8940   Unit selection: -   Expert list: 1   Factory setting   100.00 [\%]
Description:   Note:	Sets the scaled proportional gain for the DC link voltage controller (Vdc controller).   A value of $100 \%$ corresponds to the basic setting derived from loop control parameters (p3421, p3422).		
$\begin{aligned} & \hline \text { p3560 } \\ & \text { VECTOR (Tech_ctrl), } \\ & \text { VECTOR_AC } \\ & \text { (Tech_ctrl), } \\ & \text { VECTOR_IAC } \\ & \text { (Tech_ctrl)) } \end{aligned}$	Vdc controller proportional ga   Can be changed: U, T   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   0.01 [\%]	Vdc_ctrl Kp   Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   1000.00 [\%]	Access level: 2   Func. diagram: 7960   Unit selection: -   Expert list: 1   Factory setting   100.00 [\%]
Description:   Note:	Sets the scaled proportional gain for the DC link voltage controller (Vdc controller).   A value of $100 \%$ corresponds to the basic setting derived from the loop control parameter ( p 3422 ).		
p3561   A_INF (Dyn. grid support, Line transf, Suppl cl-loop ctrl), R_INF (Dyn. grid support, Line transf, Suppl cl-loop ctrl)	CI: Infeed Vdc controller propo   Can be changed: T   Data type: Unsigned32 / FloatingPoint32   P-Group: -   Not for motor type: -   Min	onal gain scaling   Calculated: -   Dyn. index: -   Unit group: -   Scaling: PERCENT   Max	ctr Kpscal   Access level: 3   Func. diagram: 8940   Unit selection: -   Expert list: 1   Factory setting   1
Description:   Dependency:   Note:	Sets the signal source for scaling the proportional gain for the DC link voltage controller (Vdc controller).   Refer to: p3560   The total, effective gain is given by the product p3561 * p3560.   Internally, this product is limited to values greater than 0.01 .		
p3562   SERVO (Tech_ctrl), SERVO_AC (Tech_ctrl), SERVO_I_AC (Tech_ctrl), A_INF, R_INF	Infeed Vdc controller integral ti   Can be changed: U, T   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   0.10 [\%]	/ INF Vdc_ctrl Tn   Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   100000.00 [\%]	Access level: 2   Func. diagram: 8940   Unit selection: -   Expert list: 1   Factory setting $100.00 \text { [\%] }$
Description:   Note:	Sets the scaled integral time for the DC link voltage controller (Vdc).		




### 2.2 List of parameters

p3574[0...3]	Master/slave DC link voltage monitoring / Vdc monitoring		
A_INF (Master/Slave),	Can be changed: C2(1, 2), T	Calculated: -	Access level: 3
R_INF (Master/Slave)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8948
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-60 [V]	60 [V]	[0] 20 [V]
			[1]-20 [V]
			[2] 5 [V]
			[3]-5 [V]
Description:	Sets the upper and lower limit values and hysteresis values for the DC link voltage monitoring. The values are entered as absolute values and refer to the DC link voltage setpoint ( p 3510 ).		
Index:	For a slave infeed, if the limits   [0] = Vdc upper limit value   [1] = Vdc lower limit value   [2] = Vdc upper hysteresis valu   [3] = Vdc lower hysteresis valu	hen the closed-I	automatically switched in.
Dependency:	Refer to: r0088, p0210, p3510,		

r3575.0... 2
A_INF (Master/Slave),
R_INF (Master/Slave)

BO: Master/slave DC link voltage monitoring status / Vdc monit status
Can be changed: -
Data type: Unsigned32
P-Group: Commands
Not for motor type: -
Dyn. index: -
Unit group: -
Scaling: -
Min

## Max

access level: 3
Func. diagram: 8948
Unit selection: -
Expert list: 1
Factory setting

Description:
Bit field:

Dependency:
Displays the status of the DC link voltage monitoring for the master/slave.
p3576[0...5] Master/slave current distribution factor multiplexer input / I_dist_factor inp

A_INF (Master/Slave),
R_INF (Master/Slave)

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Upper limit value reached	Yes	No	-
01	Lower limit value reached	Yes	No	-
02	Upper/lower limit value reached	Yes	No	-

Refer to: r0088, p3510, p3574

Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min
0.00 [\%]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
100.00 [\%]

Access level: 3
Func. diagram: 8948
Unit selection: -
Expert list: 1
Factory setting
100.00 [\%]

Description:
Sets up to 6 factors to be multiplied by the active current setpoint for the current controller
For a master slave infeed configuration, the value reduced in this way can be distributed to the slave axes. The overall gain from the perspective of the voltage controller remains the same.
Index:
[0] = Value 0
[1] = Value 1
[2] = Value 2
[3] = Value 3
[4] = Value 4
[5] = Value 5
Dependency: Refer to: p3577, r3578, p3579
Note: If the multiplexer for the master/slave is not required, then it can also be used for another function.

p3577	CI: Master/slave current distribution factor multiplexer selection / I_dist_factor sel		
A_INF (Master/Slave),	Can be changed: T	Calculated: -	Access level: 3
R_INF (Master/Slave)	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 8948
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the require Cl : $\mathrm{p} 3577=0,1,2,3,4,5-->$ valid values Fault F 06321 is output for other values.	input value for the multip	
Dependency:	Refer to: p3576, r3578, p3579		
	Refer to: F06321		
Note:	If the multiplexer for the master/slave is not required, then it can also be used for another function.		
r3578	CO: Master/slave current distribution factor multiplexer output / I_dist_factor outp		
A_INF (Master/Slave),   R_INF (Master/Slave)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8948
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the multiplexer output value.		
	The signal value is used as standard for the current distribution factor for the infeed master slave operation.		
Dependency:	Refer to: p3576, p3577, p3579		
Note:	If the multiplexer for the master/slave is not required, then it can also be used for another function.		
p3579	CI: Master/Slave current distribution factor / I_dist_factor		
A_INF (Master/Slave),   R_INF (Master/Slave)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 8940
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
		-	3578[0]
Description:	Sets the factor to be multiplied by the active current setpoint for the current controller.		
	For a master/slave infeed configuration, the value reduced in this way can be distributed to the slave axes. The overall gain from the perspective of the voltage controller remains the same.		
Dependency:	Refer to: p3576, p3577, r3578		
r3602	Infeed control status / INF ctrl state		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	8	-
Description:	Displays the status of the closed-loop infeed control.		
Value:	0 : Initialization running		
	1: Pulse enable missing		
	2: Ramp-up DC link voltage		
	3: Ramp-up reactive current		
	4: Shutdown running		
	5: Reset identification		


	6: Operation   7: Identification running   8: Smart Mode running		
p3603	Infeed current precontrol factor D component / INF I_ctrl D-comp		
A_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	500.00 [\%]	100.00 [\%]
Description:	The D component of the current precontrol is determined from the device data of the filter. p3603 can be used to weigh the pre-calculated $D$ component. If no dynamic precontrol is to be used, set the factor to zero.		
p3604	CI: Infeed current precontrol factor D component scaling / INF I_ctrl D scale		
A_INF (Dyn. grid	Can be changed: T	Calculated: -	Access level: 3
support, Line transf,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
R INF (Dyn grid	P-Group: -	Unit group: -	Unit selection: -
support, Line transf,	Not for motor type: -	Scaling: PERCENT	Expert list: 1
Suppl cl-loop ctrl)	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the current precontrol.		
Dependency:	Refer to: p3603		
Note:	The total, effective gain is given by the product p3604 * p3603		
	Internally, this product is limited to values greater than 0.		
r3606	Infeed active current controller system deviation / INF I_act ctrl dev		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the system deviation of the active current controller.		
r3608	Infeed reactive current controller system deviation / INF I_reactvCtrDev		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the system deviation of the reactive current controller.		


p3610	Infeed reactive current fixed setpoint / INF I_reactv F_set			
A_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 2	
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8910, 8946	
	P-Group: Closed-loop control	Unit group: 6_2	Unit selection: p0505	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-10000.0 [Arms]	10000.0 [Arms]	0.0 [Arms]	
Description:	Sets the fixed setpoint for the reactive curr   The permissible maximum absolute value   The following applies: \| p3610	<= r0207	t.	ed current r0207.
Dependency:	Refer to: r0029, r0075, r0076			
Notice:	If the line phases are reversed and the line voltage therefore has a negative orientation (r0066 < 0), it should be noted that the sign of the reactive current is also reversed. The negated value of p3610 is effective in display parameters r0029, r0075, r0076 as appropriate.			
Note:	p3610 < 0: Inductive reactive current is produced, i. e. the current follows the voltage.			
	p3610 > 0: Capacitive reactive current is produced, i. e. the current leads the voltage.			
	This definition applies to 3AC voltage systems both with positive rotational orientation (r0066>0) and for negative rotational orientation (r0066 < 0).			
p3611	CI: Infeed reactive current supplementary setpoint / INF I_react Z_set			
A_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 2	
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 8946	
	P-Group: Closed-loop control	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: p2002	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0	
Description:	Sets the signal source for the supplementary setpoint of the reactive current.			
p3612	CI: Infeed reactive power precontrol / INF P_react prectr			
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: U, T	Calculated: -	Access level: 2	
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -	
	P-Group: Closed-loop control	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: r2004	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0	
Description:	Sets the signal source for the precontrol of the reactive power.			
Dependency:	Refer to: p3520			
p3614[0...3]	Infeed current actual value filter smoothing time / INF I_act t_sm			
A_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8950	
	P-Group: Commands	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.000 [ms]	2.000 [ms]	0.000 [ms]	
Description:	Sets the time constant for the PT1 filtering of the active current actual value and reactive current actual value.			
Index:	[0] = Current actual value smoothing with   [1] = Current actual value smoothing witho   [2] = System deviation smoothing without   [3] = Automatic system deviation smoothin	ad time dead time ad time		

### 2.2 List of parameters

Note: | The current actual value filter is deactivated with $\mathrm{p} 3614[0,1,2]=0$. |
| :--- |
| For index [0]: |
| The PT1 filter with a clock cycle dead time can be used to stabilize the closed-loop current control for extremely weak |
| line supplies (with higher relative short-circuit voltage uk). |
| For an automatic controller setting with $\mathrm{p} 3410>=2$, the current actual value filter is automatically pre-set. |
| For index [1]: |
| The PT1 filter without dead time can be used to optimize the closed-loop current control (e.g. in conjunction with |
| frequency wobbulation). |
| For index [2]: |
| The PT1 filter without dead time for the system deviation (r3606, r3608) can be used to stabilize the closed-current |
| control for weak line supplies (with low line fault rating). |
| For index [3]: |
| For an automatic controller setting, the PT1 filter without dead time for the system deviation (r3606, r3608) is preset |
| with p3410 $>=2$. |
| The filter is only active, if the following applies: p3614[2] $=0$. |

p3615	Infeed current controller P gain / INF I_ctrl Kp		
A_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaled P gain for closed-loop current control of the infeed.		
Note:	A value of $100 \%$ corresponds to the basic setting derived from loop control parameters (p3421, p3422).		
p3616	CI: Infeed current controller P gain scaling / INF I_ctrl Kp scal		
A_INF (Dyn. grid	Can be changed: T	Calculated: -	Access level: 3
support, Line transf,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
R_INF (Dyn. grid	P-Group: -	Unit group: -	Unit selection: -
support, Line transf,	Not for motor type: -	Scaling: PERCENT	Expert list: 1
Suppl cl-loop ctrl)	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the proportional gain of the current controller.		
Dependency:	Refer to: p3615		
Note:	The total, effective gain is given by the product p3616 * p3615.		
	Internally, this product is limited to values greater than 0 .		
p3617	Infeed current controller integral time / INF I_ctrl Tn		
A_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.10 [\%]	100000.00 [\%]	100.00 [\%]
Description:	Sets the scaled integral time for the infeed current controller.		
Note:	A value of $100 \%$ corresponds to the basic setting derived from loop control parameters (p3421, p3422).		


r3618	Infeed active current controller integral component / INF I_act_ctrl Tn		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the integral component of the active current controller.		
r3619	Infeed reactive current controller integral component / INF I_reactv_ctrTn		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8946
	P-Group: Closed-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the integral action component of the reactive current controller.		
p3620	Infeed current controller adaptation lower switch-in threshold / INF I_adpt thr low		
A_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	40.00 [\%]
Description:	Sets the switch-in threshold for the current controller adaptation.		
	The value refers to the maximum power unit current (r0209).		
	From the starting threshold onwards, the inductance value (p3421) used for current control is reduced linearly as a function of the current value. The inductance value for the maximum power unit current is therefore p3421 * p3622.		
Dependency:	Refer to: p3410, p3415, p3622		
Note:	The parameter can be set automatically using the line supply identification ( $\mathrm{p} 3410=4,5$ ) (also refer to p 3622 ). Prerequisite for a reliable measurement of p3622 is that the current magnitude for run 2 (p3415[1]) is at least 10 \% higher than the current magnitude for run 1 of the line supply identification. Otherwise, the measurement result is rejected.		
	In the case of a correct measurement, p3620 is set to 80\% of the current magnitude for run 1 (p3415[0]).		
	For chassis power units, it is generally not necessary to adapt p3620 and p3622 to the characteristics of the line supply. However, when required, the current controller adaptation can be optimized by selecting suitable current magnitudes for p3415.		
	For booksize power units, p3620 and p3622 are automatically adapted with the then valid factory setting of the line identification p3415.		
p3622	Infeed current controller adaptation reduction factor / INF I_adapt factor		
A_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.01 [\%]	100.00 [\%]	85.00 [\%]
Description:	Sets the inductance of the line reactor at the maximum power unit current (r0209) as a percentage of the inductance ( p 3421 ) at the application threshold ( p 3620 ).		
Dependency:	Refer to: p3410, p3415, p3620		

### 2.2 List of parameters



For a 50 Hz line supply harmonics at 250 Hz in the phase currents can be reduced by activating a harmonic controller with Order $5(\mathrm{p} 3624[0]=5)$.

p3625[0..1]	Infeed harmonics controller scaling / INF harm_ctrl scal		
A_INF, R_INF	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	300.0 [\%]	100.0 [\%]
Description:	Sets the gain of the harmonics controller.		
	p3625[0]: Gain of the first harmonics controller		
	p3625[1]: Gain of the second harmonics controller		
	$0 \%$ : Controller is deactivated		
	100 \%: Controller is activated with default gain setting		
Dependency:	Refer to: p3624, r3626		
Note:	The harmonics controller corrects the power unit voltages so that the line-side current harmonics are reduced.		
	The order of a current harmonic, that is to be dampened using a harmonics controller, is defined using p3624.		


r3626[0...1]	Infeed harmonics control output / INF harm_ctrl outp		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the output voltages of the harmonics controller.		
	r3626[0]: rms value of the 5th harmonic of the controller output voltage		
	r3626[1]: rms value of the 7th harmonic of the controller output voltage		
	The harmonics controller corrects the power unit voltages so that the line-side current harmonics are reduced.		
Dependency:	Refer to: p3624, p3625		
r3632	Infeed input voltage Vsd (active component) / INF U_inp Vsd		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8910, 8946, 8950
	P-Group: Closed-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the voltage Vsd (active component) at the 3-phase line supply input of the power unit.		
r3633	Infeed input voltage Vsq (reactive component) / INF U_inp Vsq		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8910, 8946, 8950
	P-Group: Closed-loop control	Unit group: 5_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the voltage Vsq (reactive component) at the 3-phase line supply input of the power unit.		
r3635	CO: Infeed input voltage angle / INF U_inp angle		
A_INF, R_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8950
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ ${ }^{\circ}$ ]	- [ ${ }^{\circ}$ ]	- [ ${ }^{\circ}$ ]
Description:	Display and connector output for the angle of the input voltage (relative to the line supply angle).		


p3636[0...2]	CI: Negative phase-sequence system controller phase current scaling / Neg_sys_ctr ph sc		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group:	Unit selection: -
	Not for motor type:-	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-		0
Description:	Sets the signal source for scaling the phase current using the negative phase-sequence system controller. Setpoints not equal to 0 result in shifting the corresponding phase currents to the two other phases. As a consequence, an identical scaling value for all 3 phases does not result in a change in the current.		
Index:	[ 0 ] = Phase U		
	[1] = Phase V		
	[2] = Phase W		
Caution: $\qquad$   1	Unequal scaling values result in an oscillating line power and therefore in voltage fluctuations in the DC link and asymmetrical line supply load.		
	As a consequence, additional thermal losses occur in the inverter		
	Further, this can have a negative impact on adjacent systems and components - or even damage them.		
	Depending on the magnitude of the asymmetry, increased harmonics can occur in the phase currents.		
	It may be necessary to increase the capacitance in the DC link to reduce the amplitude of the DC link voltage fluctuations.		
Notice:	The phase current scaling requires the calculation of the line voltage negative-phase sequence system (p5500.3 = 1). Grid support ( p 5501 ) can be activated or deactivated.		
	Internally, the value range of p3636 is limited depending on p3527.		
	The following applies to the maximum absolute value of the scaling value:$(100 \%-\mathrm{p} 3527) * 2$		
	The complete value range [-1, 1] assumes that p3527 is set < $=50 \%$. For p3527 $=100 \%$, p3636 is not effective.		
	Contrary to entering setpoint pointers ( p 3641 ), the phase current scaling becomes active with p 3636 after the dynamic grid support has entered a setpoint (p5506, p5509). As a consequence, dynamic grid support is influenced by p3636. Inversely, it also applies that the current change as a result of p3636 is not taken into account in the dynamic grid support, and therefore the dynamic phase-by-phase current limiting must be deactivated ( $\mathrm{p} 5500.7=0$ ).		
Note:	The scaling signals are internally limited by the value range [-1, 1].		
	Example:		
	p3636[0] = 1 signal (corresponds to $100 \%$ ) results in a reduction of the current setpoint in phase $U$ to approximately 0 , if the following applies:		
	p3636[1] $=$ p3636[2] $=0$ signal		
	The current amplitudes of the two other phases V and W are then symmetrically increased by $50 \%$.		
	The setpoints $\mathrm{r} 5510[4,6]$ and the negative phase-sequence system setpoint pointer calculated using p3636 are added.		
r3637[0...3]	CO: Negative phase-sequence system controller current setpoint / Neg_seq_ctrl I_set		
A_INF (Dyn. grid support, Line transf, Suppl cl-loop ctrl), R_INF (Dyn. grid support, Line transf, Suppl cl-loop ctrl)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7987
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the current setpoints of the negative phase-sequence system controller. The setpoint for the positive phase-sequence system current is compensated in the displayed negative-phase sequence system current.		
	The setpoint for the negative phase-sequence system current is compensated in the displayed positive-phase sequence system current.		
Index:	[ 0 ] = Negative phase-sequence system component active current   [1] = Negative phase-sequence system component reactive current   [2] = Positive phase-sequence system component active current   [3] = Positive phase-sequence system component reactive current		


Note:	The total active current setpoint in the positive phase-sequence system coordinates is displayed in r0077.
	The total reactive current setpoint in the positive phase-sequence system coordinates is displayed in r0075.


r3638[0...3]	CO: Negative phase-sequence system controller current actual value / Neg_seq ctr I_act		
A_INF (Dyn. grid	Can be changed: -	Calculated: -	Access level: 3
support, Line transf,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7987
Suppl cl-loop ctri),   R INF (Dyn. grid	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
support, Line transf,	Not for motor type: -	Scaling: p2002	Expert list: 1
Suppl cl-loop ctrl)	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the current actual values of the negative phase-sequence system controller. The setpoint for the positive phase-sequence system current is compensated in the displayed negative-phase sequence system current.		
	The setpoint for the negative phase-sequence system current is compensated in the displayed positive-phase sequence system current.		
Index:	[0] = Negative phase-sequence system component active current   [1] = Negative phase-sequence system component reactive current   [2] = Positive phase-sequence system component active current   [3] = Positive phase-sequence system component reactive current		
Note:	The total active current actu The total reactive current ac	sitive phase-seque positive phase-seq	inates is displayed in r0078. rdinates is displayed in r0076.



For index [3]:
Sets the scaling factor for the Vdc actual value filter.
At twice the line supply frequency, this component of the Vdc oscillation can pass through the bandstop and causes the Vdc controller to respond. As a consequence, the stability of the overall closed-loop control can be improved.
The setting values are internally limited to $100 \%$.

## p3640

A_INF (Dyn. grid support, Line transf, Suppl cl-loop ctrl),
R_INF (Dyn. grid support, Line transf,
Suppl cl-loop ctrl)

Description:
Recommendation:

Bit field:

Note:

Negative phase-sequence system controller configuration / Neg_sys ctr config Can be changed: $U, T$

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
-

Access level: 3
Func. diagram: 7987
Unit selection: -
Expert list: 1
Factory setting
0000 bin

Sets the configuration for the negative phase-sequence system current controller.
Setting p3640 = 7 is recommended if the emphasis is not on correcting current asymmetry, but on identifying highohmic line supply phase failures.
\(\left.$$
\begin{array}{lllll}\text { Bit } & \begin{array}{l}\text { Signal name } \\
00\end{array}
$$ \& \begin{array}{l}\mathbf{1} signal <br>
Negative phase-sequence system current <br>

Yes\end{array} \& 0 signal \& No\end{array}\right]\)| FP |
| :--- |
| 01 | | Asymmetry monitoring activated | Yes | No | - |
| :--- | :--- | :--- | :--- |
| 02 | Output limiting activated | Yes | No |

For bit 00:
The negative phase-sequence system controller controls negative phase-sequence components in the line current. For asymmetry in the line supply, this means that current harmonics with $2 x$ the line frequency can be compensated. For bit 01:
Only active for bit $0=1$.
For bit $1=1$, the following applies:
The smoothed amplitude of the controller output is monitored, and when a threshold is exceeded (p3647[1]) an alarm is output (A06208) - and the signal bit for phase failure is set (r3405.2 = 1).
When compared to passive monitoring, this negative phase-sequence system control represents active phase failure detection; even under no load conditions, it can be guaranteed that single-phase, high-ohmic line supply faults are detected.
For bit 02:
Only active for bit $0=1$.
For bit $2=1$, the following applies:
In the case of high-ohmic line supply faults (e.g. phase failure), the line asymmetry that occurs can result in a significant increase in the controller integral components, and as a consequence in a fault shutdown (e.g. fault F06200).
If these types of line supply faults are to be ridden through without shutdown (as far as is possible), then the controller output voltage limiting must be activated (threshold p3647[0]).
When monitoring is active (bit 1), for example, after A06208 occurs, a higher-level control system can initially shut down the drives in a controlled fashion - and then switch off the Active Infeed.

## p3641[0...1]

A_INF (Dyn. grid support, Line transf, Suppl cl-loop ctrl), R_INF (Dyn. grid support, Line transf, Suppl cl-loop ctrl)

Description:

CI: Negative phase-sequence system controller setpoint pointer / Neg_seq ctrl setp		
Can be changed: T	Calculated: -	Access level: 4
Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7987
P-Group: Closed-loop control	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: p2002	Expert list: 1
Min	Max	Factory setting
-	-	0

Sets the signal source for the setpoint pointer of the negative phase-sequence system current controller.
Index:

Warning:
[0] = Active
[1] = Reactive


Setpoints not equal to zero result in an oscillating line power and therefore in voltage fluctuations in the DC link and asymmetrical line supply load.
$\quad$ Note: $\quad$ When the function module "dynamic grid support" (r0108.7 = 1) is activated, the following applies: The setpoints $\mathrm{r} 5510[4,6]$ and the setpoints of the signal source are summed.

r3642[0...1]	CO: Negative phase-sequence system controller manipulated variable /   NegSeqCtr ManipVar		
A_INF (Dyn. grid	Can be changed: -	Calculated: -	Access level: 3
support, Line transf,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7987
Suppl cl-loop ctrl),	P-Group: Displays, signals	Unit group: -	Unit selection: -
R_INF (Dyn. grid	Scaling: -	Expert list: 1	
support, Line transf,	Not for motor type: -	Max	Factory setting
Suppl cl-loop ctrl)	Min	$-[V]$	$-[V]$

Description: Display and connector output for the manipulated variable (output voltage) of the negative phase-sequence system current controller.
The manipulated variable is displayed in alpha/beta coordinates.
Index: $\quad \begin{aligned} {[0] } & =\text { Alpha } \\ {[1] } & =\text { Beta }\end{aligned}$

r3643[0...1]	Neg phase-sequence system controller DC link voltage correction /      NegSeqCtr Vdc corr

A_INF (Dyn. grid support, Line transf, Suppl cl-loop ctrl), R_INF (Dyn. grid support, Line transf,
Suppl cl-loop ctrl)

Can be changed: -
Data type: FloatingPoint32
P-Group: Displays, signals Not for motor type: Min - [V]

Calculated: -
Dyn. index: -
Unit group: Scaling: Max - [V]

Access level: 3
Func. diagram: 7987
Unit selection: -
Expert list: 1
Factory setting

- [V]

Description: Displays the correction value for the DC link voltage setpoint.
This value is added to the DC link voltage setpoint ( p 3510 ), and in the case of a negative phase-sequence system setpoint not equal to 0 , compensates any Vdc oscillation.
Index:
[0] = Correction value
[1] = Correction value extrapolated
Note: For index [0]:
The corrected DC link voltage setpoint (r0088) is effective for the voltage controller.
For index [1]:
For Vdc compensation, the extrapolated correction value (also see p3639[2]) is used to take into account the current controller dead times - and to avoid current harmonics in the case of a negative phase-sequence system setpoint other than 0 .

p3645	Neg phase-seq system controller Vdc actual value filter damping /   NegSysCtr FiltDamp		
A_INF (Dyn. grid	Can be changed: U, T	Calculated: -	Access level: 3
support, Line transf,	Data type: FloatingPoint32	Dyn. index: -	
Suppl cl-loop ctrl),	P-Group: -	Unit group: -	Func. diagram: -
R_INF (Dyn. grid	Scaling: -	Unit selection: -	
support, Line transf,	Not for motor type: -	Max	Expert list: 1
Suppl cl-loop ctrl)	Min	10.000	Factory setting
	0.000	0.300	
Description:	Sets the denominator damping for the bandstop filter of the Vdc actual value for twice the line frequency.		
Note:	The bandstop filter is deactivated with $\mathrm{p} 3645=0$.		



r3648[0...1]	CO: Transformer DC component controller current actual value / Tr DC_ctrl I_act		
A_INF (Line transf),	Can be changed: -	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7987
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the DC components of the current actual values of the negative phase-sequence system controller.		
	The DC components of the current actual values are displayed in alpha/beta coordinates.		
Index:	$\begin{aligned} & {[0]=\text { Alpha }} \\ & {[1]=\text { Beta }} \end{aligned}$		
Dependency:	Refer to: p3649, p3650, p36		



### 2.2 List of parameters

Dependency:	Refer to: r3648, p3649, p3650, p3651, p3654
Note:	The manipulated variable is displayed in alpha/beta coordinates, and in comparison to the phase-to-phase rms


p3654	Transformer DC component controller PT2 limit frequency / Tr DC_ctrl PT2 f		
A_INF (Line transf),	Can be changed: U, T	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7987
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.40 [Hz]	10.00 [Hz]	10.00 [Hz]
Description:	Sets the limit frequency for the PT2 lowpass filter of the DC component controller.		
Dependency:	Refer to: r3648, p3649, p3650, p3651, r3652		
p3660[0...n]	VSM input line supply voltage voltage scaler / VSM inp U_scaler		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9880
VECTOR	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100000.00 [\%]	0.00 [\%]
Description:	Sets the voltage scaler for the Voltage Sensing Module (VSM).		
Note:	When the 690 V input is used ( X 522 ) without voltage scaler, $0 \%$ should be entered.		
	When the 100 V input (X521) is used with voltage scaler to measure medium voltages, the dividing (scaling) factor multiplied by $100 \%$ should be entered.		
	Example:		
	1000 V line supply voltage, voltage scaling, 10:1		
	--> voltage at the VSM input is 100 V		
	--> p3660 = 10 * $100 \%=1000$ \%		

p3660 VSM input line supply voltage voltage scaler / VSM inp U_scaler

A_INF, S_INF, R_INF
Can be changed: T
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min
0.00 [\%]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: PERCENT
Max
100000.00 [\%]

Sets the voltage scaler for the Voltage Sensing Module (VSM).
When the 690 V input is used (X522) without voltage scaler, 0 \% should be entered.
When the 100 V input ( X 521 ) is used with voltage scaler to measure medium voltages, the dividing (scaling) factor multiplied by $100 \%$ should be entered.
Example:
1000 V line supply voltage, voltage scaling, 10:1
--> voltage at the VSM input is 100 V
--> p3660 = 10 * $100 \%=1000 \%$

Access level: 3
Func. diagram: 9880
Unit selection: -
Expert list: 1
Factory setting
0.00 [\%]

Description:
Note:

r3661[0...n]	CO: VSM input line supply voltage u1-u2 / VSM inp u1-u2		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
VECTOR_I_AC	P-Group: Closed-loop control	Unit group: 5_3	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	$-[V]$
Description:	Displays the input voltage between phases L1 and L2 for the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3660		
Note:	X521.1 or X522.1: Connection of L1		
	X521.2 or X522.2: Connection of L2		
	X521.3 or X522.3: Connection of L3		

## r3661

CO: VSM input line supply voltage u1-u2 / VSM inp u1-u2

A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8850,8950,
			9880
	P-Group: Closed-loop control	Unit group: 5_3	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
Min	Max	Factory setting	
	$-[V]$	$-[V]$	$-[V]$

Description: Displays the input voltage between phases L1 and L2 for the Voltage Sensing Module (VSM).
Dependency: Refer to: r0025, r0072, p3660
Note:
X521.1 or X522.1: Connection of L1
X521.2 or X522.2: Connection of L2
X521.3 or X522.3: Connection of L3
The absolute voltage value (3-ph. AC) resulting from the phase voltages is displayed unsmoothed in r0072[1] and smoothed in r0025[1].

r3662[0...n]	CO: VSM input line supply voltage u2-u3 / VSM inp u2-u3		
VECTOR,	Can be changed: -	Calculated: -	
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: p0150	Access level: 3
VECTOR_I_AC	P-Group: Closed-loop control	Unit group: 5_3	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	$-[V]$

Description: Displays the input voltage between phases L2 and L3 for the Voltage Sensing Module (VSM).
Dependency: Refer to: p3660
Note: $\quad$ X521.1 or X522.1: Connection of L1
X521.2 or X522.2: Connection of L2
X521.3 or X522.3: Connection of L3

## r3662

CO: VSM input line supply voltage u2-u3 / VSM inp u2-u3
Can be changed: -
Calculated: -
Data type: FloatingPoint32
Dyn. index: -
Access level: 3

P-Group: Closed-loop control
Not for motor type: -
Unit group: 5_3
Scaling: p2001
Unit selection: p0505

Min
Max
Expert list: 1

- [V]
- [V]
[V]
Description: Displays the input voltage between phases L2 and L3 for the Voltage Sensing Module (VSM).
Dependency: Refer to: r0025, r0072, p3660


### 2.2 List of parameters

Note: $\quad$| X521.2 or X522.2: Connection of L2 |  |
| :--- | :--- |
|  | X521.3 or X522.3: Connection of L3 |
|  | The absolute voltage value resulting from the phase voltages is displayed in r0072[1] and smoothed in r0025[1]. |

r3664[0...n]	CO: VSM temperature evaluation status / VSM temp status				
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can	e changed: -	Calculated: -	Acces	
		ype: Unsigned16	Dyn. index: p0150	Func	
	P-G	up: Terminals	Unit group: -	Unit s	
	Not	motor type: -	Scaling: -	Exper	
	Min		Max	Factory	
	-		-	-	
Description:	Displays the status of the temperature evaluation using the Voltage Sensing Module (VSM). This displays whether the temperature actual value has exceeded the alarm/fault threshold.				
Bit field:		Signal name	1 signal	0 signal	FP
		Alarm is present	Yes	No	-
		Fault is present	Yes	No	-
Dependency:	Refer to: p3665, r3666, p3667, p3668				

r3664.0..1 BO: VSM temperature evaluation status / VSM temp status

A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 9886
	P-Group: Terminals	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting


Description:	Displays the status of the temperature evaluation using the Voltage Sensing Module (VSM).		
	This displays whether the temperature actual value has exceeded the alarm/fault threshold.		
Bit field:	Bit	Signal name	$\mathbf{1}$ signal
00	Alarm is present	Yes	$\mathbf{0}$ signal

Dependency: Refer to: p3665, r3666, p3667, p3668
Note: If power units are connected in parallel ( $\mathrm{p} 0120>1$ ), then the individual status words are OR'ed and the result displayed (r7305).

p3665[0...n]	VSM temperature evaluation sensor type / VSM TempSensorType		
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: p0150	Func. diagram: 9886
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	6	0
Description:	Sets the temperature sensor for the Voltage Sensing Module (VSM).		
	The temperature sensor is connected to terminals X520.5 and X520.6 of the VSM.		
Value:	0: No sensor		
	1: PTC		
	2: KTY84		
	6: PT1000		


p3665[0...n]	VSM temperature evaluation sensor type / VSM TempSensorType		
A_INF, S_INF, R_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: p0140	Func. diagram: 9886
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	6	0
Description:	Sets the temperature sensor for the Voltage Sensing Module (VSM).   The temperature sensor is connected to terminals X520.5 and X520.6 of the VSM.		
Value:	0: No sensor   1: PTC   2: KTY84   6: PT1000		
Notice:	If, when connecting AIMs in pa must be manually set ( p 3665 ). For MLFBs with the last positio For MLFBs with the last positio	position of the Article   65 should be set $=6$. should be set $=2$.	is different, then the sensor type
Note:	The parameter preassignment   For chassis power units, the te	he set line filter type nitoring of the line fil	$65=2 \text { or p3665 = 6). }$


r3666[0...n]	CO: VSM temperature actual value /VSM Temp_ActVal		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Unit group: $21 _1$	Func. diagram: 9886
VECTOR_I_AC	P-Group: Closed-loop control	Scaling: p2006	Unit selection: p0505
	Not for motor type: -	Max	Expert list: 1

r3666 CO: VSM temperature actual value / VSM Temp_ActVal

A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9886
	P-Group: Closed-loop control	Unit group: $21 _1$	Unit selection: $p 0505$
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	
Description:	Display and connector output for the temperature actual value of a temperature sensor connected to a Voltage		
	Sensing Module (VSM).		
	Prerequisite:		
	A KTY/ PT1000 temperature sensor is connected, and correspondingly 3665 is set = $2,6$.		

Note: If value r3666 exceeds threshold value p3667 or p3668, then alarm A34211 or fault F34207 is output.
For sensor type PTC (p3665 = 1), the following applies:

- below the nominal response temperature, r3666 $=-50^{\circ} \mathrm{C}$.
- above the nominal response temperature, r3666 $=250^{\circ} \mathrm{C}$.

If power units are connected in parallel ( $\mathrm{p} 0120>1$ ), then the maximum value of $\mathrm{r} 7306[0 \ldots \mathrm{n}$ ] is displayed.

p3667[0...n]	VSM overtemperature alarm threshold / VSM T A thresh		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Unit group: $21 _1$	Func. diagram: 9886
VECTOR_I_AC	P-Group: -	Scaling: p2006	Unit selection: p0505
	Not for motor type: -	Max	Expert list: 1
	Min	$301.00\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting
	$-100.00\left[{ }^{\circ} \mathrm{C}\right]$	$150.00\left[{ }^{\circ} \mathrm{C}\right]$	


p3667	VSM line filter overtemperature alarm threshold / VSM filt temp thr		
A_INF, S_INF, R_INF	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9886
	P-Group: -	Unit group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	-100 [ ${ }^{\circ} \mathrm{C}$ ]	301 [ ${ }^{\text {C }}$ ]	150 [ ${ }^{\text {C }}$ ]
Description:	Sets the alarm threshold for the temperature sensor of the Voltage Sensing Module (VSM) to monitor the line filter temperature.		
	Prerequisite:		
	A KTY/PT1000 temperature sensor is connected, and correspondingly p3665 is set = $2,6$.		
Dependency:	Refer to: p0220, p3665		
	Refer to: F06255, A34211		
Note:	For sensor type KTY (p3665 = 2) or PT1000 (p3665 = 6), values $181 \ldots 300^{\circ} \mathrm{C}$ result in fault F06255.		
	The monitoring is deactivated for p3667 = 301.		
	Deactivating the monitoring ( $\mathrm{p} 3667=301$ ) is only permissible, if, as line filter ( p 0220 ) a chassis AIM is not set.		


p3668[0...n]	VSM overtemperature shutdown threshold / VSM T F_thresh		
VECTOR,	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9886
VECTOR_I_AC	P-Group: -	Unit group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Max $: p 2006$	Expert list: 1
	Min	$301.00\left[{ }^{\circ} \mathrm{C}\right]$	Factory setting
	$-100.00\left[{ }^{\circ} \mathrm{C}\right]$	$180.00\left[{ }^{\circ} \mathrm{C}\right]$	


p3668	VSM line filter overtemperature shutdown threshold / VSM filt_T F_thres		
A_INF, S_INF, R_INF	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9886
	P-Group: -	Unit group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	-100 [ ${ }^{\circ} \mathrm{C}$ ]	301 [ $\left.{ }^{\circ} \mathrm{C}\right]$	180 [ ${ }^{\circ} \mathrm{C}$ ]
Description:	Sets the shutdown threshold for the temperature sensor of the VSM to monitor the line filter temperature. Prerequisite:		
Dependency:	Refer to: p0220, p3665		
	Refer to: F06255, F35207		
Note:	For sensor type KTY (p3665 = 2), values $181 \ldots 300^{\circ} \mathrm{C}$ result in fault F06255.		
	The monitoring is deactivated for $\mathrm{p} 3668=301$.		
	Deactivating the monitoring ( $\mathrm{p} 3668=301$ ) is only permissible, if, as line filter $(\mathrm{p} 0220)$ a chassis		


p3669[0...n]	VSM overtemperature hysteresis / VSM T hyst		
VECTOR,	Can be changed: $T$	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9886
	P-Group: -	Unit group: 21_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	1.00 [K]	$50.00[\mathrm{~K}]$	3.00 [K]
Description:   Dependency:	Sets the hysteresis for the alarm threshold/fault threshold of the Voltage Sensing Module (VSM). Refer to: p3667		
p3669	VSM line filter overtemperature hysteresis / VSM filt T hyst		
A_INF, S_INF, R_INF	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9886
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	1.0 [K]	50.0 [K]	3.0 [K]
Description:	Sets the hysteresis for the alarm threshold/fault threshold of the Voltage Sensing Module (VSM) to monitor the line filter temperature.		
Dependency:	Refer to: p3667, p3668		
p3670[0...n]	VSM 10 V input CT gain / VSM CT_gain		
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9880
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	0.000 [A]	1000.000 [A]	1.000 [A]
Description:	Sets CT gain of the CT connected at the 10 V input of the Voltage Sensing Module (VSM).		
	The parameter specifies the current magnitude in [A] referred to the input voltage at the VSM in [V].		
	Example:		
	CT with 1 V per 200 A .		
	--> p3670 = 200		
Dependency:	Refer to: r3671, r3672		
Note:	The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM. The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM.		


p3670	VSM 10 V input CT gain / VSM CT_gain		
A_INF, S_INF, R_INF	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	0.000 [A]	1000.000 [A]	1.000 [A]
Description:	Sets CT gain of the CT connected at the 10 V input of the Voltage Sensing Module (VSM).   The parameter specifies the current magnitude in [A] referred to the input voltage at the VSM in [V].   Example:   CT with 1 V per 200 A . $\text { --> p3670 = } 200$		
Dependency:	Refer to: r3671, r3672		
Note:	The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM. The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM.		


r3671[0...n]	CO: VSM 10 V input CT 1 actual value / VSM CT 1 I_act		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9880
VECTOR_I_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the current actual value from current transducer (CT) 1 at the 10 V input of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM.		

r3671 CO: VSM 10 V input CT 1 actual value / VSM CT 1 I_act

A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the current actual value from current transducer (CT) 1 at the 10 V input of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	The CT for phase 1 is connecte	X520.1 and X520	


r3672[0...n]	CO: VSM 10 V input CT 2 actual value / VSM CT 2 I_act		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9880
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the current actual value from current transducer (CT) 2 at the 10 V input of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM.		


r3672	CO: VSM 10 V input CT 2 actual value / VSM CT 2 I_act		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the current actual value from current transducer (CT) 2 at the 10 V input of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM.		
r3673[0...n]	CO: VSM 10 V input 1 actual value / VSM inp 1 U_act		
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9880
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	
Description:	Displays the actual value of the voltage measured at the 10 V input 1 of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	10 V input 1: Terminals X520.1 and X520.2		
r3673	CO: VSM 10 V input 1 actual value / VSM inp 1 U_act		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]		
Description:	Displays the actual value of the voltage measured at the 10 V input 1 of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	10 V input 1: Terminals X520.1 and X520.2		
r3674[0...n]	CO: VSM 10 V input 2 actual value / VSM inp 2 U_act		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9880
VECTOR_I_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual value of the voltage measured at the 10 V input 2 of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	10 V input 2: Terminals X520.3 and X520.4		

### 2.2 List of parameters

r3674	CO: VSM 10 V input 2 actual value / VSM inp 2 U_act		
A_INF, S_INF, R_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9880
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:   Dependency:	Displays the actual value of the voltage measured at the 10 V input 2 of the Voltage Sensing Module (VSM) Refer to: p3670		
Note:	10 V input 2: Terminals X520.3 and X520.4		
p3676	VSM line filter capacitance alarm threshold / VSMfilt C A_thresh		
A_INF, S_INF, R_INF	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	0.00 [\%]
Description:	Sets the alarm threshold for the change of the capacitance of the line filter. The monitoring of the filter capacitance is deactivated with p3676 $=0.00 \%$.		
Recommendation:	Set the value >= $20 \%$ and dependent on the harmonic content of the line supply.		
Dependency:	Refer to: p3670		
	Refer to: A06250		
Notice:	The following must be ensured before activating monitoring (e.g. p3676 = $20 \%$ ):		
	Measured filter capacitance (r3677[0...2]) $=3 \times$ filter capacitance (p0221)		
	Otherwise, to establish this ratio, p3670 must be appropriately set.		
	Example:		
	The filter capacitance is specified with p0221 $=39 \mu \mathrm{~F}$.		
	In order that the measured capacitance is 3 x so high, $\mathrm{p} 3670=6.7 \mathrm{~A}$ must be set in the gain factor. p0221[0] $=39 \mu \mathrm{~F}$		
	$\mathrm{r} 3677[0 \ldots . .2]=3 \times 39=117 \mu \mathrm{~F}$		
	--> p3670 = 6.7 A		
Note:	Prerequisites for monitoring the filter capacitance:		
	The phase currents must be measured at two capacitors of the line filter. To do this, current transformers should be connected at the 10 V inputs of the Voltage Sensing Module (VSM).		

r3677[0...2] CO: VSM line filter capacitance / VSM filt C

A_INF, S_INF, R INF
Can be changed: -
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min

- [ $\mu \mathrm{F}]$

Description: Displays the capacitance of the line filter (for a star connection).
[0] = Phase U
[1] = Phase V
[2] = Phase W
Dependency: Refer to: p3676
Prerequisite:
The monitoring of the filter capacitance is activated

Index: $\quad$| $[0]$ | $=$ Phase $U$ |
| :--- | :--- |
|  | $[1]=$ Phase $V$ |
|  | $[2]=$ Phase $W$ |

Note: Prerequisite:

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

- [ $\mu \mathrm{F}$ ]


## Access level: 4

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

- $[\mu \mathrm{F}]$

p3678[0...1]	Filter monitoring threshold values / Filter monit thr		
A_INF (Line transf),   R_INF (Line transf)	Can be changed: $\mathrm{C} 2(1,2)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7991
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	10000.00 [\%]	[0] 0.00 [\%]
			[1] 0.00 [\%]
Description:	Sets the threshold values for filter monitoring.		
	The voltage threshold value is referred to p0210.		
	The current threshold value is referred to the nominal filter current.		
	Nominal filter current $=2 \times \mathrm{PI} \times \mathrm{p} 0211 \times 3 \times \mathrm{p} 0221[0] \times \mathrm{p} 0210 \times \mathrm{sqrt}(2) /$ sqrt(3)		
Index:	[0] = Voltage threshold value   [1] = Current threshold value		
Dependency:	Refer to: r3671, r3672, r7310, r7311		
	Refer to: F06855		
Note:	The filter monitoring function is deactivated with p3678 $=0.00$.		
	Recommended setting for activation:		
	Voltage threshold value: 5.0 \%		
	Current threshold value: $500 \%$		
$\overline{p 3679[0 \ldots 1]}$   A_INF (Line transf), R_INF (Line transf)	Transformer filter monitoring times / Filter monit times		
	Can be changed: C2(1, 2)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7991
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	40.00 [ms]	[0] 20.00 [ms]
			[1] 0.50 [ms]
Description:	Sets the times for filter monitoring.		
	For index [0]:		
	Smoothing time for the alpha and beta components of the filter voltage.		
	For index [1]:		
	An appropriate fault is output if the set current threshold value is exceeded for at least the set time.		
Index:	[0] = Voltage threshold value   [1] = Current threshold value		
Dependency:	Refer to: F06855		
p3680	BI: Braking Module internal inhibit / BM int inhib		
B_INF	Can be changed: T   Data type: Unsigned32 / Binary	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
			0
Description:	Sets the signal source to inhibit the internal Braking Module.		
	BI: p3680 = 1 signal:		
	The Braking Module is inhibited.		
	BI: p3680 = 0 signal:		
	The Braking Module is enabled.		

### 2.2 List of parameters



r3685	BO: Digital Braking Module: Pre-alarm I2t shutdown / Dig BM A I2t shutd		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	The binector output uses a 1 signal to indicate that $80 \%$ of the highest permissible I2t value has been reached in the Braking Module.		
Dependency:	Refer to: A06905		
r3686	BO: Digital Braking Module fault / Dig BM fault		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:   Dependency:	The binector output uses a 1 signal to indicate an overcurrent fault or an I2t shutdown in the Braking Module.   Refer to: F06906		
r3687	BO: Digital Braking Module pre-alarm overtemperature / Dig BM A overtemp		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays a fault due to the excessively high temperature. 1 signal:		
	The connected temperature sensor (X21.1, X21.2) signals an overtemperature.		
Recommendation:	Measure the braking resistor temperature using the temperature sensor.		
r3688	BO: Braking Module internal overtemperature shutdown / BM int temp shutd		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram:
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min		Factory setting
	-	-	-
Description:	Displays the shutdown due to the excessively high temperature. 1 signal:		
	The connected temperature sensor (X21.1, X21.2) signals an overtemperature. The highest permissible temperature at the connected temperature sensor has been exceeded and results in a shutdown.		
Dependency:	Refer to: F06908		




p3704[0...n]	APC filter activation / APC filter act				
SERVO (APC),   SERVO_AC (APC),   SERVO_I_AC (APC)	Can be changed: U, T		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: DDS, p0180	Func.	
	P-Group: Closed-loop control		Unit group: -	Unit se	
	Not for motor type: REL		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	00000	
Description:	Setting to activate the filter for APC (Advanced Positioning Control).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Activate filter 1.1	Yes	No	7012
	04	Activate filter 2.1	Yes	No	7012
	05	Activate filter 2.2	Yes	No	7012
	08	Activate filter 3.1	Yes	No	7012
	09	Activate filter 3.2	Yes	No	7012
	12	Activate torque setpoint	Yes	No	5060
	13	Activate torque setpoint	Yes	No	5060


p3705[0...n]	APC filter type / APC filter type		
SERVO (APC),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: -
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	00000000 0000 0000 bin
Description:	Sets the filter type for the filter for APC (Advanced Positioning Control).		
Bit field:	Bit $\quad$ Signal name	1 signal	0 signal
	00	Filter 1.1 type	Gen filt 2nd order
	04	Filter 2.1 type	Gen filt 2nd order
	05	Filter 2.2 type	Gen filt 2nd order


p3706[0...n]	APC sub-sampling filter 2.x / APC sub-samp. 2.x		
SERVO (APC),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	64	1
Description:	Sets the factor for the sub-sampling in the branch of filter 2.1 and 2.2 for APC (Advanced Positioning Control).		
Note:	The values are integer multiples of the speed controller sampling time (p0115[1]).		


p3707[0...n]	APC sub-sampling filter 3.x / APC sub-samp. 3.x		
SERVO (APC),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	64	1
Description:	Sets the factor for the sub-sampling in the branch of filter 3.1 and 3.2 for APC (Advanced Positioning Control).		
Note:	The values are integer multiples of the speed controller sampling time (p0115[1]).		


p3708[0...n]	APC velocity actual value smoothing time encoder $\mathbf{2} /$ APC v_act t_sm $\mathbf{2}$		
SERVO (APC, Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_AC (APC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4711
Lin), SERVO_I_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
(APC, Lin)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	50.00 [ms]	Factory setting
	$0.00[\mathrm{~ms}]$	0.00 [ms]	
Description:	Sets the smoothing time constant (PT1) for the velocity actual value of encoder 2 with APC (Advanced Positioning		
	Control).		
Note:	The speed actual value should be smoothed for encoders with a low pulse number or for resolvers.		



p3709[0...n]	AVS/APC speed act value smoothing time encoder3/ w/o load sensor /		
	APC n_act t_sm 3		
SERVO (APC),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4711
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Max	Expert list: 1
	Min	50.00 [ms]	Factory setting
	$0.00[m s]$	0.00 [ms]	
Description:	Sets the smoothing time constant (PT1) for the speed actual value of encoder 3 with AVS and APC.		
	For p3700.2 = 1, the following applies:		
	Sets the smoothing time constant (PT1) for the model for operation without encoder on the load side for APC.		
	The speed actual value should be smoothed for encoders with a low pulse number or for resolvers.		
	APC: Advanced Positioning Control		

p3711[0...n]
SERVO (APC),
SERVO_AC (APC),
SERVO_I_AC (APC)

APC filter 1.1 denominator natural frequency / APC Filt1.1 fn_den		
Can be changed: U, T	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
P-Group: Closed-loop control	Unit group: -	Unit selection: -
Not for motor type: REL	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.5[\mathrm{~Hz}]$	$16000.0[\mathrm{~Hz}]$	$2000.0[\mathrm{~Hz}]$
Sets the denominator natural frequency for filter 1.1 (PT2, general 2nd order filter) for APC (Advanced Positioning		
Control).		
Refer to: p3704, p3705		


p3712[0...n]	APC filter 1.1 denominator damping / APC Filt 1.1 D_den		
SERVO (APC),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.050	10.000	0.700
Description:	Sets the denominator damping for filter 1.1 (PT2, general 2nd order filter) for APC (Advanced Positioning Control).		
Dependency:	Refer to: p3704, p3705		



p3722[0...n]	APC filter 2.1 denominator damping / APC Filt 2.1 D_den		
SERVO (APC),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.050	10.000	0.700
Description:	Sets the denominator damping for filter 2.1 (PT2, general 2nd order filter) for APC (Advanced Positioning Control).		
Dependency:	Refer to: p3704, p3705		


p3723[0...n]	APC filter 2.1 numerator natural frequency / APC Filt2.1 fn_num		
SERVO (APC),   SERVO_AC (APC),   SERVO_I_AC (APC)	Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: REL   Min   0.5 [Hz]	Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   16000.0 [Hz]	Access level: 3   Func. diagram: 7012   Unit selection: -   Expert list: 1   Factory setting $2000.0[\mathrm{~Hz}]$
Description:   Dependency:	Sets the numerator natural frequency for filter 2.1 (general 2nd order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
$\overline{p 3724[0 \ldots n]}$   SERVO (APC),   SERVO_AC (APC),   SERVO_I_AC (APC)	APC filter 2.1 numerat   Can be changed: U, T   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: REL   Min   0.000	/ APC Filt 2.1 D_num   Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max $10.000$	Access level: 3   Func. diagram: 7012   Unit selection: -   Expert list: 1   Factory setting   0.700
Description:   Dependency:	Sets the numerator damping for filter 2.1 (general 2nd Order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
p3726[0...n]   SERVO (APC),   SERVO_AC (APC),   SERVO_I_AC (APC)	APC filter 2.2 denomin   Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: REL   Min   $0.5[\mathrm{~Hz}]$	l frequency / APC Fi   Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max $16000.0[\mathrm{~Hz}]$	den   Access level: 3   Func. diagram: 7012   Unit selection: -   Expert list: 1   Factory setting $2000.0[\mathrm{~Hz}]$
Description:	Sets the denominator natural frequency for filter 2.2 (PT2, general 2nd order filter) for APC (Advanced Positioning Control).		
$\overline{\mathrm{p} 3727[0 \ldots \mathrm{n}]}$   SERVO (APC),   SERVO_AC (APC),   SERVO_I_AC (APC)	APC filter 2.2 denomin   Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: REL   Min   0.050	ng / APC Filt 2.2 D_d   Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max $10.000$	Access level: 3   Func. diagram: 7012   Unit selection: -   Expert list: 1   Factory setting   0.700
Description:   Dependency:	Sets the denominator damping for filter 2.2 (PT2, general 2nd order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		
$\overline{p 3728[0 \ldots n]}$   SERVO (APC),   SERVO_AC (APC),   SERVO_I_AC (APC)	APC filter 2.2 numerat   Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: REL   Min   $0.5[\mathrm{~Hz}]$	fequency / APC Filt2   Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   16000.0 [Hz]	um   Access level: 3   Func. diagram: 7012   Unit selection: -   Expert list: 1   Factory setting $2000.0[\mathrm{~Hz}]$
Description:   Dependency:	Sets the numerator natural frequency for filter 2.2 (general 2nd order filter) for APC (Advanced Positioning Control). Refer to: p3704, p3705		


p3729[0...n]	APC filter 2.2 numerator damping / APC Filt 2.2 D_num		
SERVO (APC),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7029
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700


p3734[0...n]	APC filter 3.1 numerator damping / APC Filt 3.1 D_num		
SERVO (APC),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for filter 3.1 (general 2nd order filter) for APC (Advanced Positioning Control).		
Dependency:	Refer to: p3704, p3705		


p3736[0...n]	APC filter 3.2 denominator natural frequency / APC Filt3.2 fn_den		
SERVO (APC),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Max
	Min	$16000.0[\mathrm{~Hz}]$	Factory setting
	$0.5[\mathrm{~Hz}]$	$2000.0[\mathrm{~Hz}]$	
Description:	Sets the denominator natural frequency for filter 3.2 (PT2, general 2nd Order filter) for APC (Advanced Positioning		
	Control).		
Dependency:	Refer to: p3704, p3705		


p3737[0...n]	APC filter 3.2 denomin	g / APC Filt 3.2 D_	
SERVO (APC),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.050	10.000	0.700
Description: Dependency:	Sets the denominator damping   Refer to: p3704, p3705	PT2, general 2nd Order filt	(Advanced Positioning Control).
p3738[0...n]	APC filter 3.2 numerato	equency / APC Filt3	
SERVO (APC),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	2000.0 [Hz]
Description: Dependency:	Sets the numerator natural fre Refer to: p3704, p3705	3.2 (general 2nd Order filt	C (Advanced Positioning Control).


p3739[0...n]	APC filter 3.2 numerator damping / APC Filt 3.2 D_num		
SERVO (APC),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for filter 3.2 (general 2nd Order filter) for APC (Advanced Positioning Control).		

Dependency: Refer to: p3704, p3705

p3740[0...n]	APC torque setpoint filter 1 denominator natural frequency / APC M flt $\mathbf{1}$ fn_den		
SERVO (APC),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5060
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	$16000.0[\mathrm{~Hz}]$	$2000.0[\mathrm{~Hz}]$
Description:	Sets the denominator natural frequency for torque setpoint filter 1 for APC.		

### 2.2 List of parameters



p3744[0...n]	APC torque setpoint filter 2 denominator natural frequency / APC M flt 2 fn_den		
SERVO (APC),   SERVO_AC (APC),   SERVO_I_AC (APC)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5060
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	2000.0 [Hz]
Description:	Sets the denominator natural frequency for torque setpoint filter 2 for APC.		
Dependency:	This parameter is active for the following filter types:		
	- general 2nd order filter (p3705.13-1).		
	- PT2 (p3705.13 = 0).		
	Refer to: p3704, p3705		
Note:	APC: Advanced Positioning Control		
p3745[0...n]	APC torque setpoint filter 2 denominator damping / APC M filt 2 D_den		
$\begin{aligned} & \text { SERVO (APC), } \\ & \text { SERVO_AC (APC), } \\ & \text { SERVO_I_AC (APC) } \end{aligned}$	Can be changed: U, T   Data type: FloatingPoint32   P-Group: Closed-loop control	Calculated: -	Access level: 3
		Dyn. index: DDS, p0180	Func. diagram: 5060
		Unit group: -	Unit selection: -
	P-Group: Closed-loop control   Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description: Dependency:	Sets the denominator damping for torque setpoint filter 2 for APC.		
	This parameter is active for the following filter types:		
	- general 2nd order filter (p3705.13-1).		
	- PT2 (p3705.13 = 0).		
	Refer to: p3704, p3705		
Note:	APC: Advanced Positioning Control		
p3746[0...n]	APC torque setpoint filter 2 numerator natural frequency / APC M flt 2 fn_num		
$\begin{aligned} & \text { SERVO (APC), } \\ & \text { SERVO_AC (APC), } \\ & \text { SERVO_I_AC (APC) } \end{aligned}$	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5060
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	2000.0 [Hz]
Description:   Dependency:	Sets the numerator natural frequency for torque setpoint filter 2 for APC.		
	This parameter is active for the following filter type:		
	Refer to: p3704, p3705		
Note:	APC: Advanced Positioning Co		


p3747[0...n]	APC torque setpoint filter 2 numerator damping / APC M filt 2 D_num		
SERVO (APC),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5060
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for torque setpoint filter 2 for APC.		
Dependency:	This parameter is active for the following filter type:		
	- general 2nd order filter (p3705.13 = 1).		
	Refer to: p3704, p3705		
Note:	APC: Advanced Positioning Control		
p3748[0...n]	APC velocity input scaling / APC v_input scale		
SERVO (APC), SERVO_AC (APC), SERVO_I_AC (APC)	Can be changed: $U, T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.000	1000000.000	1.000
Description:	Sets the scaling to adapt the velocity value via a connector input p3749.		
Dependency:	Refer to: p3749		
Note:	APC: Advanced Positioning Control		
p3749[0...n]	CI: APC velocity actual value external input / APC v_act ext inp		
SERVO (APC), SERVO_AC (APC), SERVO_I_AC (APC)	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7012
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the actual value of the external velocity actual value for APC.		
Recommendation:	When interconnecting a speed actual value from another axis, it is recommended to evaluate the bit "Speed information available" (r1992.11) (e.g. interconnect to an external fault p2106-p2108).		
	To avoid additional dead time as a result of the calculation sequence, it is recommended to set the drive object associated with the signal source of p 3749 to a higher priority (p7900).		
Dependency:	Refer to: p3748		
Note:	APC: Advanced Positioning Control		
p3750[0...n]	CI: APC acceleration sensor input / APC accel input		
SERVO (APC), SERVO_AC (APC), SERVO_I_AC (APC)	Can be changed: $T$	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7012
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2007	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the actual value of the acceleration sensor for APC (Advanced Positioning Control).   Refer to: p3700		
Dependency:			


p3751[0...n]	AVS/APC acceleration sensor high pass time constant / APC accel DT1 T		
SERVO (APC),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$10000.00[\mathrm{~ms}]$	$100.00[\mathrm{~ms}]$
Description:	Sets the time constant of the high-pass filter for the acceleration sensor for AVS and APC.		
Dependency:	Refer to: p3700, p3750		
Note:	APC: Advanced Positioning Control		
	AVS: Active Vibration Suppression		



p3753[0...n]	APC torque setpoint preassignment natural oscillation frequency / APC M_filt def fn		
SERVO (APC),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5060
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~Hz}]$	$0.0[\mathrm{~Hz}]$	
Description:	Sets the natural oscillation frequency for pre-assigning the APC torque setpoint filter 1 to compensate mounting-		
	related vibration.		
	The following parameters are preassigned:		
	p3740, p3741, p3742, p3743		
Dependency:	Refer to: p3740, p3741, p3742, p3743		
Note:	The procedure to preassign the filter is started with p3754 >0.		


p3754[0...n]	APC torque setpoint filter preassignment gain / APC M_filt def V		
SERVO (APC),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5060
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0	0.0	
Description:	Sets the gain for pre-assigning the APC torque setpoint filter 1 to compensate mounting-related vibration.		
	The following parameters are preassigned:		
	p3740, p3741, p3742, p3743		
Dependency:	Refer to: p3740, p3741, p3742, p3743		
Note:	The procedure to preassign the filter is started with p3754 >0.		


p3755[0...n]	AVS/APC motor mass factor / APC mot_mass fact		
SERVO (APC, Lin),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (APC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
$\begin{aligned} & \text { Lin), SERV } \\ & \text { (APC, Lin) } \end{aligned}$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.25	500.00	1.00
Description:	Sets the factor for the weight stiffly attached to the motor for APC without sensor on the load side ( p 3700.2 ) The value is referred to the motor weight ( p 0341 )		
Dependency:	Refer to: p3700		
Note:	If the setting results in more than the total mass, then the value of p3755 is automatically limited to this. This can also be realized by changing $\mathrm{p} 1498, \mathrm{p} 0341$ and p0342.		


p3755[0...n]	AVS/APC motor moment of inertia factor / APC M_inert factor		
SERVO (APC),	Can be changed: T	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Factory setting	
	0.25	1.00	
Description:	Sets the factor for the moment of inertia stiffly attached to the motor for APC without sensor on the load side		
	(p3700.2).		
	The value is referred to the motor moment of inertia (p0341).		
Dependency:	Refer to: p3700		
Note:	If the setting results in more than the total moment of inertia, then the value of p3755 is automatically limited to this.		
	This can also be realized by changing p1498, p0341 and p0342.		


p3760[0...n]	APC load velocity controller 1 P gain / APC v_load ctr1 Kp		
SERVO (APC, Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (APC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
Lin), SERVO_I_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
(APC, Lin)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	100.000	Factory setting
	-100.000	0.000	
Description:	Sets the proportional gain of the load velocity controller 1 for APC (Advanced Positioning Control).		
	The gain acts on the difference between the velocity setpoint and load velocity in the branch for filter 2.1 and 2.2.		


p3760[0...n]	APC load speed controller 1 P gain / APC n_load ctr1 Kp		
SERVO (APC),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-100.000	100.000	0.000
Description:	Sets the proportional gain of the load speed controller 1 for APC (Advanced Positioning Control).		
	The gain acts on the difference between the speed setpoint and load speed in the branch for filter 2.1 and 2.2.		


p3761[0...n]	AVS/APC load velocity controller 1 rate time / APC v_load ctr1 Tv		
SERVO (APC, Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (APC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
Lin), SERVO_I_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
(APC, Lin)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-500.00 [ms]	0.00 [ms]	
Description:	Sets the rate time of load velocity controller 1 for AVS and APC.		
	The rate time acts on the load acceleration in the branch for filter 2.1 and 2.2.		
Note:	APC: Advanced Positioning Control		
	AVS: Active Vibration Suppression		


p3761[0...n]	AVS/APC load speed controller 1 rate time / APC n_load ctr1 Tv		
SERVO (APC),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-500.00[\mathrm{~ms}]$	$500.00[\mathrm{~ms}]$	$0.00[\mathrm{~ms}]$

Description: Sets the rate time of load speed controller 1 for AVS and APC. The rate time acts on the load acceleration in the branch for filter 2.1 and 2.2.
Note: APC: Advanced Positioning Control
AVS: Active Vibration Suppression

p3765[0...n]	APC load velocity controller 2 P gain / APC v_load ctr2 Kp		
SERVO (APC, Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (APC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
Lin), SERVO_I_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
(APC, Lin)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-100.000	0.000	0.000
Description:	Sets the proportional gain of the load velocity controller 2 for APC (Advanced Positioning Control).		
	The gain acts on the difference between the velocity setpoint and load velocity in the branch for filter 3.1 and 3.2.		

p3765[0...n] APC load speed controller 2 P gain / APC n_load ctr2 Kp
SERVO (APC), Can be changed: U, T Calculated: CALC_MOD_CON

SERVO_AC (APC),
SERVO_I AC (APC)
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Min
-100.000
Sets the proportional gain of the load speed controller 2 for APC (Advanced Positioning Control).
The gain acts on the difference between the speed setpoint and load speed in the branch for filter 3.1 and 3.2.

p3766[0...n]	APC load velocity controller 2 rate time / APC v_load ctr2 Tv		
SERVO (APC, Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (APC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
Lin), SERVO_I_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
(APC, Lin)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-500.00[\mathrm{~ms}]$	$500.00[\mathrm{~ms}]$	0.00 [ms]
Description:	Sets the rate time of the load velocity controller 2 for APC (Advanced Positioning Control).		
	The rate time acts on the load acceleration in the branch for filter 3.1 and 3.2.		


p3766[0...n]	APC load speed controller 2 rate time / APC n_load ctr2 TV		
SERVO (APC),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: :-	Expert list: 1
	Min	Max	Factory setting
	$-500.00[\mathrm{~ms}]$	500.00 [ms]	0.00 [ms]
Description:	Sets the rate time of the load speed controller 2 for APC (Advanced Positioning Control).		
	The rate time acts on the load acceleration in the branch for filter 3.1 and 3.2.		


p3767[0...n]	APC differential position high pass time constant / APC s_Dif DT1 T		
SERVO (APC),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7013
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	100.00 [ms]
Description:	Sets the time constant of the high pass filter for the differential position gain for APC.		
Dependency:	Refer to: p3700, p3768		
Note:	APC: Advanced Positioning Control		
p3768[0...n]	APC differential position gain factor / APC s_dif Kp		
SERVO (APC, Lin),	Can be changed: $U, T$	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (APC,   (in) SERVO IAC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7013
(APC, Lin)	P-Group: Closed-loop control	Unit group: 49_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-50000.00 [ $\mathrm{Nm} / \mathrm{rad}$ ]	50000.00 [ $\mathrm{Nm} / \mathrm{rad}$ ]	0.00 [ $\mathrm{Nm} / \mathrm{rad}$ ]
Description:	Sets the gain factor Kp for the differential position controller for APC. The gain acts on the force setpoint (in front of the current setpoint filters).		
Dependency:	Refer to: p3700, p3767, r3769		
Note:	APC: Advanced Positioning Control		


p3768[0...n]	APC differential position gain factor / APC s_dif Kp		
SERVO (APC),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7013
SERVO_I_AC (APC)	P-Group: Closed-loop control	Unit group: 49_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-50000.00 [ $\mathrm{Nm} / \mathrm{rad}$ ]	50000.00 [ $\mathrm{Nm} / \mathrm{rad}$ ]	0.00 [ $\mathrm{Nm} / \mathrm{rad}$ ]
Description:	Sets the gain factor $K p$ for the differential position controller for APC.   The gain acts on the torque setpoint (in front of the current setpoint filters).   The differential position controller is deactivated with a value $=0$.		
Dependency:	Refer to: p3700, p3767, r3769		
Note:	APC: Advanced Positioning Control		
r3769	CO: APC differential position force setpoint / APC s_dif F_set		
SERVO (APC, Lin), SERVO_AC (APC, Lin), SERVO_I_AC (APC, Lin)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 7013
	P-Group: Setpoints	Unit group: 8_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Display and connector output for the force setpoint from the differential position controller for APC. This value is added to the force setpoint of the velocity controller (r1480).		
Dependency:	Refer to: p3700, p3767, p3768		
Note:	APC: Advanced Positioning Control		
r3769	CO: APC differential position torque setpoint / APC s_dif M_set		
SERVO (APC),   SERVO_AC (APC),   SERVO_I_AC (APC)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 7013
	P-Group: Setpoints	Unit group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint from the differential position controller for APC. This value is added to the torque setpoint of the speed controller (r1480).		
Dependency:	Refer to: p3700, p3767, p3768		
Note:	APC: Advanced Positioning Control		
r3770	CO: APC load velocity / APC v_load		
SERVO (APC, Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (APC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4711, 7012
(APC, Lin)	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Display and connector output for the load velocity for APC (Advanced Positioning Control).		
Dependency:	Refer to: r3771		

### 2.2 List of parameters



r3772[0...1]	APC filter branch 2 display values / APC branch 2 val		
SERVO (APC, Lin),	Can be changed: -	Calculated: -	
SERVO_AC (APC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7012
Lin), SERVO_I_AC	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
(APC, Lin)	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
	Displays the velocities in filter branch 2.		
Description:	$[0]=$ Filter 2.1 input value		
Index:	$[1]=$ Filter 2.2 output value		


r3772[0...1]	APC filter branch 2 display values / APC branch 2 val		
SERVO (APC),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Setpoints	Unit group: $3 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{rpm}]$	$-[\mathrm{rpm}]$	- [rpm]
Description:	Displays the speeds in filter branch 2.		
Index:	$[0]=$ Filter 2.1 input value		
	$[1]=$ Filter 2.2 output value		


r3773[0...1]	APC filter branch 3 display values / APC branch 3 val		
SERVO (APC, Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (APC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7012
Lin), SERVO_I_AC	P-Group: Setpoints	Unit group: $4 _1$	Unit selection: p0505
(APC, Lin)	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$	$-[\mathrm{m} / \mathrm{min}]$
Description:	Displays the velocities in filter branch 3.		
Index:	$[0]=$ Filter 3.1 input value		
	$[1]=$ Filter 3.2 output value		


r3773[0...1]	APC filter branch 3 display values / APC branch 3 val		
SERVO (APC),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Setpoints	Unit group: $3 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{rpm}]$	$-[\mathrm{rpm}]$	$-[\mathrm{rpm}]$

Description: Displays the speeds in filter branch 3.
Index: [0] = Filter 3.1 input value
[1] = Filter 3.2 output value

p3774[0...n]	APC differential speed gain factor / APC n_dif Kp		
SERVO (APC, Lin),	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
SERVO_AC (APC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7013
Lin), SERVO_I_AC	P-Group: Closed-loop control	Unit group: 24_2	Unit selection: p0505
(APC, Lin)	Sot for motor type: -	Max	Expert list: 1
	Min	$10000000.00[\mathrm{Ns} / \mathrm{m}]$	Factory setting
	$-10000000.00[\mathrm{Ns} / \mathrm{m}]$	$0.00[\mathrm{Ns} / \mathrm{m}]$	
Description:	Sets the gain factor Kp for the differential position controller for APC.		
	The gain acts on the force setpoint (in front of the current setpoint filters).		
	The differential position controller is deactivated with a value $=0$.		
Dependency:	Refer to: p3700, p3768		


p3774[0...n]	APC differential speed gain factor / APC n_dif Kp		
SERVO (APC), SERVO_AC (APC), SERVO_I_AC (APC)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7013
	P-Group: Closed-loop control	Unit group: 17_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10000000.00 [ $\mathrm{Nms} / \mathrm{rad}$ ]	10000000.00 [ $\mathrm{Nms} / \mathrm{rad}$ ]	0.00 [ $\mathrm{Nms} / \mathrm{rad}$ ]
Description:	Sets gain factor Kp for the differential speed controller for APC. The gain acts on the torque setpoint (in front of the current setpoint filters). The differential position controller is deactivated with a value $=0$.		
Dependency:	Refer to: p3700, p3768		
Note:	APC: Advanced Positioning Control		
r3777[0...1]	CO: APC filter branch 1 display values / APC branch 1 val		
SERVO (APC, Lin), SERVO_AC (APC, Lin), SERVO_I_AC (APC, Lin)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7012
	P-Group: Setpoints	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the velocities in filter branch 1 .		
Index:	[0] = Filter 1.1 input value   [1] = Filter 1.1 output value		


r3777[0..1]	CO: APC filter branch 1 display values / APC branch 1 val		
SERVO (APC),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (APC),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7012
SERVO_I_AC (APC)	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	$-[$ rpm	$-[r p m]$	$-[r p m]$
Description:	Displays the speeds in filter branch 1.		
Index:	$[0]=$ Filter 1.1 input value		
	$[1]=$ Filter 1.1 output value		


p3778[0...n]	APC velocity limit / APC v_limit		
SERVO (APC, Lin),   SERVO_AC (APC,   Lin), SERVO_I_AC   (APC, Lin)	Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   0.00 [ $\mathrm{m} / \mathrm{min}$ ]	Calculated: CALC_MOD_CON   Dyn. index: DDS, p0180   Unit group: 4_1   Scaling: -   Max   1000.00 [ $\mathrm{m} / \mathrm{min}$ ]	Access level: 2   Func. diagram: 7012   Unit selection: p0505   Expert list: 1   Factory setting   1000.00 [m/min]
Description: Dependency:	Sets the velocity limit for APC (Advanced P Refer to: p3779	oning Control).	
$\overline{p 3778[0 \ldots n]}$   SERVO (APC),   SERVO_AC (APC),   SERVO_I_AC (APC)	APC speed limit / APC n_limit   Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   0.00 [rpm]	Calculated: CALC_MOD_CON   Dyn. index: DDS, p0180   Unit group: 3_1   Scaling: -   Max   210000.00 [rpm]	Access level: 2   Func. diagram: 7012   Unit selection: p0505   Expert list: 1   Factory setting   210000.00 [rpm]
Description: Dependency:	Sets the speed limit for APC (Advanced Po Refer to: p3779	ning Control).	
p3779[0...n]   SERVO (APC, Lin),   SERVO_AC (APC,   Lin), SERVO_I_AC (APC, Lin)	APC velocity limit monitoring tim   Can be changed: U, T   Data type: Unsigned32   P-Group: Closed-loop control   Not for motor type: REL   Min   0 [ms]	/ APC v_limit t   Calculated: CALC_MOD_CON   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   1000000 [ms]	Access level: 2   Func. diagram: 7012   Unit selection: -   Expert list: 1   Factory setting   0 [ms]
Description: Dependency:	Sets the monitoring time to limit the output   This monitoring time is started after the sel output if the limit value is not undershot bef   Refer to: p3778   Refer to: F07425	APC (Advanced Positioning Con ted limit value (p3778) has been e this time expires.	eeded. A corresponding fault is
$\overline{\mathrm{p} 3779[0 \ldots \mathrm{n}]}$   SERVO (APC),   SERVO_AC (APC),   SERVO_I_AC (APC)	APC speed limit monitoring tim   Can be changed: U, T   Data type: Unsigned32   P-Group: Closed-loop control   Not for motor type: REL   Min   0 [ms]	APC n_limit t   Calculated: CALC_MOD_CON   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   1000000 [ms]	Access level: 2   Func. diagram: 7012   Unit selection: -   Expert list: 1   Factory setting   0 [ms]
Description:	Sets the monitoring time to limit the output   This monitoring time is started after the sel output if the limit value is not undershot bef	APC (Advanced Positioning Con ted limit value (p3778) has been e this time expires.	eeded. A corresponding fault is
Dependency:	Refer to: p3778   Refer to: F07425		


p3800[0...n]	Sync-line-drive activation / Sync act		
VECTOR,	Can be changed: T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 7020
VECTOR_I_AC	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the activation for line-drive synchronization		
Value:	0 : $\quad$ Sync-line-drive deactivated   1: $\quad$ Sync-line-drive activated VSM-INT		
Dependency:	Refer to: p3801, p3802		
Caution: $\$$	If there is only one VSM being used, this can either be used for line synchronization or for a flying restart. If the VSM was connected to the line supply, then flying restart should be deselected in p1200. If the VSM was connected at the output (motor side), then line synchronization should be deactivated using p3800.		
	Line synchronization (first VSM connected with the line supply) and also flying restart (second VSM connected to the motor terminals) can only be used if two VSMs are assigned to the Motor Module.		
Note:	When the ground fault monitoring initiates a fault for overlapping synchronizing the threshold value p0287[1] for the Motor Module and the associated infeed must be appropriately increased (e.g. p0287[1] $=100 \%$ ).		
	The INTERNAL voltage actual values are used for synchronization. The effects that a (sine-wave) filter - that is connected between the Motor Module and motor - has on the voltage actual values are taken into account (theoretically) by appropriately selecting p0230.		


p3801[0...n]	Sync-line-drive drive object number / Sync DO_no		
VECTOR,	Can be changed: T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	62	1
Description:	Sets the drive object number of the VSM used for the line-drive synchronization.		
Dependency:	Refer to: p3800, p3802		
Notice:	The current controller sampling time $\mathrm{p} 0115[0]$ of the drive object with the VSM used for synchronization must be identical to the current controller sampling time of the drive of the drive used to perform line synchronization.		
Note:	VSM: Voltage Sensing M		
	The setting p3801 = 1 is	VSM selected).	
	If the VSM is assigned subs The line voltage is alway	tor Module, its drive object he first VSM ( $\mathrm{p} 0151[0]$ ).	ust be entered in p3801.


p3802[0...n]	BI: Sync-line-drive enable / Sync enable		
VECTOR,	Can be changed: T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 7020
VECTOR_I_AC	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	0	
Description:	Sets the signal source to switch in/switch out for the line-drive synchronization.		
	BI: p3802 = 1 signal:		
Dependency:	The line-drive synchronization is switched in.		


r3803.0	CO/BO: Sync-line-drive control word / Sync STW			
VECTOR,	Can be changed: -	Calculated: -	Acces	
VECTOR_AC,	Data type: Unsigned32	Dyn. index: -	Func.	
VECTOR_I_AC	P-Group: Functions	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the control word for the line-drive synchronization.			
Bit field:	Bit Signal name   00 Sync-line-drive selected	1 signal Yes	0 signal   No	FP
Note:	For bit 00:			
	For a 1 signal, p3800 $>0$ is set.			
r3804	CO: Sync-line-drive target frequency / Sync f_target			
VECTOR,	Can be changed: -	Calculated: -	Acces	
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func.	
VECTOR_I_AC	P-Group: Functions	Unit group: -	Unit se	
	Not for motor type: -	Scaling: p2000	Expert	
	Min	Max	Factor	
	- [Hz]	- [Hz]	- [Hz]	
Description:	Displays the target frequency for the line-drive synchronization.   The target frequency corresponds to the absolute value of the line frequency.			
Dependency:	Refer to: A07941			
r3805	CO: Sync-line-drive frequency difference / Sync f_diff			
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can be changed: -	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: -	Func	
	P-Group: Functions	Unit group: -	Unit se	
	Not for motor type: -	Scaling: p2000	Expert	
	Min	Max	Factory	
	- [Hz]	- [Hz]	- [Hz]	
Description:	Displays the frequency difference between the measured target frequency and output frequency of the gating unit of the closed-loop control for line-drive synchronization.			
p3806[0...n]	Sync-line-drive frequency difference threshold value / Sync f_diff thresh			
VECTOR,   VECTOR_AC,	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 2	
VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func.	
	P-Group: Functions	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	0.00 [Hz]	1.00 [Hz]	0.10 [	
Description:	Sets the threshold value of the frequency difference to activate the closed-loop phase control for line-drive synchronization.			


r3808	CO: Sync-line-drive phase difference / Sync phase diff		
VECTOR,	Can be changed: -	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7020
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	- [ ${ }^{\text {] }}$	- [ ${ }^{\circ}$	- [ ${ }^{\text {] }}$
Description:	Displays the phase difference between the measured target phase and phase of the gating unit of the closed-loop control for line-drive synchronization.		


p3809[0...n]	Sync-line-drive phase setpoint / Sync phase setp		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-180.00 [ ${ }^{\circ}$ ]	179.90 [ $\left.{ }^{\circ}\right]$	0.00 [ ${ }^{\circ}$ ]
Description:	Sets the phase setpoint for the line-drive synchronization.		


p3811[0...n]	Sync-line-drive frequency limiting / Sync f_lim		
VECTOR,	Can be changed: U, T	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7020
VECTOR_I_AC	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: :-	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~Hz}]$	$1.00[\mathrm{~Hz}]$	$0.20[\mathrm{~Hz}]$
	Sests the frequency limiting of the phase controller output for the line-drive synchronization.		


r3812	CO: Sync-line-drive correction frequency / Sync f_corr		
VECTOR,	Can be changed: -	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3080, 7020
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the correction frequency for the line-drive synchronization.		
p3813[0...n]	Sync-line-drive phase synchronism threshold value / Sync Ph_sync thrsh		
VECTOR,	Can be changed: $U$, $T$	Calculated: -	Access level: 2
VECTOR_AC, VECTOR IAC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.00 [ ${ }^{\circ}$ ]	$\left.20.00{ }^{\circ}\right]$	$\left.2.00{ }^{\circ}{ }^{\circ}\right]$
Description:	Sets the threshold value of the phase synchronism for the line-drive synchronization.		
Note:	Synchronism is reached ( $\mathrm{r} 3819.2=1$ ), if the AND logic operation of the results from the phase measurement ( p 3813 ) and voltage measurement ( p 3815 ) is fulfilled.		


r3814	CO: Sync-line-drive voltage difference / Sync U_diff		
VECTOR,	Can be changed: -	Calculated: -	Access level: 2
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7020
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min		Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display and connector output for the voltage difference between the measured target voltage and output voltage of the gating unit of the closed-loop control for line-drive synchronization.		
p3815[0...n]	Sync-line-drive voltage difference threshold value / Sync U_diff thresh		
VECTOR,   VECTOR_AC,	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 2
VECTOR_I_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	20.00 [\%]	10.00 [\%]
Description:	Sets the threshold value of the voltage difference for the line-drive synchronization.		
Note:	Synchronism is reached (r3819.2 = 1), if the AND logic operation of the results from the phase measurement ( p 3813 ) and voltage measurement (p3815) is fulfilled.		
	For voltage manipulated qua the setpoint and actual valu	erve) of the drive converter orrected) to zero.	itude difference (r3814) between


r3819.0..7	CO/BO: Sync-line-drive status word / Sync ZSW				
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: -	Func.	
	P-Group: Functions		Unit group: -	Unit s	
	Not for motor type: - Sca		Scaling: -	Exper	
	Min		Max	Factory	
	-	-	-	-	
Description:	Displays the status word for the line-drive synchronization.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Sync-line-drive enabled	Yes	No	-
	02	Sync-line-drive synchronism reached	Yes	No	-
	03	Sync-line-drive synchronizing error	Yes	No	-
	05	Sync-line-drive frequency measurement active	t Yes	No	-
	06	Sync-line-drive phase control active	Yes	No	-
	07	Sync-line-drive without drive	Yes	No	-


p3820[0...n]	Friction characterist	riction n0	
SERVO, VECTOR ( $\mathrm{n} / \mathrm{M}$ ), SERVO_AC, VECTOR_AC (n/M), SERVO_I_AC, VECTOR_I_AC (n/M)	Can be changed: T	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	15.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 1st value pair of the friction characteristic.		
Dependency:	Refer to: p3830, p3845		


p3820[0...n]	Friction characteristic value v0 / Friction v0		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mathrm{m} / \mathrm{min}$ ]	21000.00 [ $\mathrm{m} / \mathrm{min}$ ]	1.50 [m/min]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the v coordinate of the 1st value pair of the friction characteristic.		
Dependency:	Refer to: p3830, p3845		
p3821[0...n]	Friction characteristic value n1/ Friction n1		
SERVO, VECTOR ( $n / M$ ), SERVO_AC, VECTOR_AC (n/M), SERVO_I_AC, VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	CALC_MOD_LIM_REF	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	30.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 2 nd value pair of the friction characteristic.		
Dependency:	Refer to: p3831, p3845		
$\overline{p 3821[0 \ldots n]}$   SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Friction characteristic value v1 / Friction v1		
	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mathrm{m} / \mathrm{min}$ ]	21000.00 [ $\mathrm{m} / \mathrm{min}$ ]	3.00 [ $\mathrm{m} / \mathrm{min}$ ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the v coordinate of the 2nd value pair of the friction characteristic.		
Dependency:	Refer to: p3831, p3845		
p3822[0...n]   SERVO, VECTOR (n/M), SERVO_AC, VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_I_AC, VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Friction characteristic value n2 / Friction n2		
	Can be changed: T	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	60.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 3rd value pair of the friction characteristic.Refer to: p 3832 , p3845		
Dependency:			


p3822[0...n]	Friction characteristic value v2 / Friction v2		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mathrm{m} / \mathrm{min}$ ]	21000.00 [m/min]	6.00 [ $\mathrm{m} / \mathrm{min}$ ]
Description:	The friction characteristic is defined by 10 value pairs.   This parameter specifies the v coordinate of the 3rd value pair of the friction characteristic.		
Dependency:	Refer to: p3832, p3845		
p3823[0...n]	Friction characteristic value n3 / Friction n3		
SERVO, VECTOR ( $\mathrm{n} / \mathrm{M}$ ), SERVO_AC, VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_IAC, VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	CALC_MOD_LIM_REF	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	120.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 4th value pair of the friction characteristic.		
Dependency:	Refer to: p3833, p3845		
$\overline{p 3823[0 \ldots n]}$   SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Friction characteristic value v3 / Friction v3		
	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mathrm{m} / \mathrm{min}$ ]	21000.00 [m/min]	12.00 [m/min]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the v coordinate of the 4th value pair of the friction characteristic.		
Dependency:	Refer to: p3833, p3845		
p3824[0...n]   SERVO, VECTOR (n/M), SERVO_AC, VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_IAC, VECTOR_I_AC (n/M)	Friction characteristic value n4 / Friction n4		
	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	150.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3834, p3845		

### 2.2 List of parameters

p3824[0...n]	Friction characteristic value v4 / Friction v4		
SERVO (Lin),   SERVO_AC (Lin),	Can be changed: T	Calculated:   CALC_MOD_LIM_REF	Access level: 2
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mathrm{m} / \mathrm{min}$ ]	21000.00 [ $\mathrm{m} / \mathrm{min}$ ]	15.00 [m/min]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the v coordinate of the 5th value pair of the friction characteristic.		
Dependency:	Refer to: p3834, p3845		
p3825[0...n]	Friction characteristic value n5 / Friction n5		
SERVO, VECTOR ( $\mathrm{n} / \mathrm{M}$ ), SERVO_AC, VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_I_AC, VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	300.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 6th value pair of the friction characteristic.		
Dependency:	Refer to: p3835, p3845		
p3825[0...n]	Friction characteristic value v5 / Friction v5		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: $T$	CALC_MOD_LIM_REF	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mathrm{m} / \mathrm{min}$ ]	21000.00 [m/min]	30.00 [m/min]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the v coordinate of the 6th value pair of the friction characteristic.		
Dependency:	Refer to: p3835, p3845		
p3826[0...n]	Friction characteristic value n6 / Friction n6		
SERVO, VECTOR ( $\mathrm{n} / \mathrm{M}$ ), SERVO_AC, VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_IAC, VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	600.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 7th value pair of the friction characteristic.		
Dependency:	Refer to: p3836, p3845		


p3826[0...n]	Friction characteristic value v6 / Friction v6		
SERVO (Lin),   SERVO_AC (Lin),	Can be changed: T	Calculated:   CALC_MOD_LIM_REF	Access level: 2
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mathrm{m} / \mathrm{min}$ ]	21000.00 [m/min]	60.00 [m/min]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the $v$ coordinate of the 7th value pair of the friction characteristic.		
Dependency:	Refer to: p3836, p3845		
p3827[0...n]	Friction characteristic value n7 / Friction n7		
SERVO, VECTOR   ( $\mathrm{n} / \mathrm{M}$ ), SERVO_AC,   VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ),   SERVO_I_AC,   VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	1200.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 8th value pair of the friction characteristic.		
Dependency:	Refer to: p3837, p3845		
p3827[0...n]	Friction characteristic value v7 / Friction v7		
SERVO (Lin),   SERVO_AC (Lin),   SERVO_I_AC (Lin)	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mathrm{m} / \mathrm{min}$ ]	21000.00 [m/min]	120.00 [ $\mathrm{m} / \mathrm{min}$ ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the v coordinate of the 8th value pair of the friction characteristic.		
Dependency:	Refer to: p3837, p3845		
p3828[0...n]	Friction characteristic value n8 / Friction n8		
SERVO, VECTOR (n/M), SERVO_AC,	Can be changed: T	Calculated:   CALC_MOD_LIM_REF	Access level: 2
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
VECTOR_I_AC (n/M)	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	1500.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3838, p3845		


p3828[0...n]	Friction characteristic value v8 / Friction v8		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: T	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mathrm{m} / \mathrm{min}$ ]	21000.00 [m/min]	150.00 [m/min]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the v coordinate of the 9th value pair of the friction characteristic.		
Dependency:	Refer to: p3838, p3845		
p3829[0...n]	Friction characteristic value n9 / Friction n9		
SERVO, VECTOR ( $\mathrm{n} / \mathrm{M}$ ), SERVO_AC, VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_I_AC, VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	3000.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 10th value pair of the friction characteristic.		
Dependency:	Refer to: p3839, p3845		


p3829[0...n]	Friction characteristic value v9 / Friction v9		
SERVO (Lin), SERVO_AC (Lin),	Can be changed: T	Calculated:   CALC_MOD_LIM_REF	Access level: 2
SERVO_I_AC (Lin)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 4_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mathrm{m} / \mathrm{min}$ ]	21000.00 [m/min]	300.00 [m/min]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3839, p3845		
p3830[0...n]	Friction characteristic value M0 / Friction M0		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 2
(n/M), SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_I_AC,	P-Group: Functions	Unit group: 7_1	Unit selection: p0505
VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [Nm]	$1000000.0000[\mathrm{Nm}]$	0.0000 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 1st value pair of the friction characteristic.		
Dependency:	Refer to: p3820, p3845		


p3830[0...n]	Friction characteristic value F0 / Friction F0		
SERVO (Lin),   SERVO_AC (Lin),   SERVO_I_AC (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [N]	$1000000.0000[\mathrm{~N}]$	0.0000 [ N ]
Description:	The friction characteristic is defined by 10 value pairs.   This parameter specifies the F coordinate of the 1st value pair of the friction characteristic.		
Dependency:	Refer to: p3820, p3845		
p3831[0...n]	Friction characteristic value M1 / Friction M1		
SERVO, VECTOR (n/M), SERVO_AC, VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_I_AC, VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [Nm]	$1000000.0000[\mathrm{Nm}]$	0.0000 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 2nd value pair of the friction characteristic.		
Dependency:	Refer to: p3821, p3845		
p3831[0...n]	Friction characteristic value F1 / Friction F1		
SERVO (Lin), SERVO_AC (Lin), SERVO_I_AC (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [N]	$1000000.0000[\mathrm{~N}]$	0.0000 [ N ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the F coordinate of the 2nd value pair of the friction characteristic.		
Dependency:	Refer to: p3821, p3845		
p3832[0...n]	Friction characteristic value M2 / Friction M2		
SERVO, VECTOR   (n/M), SERVO_AC,   VECTOR_AC (n/M),   SERVO_I_AC,   VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [Nm]	$1000000.0000[\mathrm{Nm}]$	0.0000 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 3rd value pair of the friction characteristic.		
Dependency:	Refer to: p3822, p3845		


p3832[0...n]	Friction characteristic value F2 / Friction F2		
SERVO (Lin),   SERVO_AC (Lin),   SERVO_I_AC (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [N]	$1000000.0000[\mathrm{~N}]$	0.0000 [ N ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the F coordinate of the 3rd value pair of the friction characteristic.		
Dependency:	Refer to: p3822, p3845		
p3833[0...n]	Friction characteristic value M3 / Friction M3		
SERVO, VECTOR ( $\mathrm{n} / \mathrm{M}$ ), SERVO_AC, VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_I_AC, VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [Nm]	$1000000.0000[\mathrm{Nm}]$	0.0000 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 4th value pair of the friction characteristic.		
Dependency:	Refer to: p3823, p3845		
p3833[0...n]	Friction characteristic value F3 / Friction F3		
SERVO (Lin),   SERVO_AC (Lin),   SERVO_I_AC (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [N]	$1000000.0000[\mathrm{~N}]$	0.0000 [ N ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the F coordinate of the 4th value pair of the friction characteristic.		
Dependency:	Refer to: p3823, p3845		
p3834[0...n]	Friction characteristic value M4 / Friction M4		
SERVO, VECTOR ( $\mathrm{n} / \mathrm{M}$ ), SERVO_AC, VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_I_AC, VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [Nm]	$1000000.0000[\mathrm{Nm}]$	0.0000 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 5th value pair of the friction characteristic.		
Dependency:	Refer to: p3824, p3845		


p3834[0...n]	Friction characteristic value F4 / Friction F4		
SERVO (Lin),	Can be changed: T	Calculated: -	
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Access level: 2
SERVO_I_AC (Lin)	P-Group: Functions	Unit group: $8 _1$	Func. diagram: 7010
	Not for motor type: REL	Scaling: -	Unit selection: p0505
	Min	Max	Expert list: 1


p3836[0...n]	Friction characteristic value F6 / Friction F6		
SERVO (Lin),   SERVO_AC (Lin),   SERVO_I_AC (Lin)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [N]	$1000000.0000[\mathrm{~N}]$	0.0000 [N]
Description:	The friction characteristic is defined by 10 value pairs.   This parameter specifies the F coordinate of the 7 th value pair of the friction characteristic.		
Dependency:	Refer to: p3826, p3845		
$\overline{p 3837[0 . . . n]}$   SERVO, VECTOR ( $\mathrm{n} / \mathrm{M}$ ), SERVO_AC, VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_I_AC, VECTOR_I_AC (n/M)	Friction characteristic value M7 / Friction M7		
	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [Nm]	$1000000.0000[\mathrm{Nm}]$	0.0000 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 8th value pair of the friction characteristic.		
Dependency:	Refer to: p3827, p3845		
$\overline{p 3837[0 . . . n]}$   SERVO (Lin),   SERVO_AC (Lin),   SERVO_I_AC (Lin)	Friction characteristic value F7 / Friction F7		
	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 8_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [N]	$1000000.0000[\mathrm{~N}]$	0.0000 [ N ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the F coordinate of the 8th value pair of the friction characteristic.		
Dependency:	Refer to: p3827, p3845		
p3838[0...n]	Friction characteristic value M8 / Friction M8		
SERVO, VECTOR ( $\mathrm{n} / \mathrm{M}$ ), SERVO_AC, VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_I_AC, VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Unit group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.0000 [Nm]	$1000000.0000[\mathrm{Nm}]$	0.0000 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.   This parameter specifies the M coordinate of the 9 th value pair of the friction characteristic.		
Dependency:	Refer to: p3828, p3845		


p3838[0...n]	Friction characteristic value F8 / Friction F8			
SERVO (Lin),   SERVO_AC (Lin),   SERVO_I_AC (Lin)	Can be changed: T	Calculated: - Access level: 2		
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010	
	P-Group: Functions	Unit group: 8_1	Unit selection: p0505	
	Not for motor type: REL	Scaling: -	Expert list: 1	
			Factory setting	
	-1000000.0000 [N]	1000000.0000 [ N$]$	0.0000 [ N ]	
Description:	The friction characteristic is defined by 10 value pairs.			
	This parameter specifies the F coordinate of the 9th value pair of the friction characteristic.			
Dependency:	Refer to: p3828, p3845			
p3839[0...n]	Friction characteristic value M9 / Friction M9			
SERVO, VECTOR (n/M), SERVO_AC, VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ), SERVO_I_AC, VECTOR_I_AC (n/M)	Can be changed: T	Calculated: -	Access level: 2	
	Data type: FloatingPoint32 Der	Dyn. index: DDS, p0180	Func. diagram: 7010	
	P-Group: Functions	Unit group: 7_1	Unit selection: p0505	
	Not for motor type: REL S	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-1000000.0000 [Nm]	$1000000.0000[\mathrm{Nm}]$	0.0000 [ Nm ]	
Description:	The friction characteristic is defined by 10 value pairs.			
	This parameter specifies the M coordinate of the 10th value pair of the friction characteristic.			
Dependency:	Refer to: p3829, p3845			
p3839[0...n]	Friction characteristic value F9 / Friction F9			
$\begin{aligned} & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 2	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010	
	P-Group: Functions	Unit group: 8_1	Unit selection: p0505	
	Not for motor type: REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-1000000.0000 [N]	1000000.0000 [ N$]$	0.0000 [ N ]	
Description:	The friction characteristic is defined by 10 value pairs.			
	This parameter specifies the F coordinate of the 10th value pair of the friction characteristic.			
Dependency:	Refer to: p3829, p3845			
r3840.0..8	CO/BO: Friction characteristic status word / Friction ZSW			
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 7010	
	P-Group: Functions	Unit group: -	Unit selection: -	
	Not for motor type: REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	- -	-	-	
Description:	Display and BICO output for the status word of the friction characteristic.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Friction characteristic OK	Yes	No	-
	01 Friction characteristic record activated	Yes	No	-
	02 Friction characteristic record completed	d Yes	No	-
	03 Friction characteristic record aborted	Yes	No	-
	08 Friction characteristic positive direction	Yes	No	-
Note:	Bit $0=1$ :			
	All friction characteristic values (p3820 ... p3839)	39) of all existing drive dat	are plausible.	


r3840.0...9	CO/BO: Friction characteristic status word / Friction ZSW		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Calculated: -	Access level: 2	
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 7010
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and BICO output for the status word of the friction characteristic.		
Bit field:	Bit	Signal name	1 signal
	00	Friction characteristic OK	Yes
	01	Friction characteristic record activated	Yes
	02	Friction characteristic record completed	Yes

## Note:

## For bit 09:

For closed-control of an induction motors with encoder, the switchover between the current and observer model is displayed (see also r1751.19), if p3844 is $>0$.
For bit $9=0$ (observer model active), the following applies:
The frictional torque is calculated from the characteristic values from the characteristic point entered into p3844.
For bit $9=1$ (current model active), the following applies:
The frictional torque is calculated from the characteristic values below the characteristic point entered into p3844.


p3845
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Friction characteristic record activation / Frict rec act		
Can be changed: T	Calculated: -	Access level: 2
Data type: Integer16	Dyn. index: -	Func. diagram: 7010
P-Group: Functions	Unit group: -	Unit selection: -
Not for motor type: REL	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	3	0

Description:

## Value:

Danger:


Setting for the friction characteristic record. After the next switch-on command, the friction characteristic is automatically recorded.

Dependency:

0: $\quad$ Friction characteristic record deactivated
1: Friction char record activated for all directions
2: Friction char record activated for positive direction
3: Friction char record activated for negative direction
When selecting the friction characteristic measurement, the drive data set changeover is suppressed.
For linear drives (refer to r0108.12) it is not permissible to carry out the friction characteristic measurement for mechanical systems that limit travel.

Notice:
For drives with a mechanical system that limit the distance moved, it must be ensured that during recording, the friction characteristic is not reached. If this is not the case, then it is not permissible that the measurement is carried out.
To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
Note:
When the friction characteristic record is active, it is not possible to save the parameters (p0971, p0977). When the friction characteristic record is active (p3845>0), it is not possible to change p3820 ... p3829, p3830 ... p3839 and p3842.
When recording the friction characteristic, in addition to the friction, the motor losses are also determined (e.g. iron losses, eddy current losses and re-magnetizing losses). A differentiation is not made between these individual loss components. We recommend that a motor temperature sensor is used because torque deviations can also be emulated/mapped on the characteristic due to the thermal influence.

p3846[0...n]	Friction characteristic record ramp-up/ramp-down time / Frict rec t_RU/RD		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 2
(n/M), SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
$\begin{aligned} & \text { VECTOR_AC }(\mathrm{n} / \mathrm{M}), \\ & \text { SERVO_I_AC, } \end{aligned}$	P-Group: Functions	Unit group: -	Unit selection: -
VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	Sets the ramp-up/ramp-down time of the ramp-up/ramp-down function generator to automatically record the friction characteristic.		
	The drive is accelerated from standstill (setpoint $=0$ ) up to the maximum speed/velocity ( p 1082 ) in this time.		
Dependency:	Refer to: p3845		
p3847[0...n]	Friction characteristic record warm-up time / Frict rec t_warm		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 2
(n/M), SERVO_AC,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
VECTOR_AC (n/M), SERVO I AC,	P-Group: Functions	Unit group: -	Unit selection: -
VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	3600.000 [s]	0.000 [s]
Description:	Sets the warm-up time.		
	For an automatic trace (record) to start, the highest selected speed (p3829) is approached and this time is held. After this, the measurement is started with the highest speed.		
Dependency:	Refer to: p3829, p3845		


p3848[0...n]	CI: Friction characteristic speed actual value signal source / Frict n_act s_src		
SERVO, VECTOR	Can be changed: T	Calculated: -	Access level: 3
(n/M), SERVO_AC,	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7010
VECTOR_AC (n/M),	P-Group: Closed-loop control	Unit group: -	Unit selection: -
VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	63[0]
Description:	Sets the signal source for the speed actual value of the friction characteristic.		
Dependency:	Refer to: r1443		
Notice:	The interconnected signal of the speed actual value must be approximately the same as the real motor speed so that when the motor model is replaced, no significant settling operations occur.		

p3860
A_INF (Brk Mod ext),
S_INF (Brk Mod ext),
R_INF (Brk Mod ext),
B_INF (Brk Mod ext)

Number of Braking Modules connected in parallel / BM qty par_cct		
Can be changed: C2(2)	Calculated: -	Access level: 3
Data type: Unsigned8	Dyn. index: -	Func. diagram: 9951
P-Group: Converter	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
1	8	1
Sets the number of Braking Modules connected in parallel in a DC link.		
The parameter can only be written to if the infeed is in the commissioning mode (p0010 = 2).		

## r3861.0... 7

A_INF (Brk Mod ext)
S_INF (Brk Mod ext),
R_INF (Brk Mod ext),
B_INF (Brk Mod ext)

BO: Braking Module inhibit/acknowledgment / BM inhib/ackn

Data type: Unsigned32
P-Group: Commands
Not for motor type: -
Min
-
Signal to energize terminal X21.1 "inhibit/acknowledgment" on the Braking Module
This binector output is used as signal source to interconnect to a digital output.
For "booksize" formats the digital output must be connected to terminal X21.1 and for "chassis" formats the digital output must be connected to terminal X21.3 of the particular Braking Module.

Bit field:

Bit	Signal name	1 signal	0 signal	FP
00	Inhibit/acknowledge Braking Module 1	High	Low	-
01	Inhibit/acknowledge Braking Module 2	High	Low	-
02	Inhibit/acknowledge Braking Module 3	High	Low	-
03	Inhibit/acknowledge Braking Module 4	High	Low	-
04	Inhibit/acknowledge Braking Module 5	High	Low	-
05	Inhibit/acknowledge Braking Module 6	High	Low	-
06	Inhibit/acknowledge Braking Module 7	High	Low	-
07	Inhibit/acknowledge Braking Module 8	High	-	

Check that binector outputs BO: r3861.n are connected correctly and that the appropriate digital outputs are wired correctly.
If the interconnection/wiring is incorrect, the software could execute a different (incorrect) function via binector outputs BO: r3861.n if the Braking Module develops a fault.

### 2.2 List of parameters

p3862
A_INF (Brk Mod ext),
S_INF (Brk Mod ext),
R_INF (Brk Mod ext),
B_INF (Brk Mod ext)

Description: Dependency: Note:

A_INF (Brk Mod ext),
S_INF (Brk Mod ext),
R_INF (Brk Mod ext),
B_INF (Brk Mod ext)

Braking Module DC link fast discharge delay time / BM DC-dischg t_del		
Can be changed: C1(3), T	Calculated: -	Access level: 3
Data type: Unsigned32	Dyn. index: -	Func. diagram: 9951
P-Group: Communications	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$500[\mathrm{~ms}]$	$4294967295[\mathrm{~ms}]$	$1000[\mathrm{~ms}]$
Sets the delay time for switching in the DC link fast discharge.		
Refer to: p3863, r3864		
The DC link fast discharge is only possible for "booksize" formats. This function is not supported for "chassis"		
formats.		

BI: Activating Braking Module DC link fast discharge / BM DC-dischg act

Can be changed: $T$
Data type: Unsigned32 / Binary
P-Group: -
Not for motor type: -
Min

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

Access level: 3
Func. diagram: 9951
Unit selection: -
Expert list: 1
Factory setting 0

Description:	Sets the signal source to activate the DC link fast discharge.
	The DC link fast discharge is started later with delay time (p3862) when the following conditions apply:   - BI: p3863 = 1 signal.   - an external line contactor is opened via r0863.1 "energize contactor".
	The DC link fast discharge is interrupted when the following conditions apply:
	- BI: p3863 = 0 signal.
	- ON command for the infeed.
Recommendation:	The DC link fast discharge should be activated if there is an external line contactor and is correctly interconnected (r0863.1, p0860). If the DC link fast discharge is not activated together with an external line contactor, then faults can occur when precharging (e.g. F30027).
Dependency:	Refer to: r3864
	Refer to: F30027
Note:	The DC link fast discharge is only possible for "booksize" formats. This function is not supported for "chassis" formats.

## r3864.0... 7

A_INF (Brk Mod ext), S_INF (Brk Mod ext), R_INF (Brk Mod ext), B_INF (Brk Mod ext)

BO: Braking Module DC link fast discharge / BM DC link dischg
Can be changed: - Calculated: - Access level: 3

Data type: Unsigned32
P-Group: Commands
Not for motor type: -
Min

Signal to control (energize) terminal X21.2 "DC link fast discharge" on the Braking Module.
This binector output is used as signal source to interconnect to a digital output. The digital output must be connected to terminal X21.2 of the particular Braking Module.

Bit	Signal name	1 signal	0 signal	FP
00	Fast discharge Braking Module 1	High	Low	-
01	Fast discharge Braking Module 2	High	Low	-
02	Fast discharge Braking Module 3	High	Low	
03	Fast discharge Braking Module 4	High	Low	
04	Fast discharge Braking Module 5	High	Low	
05	Fast discharge Braking Module 6	High	Low	-
06	Fast discharge Braking Module 7	High	-	
07	Fast discharge Braking Module 8	High	Low	-


Dependency:	Refer to: p3863				
	Refer to: F30027				
Warning:	It must be carefully ensured that the binector outputs BO: p3864.n are correctly interconnected and also that the appropriate digital outputs are correctly connected up.				
	If the interconnection/connection is incorrect, in the case of an active DC link fast discharge, the software could execute another function (incorrect function) via binector outputs BO: p3864.n or could also permanently control the DC link fast discharge even if the line contactor is closed.				
Note:	The DC link fast discharge is only possible for "booksize" formats. This function is not supported for "chassis" formats.				
p3865[0...7]	BI: Braking Module pre-alarm l2t shutdown / BM pre-A l2t shutd				
A_INF (Brk Mod ext), S_INF (Brk Mod ext), R_INF (Brk Mod ext), B_INF (Brk Mod ext)	Can be changed: T   Data type: Unsigned32 / Binary		Calculated: -	Access level: 3	
			Dyn. index: -	Func. diagram: 9951	
	Data type: Unsigned32 / Binary P-Group: -		Unit group: -	Unit selection: -	
	Not for motor type:		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
			-	0	
Description:	Sets the signal source for the message "Pre-alarm I2t shutdown" of the Braking Module.   BI: p3865[0...7] = 1 signal --> no pre-alarm I2t shutdown   BI: p3865[0...7] = 0 signal --> pre-alarm I2t shutdown (A06901)				
Dependency: Note:	Refer to: A06901				
	For the Braking Module, this message is output via the following terminal:				
	- X21.4 for the "Booksize" format				
	This function is not supported for the "chassis" format.				
p3866[0...7]   A_INF (Brk Mod ext), S_INF (Brk Mod ext), R_INF (Brk Mod ext), B_INF (Brk Mod ext)	BI: Braking Module fault / BM fault				
	Can	be changed: $T$	Calculated: -	Acces	
	Dat	type: Unsigned32 / Binary	Dyn. index: -	Func.	
		roup: -	Unit group: -	Unit s	
		or motor type: -	Scaling: -	Exper	
	Min		Max	Factor	
	-		-	0	
Description:	Sets the signal source for the "Fault" message of the Braking Module.				
	BI: p3866[0...7] = 1 signal --> No fault				
	BI: p3866[0...7] = 0 signal --> fault (A06900)				
	For a 0 signal, an acknowledgment via binector output r3861 is automatically carried out at certain time intervals.				
Dependency: Note:	Refer to: A06900				
	For the Braking Module, this message is output via the following terminal:				
	- X21.4 for the "Booksize" format				
	- X21.5 for the "Chassis" format				
p3870	Lon	g stator configuratio	stator config		
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can	be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: -	
	P-Group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000 bin	
Description:	Sets the configuration when operating a long stator motor.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Activate long stator help fu	Active	Inactive	-
	01	Suppress Gx_ZSW. 14	Active	Inactive	-
Dependency:	Refer to: p3871, p3872, p3873, p3874, r3875, p3876, p3878, p3879				

### 2.2 List of parameters



p3874	CI: Long stator signal source commutation angle oper. with encoder / S s com ang enc			
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: $T$	Calculated: -	Access	
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func.	
	P-Group: -	Unit group: -	Unit se	
	Not for motor type: -	Scaling: p2005	Expert	
	Min	Max	Factor	
	-	-	3879[0]	
Description:	Sets the signal source for the commutation angle for operation with encoder.			
Dependency:	Refer to: p3870, p3871, p3872, p3873, r3875, p3876, p3878, p3879			
Note:	This angle is set for a $0 / 1$ signal edge via BI: p 3873 .			
r3875.0... 1	CO/BO: Long stator status word / Long stator ZSW			
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: -	Calculated: -	Access level: 3	
		Dyn. index: -	Func.	
	P-Group: -	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Display and BICO output for the status word of the long stator motors.			
Bit field:	Bit Signal name   00 Sensor Module is unparked   01 Closed-loop speed control with encoder requested	1 signal	0 signal	FP
		Yes	No	-
		r Active	Inactive	-
Dependency:   Note:	Refer to: p3870, p3871, p3872, p3873, p3874, p3876, p3878, p3879			
	The display is updated with a sampling time of 1 ms .			
	For bit $00=1$ :			
	The encoder is parked. Contrary to r0481.14, parking is also displayed here if the suppression of the parking bit is active in r0481.14 (p3870.1 = 1).			
	For bit $01=1$ :			
	The long-stator functions requested closed-loop speed control with encoder. In r1407.2, it is indicated as to whether an encoder is actually used for the closed-loop control.			


r3875.0... 1	CO/BO: Long stator status word / Long stator ZSW			
SERVO (Lin),   SERVO_AC (Lin),   SERVO_I_AC (Lin)	Can be changed: - Ca	Calculated: -	Acces	
	Data type: Unsigned32 Dy	Dyn. index: -	Func.	
	P-Group: - Un	Unit group: -	Unit se	
	Not for motor type: - Scals	Scaling: -	Expert	
	Min M	Max	Factor	
	- -	-	-	
Description:	Display and BICO output for the status word of the long stator motors.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Sensor Module is unparked	Yes	No	-
	01 Closed-loop velocity control with encoder requested	- Active	Inactive	-
Dependency:	Refer to: p3870, p3871, p3872, p3873, p3874, p3876, p3878, p3879			
Note:	The display is updated with a sampling time of 1 ms .			
	For bit $00=1$ :			
	The encoder is parked. Contrary to r0481.14, parking is also displayed here if the suppression of the parking bit active in r0481.14 (p3870.1 = 1).			
	For bit 01 = 1 :			
	The long-stator functions requested closed-loop velocity control with encoder. In r1407.2, it is indicated as to whether an encoder is actually used for the closed-loop control.			



p3880	BI: ESM activation signal source / ESM act s s		
VECTOR, VECTOR_AC	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 7033
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to activate the essential service mode (ESM) via digital input. Using this function, when required the motor can be operated for as long as possible (e.g. to extract smoke).   BI: p3880 = 1 signal:		
	The essential service mode is activated.		
	BI: p3880 $=0$ signal:		
	The essential service mode is deactivated.		
Dependency:	The function can only be activated for the following products:		
	- SINAMICS G130/G150/S150 (VECTOR)		
	- SINAMICS S120 AC drive (AC/AC, CU310-2 with PM240-2, VECTOR_AC)		
	If the signal source for the ESM activation is interconnected ( $\mathrm{p} 3880>0$ ), and a motor encoder is parameterized ( $\mathrm{p} 0187, \mathrm{p} 0400$ ), then for an encoder fault, the fault response is automatically activated ( $\mathrm{p} 0491=1$ ).		



### 2.2 List of parameters

Note: | ESM: Essential Service Mode |
| :--- |
| When the essential service mode is activated, the effective speed setpoint is displayed in r1114. |
| For p3881 = 0: |
| The last known setpoint value is only safely and reliably transferred if it was present for at least 30 s prior to activating |
| the essential service mode. |
| Speed setpoints from the jog mode ( p 1058 , p1059) are not taken into account. |
| For p3881 = 5: |
| The signal source for the setpoint via analog input for TB30/TM31 is set via p3886. |
| For p3881 = 6: |
| n_act $=0:$ pulse suppression and switching on inhibited. |
| n_active $>0$ : braking along the ramp-function generator down ramp (p1121), pulse cancellation and switching on |
| inhibited. |
| For p3881 $=7$ : |
| n_act $=0:$ pulse suppression and switching on inhibited. |
| n_act $>0:$ immediate pulse cancellation and switching on inhibited. |

p3882	ESM setpoint source alternative / ESM setp_src alt	
VECTOR	Can be changed: T Calculated: -	Access level: 3
	Data type: Integer16 Dyn. index: -	Func. diagram: 7033
	P-Group: Functions Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	02	0
Description:	Sets the alternative setpoint source for essential service mode (ESM). This setpoint is used when the setpoint source set in p3881 is lost.	
Value:	$0:$ Last known setpoint (r1078 smoothed)   1: Fixed speed setpoint $15(\mathrm{p} 1015)$   $2:$ Maximum speed (p1082)	
Dependency:	Refer to: p3881	
Note:	ESM: Essential Service Mode   The alternative setpoint source is only active for p3881 $=3,5$.	


$\mathbf{p 3 8 8 2}$
VECTOR_AC

ESM setpoint source alternative / ESM setp_src alt
VECTOR_AC

Can be changed: T
Calculated: -
Data type: Integer16
P-Group: Functions
Not for motor type: -
Min
0

Dyn. index: -
Unit group: -
Scaling: -
Max
2

Access level: 3
Func. diagram: 7033
Unit selection: -
Expert list: 1
Factory setting
0

Description: Sets the alternative setpoint source for essential service mode (ESM).
This setpoint is used when the setpoint source set in p3881 is lost.
Value:
0: Last known setpoint (r1078 smoothed)
Fixed speed setpoint 15 ( p 1015 )
Maximum speed (p1082)
Dependency: Refer to: p3881
Note: ESM: Essential Service Mode
The alternative setpoint source is only active for $\mathrm{p} 3881=2,3,5$.

p3883	BI: ESM direction of rotation signal source / ESM rot dir s s		
VECTOR,   VECTOR_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 7033
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the direction of rotation during essential service mode (ESM). p3883 = 1 signal:		
	Direction of rotation of the setpoint, parameterized for essential service mode, is reversed. p3883 $=0$ signal:		
	Direction of rotation of the setpoint parameterized for essential service mode is kept.		
Note:	ESM: Essential Service Mode		
p3886	CI: ESM setpoint TB30/TM31 analog input / ESM setp TB30TM31		
VECTOR	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7033
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setpoint for $\mathrm{p} 3881=5$ (TB30/TM31 analog input) in the essential service mode (ESM).		
Dependency:	Refer to: p3881		
Note:	ESM: Essential Service Mode		
p3886	CI: ESM setpoint TM31 analog input / ESM setp TM31		
VECTOR_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7033
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source for the setpoint for $\mathrm{p} 3881=5$ (TB30/TM31 analog input) in the essential service mode (ESM).		
Dependency:	Refer to: p3881		
Note:	ESM: Essential Service Mode		
r3887[0...1]	ESM number of activations/faults / ESM act/fault qty		
VECTOR,   VECTOR_AC	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 7033
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of activations and faults that have occurred for the essential service mode (ESM).		
Index:	[0] = Activation of the essential service mode   [1] = Faults during the essential service mode		
Dependency:	Refer to: p3888		
Note:	ESM: Essential Service Mode		


p3888	ESM reset number of activations/faults / ESM act/F qty r		
VECTOR,	Can be changed: T	Calculated: -	Access level: 4
VECTOR_AC	Data type: Unsigned8	Dyn. index: -	Func. diagram: 7033
	P-Group: Functions	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to reset the number of activations and faults that have occurred for the essential service mode (ESM)   1: counter reset active (r3887[0, 1])   0 : inactive		
Dependency:	Refer to: r3887		
Note:	ESM: Essential Service		




p3900	Completion of quick commissioning / Compl quick_comm		
HLA	Can be changed: C2(1)	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description:	Exits quick commissioning ( $\mathrm{p} 0010=1$ ) with automatic calculation of all parameters of all existing drive data sets that depend on the entries made during quick commissioning.		
	p3900 $=1$ initially includes a parameter reset (factory setting, the same as p0970 $=1$ ) for all parameters of the drive object; however, without overwriting the entries made during the quick commissioning.		
	The interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700, p1000 and p1500 are re-established and all of the dependent motor, open-loop and control-loop control parameters are calculated (corresponding to p0340 = 1).		
	p3900 $=2$ includes the restoration of the interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700, p1000 and p1500 and the calculations corresponding to p0340 $=1$.		
	p3900 $=3$ only includes the calculations associated with the motor, open-loop and closed-loop control parameters corresponding to p0340 $=1 \mathrm{~F}$.		
Value:	0 : $\quad$ No quick parameterization		
	1: Quick parameterization after parameter reset		
	2: Quick parameterization (only) for BICO and motor p		
	3: Quick parameterization for motor parameters (only)		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	When the calculations have been completed, p3900 and p0010 are automatically reset to a value of zero.		
	When calculating motor, open-loop and closed-loop control parameters (such as for p0340 = 1) parameters associated with a selected Siemens catalog motor are not overwritten.		
p3900	Completion of quick commissioning / Compl quick_comm		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: C2(1)	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description:	Exits quick commissioning ( $\mathrm{p} 0010=1$ ) with automatic calculation of all parameters of all existing drive data sets that depend on the entries made during quick commissioning.		
	p3900 $=1$ initially includes a parameter reset (factory setting, the same as p0970 $=1$ ) for all parameters of the drive object; however, without overwriting the entries made during the quick commissioning.		
	The interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700, p1000 and p1500 are re-established and all of the dependent motor, open-loop and control-loop control parameters are calculated (corresponding to p0340 = 1).		
	p3900 $=2$ includes the restoration of the interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700, p1000 and p1500 and the calculations corresponding to p0340 $=1$.		
	p3900 $=3$ only includes the calculations associated with the motor, open-loop and closed-loop control parameters corresponding to $\mathrm{p} 0340=1$.		
Value:	0: $\quad$ No quick parameteriz		
	1: Quick parameterization	er reset	
	2: Quick parameterization	O and motor pa	
	3: Quick parameterizati	ameters (only)	
Notice:	After the value has been mo Modifications can be made	parameter mod $6=0 .$	e and the status is s

Note: | When the calculations have been completed, p3900 and p0010 are automatically reset to a value of zero. |
| :--- |
| When calculating motor, open-loop and closed-loop control parameters (such as for p0340 = 1) parameters |
| associated with a selected Siemens catalog motor are not overwritten. |
| If a catalog motor has not been selected (p0300), then the following parameters are reset with p3900 > 0 in order to |
| restore the situation that applied when commissioning the drive for the first time: |
| induction motors p0320, p0352, p0353, p0604, p0605, p0626 ...p0628 |
| synchronous motor p0326, p0327, p0352, p0353, p0391 ...p0393, p0604, p0605. |

p3900	Completion of quick commissioning / Compl quick_comm		
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can be changed: C 2 (1)	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description:	Exits quick commissioning (p0010 $=1$ ) with automatic calculation of all parameters of all existing drive data sets that depend on the entries made during quick commissioning.		
	p3900 $=1$ initially includes a parameter reset (factory setting, the same as p0970 $=1$ ) for all parameters of the drive object; however, without overwriting the entries made during the quick commissioning.		
	The interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700, p1000 and p1500 are re-established and all of the dependent motor, open-loop and control-loop control parameters are calculated (corresponding to p0340 $=1$ ).		
	p3900 $=2$ includes the restoration of the interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700, p1000 and p1500 and the calculations corresponding to p0340 $=1$.		
	p3900 $=3$ only includes the calculations associated with the motor, open-loop and closed-loop control parameters corresponding to p0340 $=1$.		
Value:	0: No quick parameterization		
	1: Quick parameterization after parameter reset		
	2: Quick parameterizatio	O and motor pa	
	3: Quick parameterizatio	ameters (only)	
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.		
Note:	When the calculations have been completed, p 3900 and p0010 are automatically reset to a value of zero.		
	When calculating motor, open-loop and closed-loop control parameters (such as for p0340 $=1$ ) parameters associated with a selected Siemens catalog motor are not overwritten.		
	If a catalog motor has not been selected ( p 0300 ), then the following parameters are reset with p3900 $>0$ in order to restore the situation that applied when commissioning the drive for the first time:		
	induction motors p0320, p0352, p0353, p0362 ... p0369, p0391 ... p0393, p0604, p0605, p0626 ... p0628 synchronous motor p0326, p0327, p0352, p0353, p0391 ... p0393, p0604, p0605.		

## p3900

A_INF, S_INF, R_INF, Can be changed: C2(1)
B_INF
Data type: Integer16
P-Group: -
Not for motor type: -
Min
0

## Completion of quick commissioning / Compl quick_comm

S_INF, R

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
3

Access level: 1
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Description: Exits the quick commissioning (p0010 $=1$ ) with automatic calculation of all of the parameters that depend on the entries made during the quick commissioning.
p3900 = 1 initially includes a parameter reset (factory setting, the same as p0970 = 1) for all parameters of the drive object; however, without overwriting the entries made during the quick commissioning. The interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700 are re-established and all of the dependent filter and closed-loop control parameters are calculated (corresponding to p0340 = 1).
p3900 $=2$ includes the restoration of the interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700 and the calculations corresponding to p0340 $=1$.
p3900 $=3$ only includes the end of quick commissioning.

Value:	$0:$	No quick parameterization
	$1:$	Quick parameterization after parameter reset
	$2:$	Quick param. (only) for controller par. and reset for BICO par
	$3:$	Completion of quick commissioning

Notice: $\quad$ After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
Note: $\quad$ When the calculations have been completed, p3900 and p0010 are automatically reset to a value of zero.

p3901[0...n]	Power unit EEPROM Vdc offset calibration / PU EEPROM Vdc offs		
SERVO, VECTOR,	Can be changed: C1, C2(1), T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_AC,	P-Group: All groups	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_IAC,	Max	Factory setting	
A_INF, S_INF, R_INF,	Min	$40.0[V]$	$0.0[V]$

Description: Differential voltage for calibrating the offset for DC link voltage measurement.
Dependency: Refer to: r0192, p0212
Caution: Incorrect use of the calibration can have a negative impact on the closed-loop control.
The parameter influences the upper and lower voltage detection.

Note: Parameter entries are directly saved in the DRIVE-CLiQ component involved.
The parameter is only effective in the case of booksize power units, if r0192.22 = 1 and p0212.0 $=1$.

$\mathbf{r 3 9 2 5 [ 0 . . . n ] ~}$	Identification final display / Ident final_disp		
SERVO, SERVO_AC,	Can be changed: -	Calculated: CALC_MOD_ALL	Access level: 3
SERVO_I_AC	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-

Description: Displays the commissioning steps that have been carried out.

## Bit field:

Note: $\quad$ The individual bits are only set if the appropriate action has been initiated and successfully completed.
The identification final display is reset when changing the type plate parameters.


Note: The individual bits are only set if the appropriate action has been initiated and successfully completed.
The identification final display is reset when changing the type plate parameters.

r3927[0...n]	Motor data identification induction motor data determined/ MotID ASM dat det				
SERVO, SERVO_AC, SERVO_I_AC			Calculated: CA	Acces	
	Data type: Unsigned32		Dyn. index: DD	Func.	
	P-Group: Motor identification		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the data of an induction motor determined and accepted from the stationary motor data identification or rotating measurement.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	p0350 accepted	Yes	No	-
	01	p0354 accepted	Yes	No	-
	02	p0356 accepted	Yes	No	-
	03	p0358 accepted	Yes	No	-
	04	p0360 accepted	Yes	No	-
	05	p0320 accepted	Yes	No	-
	06	p0410 accepted	Yes	No	-
	12	p1715 accepted	Yes	No	-
	13	p1717 accepted	Yes	No	-
	14	p1590 accepted	Yes	No	-
	15	p1592 accepted	Yes	No	-
	22	p0341 accepted	Yes	No	-
	24	p0348 accepted	Yes	No	-
	25	p1752 accepted	Yes	No	-
	26	p5265-p5268 accepted	Yes	No	-
	27	p0391-p0393 accepted	Yes	No	-
Dependency:	Refe	to: r3925			



### 2.2 List of parameters

	10	p1954 accepted	Yes	No	-
	12	p1715 accepted	Yes	No	-
	13	p1717 accepted	Yes	No	-
	18	p0316 accepted	Yes	No	-
	19	p0317 accepted	Yes	No	-
	20	p0327 accepted	Yes	No	-
	21	p0328 accepted	Yes	No	-
	22	p0341 accepted	Yes	No	-
	23	kT characteristic parameter accepted	Yes	No	-
	24	p0348 accepted	Yes	No	-
	26	p5265-p5268 accepted	Yes	No	-
	27	p0391-p0393 accepted	Yes	No	-
Dependency:	Ref	to: r3925			




## r3977

BICO counter topology / BICO counter topo
CU_I, CU_NX_CX,
CU_S_AC_DP,
CU_S_AC_PN,
Can be changed: -
Data type: Unsigned32
Calculated: -

P-Group: Commands
Dyn. index: -
Access level: 4

CU_S120_PN,
Not for motor type: -
Unit group: -
CU_S150_PN,
Min
Scaling: -
Max
Access level: 1
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

CU_S120_DP,
Func. diagram: -
Unit selection: -
Expert list: 1
CU_S150_DP,
CU_I_D410
Displays the BICO interconnections that have been parameterized in the complete (overall) topology.
Description: $\quad$ Displays the BICO interconnections that have been parameterized in the com
Dependency: Refer to: r3978, r3979

### 2.2 List of parameters

r3978	BICO CounterDev	terDevice	
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: -   Data type: Unsigned32   P-Group: Commands   Not for motor type: -   Min	Calculated:   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 4   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting
Description:	Displays the counter reading for modified BICO interconnections on this device. The counter is incremented by one for each modified BICO interconnection.		
r3979   SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_IAC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM31, TM41,   TM17, TM15,   TM15DI_DO, TM120,   TM150, TB30,   TM54F_MA,   TM54F_SL, ENC,   HUB, CU_LINK	BICO counter driv   Can be changed: -   Data type: Unsigned32   P-Group: Commands   Not for motor type: -   Min	counter DO   Calculated:   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 4   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting
Description:	Displays the counter reading for modified BICO interconnections on this drive object. The counter is incremented by one for each modified BICO interconnection.		


p3981	Acknowledge drive object faults / Ackn DO faults		
All objects	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index:	Func. diagram: 8060
	P-Group: Messages	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	1	Factory setting
	0	0	
Description:	Setting to acknowledge all active faults of a drive object.		
Notice:	Safety messages cannot be acknowledged using this parameter.		
Note:	Parameter should be set from 0 to 1 to acknowledge.		
	After acknowledgment, the parameter is automatically reset to 0.		


p3985	Master control mode selection / PcCtrl mode select		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Setpoints	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Fxpert list: 1
VECTOR_IAC,	Factory setting		
A_INF, S_INF, R_INF, Min	1	0	
B_INF	0		
Description:	Sets the mode to change over the master control / LOCAL mode.		
Value:	$0: \quad$ Change master control for STW1.0 $=0$		
	$1: \quad$ Change master control in operation		
Danger:	When changing the master control in operation, the drive can manifest undesirable behavior - e.g. it can accelerate		
1	up to another setpoint.		



### 2.2 List of parameters



	625: Wait non-cyclic starting DRIVE-CLiQ		
	650: Start cyclic operatio		
	660: Evaluate drive co		
	670: Automatic FW update DRIVE-CLiQ components		
	680: Wait for CU LINK		
	690: Wait non-cyclic		
	700: Save parameter		
	725: Wait until DRIV		
	740: Check the ability		
	745: Start of the time sli		
	750: Interrupt enable		
	800: Initialization finished		
	10050: Wait for synchronization		
	10100: Wait for CU LINK slaves		
	10150: Wait until actual topology determined		
	10200: Evaluate component status		
	10250: Call conversion functions for parameter		
	10300: Preparation cyclic operation		
	10350: Automatic FW update DRIVE-CLiQ components		
	10400: Wait for slave properties		
	10450: Check CX/NX status		
	10500: Wait until DRIVE-CLiQ cyclic		
	10550: Carry out warm start		
	10600: Evaluate, encoder status		
	10800: Partial boot completed		
Index:	[0] = System		
	[1] = Partial boot		
r3996[0...1]	Parameter write inhibit status / Par_write inhib st		
All objects	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays whether writing to parameters is inhibited.		
	r3996[0] = 0:		
	Parameter write not inhibited.		
	$0<r 3996[0]<100$ :		
	Parameter write inhibited. The value shows how the calculations are progressing.		
Index:	[0] = Progress calculations		
	[1] = Cause		
Note:	For index [1]:		
	Only for internal Siemens troubleshooting.		
r3998	First device commissioning / First dev_comm		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	-
Description:	Displays whether the device must be commissioned for the first time.		
	$0=$ Yes		
	$2=\mathrm{No}$		

### 2.2 List of parameters

r3998[0...n]	First drive commissioning / First drv_comm		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_AC,	P-Group: -	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	-	
	0		
Description:	Displays whether the drive still has to be commissioned for the first time.		
	$0=$ Yes		
	$2=$ No		


r3998	First infeed commissioning / First inf_comm		
A_INF, S_INF, R_INF,	Can be changed: -	Calculated: -	Access level: 3
B_INF	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	-
Description:	Displays whether the infeed must be commissioned for the first time.		
	$0=$ Yes		
	$2=$ No		


r4021	Digital inputs terminal actual value / Dl actual value		
SERVO (Dig IO)	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2201
	P-Group: Commands	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual value at the digital inputs.		
Bit field:	Bit Signal name	1 signal	High
	00	DI/DO 0 distributed (X3.2)	High

Note: If a DI/DO is parameterized as output $(p 4028 \cdot x=1)$, then $r 4021 . x=0$ is displayed.
DI/DO: Bidirectional Digital Input/Output

r4021	TM15DI/DO digital inputs, terminal actual value / TM15D DI act val		
TM15DI_DO	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9400, 9401, 9402
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual value at the digital inputs.		
	This means that the actual input signal can be checked at terminal DI x or DI/DO x prior to switching from the simulation mode ( $\mathrm{p} 4095 \cdot \mathrm{x}=1$ ) to terminal mode ( $\mathrm{p} 4095 \cdot \mathrm{x}=0$ ).		


Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	High	Low	-
	01	DI/DO 1 (X520.3)	High	Low	-
	02	DI/DO 2 (X520.4)	High	Low	-
	03	DI/DO 3 (X520.5)	High	Low	-
	04	DI/DO 4 (X520.6)	High	Low	-
	05	DI/DO 5 (X520.7)	High	Low	-
	06	DI/DO 6 (X520.8)	High	Low	-
	07	DI/DO 7 (X520.9)	High	Low	-
	08	DI/DO 8 (X521.2)	High	Low	-
	09	DI/DO 9 (X521.3)	High	Low	-
	10	DI/DO 10 (X521.4)	High	Low	-
	11	DI/DO 11 (X521.5)	High	Low	-
	12	DI/DO 12 (X521.6)	High	Low	-
	13	DI/DO 13 (X521.7)	High	Low	-
	14	DI/DO 14 (X521.8)	High	Low	-
	15	DI/DO 15 (X521.9)	High	Low	-
	16	DI/DO 16 (X522.2)	High	Low	-
	17	DI/DO 17 (X522.3)	High	Low	-
	18	DI/DO 18 (X522.4)	High	Low	-
	19	DI/DO 19 (X522.5)	High	Low	-
	20	DI/DO 20 (X522.6)	High	Low	-
		DI/DO 21 (X522.7)	High	Low	-
	22	DI/DO 22 (X522.8)	High	Low	-
	23	DI/DO 23 (X522.9)	High	Low	-
Note:	If a DI/DO is parameterized as output ( $\mathrm{p} 4028 . x=1$ ), then $r 4021 . x=0$ is displayed.				
	DI/DO: Bidirectional Digital Input/Output				
r4021	TM31 digital inputs terminal actual value / TM31 DI act value				
TM31	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9549, 9550, 9552, 9560, 9562	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
			-		
Description:	Displays the actual value at the digital inputs.				
	This means that the actual input signal can be checked at terminal $\mathrm{DI} \times$ or $\mathrm{DI} / \mathrm{DO} \times$ prior to switching from the simulation mode ( $p 4095 \cdot x=1$ ) to terminal mode ( $p 4095 \cdot x=0$ ).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X520.1)	High	Low	-
	01	DI 1 (X520.2)	High	Low	-
	02	DI 2 (X520.3)	High	Low	-
	03	DI 3 (X520.4)	High	Low	-
	04	DI 4 (X530.1)	High	Low	-
	05	DI 5 (X530.2)	High	Low	-
	06	DI 6 (X530.3)	High	Low	-
		DI 7 (X530.4)	High	Low	-
		DI/DO 8 (X541.2)	High	Low	-
		DI/DO 9 (X541.3)	High	Low	-
	10	DI/DO 10 (X541.4)	High	Low	-
	11	DI/DO 11 (X541.5)	High	Low	-
Note:	If a DI/DO is parameterized as output ( $\mathrm{p} 4028 . x=1$ ), then $\mathrm{r} 4021 . x=0$ is displayed.				
	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				

### 2.2 List of parameters

r4021	TM41 digital inputs terminal actual value / TM41 DI act val				
TM41	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the actual value at the digital inputs.				
	This means that the actual input signal can be checked at terminal DI x or DI/DO x prior to switching from the simulation mode ( $\mathrm{p} 4095 . \mathrm{x}=1$ ) to terminal mode ( $\mathrm{p} 4095 \cdot \mathrm{x}=0$ ).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X522.1)	High	Low	9660
	01	DI 1 (X522.2)	High	Low	9660
	02	DI 2 (X522.3)	High	Low	9660
		DI 3 (X522.4)	High	Low	9660
	08	DI/DO 0 (X521.1)	High	Low	9661
	09	DI/DO 1 (X521.2)	High	Low	9661
	10	DIIDO 2 (X521.3)	High	Low	9662
	11	DI/DO 3 (X521.4)	High	Low	9662
Note:	If a DI/DO is parameterized as output ( $\mathrm{p} 4028 . \mathrm{x}=1$ ), then $\mathrm{r} 4021 \cdot \mathrm{x}=0$ is displayed.				
	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				
r4021	TB30 digital inputs terminal actual value / TB30 DI act value				
TB30	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index:	Func. diagram: 9100	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the actual value at the digital inputs.				
	This means that the actual input signal can be checked at terminal DI x prior to switching from the simulation mode ( $\mathrm{p} 4095 \cdot \mathrm{x}=1$ ) to the terminal mode ( $\mathrm{p} 4095 . \mathrm{x}=0$ ).				
Bit field:	Bit Signal name		1 signal	0 signalLowLowLowLow	FP
		DI 0 (X481.1)	High		-
		DI 1 (X481.2)	High		-
	02	DI 2 (X481.3)	High		-
	03	DI 3 (X481.4)	High		-
Note:	DI: Digital Input				
r4022.0... 1	CO/BO: Digital inputs status / DI status				
SERVO (Dig IO)	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2201	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status of the digital inputs.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 distributed (X3.2)	High	Low	2201
	01	DI/DO 1 distributed (X3.4)	High	Low	2201
Dependency:	Refer to: r4023				
Note:	If a DI/DO is parameterized as output ( $\mathrm{p} 4028 \cdot \mathrm{x}=1$ ), then $\mathrm{r} 4021 \cdot \mathrm{x}=0$ is displayed. DI/DO: Bidirectional Digital Input/Output				


r4022.0.. 23	CO/BO: TM15DI/DO digital inputs status / TM15D DI status				
TM15DI_DO	Can be changed: -		Calculated: - Acces		
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9399, 9400,$9401,9402$	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status of the digital inputs of Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	High	Low	-
	01	DI/DO 1 (X520.3)	High	Low	-
	02	DI/DO 2 (X520.4)	High	Low	-
	03	DI/DO 3 (X520.5)	High	Low	-
	04	DI/DO 4 (X520.6)	High	Low	-
	05	DI/DO 5 (X520.7)	High	Low	-
	06	DI/DO 6 (X520.8)	High	Low	-
	07	DI/DO 7 (X520.9)	High	Low	-
	08	DI/DO 8 (X521.2)	High	Low	-
		$\text { DI/DO } 9 \text { (X521.3) }$	High	Low	-
		$\text { DI/DO } 10 \text { (X521.4) }$	High	Low	-
	11	DI/DO 11 (X521.5)	High	Low	-
	12	DI/DO 12 (X521.6)	High	Low	-
	13	DI/DO 13 (X521.7)	High	Low	-
	14	DI/DO 14 (X521.8)	High	Low	-
	15	DI/DO 15 (X521.9)	High	Low	-
	16	DI/DO 16 (X522.2)	High	Low	-
	17	DI/DO 17 (X522.3)	High	Low	-
	18	DI/DO 18 (X522.4)	High	Low	-
	19	DI/DO 19 (X522.5)	High	Low	-
		DI/DO 20 (X522.6)	High	Low	-
		$\text { DI/DO } 21 \text { (X522.7) }$	High	Low	-
		$\text { DI/DO } 22 \text { (X522.8) }$	High	Low	-
		DI/DO 23 (X522.9)	High	Low	-
Dependency:	Refer to: r4023, r4024, r4025				
Notice:	For the BICO interconnection of the connector output (CO) only bit $00 \ldots 15$ are transferred.				
Note:	DI/DO: Bidirectional Digital Input/Output				
r4022.0.. 11	CO/BO: TM31 digital inputs status / TM31 DI status				
TM31	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index:	Func. diagram: 9549, 9550, 9552, 9560, 9562	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the status of the digital inputs of Terminal Module 31 (TM31).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X520.1)	High	Low	-
	01	DI 1 (X520.2)	High	Low	-
	02	DI 2 (X520.3)	High	Low	-
	03	DI 3 (X520.4)	High	Low	-
	04	DI 4 (X530.1)	High	Low	-
	05	$\text { DI } 5 \text { (X530.2) }$	High	Low	-
	06	$\text { DI } 6 \text { (X530.3) }$	High	Low	-
	07	$\text { DI } 7 \text { (X530.4) }$	High	Low	-
	08	DI/DO 8 (X541.2)	High	Low	-

### 2.2 List of parameters

	09	DI/DO $9($ (X541.3)	High
	10	DI/DO $10($ (X541.4)	High


r4022.0... 11	CO/BO: TM41 digital inputs status / TM41 DI status			
TM41	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func. 9661,	
	P-Group: Commands	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the status of the digital inputs of Terminal Module 41 (TM41).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (X522.1)	High	Low	9660
	01 DI 1 (X522.2)	High	Low	9660
	02 DI 2 (X522.3)	High	Low	9660
	03 DI 3 (X522.4)	High	Low	9660
	08 DI/DO 0 (X521.1)	High	Low	9661
	09 DI/DO 1 (X521.2)	High	Low	9661
	10 DI/DO 2 (X521.3)	High	Low	9662
	11 DI/DO 3 (X521.4)	High	Low	9662
Dependency:	Refer to: r4023			
Note:	DI: Digital Input			
	DI/DO: Bidirectional Digital Input/Output			


r4022.0.. 3	CO/BO: TB30 digital inputs status / TB30 DI status			
TB30	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Commands	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the status of the digital inputs of the Terminal Board 30 (TB30).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (X481.1)	High	Low	-
	01 DI 1 (X481.2)	High	Low	-
	02 DI 2 (X481.3)	High	Low	-
	03 DI 3 (X481.4)	High	Low	-
Dependency:	Refer to: r4023			
Note:	DI: Digital Input			


r4023.0... 1	BO: Digital inputs status inverted / DI status inv			
SERVO (Dig IO)	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Commands	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the inverted status of the digital inputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	$00 \mathrm{DI} / \mathrm{DO} 0$ distributed (X3.2)	High	Low	2201
	01 DI/DO 1 distributed (X3.4)	High	Low	2201
Dependency:	Refer to: r 4022			
Note:	If a DI/DO is parameterized as output ( $\mathrm{p} 4028 . x=1$ ), then $r 4021 . x=0$ is displayed.			
	DI/DO: Bidirectional Digital Input/Output			


TM15DI_DO	CO/BO: TM15DI/DO digital inputs status inverted / TM15D DI stat inv				
	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9399, 9400, 9401, 9402	
		oup: Commands	Unit group: -	Unit s	
	Not	or motor type: -	Scaling: -	Expe	
	Min		Max	Facto	
	-		-	-	
Description:	Displays the inverted status of the digital inputs of Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	High	Low	-
		$\text { DI/DO } 1 \text { (X520.3) }$	High	Low	-
		$\text { DI/DO } 2 \text { (X520.4) }$	High	Low	-
		$\text { DI/DO } 3 \text { (X520.5) }$	High	Low	-
		DI/DO 4 (X520.6)	High	Low	-
	05	DI/DO 5 (X520.7)	High	Low	-
	06	DI/DO 6 (X520.8)	High	Low	-
	07	DI/DO 7 (X520.9)	High	Low	-
	08	DI/DO 8 (X521.2)	High	Low	-
	09	DI/DO 9 (X521.3)	High	Low	-
	10	DI/DO 10 (X521.4)	High	Low	-
	11	DI/DO 11 (X521.5)	High	Low	-
	12	$\text { DI/DO } 12 \text { (X521.6) }$	High	Low	-
	13	$\text { DI/DO } 13 \text { (X521.7) }$	High	Low	-
		$\text { DI/DO } 14 \text { (X521.8) }$	High	Low	-
		$\text { DI/DO } 15 \text { (X521.9) }$	High	Low	-
		$\text { DI/DO } 16 \text { (X522.2) }$	High	Low	-
		$\text { DI/DO } 17 \text { (X522.3) }$	High	Low	-
	18	DI/DO 18 (X522.4)	High	Low	-
	19	DI/DO 19 (X522.5)	High	Low	-
	20	DI/DO 20 (X522.6)	High	Low	-
		DI/DO 21 (X522.7)	High	Low	-
		DI/DO 22 (X522.8)	High	Low	-
	23	DI/DO 23 (X522.9)	High	Low	-
Dependency:	Refer to: r4022, r4024, r4025				
Notice:	For the BICO interconnection of the connector output (CO) only bit $00 \ldots 15$ are transferred. DI/DO: Bidirectional Digital Input/Output				
Note:					

### 2.2 List of parameters

$\begin{aligned} & \text { r4023.0... } 11 \\ & \text { TM31 } \end{aligned}$	CO/BO: TM31 digital inputs status inverted / TM31 DI status inv			
	Can be changed: -	Calculated: -	Access level: 1	
	Data type: Unsigned32	Dyn. index: -	Func. 9552,	
	P-Group: Commands	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the inverted status of the digital inputs of Terminal Module 31 (TM31).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	$00 \text { DI } 0 \text { (X520.1) }$	High	Low	-
	$01 \text { DI } 1 \text { (X520.2) }$	High	Low	-
	$02 \text { DI } 2 \text { (X520.3) }$	High	Low	-
	03 DI 3 (X520.4)	High	Low	-
	04 DI 4 (X530.1)	High	Low	-
	05 DI 5 (X530.2)	High	Low	-
	06 DI 6 (X530.3)	High	Low	-
	07 DI 7 (X530.4)	High	Low	-
	08 DI/DO 8 (X541.2)	High	Low	-
	09 DI/DO 9 (X541.3)	High	Low	-
	10 DI/DO 10 (X541.4)	High	Low	-
	11 DI/DO 11 (X541.5)	High	Low	-
Dependency:	Refer to: r4022			
Note:	DI: Digital Input			
	DI/DO: Bidirectional Digital Input/Output			



r4023.0... 3	BO: TB30 digital inputs status inverted / TB30 Dl status inv				
TB30		be changed: -	Calculated: -	Acces	
		type: Unsigned32	Dyn. index: -	Func.	
		roup: Commands	Unit group: -	Unit se	
		or motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the inverted status of the digital inputs of the Terminal Board 30 (TB30).				
Bit field:		Signal name	1 signal	0 signal	FP
		$\text { DI } 0 \text { (X481.1) }$	High	Low	-
		$\text { DI } 1 \text { (X481.2) }$	High	Low	-
		$\text { DI } 2 \text { (X481.3) }$	High	Low	-
		$\text { DI } 3 \text { (X481.4) }$			-
Dependency:	Refer to: 4022				
Note:	DI: Digital Input				
r4024	CO: TM15DI/DO digital inputs $16 . .23$ status / TM15D DI 16-23 St				
TM15DI_DO	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 9402	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status of digital inputs $16 . .23$ of Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 16 (X522.2)	ON	OFF	-
		DI/DO 17 (X522.3)	ON	OFF	-
		DI/DO 18 (X522.4)	ON	OFF	-
		DI/DO 19 (X522.5)	ON	OFF	-
		DI/DO 20 (X522.6)	ON	OFF	-
		DI/DO 21 (X522.7)	ON	OFF	-
		DI/DO 22 (X522.8)	ON	OFF	-
	07	DI/DO 23 (X522.9)	ON	OFF	-
Dependency:	Refer to: r4022, r4023, r4025				
Note:	DI: Digital Input				
r4025	CO: TM15DI/DO digital inputs $16 . .23$ status inverted / TM15D DI 16-23 inv				
TM15DI_DO	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 9402	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the inverted status of digital inputs $16 \ldots 23$ of Terminal Module 15 (TM15).				
Bit field:			1 signal	0 signal	FP
		$\text { DI/DO } 16 \text { (X522.2) }$	ON	OFF	
		$\text { DI/DO } 17 \text { (X522.3) }$	ON	OFF	-
		$\text { DI/DO } 18 \text { (X522.4) }$	ON	OFF	-
	$03$	$\text { DI/DO } 19 \text { (X522.5) }$	ON	OFF	-
	04	$\text { DI/DO } 20 \text { (X522.6) }$	ON	OFF	-
	05	DI/DO 21 (X522.7)	ON	OFF	-
		DI/DO 22 (X522.8)	ON	OFF	-
	07	DI/DO 23 (X522.9)	ON	OFF	-
Dependency:	Refer to: r4022, r4023, r4024				
Note:	DI: Digital Input				

### 2.2 List of parameters



p4028	TM15DI/DO set input or output / TM15D DI or DO				
TM15DI_DO	Can be changed: $T$		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9399, 9400, 9401, 9402	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	00000000000000000000 000000000000 bin	
Description:	Sets the bidirectional digital inputs/outputs on the Terminal Module 15 (TM15) as input or output.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	Output	Input	-
		DI/DO 1 (X520.3)	Output	Input	-
		DIIDO 2 (X520.4)	Output	Input	-
		DI/DO 3 (X520.5)	Output	Input	-
		DIIDO 4 (X520.6)	Output	Input	-
		DIIDO 5 (X520.7)	Output	Input	-
	06	DI/DO 6 (X520.8)	Output	Input	-
	07	DIIDO 7 (X520.9)	Output	Input	-
	08	DIIDO 8 (X521.2)	Output	Input	-
	09	DI/DO 9 (X521.3)	Output	Input	-
	10	DIIDO 10 (X521.4)	Output	Input	-
	11	DI/DO 11 (X521.5)	Output	Input	-
	12	DI/DO 12 (X521.6)	Output	Input	-
	13	DI/DO 13 (X521.7)	Output	Input	-
	14	DIIDO 14 (X521.8)	Output	Input	-
	15	DI/DO 15 (X521.9)	Output	Input	-
	16	DI/DO 16 (X522.2)	Output	Input	-
		DIIDO 17 (X522.3)	Output	Input	-
	18	DI/DO 18 (X522.4)	Output	Input	-
	19	DI/DO 19 (X522.5)	Output	Input	-
	20	DIIDO 20 (X522.6)	Output	Input	-
		DI/DO 21 (X522.7)	Output	Input	-
		DI/DO 22 (X522.8)	Output	Input	-
	23	DIIDO 23 (X522.9)	Output	Input	-
Note:	DI/DO: Bidirectional Digital Input/Output				
p4028	TM17 set input or output / TM17 DI or DO				
TM17	Can be changed: $T$		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9419	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Sets the bidirectional digital inputs/outputs on the Terminal Module 17 (TM17) as input or output.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	Output	Input	-
	01	DI/DO 1 (X520.3)	Output	Input	-
	02	DIIDO 2 (X520.5)	Output	Input	-
	03	DI/DO 3 (X520.6)	Output	Input	-
	04	DI/DO 4 (X520.8)	Output	Input	-
	05	DIIDO 5 (X520.9)	Output	Input	-
	06	DIIDO 6 (X521.2)	Output	Input	-
	07	DI/DO 7 (X521.3)	Output	Input	-
	08	DIIDO 8 (X521.8)	Output	Input	-
	09	DI/DO 9 (X521.9)	Output	Input	-
	10	DI/DO 10 (X522.2)	Output	Input	-
	11	DI/DO 11 (X522.3)	Output	Input	-
	12	DIIDO 12 (X522.5)	Output	Input	-

### 2.2 List of parameters

	13	DI/DO 13 (X522.6)	Output	Input	-
	14	DI/DO 14 (X522.8)	Output	Input	-
	15	DI/DO 15 (X522.9)	Output	Input	-
Note:	DI/DO: Bidirectional Digital Input/Output				
p4028	TM31 set input or output / TM31 DI or DO				
TM31	Can be changed: T		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9549, 9560, 9562	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Sets the bidirectional digital inputs/outputs as input or output on the Terminal Module 31 (TM31).				
Bit field:		Signal name	1 signal	0 signal	FP
	08	DI/DO 8 (X541.2)	Output	Input	-
	09	DI/DO 9 (X541.3)	Output	Input	-
	10	DI/DO 10 (X541.4)	Output	Input	-
		DI/DO 11 (X541.5)	Output	Input	-
Note:	DI/DO: Bidirectional Digital Input/Output				
p4028		1 set input or output	or DO		
TM41	Can be changed: T		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9659, 9661, 9662	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Sets the bidirectional digital inputs/outputs on the Terminal Module 41 (TM41) as input or output.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X521.1)	Output	Input	9661
		DI/DO 1 (X521.2)	Output	Input	9661
	10	DI/DO 2 (X521.3)	Output	Input	9662
	11	DI/DO 3 (X521.4)	Output	Input	9662
Note:	DI/DO: Bidirectional Digital Input/Output				
p4030		M15DI/DO signal so	erminal DI/D	s DI/D	
TM15DI_DO	Can be changed: U, T		Calculated: -	Access level: 1	
	Data type: Unsigned32 / Binary		Dyn. index: -	Func. diagram: 9399, 9400	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0	
Description:	Sets the signal source for terminal DI/DO 0 (X520.2) of Terminal Module 15 (TM15).				
Note:	Prerequisite: The DI/DO must be set as an output (p4028.0 = 1).				
	DI/DO: Bidirectional Digital Input/Output				


p4030	BI: TM31 signal source for terminal DO 0 / TM31 s_src DO 0		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9549, 9556
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the digital output DO 0 (X542.1, X542.2, X542.3) of Terminal Module 31 (TM31).   Digital output 0 of TM31 is a relay output.   If the signal at the binector input p4030 is low, then terminal COM 0 ( X 542.2 ) is connected to NC 0 ( X 542.1 ). This connection also matches the mechanical quiescent setting of the relay.   If the signal at the binector input p4030 is high, then terminal COM 0 (X542.2) is connected to NO 0 (X542.3).		
Note:	DO: Digital Output		
	NC: Normally Closed contact		
	NO: Normally Open contact		
p4030	BI: TB30 signal source for terminal DO 0 / TB30 s_src DO 0		
TB30	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9099, 9102
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min		Factory setting
		-	0
Description:	Sets the signal source for digital output DO 0 (X481.5) of the Terminal Board 30 (TB30).		
Note:	DO: Digital Output		
p4031	BI: TM15DI/DO signal source for terminal DI/DO 1 / TM15D s_s DI/DO 1		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9400
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source for terminal DI/DO 1 (X520.3) of Terminal Module 15 (TM15).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.1 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p4031	BI: TM31 signal source for terminal DO 1 / TM31 s_src DO 1		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9549, 9556
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the digital output DO 1 (X542.4, X542.5, X542.6) of Terminal Module 31 (TM31).   Digital output 1 of TM31 is a relay output.   If the signal at the binector input p4031 is low, then terminal COM 1 (X542.5) is connected to NC 1 (X542.4). This connection also matches the mechanical quiescent setting of the relay.   If the signal at the binector input p4031 is high, then terminal COM 1 (X542.5) is connected to NO 1 (X542.6).		
Note:	DO: Digital Output   NC: Normally Closed contact   NO: Normally Open contact		



p4034	BI: TM15DI/DO signal source for terminal DI/DO 4 / TM15D s_s DI/DO 4
TM15DI_DO	Can be changed: U, T Calculated: - Access level: 1   Data type: Unsigned32 / Binary Dyn. index: - Func. diagram: 9400   P-Group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - 0
Description:   Note:	Sets the signal source for terminal DI/DO 4 (X520.6) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.4 = 1).   DI/DO: Bidirectional Digital Input/Output
p4035   TM15DI_DO	BI: TM15DI/DO signal source for terminal DI/DO 5 / TM15D s_s DI/DO 5     Can be changed: U, T Calculated: - Access level: 1   Data type: Unsigned32 / Binary Dyn. index: - Func. diagram: 9400   P-Group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - 0
Description:   Note:	Sets the signal source for terminal DI/DO 5 (X520.7) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.5 = 1).   DI/DO: Bidirectional Digital Input/Output
p4036   TM15DI_DO	BI: TM15DI/DO signal source for terminal DI/DO 6 / TM15D s_s DI/DO 6     Can be changed: U, T Calculated: - Access level: 1   Data type: Unsigned32 / Binary Dyn. index: - Func. diagram: 9400   P-Group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - 0
Description:   Note:	Sets the signal source for terminal DI/DO 6 (X520.8) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output ( $\mathrm{p} 4028.6=1$ ).   DI/DO: Bidirectional Digital Input/Output
p4037	BI: TM15DI/DO signal source for terminal DI/DO 7 / TM15D s_s DI/DO 7
TM15DI_DO	Can be changed: U, T Calculated: - Access level: 1   Data type: Unsigned32 / Binary Dyn. index: - Func. diagram: 9400   P-Group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - 0
Description: Note:	Sets the signal source for terminal DI/DO 7 (X520.9) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output ( $\mathrm{p} 4028.7=1$ ).   DI/DO: Bidirectional Digital Input/Output





p4041	BI: TM31 signal source for terminal DI/DO 11 / TM31 s_s DI/DO 11		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9549, 9562
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 11 (X541.5) of Terminal Module 31 (TM31).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.11 = 1).		
	DI/DO: Bidirectional Digital Input/Output		


p4041	BI: TM41 signal source for terminal DI/DO 3 / TM41 s_s DI/DO 3		
TM41	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9662
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	0	
Description:	Sets the signal source for terminal DI/DO $3($ X521.4) of Terminal Module 41 (TM41).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.11 =1).		
	DI/DO: Bidirectional Digital Input/Output		


p4042	BI: TM15DI/DO signal source for terminal DI/DO 12 / TM15D s_s DI/DO 12		
TM15DI_DO	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9401
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 12 (X521.6) of Terminal Module 15 (TM15).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.12 = 1). DI/DO: Bidirectional Digital Input/Output		


p4043	BI: TM15DI/DO signal source for terminal DI/DO 13 / TM15D s_s DI/DO 13		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9401
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Faxpert list: 1
	Min	-	Factory setting
	-	0	
Description:	Sets the signal source for terminal DI/DO 13 (X521.7) of Terminal Module 15 (TM15).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.13 = 1).		
	DI/DO: Bidirectional Digital Input/Output		


p4044	BI: TM15DI/DO signal source for terminal DI/DO 14 / TM15D s_s DI/DO 14			
TM15DI_DO	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access	
	Data type: Unsigned32 / Binary	Dyn. index: -	Func.	
	P-Group: Commands	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	0	
Description:	Sets the signal source for terminal DI/DO 14 (X521.8) of Terminal Module 15 (TM15).			
Note:	Prerequisite: The DI/DO must be set as an output (p4028.14=1).			
	DI/DO: Bidirectional Digital Input/Output			
p4045	BI: TM15DI/DO signal source for terminal DI/DO 15 / TM15D s_s DI/DO 15			
TM15DI_DO	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1	
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9401	
	P-Group: Commands	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-		0	
Description:	Sets the signal source for terminal DI/DO 15 (X521.9) of Terminal Module 15 (TM15).			
Note:	Prerequisite: The DI/DO must be set as an output (p4028.15-1).			
	DI/DO: Bidirectional Digital Input/Output			
p4046	TM31 digital outputs limit current / TM31 DO limit curr			
TM31	Can be changed: $T$	Calculated: -	Access level: 2	
	Data type: Integer16	Dyn. index: -	Func. diagram: 9560	
	P-Group: Commands	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0	1	0	
Description:	Sets the limit for the total output voltage of terminals X541.1, X541.2, X541.3 and X541.4 (DI/DO 8 ... 11) of Terminal Module 31 (TM31).			
Value:	0: 0.1 A total current limit DI/DO 8 ... 11   1: 1.0 A total current limit DI/DO 8 ... 11			
Dependency:	Refer to: p4028			
Warning:	Since the sum of the output currents at terminals X541.1, X541.2, X541.3 and X541.4 is limited, an overcurrent or short circuit at one output terminal can cause a dip in the signal at the other terminals.			
r4047	Digital outputs status / DO status			
SERVO (Dig IO)	Can be changed: -	Calculated: -	Access level: 1	
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2201	
	P-Group: Commands	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the status of digital outputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI/DO 0 distributed (X3.2)	High	Low	2201
	01 DI/DO 1 distributed (X3.4)	High	Low	2201
Note:	Inversion using p4048 has been taken into account. DI/DO: Bidirectional Digital Input/Output			


r4047	TM15DI/DO digital outputs status / TM15D DO status				
TM15DI_DO	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9400, 9401, 9402	
	P-G	up: Commands	Unit group: -	Unit se	
		or motor type: -	Scaling: -	Expert	
	Min		Max	Factory	
	-		-	-	
Description:	Displays the status of the digital outputs of Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	High	Low	-
		DI/DO 1 (X520.3)	High	Low	-
		DI/DO 2 (X520.4)	High	Low	-
		DI/DO 3 (X520.5)	High	Low	-
		DI/DO 4 (X520.6)	High	Low	-
		DI/DO 5 (X520.7)	High	Low	-
		DI/DO 6 (X520.8)	High	Low	-
		DI/DO 7 (X520.9)	High	Low	-
		DI/DO 8 (X521.2)	High	Low	-
		DI/DO 9 (X521.3)	High	Low	-
		DI/DO 10 (X521.4)	High	Low	-
		$\text { DI/DO } 11 \text { (X521.5) }$	High	Low	-
		$\text { DI/DO } 12 \text { (X521.6) }$	High	Low	-
		DI/DO 13 (X521.7)	High	Low	-
		DI/DO 14 (X521.8)	High	Low	-
		DI/DO 15 (X521.9)	High	Low	-
		DI/DO 16 (X522.2)	High	Low	-
		DI/DO 17 (X522.3)	High	Low	-
		DI/DO 18 (X522.4)	High	Low	-
		DI/DO 19 (X522.5)	High	Low	-
		DI/DO 20 (X522.6)	High	Low	-
		DI/DO 21 (X522.7)	High	Low	-
		DI/DO 22 (X522.8)	High	Low	-
		DI/DO 23 (X522.9)	High	Low	-
Note:	Inversion using p4048 has been taken into account.				
	The setting of the DI/DO as either input or output is of no significance (p4028).				
	DI/DO: Bidirectional Digital Input/Output				
r4047	TM31 digital outputs status / TM31 DO status				
TM31	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9556, 9560, 9562	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the status of the digital outputs of Terminal Module 31 (TM31).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DO 0 (X542.1-3)	High	Low	-
		DO 1 (X542.4-6)	High	Low	-
		DI/DO 8 (X541.2)	High	Low	-
		DI/DO 9 (X541.3)	High	Low	-
		DI/DO 10 (X541.4)	High	Low	-
		DI/DO 11 (X541.5)	High	Low	-
Note:	Inversion using p4048 has been taken into account.				
	The setting of the DI/DO as either input or output is of no significance (p4028).				
	DO: Digital Output				
	DI/DO: Bidirectional Digital Input/Output				

### 2.2 List of parameters



p4048	TM15 invert digital inputs/outputs / TM15 DI/DO inv				
TM15	Can be changed: $\mathrm{U}, \mathrm{T}$		Calculated: -	Access lev	
	Data type: Unsigned32		Dyn. index: -	Func. diag	
	P-Group: Commands		Unit group: -	Unit selec	
	Not for motor type: -		Scaling: -	Expert list	
	Min		Max	Factory se	
	-		-	00000000 00000000	
Description:   Bit field:	Setting to invert the signals at the digital inputs/outputs of Terminal Module 15 (TM15).				
	Bit	Signal name	1 signal	0 signal	FP
		DIIDO 0 (X520.2)	Inverted	Not inverted	-
		DI/DO 1 (X520.3)	Inverted	Not inverted	-
	02	DIIDO 2 (X520.4)	Inverted	Not inverted	-
		DIIDO 3 (X520.5)	Inverted	Not inverted	-
		DIIDO 4 (X520.6)	Inverted	Not inverted	-
		DI/DO 5 (X520.7)	Inverted	Not inverted	-
	06	DIIDO 6 (X520.8)	Inverted	Not inverted	-
	07	DIIDO 7 (X520.9)	Inverted	Not inverted	-
	08	DI/DO 8 (X521.2)	Inverted	Not inverted	-
	09	DIIDO 9 (X521.3)	Inverted	Not inverted	-
	10	DIIDO 10 (X522.4)	Inverted	Not inverted	-
	11	DI/DO 11 (X521.5)	Inverted	Not inverted	-
	12	DIIDO 12 (X521.6)	Inverted	Not inverted	-
	13	DI/DO 13 (X521.7)	Inverted	Not inverted	-
	14	DIIDO 14 (X521.8)	Inverted	Not inverted	-
	15	DI/DO 15 (X521.9)	Inverted	Not inverted	-
		DIIDO 16 (X522.2)	Inverted	Not inverted	-
		DIIDO 17 (X522.3)	Inverted	Not inverted	-
	18	DIIDO 18 (X522.4)	Inverted	Not inverted	-
	19	DIIDO 19 (X522.5)	Inverted	Not inverted	-
		DIIDO 20 (X522.6)	Inverted	Not inverted	-
		DIIDO 21 (X522.7)	Inverted	Not inverted	-
		DIIDO 22 (X522.8)	Inverted	Not inverted	-
	23	DI/DO 23 (X522.9)	Inverted	Not inverted	-
Note:	DIID	: Bidirectional Digita			
p4048	TM	5DI/DO invert d	/ TM15D DO		
TM15DI_DO	Can be changed: $U, T$		Calculated: -	Access lev	
	Data type: Unsigned32		Dyn. index: -	Func. diag 9402	
	P-Group: Commands		Unit group: -	Unit selec	
	Not for motor type: -		Scaling: -	Expert list	
	Min		Max	Factory se	
	-		-	00000000 00000000	
Description:   Bit field:	Setting to invert the signals at the digital outputs of Terminal Module 15 (TM15).				
	Bit	Signal name	1 signal	0 signal	FP
	00	DIIDO 0 (X520.2)	Inverted	Not inverted	-
	01	DI/DO 1 (X520.3)	Inverted	Not inverted	-
	02	DI/DO 2 (X520.4)	Inverted	Not inverted	-
	03	DIIDO 3 (X520.5)	Inverted	Not inverted	-
	04	DIIDO 4 (X520.6)	Inverted	Not inverted	-
	05	DI/DO 5 (X520.7)	Inverted	Not inverted	-
	06	DIIDO 6 (X520.8)	Inverted	Not inverted	-
	07	DI/DO 7 (X520.9)	Inverted	Not inverted	-
	08	DI/DO 8 (X521.2)	Inverted	Not inverted	-
	09	DIIDO 9 (X521.3)	Inverted	Not inverted	-
	10	DI/DO 10 (X521.4)	Inverted	Not inverted	-
	11	DI/DO 11 (X521.5)	Inverted	Not inverted	-

### 2.2 List of parameters

	12	DI/DO 12 (X521.6)	Inverted	Not inverted	-
	13	DI/DO 13 (X521.7)	Inverted	Not inverted	-
	14	DI/DO 14 (X521.8)	Inverted	Not inverted	-
	15	DI/DO 15 (X521.9)	Inverted	Not inverted	-
	16	DI/DO 16 (X522.2)	Inverted	Not inverted	-
	17	DI/DO 17 (X522.3)	Inverted	Not inverted	-
	18	DI/DO 18 (X522.4)	Inverted	Not inverted	-
	19	DI/DO 19 (X522.5)	Inverted	Not inverted	-
	20	DI/DO 20 (X522.6)	Inverted	Not inverted	-
	21	DI/DO 21 (X522.7)	Inverted	Not inverted	-
	22	DI/DO 22 (X522.8)	Inverted	Not inverted	-
	23	DI/DO 23 (X522.9)	Inverted	Not inverted	-
Note:	DIID	: Bidirectional Digita			
p4048	TM	7 invert digital i	/ TM17 DI/DO		
TM17	Can	be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access lev	
	Dat	type: Unsigned32	Dyn. index: -	Func. diag	
	P-G	up: Commands	Unit group: -	Unit selec	
	Not	or motor type: -	Scaling: -	Expert list	
	Min		Max	Factory se	
	-		-	00000000	
Description:	Sett	$g$ to invert the signals	uts/outputs of Term	(TM17).	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	Inverted	Not inverted	-
		DI/DO 1 (X520.3)	Inverted	Not inverted	-
		DI/DO 2 (X520.5)	Inverted	Not inverted	-
		DI/DO 3 (X520.6)	Inverted	Not inverted	-
		DI/DO 4 (X520.8)	Inverted	Not inverted	-
	05	DI/DO 5 (X520.9)	Inverted	Not inverted	-
	06	DIIDO 6 (X521.2)	Inverted	Not inverted	-
	07	DIIDO 7 (X521.3)	Inverted	Not inverted	-
		DI/DO 8 (X521.8)	Inverted	Not inverted	-
	09	DI/DO 9 (X521.9)	Inverted	Not inverted	-
		DI/DO 10 (X522.2)	Inverted	Not inverted	-
		DI/DO 11 (X522.3)	Inverted	Not inverted	-
		DI/DO 12 (X522.5)	Inverted	Not inverted	-
		DI/DO 13 (X522.6)	Inverted	Not inverted	-
		DI/DO 14 (X522.8)	Inverted	Not inverted	-
	15	DI/DO 15 (X522.9)	Inverted	Not inverted	-
Note:	DI/D	: Bidirectional Digita			
p4048	TM	1 invert digital	1 DO inv		
TM31	Can	be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access lev	
		type: Unsigned32	Dyn. index: -	Func. diag 9562	
		up: Commands	Unit group: -	Unit selec	
		or motor type: -	Scaling: -	Expert list	
	Min		Max	Factory se	
	-		-	00000000	
Description:	Sett	g to invert the signal	uts of Terminal M		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DO 0 (X542.1-3)	Inverted	Not inverted	-
	01	DO 1 (X542.4-6)	Inverted	Not inverted	-
	08	DIIDO 8 (X541.2)	Inverted	Not inverted	-
	09	DI/DO 9 (X541.3)	Inverted	Not inverted	-
	10	DI/DO 10 (X541.4)	Inverted	Not inverted	-
	11	DI/DO 11 (X541.5)	Inverted	Not inverted	-
Note:		Digital Output			
		: Bidirectional Digita			


p4048	TM41 invert digital outputs / TM41 DO inv				
TM41	Can be changed: U, T		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Setting to invert the signals at the digital outputs of Terminal Module 41 (TM41).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X521.1)	Inverted	Not inverted	9661
		DI/DO 1 (X521.2)	Inverted	Not inverted	9661
		DI/DO 2 (X521.3)	Inverted	Not inverted	9662
	11	DI/DO 3 (X521.4)	Inverted	Not inverted	9662
Note:	DO: Digital Output				
	DI/DO: Bidirectional Digital Input/Output				
p4048	TB30 invert digital outputs / TB30 DO inv				
TB30	Can be changed: U, T		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9102	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000 bin	
Description:	Setting to invert the signals at the digital outputs of the Terminal Board 30 (TB30).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DO 0 (X481.5)	Inverted	Not inverted	-
		DO 1 (X481.6)	Inverted	Not inverted	-
		DO 2 (X481.7)	Inverted	Not inverted	-
		DO 3 (X481.8)	Inverted	Not inverted	-
Note:	DO	Digital Output			
p4049		5 digital inputs/	e mode / TM15		
TM15	Can be changed: T		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	00000000000000000000 000000000000 bin	
Description:	Sets the mode of the DI/DOs of Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	I/O with time	I/O	-
	01	DI/DO 1 (X520.3)	I/O with time	I/O	-
	02	DI/DO 2 (X520.4)	I/O with time	I/O	-
	03	DI/DO 3 (X520.5)	I/O with time	I/O	-
	04	DI/DO 4 (X520.6)	I/O with time	I/O	-
	05	DI/DO 5 (X520.7)	I/O with time	I/O	-
	06	DI/DO 6 (X520.8)	I/O with time	I/O	-
	07	DI/DO 7 (X520.9)	I/O with time	I/O	-
	08	DI/DO 8 (X521.2)	I/O with time	I/O	-
	09	DI/DO 9 (X521.3)	I/O with time	I/O	-
	10	DI/DO 10 (X522.4)	I/O with time	I/O	-
	11	DI/DO 11 (X521.5)	I/O with time	I/O	-
	12	DI/DO 12 (X521.6)	I/O with time	I/O	-
	13	DI/DO 13 (X521.7)	I/O with time	I/O	-
	14	DI/DO 14 (X521.8)	I/O with time	I/O	-

### 2.2 List of parameters

	15	DI/DO 15 (X521.9)	I/O with time	I/O	-
	16	DI/DO 16 (X522.2)	I/O with time	I/O	-
	17	DI/DO 17 (X522.3)	I/O with time	I/O	-
	18	DI/DO 18 (X522.4)	I/O with time	I/O	-
	19	DI/DO 19 (X522.5)	I/O with time	I/O	-
		DI/DO 20 (X522.6)	I/O with time	I/O	-
	21	DI/DO 21 (X522.7)	I/O with time	I/O	-
		DI/DO 22 (X522.8)	I/O with time	I/O	-
	23	DI/DO 23 (X522.9)	I/O with time	1/O	-
Note:	DI/	: Bidirectional Digital In			
p4049		digital inputs/ou	e mode / TM17 D		
TM17		e changed: $T$	Calculated: -	Access	
		type: Unsigned32	Dyn. index: -	Func.	
		up: Commands	Unit group: -	Unit se	
		or motor type: -	Scaling: -	Expert	
	Min		Max	Factory	
	-		-	00000	
Description:	Set	e mode of the DI/DO	le 17 (TM17).		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	I/O with time	I/O	-
		DI/DO 1 (X520.3)	I/O with time	I/O	-
		DI/DO 2 (X520.5)	I/O with time	I/O	-
		DI/DO 3 (X520.6)	I/O with time	I/O	-
		DI/DO 4 (X520.8)	I/O with time	I/O	-
		DI/DO 5 (X520.9)	I/O with time	I/O	-
		DI/DO 6 (X521.2)	I/O with time	I/O	-
		DI/DO 7 (X521.3)	I/O with time	1/O	-
		DI/DO 8 (X521.8)	I/O with time	I/O	-
		DI/DO 9 (X521.9)	I/O with time	I/O	-
		DI/DO 10 (X522.2)	I/O with time	I/O	-
		DI/DO 11 (X522.3)	I/O with time	I/O	-
		DI/DO 12 (X522.5)	I/O with time	I/O	-
		DI/DO 13 (X522.6)	I/O with time	I/O	-
		DI/DO 14 (X522.8)	I/O with time	1/O	-
		DI/DO 15 (X522.9)	I/O with time	1/O	-
Note:	DI/D	: Bidirectional Digital In			
r4052[0...1]		TM31 analog inpu	nput voltage/cur	AI U/	
TM31		be changed: -	Calculated: -	Access	
		type: FloatingPoint32	Dyn. index: -	Func.	
		up: Terminals	Unit group: -	Unit s	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
			-		
Description:	Disp	ays the actual input volt	et as voltage input.		
Index:		ays the actual input cur   AI 0 (X521.1/X521.2, S   AI 1 (X521.3/X521.4, S	set as current input	ad resisto	
Dependency:		type of analog input AI X to: r4056, p4056	ent input) is set using		
Note:	AI:	nalog Input			



p4053[0...1]	TB30 analog inputs smoothing time constant / TB30 AI T_smooth		
TB30	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description:	Sets the smoothing time constant of the 1st order lowpass filter for the analog inputs of the Terminal Board 30 (TB30).		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { Al } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	Al: Analog Input		
r4055[0...1]	CO: TM31 analog inputs actual value in percent / TM31 Al value in \%		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9549, 9566, 9568
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the currently referred input value of the analog inputs of Terminal Module 31 (TM31). When interconnected, the signals are referred to the reference quantities p200x and p205x.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S5.0 })} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Note:	Al: Analog Input		
r4055[0]	CO: TM41 analog inputs actual value in percent / TM41 AI value in \%		
TM41	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9663
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the currently referred input value of the analog inputs of Terminal Module 41 (TM41). When interconnected, the signals are referred to the reference quantities p200x and p205x.		
Index:	[ 0 ] = Al 0 (X523.1/X523.2)		
Note:	Al: Analog Input		
r4055[0...1]	CO: TB30 analog inputs actual value in percent / TB30 AI value in \%		
TB30	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9099, 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the currently referred input value of the analog inputs of Terminal Board 30 (TB30). When interconnected, the signals are referred to the reference quantities p200x and p205x.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { Al } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	Al: Analog Input		



### 2.2 List of parameters

p4057[0...1]	TM31 analog inputs characteristic value x1 / TM31 Al char x1		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000	20.000	0.000
Description:	Sets the scaling characteristic for the analog inputs of Terminal Module 31 (TM31).   The scaling characteristic for the analog inputs is defined using 2 points.		
Index:	$\begin{aligned} & {[0]=\mathrm{Al} 0(\mathrm{X} 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Dependency:	The unit of this parameter ( $V$ or mA ) depends on the analog input type. Refer to: r4056, p4056		
Notice:	This parameter is automatically overwritten when the analog input type (p4056) is modified. The parameters for the characteristic do not have a limiting effect.		
Note:			
p4057[0]	TM41 analog input characteristic value x1 / TM41 Al char x1		
TM41	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9663
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000 [V]	20.000 [V]	0.000 [V]
Description:	Sets the scaling characteristic for the analog input of Terminal Module 41 (TM41).   The scaling characteristic for the analog input is defined using 2 points.   This parameter specifies the $x$ coordinate (input voltage in $V$ ) of the 1st value pair of the characteristic.		
Index:	[0] = AI 0 (X523.1/X523.2)		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4057[0...1]	TB30 analog inputs characteristic value x1 / TB30 Al char x1		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-11.000 [V]	11.000 [V]	0.000 [V]
Description:	Sets the scaling characteristic for the analog inputs of Terminal Board 30 (TB30).   The scaling characteristic for the analog inputs is defined using 2 points.   This parameter specifies the x coordinate (input voltage in V ) of the 1st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		


p4058[0...1]	TM31 analog inputs characteristic value y1 / TM31 Al char y1		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs of Terminal Module 31 (TM31). The scaling characteristic for the analog inputs is defined using 2 points.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Notice:	This parameter is automatically overwritten when the analog input type (p4056) is modified.		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4058[0]	TM41 analog input characteristic value y1 / TM41 Al char y1		
TM41	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9663
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog input of Terminal Module 41 (TM41).   The scaling characteristic for the analog inputs is defined using 2 points.   This parameter specifies the y coordinate (percentage) of the 1st value pair of the characteristic.		
Index:	[0] = AI 0 (X523.1/X523.2)		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4058[0..1]	TB30 analog inputs characteristic value y1 / TB30 Al char y1		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs of Terminal Board 30 (TB30).   The scaling characteristic for the analog inputs is defined using 2 points.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0 \text { (X482.1/X482.2) }} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		

### 2.2 List of parameters

p4059[0...1]	TM31 analog inputs characteristic value x2 / TM31 Al char x2		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000	20.000	10.000
Description:	Sets the scaling characteristic for the analog inputs of Terminal Module 31 (TM31).   The scaling characteristic for the analog inputs is defined using 2 points.		
Index:	$\begin{aligned} & {[0]=\mathrm{Al} 0(\mathrm{X} 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Dependency:	The unit of this parameter ( $V$ or mA ) depends on the analog input type. Refer to: r4056, p4056		
Notice:	This parameter is automatically overwritten when the analog input type ( p 4056 ) is modified. The parameters for the characteristic do not have a limiting effect.		
Note:			
p4059[0]	TM41 analog input characteristic value x2 / TM41 Al char x2		
TM41	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9663
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000 [V]	20.000 [V]	10.000 [V]
Description:	Sets the scaling characteristic for the analog input of Terminal Module 41 (TM41).   The scaling characteristic for the analog inputs is defined using 2 points.   This parameter specifies the x coordinate (input voltage in V ) of the 2nd value pair of the characteristic.		
Index:	[0] = AI 0 (X523.1/X523.2)		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4059[0...1]	TB30 analog inputs characteristic value x2 / TB30 Al char x2		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-11.000 [V]	11.000 [V]	10.000 [V]
Description:	Sets the scaling characteristic for the analog inputs of Terminal Board 30 (TB30).   The scaling characteristic for the analog inputs is defined using 2 points.   This parameter specifies the $x$ coordinate (input voltage in $V$ ) of the 2 nd value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		


p4060[0...1]	TM31 analog inputs characteristic value y2 / TM31 Al char y2		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs of Terminal Module 31 (TM31). The scaling characteristic for the analog inputs is defined using 2 points.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Notice:	This parameter is automatically overwritten when the analog input type (p4056) is modified.		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4060[0]	TM41 analog input characteristic value y2 / TM41 Al char y2		
TM41	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9663
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog input of Terminal Module 41 (TM41).   The scaling characteristic for the analog inputs is defined using 2 points.   This parameter specifies the $y$ coordinate (percentage) of the $2 n d$ value pair of the characteristic.		
Index:	[0] = AI 0 (X523.1/X523.2)		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4060[0..1]	TB30 analog inputs characteristic value y2 / TB30 Al char y2		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs of Terminal Board 30 (TB30).   The scaling characteristic for the analog inputs is defined using 2 points.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		

### 2.2 List of parameters

p4061[0...1]	TM31 analog inputs wire breakage monitoring response threshold / TM31 WireBrkThresh
TM31	Can be changed: U, T Calculated: - Access level: 2   Data type: FloatingPoint32 Dyn. index: - Func. diagram: 9566,9568   P-Group: Terminals Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $0.00[\mathrm{~mA}]$ $20.00[\mathrm{~mA}]$ $2.00[\mathrm{~mA}]$
Description: Index: Dependency:	Sets the response threshold for wire-breakage monitoring of the analog inputs of Terminal Module 31 (TM31). $\begin{aligned} & {[0]=\text { Al } 0(X 521.1 / X 521.2, \text { S5.0) }} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$   For the following analog input type, the wire breakage monitoring is active: $\mathrm{p} 4056[\mathrm{x}]=3 \text { (unipolar current input monitored (+4 mA ... +20 mA)) }$   Refer to: r4056, p4056
$\begin{aligned} & \text { p4062[0...1] } \\ & \text { TM31 } \end{aligned}$	TM31 analog inputs wire breakage monitoring delay time / TM31 wirebrk t_del
Description: Index:	Sets the delay time for wire-breakage monitoring of the analog inputs on Terminal Module 31 (TM31). $\begin{aligned} & {[0]=\text { AI } 0(\text { (X521.1/X521.2, S5.0 })} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$
$\begin{aligned} & \text { p4063[0...1] } \\ & \text { TM31 } \end{aligned}$	TM31 analog inputs offset / TM31 AI offset
Description:   Index:	Sets the offset for the analog inputs of Terminal Module 31 (TM31).   The offset is added to the input signal before the scaling characteristic. $\begin{aligned} & {[0]=\text { Al } 0(X 521.1 / X 521.2, \text { S5.0) }} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$
$\overline{p 4063[0]}$   TM41	TM41 analog input offset / TM41 AI offset
Description: Index:	Sets the offset for the analog input of Terminal Module 41 (TM41).   The offset is added to the input signal before the scaling characteristic. $[0]=A I O(X 523.1 / X 523.2)$


p4063[0...1]	TB30 analog inputs offset / TB30 Al offset		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000 [V]	20.000 [V]	0.000 [V]
Description:	Sets the offset for the analog inputs of Terminal Board 30 (TB30).		
	The offset is added to the input signal before the scaling characteristic.		
Index:	[0] = AI 0 (X482.1/X482.2)		
	[1] = Al 1 (X482.3/X482.4)		
p4066[0...1]	TM31 analog inputs activate absolute value generation / TM31 Al absVal act		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Activates the absolute value generation for the analog input signals of Terminal Module 31 (TM31).		
Value:	0 : $\quad$ No absolute value generation   1: Absolute value generation switched in		
Index:	$[0]=\mathrm{Al} 0$ (X521.1/X521.2, S5.0)		
	[1] = Al 1 (X521.3/X521.4, S5.1)		
p4066[0]	TM41 analog input activate absolute value generation / TM41 Al absVal act		
TM41	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 9663
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Activates the absolute value generation of the analog input signal of Terminal Module 41 (TM41).		
Value:	0 : $\quad$ No absolute value generation   1: Absolute value generation switched in		
Index:	$[0]=\text { Al } 0 \text { (X523.1/X523.2) }$		
p4066[0...1]	TB30 analog inputs activate absolute value generation / TB30 Al absVal act		
TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Activates the absolute value generation for the analog input signals of the Terminal Board 30 (TB30).		
Value:	0 : $\quad$ No absolute value generation   1: Absolute value generation switched in		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		

### 2.2 List of parameters

p4067[0...1]	BI: TM31 analog inputs invert signal source / TM31 Al inv s_src		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source to invert the analog inputs signals of Terminal Module 31 (TM31).$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S5.0 })} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
p4067[0]	BI: TM41 analog input invert signal source / TM41 AI inv s s		
TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9663
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source to invert the analog input signal of Terminal Module 41 (TM41).$\text { [0] = AI } 0 \text { (X523.1/X523.2) }$		
p4067[0..1]	BI: TB30 analog inputs invert signal source / TB30 Al inv s_src		
TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	0
Description: Index:	Sets the signal source to invert the analog input signals of the Terminal Board 30 (TB30).$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
p4068[0..1]	TM31 analog inputs window to suppress noise / TM31 Al window		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index:	Func. diagram: 9566, 9568
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	20.00 [\%]	0.00 [\%]
Description:	Sets the noise suppression window of the analog inputs for Terminal Module 31 (TM31). Changes less than the window are suppressed.		
Index:	$\begin{aligned} & {[0]=\mathrm{Al} 0(\mathrm{X} 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Note:	AI: Analog Input		


p4068[0]	TM41 analog input window to suppress noise / TM41 Al window		
TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9663
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	20.00 [\%]	0.00 [\%]
Description:	Sets the noise suppression window of the analog input for Terminal Module 41 (TM41). Changes less than the window are suppressed.		
Index:	$[0]=$ Al 0 (X523.1/X523.2)		
Note:	AI: Analog Input		
p4068[0...1]	TB30 analog inputs noise suppression window / TB30 Al window		
TB30	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	20.00 [\%]	0.00 [\%]
Description:	Sets the noise suppression window of the analog inputs for Terminal Board 30 (TB30). Changes less than the window are suppressed.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { Al } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	AI: Analog Input		
p4069[0...1]	BI: TM31 analog inputs signal source for enable / TM31 Al enable		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description: Index:	Sets the signal source for the enable signal of the analog inputs of Terminal Module 31 (TM31).$\begin{aligned} & {[0]=\text { AI } 0(\text { X521.1/X521.2, S5.0 })} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
p4069[0]	BI: TM41 analog input signal source for enable / TM41 Al enable		
TM41	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9663
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description: Index:	Sets the signal source for the enable signal of the analog input of Terminal Module 41 (TM41).$\text { [0] = AI } 0 \text { (X523.1/X523.2) }$		

### 2.2 List of parameters

p4069[0...1]	BI: TB30 analog inputs signal source for enable / TB30 Al enable		
TB30	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Sets the signal source for enabling the analog inputs of the Terminal Board 30 (TB30).		
Index:	$[0]=$ AI $0($ (X482.1/X482.2)		
	$[1]=$ AI 1 (X482.3/X482.4)		


p4071[0...1]	CI: TM31 analog outputs signal source / TM31 AO s_src		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 9549, 9572
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the analog outputs of Terminal Module 31 (TM31).		
Index:	$[0]=$ AO 0 (X522.1, X522.2, X522.3)		
	$[1]=$ AO 1 (X522.4, X522.5, X522.6)		
Note:	AO: Analog Output		


p4071[0...1]	CI: TB30 analog outputs signal source / TB30 AO s_src		
TB30	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 9099, 9106
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the analog outputs of the Terminal Board 30 (TB30).		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 482.5 / X 482.6)} \\ & {[1]=\text { AO } 1 \text { (X482.7/X482.8) }} \end{aligned}$		
Note:	AO: Analog Output		


r4072[0...1]	TM31 analog outputs output value currently referred / TM31 AO outp_val		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	$-[\%]$

Description: Displays the actual referred output value of the analog outputs of Terminal Module 31 (TM31).
Index:
$[0]=$ AO $0(X 522.1$, X522.2, X522.3)
$[1]=$ AO 1 (X522.4. X522.5, X522.6)

r4072[0...1]	TB30 analog outputs output value currently referred / TB30 AO outp_val		
TB30	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description: Index:	Displays the actual referred output value of the analog outputs of the Terminal Board 30 (TB30).$\begin{aligned} & {[0]=\text { AO } 0(X 482.5 / X 482.6)} \\ & {[1]=A O 1(X 482.7 / X 482.8)} \end{aligned}$		
p4073[0...1]	TM31 analog outputs smoothing time constant / TM31 AO T_smooth		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description: Index:	Sets the smoothing time constant of the 1st order lowpass filter for the analog outputs of Terminal Module 31 (TM31).$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=A O 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$		
p4073[0...1]	TB30 analog outputs smoothing time constant / TB30 AO T_smooth		
TB30	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description:	Sets the smoothing time constant of the 1st order lowpass filter for the analog outputs of the Terminal Board 30 (TB30).		
Index:	$\begin{aligned} & {[0]=A O O(X 482.5 / X 482.6)} \\ & {[1]=A O 1 \text { (X482.7/X482.8) }} \end{aligned}$		
r4074[0...1]	TM31 analog outputs current output voltage/current / TM31 AO U/I_outp		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual output voltage in V when set as voltage output. Displays the actual output voltage in mA when set as current output.		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, \text { X522.2, X522.3) }} \\ & {[1]=A O 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$		
Dependency:	The type of the analog output AO $\times$ (voltage or current output) is set using p4076.		
	Refer to: r4076, p4076		
Note:	AO: Analog Output		



Dependency:	Refer to: p4077, p4078, p4079, p4080
Note:	When changing p4076, the parameters of the scaling characteristic (p4077, p4078, p4079, p4080) are overwritten
	with the following default values:
	For p4076 $=0,3, \mathrm{p} 4077$ is set to $0.0 \%, \mathrm{p} 4078$ to $0.0 \mathrm{~mA}, \mathrm{p} 4079$ to $100.0 \%$ and p4080 to 20.0 mA.
	For p4076 $=1,4, \mathrm{p} 4077$ is set to $0.0 \%, \mathrm{p} 4078$ to $0.0 \mathrm{~V}, \mathrm{p} 4079$ to $100.0 \%$ and p4080 to 10.0 V.
	For $\mathrm{p} 4076=2, \mathrm{p} 4077$ is set to $0.0 \%, \mathrm{p} 4078$ to $4.0 \mathrm{~mA}, \mathrm{p} 4079$ to $100.0 \%$ and p4080 to 20.0 mA.


r4076[0...1]	TB30 analog outputs type / TB30 AO type		
TB30	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	4	4	-
Description:	Displays the type of analog outputs of the Terminal Board 30 (TB30).		
Value:	4: Voltage output (-10 V ... +10 V)		
Index:	[0] = AO 0 (X482.5/X482.6)		
	[1] = AO 1 (X482.7/X482.8)		
p4077[0...1]	TM31 analog outputs characteristic value x1 / TM31 AO char x1		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog outputs of Terminal Module 31 (TM31).		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the x coordinate (percentage) of the 1 st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=A O 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=A O 1(X 522.4, X 522.5, X 522.6)} \end{aligned}$		
Dependency:	Refer to: r4076, p4076		
Notice:	This parameter is automatically overwritten when changing p4076 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		


p4077[0...1]	TB30 analog outputs characteristic value x1 / TB30 AO char x1		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index:	Func. diagram: 9106
	P-Group: Terminals	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-1000.00[\%]$	0.00 [\%]	
	Sets the scaling characteristic for the analog outputs of Terminal Board 30 (TB30).		
	The scaling characteristic for the analog outputs is defined using 2 points.		


p4078[0...1]	TM31 analog outputs characteristic value y1 / TM31 AO char y1		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000	20.000	0.000
Description:	Sets the scaling characteristic for the analog outputs of Terminal Module 31 (TM31).		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the y coordinate (output voltage in $V$ or output current in mA ) of the 1st value pair of the characteristic.		
Index:	[0] = AO 0 (X522.1, X522.2, X522.3)		
	[1] = AO 1 (X522.4, X522.5, X522.6)		
Dependency:	The unit of this parameter ( $V$ or mA ) depends on the analog output type.		
	Refer to: r4076, p4076		
Notice:	This parameter is automatically overwritten when changing p4076 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4078[0...1]	TB30 analog outputs characteristic value y1 / TB30 AO char y1		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-11.000 [V]	11.000 [V]	0.000 [V]
Description:	Sets the scaling characteristic for the analog outputs of Terminal Board 30 (TB30).		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the y coordinate (output voltage in V ) of the 1st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0] \text { = AO } 0 \text { (X482.5/X482.6) }} \\ & \text { [1] = AO } 1 \text { (X482.7/X482.8) } \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4079[0...1]	TM31 analog outputs characteristic value x2 / TM31 AO char x2		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog outputs of Terminal Module 31 (TM31).		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the x coordinate (percentage) of the 2 nd value pair of the characteristic.		
Index:	[0] = AO 0 (X522.1, X522.2, X522.3)		
Dependency:	Refer to: r4076, p4076		
Notice:	This parameter is automatically overwritten when changing p4076 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		



### 2.2 List of parameters

p4082[0...1]	BI: TM31 analog outputs invert signal source / TM31 AO inv s_src		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	0	
Description:	Sets the signal source to invert the analog output signals of Terminal Module 31 (TM31).		
Index:	$[0]=$ AO 0 (X522.1, X522.2, X522.3)		
	$[1]=$ AO 1 (X522.4, X522.5, X522.6)		


p4082[0...1]	BI: TB30 analog outputs invert signal source / TB30 AO inv s_src		
TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description: Sets the signal source for inverting the analog output signals of the Terminal Board 30 (TB30).

Index:	$[0]=A O 0($ X482.5/X482.6)
	$[1]=A O 1$ (X482.7/X482.8)


p4083[0...1]	TM31 analog outputs offset / TM31 AO offset		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000	20.000	0.000
Description:	Sets the offset for the analog outputs of Terminal Module 31 (TM31).		
Index:	The offset is added to the ou $\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2,} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, }} \end{aligned}$	the scaling char	
Dependency:	The unit of this parameter (V or mA) depends on the analog input type.		
	Refer to: r4076, p4076		
Note:	This means, for example, the offset of a downstream isolating amplifier can be compensated.		
p4083[0...1]	TB30 analog outputs offset / TB30 AO offset		
TB30	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10.000	10.000	0.000
Description:	Sets the offset for the analog outputs of Terminal Board 30 (TB30).		
Index:	The offset is added to the ou $\begin{aligned} & \text { [0] = AO } 0 \text { (X482.5/X482.6) } \\ & \text { [1] = AO } 1 \text { (X482.7/X482.8) } \end{aligned}$	the scaling cha	


p4086	BI: TM15DI/DO signal source for terminal DI/DO 16 / TM15D s_s DI/DO 16		
TM15DI_DO	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9402
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:   Note:	Sets the signal source for terminal DI/DO 16 (X522.2) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.16 = 1).   DI/DO: Bidirectional Digital Input/Output		
p4087	BI: TM15DI/DO signal source for terminal DI/DO 17 / TM15D s_s DI/DO 17		
TM15DI_DO	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9402
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 17 (X522.3) of Terminal Module 15 (TM15).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.17 = 1).		
	DI/DO: Bidirectional Digital Input/Output		
p4088	BI: TM15DI/DO signal source for terminal DI/DO 18 / TM15D s_s DI/DO 18		
TM15DI_DO	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9402
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 18 (X522.4) of Terminal Module 15 (TM15).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.18=1).		
	DI/DO: Bidirectional Digital Input/Output		
p4089	BI: TM15DI/DO signal source for terminal DI/DO 19 / TM15D s_s DI/DO 19		
TM15DI_DO	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9402
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 19 (X522.5) of Terminal Module 15 (TM15).		
Note:	Prerequisite: The DI/DO must be set as an output (p4028.19 = 1).		
	DI/DO: Bidirectional Digital Input/Output		


p4090	BI: TM15DI/DO signal source for terminal DI/DO 20 / TM15D s_s DI/DO 20
TM15DI_DO	Can be changed: U, T Calculated: - Access level: 1   Data type: Unsigned32 / Binary Dyn. index: - Func. diagram: 9402   P-Group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - 0
Description: Note:	Sets the signal source for terminal DI/DO 20 (X522.6) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output ( $\mathrm{p} 4028.20=1$ ).   DI/DO: Bidirectional Digital Input/Output
p4091   TM15DI_DO	BI: TM15DI/DO signal source for terminal DI/DO 21 / TM15D s_s DI/DO 21     Can be changed: U, T Calculated: - Access level: 1   Data type: Unsigned32 / Binary Dyn. index: - Func. diagram: 9402   P-Group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - 0
Description:   Note:	Sets the signal source for terminal DI/DO 21 (X522.7) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.21 = 1). DI/DO: Bidirectional Digital Input/Output
p4092   TM15DI_DO	BI: TM15DI/DO signal source for terminal DI/DO 22 / TM15D s_s DI/DO 22     Can be changed: U, T Calculated: - Access level: 1   Data type: Unsigned32 / Binary Dyn. index: - Func. diagram: 9402   P-Group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - 0
Description:   Note:	Sets the signal source for terminal DI/DO 22 (X522.8) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output (p4028.22 = 1). DI/DO: Bidirectional Digital Input/Output
p4093	BI: TM15DI/DO signal source for terminal DI/DO 23 / TM15D s_s DI/DO 23
TM15DI_DO	Can be changed: U, T Calculated: - Access level: 1   Data type: Unsigned32 / Binary Dyn. index: - Func. diagram: 9402   P-Group: Commands Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - 0
Description: Note:	Sets the signal source for terminal DI/DO 23 (X522.9) of Terminal Module 15 (TM15). Prerequisite: The DI/DO must be set as an output ( $\mathrm{p} 4028.23=1$ ). DIIDO: Bidirectional Digital Input/Output


r4094.0... 23	BO: TM15 digital inputs status inverted raw data internal / TM15 DI st raw dat				
TM15DI_DO	Can be changed: -		Calculated: -	Access lev	
	Data type: Unsigned32		Dyn. index: -	Func. diagr	
	P-Group: Commands		Unit group: -	Unit selecti	
	Not for motor type: -		Scaling: -	Expert list:	
	Min		Max	Factory set	
	-		-	-	
Description:	Displays the inverted status of the raw data of the digital inputs of the Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	High	Low	-
	01	DI/DO 1 (X520.3)	High	Low	-
	02	DI/DO 2 (X520.4)	High	Low	-
	03	DI/DO 3 (X520.5)	High	Low	-
	04	DI/DO 4 (X520.6)	High	Low	-
		DI/DO 5 (X520.7)	High	Low	-
		DI/DO 6 (X520.8)	High	Low	-
	07	DI/DO 7 (X520.9)	High	Low	-
	08	DI/DO 8 (X521.2)	High	Low	-
	09	DI/DO 9 (X521.3)	High	Low	-
	10	DI/DO 10 (X521.4)	High	Low	-
	11	DI/DO 11 (X521.5)	High	Low	-
	12	DI/DO 12 (X521.6)	High	Low	-
	13	DI/DO 13 (X521.7)	High	Low	-
	14	DI/DO 14 (X521.8)	High	Low	-
	15	DI/DO 15 (X521.9)	High	Low	-
	16	DI/DO 16 (X522.2)	High	Low	-
	17	DI/DO 17 (X522.3)	High	Low	-
	18	DI/DO 18 (X522.4)	High	Low	-
	19	DI/DO 19 (X522.5)	High	Low	-
	20	DI/DO 20 (X522.6)	High	Low	-
	21	DI/DO 21 (X522.7)	High	Low	-
	22	DI/DO 22 (X522.8)	High	Low	-
	23	DI/DO 23 (X522.9)	High	Low	-
Notice:	The raw data of the digital inputs is directly displayed (e.g. without any debounce).				
Note:	Should only used for internal Siemens purposes (alternative r4022, r4023).				
p4095	S120M digital inputs simulation mode / S120M DI sim_mode				
SERVO (Dig IO)	Can be changed: U, T		Calculated: -	Access lev	
	Data type: Unsigned32		Dyn. index: -	Func. diagr	
	P-Group: Terminals		Unit group: -	Unit selecti	
	Not for motor type: -		Scaling: -	Expert list:	
	Min		Max	Factory set	
	-		-	0000 bin	
Description:	Sets the simulation mode for digital inputs of the S120M.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 distributed (X3.2)	Simulation	Terminal eval	-
		DI/DO 1 distributed (X3.4)	Simulation	Terminal eval	-
Dependency:	The setpoint for the input signals is specified using p4096.				
	Refer to: p4096				
Note:	This parameter is not saved when data is backed-up (p0971, p0977). DI: Digital Input				


p4095	TM15DI/DO digital inputs simulation mode / TM15D DI sim_mode				
TM15DI_DO	Can be changed: $\mathrm{U}, \mathrm{T}$		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9400, 9401, 9402	
	P-Group: Terminals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	00000000000000000000 000000000000 bin	
Description:	Sets the simulation mode for the digital inputs of Terminal Module 15 (TM15).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	Simulation	Terminal eval	-
	01	DI/DO 1 (X520.3)	Simulation	Terminal eval	-
		DI/DO 2 (X520.4)	Simulation	Terminal eval	-
		DI/DO 3 (X520.5)	Simulation	Terminal eval	-
	04	DI/DO 4 (X520.6)	Simulation	Terminal eval	-
	05	DI/DO 5 (X520.7)	Simulation	Terminal eval	-
		DI/DO 6 (X520.8)	Simulation	Terminal eval	-
		DI/DO 7 (X520.9)	Simulation	Terminal eval	-
		DI/DO 8 (X521.2)	Simulation	Terminal eval	-
		DI/DO 9 (X521.3)	Simulation	Terminal eval	-
		DI/DO 10 (X521.4)	Simulation	Terminal eval	-
	11	DI/DO 11 (X521.5)	Simulation	Terminal eval	-
		DI/DO 12 (X521.6)	Simulation	Terminal eval	-
		DI/DO 13 (X521.7)	Simulation	Terminal eval	-
		DI/DO 14 (X521.8)	Simulation	Terminal eval	-
		DI/DO 15 (X521.9)	Simulation	Terminal eval	-
		DI/DO 16 (X522.2)	Simulation	Terminal eval	-
		DI/DO 17 (X522.3)	Simulation	Terminal eval	-
		DI/DO 18 (X522.4)	Simulation	Terminal eval	-
		DI/DO 19 (X522.5)	Simulation	Terminal eval	-
		DI/DO 20 (X522.6)	Simulation	Terminal eval	-
		DI/DO 21 (X522.7)	Simulation	Terminal eval	-
		DI/DO 22 (X522.8)	Simulation	Terminal eval	-
	23	DI/DO 23 (X522.9)	Simulation	Terminal eval	-
Dependency:	The setpoint for the input signals is specified using p4096.				
Warning: $\qquad$	A drive that is moved by simulating the inputs of a Terminal Module is brought to a standstill while the Termina Module is being activated or deactivated.				
Note:	This parameter is not saved when data is backed-up (p0971, p0977). DI/DO: Bidirectional Digital Input/Output				
p4095	TM31 digital inputs simulation mode / TM31 DI sim_mode				
TM31	Can be changed: $U, T$		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9549, 9550, 9552, 9560, 9562	
	P-Group: Terminals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-			0000000000000000 bin	
Description:	Sets the simulation mode for the digital inputs of Terminal Module 31 (TM31).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X520.1)	Simulation	Terminal eval	-
	01	DI 1 (X520.2)	Simulation	Terminal eval	-
	02	DI 2 (X520.3)	Simulation	Terminal eval	-
	03	DI 3 (X520.4)	Simulation	Terminal eval	-
	04	DI 4 (X530.1)	Simulation	Terminal eval	-
	05	DI 5 (X530.2)	Simulation	Terminal eval	


		DI 6 (X530.3)	Simulation	Terminal eval	-
		DI 7 (X530.4)	Simulation	Terminal eval	-
	08	DI/DO 8 (X541.2)	Simulation	Terminal eval	-
	09	DI/DO 9 (X541.3)	Simulation	Terminal eval	-
	10	DI/DO 10 (X541.4)	Simulation	Terminal eval	-
	11	DI/DO 11 (X541.5)	Simulation	Terminal eval	-
Dependency:	The setpoint for the input signals is specified using p4096.				
	Refer to: p4096				
Warning:	A drive that is moved by simulating the inputs of a Terminal Module is brought to a standstill while the Terminal Module is being activated or deactivated.				
Note:	This parameter is not saved when data is backed-up (p0971, p0977).				
	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				
p4095	TM41 digital inputs simulation mode / TM41 DI sim_mode				
TM41	Can be changed: U, T		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Terminals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
			Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Sets the simulation mode for the digital inputs of Terminal Module 41 (TM41).				
Bit field:		Signal name	1 signal	0 signal	FP
		DI 0 (X522.1)	Simulation	Terminal eval	9660
		DI 1 (X522.2)	Simulation	Terminal eval	9660
		DI 2 (X522.3)	Simulation	Terminal eval	9660
		DI 3 (X522.4)	Simulation	Terminal eval	9660
		DI/DO 0 (X521.1)	Simulation	Terminal eval	9661
		DI/DO 1 (X521.2)	Simulation	Terminal eval	9661
		DI/DO 2 (X521.3)	Simulation	Terminal eval	9662
		DI/DO 3 (X521.4)	Simulation	Terminal eval	9662
Dependency:	The setpoint for the input signals is specified using p4096.				
	Refer to: p4096				
Warning:	A drive that is moved by simulating the inputs of a Terminal Module is brought to a standstill while the Terminal Module is being activated or deactivated.				
Note:	This parameter is not saved when data is backed-up (p0971, p0977).				
	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				
p4095	TB30 digital inputs simulation mode / TB30 Dl sim_mode				
TB30	Can be changed: U, T		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9099, 9100	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000 bin	
Description:	Sets the simulation mode for the digital inputs of the Terminal Board 30 (TB30).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X481.1)	Simulation	Terminal eval	-
		DI 1 (X481.2)	Simulation	Terminal eval	-
		DI 2 (X481.3)	Simulation	Terminal eval	-
		DI 3 (X481.4)	Simulation	Terminal eval	-
Dependency:	The setpoint for the input signals is specified using p4096.				
	Refer to: p4096				

### 2.2 List of parameters

Warning:				
	is being activated or deactivated.			
Note:	This parameter is not saved when data is backed-up (p0971, p0977).			
	DI: Digital Input			
p4096	S120M digital inputs simulation mode setpoint / S120M DI sim setp			
SERVO (Dig IO)	Can be changed: U, T	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Commands	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	0000 b	
Description:	Sets the setpoint for the input signals in the digital input simulation mode of the S120M.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI/DO 0 distributed (X3.2)	High	Low	2201
	01 DI/DO 1 distributed (X3.4)	High	Low	2201
Dependency:	The simulation of a digital input is selected using p4095.			
	Refer to: p4095			
Note:	This parameter is not saved when data is backed-up (p0971, p0977).			
	DI: Digital Input			


p4096	TM15DI/DO digital inputs simulation mode, setpoint / TM15D DI sim setp			
TM15DI_DO	Can be changed: U, T		Access level: 2	
	Data type: Unsigned32	Dyn. index: -	Func. 9402	
	P-Group: Terminals	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factory	
	-	-	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
Description:	Sets the setpoint for the input signals in the simulation mode of the digital inputs of Terminal Module 15 (TM15).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI/DO 0 (X520.2)	High	Low	-
	01 DI/DO 1 (X520.3)	High	Low	-
	02 DI/DO 2 (X520.4)	High	Low	-
	03 DI/DO 3 (X520.5)	High	Low	-
	04 DI/DO 4 (X520.6)	High	Low	-
	05 DI/DO 5 (X520.7)	High	Low	-
	06 DI/DO 6 (X520.8)	High	Low	-
	07 DI/DO 7 (X520.9)	High	Low	-
	08 DI/DO 8 (X521.2)	High	Low	-
	09 DI/DO 9 (X521.3)	High	Low	-
	10 DI/DO 10 (X521.4)	High	Low	-
	$11 \text { DI/DO } 11 \text { (X521.5) }$	High	Low	-
	$12 \text { DI/DO } 12 \text { (X521.6) }$	High	Low	-
	13 DI/DO 13 (X521.7)	High	Low	-
	14 DI/DO 14 (X521.8)	High	Low	-
	15 DI/DO 15 (X521.9)	High	Low	-
	16 DI/DO 16 (X522.2)	High	Low	-
	17 DI/DO 17 (X522.3)	High	Low	-
	18 DI/DO 18 (X522.4)	High	Low	-
	19 DI/DO 19 (X522.5)	High	Low	-
	20 DI/DO 20 (X522.6)	High	Low	-
	21 DI/DO 21 (X522.7)	High	Low	-
	$22 \mathrm{DI} / \mathrm{DO} 22$ (X522.8)	High	Low	-
	23 DI/DO 23 (X522.9)	High	Low	-
Dependency:	The simulation of a digital input is selected using p4095.			



p4096	TM41 digital inputs simulation mode setpoint / TM41 DI sim setp			
TM41	Can be changed: U, T	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Terminals	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	00000	
Description:	Sets the setpoint for the input signals in the simulation mode of the digital inputs of Terminal Module 41 (TM41).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (X522.1)	High	Low	9660
	01 DI 1 (X522.2)	High	Low	9660
	02 DI 2 (X522.3)	High	Low	9660
	03 DI 3 (X522.4)	High	Low	9660
	$08 \mathrm{DI} / \mathrm{DO} 0$ (X521.1)	High	Low	9661
	09 DI/DO 1 (X521.2)	High	Low	9661
	10 DI/DO 2 (X521.3)	High	Low	9662
	11 DI/DO 3 (X521.4)	High	Low	9662
Dependency:	The simulation of a digital input is selected using p4095.			
	Refer to: p 4095			
Note:	This parameter is not saved when data is backed-up (p0971, p0977).			
	DI: Digital Input			
	DI/DO: Bidirectional Digital Input/Output			

### 2.2 List of parameters

p4096	TB30 digital inputs simulation mode setpoint / TB30 DI sim setp			
TB30	Can be changed: U, T	Calculated: -	Access	
	Data type: Unsigned32	Dyn. index: -	Func.	100
	P-Group: Commands	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factory	
	-	-	0000 bi	
Description:	Sets the setpoint for the input signals in the simulation mode of the digital inputs of the Terminal Board 30 (TB30)			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (X481.1)	High	Low	-
	01 DI 1 (X481.2)	High	Low	-
	02 DI 2 (X481.3)	High	Low	-
	03 DI 3 (X481.4)	High	Low	-
Dependency:	The simulation of a digital input is selected using p4095. Refer to: p4095			
Note:	This parameter is not saved when data is backed-up (p0971, p0977).			
	DI: Digital Input			
p4097[0...1]	TM31 analog inputs simulation mode / TM31 Al sim_mode			
TM31	Can be changed: U, T	Calculated: -	Access	
	Data type: Integer16	Dyn. index: -	Func.	
	P-Group: Terminals	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	0	1	0	
Description:	Sets the simulation mode for the analog inputs of Terminal Module 31 (TM31).			
Value:	0 : Terminal evaluation for analog input $x$   1: $\quad$ Simulation for analog input $x$			
Index:	$\text { [0] = AI } 0 \text { (X521.1/X521.2, S5.0) }$			
Dependency:	The setpoint for the input voltage is specified via p4098.			
Note:	This parameter is not saved when data is backed-up (p0971, p0977).			
p4097[0]	TM41 analog input simulation mode / TM41 Al sim_mode			
TM41	Can be changed: U, T	Calculated: -	Acces	
	Data type: Integer16	Dyn. index: -	Func.	
	P-Group: Terminals	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	0	1	0	
Description:	Sets the simulation mode for the analog input of Terminal Module 41 (TM41).			
Value:	0 : Terminal evaluation for analog input $x$   1: $\quad$ Simulation for analog input $x$			
Index:	[0] = AI 0 (X523.1/X523.2)			
Dependency:	The setpoint for the input voltage is specified via p4098.			
Note:	This parameter is not sa AI: Analog Input	cked-up (p0971,		


p4097[0...1]	TB30 analog inputs simulation mode / TB30 Al sim_mode		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the simulation mode for the analog inputs of the Terminal Board 30 (TB30).		
Value:	0 : Terminal evaluation for analog input x   1: $\quad$ Simulation for analog input $x$		
Index:	$\begin{aligned} & {[0]=\text { Al } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { Al } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Dependency:	The setpoint for the input voltage is specified via p4098. Refer to: p4098		
Note:	This parameter is not saved when data is backed-up (p0971, p0977).		
p4098[0...1]	TM31 analog inputs simulation mode setpoint / TM31 Al sim setp		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000	20.000	0.000
Description: Index:	$\begin{aligned} & {[0]=\mathrm{Al} 0(\mathrm{X} 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\mathrm{Al} 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Dependency:	The simulation of an analog input is selected using p4097.   If Al x is parameterized as voltage input ( p 4056 ), then the setpoint is a voltage in V . If Al x is parameterized as current input ( p 4056 ), then the setpoint is a current in mA . Refer to: r4056, p4056, p4097		
Note:	This parameter is not saved when data is backed-up (p0971, p0977). AI: Analog Input		
p4098[0]	TM41 analog input simulation mode setpoint / TM41 AI sim setp		
TM41	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9663
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000 [V]	20.000 [V]	0.000 [V]
Description: Index:	Sets the setpoint for the input value in simulation mode of the analog input of Terminal Module 41 (TM41).$\text { [0] = AI } 0 \text { (X523.1/X523.2) }$		
Dependency:	The simulation of the analog If $\mathrm{Al} x$ is parameterized as vo If Al x is parameterized as cu Refer to: p4097	using p4097.   56), then the se   $56)$, then the se	V .
Note:	This parameter is not saved AI: Analog Input	cked-up (p0971	

### 2.2 List of parameters

p4098[0...1]	TB30 analog inputs simulation mode setpoint / TB30 Al sim setp		
TB30	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-11.000 [V]	11.000 [V]	0.000 [V]
Description: Index:	Sets the setpoint for the input voltage in the simulation mode of the analog inputs of Terminal Board 30 (TB30).$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Dependency:	The simulation of an analog input is selected using p4097. Refer to: p4097		
Note:	This parameter is not saved when data is backed-up (p0971, p0977). AI: Analog Input		
p4099	Inputs/outputs sampling time / I/O t_sampl		
SERVO (Dig IO)	Can be changed: C 1 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	125.00 [ $\mu \mathrm{s}$ ]	5000.00 [ $\mu \mathrm{s}$ ]	4000.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the sampling time for the inputs and outputs.		
Dependency:	The parameter can only be modified for p0009 = 3, 29 .		
	The sampling times can only be set as an integer multiple of the SERVO clock cycle ( p 0115 ). Refer to: p0009		
Note:	The changed sampling time is immediately effective after a completed sub-boot (p0009 -> 0).		
p4099	TM15 inputs/outputs sampling time / TM15 I/O t_sample		
TM15	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9389
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	31.25 [ $\mu \mathrm{s}$ ]	500.00 [ $\mu \mathrm{s}$ ]	125.00 [ $\mu \mathrm{s}$ ]
Description:	The sampling time of the Terminal Module 15 (TM15) is determined by the DRIVE-CLiQ clock cycle of the line to which the component is attached.   It is not possible to specify this using p4099.   When switching on, parameter p4099 is correctly set to the resulting sampling time.		



p4099[0...3]	TM41 inputs/outputs sampling time / TM41 I/O t_sample		
TM41	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9659, 9660
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mu \mathrm{s}$ ]	5000.00 [ $\mu \mathrm{s}$ ]	[0] 4000.00 [ $\mu \mathrm{s}$ ]
			[1] 4000.00 [ $\mu \mathrm{s}$ ]
			[2] 0.00 [ $\mu \mathrm{s}$ ]
			[3] 125.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the sampling time for the inputs and outputs of Terminal Module 41 (TM41).		
Index:	[0] = Digital inputs/outputs (DI/DO)		
	[1] = Analog inputs (Al)		
	[2] = Not present		
	[3] = Incremental encoder emulation		
Dependency:	The parameter can only be modified for p0009 $=3,29$.		
	The sampling times can only be set as an integer multiple of the DRIVE-CLiQ clock cycle.		
	The minimum permissible sampling time is $125 \mu \mathrm{~s}$.		
	Refer to: p0009, r0110, r0111		
	Refer to: A35228		
Note:	The value of the sampling time of the incremental encoder emulation p4099[3] can be pre-set in both operating modes (p4400). The next time that the system boots, the validity of the value is checked. For an invalid value, message F35228 and/or A01223 is output.		
	The changed sampling time is immediately effective after a completed sub-boot (p0009 -> 0).		
	The sampling time of a TM41 in the SINAMICS mode ( $\mathrm{p} 4400=1$ ) must be the same as that of the emulated encoder.		


p4099[0...2]	TB30 inputs/outputs sampling time / TB30 I/O t_sample		
TB30	Can be changed: C 1 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9099, 9100
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mu \mathrm{s}$ ]	5000.00 [ $\mu \mathrm{s}$ ]	[0] 4000.00 [ $\mu \mathrm{s}$ ]
			[1] 4000.00 [ $\mu \mathrm{s}$ ]
			[2] 4000.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the sampling time for the inputs and outputs of Terminal Board 30 (TB30).		
Index:	$\begin{aligned} & {[0]=\text { Digital inputs/outputs }( } \\ & {[1]=\text { Analog inputs (Al) }} \\ & {[2]=\text { Analog outputs (AO) }} \end{aligned}$		
Dependency:	The parameter can only be modified for p0009 $=3,29$.		
	The sampling times can only be set as an integer multiple of the lowest basic sampling time (r0110[0]).		
Note:	The changed sampling time is immediately effective after a completed sub-boot (p0009 -> 0).		
	For clock cycle synchronous PROFIBUS operation, the TB30 hardware (e.g. analog/digital converter) is operated with the PROFIBUS clock cycle (r2064[1]). This clock cycle is also kept after the PROFIBUS connection has been exited up to the next time that the Control Unit is switched off. In this case, a faster sampling time than the PROFIBUS clock cycle is not practical in p4099[0...2].		


p4100	Spindle supplementary temperature sensor type / Supp_temp sens typ		
SERVO (Spin_diag),   SERVO_AC   (Spin_diag)	Can be changed: T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	6	0
Description:	Sets the sensor type to evaluate the spindle supplementary temperature.		
Value:	0: Evaluation disabled		
	2: KTY84		
	6: PT1000		
Dependency:	Refer to: p4102, p4103, r4104, r4105, r4107		
p4100[0...3]	TM120 temperature evaluation, sensor type / TM120 sensor type		
TM120	Can be changed: T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 9605, 9606
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	6	1
Description:	Sets the sensor type for temperature evaluation via Terminal Module 120 (TM120).		
	This means that the temperature sensor type is selected and the evaluation is switched in.		
Value:	0 : Evaluation disabled		
	1: PTC thermistor		
	2: KTY84		
	4: Bimetallic NC contact		
	6: PT1000		
Index:	[0] = Temperature channel 0		
	[1] = Temperature channel 1		
	[2] = Temperature channel 2		
	[3] = Temperature channel 3		
Notice:	For $\mathrm{p} 4102[0 \ldots 7]=251^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated.		
	For sensor type "PTC thermistor" (p4100[0...3] = 1), the following applies:		
	To activate the corresponding alarm or fault, p4102[0...7] must be set <= $250{ }^{\circ} \mathrm{C}$.		
Note:	The temperature sensors are connected to the following terminals:		
	X521.2(+) and X521.1(-) = channel 0		
	X521.4(+) and X521.3(-) = channel 1		
	X521.6(+) and X521.5(-) = channel 2		
	X521.8(+) and X521.7(-) = channel 3		
p4100[0...11]	TM150 sensor type / TM150 sensor type		
TM150	Can be changed: T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 9626, 9627
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	6	5
Description:	Sets the sensor type for Terminal Module 150 (TM150)		
	This means that the temperature sensor type is selected and the evaluation is switched in.		
Value:	0 : Evaluation disabled		
	1: PTC thermistor		
	2: KTY84		
	4: Bimetallic NC contact		
	5: PT100		
	6: PT1000		

### 2.2 List of parameters

Index:	[0] = Temperature channel 0
	[1] = Temperature channel 1
	[2] = Temperature channel 2
	[3] = Temperature channel 3
	[4] = Temperature channel 4
	[5] = Temperature channel 5
	[6] = Temperature channel 6
	[7] = Temperature channel 7
	[8] = Temperature channel 8
	[9] = Temperature channel 9
	[10] = Temperature channel 10
	[11] = Temperature channel 11
Notice:	For $\mathrm{p} 4102[0 . .23]=251{ }^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated.
	For sensor type "PTC thermistor" and "Bimetallic NC contact" ( $\mathrm{p} 4100[0 \ldots 11]=1,4$ ), the following applies:
	To activate the corresponding alarm or fault, p4102[0...23] must be set <= $250{ }^{\circ} \mathrm{C}$.
Note:	The temperature sensors are connected to the following terminals:
	X531 = channel 0 (for $2 \times 2$ wire evaluation, additionally channel 6)
	X532 = channel 1 (for $2 \times 2$ wire evaluation, additionally channel 7)
	X533 = channel 2 (for $2 \times 2$ wire evaluation, additionally channel 8)
	X534 = channel 3 (for $2 \times 2$ wire evaluation, additionally channel 9)
	X535 = channel 4 (for $2 \times 2$ wire evaluation, additionally channel 10)
	X536 = channel 5 (for $2 \times 2$ wire evaluation, additionally channel 11)
	Details on the wiring are included in the parameter description for p 4108.

## p4100 TM31 sensor type / TM31 sensor type

Can be changed: $T$
Calculated: -
P-Group: - Unit group: -
Not for motor type: - Scaling: -

## Min Max

$0 \quad 6$

Access level: 1
Func. diagram: 9576
Unit selection: -
Expert list: 1
Factory setting
0

Description: $\quad$ Sets the sensor type for Terminal Module 31 (TM31)
This means that the temperature sensor type is selected and the evaluation is switched in.
Value: $\quad 0: \quad$ Evaluation disabled
PTC thermistor KTY84 PT1000
Notice: $\quad$ For p4102[0...1] $=251^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated
For sensor type "PTC thermistor" ( $\mathrm{p} 4100=1$ ), the following applies:
To activate the corresponding alarm or fault, p4102[0...1] must be set $<=250^{\circ} \mathrm{C}$.
Note: $\quad$ The temperature sensor is connected at terminals $\mathrm{X} 522.7(+)$ and $\mathrm{X} 522.8(-)$.

r4101[0...3]	TM120 sensor resistance / TM120 R_sensor		
TM120	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 9605, 9606
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the actual resistance value of the temperature sensor connected at the Terminal Module.		
Index:			
	[1] = Temperature channel 1		
	[2] = Temperature channel 2		


Note:	The maximum measurable resistance value is approx. 1720 Ohm. The temperature sensors are connected to the following terminals: X521.2(+) and X521.1(-) = channel 0 X521.4(+) and X521.3(-) = channel 1 X521.6(+) and X521.5(-) = channel 2 X521.8(+) and X521.7(-) = channel 3
r4101[0...11]	TM150 sensor resistance / TM150 R_sensor
TM150	Can be changed: - Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: 9626,9627   P-Group: Terminals Unit group: - Unit selection: -   Not for motor type: - Scaling: PERCENT Expert list: 1   Min Max Factory setting   $-[\mathrm{ohm}]$ $-[o h m]$ $-[o h m]$
Description: Index:	Displays the actual resistance value of the temperature sensor connected at the Terminal Module.   [0] = Temperature channel 0   [1] = Temperature channel 1   [2] = Temperature channel 2   [3] = Temperature channel 3   [4] = Temperature channel 4   [5] = Temperature channel 5   [6] = Temperature channel 6   [7] = Temperature channel 7   [8] = Temperature channel 8   [9] = Temperature channel 9   [10] = Temperature channel 10   [11] = Temperature channel 11
Note:	The maximum measurable resistance value is approx. 2500 Ohm.   For $1 \times 2$ and $2 \times 2$ wire evaluation:   The actual sensor resistance is displayed in this parameter(i.e. the wire resistance (p4110) is taken into account).   The temperature sensors are connected to the following terminals:   X531 = channel 0 (for $2 \times 2$ wire evaluation, additionally channel 6)   X532 = channel 1 (for $2 \times 2$ wire evaluation, additionally channel 7)   X533 = channel 2 (for $2 \times 2$ wire evaluation, additionally channel 8)   X534 = channel 3 (for $2 \times 2$ wire evaluation, additionally channel 9 )   X535 = channel 4 (for $2 \times 2$ wire evaluation, additionally channel 10)   X536 = channel 5 (for $2 \times 2$ wire evaluation, additionally channel 11)   Details on the wiring are included in the parameter description for p4108.
r4101	TM31 sensor resistance / TM31 R_sensor
TM31	Can be changed: - Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Func. diagram: 9576   P-Group: Terminals Unit group: - Unit selection: -   Not for motor type: - Scaling: PERCENT Expert list: 1   Min Max Factory setting   $-[o h m]$ $-[o h m]$ $-[o h m]$
Description: Note:	Displays the actual resistance value of the temperature sensor connected at the Terminal Module. The maximum measurable resistance value is approx. 1720 Ohm. The temperature sensor is connected at terminals X522.7(+) and X522.8(-).



p4102[0...7]	TM120 fault threshold/alarm threshold / TM120 F/A_thresh		
TM120	Can be changed: $U, T$	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 9605, 9606
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-48 [ ${ }^{\circ} \mathrm{C}$ ]	251 [ $\left.{ }^{\circ} \mathrm{C}\right]$	251 [ ${ }^{\circ} \mathrm{C}$ ]
Description:	Sets the fault threshold/alarm threshold for Terminal Module 120 (TM120).		
	A35211 is initiated, if the temperature actual value r4105[0] > p4102[0]		
	F35207 is initiated if the temperature actual value r4105[0] > p4102[1] or timer p4103[0] has expired		
	A35212 is initiated, if the temperature actual value r4105[1] > p4102[2]		
	F35208 is initiated if the temperature actual value r4105[1] > p4102[3] or timer p4103[1] has expired		
	A35213 is initiated, if the temperature actual value r4105[2] > p4102[4]		
	F35209 is initiated if the temperature actual value r4105[2] > p4102[5] or timer p4103[2] has expired		
	A35214 is initiated, if the temperature actual value r4105[3] >p4102[6]		
	F35210 is initiated if the temperature actual value r4105[3] > p4102[7] or timer p4103[3] has expired		
	For alarms A35211, A35212, A35213, A35214 the following applies:		
	- Remains until the temperature actual value (r4105[0...3]) reaches or falls below the value ( $\mathrm{p} 4102[0,2,4,6]$ hysteresis).		

For fault F35207, F35208, F35209, F35210 the following applies:

- Remains until the temperature actual value (r4105[0...3]) reaches or falls below the value ( $\mathrm{p} 4102[1,3,5,7$ ] hysteresis) and the fault has been acknowledged.
- the hysteresis value is 5 K and cannot be changed.

Index:	$[0]=$ Channel 0 alarm threshold (A35211)
	$[1]=$ Channel 0 fault threshold (F35207)
$[2]$	$=$ Channel 1 alarm threshold (A35212)
	$[3]=$ Channel 1 fault threshold (F35208)
	$[4]=$ Channel 2 alarm threshold (A35213)
	$[5]=$ Channel 2 fault threshold (F35209)
	$[6]=$ Channel 3 alarm threshold (A35214)
	$[7]=$ Channel 3 fault threshold (F35210)
	Rependency:
Refer to: p4103	


Notice:	Fault F35207 ... F35210 only causes the drive to shut down if there is at least one BICO interconnection between the drive and TM120.
	For p4102[0...7] = $251^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated.
	For sensor type "PTC thermistor" (p4100[0...3] = 1), the following applies:
	To activate the corresponding alarm or fault, p4102[0...7] must be set < $=250{ }^{\circ} \mathrm{C}$.
Note:	The temperature sensor is connected to the following terminals:
	X521.2(+) and X521.1(-) = channel 0
	X521.4(+) and X521.3(-) = channel 1
	X521.6(+) and X521.5(-) = channel 2
	X521.8(+) and X521.7(-) = channel 3
p4102[0...23]	TM150 fault threshold/alarm threshold / TM150 F/A_thresh
TM150	Can be changed: U, T Calculated: - Access level: 1
	Data type: Integer16 Dyn. index: - Func. diagram: 9626, 9627
	P-Group: - Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	$-99\left[{ }^{\circ} \mathrm{C}\right] \quad 251\left[{ }^{\circ} \mathrm{C}\right] \quad 251$ [ $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the fault threshold/alarm threshold for Terminal Module 150 (TM150).
	For alarms (even indices [0, 2, 4 ... 22]), the following applies:
	- the corresponding alarm is initiated, if the temperature actual value associated with a temperature channel exceeds the associated alarm threshold ( $\mathrm{r} 4105[\mathrm{x}]>\mathrm{p} 4102[2 \mathrm{x}]$. In addition, the timer is started ( $\mathrm{p} 4103[\mathrm{x}]$ ).
	- the alarm remains until the temperature actual value ( $\mathrm{r} 4105[\mathrm{x}]$ ) reaches or falls below the threshold value ( $\mathrm{p} 4102[2 \mathrm{x}]$ ) - hysteresis ( $\mathrm{p} 4118[\mathrm{x}]$ ).
	For faults (uneven indices [1, 3, 5 .. 23]), the following applies:
	- the corresponding fault is initiated, if the temperature actual value associated with a temperature channel exceeds the associated fault threshold ( $\mathrm{r} 4105[\mathrm{x}]>\mathrm{p} 4102[2 \mathrm{x}+1$ ] or the associated timer ( $\mathrm{p} 4103[\mathrm{x}]$ has expired.
	- the fault remains until the temperature actual value ( $\mathrm{r} 4105[\mathrm{x}]$ ) reaches or falls below the threshold value ( $\mathrm{p} 4102[2 \mathrm{x}+1]$ ) - hysteresis ( $\mathrm{p} 4118[\mathrm{x}]$ ) and the fault has been acknowledged.
Index:	[0] = Channel 0 alarm threshold (A35211)
	[1] = Channel 0 fault threshold (F35207)
	[2] = Channel 1 alarm threshold (A35212)
	[3] = Channel 1 fault threshold (F35208)
	[4] = Channel 2 alarm threshold (A35213)
	[5] = Channel 2 fault threshold (F35209)
	[6] = Channel 3 alarm threshold (A35214)
	[7] = Channel 3 fault threshold (F35210)
	[8] = Channel 4 alarm threshold (A35410)
	[9] = Channel 4 fault threshold (F35400)
	[10] = Channel 5 alarm threshold (A35411)
	[11] = Channel 5 fault threshold (F35401)
	[12] = Channel 6 alarm threshold (A35412)
	[13] = Channel 6 fault threshold (F35402)
	[14] = Channel 7 alarm threshold (A35413)
	[15] = Channel 7 fault threshold (F35403)
	[16] = Channel 8 alarm threshold (A35414)
	[17] = Channel 8 fault threshold (F35404)
	[18] = Channel 9 alarm threshold (A35415)
	[19] = Channel 9 fault threshold (F35405)
	[20] = Channel 10 alarm threshold (A35416)
	[21] = Channel 10 fault threshold (F35406)
	[22] = Channel 11 alarm threshold (A35417)
	[23] = Channel 11 fault threshold (F35407)
Dependency:	Refer to: p4103, r4104, r4105, p4118

### 2.2 List of parameters




### 2.2 List of parameters



r4104.0... 7	BO: TM120 temperature evaluation status / TM120 temp status				
TM120	Can be changed: -		Calculated: -	Func. diagram: 9605, 9606	
	Data type: Unsigned16		Dyn. index: -		
	P-Group: Terminals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and binector output for the status for the Terminal Module 120 (TM120).				
Bit field:		Signal name	1 signal	0 signal	FP
		Channel 0 alarm present	Yes	No	9605
		Channel 0 fault present	Yes	No	9605
		Channel 1 alarm present	Yes	No	9605
		Channel 1 fault present	Yes	No	9605
		Channel 2 alarm present	Yes	No	9606
		Channel 2 fault present	Yes	No	9606
		Channel 3 alarm present	Yes	No	9606
		Channel 3 fault present	Yes	No	9606
Dependency:	Refer to: p4102				
r4104.0... 23	B0: TM150 temperature evaluation status / TM150 temp status				
TM150	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 9626, 9627	
	P-Group: Terminals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and binector output for the status for the Terminal Module 150 (TM150).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Channel 0 alarm present	Yes	No	9626
	01	Channel 0 fault present	Yes	No	9626
	02	Channel 1 alarm present	Yes	No	9626
		Channel 1 fault present	Yes	No	9626
	04	Channel 2 alarm present	Yes	No	9626
	05	Channel 2 fault present	Yes	No	9626
	06	Channel 3 alarm present	Yes	No	9626
	07	Channel 3 fault present	Yes	No	9626
	08	Channel 4 alarm present	Yes	No	9626
	09	Channel 4 fault present	Yes	No	9626
	10	Channel 5 alarm present	Yes	No	9626
	11	Channel 5 fault present	Yes	No	9626
	12	Channel 6 alarm present	Yes	No	9627
	13	Channel 6 fault present	Yes	No	9627
	14	Channel 7 alarm present	Yes	No	9627
	15	Channel 7 fault present	Yes	No	9627
	16	Channel 8 alarm present	Yes	No	9627
	17	Channel 8 fault present	Yes	No	9627
	18	Channel 9 alarm present	Yes	No	9627
	19	Channel 9 fault present	Yes	No	9627
	20	Channel 10 alarm present	Yes	No	9627
	21	Channel 10 fault present	Yes	No	9627
	22	Channel 11 alarm present	Yes	No	9627
	23	Channel 11 fault present	Yes	No	9627
Dependency:	Refer to: p 4102 , $\mathrm{p} 4103, \mathrm{r} 4105, \mathrm{p} 4118$				

### 2.2 List of parameters

r4104.0... 1	BO: TM31 temperature evaluation status / TM31 temp status		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 9549, 9576
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and binector output for the status for the Terminal Module 31 (TM31).		
Bit field:	Bit Signal name	1 signal	0 signal $\quad$ FP
	00 Alarm is present	Yes	No
	01 Fault is present	Yes	No
Dependency:	Refer to: p4102		


r4105	CO: Spindle supplementary temperature actual value / Suppl_temp act val		
SERVO (Spin_diag),	Can be changed: -	Calculated: -	Access level: 1
SERVO_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the actual value when evaluating the spindle supplementary temperature.		
Dependency:	Refer to: p4100, r4104		
Note:	$r 4105=-200^{\circ} \mathrm{C}$ is displayed in the following cases:		
	- the temperature display is not valid (temperature sensor fault, also see r4104.2).		
	- no sensor selected or sens	(p4100 = 0).	




### 2.2 List of parameters



Note:	The temperature sensors are connected to the following terminals:   X531 = channel 0 (for $2 \times 2$ wire evaluation, additionally channel 6)   X532 = channel 1 (for $2 \times 2$ wire evaluation, additionally channel 7)   X533 = channel 2 (for $2 \times 2$ wire evaluation, additionally channel 8)   X534 = channel 3 (for $2 \times 2$ wire evaluation, additionally channel 9 )   X535 = channel 4 (for $2 \times 2$ wire evaluation, additionally channel 10)   X536 = channel 5 (for $2 \times 2$ wire evaluation, additionally channel 11)   For $\mathrm{p} 4108[0 \ldots 5]=0,2$, 3 ( $1 \times 2$, 3, 4 wire evaluation):   The temperature channel belonging to the terminal block with the higher number is automatically deactivated (e.g. for X531 with 3-wire evaluation, channel 6 is deactivated).
p4109[0...11]	TM150 wire resistance measurement / TM150 R_wire meas
TM150	Can be changed: T Calculated: - Access level: 1   Data type: Integer16 Dyn. index: - Func. diagram: 9626,9627   P-Group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 1 0
Description:	Setting to start the measurement of the wire resistance for a channel for the Terminal Module 150 (TM150).   For a 2 wire evaluation, the total wire resistance is measured and saved. During the temperature evaluation, the temperature actual value is automatically calibrated using the measured wire resistance.   Procedure:   1. Select the measuring method ( $1 \times 2 / 2 \times 2$ ) for the corresponding terminal block ( $p 4108[0 \ldots 5]=0,1$ ).   2. Set the required sensor type for the corresponding channel ( $p 4100[x]=1 \ldots 6, x=0 \ldots 5$ or $0 \ldots 11$ ).   3. Jumper the sensor to be connected (short-circuit the sensor cable close to the sensor).   4. Connect the sensor conductors to the appropriate terminals $1(+), 2(-)$ or $3(+), 4(-)$.   5. For the corresponding channel, start the measurement of the wire resistance ( $p 4109[x]=1$ ).   6. After $\mathrm{p} 4109[\mathrm{x}]=0$, check the measured resistance value in $\mathrm{p} 4110[\mathrm{x}]$.   7. Remove the jumper across the temperature sensor.
Value:	0: Inactive   1: Start
Index:	[0] = Temperature channel 0   [1] = Temperature channel 1   [2] = Temperature channel 2   [3] = Temperature channel 3   [4] = Temperature channel 4   [5] = Temperature channel 5   [6] = Temperature channel 6   [7] = Temperature channel 7   [8] = Temperature channel 8   [9] = Temperature channel 9   [10] = Temperature channel 10   [11] = Temperature channel 11
Dependency:	Refer to: p4100, p4108, p4110
Notice:	Wire resistance measurement is only possible for $1 \times 2$ or $2 \times 2$ wire evaluation (p4108[0..5] = 0, 1).
Note:	The wire resistance value can be also directly entered into $p 4110[0 . . .11]$.   The automatic conductor calibration for $1 \times 2$ and $2 \times 2$ wire evaluation is always performed with the value in p4110[0...11].

### 2.2 List of parameters




### 2.2 List of parameters




### 2.2 List of parameters

	[9] = Temperature channel 9   [10] = Temperature channel 10   [11] = Temperature channel 11		
Dependency:	Refer to: r4105, p4111, r4112, r4113, p4122		
p4121	TM150 filter rated line frequency / TM150 filt f_line		
TM150	Can be changed: T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 9626, 9627
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the rated line frequency for the filter to skip the line frequency for Terminal Module 150 (TM150).		
Value:	$0: \quad 50 \mathrm{~Hz}$		
p4122[0..11]	TM150 smoothing time constant / TM150 T		
TM150	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 9626, 9627
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	100 [ms]	10000 [ms]	100 [ms]
Description:	Sets the smoothing time constant for the 1st order lowpass filter of the temperature channels.		
	The effective smoothing time constant depends on the number of channels that are simultaneously active and is displayed in r4120.		
	In order that the value becomes effective, p4122 must be set >= 2 *channel sampling time.		
	The following applies:		
	Channel sampling time = active number of channels * 50 ms		
	For lower values, a smoothing of 2 * channel sampling time.		
Index:	[0] = Temperature channel 0		
	[1] = Temperature channel 1		
	[2] = Temperature channel 2		
	[3] = Temperature channel 3		
	[4] = Temperature channel 4		
	[5] = Temperature channel 5		
	[6] = Temperature channel 6		
	[7] = Temperature channel 7		
	[8] = Temperature channel 8		
	[9] = Temperature channel 9		
	[10] = Temperature channel 10		
	[11] = Temperature channel 11		
Dependency:	Refer to: r4120		


r4154	TM41 diagnostics speed setpoint non-filtered / Diag n_set nfilt		
TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram:
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the unfiltered speed setpoint N_SETPT in revolutions per minute for diagnostic purposes. In contrast to p1155, this value is updated in each DRIVE-CLiQ basic clock cycle and displayed with sign.		
Dependency:	Refer to: r4155		
Note:	The parameter is not effectiv	CS operating m	


r4155	TM41 diagnostics speed setpoint / TM41 Diag n_set			
TM41	Can be changed: -   Data type: FloatingPoint32   P-Group: -   Not for motor type: -   Min   - [rpm]	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   - [rpm]	Acces   Func.   Unit se   Expert   Factor   - [rpm]	
Description:   Dependency:   Note:	Displays the filtered speed setpoint N_SETPT in revolutions per minute for diagnostic purposes. In contrast to p1155, this value is updated in each DRIVE-CLiQ basic clock cycle and displayed with sign.			
$\begin{aligned} & \hline \mathbf{r 4 2 0 1} \\ & \text { TM15 } \end{aligned}$	TM15 system time for   Can be changed: -   Data type: Unsigned16   P-Group: Commands   Not for motor type: -   Min	zation / TM15   Calculated:   Dyn. index: -   Unit group: -   Scaling: -   Max   -	C   Acces   Func.   Unit se   Expert   Factory	
Description:	Is used to synchronize the tim To do this, the sign-of-life of At each cycle of the system	Module 15 (TM1   is transferred in th   r, bit 0 (SYN sign	time of the   in bits 1   uration of	cycle.
r4201	TM17 system time for synchronization / TM17 t_system sync			
TM17	Can be changed: -   Data type: Unsigned16   P-Group: Commands   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   -	Acces   Func.   Unit se   Expert   Factory	
Description:	Is used to synchronize the timer of Terminal Module 17 (TM17) with the system time of the DP master. To do this, the sign-of-life of the DP master is transferred in the form of a counter in bits 12 to 15 . At each cycle of the system of the DP master, bit 0 (SYN signal) is set for the duration of a DP master clock cycle.			
r4204	TM15 control digital output 0 ... 15 / TM15 ctrl DO 0-15			
TM15	Can be changed: -   Data type: Unsigned16   P-Group: Commands   Not for motor type: -   Min   -	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max	Acces   Func.   Unit s   Expert   Factor	
Description:	Used to control digital output $0 \ldots 15$ of Terminal Module 15 (TM15).			
Bit field:	Bit Signal name   00 DIIDO 0 (X520.2)   01 DIIDO 1 (X520.3)   02 DIIDO 2 (X520.4)   03 DIIDO 3 (X520.5)   04 DI/DO 4 (X520.6)   05 DIIDO 5 (X520.7)   06 DIIDO 6 (X520.8)   07 DIIDO 7 (X520.9)   08 DIIDO 8 (X521.2)   09 DIIDO 9 (X521.3)   10 DIIDO 10 (X522.4)	1 signal   ON   ON   ON   ON   ON   ON   ON   ON   ON   ON   ON	0 signal OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	FP

### 2.2 List of parameters



r4211	TM15 edge mode digital input 0 ... 7 / TM15 EdgMd DIO-7	
TM15	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned16 Dyn. index: -	Func. diagram: -
	P-Group: Commands Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	- -	-
Description:	Displays the edge mode for digital input $0 . .7$ of Terminal Module 15 (TM15).	
	Assignment of the digital inputs to the bits:	
	DI 0: r4211.1 ... 0	
	DI 1: r4211.3 ... 2	
	DI 2: r4211.5 ... 4	
	DI 3: r4211.7 ... 6	
	DI 4: r4211.9 ... 8	
	DI 5: r4211.11 ... 10	
	DI 6: r4211.13 ... 12	
	DI 7: r4211.15 ... 14	
	Possible edge modes:	
	Bit $x, y=0,0-->$ no edge detection	
	Bit $x, y=0,1-->$ rising - rising edge	
	Bit $x, y=1,0-->$ falling - falling edge	
	Bit $x, y=1,1->$ rising - falling edge or falling - rising edge	
Note:	DI: Digital Input	
r4211	TM17 edge mode digital input 0 ... 7 / TM17 EdgMd DI 0-7	
TM17	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned16 Dyn. index: -	Func. diagram: -
	P-Group: Commands Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	- -	-
Description:	Displays the edge mode for digital input $0 . .7$ of Terminal Module 17 (TM17).	
	Assignment of the digital inputs to the bits:	
	DI 0: r4211.1 ... 0	
	DI 1: r4211.3 ... 2	
	DI 2: r4211.5 ... 4	
	DI 3: r4211.7 ... 6	
	DI 4: r4211.9 ... 8	
	DI 5: r4211.11 ... 10	
	DI 6: r4211.13 ... 12	
	DI 7: r4211.15 ... 14	
	Possible edge modes:	
	Bit $x, y=0,0-->$ no edge detection	
	Bit $x, y=0,1-->$ rising - rising edge	
	Bit $x, y=1,0-->$ falling - falling edge	
	Bit $x, y=1,1->$ rising - falling edge or falling - rising edge	
Note:	DI: Digital Input	

### 2.2 List of parameters

r4212	TM15 edge mode digital input 8 ... 15 / TM15 EdgMd DI8-15	
TM15	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned16 Dyn. index: -	Func. diagram: -
	P-Group: Commands Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	- -	-
Description:	Displays the edge mode for digital input 8 ... 15 of Terminal Module 15 (TM15). Assignment of the digital inputs to the bits:	
	DI 8: r4212.1 ... 0	
	DI 9: r4212.3 ... 2	
	DI 10: r4212.5 ... 4	
	DI 11: r4212.7 ... 6	
	DI 12: r4212.9 ... 8	
	DI 13: r4212.11 ... 10	
	DI 14: r4212.13 ... 12	
	DI 15: r4212.15 ... 14	
	Possible edge modes:	
	Bit $x, y=0,0-->$ no edge detection	
	Bit $\mathrm{x}, \mathrm{y}=0,1$--> rising - rising edge	
	Bit $x, y=1,0-->$ falling - falling edge	
	Bit $x, y=1,1$--> rising - falling edge or falling - rising edge	
Note:	DI: Digital Input	
r4212	TM17 edge mode digital input 8 ... 15 / TM17 EdgMd DI 8-15	
TM17	Can be changed: - Calculated: -	Access level: 3
	Data type: Unsigned16 Dyn. index: -	Func. diagram: -
	P-Group: Commands Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	-	-
Description:	Displays the edge mode for digital input $8 . . .15$ of Terminal Module 17 (TM17).	
	Assignment of the digital inputs to the bits:	
	DI 8: r4212.1 ... 0	
	DI 9: r4212.3 ... 2	
	DI 10: r4212.5 ... 4	
	DI 11: r4212.7 ... 6	
	DI 12: r4212.9 ... 8	
	DI 13: r4212.11 ... 10	
	DI 14: r4212.13 ... 12	
	DI 15: r4212.15 ... 14	
	Possible edge modes:	
	Bit $\mathrm{x}, \mathrm{y}=0,0-->$ no edge detection	
	Bit $x, y=0,1-->$ rising - rising edge	
	Bit $x, y=1,0-->$ falling - falling edge	
	Bit $x, y=1,1$--> rising - falling edge or falling -rising edgeDI: Digital Input	
Note:		



### 2.2 List of parameters

p4221	TM17 smoothing time constant digital input 0 ... 15 / TM17 T_sm DI 0-15				
TM17	Can be changed: $\mathrm{U}, \mathrm{T}$		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Sets the smoothing time constant for digital input $0 \ldots 15$ of Terminal Module 17 (TM17).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI/DO 0 (X520.2)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 1 (X520.3)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 2 (X520.5)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 3 (X520.6)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 4 (X520.8)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
	05	DI/DO 5 (X520.9)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 6 (X521.2)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 7 (X521.3)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 8 (X521.8)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 9 (X521.9)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 10 (X522.2)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 11 (X522.3)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 12 (X522.5)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 13 (X522.6)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
		DI/DO 14 (X522.8)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
	15	DI/DO 15 (X522.9)	Smoothing $1 \mu \mathrm{~s}$	Smoothing $125 \mu \mathrm{~s}$	-
Note:	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				
p4222	TM17 time absolute/relative digital output 0 ... 15 / TM17 abs/rel 0-15				
TM17	Can be changed: $T$		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Commands		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Sets as absolute or relative timing with bit $0 \ldots 15$ for digital output 0 ... 15 of Terminal Module 17 (TM17).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI/DO 0 (X520.2)	Relative time	Absolute time	-
	01	DI/DO 1 (X520.3)	Relative time	Absolute time	-
		DI/DO 2 (X520.5)	Relative time	Absolute time	-
	03	DI/DO 3 (X520.6)	Relative time	Absolute time	-
	04	DI/DO 4 (X520.8)	Relative time	Absolute time	-
	05	DI/DO 5 (X520.9)	Relative time	Absolute time	-
	06	DI/DO 6 (X521.2)	Relative time	Absolute time	-
	07	DI/DO 7 (X521.3)	Relative time	Absolute time	-
	08	DI/DO 8 (X521.8)	Relative time	Absolute time	-
	09	DI/DO 9 (X521.9)	Relative time	Absolute time	-
	10	DI/DO 10 (X522.2)	Relative time	Absolute time	-
	11	DI/DO 11 (X522.3)	Relative time	Absolute time	-
	12	DI/DO 12 (X522.5)	Relative time	Absolute time	-
	13	DI/DO 13 (X522.6)	Relative time	Absolute time	-
	14	DI/DO 14 (X522.8)	Relative time	Absolute time	-
	15	DI/DO 15 (X522.9)	Relative time	Absolute time	-
Note:	DO: Digital Output				
	DI/DO: Bidirectional Digital Input/Output				


r4250	TM15 set/reset time digital output 0 / TM15 t_set DO 0		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 0 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4250	TM17 set/reset time digital output 0 / TM17 t_set DO 0		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 0 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4251	TM15 set/reset time digital output 1 / TM15 t_set DO 1		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the time to set and reset for digital output 1 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4251	TM17 set/reset time digital output 1 / TM17 t_set DO 1		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the time to set and reset for digital output 1 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

### 2.2 List of parameters

r4252	TM15 set/reset time digital output 2 / TM15 t_set DO 2		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 2 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4252	TM17 set/reset time digital output 2 / TM17 t_set DO 2		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 2 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4253	TM15 set/reset time digital output 3 / TM15 t_set DO 3		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 3 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4253	TM17 set/reset time digital output 3 / TM17 t_set DO 3		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 3 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		



### 2.2 List of parameters

r4256	TM15 set/reset time digital output 6 / TM15 t_set DO 6		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 6 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4256	TM17 set/reset time digital output 6 / TM17 t_set DO 6		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 6 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4257	TM15 set/reset time digital output 7 / TM15 t_set DO 7		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 7 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4257	TM17 set/reset time digital output 7 / TM17 t_set DO 7		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 7 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		


r4258	TM15 set/reset time digital output 8 / TM15 t_set DO 8		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 8 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4258	TM17 set/reset time digital output 8 / TM17 t_set DO 8		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 8 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4259	TM15 set/reset time digital output 9 / TM15 t_set DO 9		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 9 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4259	TM17 set/reset time digital output 9 / TM17 t_set DO 9		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the time to set and reset for digital output 9 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

### 2.2 List of parameters

r4260	TM15 set/reset time digital output 10 / TM15 t_set DO 10		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 10 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4260	TM17 set/reset time digital output 10 / TM17 t_set DO 10		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 10 of Terminal Module 17 (TM17).   The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4261	TM15 set/reset time digital output 11 / TM15 t_set DO 11		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 11 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4261	TM17 set/reset time digital output 11 / TM17 t_set DO 11		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 11 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu$ s.		
Note:	DO: Digital Output		


r4262	TM15 set/reset time digital output 12 / TM15 t_set DO 12		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 12 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4262	TM17 set/reset time digital output 12 / TM17 t_set DO 12		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 12 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4263	TM15 set/reset time digital output 13 / TM15 t_set DO 13		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the time to set and reset for digital output 13 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4263	TM17 set/reset time digital output 13 / TM17 t_set DO 13		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 13 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

### 2.2 List of parameters

r4264	TM15 set/reset time digital output 14 / TM15 t_set DO 14		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 14 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4264	TM17 set/reset time digital output 14 / TM17 t_set DO 14		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 14 of Terminal Module 17 (TM17).   The two times are specified as 16 bit values with a resolution of $0.25 \mu$ s.		
Note:	DO: Digital Output		
r4265	TM15 set/reset time digital output 15 / TM15 t_set DO 15		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 15 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4265	TM17 set/reset time digital output 15 / TM17 t_set DO 15		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 15 of Terminal Module 17 (TM17).   The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		


r4266	TM15 set/reset time digital output 16 / TM15 t_set DO 16		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 16 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4267	TM15 set/reset time digital output 17 / TM15 t_set DO 17		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 17 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4268	TM15 set/reset time digital output 18 / TM15 t_set DO 18		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the time to set and reset for digital output 18 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4269	TM15 set/reset time digital output 19 / TM15 t_set DO 19		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 19 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		

### 2.2 List of parameters

r4270	TM15 set/reset time digital output 20 / TM15 t_set DO 20		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 20 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4271	TM15 set/reset time digital output 21 / TM15 t_set DO 21		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 21 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu$ s.		
Note:	DO: Digital Output		
r4272	TM15 set/reset time digital output 22 / TM15 t_set DO 22		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 22 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		
r4273	TM15 set/reset time digital output 23 / TM15 t_set DO 23		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time to set and reset for digital output 23 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DO: Digital Output		



### 2.2 List of parameters



r4311	TM15 edge status digital input 0 ... 7 / TM15 EdgSt DI 0-7		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the edge status for digital input $0 \ldots 7$ of Terminal Module 15 (TM15).		
	Assignment of the digital inputs to the bits:		
	DI 0: r4311.1 ... 0		
	DI 1: r4311.3 ... 2		
	DI 2: r4311.5 ... 4		
	DI 3: r4311.7 ... 6		
	DI 4: r4311.9 ... 8		
	DI 5: r4311.11 ... 10		
	DI 6: r4311.13 ... 12		
	DI 7: r4311.15 ... 14		
	Possible edge states:		
	Bit $\mathrm{x}, \mathrm{y}=0,0-\mathrm{-}$ n no edge detection		
	Bit $x, y=0,1-->1$ st edge detected		
	Bit $x, y=1,0-->2 n d$ edge detected		
	Bit $\mathrm{x}, \mathrm{y}=1,1-\mathrm{>}$ both edges detected		
Note:	DI: Digital Input		
r4311	TM17 edge status digital input 0 ... 7 / TM17 EdgSt DI 0-7		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the edge status for digital input $0 \ldots 7$ of Terminal Module 17 (TM17).		
	Assignment of the digital inputs to the bits:		
	DI 0: r4311.1 ... 0		
	DI 1: r4311.3 ... 2		
	DI 2: r4311.5 ... 4		
	DI 3: r4311.7 ... 6		
	DI 4: r4311.9 ... 8		
	DI 5: r4311.11 ... 10		
	DI 6: r4311.13 ... 12		
	DI 7: r4311.15 ... 14		
	Possible edge states:		
	Bit $x, y=0,0-->$ no edge detection		
	Bit $x, y=0,1->1$ st edge detected		
	Bit $x, y=1,0-->2 n d$ edge detected		
	Bit $x, y=1,1->$ both edges detected		
Note:	DI: Digital Input		

### 2.2 List of parameters

r4312	TM15 edge status digital input 8 ... 15 / TM15 EdgSt DI 8-15		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the edge status for digital input 8 ... 15 of Terminal Module 15 (TM15).		
	Assignment of the digital inputs to the bits:		
	DI 8: r4312.1 ... 0		
	DI 9: r4312.3 ... 2		
	DI 10: r4312.5 ... 4		
	DI 11: r4312.7 ... 6		
	DI 12: r4312.9 ... 8		
	DI 13: r4312.11 ... 10		
	DI 14: r4312.13 ... 12		
	DI 15: r4312.15 ... 14		
	Possible edge states:		
	Bit $\mathrm{x}, \mathrm{y}=0,0-\mathrm{-}$ no edge detection		
	Bit $\mathrm{x}, \mathrm{y}=0,1$--> 1st edge detected		
	Bit $x, y=1,0-->2 n d$ edge detected		
	Bit $x, y=1,1$--> both edges detected		
Note:	DI: Digital Input		
r4312	TM17 edge status digital input 8 ... 15 / TM17 EdgSt DI 8-15		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the edge status for digital input $8 \ldots 15$ of Terminal Module 17 (TM17).		
	Assignment of the digital inputs to the bits:		
	DI 8: r4312.1 ... 0		
	DI 9: r4312.3 ... 2		
	DI 10: r4312.5 ... 4		
	DI 11: r4312.7 ... 6		
	DI 12: r4312.9 ... 8		
	DI 13: r4312.11 ... 10		
	DI 14: r4312.13 ... 12		
	DI 15: r4312.15 ... 14		
	Possible edge states:		
	Bit $x, y=0,0-->$ no edge detection		
	Bit $x, y=0,1-->1$ st edge detected		
	Bit $x, y=1,0$--> 2nd edge detected		
	Bit $x, y=1,1$--> both edges detectedDI: Digital Input		
Note:			


r4313	TM15 edge status digital input $16 . . .23$ / TM15 EdgSt Dl16-23		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the edge status for digital input $16 \ldots 23$ of Terminal Module 15 (TM15).		
	Assignment of the digital inputs to the bits:		
	DI 16: r4313.1 ... 0		
	DI 17: r4313.3 ... 2		
	DI 18: r4313.5 ... 4		
	DI 19: r4313.7 ... 6		
	DI 20: r4313.9 ... 8		
	DI 21: r4313.11 ... 10		
	DI 22: r4313.13 ... 12		
	DI 23: r4313.15 .. 14		
	Possible edge states:		
	Bit $x, y=0,0-->$ no edge detection		
	Bit $x, y=0,1-->1$ st edge detected		
	Bit $x, y=1,0-->2 n d$ edge detected		
	Bit $x, y=1,1->$ both edges detected		
Note:	DI: Digital Input		
r4350	TM15 edge times digital input 0 / TM15 edge_t DI 0		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 0 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4350	TM17 edge times digital input 0 / TM17 edge_t DI 0		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 0 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		

### 2.2 List of parameters

r4351	TM15 edge times digital input 1 / TM15 edge_t DI 1		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 1 of Terminal Module 15 (TM15) The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4351	TM17 edge times digital input 1 / TM17 edge_t DI 1		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 1 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4352	TM15 edge times digital input 2 / TM15 edge_t DI 2		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 2 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4352	TM17 edge times digital input 2 / TM17 edge_t DI 2		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 2 of Terminal Module 17 (TM17) The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		


r4353	TM15 edge times digital input 3 / TM15 edge_t DI 3		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 3 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4353	TM17 edge times digital input 3 / TM17 edge_t DI 3		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 3 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4354	TM15 edge times digital input 4 / TM15 edge_t DI 4		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 4 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4354	TM17 edge times digital input 4 / TM17 edge_t DI 4		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 4 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		

### 2.2 List of parameters

r4355	TM15 edge times digital input 5 / TM15 edge_t DI 5		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 5 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4355	TM17 edge times digital input 5 / TM17 edge_t DI 5		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 5 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4356	TM15 edge times digital input 6 / TM15 edge_t DI 6		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 6 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4356	TM17 edge times digital input 6 / TM17 edge_t DI 6		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 6 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		


r4357	TM15 edge times digital input 7 / TM15 edge_t DI 7		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 7 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4357	TM17 edge times digital input 7 / TM17 edge_t DI 7		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 7 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4358	TM15 edge times digital input 8 / TM15 edge_t DI 8		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 8 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4358	TM17 edge times digital input 8 / TM17 edge_t DI 8		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 8 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		

### 2.2 List of parameters

r4359	TM15 edge times digital input 9 / TM15 edge_t DI 9		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 9 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4359	TM17 edge times digital input 9 / TM17 edge_t DI 9		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 9 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4360	TM15 edge times digital input 10 / TM15 edge_t DI 10		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 10 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4360	TM17 edge times digital input 10 / TM17 edge_t DI 10		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 10 of Terminal Module 17 (TM17) The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		


r4361	TM15 edge times digital input 11 / TM15 edge_t DI 11		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 11 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4361	TM17 edge times digital input 11 / TM17 edge_t DI 11		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 11 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4362	TM15 edge times digital input 12 / TM15 edge_t DI 12		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 12 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4362	TM17 edge times digital input 12 / TM17 edge_t DI 12		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 12 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		

### 2.2 List of parameters

r4363	TM15 edge times digital input 13 / TM15 edge_t DI 13		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 13 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4363	TM17 edge times digital input 13 / TM17 edge_t DI 13		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 13 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4364	TM15 edge times digital input 14 / TM15 edge_t DI 14		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 14 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu$ s.		
Note:	DI: Digital Input		
r4364	TM17 edge times digital input 14 / TM17 edge_t DI 14		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 14 of Terminal Module 17 (TM17) The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		


r4365	TM15 edge times digital input 15 / TM15 edge_t DI 15		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 15 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4365	TM17 edge times digital input 15 / TM17 edge_t DI 15		
TM17	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 15 of Terminal Module 17 (TM17). The two times are specified as 16 bit values with a resolution of $0.25 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4366	TM15 edge times digital input 16 / TM15 edge_t DI 16		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min		Factory setting
		-	
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 16 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4367	TM15 edge times digital input 17 / TM15 edge_t DI 17		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 17 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		

### 2.2 List of parameters

r4368	TM15 edge times digital input 18 / TM15 edge_t DI 18		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 18 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4369	TM15 edge times digital input 19 / TM15 edge_t DI 19		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 19 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4370	TM15 edge times digital input 20 / TM15 edge_t DI 20		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 20 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		
r4371	TM15 edge times digital input 21 / TM15 edge_t DI 21		
TM15	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 21 of Terminal Module 15 (TM15) The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.		
Note:	DI: Digital Input		


r4372	TM15 edge times digital input 22 / TM15 edge_t DI 22					
TM15	Can be changed: -		Calculated: -		Access level: 3	
	Data type: Unsigned16		Dyn. index: -		Func. diagram: -	
	P-Group: Commands		Unit group: -		Unit selection: -	
	Not for motor type: -		Scaling: -		Expert list: 1	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the time when detecting the 1st and 2nd edges for digital input 22 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.					
Note:	DI: Digital Input					
r4373	TM15 edge times digital input 23 / TM15 edge_t DI 23					
TM15	Can be changed: -		Calculated: -		Access level: 3	
	Data type: Unsigned16		Dyn. index: -		Func. diagram: -	
	P-Group: Commands		Unit group: -		Unit selection: -	
	Not for motor type: -		Scaling: -		Expert list: 1	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the time when detecting the 1 st and 2 nd edges for digital input 23 of Terminal Module 15 (TM15). The two times are specified as 8 bit values with a resolution of $64 \mu \mathrm{~s}$.					
Note:	DI: Digital Input					
p4400	TM41 encoder emulation operating mode / Enc_emulat mode					
TM41	Can be changed: $\mathrm{U}, \mathrm{T}$		Calculated: -		Access level: 3	
	Data type: Integer16		Dyn. index: -		Func. diagram: 9674, 9676	
	P-Group: Closed-loop control		Unit group: -		Unit selection: -	
	Not for motor type: -		Scaling: -		Expert list: 1	
	Min		Max		Factory setting	
	0		1		0	
Description: Value:	Sets the operating mode for the incremental encoder emulation.					
	0 : SIMOTION   1: SINAMICS					
Note:	A change only becomes effective after the next boot.					
	Incremental encoder emulation using speed setpoint (p1155). If value = 1:					
	Incremental encoder emulation using encoder position setpoint (p4420).					
p4401	TM	1 encoder emulati	Enc_	mulat		
TM41	Can be changed: $U, T$		Calculated: -		Access level: 3	
	Data type: Unsigned16		Dyn. index: -		Func. diagram: 9674, 9676	
	P-Group: Closed-loop control		Unit group: -		Unit selection: -	
	Not for motor type: -		Scaling: -		Expert list: 1	
	Min		Max		Factory setting	
	-		-		11110011 bin	
Description:	Sets the mode for the incremental encoder emulation.					
Bit field:	Bit00	Signal name		1 signal	0 signal	FP
		Zero mark enable		Yes	No	9674
	Bit	Zero marks synchronized with zero position of absolute encoders		Yes	No	9674
	04	Activate higher actual value resolution		Yes	No	-
	05	Activate higher setpoint resolution		Yes	No	-

### 2.2 List of parameters

$06 \quad$| Deactivate residual value handling in the Yes |
| :--- |
| setpoint channel |
| Activate output frequencies greater than |
| 750 kHz |

Note: Yes
For bit 00, 01:
This bit is used to configure the zero mark via X520.
When the TM41 is operated in the SINAMICS mode (p4400 = 1), the following applies:
A new zero mark search is initiated by switching in the zero mark at the TM41 (p4401.0 = 1). The zero mark is output
at the TM41 as soon as it was synchronized with the zero position/zero mark of the leading encoder.
For p4401.1 = 1, the following applies:
The zero pulse is only output via X520 when the absolute encoder passes the zero position of the absolute position
(modulo converted).
For p4401.1 = 0, the following applies:
The zero pulse is output via X520 compatible with previous firmware versions (< V4.3). The zero pulse is output
when the TM41 (modulo converted) passes the position it was in when the 24 V supply was switched on.
For bit 07:
For hardware versions A and B, this bit has no significance (output frequency = 512 kHz ).
For p4401.7 = 0, the following applies:
The maximum output frequency is 750 kHz (from hardware version C).
For p4401.7 = 1, the following applies:
The maximum output frequency is 1024 kHz (from hardware version C).

r4402.0...	CO/BO: TM41 encoder emulation status / Enc_emulat status		
TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 9674,9676
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status of the incremental encoder emulation on Terminal Module 41 (TM41).		
Bit field:	Bit Signal name	1 signal	O signal
	00	Zero mark enabled	Yes


r4403	TM41 encoder emulation operating mode active / Enc_emul mode act		
TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index:	Func. diagram: 9674,9676
	P-Group: Closed-loop control	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the actual operating mode of Terminal Module 41 (TM41).		
Dependency:	Refer to: p4400		



r4419	TM41 encoder emulation diagnostics position setpoint / TM41 Diag s_set		
TM41	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: 9676
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the position setpoint after taking into account the step up / step down. The format of this parameter is defined by p0408/p0418.		
p4420	CI: TM41 encoder emulation position setpoint / Enc_emul s_setp		
TM41	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 9676
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the incremental encoder emulation position setpoint.		
Recommendation:	The position actual value of the lead This is the reason that the following CI: p4420 (TM41) = r0479 (e.g. SER	der in the curre erconnection sh	le is available in r0479.
Dependency:	Refer to: p4400, r4403		
Notice:	General conditions for incremental encoder emulation can be found in the following literature: SINAMICS S120 Function Manual Drive Functions		
Note:	The parameter is not effective in the SIMOTION operating mode ( $\mathrm{p} 4400=0$ ).		
	An encoder actual value (r0479) can only be interconnected once on a TM41.		
	For p4401.0 = 1 (enable zero mark), the following applies:		
	In this case, p4420 must be interconnected with r0479 of the leading encoder.		
	After successful internal, automatic synchronization, the zero mark of the incremental encoder emulation is output in synchronism to the zero position/zero mark of the leading encoder.		
	The zero position of the leading encoder depends on the encoder type and the selected referencing technique (p0493, p0494, p0495).		
p4421	TM41 encoder emulation deadtime compensation / Enc_emul t_dead		
TM41	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9676
	P-Group: Setpoints	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10.00	10.00	0.00
Description:	Sets the deadtime compensation for incremental encoder emulation.		
	This factor defines the multiplier in which the encoder position setpoint of the incremental encoder emulation is shifted depending on the velocity.		
Dependency:	For p4421 = 0, the deadtime compensation for the position setpoint is switched out.		
	For p4421 <> 0, the deadtime compensation is taken into account as follows:		
	Setpoint new = setpoint via CI: p4420 delta s: Position change per samplin Refer to: p4400	a s *p4421   p4099[3]), intern	
Note:	The parameter is not effective in the SIMOTION operating mode ( $\mathrm{p} 4400=0$ )		


p4422	TM41 encoder emulation position setpoint inversion / Enc_emul s_set inv		
TM41	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 9676
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to invert the position setpoint for Terminal Module 41 (TM41).		
	0 -> Position setpoint (CI: p 4420 ) is evaluated as normal.		
	1 -> Position setpoint (Cl: p 4420 ) is processed inverted.		
Dependency:	Refer to: p4420		
p4423	TM41 encoder emulation standstill adaptation / Enc standst_adapt		
TM41	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 9676
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2000	4
Description:	Sets standstill adaptation on Terminal Module 41 (TM41).		
	p4423 is used to specify the number of clock cycles (one clock cycle $=$ p4099[3]) used for encoder standstill detection. Once this time has elapsed, any potential deviation is compensated when adaptation is active.		
	Parameter value $=0$ : adaptation inactive		
	Parameter value > 0: adaptation active		
Dependency:	Refer to: r4403, p4404, p4420		
Danger:	The option p4404.1 = 1 is only effective if TM41 DAC is being used.		
$\widehat{1}$	If the possibility of a TM41 DAC (new) being replaced by a TM41 SAC (old) cannot be excluded, this option should not be set.		
	TM41 SAC: Article No. $=6 \mathrm{SL} 3055-0 \mathrm{AA} 00-3 \mathrm{PA0}$		
	TM41 DAC: Article No. $=6$ SL3055-0AA00-3PA1		
Note:	The parameter is only effective in the SINAMICS operating mode (p4400 = 1).		
	The parameter value must be assigned a value of 4 or more to ensure that the system functions properly.		
	This parameter is only relevant in the following cases:		
	- TTL encoder is available		
	- the controller option "Precontrol with adaptation for TTL encoder" has been activated (p4404.1 = 1)		
p4426	TM41 encoder emulation pulses for zero mark / Enc_emul pulses ZM		
TM41	Can be changed: C2(4), U, T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9674, 9676
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	16384	0
Description:	Sets pulse number to output the zero mark for the incremental encoder simulation/emulation.		
	Example:		
	p0408 = 2048 (encoder pulses)		
	p4426 = 512 (pulses for the zero mark)		
	--> Position direction: The zero mark is output after 512 pulses.		
	--> Negative direction: The zero mark is output after 1536 pulses.		
Dependency:	Refer to: p0408		
Note:	The pulses for the zero mark (p4426) must be less than the encoder pulse number ( p 0408 ).		

### 2.2 List of parameters

r4427	TM41 encoder emulation zero mark position / TM41 NM_position		
TM41	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the position of the next zero mark in a positive traversing direction.		
	The format of this parameter is defined by p0408/p0418 (the same as the position actual value Xact1).		



p4601[0...n]	Motor temperature sensor 2 sensor type / Temp_sens 2 type		
SERVO, VECTOR,	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
SERVO_AC,	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: 8016
SERVO_I_AC,	P-Group: Motor	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	60	0
Description:	Sets the sensor type of the second temperature sensor for the motor temperature monitoring.		
Value:	0: No sensor		
	10: PTC fault		
	11: PTC alarm		
	12: PTC alarm \& timer		
	20: KTY84		
	30: Bimetallic NC contact fault		
	31: Bimetallic NC contact alarm		
	32: Bimetallic NC contact alarm \& timer		
	60: PT1000		
Dependency:	Refer to: r0458, p0600, p0601		

Note: | This parameter is effective only when p0601 $=10$. |  |
| :--- | :--- |
| Terminals for KTY84/PT1000: X200.1, X200.2 |  |
|  | PTC thermistor: Tripping resistance $=1650$ Ohm |
|  | Information on using temperature sensors is provided in the following literature: |
|  | - hardware description of the appropriate components |
|  | - SINAMICS S120 Commissioning Manual |

p4602[0...n]	Motor temperature sensor $\mathbf{3}$ sensor type / Temp_sens $\mathbf{3}$ type		
SERVO, VECTOR,	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
SERVO_AC,	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: 8016
VECTOR_AC,	P-Group: Motor	Unit group: -	Unit selection: -
SERVO_IAC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Max	Factory setting	
	Min	60	0


Description: Value:	Sets the sensor type of the third temperature sensor for the motor temperature monitoring.
	0: No sensor
	10: PTC fault
	11: PTC alarm
	12: PTC alarm \& timer
	20: KTY84
	30: Bimetallic NC contact fault
	31: Bimetallic NC contact alarm
	32: Bimetallic NC contact alarm \& timer
	60: PT1000
Dependency:	Refer to: r0458, p0600, p0601
Note:	This parameter is effective only when p0601 $=10$.
	Terminals for PTC triplet and bimetallic: X200.3, X200.4
	PTC thermistor: Tripping resistance $=1650$ Ohm
	Information on using temperature sensors is provided in the following literature:
	- hardware description of the appropriate components



### 2.2 List of parameters



p4611[0...n]	Motor temperature sensor 2 sensor type MDS / Temp sens2 typ MDS		
SERVO, VECTOR,	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
SERVO_AC,	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: 8016
VECTOR_AC,	P-Group: Motor	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	32	Factory setting
	0	10	

Description: Sets the sensor type of the second temperature sensor for the motor temperature monitoring.

## Value:

Note: $\quad$ This parameter is effective only when p0601 $=11$.
PTC thermistor: Tripping resistance $=1650$ Ohm
Information on using temperature sensors is provided in the following literature:

- hardware description of the appropriate components
- SINAMICS S120 Commissioning Manual


p4613[0...n]	Motor temperature sensor 4 sensor type MDS / Temp sens4 typ MDS		
SERVO, VECTOR,	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
SERVO_AC,	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: 8016
VECTOR_AC,	P-Group: Motor	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	0	32	10

Description: Sets the sensor type of the fourth temperature sensor for the motor temperature monitoring.

## Value:

0: No sensor
10: PTC fault
11: PTC alarm
12: PTC alarm \& timer
20: KTY84, PT100, PT1000
30: Bimetallic NC contact fault
31: Bimetallic NC contact alarm
32: Bimetallic NC contact alarm \& timer
Dependency: Refer to: r0458, p0600, p0601
Note: $\quad$ This parameter is effective only when p0601 $=11$.
PTC thermistor: Tripping resistance $=1650$ Ohm
Information on using temperature sensors is provided in the following literature:

- hardware description of the appropriate components
- SINAMICS S120 Commissioning Manual


### 2.2 List of parameters

r4620[0...3]	Motor temperature measured / Mot_temp meas		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8016
VECTOR_AC,	P-Group: Displays, signals	Unit group: 21_1	Unit selection: p0505
VECTOR_I_AC	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the actual temperature in the motor measured through temperature channels $1 . . .4$.		
Index:	[0] = Temperature channel 1   [1] = Temperature channel 2   [2] = Temperature channel 3   [3] = Temperature channel 4		
Note:			
	- a KTY/PT1000 temperature sensor is connected.		
	For a value equal to $-200.0^{\circ} \mathrm{C}$, the following applies:		
	- this temperature display is not valid (temperature sensor error).		
	- a PTC sensor or bimetallic NC contact is connected.		
	- the temperature sensor evaluation is deactivated ( $\mathrm{p} 0600=0$ or $\mathrm{p} 0601=0$ ).		
	- the sensor channel is deactivated ( $\mathrm{p} 460 \mathrm{x}=0$ or $\mathrm{p} 461 \mathrm{x}=0$ ).		


p4630[0...n]	Absolute encoder linear measuring step factor / Abs_enc meas fact		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	4294967295	1
	1		
Description:	Sets the resolution of the absolute position for a linear absolute encoder as factor from p0407.		
Note:	The serial protocol of an absolute encoder provides the position with a certain resolution (e.g. 100 nm$).$		
	The resolution is calculated from p0407/p4630.		


p4631[0...n]	Cylinder distance per encoder revolution / x_cyl per rev		
HLA	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ $\mu \mathrm{m}$ ]	4294967295 [ $\mu \mathrm{m}$ ]	0 [ $\mu \mathrm{m}$ ]
Description:	Setting to convert rotary motion into linear motion for hydraulic drives.		
	The value corresponds to the distance in $\mu \mathrm{m}$ for one encoder revolution.		
Note:	For a linear drive $(\mathrm{r} 0108.12=1)$ with rotary encoder $(\mathrm{p} 0404.0=0)$ this factor defines the conversion of the encoder information for the linear motion of the velocity control.		


r4640[0...95]	Encoder diagnostics state machine / Enc diag stat_ma		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
SERVO I AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the encoder diagnostics for the PROFIdrive interface.		
p4641[0...2]	OEM encoder diagnostic signal selection / OEM enc diag sel		
SERVO, VECTOR,	Can be changed: C2(4), U, T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
SERVO I AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the trace functionality for OEM encoder manufacturers.		
Index:	[0] = Encoder 1		
	[1] = Encoder 2		


p4642	Encoder fault test function / Encoder fault test		
SERVO, VECTOR,	Can be changed: C2(4), U, T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Scaling: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	255	Factory setting
	0		
Description:	Test function to initiate an encoder fault		
	p4642 = $0 / 1$ signal:		
	The currently used motor encoder issues an encoder fault.		
	p4642 = 1/0 signal:	The encoder fault that was issued is cleared after acknowledgment.	
	It is not permissible that a data set is switched over between an encoder fault being issued and its deletion.		

### 2.2 List of parameters

p4643[0...n]	DRIVE-CLiQ encoder repeat telegram / DQ enc repeat				
$\begin{aligned} & \text { SERVO, SERVO_AC, } \\ & \text { SERVO_I_AC } \end{aligned}$	Can be changed: C1(3), C2(4) C		Calculated: -	Access level: 4	
	Data type: Unsigned16 D		Dyn. index: EDS, p0140	Func. diagram: -	
	P-Group: Encoder U		Unit group: -	Unit selection: -	
	Not for motor type: - S		Scaling: -	Expert list: 1	
	Min M		Max	Factory setting	
	- -		-	0000000100000001 bin	
Description:	Sets the telegram repeats for the DRIVE-CLiQ encoder telegram.				
	Sets the number of maximum tolerated transfer errors in the particular direction before a fault is output.				
	The higher set value between p4643 and p9915 or p9916 is effective.				
	$000=0$				
	$001=1$				
	$010=2$				
	...				
	111 = 7				
	For bits 04, 12:				
	When the bit is set, the telegrams are sent twice in the particular direction. This therefore reduces the probability of telegram failure.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Actual value direction data transfer error number bit 0	Yes	No	-
	01	Actual value direction data transfer error number bit 1	Yes	No	-
	02	Actual value direction data transfer error number bit 2	Yes	No	-
	04	Actual value direction activate repeat telegram	Yes	No	-
	08	Setpoint direction data transfer error number bit 0	Yes	No	-
	09	Setpoint direction data transfer error number bit 1	Yes	No	-
	10	Setpoint direction data transfer error number bit 2	Yes	No	-
	12	Setpoint direction activate telegram repeat	Yes	No	-


p4649[0...n]	Encoder function reserve amplitude limit incremental signals / Enc fct amp inc		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	500	0
	0		
Description:	Amplitude threshold of the incremental signals for the function reserve.		
	If the set amplitude threshold on the incremental signals is fallen below, then alarm A3x407 "Encoder x; function limit		
Note:	reached " is output.		



### 2.2 List of parameters

The absolute value is only valid after passing the zero mark.
If value = 1:
The value in XIST1_ERW is reset when passing every zero mark.
If value $=2:$
The value in XIST1_ERW is reset with a $0 / 1$ edge via binector input $p 4655$.
If value $=3:$
The value in XIST1_ERW is reset after a $0 / 1$ edge via binector input p 4655 when passing the next zero mark.

p4652	XIST1_ERW reset mode / XIST1_ERW res mode		
ENC	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 4750
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0

Description: Sets the mode to reset the actual value in XIST_ERW (CO: r4653).

## Value: 0 : Inactive

1: Reset with zero mark
2: Reset with BICO
3: Reset with selected zero mark
Dependency: Refer to: r4653, r4654, p4655
Note: The absolute value is only valid after passing the zero mark.
If value $=1$ :
The value in XIST1_ERW is reset when passing every zero mark.
If value $=2$ :
The value in XIST1_ERW is reset with a 0/1 edge via binector input p4655.
If value $=3$ :
The value in XIST1_ERW is reset after a $0 / 1$ edge via binector input p 4655 when passing the next zero mark.

r4653[0...2]	CO: XIST1_ERW actual value / XIST1_ERW actval		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 4750
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting

Description: Display and connector output for the actual value XIST1_ERW.

Index:	$[0]=$ Encoder 1
	$[1]=$ Encoder 2
	$[2]=$ Encoder 3
Dependency:	Refer to: p4652, r4654, p4655


r4653	CO: XIST1_ERW actual value / XIST1_ERW actval		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 4750
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Display and connector output for the actual value XIST1_ERW.		
Dependency:	Refer to: p4652, r4654, p4655		


r4654.0... 16	CO/BO: XIST1_ERW status / XIST1_ERW stat			
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Encoder	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	-	
Description:	Display and BICO output to reset XIST1_ERW.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Encoder 1 XIST1_ERW reset	High	Low	-
	08 Encoder 2 XIST1_ERW reset	High	Low	-
	16 Encoder 3 XIST1_ERW reset	High	Low	-
Dependency:	Refer to: p4652, r4653, p4655			
Note:	The reset of XIST1_ERW is initiated via binector input p4655.			
	Binector output r4654 is reset with a 0 signal from binector input p4655.			
r4654.0	CO/BO: XIST1_ERW status / XIST1_ERW stat			
ENC	Can be changed: - Calculated: -		Access level: 3	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Encoder	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Display and BICO output to reset XIST1_ERW.			
Bit field:	Bit Signal name   00 XIST1_ERW reset	1 signal High	0 signalLow	FP
				-
Dependency:	Refer to: p4652, r4653, p4655			
Note:	The reset of XIST1_ERW is initiated via binector input p4655.			
	Binector output r4654 is reset with a 0 signal from binector input p 4655.			
p4655[0...2]	BI: XIST1_ERW reset signal source / XIST1_ERW resS_src			
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(4), \mathrm{T}$	Calculated: -	Acces	
	Data type: Unsigned32 / Binary	Dyn. index: -	Func.	
	P-Group: Encoder	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	- -		0	
Description: Index:	Sets the signal source to reset XIST1_ERW (CO: r4653).			
	$[0]=$ Encoder 1 $[1]=$ Encoder 2 $[2]=$ Encoder 3			
Dependency:	Refer to: p4652, r4653, r4654			
Note:	The reset of XIST1_ERW depends on	lected mode (p46		

### 2.2 List of parameters

p4655	BI: XIST1_ERW reset signal source / XIST1_ERW resS_src		
ENC	Can be changed: $\mathrm{C} 2(4)$, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 4750
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to reset XIST1_ERW (CO: r4653).		
Dependency:	Refer to: p4652, r4653, r4654		
Note:	The reset of XIST1_ERW depends on the selected mode (p4652).		
p4660[0...2]	Sensor Module filter bandwidth / SM Filt_bandw		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min		Factory setting
	0.00 [kHz]	20000.00 [kHz]	0.00 [ kHz$]$
Description:	Sets the filter bandwidth for Sensor Module SMx10 (resolver) and SMx20 (sin/cos).		
	The value set on the Sensor Module is displayed in r4661.		
	Currently, the Sensor Module hardware only supports the following values:		
	- 0 : The Sensor Module's default setting is used.		
	- 50 kHz		
	- 170 kHz		
	- 500 kHz		
	- Unlimited: Only the bandwidth of the operational amplifier is effective.		
Index:	$\begin{aligned} & \text { [1] = Encoder } 2 \\ & \text { [2] }=\text { Encoder } 3 \end{aligned}$		
Dependency:	Refer to: r4661		
Note:	A value of zero is displayed if an encoder is not present.		
p4660	Sensor Module filter bandwidth / SM Filt_bandw		
ENC	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [kHz]	20000.00 [kHz]	0.00 [ kHz ]
Description:	Sets the filter bandwidth for Sensor Module SMx10 (resolver) and SMx20 (sin/cos). The value set on the Sensor Module is displayed in r4661.		
	Currently, the Sensor Module hardware only supports the following values:		
	- 0: The Sensor Module's default setting is used.		
	$-50 \mathrm{kHz}$		
	- 170 kHz		
	- 500 kHz		
	- Unlimited: Only the bandwidth of the operational amplifier is effective.		
Dependency:	Refer to: r4661		
Note:	A value of zero is displayed if an encoder is not present.		



p4663[0...n]	Encoder characteristic K0 / Enc char K0		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
SERVO I AC,	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Setting for coefficient K0 to calculate the characteristic (p4662).   Refer to: p4662, p4664, p4665, p4666		
Dependency:			
p4664[0...n]	Encoder characteristic K1 / Enc char K1		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
SERVO_I_AC,	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Setting for coefficient K1 to calculate the characteristic (p4662).		
Dependency:	Refer to: p4662, p4663, p4665, p4666		
p4665[0...n]	Encoder characteristic K2 / Enc char K2		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
SERVO_I_AC,	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Setting for coefficient K2 to calculate the characteristic (p4662). Refer to: p4662, p4663, p4664, p4666		
Dependency:			
p4666[0...n]	Encoder characteristic K3 / Enc char K3		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 4
HLA, SERVO_AC, VECTOR AC,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
SERVO_I_AC,	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Setting for coefficient K3 to calculate the characteristic (p4662).		
Dependency:	Refer to: p4662, p4663, p4664, p4665		



p4672[0...n]	Analog sensor channel A voltage at actual value zero / Ana_sens A U at 0		
SERVO, VECTOR,	Can be changed: U, T	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: -	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	$10.0000[\mathrm{~V}]$	$0.0000[\mathrm{~V}]$
	$-10.0000[V]$		
Description:	Sets the voltage when the connected sensor is at actual value zero.		
	At this voltage channel A supplies an actual value of zero.		


p4673[0...n]	Analog sensor channel A voltage per encoder period / Ana_sens A U/per		
SERVO, VECTOR,	Can be changed: $U, T$	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
SERVO I AC,	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10.0000 [V]	10.0000 [V]	6.0000 [V]
Description:	Sets the output voltage range to be mapped for the connected analog sensor.		
	The voltage range is determined by the following parameters:		
	- p4672 (voltage at actual value 0)		
	- p4673 (voltage per encoder period)		
Note:	The minimum actual value which can be mapped is equal to p4672-p4673/2.		
	The maximum actual value which can be mapped is equal to $\mathrm{p} 4672+\mathrm{p} 4673 / 2$.		

p4674[0...n] Analog sensor channel B voltage at actual value zero / Ana_sens B U at 0
SERVO VECTOR, A

HLA SERVO
VECTOR AC- Data type: FloatingPoint32
SERVO_I_AC, P-Group:-
VECTOR_I_AC, ENC Not for motor type: -
Min
-10.0000 [V] 10.0000 [V]

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0.0000 [V]

Description: Sets the voltage when the connected sensor is at actual value zero.
At this voltage channel B supplies an actual value of zero.

p4675[0...n]	Analog sensor channel B voltage per encoder period / Ana_sens B U/per		
SERVO, VECTOR,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_IAC, } \end{aligned}$	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10.0000 [V]	10.0000 [V]	6.0000 [V]
Description:	Sets the output voltage range to be mapped for the connected analog sensor.		
	The voltage range is determined by the following parameters:		
	- p4674 (voltage at actual value 0)		
	- p4675 (voltage per encoder period)		
Note:	The minimum actual value which can be mapped is equal to p4674-p4675/2.		
	The maximum actual value which can be mapped is equal to $\mathrm{p} 4674+\mathrm{p} 4675 / 2$.		



p4678[0...n]	Analog sensor LVDT ratio / An_sens LVDT ratio		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
VECTOR_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Expert list: 1	
VECTOR_I_AC, ENC	Not for motor type: -	Max	Factory setting
	Min	200.00 [\%]	50.00 [\%]
	$0.00[\%]$		
Description:	Sets the ratio for the LVDT sensor.	Access level: 4	
p4679[0...n]	Analog sensor LVDT phase / An_sens LVDT ph	Func. diagram: -	
SERVO, VECTOR,	Can be changed: C2(4), T	Calculated: -	Unit selection: -
HLA, SERVO_AC,	Data type: FloatingPoint32	Unit group: -	Expert list: 1
VECTOR_AC,	P-Group: Encoder	Scaling: -	Factory setting
SERVO_I_AC,	Max	0.00 [ ${ }^{\circ}$ ]	

### 2.2 List of parameters

p4680[0...n]	Zero mark monitoring tolerance permissible / ZM_monit tol perm		
SERVO, VECTOR,	Can be changed: C2(4)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
SERVO_I_AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC, ENC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1000	4
Description:	Sets the permissible tolerance in encoder pulses for the zero mark distance in the context of zero mark monitoring. Causes fault F3x100 to appear less frequently.		
Dependency:	Refer to: F31100		
p4681[0...n]	Zero mark monitoring tolerance window limit 1 positive / ZM tol lim 1 pos		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, ENC	Can be changed: C 2 (4)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1000	2
Description:	Sets the positive tolerance window in encoder pulses for limit 1 for the zero mark monitoring.		
	The pulse number is corrected if the deviation is less than this limit. If it is higher than this limit, fault F3x131 is triggered.		
	If fault F3x131 is re-parameterized to an alarm (A) or no message $(N)$, then the encoder pulses that are not corrected are transferred to the accumulator (p4688). The accumulator can be deactivated using p0437.7.		
Dependency:	Refer to: p0437, p4688		
	Refer to: F31131		
Note:	This monitoring is activated by setting p0437.2 = 1 (position actual value correction). The positive limit describes additional pulses due to EMC.		
p4682[0...n]	Zero mark monitoring tolerance window limit 1 negative / ZM tol lim 1 neg		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, ENC	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1001	0	-1001
Description:	Sets the negative tolerance window in encoder pulses for limit 1 for the zero mark monitoring.		
	The pulse number is corrected if the deviation is less than this limit. If it is higher than this limit, fault $\mathrm{F} 3 \times 131$ is triggered.		
	If fault F3x131 is re-parameterized to an alarm (A) or no message $(N)$, then the encoder pulses that are not corrected are transferred to the accumulator ( p 4688 ). The accumulator can be deactivated using p0437.7.		
Dependency:	Refer to: p0437, p4681, p4688		
	Refer to: F31131		
Note:	This monitoring is activated by setting p0437.2 $=1$ (position actual value correction).		
	For a set value $=-1001$, the negated value of p4681 becomes active.		
	The negative limit describes the pulses lost due to a covered glass panel in the incremental encoder.		


p4683[0...n]	Zero mark monitoring tolerance window alarm threshold positive / ZM tol A_thr pos
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, ENC	Can be changed: C2(4) Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: EDS, p0140 Func. diagram: -   P-Group: Encoder Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 100000 0
Description: Dependency: Note:	Sets the positive tolerance window in encoder pulses for limit 2 for the zero mark monitoring.   Accumulator ( p 4688 ) is compared with this parameter, and where relevant, alarm A3x422 is output for 5 seconds.   Refer to: p0437, p4681, p4682, p4688   Refer to: F31131, A31422   Zero mark monitoring is activated by setting p0437.2 = 1 (position actual value correction).
p4684[0...n]   SERVO, VECTOR, hLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, ENC	Zero mark monitoring tolerance window alarm threshold negative / ZM tol A_thr neg
Description: Dependency: Note:	Sets the negative tolerance window in encoder pulses for limit 2 for the zero mark monitoring.   Accumulator ( p 4688 ) is compared with this parameter, and where relevant, alarm A3x422 is output for 5 seconds.   Refer to: p0437, p4683, p4688   Refer to: F31131, A31422   Zero mark monitoring is activated by setting p0437.2 = 1 (position actual value correction).   For a set value $=-100001$, the negated value of $p 4683$ is effective.
p4685[0...n]   SERVO, VECTOR, HLA, SERVO_AC, VECTORAC, SERVO_I_AC, VECTOR_I_AC, ENC	Speed actual value mean value generation / n_act mean val     Can be changed: C2(4) Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: EDS, p0140 Func. diagram: -   P-Group: Encoder Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 20 0
Description:   Note:	Sets the number of current controller sampling times for mean value generation of the speed actual value. Value $=0,1$ : No mean value generation.   Higher values also mean higher dead times for the speed actual value.
p4686[0...n]   SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, ENC	Zero mark minimum length / ZM min length     Can be changed: C2(4) Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: EDS, p0140 Func. diagram: -   P-Group: Encoder Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 10 1
Description:   Dependency:   Note:	Sets the minimum length for the zero mark in $1 / 4$ encoder pulses.   Refer to: p0425, p0437   The minimum length of the zero mark must be less than the zero mark distance ( p 4686 < p 0425 ).   The parameter is activated using p0437.1 = 1 (zero mark edge detection).

### 2.2 List of parameters

p4688[0...2]	CO: Zero mark monitoring differential pulse count / ZM diff_pulse qty		
SERVO, VECTOR,	Can be changed: T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer32	Dyn. index: -	Func. diagram: -
SERVO I AC,	P-Group: -	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2147483648	2147483647	0
Description:	Display and connector output for the identified incorrect pulses in lines. Also see p0437.7 (do not accumulate number of incorrect pulses).		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p0437, p4681, p4682, p4683, p4684		
Note:	The display can only be reset to zero.		
p4688	CO: Zero mark monitoring differential pulse count / ZM diff_pulse qty		
ENC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2147483648	2147483647	0
Description:	Display and connector output for the identified incorrect pulses in lines. Also see p0437.7 (do not accumulate number of incorrect pulses).		
Dependency:	Refer to: p0437, p4681, p4682, p4683, p4684		
Note:	The display can only be reset to zero.		
r4689[0...2]	CO: Squarewave encoder diagnostics / Sq-wave enc diag		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
SERVO I AC,	P-Group: Encoder	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Index:	Displays the encoder status according to PROFIdrive for a squarewave encoder.   [0] = Encoder 1   [1] = Encoder 2   [2] = Encoder 3		
Dependency:	Refer to: A31422		
Note:	After alarm A3x422 is output, this parameter is set for 100 ms .		
r4689	CO: Squarewave encoder diagnostics / Sq-wave enc diag		
ENC	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the encoder status according to PROFIdrive for a squarewave encoder.		
Dependency:	Refer to: A31422		
Note:	After alarm A3x422 is output, this parameter is set for 100 ms .		


p4690	SMI spare part component number / SMI comp_no		
CU_I, CU_NX_CX,	Can be changed: T	Calculated: -	Access level: 1
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Displays, signals	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Max	Expert list: 1
CU_S150_PN,	399	Factory setting	
CU_S120_DP,	Min	0	
CUSS150_DP,	0		
CU_I_D410			
Description:	Sets the component number for the SMI/DQI for which motor and/or encoder data should be saved, deleted or		
downloaded.			


p4691	SMI spare part save/download data / Save/DL SMI data		
CU_I, CU_NX_CX,	Can be changed: T	Calculated: -	Access level: 1
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_S_AC_PN, } \\ & \text { CU S } 120 \text { PN, } \end{aligned}$	P-Group: Displays, signals	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	39	0
Description:	Setting for the saving/downloading/deletion of motor and/or encoder data for the component specified in p 4690 (SMI/DQI).		
	A backup of this data can be saved to non-volatile memory. The backup procedure is performed automatically as part of the function for saving to non-volatile memory (p0977 = 1 or "Copy RAM to ROM"). If a part is replaced, the saved data can be reloaded.		
	Procedure:		
	p4690 = set component number		
	p4691 = 1, 2, 30: Set the required procedure (save/download/delete).		
	p4691 $=9,10,36$ : Feedback signal on successful completion of the procedure.		
	p4691 $=11 \ldots 22,37,38$ : Error values if the procedure could not be executed successfully.		
Value:	0 : Inactive		
	1: Save SMI data		
	2: Download SMI data		
	9: SMI data downloaded and POWER ON required for component		
	10: SMI data backup complete		
	11: SMI data backup for selected component not found		
	12: Selected component not available or not connected		
	13: Insufficient memory space for backup		
	14: Format of saved data is incompatible		
	15: Transfer fault during data download		
	16: Transfer fault during data backup		
	17: Data backup does not match parameterized encoder/motor		
	18: Data backup directory not permissible		
	19: Component already contains data		
	20: Component does not contain any data		
	21: Component is not an SMI or a DQI		
	22: SMI data cannot be downloaded for component		
	30: Delete SMI data		
	35: Confirmation of SMI data delete required		
	36: SMI data deleted and POWER ON required for component		
	37: Access level not sufficient for delete		
	38: Delete SMI data not permitted for component		
	39: SMI data for component cannot be deleted		
Dependency:	Refer to: p4690, p4692, p46		
Notice:	Once SMI/DQI data has bee ON ).	wnloaded succe	has to be switched on (POWER

### 2.2 List of parameters

Note:
SMI: SINAMICS Sensor Module Integrated
DQI: DRIVE-CLiQ Sensor Integrated
Help for error value = 11:

- Save the data for the original SMI on the memory card.
- Use an SMI with a suitable hardware version.

Help for error value $=12$ :

- set the correct component number or connect the component.

Help for error value $=13$ :

- Use a memory card with more memory space.

Help for error value $=14$ :

- Create a data backup on the memory card corresponding to the SMI type.

Help for error value $=15$ :

- check the DRIVE-CLiQ wiring for the component.

Remedy for fault value $=16$ :

- check the DRIVE-CLiQ wiring for the component.

Help for error value = 17:

- Save the data for the original SMI on the memory card.

Remedy for fault value $=18$ :

- set parameter p4693 to an appropriate value.

Remedy for fault value = 19:

- Perform an SMI delete or use a blank SMI.

Remedy for fault value $=20$ :

- Use an SMI that is not blank.

Remedy for fault value $=21$ :

- set the correct component number (p4690).

Note for error value $=22$ :

- Data cannot be downloaded for component.

Remedy for fault value $=35$ :

- Reset parameter p4691 to 30.

Remedy for fault value $=37$ :

- set the access level to Expert or higher.

Help for error value $=38$ :

- insert the SMI/DQI into the actual topology as an additional component (component number >= 200).
- set the component number from the actual topology (p4690 >= 200).
- set the correct component number ( $\mathrm{p} 4690>=200$ ).

Note for error value $=39$ :

- SMI already deleted or too old. Delete not possible.


## p4692

CU_I, CU_NX_CX,
CU S AC DP,
CU_S_AC_PN,
CU_S120_PN,
CU_S150_PN,
CU_S120_DP, CU_S150_DP, CU_I_D410

## Description:

Value:

## SMI spare part save data of all SMIs / Save SMI data

Can be changed: T
Data type: Integer16
P-Group: Displays, signals
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -

## Max

29

Access level: 1
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Setting to back up the data of all SMIs and DQIs featured in the target topology.
0: Inactive
1: $\quad$ Save data of all SMIs and DQIs
10: Save all data successful
13: Insufficient memory space for backup
16: Transfer fault during data backup
20: Component does not contain any data
29: Not all components from target topology saved

Note:	SMI: SINAMICS Sensor Module Integrated   p4692 = 10: Automatic on successful completion of backup procedure.   p4692 $=13,16,20,29$ : Error values if the procedure could not be executed successfully.   The procedure must be repeated if the data save operation was interrupted (e.g. if the power supply voltage failed).   Help for error value $=13$ :   - Use a memory card with more memory space.   Remedy for fault value $=16$ :   - check the DRIVE-CLiQ wiring.   Remedy for fault value $=20$ :   - Use an SMI that is not blank.   Help for error value $=29$ :   - check and correct the target and actual topologies for the SMIs.   - Repeat the save procedure.
p4693[0...1]	SMI spare part data backup directory / SMI dat_bkup dir
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: T Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Func. diagram: -   P-Group: Displays, signals Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 399 0
Description:	Sets the directory for downloading and saving data.   Example:   The SMI has the component number 5 and the SMI data (motor/encoder data) is to be stored in subdirectory C205. $-->p 4690=5, \text { p4693[0] = 205, p4691 = } 1$
Index:	[0] = Subdirectory selection   [1] = Reserved
Dependency:	Refer to: p4691, r4694
Notice:	If $p 4693[0]$ is not equal to 0 and p4693[0] is not equal to $p 4690$, the following applies:   - Only a number >= 200 may be selected for the subdirectory when saving.   - in the case of downloads, a selection for the subdirectory may only be made for an SMI/DQI with a component number >= 200 (preliminary component number) (p4690 >= 200).
Note:	DQI: DRIVE-CLiQ Sensor Integrated   SMI: SINAMICS Sensor Module Integrated   For index [0]:   This index is used to select the subdirectory for saving and downloading data. The motor article number (MLFB) of the corresponding data backup is displayed in r4694.   For $\mathrm{p} 4693[0]=0$, the following applies:   The directory is determined by the setting of p4690.


r4694[0...19]	SMI spare part data backup motor article number / SMI dat_bkup MLFB		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_SAC_PN,	P-Group: Displays, signals	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description: Displays the motor article number (MLFB) of the data backup selected with p4693.   Dependency: Refer to: p4691, p4692			

### 2.2 List of parameters



p4701	Measuring function control / Meas fct ctrl		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Min	Max	Factory setting
CU_S120_DP,	3	0	

Description: Setting to control the measurement function.
Value: 0 : Stop measuring function
Start measuring function
Measuring function check parameterization
Start measuring function without enable signals

p4703[0...1]	Trace options / Trace options			
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: T   Data type: Unsigned16   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated: -   Dyn. index:   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting   0000 bin	
Description: Index:	Sets the options for the trace. $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$			
Bit field:	Bit Signal name   00 Automatically start trace with time slices	1 signal	0 signal   No	FP
Dependency: Note:	Refer to: p4700   For bit 00:   0 : The trace starts with p4700 as before.   1: When powering up, the trace starts immedia	ately with the	ings with the start	



### 2.2 List of parameters



p4710[0...1]	Trace trigger condition / Trace Trig_cond		
CU_I, CU_NX_CX,	Can be changed: $U, T$	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN, CU S120 PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \mathrm{CU}^{-} \mathrm{S} 150-\mathrm{DP}, \\ & \text { CU_I_D410 } \end{aligned}$	1	8	2
Description:	Sets the trigger condition for the trace.		
Value:	1: Immediate trace start		
	2. Positive edge		
	3: Negative edge		
	4: Entry to hysteresis band		
	5: Leaving hysteresis band		
	6: Trigger at bit mask		
	7: Start with function generator		
	8: Trigger at bit mask with edge		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		



p4712[0...1]	Trace trigger threshold / Trace trig_thresh		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group:	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Min	Max	Factory setting
CU_S120_DP,	$340.28235 E 36$	0.00	

Description: Sets the trigger threshold for the trace.

Index:	$[0]=$ Trace 0
	$[1]=$ Trace 1

Dependency: $\quad$ Only effective when p4710 $=2,3$.

p4713[0..1]	Trace tolerance band trigger threshold 1 / Trace trig thr 1		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN, CU S120 PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-340.28235E36	340.28235E36	0.00
Description:	Sets the first trigger threshold for trigger via tolerance band.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Dependency:	Only effective when p4710 $=4,5$.		


p4714[0..1]	Trace tolerance band trigger threshold 2 / Trace trig thr 2		
CU_I, CU_NX_CX,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-340.28235E36	340.28235E36	0.00
Description:	Sets the second trigger threshold for trigger via tolerance band$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Index:			
Dependency:	Only effective when p4710 $=4,5$.		
p4715[0...1]	Trace bit mask trigger, bit mask / Trace trig mask		
CU_I, CU_NX_CX,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	4294967295	0
Description:	Sets the bit mask for the bit mask trigger.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Index:			
Dependency:	Only effective when p4710 $=6$ or p4710 $=8$.		
p4716[0...1]	Trace bit mask trigger trigger condition / Trace Trig_cond		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	4294967295	0
Description:	Sets the trigger condition for bit mask trigger.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Index:			
Dependency:	Only effective when p4710 $=6$.		
p4717	Measuring function number of averaging operations / Meas fct avg qty		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	255	0
Description:	Sets the number of averaging operations for the measuring function.		


p4718	Measuring function number of stabilizing periods / MeasFct StabPerQty		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S12_PN,	Sct for motor type: -	Expert list: 0	
CU_S15_PN,	Max	Factory setting	
CU_S120_DP,	Min	255	0
CU_S150_DP,	0		

Description: Sets the number of stabilizing periods for the measuring function.

r4719[0...1]	Trace trigger index / Trace Trig_index		
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S20_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: -   Data type: Unsigned32   P-Group: Trace and function generato   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description: Index:	Displays the trigger index in the trace buffer. The trigger event occurred at this point.		
Dependency:	Only valid when p4705 $=4$.		
p4720[0...1]	Trace recording cycle / Trace record_cyc		
CU_I, CU_NX_CX, $C U _$S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410	Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: Trace and function generato   Not for motor type: -   Min   0.000 [ms]	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   60000.000 [ms]	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting   1.000 [ms]
Description: Index:	Sets the recording cycle for the trace.$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		

p4721[0...1] Trace recording time / Trace record_time

CU I, CU NX CX, Can be changed: U T Calculated
CU ${ }^{-}$AC $D P$, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410
Description:
Can be changed: U, T
Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
340.28235 E36 [ms]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
Factory setting
1000.000 [ms]

### 2.2 List of parameters

p4722[0...1]	Trace trigger delay / Trace trig_delay		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU S 120 PN	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-340.28235E36 [ms]	340.28235 E 36 [ms]	0.000 [ms]
Description:	Sets the trigger delay for the trace.		
	Trigger delay < 0 :		
	Pretrigger: Tracing (recording) starts the selected time before the trigger event actually occurs. Trigger delay > 0 :		
	Post trigger: Tracing does not start until the set time after the trigger event.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		


p4723[0...1]	Trace time slice cycle / Trace cycle		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CUSS150_PN,	Max	Factory setting	
CU_S120_DP,	Min	$4.00000[\mathrm{~ms}]$	$0.12500[\mathrm{~ms}]$
CU_S150_DP,	$0.03125[\mathrm{~ms}]$		
CU_I_D410	Sets the time slice cycle in which the trace is called.		
Description: $[0]=$ Trace 0			
Index:	$[1]=$ Trace 1		


p4724[0...1]	Trace average in the time range / Trace average		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	
CU_S_AC_DP,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Scaling: -
CU_S120_PN,	Not for motor type: -	Max	Expert list: 0
CU_S150_PN,	Min	Factory setting	
CU_S120_DP,	O001 bin	0000 bin	
CU_S150_DP,	0000 bin		
CU_I_D410			
Description:	Sets the averaging in the time range for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


r4725[0...1]	Trace data type 1 traced / Trace rec type 1		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Access level: 3
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Func. diagram: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Unit selection: -
CU_S150_PN,	Max	Expert list: 0	
CU_S120_DP,	Min	-	Factory setting
CU_S150_DP,	-	-	
CU_D410			

Description: Displays the recorded data type 1 for the trace.
$\begin{array}{ll}\text { Index: } & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1}\end{array}$

r4726[0...1]	Trace data type 2 traced / Trace rec type 2		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description:	Displays the recorded data type 2 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


r4727[0..1]	Trace data type 3 traced / Trace rec type 3		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Sot for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description:	Displays the recorded data type 3 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


r4728[0...1]	Trace data type $\mathbf{4}$ traced / Trace rec type $\mathbf{4}$		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S12O_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description:	Displays the recorded data type 4 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


r4729[0...1]	Trace number of recorded values / Trace rec values		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Access level: 3
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Func. diagram: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Unit selection: -
CU_S150_PN,	Min	Expert list: 0	
CU_S20_DP,	-	Factory setting	
CU_S150_DP,	-	-	
CU_I_D410			
Description:	Displays the number of traced values for each signal.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		
Dependency:	Only valid when p4705 $=4$.		

### 2.2 List of parameters

p4730[0...5]	Trace record signal 0 / Trace record sig 0		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	
CU_S150_DP,	-		
CU_I_D410			
Description:	Selects the first signal to be traced.		
Index:	$[0]=$ Trace 0 parameter in BICO format		
	$[1]=$ Trace 1 parameter in BICO format		
	$[2]=$ Trace 0 PINx with DO Id and chart Id		
	$[3]=$ Trace 0 PINx with block Id and PIN Id		
	$[4]=$ Trace 1 PINy with DO Id and chart Id		
	$[5]=$ Trace 1 PINy with block Id and PIN Id		


p4731[0...5]	Trace record signal 1 / Trace record sig 1		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	0
CU_S150_DP,	-		
CU_I_D410			
Description:	Selects the second signal to be traced.		
Index:	$[0]=$ Trace 0 parameter in BICO format		
	$[1]=$ Trace 1 parameter in BICO format		
	$[2]=$ Trace 0 PINx with DO Id and chart Id		
	$[3]=$ Trace 0 PINx with block Id and PIN Id		
	$[4]=$ Trace 1 PINy with DO Id and chart Id		
	$[5]=$ Trace 1 PINy with block Id and PIN Id		


p4732[0...5]	Trace record signal 2 / Trace record sig 2		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	-	0

Description: Selects the third signal to be traced.
Index: $\quad[0]=$ Trace 0 parameter in BICO format
[1] = Trace 1 parameter in BICO format
[2] = Trace 0 PINx with DO Id and chart Id
[3] = Trace 0 PINx with block Id and PIN Id
[4] = Trace 1 PINy with DO Id and chart Id
[5] = Trace 1 PINy with block Id and PIN Id

p4733[0...5]	Trace record signal 3 / Trace reco	d sig 3	
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: $U, T$   Data type: Unsigned32   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   -	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting   0
Description: Index:	Selects the fourth signal to be traced.   [0] = Trace 0 parameter in BICO format   [1] = Trace 1 parameter in BICO format   [2] = Trace 0 PINx with DO Id and chart Id   [3] = Trace 0 PINx with block Id and PIN Id   [4] = Trace 1 PINy with DO Id and chart Id   [5] = Trace 1 PINy with block Id and PIN Id		


p4734[0...5]	Trace record signal 4 / Trace record sig $\mathbf{4}$		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_ACPN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	0
CU_S150_DP,	-		
CU_I_D410			
Description:	Selects the fifth signal to be traced.		
Index:	$[0]=$ Trace 0 parameter in BICO format		
	$[1]=$ Trace 1 parameter in BICO format		
	$[2]=$ Trace 0 PINx with DO Id and chart Id		
	$[3]=$ Trace 0 PINx with block Id and PIN Id		
	$[4]=$ Trace 1 PINy with DO Id and chart Id		
	$[5]=$ Trace 1 PINy with block Id and PIN Id		


p4735[0...5]	Trace record signal 5 / Trace record sig 5		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	-	0

Description: Selects the sixth signal to be traced.

Index: $\quad[0]=$ Trace 0 parameter in BICO format
[1] = Trace 1 parameter in BICO format
[2] = Trace 0 PINx with DO Id and chart Id
[3] = Trace 0 PINx with block Id and PIN Id
[4] = Trace 1 PINy with DO Id and chart Id
[5] = Trace 1 PINy with block Id and PIN Id

### 2.2 List of parameters

p4736[0...5]	Trace record signal 6 / Trace record sig 6		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	0
CU_S150_DP,	-		
CU_I_D410			
Description:	Selects the seventh signal to be traced.		
Index:	$[0]=$ Trace 0 parameter in BICO format		
	$[1]=$ Trace 1 parameter in BICO format		
	$[2]=$ Trace 0 PINx with DO Id and chart Id		
	$[3]=$ Trace 0 PINx with block Id and PIN Id		
	$[4]=$ Trace 1 PINy with DO Id and chart Id		
	$[5]=$ Trace 1 PINy with block Id and PIN Id		


p4737[0...5]	Trace record signal 7 / Trace rec	d sig 7	
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: Unsigned32   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated:   Dyn. index: -   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting   0
Description: Index:	Selects the eighth signal to be traced.   [ 0 ] = Trace 0 parameter in BICO format   [1] = Trace 1 parameter in BICO format   [2] = Trace 0 PINx with DO Id and chart Id   [3] = Trace 0 PINx with block Id and PIN Id   [4] = Trace 1 PINy with DO Id and chart Id   [5] = Trace 1 PINy with block Id and PIN Id		


r4740[0...16383]	Trace 0 trace buffer signal 0 floating point / Trace 0 rec sig 0		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	-
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 0 .		
	The trace (record) buffer is sub-divided into memory banks, each containing 16384 values. Parameter p4795 can be used to toggle between the individual banks.		
	Example A:		
	The first 16384 values of signal 0 , trace 0 are to be read out.		
	In this case, memory bank 0 is set with p4795 $=0$. The first 16384 values can now be read out using r4740[0] to r4740[16383].		
	Example B:		
	The values 16385 to 32768 from signal 0 , trace 0 are to be read out.		
	In this case, memory bank 1 is set with p4795 = 1. The values can now be read out in r4740[0] to r4740[16383].		
Dependency:	Refer to: p4795		


r4744[0...16383] Trace 0 trace buffer signal 4 floating point / Trace 0 rec sig 4

CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410
Description: Dependency:

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
-
Displays the trace buffer (record buffer) for trace 0 and signal 4.
Refer to: $\mathrm{r} 4740, \mathrm{p} 4795$

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
Factory setting
r4745[0...16383] Trace 0 trace buffer signal 5 floating point / Trace 0 rec sig 5
CU_I, CU_NX_CX,
CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, Can be changed: - Calculated: Data type: FloatingPoint32
P-Group: Trace and function generator
Not for motor type: -
Dyn. index: -
Unit group: -
Scaling: -
Min Max CU_S150_DP, CU_I_D410
Description: Displays the trace buffer (record buffer) for trace 0 and signal 5 .
Dependency: Refer to: r4740, p4795

r4746[0...16383]	Trace 0 trace buffer signal $\mathbf{6}$ floating point / Trace 0 rec sig $\mathbf{6}$		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 6.		
Dependency:	Refer to: $r 4740$, p4795		

## r4747[0...16383] Trace 0 trace buffer signal 7 floating point / Trace 0 rec sig 7

CU_S_AC_DP, Data type: FloatingPoint32
CU_S_AC_PN,
CU_S120_PN,
CU_S150_PN,
CU_S120_DP,
CU_S150_DP,
CU_I_D410
Description: Displays the trace buffer (record buffer) for trace 0 and signal 7 .
Dependency: Refer to: r4740, p4795

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
Factory setting
r4750[0...16383] Trace 1 trace buffer signal 0 floating point / Trace 1 rec sig 0
CU_I, CU_NX_CX, Can be changed: - Calculated: -

CU S AC CU S AC P PN , CU_S120_PN, CU_S150_PN, CU_S120_DP,
CU_S150_DP, CU_I_D410
Description: Displays the trace buffer (record buffer) for trace 1 and signal 0.
Dependency:
Refer to: $\mathrm{r} 4740, \mathrm{p} 4795$
r4751[0...16383] Trace 1 trace buffer signal 1 floating point / Trace 1 rec sig 1
CU_I, CU_NX_CX,
CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410
Description: Displays the trace buffer (record buffer) for trace 1 and signal 1.
Dependency:

Can be changed: -	Calculated: -
Data type: FloatingPoint32	Dyn. index: -
P-Group: Trace and function generator	Unit group: -
Not for motor type: -	Scaling: -
Min	Max
-	-
Displays the trace buffer (record buffer) for trace 1 and signal 1.	
Refer to: r4740, p4795	

r4752[0...16383] Trace 1 trace buffer signal 2 floating point / Trace 1 rec sig 2
CU_I, CU_NX_CX,
$C U _S _A C=D P$, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP,
Can be changed: - Calculated: -

Data type: FloatingPoint32
P-Group: Trace and function generator
Dyn. index: -

Not for motor type: -
Unit group: -
Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0 Min Max Factory setting CU_S150_DP, CU_I_D410
Description: Displays the trace buffer (record buffer) for trace 1 and signal 2.
Dependency: Refer to: $\mathrm{r} 4740, \mathrm{p} 4795$

r4753[0...16383]	Trace 1 trace buffer signal 3 floating point / Trace 1 rec sig 3		
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated:   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 3. Refer to: r4740, p4795		
r4754[0...16383]	Trace 1 trace buffer signal 4 floating point / Trace 1 rec sig 4		
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410	Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated:   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 4. Refer to: r4740, p4795		
r4755[0...16383]	Trace 1 trace buffer signal 5 floating point / Trace 1 rec sig 5		
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410	Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated:   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 5 . Refer to: r4740, p4795		

r4756[0...16383] Trace 1 trace buffer signal 6 floating point / Trace 1 rec sig 6

CU_S_AC_DP, Data type: FloatingPoint32 CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410

P-Group: Trace and function generator
Not for motor type: -
Min
-

Dependency:

Displays the trace buffer (record buffer) for trace 1 and signal 6 .
Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
-

Refer to: r4740, p4795

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
Factory setting
r4757[0...16383] Trace 1 trace buffer signal 7 floating point / Trace 1 rec sig 7
CU_I, CU_NX_CX,
CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU S150 PN, CU_S120_DP,
Can be changed: - Calculated: -

CU_S150_DP, CU_I_D410
Description: Displays the trace buffer (record buffer) for trace 1 and signal 7.
Dependency: Refer to: r4740, p4795


r4761[0...16383]	Trace 0 trace buffer signal 1 / Trace 0 rec sig 1		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,   CU S120 PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	-
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 0 and signal 1 . Refer to r4760		

r4762[0...16383] Trace 0 trace buffer signal 2 / Trace 0 rec sig 2

CU_I, CU_NX_CX,	Can be changed: -	Calculated: -
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -
CU_S120_PN,	Not for motor type: -	Scaling: -
CU_S150_PN,	Min	Max
CU_S120_DP,	-	-
CU_S150_DP,		
CU_I_D410	Displays the trace buffer (record buffer) for trace 0 and signal 2.	
Description: Refer to: r4760		
Dependency:		


r4763[0...16383]	Trace 0 trace buffer signal 3 /	g	
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: -   Data type: Unsigned32   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated:   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 0 and signal 3.   Refer to: r4760		
r4764[0...16383]	Trace 0 trace buffer signal 4 / Trace 0 rec sig 4		
CU_I, CU_NX_CX,   CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   CU_I_D410	Can be changed: -   Data type: Unsigned32   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated:   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description: Dependency:	Displays the trace buffer (record buffer) for trace 0 and signal 4. Refer to: r4760		
r4765[0...16383]	Trace 0 trace buffer signal 5 / Trace 0 rec sig 5		
CU_I, CU_NX_CX,   CUS AC DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   CU_I_D410	Can be changed: -   Data type: Unsigned32   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated: -   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 0 and signal 5 .   Refer to: r4760		

r4766[0...16383] Trace 0 trace buffer signal 6 / Trace 0 rec sig 6
CU I, CU NX CX, Can be changed: -

CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410

Dependency:

Description: Displays the trace buffer (record buffer) for trace 0 and signal 6.
Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
-

Refer to: r4760

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
Factory setting
r4767[0...16383] Trace 0 trace buffer signal 7 / Trace 0 rec sig 7
CU_I, CU_NX_CX, Can be changed: - Calculated: -
CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, Data type: Unsigned32 CU_S120_DP, P-Group: Trace and function generator Not for motor type: Min CU_I_D410
Description: Displays the trace buffer (record buffer) for trace 0 and signal 7 . Dependency: Refer to: r4760

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
Factory setting

r4770[0...16383]	Trace 1 trace buffer signal 0 / Trace 1 rec sig 0		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Access level: 3
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S12O_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description: Displays the trace buffer (record buffer) for trace 1 and signal 0.			
Dependency:	Refer to: r4760		


r4771[0...16383]	Trace 1 trace buffer signal 1 / Trace 1 rec sig 1		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 1.Refer to: r4760		

r4772[0...16383] Trace 1 trace buffer signal 2 / Trace 1 rec sig 2
CU I, CU NX CX, Can be changed: - Calculated: -

CU_S_AC_DP,
$C U S A C P N$,
CU_S120_PN,
CU_S150_PN,
CU_S120_DP,
CU_S150_DP,
CU_I_D410
Description: Displays the trace buffer (record buffer) for trace 1 and signal 2.
Dependency:
Refer to: r4760

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
Factory setting
r4773[0...16383] Trace 1 trace buffer signal 3 / Trace 1 rec sig 3

CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU S150 PN, CU_S120_DP, CU_S150_DP, CU_I_D410

Dependency:

Description: Displays the trace buffer (record buffer) for trace 1 and signal 3.
Can be changed: - Calculated: -

Data type: Unsigned32
P-Group: Trace and function generator
Not for motor type: -
Min
-

Refer to: r4760

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
Factory setting
r4774[0...16383] Trace 1 trace buffer signal 4 / Trace 1 rec sig 4
CU I, CU
 $C U S A C$ PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410
Description: Dependency:

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
Factory setting

r4775[0...16383]	Trace $\mathbf{1}$ trace buffer signal 5 / Trace $\mathbf{1}$ rec sig $\mathbf{5}$		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S12_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description: Displays the trace buffer (record buffer) for trace 1 and signal 5.   Dependency: Refer to: r4760			


r4776[0...16383]	Trace 1 trace buffer signal 6 / Trace 1 rec sig 6		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 6 .   Refer to: r4760		

r4777[0...16383] Trace 1 trace buffer signal 7 / Trace 1 rec sig 7
CU_S_AC_DP,
$C U S A C P N$,
CU_S120_PN,
CU_S150_PN,
CU_S120_DP,
CU_S150_DP,
CU_I_D410
Description: Displays the trace buffer (record buffer) for trace 1 and signal 7.
Dependency: Refer to: r4760

p4780[0...1]	Trace physical address signal 0 / Trace PhyAddr Sig0		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Sot for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	111111111111111111111111	0000 bin
CU_S150_DP,	0000 bin	11111111 bin	

Description: Sets the physical address for the first signal to be traced.
The data type is defined using p4730.
Index:
[0] = Trace 0
[1] = Trace 1

p4781[0...1]	Trace physical address signal 1/Trace PhyAddr Sig1		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S20_DP,	Min	111111111111111111111111	0000 bin
CU_S150_DP,	0000 bin	11111111 bin	
CU_I_D410			
Description:	Sets the physical address for the second signal to be traced.		
	The data type is defined using p4731.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


p4782[0...1]	Trace physical address signal 2 / Trace PhyAddr Sig2		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S20_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	111111111111111111111111	0000 bin
CU_S150_DP,	0000 bin	11111111 bin	

Description: Sets the physical address for the third signal to be traced.
Index: $\quad[0]=$ Trace 0
[1] = Trace 1

p4783[0...1]	Trace physical address signal $3 /$ Trace PhyAddr Sig3		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Min	111111111111111111111111	Factory setting
CU_S120_DP,	Ma00 bin		
CU_S150_DP,	0000 bin	1111111 bin	
CU_I_D410	Sets the physical address for the fourth signal to be traced.		
Description:	The data type is defined using p4733.		
	$[0]=$ Trace 0		
Index:	$[1]=$ Trace 1		


p4784[0...1]	Trace physical address signal 4 / Trace PhyAddr Sig4		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
CU_S150_DP,	0000 bin	111111111111111111111111	
CU_I_D410	0000 bin	11111111 bin	0000 bin
Description:	Sets the physical address for the fifth signal to be traced. The data type is defined using p4734.		
Index:	[0] = Trace 0		
	[1] = Trace 1		


p4785[0...1]	Trace physical address signal 5 / Trace PhyAddr Sig5		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 0	
CU_S50_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	111111111111111111111111	0000 bin
CU_S150_DP,	0000 bin	11111111 bin	
CU_I_D410			
Description:	Sets the physical address for the sixth signal to be traced.		
	The data type is defined using p4735.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


p4786[0...1]	Trace physical address signal 6 / Trace PhyAddr Sig6		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	111111111111111111111111	0000 bin
CU_S150_DP,	0000 bin	11111111 bin	

Description: Sets the physical address for the seventh signal to be traced.
Index: $\quad[0]=$ Trace 0
[1] = Trace 1

p4787[0...1]	Trace physical address signal 7 / Trace PhyAddr Sig7		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	111111111111111111111111	0000 bin	
CU_S150_DP,	0000 bin	11111111 bin	
CU_I_D410			
Description:	Sets the physical address for the eighth signal to be traced.		
	The data type is defined using p4737.		
Index:	[0] = Trace 0		


p4789[0...1]	Trace physical address trigger signal / Trace PhyAddr Trig		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Min	FFFF FFFF hex	Factory setting
CU_S120_DP,	0000 hex	0000 hex	
CU_S150_DP,			
CU_I_D410	Sets the physical address for the trigger signal.		
Description:	The data type is defined by making the appropriate selection in p4711.		
	$[0]=$ Trace 0		
Index:	$[1]=$ Trace 1		


r4790[0...1]	Trace data type $\mathbf{5}$ traced / Trace rec type 5		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S12_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description:	Displays the recorded data type 5 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


r4791[0..1]	Trace data type 6 traced / Trace rec type 6		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	
CU_SAC_DP,	Data type: Unsigned32	Dyn. index: -	Access level: 3
CU_SAC_PN,	P-Group: Trace and function generator	Unit group: -	Fiagram: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description:	Displays the recorded data type 6 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


r4792[0...1]	Trace data type 7 traced / Trace rec type 7		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S12O_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description:	Displays the recorded data type 7 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		

r4793[0...1] Trace data type 8 traced / Trace rec type 8
$[0]=$ Trace 0
$[1]=$ Trace 1

CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410
Description:
Displays the recorded data type 8 for the trace.
Index:
Can be changed: -
Data type: Unsigned32
P-Group: Trace and function generator
Not for motor type: -
Min

Max

Factory setting

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
ax
Calculated: -
Dyn. index: -
Unit group: -
Scaling: -


r4798[0...1]	Trace 1 trigger instant / Trace 1 t_trigger		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP, CU S150 DP,	Min	Max	Factory setting
CU_I_D410			-
Description:	Displays the instant in time for fulfilling the trigger condition for trace recorder 1.		
Index:	$\begin{aligned} & {[0]=\text { Milliseconds }} \\ & {[1]=\text { Days }} \end{aligned}$		
Dependency:	Refer to: r2114, r3102, r4719		
Notice:	The accuracy of the trigger instant depends on the accuracy of the underlying basis time.		
	For clarification:		
	The trigger instant is calculated with a $\mu \mathrm{s}$ accuracy. If the underlying basis time is only available with ms accuracy, then as a result of rounding effects, an inaccuracy of 1 ms can occur.		
	When referred to r4719, the trigger instant can therefore deviate somewhat.		
Note:	If the time calculation of the drive can be synchronized with a higher-level control, then this time can be taken from the actual UTC time (r3102). Otherwise, the time is based on the system runtime (r2114).		

### 2.2 List of parameters




### 2.2 List of parameters




## Function generator amplitude / FG amplitude

p4824
CU_I, CU_NX_CX,
CU_S_AC_DP,
CU_S_AC_PN,
CU_S120_PN,
CU_S150_PN,
CU_S120_DP,
CU_S150_DP,
CU_I_D410

CU_I, CU_NX_CX CU_S_AC_DP,
CU_S_AC_PN, CU_S120_PN,
CU_S150_PN, CU CU_I_D410

Description: Dependency:

Can be changed: U, T Calculated: -
Data type: FloatingPoint32
P-Group: Trace and function generator
Not for motor type: -
Min
-1600.00 [\%]
Sets the amplitude for the signal to be generated for the function generator Units are dependent on p4810.
If p4810 $=1,2,4$ : The amplitude is referred to p2002 (reference current).
If p4810 $=3$, 5 : The amplitude is referred to p2000 (reference speed).

## p4827

CU_I, CU_NX_CX,
CU_S_AC_DP,
CU_S_AC_PN,
CU_S120_PN,
CU_S150_PN,
CU_S120_DP,
CU_S150_DP,
CU_I_D410
Description:
Function generator ramp-up time to offset / FG ramp-up offset

Data type: FloatingPoint32
P-Group: Trace and function generator
Not for motor type: -
Min
0.00 [ms]

Sets the ramp-up time to the offset for the function generator.

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
100000.00 [ms]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
Factory setting
5.00 [\%]

Function generator 2nd amplitude / FG 2nd amplitude

p4825	Function generator 2nd amplitude / FG 2nd amplitude		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 0	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	$1600.00[\%]$	$7.00[\%]$
CU_S150_DP,	$-1600.00[\%]$		
CU_I_D410		Sets the second amplitude for the signal to be generated for the function generator.	
Description:	Only effective for p4820 $=2$ (staircase).		
Dependency:	Units are dependent on p4810.     If p4810 $=1,2,4:$ The amplitude is referred to p2002 (reference current).		
	If p4810 $=3,5:$ The amplitude is referred to p2000 (reference speed).		


p4826	Function generator offset / FG offset		
CU_I, CU_NX_CX,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-1600.00 [\%]	1600.00 [\%]	0.00 [\%]
Description:	Sets the offset (DC component) of the signal to be generated for the function generator.		
Dependency:	Units are dependent on p4810.		
	If p4810 $=1,2,4$ : The offset is referred to p2002 (reference current).		
	If p4810 $=3,5$ : The offset is referred to p2000 (reference speed).		
	If p4810 $=2$ : In order to avoid the undesirable effects of play (backlash), the offset does not act on the current setpoint, but instead on the speed setpoint.		

Data type: FloatingPoint32
P-Group: Trace and function generator
Not for motor type: -
-1600.00 [\%]
Sets the second amplitude for the signal to be generated for the function generator
Only effective for p4820 $=2$ (staircase).
Units are dependent on p4810.
If p4810 $=1,2,4$ : The amplitude is referred to p2002 (reference current).

Function generator offset / FG offset
Can be changed: U, T

P-Group: Trace and function generator Not for motor type:
-1600.00 [\%]
Sets the offset (DC component) of the signal to be generated for the function generator. Units are dependent on p4810.
If p4810 $=1,2,4$ : The offset is referred to p2002 (reference current).
If $\mathrm{p} 4810=3,5$ : The offset is referred to p2000 (reference speed).
If p4810 = 2: In order to avoid the undesirable effects of play (backlash), the offset does not act on the current , but instead on the speed setpoint.

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
Factory setting
32.00 [ms]


### 2.2 List of parameters

Index: $\quad$| $[0]=$ First drive for connection |  |
| :--- | :--- |
|  | $[1]=$ Second drive for connection |
|  | $[2]=$ Third drive for connection |

p4833[0...2]	Function generator offset scaling / FG offset scal		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S12OPN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S10_PN,	Max	Factory setting	
CU_S120_DP,	Min	$340.28235 E 36[\%]$	$100.00000[\%]$
CU_S150_DP,	$-340.28235 E 36[\%]$		

Description: $\quad$ Sets the scaling for the offset of the signal waveforms separately for each output channel.
The value cannot be changed while the function generator is running.
$\begin{array}{ll}\text { Index: } & {[0]=\text { First drive for connection }} \\ & {[1]=\text { Second drive for connection }}\end{array}$
[2] = Third drive for connection

r4834[0...4]	CO: Function generator free measurement output signal / FG fr MeasFct outp		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN, CU S120 PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: PERCENT	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	- [\%]	- [\%]	- [\%]
Description:	Displays the output signal for the free measurement function.		
Index:	[0] = Signal 1		
	[1] = Signal 2		
	[2] = Signal 3		
	[3] = Signal 4		
	[4] = Signal 5		
Dependency:	Refer to: p4810		
Note:	The signals are only output in the "free measurement function" operating mode (p4810 = 6)		
p4835[0...4]	Function generator free measurement function scaling / FG fr MeasFct scal		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-200.00000 [\%]	200.00000 [\%]	100.00000 [\%]
Description:	Sets the scaling of the output signals for the free measurement function.		
Index:	[0] = Signal 1		
	[1] = Signal 2		
	[2] = Signal 3		
	[3] = Signal 4		
Note:	The parameter cannot be changed when	measurement function	ted $(r 4706=2,3)$.


p4840[0...1]	MTrace cycle number setting / Cycle number		
CU_I, CU_NX_CX,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Trace and function generator	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	4294967295	0
Description:	Sets the number of cycles of a multiple trace.		
	The multiple trace is deactivated with a value $=0$.		
	The multiple trace is permanently activated for a value $>=100000$.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
Dependency:	Refer to: r4841, p4844		
	Refer to: A02097, A02098		
Notice:	A multiple trace can have a negative impact on the total system performance.		
	From their inherent principle of operation, flash memory cards are subject to wear as a result of write operations. As a consequence, the lifetime of flash memory cards is reduced when using the multiple trace functionality.		


r4841[0...1]	MTrace cycle actual display / Cycle act display		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Access level: 3
CU_S_AC_PN,	P-Group: Trace and function generator	Unit group: -	Func. diagram: -
CU_S120_PN,	Scaling: -	Unit selection: -	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S20_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description:	Displays the currently running cycle (including deadtime) of the multiple trace.		
Index:	$[0]=$ Trace 0		
	[1] = Trace 1		
Dependency:	Refer to: p4840, p4844		

p4844[0...1] MTrace ring buffer files number / Ring buff file qty

CU I, CU NX CX,
$C U_{-}$S_AC_DP, $C U _S A C _P N$, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410
Description: Sets the number of ring buffer files for the measurement results of the multiple trace. Index:

Dependency: Refer to: $\mathrm{p} 4840, \mathrm{r} 4841$

### 2.2 List of parameters

r4899	Status word sequence control / ZSW seq_ctrl				
TM41	Can be changed: -		Calculated: - Acces		
	Data type: Unsigned16		Dyn. index: -	Func. diagram: -	
	P-Group: Displays, signals		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status word of the sequence control from Terminal Module 41 (TM41).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Ready for switching on	Yes	No	-
		Ready	Yes	No	-
		Operation enabled	Yes	No	-
		Fault present	Yes	No	-
	04	Coast down active	No	Yes	-
		Quick Stop active	No	Yes	-
		Switching on inhibited	Yes	No	-
		Alarm present	Yes	No	-
		Control request	Yes	No	-
		Motor rotates forwards	Yes	No	-
$\overline{\mathrm{r} 4950}$	TEC DO-specific number / TEC DO qty				
All objects	Can be changed: -		Calculated: -	Access level: 4	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: -	
	P-Group: OEM range		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	0		32	-	
Description:   Dependency:   Note:					
	Refer to: r4951, r4952, r4955, p4956, r4957, r4958, r4959, r4960				
	DO: Drive Object				
	TEC: Technology Extension				
r4951	TEC DO-specific identifier total length / TEC DO ident tot_I				
All objects	Can be changed: -		Calculated: -	Access level: 4	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: -	
	P-Group: OEM range		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	0		288	-	
Description:	Displays the total length of the identifier of the Technology Extension installed on this drive object.				
Dependency:	Refer to: r4950, r4952, r4955, p4956, r4957, r4958, r4959, r4960				
Note:	The identifier of a Technology Extension comprises a maximum of 8 characters plus separator.				
r4952	TEC DO-specific GUID total length / TEC DO GUID length				
All objects	Can be changed: -		Calculated: -	Access level: 4	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: -	
	P-Group: OEM range		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	0		576		
Description:	Displays the total length of the GUIDs of the Technology Extensions installed on this drive object.   Refer to: r4950, r4951, r4955, p4956, r4957, r4958, r4959, r4960				
Dependency:					



p4956[0...n]	TEC DO-specific activation / TEC DO act		
All objects	Can be changed: $\mathrm{C} 1, \mathrm{~T}$	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: r4950	Func. diagram: -
	P-Group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to activate the Technology Extensions installed on this drive object.		
	r4956[0]: Activation of Technology Extension 1		
	r4956[1]: Activation of Technology Extension 2, ...		
Value:	0: Technology Extension inactive   1: Technology Extension active		
Dependency:	Refer to: r4950, r4951, r4952, r4955, r4957, r4958, r4959, r4960		
Notice:	This parameter is only indexed if at least one drive object-specific Technology Extension exists (p4950 > 0).		
Note:	TEC: Technology Extension		
r4957[0...n]	TEC DO-specific version / TEC DO Version		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: r4950	Func. diagram: -
	P-Group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	-
Description:	Displays the version of the r4957[0]: Version of Tech r4957[1]: Version of Tech	nsions installed on this	
Dependency:	Refer to: r4950, r4951, r4952, r4955, p4956, r4958, r4959, r4960		
Notice:	This parameter is only indexed if at least one drive object-specific Technology Extension exists (p4950 > 0).		
Note:	TEC: Technology Extension		
	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		


r4958[0...n]	TEC DO-specific interface version / TEC DO interf_vers		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: r4950	Func. diagram: -
	P-Group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the interface version of Technology Extensions installed on this drive object. r4958[0]: Interface version of Technology Extension 1   r4958[1]: Interface version of Technology Extension 2, ...		
Dependency:	Refer to: r4950, r4951, r4952, r4955, p4956, r4957, r4959, r4960		
Notice:	This parameter is only indexed if at least one drive object-specific Technology Extension exists (p4950 > 0).		
Note:	TEC: Technology Extension		
	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		


r4959[0...n]	TEC DO-specific GUID / TEC DO GUID		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned8	Dyn. index: r4952	Func. diagram: -
	P-Group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the GUIDs of the Technology Extensions installed on this drive object.		
	r4959[0...15]: GUID of Technology Extension 1		
	r4959[16]: Major information of Technology Extension 1		
	r4959[17]: Minor information of Technology Extension 1		
	r4959[18...33]: GUID of Technology Extension 2		
	r4959[34]: Major information of Technology Extension 2		
	r4959[35]: Minor information of Technology Extension 2, ...		
Dependency:	Refer to: r4950, r4951, r4952, r4955, p4956, r4957, r4958, r4960		
Notice:	This parameter is only indexed if at least one drive object-specific Technology Extension exists ( $\mathrm{p} 4950>0$ ).		
Note:	TEC: Technology Extension		
r4960[0...n]	TEC DO-specific GUID drive object / TEC DO GUID DO		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned8	Dyn. index: r4952	Func. diagram: -
	P-Group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	
Description:	Displays the GUIDs of this drive object of the Technology Extensions installed on the memory card/device memory.		
	r4960[16]: Major information of this drive object of Technology Extension 1		
	r4960[17]: Minor information of this drive object of Technology Extension 1		
	r4960[18...33]: GUID of this drive object of Technology Extension 2		
	r4960[34]: Major information of this drive object of Technology Extension 2		
	r4960[35]: Minor information of this drive object of Technology Extension 2, ...		
Dependency:	Refer to: r4950, r4951, r4952, r4955, p4956, r4957, r4958, r4959		
Notice:	This parameter is only indexed if at least one drive object-specific Technology Extension exists ( $\mathrm{p} 4950>0$ ).		
Note:	TEC: Technology Extension		


p4961[0...n]	TEC DO-specific logbook module selection / TEC DO log module		
All objects	Can be changed: T	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: r4950	Func. diagram: -
	P-Group: OEM range	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Only for service purposes.		
Note:	TEC: Technology Extension		
r4975	TEC invalid number / TEC inval qty		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram:
CU_S_AC_PN, CU S120 PN,	P-Group: OEM range	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP, CU S150 DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	-
Description:	Displays the number of invalid Technology Extensions installed on the memory card/device memory.		
Dependency:	Refer to: r4976, r4978, r4979		
Note:	TEC: Technology Extension		
r4976	TEC invalid identifier total length / TEC inval ID tot_I		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram:
CU_S120_PN,	P-Group: OEM range	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	
Description:	Displays the total length of the IDs of all the invalid Technology Extensions installed on the memory card/device memory.		
Dependency:	Refer to: r4975, r4978, r4979		
Note:	TEC: Technology Extension		
	The identifier of an invalid Technology Extension comprises a maximum of 8 characters plus separator.		


r4978[0...n]	TEC invalid identifier / TEC inval ID		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned8	Dyn. index: r 4976	Func. diagram: -
$\text { CU_S } 120 \text { PN, }$	P-Group: OEM range	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	
Description:	Displays the IDs of all the invalid Technology Extensions installed on the memory card/device memory. r4978[0...8]: Identifier of invalid Technology Extension 1   r4978[9...17]: Identifier of invalid Technology Extension 2, ...		
Dependency:	Refer to: r4975, r4976, r4979		
Notice:	This parameter is only indexed if at least one invalid Technology Extension exists (p4975 > 0).TEC: Technology Extension		
Note:			



r4985	TEC number / TEC qty		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
$C U _S$ _AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: OEM range	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	32	-
Description:	Displays the number of Technology Extensions installed on the memory card/device memory.		
Dependency:	Refer to: r4986, r4987, r4988, r4989, r4990, r4991, r4992, r4993, r4994		
Note:	TEC: Technology Extension		
r4986	TEC identifier total length / TEC ident tot_I		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S-120_PN,	P-Group: OEM range	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	288	-
Description:	Displays the total length of the IDs of all the Technology Extensions installed on the memory card/device memory.		
Dependency:	Refer to: r4985, r4987, r4988, r4989, r4990, r4991, r4992, r4993, r4994		
Note:	TEC: Technology Extension		
	The identifier of a Technology Extension comprises a maximum of 8 characters plus separator.		


r4987	TEC GUID total length / TEC GUID tot_Igth		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_S_AC_PN, } \\ & \text { CU_S } 120 \text { PN , } \end{aligned}$	P-Group: OEM range	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	576	-
Description:	Displays the total length of the GUIDs of all the Technology Extensions installed on the memory card/device memory.		
Dependency:	Refer to: r4985, r4986, r4988, r4989, r4990, r4991, r4992, r4993, r4994		
Note:	The GUID of a Technology Extension comprises 16 characters plus 1 character major information plus 1 character, minor information.		
	GUID: Globally Unique IDentifier		
	TEC: Technology Extension		


r4988[0...n]	TEC identifier / TEC ident
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410	Can be changed: - Calculated: - Access level: 4   Data type: Unsigned8 Dyn. index: r4986 Func. diagram: -   P-Group: OEM range Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:   Dependency:   Notice:   Note:	Displays the IDs of all the Technology Extensions installed on the memory card/device memory. r4988[0...8]: Identifier of Technology Extension 1   r4988[9...17]: Identifier of Technology Extension 2, ...   Refer to: r4985, r4986, r4987, r4989, r4990, r4991, r4992, r4993, r4994   This parameter is only indexed if at least one Technology Extension exists (p4985 > 0).   TEC: Technology Extension
r4989[0...n]   CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410	TEC version / TEC version
Description:   Dependency:   Notice:   Note:	Displays the version of all the Technology Extensions installed on the memory card/device memory.   r4989[0]: Version of Technology Extension 1   r4989[1]: Version of Technology Extension 2, ...   Refer to: r4985, r4986, r4987, r4988, r4990, r4991, r4992, r4993, r4994   This parameter is only indexed if at least one Technology Extension exists (p4985 >0).   TEC: Technology Extension   Example:   The value 1010100 should be interpreted as V01.01.01.00.





### 2.2 List of parameters

Note: Example:
The value 1010100 should be interpreted as V 01.01 .01 .00

r5000	CO: Spindle properties/status / Prop/status				
SERVO (Spin_diag), SERVO_AC   (Spin_diag)			Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: -		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the properties supported by the spindle hardware and status.				
Bit field:		Signal name	1 signal	0 signal	FP
	Bit 00	Spindle functionality available	Yes	No	-
		Sensor S1 available	Yes	No	-
		Sensor S4 available	Yes	No	-
		Sensor S5 available	Yes	No	-
		Sensor S6 available	Yes	No	-
		State machine enabled	Yes	No	-
		Parameter p5043 changed	State 2	State 1	-
Note:	This display value is contained in the manufacturer-specific telegram 139 (SP_CONFIG).   For bit 11:   After each change in p5043[0...6] the signal level of this bit is changed.				


r5001	CO: Spindle clamp state / Clamp state		
SERVO (Spin_diag), SERVO AC   (Spin_diag)		Calculated: -	Access level: 1
	Can be changed: -   Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	11	-
Description:	Display and connector output for the clamped state.		
	Message A3x940 is output in states 2 and 11.		
	The voltage threshold values for the states can be set using parameter p5041. The hysteresis is adapted using parameter p5040.		
	The transition from state 4 to states 7, 8 or 10 can be influenced by the wait time p5042[0].		
	A transition is made into state 10 if the analog value in p5002 falls below the voltage threshold value in $\mathrm{p} 5041[4]$. However, if the analog value p5002 lies below the voltage threshold value in p5041[2] and the wait time in p5042[0] has expired, then a transition is made into state 7 or 8 - otherwise state 4 is kept.		
Value:	0 : System being initialized		
	1: State being initialized		
	2: Released with message		
	3: Released without message		
	4: Clamping		
	5: Releasing		
	6: Releasing without tool		
	7: Clamped with tool (S4 inactive)		
	8: Clamped with tool (S4 active)		
	9: Clamping without tool		
	10: Clamped without tool		
	11: Clamped with message		
Dependency:	Refer to: r5002, r5003,		
Note:	This display value is co	acturer-specific	



### 2.2 List of parameters

06	Result data speed/torque matrix available	Yes	No
10	Result data collision detection available	Yes	No
11	Result data system detection available	Yes	No
16	Characteristic data spindle available   17Characteristic data clamping cycle counter   available	Yes	Yes
19	Characteristic data operating hours counter   available	Yes	No
20	Characteristic data temperature diagnostics   available   Characteristic data speed/torque matrix   available   Characteristic data sensor description   available	Yes	Yes

Note:
This parameter can only be used in conjunction with a Sensor Module Integrated 24 (SMI24).



p5016	Enable spindle commissioning / Enable comm		
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: All groups	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to enable/inhibit spindle commissioning.		
	Enabling spindle commissioning results in the spindle parameters being reset after commissioning has been initiated (e.g. via p $0340>0$ or p3900 > 0 ).		
	Depending on the spindle configuration, the following parameters are reset:		
Value:	0 : Spindle commissioning enabled   1: Spindle commissioning inhibited		
Dependency:	Refer to: p0340, p3900		
Note:	This parameter can only be used in conjunction with a Sensor Module Integrated 24 (SMI24).		
	The parameter is automatically set to a value of 1 after exiting commissioning (p0009 = 0 ).		
p5019	Spindle password / Password		
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Sets the password for the spindle diagnostics write parameters.		
	Number range for spindle diagnostics:		
	5000 ... 5169		
Note:	This parameter can only be used in conjunction with a Sensor Module Integrated 24 (SMI24).		
r5020	Spindle manufacturer / Manufacturer		
SERVO (Spin_diag),   SERVO AC   (Spin_diag)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	48	-
Description:	Displays the spindle manufacturer.		
Value:	0: Unknown		
	1: Siemens AG Automation and Drives		
	32: Reserved		
	$\begin{array}{ll}\text { 33: } & \text { Reserved } \\ \text { 48: } & \text { WEISS Spindeltechnologie } \mathrm{GmbH}\end{array}$		


r5021[0...18]	Spindle article number / Article No.		
SERVO (Spin_diag),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
(Spin_diag)	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the article number (MFLB) or drawing number of the spindle.		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		


r5022[0..15]	Spindle serial number / Serial No.		
SERVO (Spin_diag),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the spindle serial number.		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
r5023	Spindle production date / Prod_date		
SERVO (Spin_diag),   SERVO_AC   (Spin_diag)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the production date of the spindle.		
Note:	Format: yyyymmdd		
r5032	Maximum spindle speed / n_max		
SERVO (Lin,   Spin_diag),   SERVO_AC (Lin,   Spin_diag),   SERVO_I_AC (Lin,   Spin_diag)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the maximum spindle speed.		
Note:	The highest possible (maximum) speed is set using p1082 (p1082 <= r5032).		
r5032	Maximum spindle speed / n_max		
SERVO (Spin_diag),   SERVO_AC   (Spin_diag),   SERVO_I_AC   (Spin_diag)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the maximum spindle speed.		
Note:	The highest possible (maximum) speed is set using p1082 (p1082 <= r5032).		
r5033	Spindle angular commutation offset / Commut_ang_off		
SERVO (Spin_diag),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ ${ }^{\circ}$ ]	- [ ${ }^{\circ}$ ]	- [ ${ }^{\circ}$ ]
Description:	Displays the angular commutation offset for the spindle encoder. When exiting commissioning, the value is transferred into p0431.		
Note:			

### 2.2 List of parameters

r5034	Spindle current controller sampling time maximum / l_ctrl t_samp max		
SERVO (Spin_diag),   SERVO_AC   (Spin_diag)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ $\mu \mathrm{s}$ ]	- [ $\mu \mathrm{s}$ ]	- [ $\mu \mathrm{s}$ ]
Description:	Displays the maximum recommended sampling time for the spindle current controller.   The current controller sampling time must be set greater than the value in p0112 or p0115[0]. For r5034 < p0115[0], alarm A07140 is output.		
Dependency:	Refer to: A07140		
p5040	Spindle voltage threshold values tolerance / U_thresh tol		
$\begin{aligned} & \text { SERVO (Spin_diag), } \\ & \text { SERVO_AC } \\ & \text { (Spin_diag) } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [mV]	1000.0 [mV]	0.0 [mV]
Description:	Sets the voltage tolerance for the voltage threshold values.		
	The tolerance acts symmetrically around the individual voltage threshold values (p5041[0..5]).		
Dependency:	Refer to: r5001, r5002, p5041		
p5041[0...5]	Spindle voltage threshold values / U_thresh		
$\begin{aligned} & \text { SERVO (Spin_diag), } \\ & \text { SERVO_AC } \\ & \text { (Spin_diag) } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [mV]	340.28235 E 36 [mV]	0.0 [mV]
Index:	Sets the voltage threshold values for the spindle.		
	[0] = Released (upper limit)		
	[1] = Released (lower limit)		
	[2] = Clamped with tool (upper limit)		
	[3] = Clamped with tool (lower limit)		
	[4] = Clamped without tool (upper limit)		
	[5] = Clamped without tool (lower limit)		
Dependency:	Refer to: r5001, r5002, p5040		
Note:	Only values can be entered, which do not overlap, taking into consideration the set tolerance (p5040).		



### 2.2 List of parameters

p5043[0...6]	Spindle speed limits / n_limits	
SERVO (Spin_diag),   SERVO_AC   (Spin_diag),   SERVO_I_AC   (Spin_diag)	Can be changed: T Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: - Unit group: -   Not for motor type: - Scaling: -   Min Max   $0.0[\mathrm{rpm}]$ $65535.0[\mathrm{rpm}]$	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   0.0 [rpm]
Description:	Sets the speed limits for the clamping state machine of the spindle.   For index [0]:   Valid for state r5001 $=3$.   For index [1]:   Valid for state r5001 $=4$.   For index [2]:   Valid for state r5001 $=5$.   For index [3]:   Valid for state r5001 $=6$.   For index [4]:   Valid for state r5001 $=7 / 8$.   For index [5]:   Valid for state r5001 $=9$.   For index [6]:   Valid for state r5001 $=10$.	
Index:	[0] = Released   [1] = Clamping   [2] = Releasing from the state "clamped with tool"   [3] = Releasing from the state "clamped without tool"   [4] = Clamped with tool   [5] = Clamping without tool   [6] = Clamped without tool	
Dependency:	Refer to: r5001	
Note:	For state $\mathrm{r} 5001=0,1,2$ or 11 , the fixed speed limit 0 applies.	
r5044	Maximum permissible spindle velocity limit / Spin v_lim Max	
SERVO (Lin,   Spin_diag),   SERVO_AC (Lin,   Spin_diag),   SERVO_I_AC (Lin,   Spin_diag)	Can be changed: - Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: - Unit group: -   Not for motor type: - Scaling: -   Min Max   $-[\mathrm{m} / \mathrm{min}]$ $-[\mathrm{m} / \mathrm{min}]$	Access level: 1   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   - [m/min]
Description:   Dependency:   Note:	Displays the maximum permissible velocity limit.   Refer to: r5001, p5043   Currently, the velocity limit is only displayed for the state "clamped without tool".   The velocity limit set in p5043[6] is effective.   Value $=65535$ : velocity limit not active.	


r5044	Maximum permissible spindle speed limit / Spin n_lim Max	
SERVO (Spin_diag),   SERVO_AC   (Spin_diag),   SERVO_I_AC   (Spin_diag)	Can be changed: - Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: - Unit group: -   Not for motor type: - Scaling: -   Min Max   $-[r p m]$ $-[r \mathrm{rm}]$	Access level: 1   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   - [rpm]
Description:   Dependency:   Note:	Displays the maximum permissible speed limit.   Refer to: r5001, p5043   Currently, the speed limit is only displayed for the state "clamped without tool".   The speed limit set in p5043[6] is effective.   Value $=65535$ : speed limit not active.	
r5170[0...5]	HF phase current actual values / HF I_ph act val	
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: - Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: Displays, signals Unit group: 6_5   Not for motor type: - Scaling: p2002   Min Max   $-[A]$ $-[A]$	Access level: 3   Func. diagram: -   Unit selection: p0505   Expert list: 1   Factory setting $-[\mathrm{A}]$
Description: Index:	Displays the measured phase currents as peak value.   [0] = Phase U motor current   [1] = Phase V motor current   [2] = Phase W motor current   [3] = Phase U capacitor current   [4] = Phase V capacitor current   [5] = Phase W capacitor current	
Dependency:   Note:	Refer to: r0069   HF: High Frequency Drive   For index [0...2]:   The 3 motor phase currents are displayed.   For index [3...5]:   The currents in the filter capacitors of the 3 phases are displayed.	
r5171	CO: HF damping voltage actual value / HF U_damp act val	
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: - Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: Displays, signals Unit group: 5_2   Not for motor type: - Scaling: p2001   Min Max   $-[V]$ $-[V]$	Access level: 3   Func. diagram: -   Unit selection: p0505   Expert list: 1   Factory setting   - [V]
Description:   Dependency:   Note:	Displays the actual value of the damping voltage.   Refer to: F37002   HF: High Frequency Drive	

### 2.2 List of parameters



r5173	CO: HF Damping Module I2t overload / HF DM overl I2t		
SERVO, SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3
SERVO_I_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	$-[\%]$

Description: Displays the overload of the filter capacitors of the HF Damping Module determined using an I2t calculation.
Note: HF Damping Module

p5174	HF control word / HF control word			
SERVO, SERVO_AC, SERVO_I_AC	Can be changed: T	Calculated: CALC_MOD_REG	Access level: 4	
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -	
	P-Group: Displays, signals	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0000 bin	
Description:	Setting the HF control word.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Supplementary capacitor active	Yes	No	-
	01 Activate damping	Continuously	For pulse enable	-

Note: For bit 00:
This bit can be used to compensate the filter resonance frequency shift for low motor inductances.
For bit 01:
Is used for diagnostic purposes.


p5201[0...n]	Current setpoint filter 5 type / I_set_filt 5 type		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Not for motor type: REL	Scaling: -	Max
SERVO_IAC (Ext	Min	2	Factory setting
I_setp_filt)	1		1
	Sets current setpoint filter 5 as lowpass filter (PT2) or general 2nd order filter.		
Description:	$1: \quad$ PT2 low pass		
Value:	$2:$	General 2nd order filter	

### 2.2 List of parameters

Dependency: Current setpoint filter 5 is activated via p5200.0 and parameterized via p5202 ... p5205.
Note: For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.
The denominator damping can be determined from the equation for the 3 dB bandwidth:
f_3dB bandwidth = 2 * D_denominator * f_bandstop frequency

p5201	Output voltage setpoint filter 5 type / U_set_filt 5 type		
A_INF (Suppl cl-loop	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
ctrl), R_INF (Suppl cl-	Data type: Integer16	Dyn. index: -	Func. diagram: -
loop ctrl)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	2	Factory setting
	1	2	
Description:	Sets the output voltage setpoint filter 5 as low pass (PT2) or as extended general 2nd order filter.		
Value:	$1: \quad$ PT2 low pass		
	$2: \quad$ General 2nd order filter		
Dependency:	Filter 5 is activated via p5200.0 and parameterized via p5202 ... p5205.		
Note:	For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator,		
	i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop		
	frequency is completely suppressed.		


p5202[0...n]	Current setpoint filter 5 denominator natural frequency / I_set_filt5 fn_den		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext   I setp filt),	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: REL	Scaling: -	Expert list: 1
I_setp_filt)	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the denominator natural frequency for current setpoint filter 5 (PT2, general filter).		
Dependency:	Current setpoint filter 5 is activated via p5200.0 and parameterized via p5202 ... p5205.		
p5202	Output voltage setpoint filter 5 denominator natural frequency / U_set_filt5 fn_den		
A_INF (Suppl cl-loop	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
ctrl), R_INF (Suppl cl-	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1000.0 [Hz]
Description:	Sets the denominator natural frequency for output voltage setpoint filter 5 (PT2, general filter).		
Dependency:	Filter 5 is activated via p5200.0 and parameterized via p5202 ... p5205.		


p5203[0...n]	Current setpoint filter 5 denominator damping / I_set_filt 5 D_den		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_IAC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	10.000	0.700
	0.001	Sets the denominator damping for current setpoint filter 5 (PT2, general filter).	
Description:	Current setpoint filter 5 is activated via p5200.0 and parameterized via p5202 ... p5205.		



p5206[0...n]	Current setpoint filter 6 type / I_set_filt 6 type		
SERVO (Ext	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: REL	Scaling: -	Expert list: 1
I_setp_filt)	Min	Max	Factory setting
	1	2	1
Description:	Sets current setpoint filter 6 as lowpass filter (PT2) or general 2 nd order filter.		
Value:	1: PT2 low pass		
Dependency:	Current setpoint filter 6 is activated via p5200.1 and parameterized via p5207 ... p5210.		
Note:	For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.		
	The denominator damping can be determined from the equation for the 3 dB bandwidth: f_3dB bandwidth $=2$ * D_denominator * f_bandstop frequency		


p5207[0...n]	Current setpoint filter $\mathbf{6}$ denominator natural frequency / I_set_filt6 fn_den		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVOACA (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$
	$0.5[\mathrm{~Hz}]$		
Description:	Sets the denominator natural frequency for current setpoint filter 6 (PT2, general filter).		
Dependency:	Current setpoint filter 6 is activated via p5200.1 and parameterized via p5207 ... p5210.		


p5208[0...n]	Current setpoint filter $\mathbf{6}$ denominator damping/I_set_filt $\mathbf{6}$ D_den		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	10.000	0.700
	0.001		
Description:	Sets the denominator damping for current setpoint filter 6 (PT2, general filter).		
Dependency:	Current setpoint filter 6 is activated via p5200.1 and parameterized via p5207 ... p5210.		


p5209[0...n]	Current setpoint filter $\mathbf{6}$ numerator natural frequency / I_set_filt6 fn_num		
SERVO (Ext	Can be changed: U, T	Calculated: -	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp__filt),	Scaling: -	Expert list: 1	
SERVO_IAC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$
	$0.5[\mathrm{~Hz}]$		
Description:	Sets the numerator natural frequency for current setpoint filter 6 (general filter).		
Dependency:	Current setpoint filter 6 is activated via p5200.1 and parameterized via p5207 ... p5210.		


p5210[0...n]	Current setpoint filter 6 numerator damping / I_set_filt 6 D_num		
SERVO (Ext	Can be changed: U, T	Calculated: -	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext I_setp_filt),	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: REL	Scaling: -	Expert list: 1
I_setp_filt)	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for current setpoint filter 6 (general filter).		
Dependency:	Current setpoint filter 6 is activated via p5200.1 and parameterized via p5207 ... p5210.		
p5211[0...n]	Current setpoint filter 7 type / I_set_filt 7 type		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp filt),	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext   I_setp_filt),	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: REL	Scaling: -	Expert list: 1
I_setp_filt)	Min	Max	Factory setting
	1	2	1
Description:	Sets current setpoint filter 7 as lowpass filter (PT2) or general 2nd order filter.		
Value:	1: PT2 low pass		
Dependency:	Current setpoint filter 7 is activated via p5200.2 and parameterized via p5212 ... p5215.		
Note:	For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.		
	The denominator damping can be determined from the equation for the 3 dB bandwidth: f_3dB bandwidth = 2 * D_denominator * f_bandstop frequency		

## p5211

A_INF (Suppl cl-loop
ctrl), R_INF (Suppl clloop ctrl)

Description: Sets the current actual value filter 7 as low pass (PT2) or as extended general 2nd-order filter.
Current actual value filter 7 type / I_act_filt 7 type

Can be changed: $\mathrm{U}, \mathrm{T}$
Data type: Integer16
P-Group: Closed-loop control
Not for motor type: -
Min
1

Calculated: CALC_MOD_CON
Dyn. index: -
Unit group: -
Scaling: -
Max
2

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
2

Value:

Dependency:
Note:
1: PT2 low pass
2: General 2nd order filter

For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.
The denominator damping can be determined from the equation for the 3 dB bandwidth:
f_3dB bandwidth $=2$ * D_denominator * f_bandstop frequency

p5212[0...n]	Current setpoint filter 7 denominator natural frequency / I_set_filt7 fn_den		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$
	$0.5[\mathrm{~Hz}]$	Sets the denominator natural frequency for current setpoint filter 7 (PT2, general filter).	
Description:	Current setpoint filter 7 is activated via p5200.2 and parameterized via p5212 ... p5215.		


p5212	Current actual value filter $\mathbf{7}$ denominator natural frequency / I_act_filt7 fn_den		
A_INF (Suppl cl-loop	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
ctrl), R_INF (Suppl cl-	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
loop ctrl)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	$16000.0[\mathrm{~Hz}]$	$1000.0[\mathrm{~Hz}]$
	$0.5[\mathrm{~Hz}]$	Factory setting	
Description:	Sets the denominator natural frequency for current actual value filter 7 (PT2, general filter).		
Dependency:	The current actual value filter 7 is activated via p5200.2 and parameterized via p5212 $\ldots$ p5215.		


p5213[0...n]	Current setpoint filter 7 denominator damping / I_set_filt 7 D_den		
SERVO (Ext	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ex   I setp filt),	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: REL	Scaling: -	Expert list: 1
I_setp_filt)	Min	Max	Factory setting
	0.001	10.000	0.700
Description:   Dependency:	Sets the denominator damping for current setpoint filter 7 (PT2, general filter).		

p5213 Current actual value filter 7 denominator damping / I_act_filt 7 D_den

A_INF (Suppl cl-loop ctrl), R_INF (Suppl clloop ctrl)

Can be changed: $\mathrm{U}, \mathrm{T}$
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min
0.001

Calculated: CALC_MOD_CON Access level: 3
Dyn. index: - Func. diagram: -
Unit group: - Unit selection: -
Scaling: - Expert list: 1
Max Factory setting
$10.000 \quad 0.700$

Description: Sets the denominator damping for current actual value filter 7 .
Dependency: The current actual value filter 7 is activated via p5200.2 and parameterized via p5212 ... p5215.

p5214[0...n]	Current setpoint filter $\mathbf{7}$ numerator natural frequency / I_set_filt7 fn_num		
SERVO (Ext	Can be changed: U, T	Calculated: -	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$
	$0.5[\mathrm{~Hz}]$		
Description:	Sets the numerator natural frequency for current setpoint filter 7 (general filter).		
Dependency:	Current setpoint filter 7 is activated via p5200.2 and parameterized via p5212 $\ldots$ p5215.		

p5214 Current actual value filter 7 numerator natural frequency / I_act_filt7 fn_num
A_INF (Suppl cl-loop
ctrl), R_INF (Suppl clloop ctrl)

Description:

Can be changed: U, T	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Closed-loop control	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.5[\mathrm{~Hz}]$	$16000.0[\mathrm{~Hz}]$	$1000.0[\mathrm{~Hz}]$
Sets the numerator natural frequency for current actual value filter 7 (general filter).		
The current actual value filter 7 is activated via p5200.2 and parameterized via p5212 $\ldots$... p5215.		


p5215[0...n]	Current setpoint filter 7 numerator damping /I_set_filt 7 D_num		
SERVO (Ext	Can be changed: U, T	Calculated: -	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	10.000	0.700
	0.000		
Description:	Sets the numerator damping for current setpoint filter 7 (general filter).		
Dependency:	Current setpoint filter 7 is activated via p5200.2 and parameterized via p5212 ... p5215.		


p5215	Current actual value filter $\mathbf{7}$ numerator damping / I_act_filt 7 D_num		
A_INF (Suppl cl-loop	Can be changed: U, T	Calculated: -	Access level: 3
ctrl), R_INF (Suppl cl-	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
loop ctrl)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Fxpert list: 1
	Min	Max	0.010
	0.000	10.000	
Description:	Sets the numerator damping for current actual value filter 7.		
Dependency:	The current actual value filter 7 is activated via p5200.2 and parameterized via p5212 $\ldots$ p5215.		


p5216[0...n]	Current setpoint filter 8 type / I_set_filt 8 type		
SERVO (Ext	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5711
$\begin{aligned} & \text { SERVO_AC (Ext } \\ & \text { I setp filt), } \end{aligned}$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: REL	Scaling: -	Expert list: 1
I_setp_filt)	Min	Max	Factory setting
	1	2	1
Description:	Sets current setpoint filter 8 as lowpass filter (PT2) or general 2 nd order filter.		
Value:	1: PT2 low pass		
	2: General 2 nd order filter		
Dependency:	Current setpoint filter 8 is activated via p5200.3 and parameterized via p5217 ... p5220.		
Note:	For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.		
	The denominator damping can be determined from the equation for the 3 dB bandwidth:		


p5217[0...n]	Current setpoint filter 8 denominator natural frequency / I_set_filt8 fn_den		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_IAC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$
	$0.5[\mathrm{~Hz}]$		
Description:	Sets the denominator natural frequency for current setpoint filter 8 (PT2, general filter).		
Dependency:	Current setpoint filter 8 is activated via p5200.3 and parameterized via p5217 ... p5220.		


p5218[0...n]	Current setpoint filter 8 denominator damping/l_set_filt 8 D_den		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	10.000	0.700
	0.001		
Description:	Sets the denominator damping for current setpoint filter 8 (PT2, general filter).		
Dependency:	Current setpoint filter 8 is activated via p5200.3 and parameterized via p5217 ... p5220.		


p5219[0...n]	Current setpoint filter $\mathbf{8}$ numerator natural frequency / I_set_filt8 fn_num		
SERVO (Ext	Can be changed: U, T	Calculated: -	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$
	$0.5[\mathrm{~Hz}]$		
Description:	Sets the numerator natural frequency for current setpoint filter 8 (general filter).		
Dependency:	Current setpoint filter 8 is activated via p5200.3 and parameterized via p5217 ... p5220.		


p5220[0...n]	Current setpoint filter $\mathbf{8}$ numerator damping /l_set_filt 8 D_num		
SERVO (Ext	Can be changed: U, T	Calculated: -	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_IAC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	10.000	0.700
	0.000		
Description:	Sets the numerator damping for current setpoint filter 8 (general filter).		
Dependency:	Current setpoint filter 8 is activated via p5200.3 and parameterized via p5217 ... p5220.		


p5221[0...n]	Current setpoint filter 9 type / I_set_filt 9 type		
SERVO (Ext	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5711
I setp filt),	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: REL	Scaling: -	Expert list: 1
I_setp_filt)	Min	Max	Factory setting
	1	2	1
Description:	Sets current setpoint filter 9 as lowpass filter (PT2) or general 2 nd order filter.		
Value:	1: PT2 low pass   2: General 2nd order filter		
Dependency:	Current setpoint filter 9 is activated via p5200.4 and parameterized via p5222 ... p5225.		
Note:	For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.		
	The denominator damping can be determined from the equation for the 3 dB bandwidth: f_3dB bandwidth = 2 * D_denominator * f_bandstop frequency		


p5222[0...n]	Current setpoint filter 9 denominator natural frequency / I_set_filt9 fn_den		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_IAC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$
	$0.5[\mathrm{~Hz}]$		
Description:	Sets the denominator natural frequency for current setpoint filter $9($ PT2, general filter).		
Dependency:	Current setpoint filter 9 is activated via p5200.4 and parameterized via p5222 $\ldots$ p5225.		


p5223[0...n]	Current setpoint filter 9 denominator damping/I_set_filt 9 D_den		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_ICAC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	10.000	0.700
	0.001		
Description:	Sets the denominator damping for current setpoint filter 9 (PT2, general filter).		
Dependency:	Current setpoint filter 9 is activated via p5200.4 and parameterized via p5222 ... p5225.		


p5224[0...n]	Current setpoint filter 9 numerator natural frequency / I_set_filt9 fn_num		
SERVO (Ext	Can be changed: U, T	Calculated: -	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$
	$0.5[\mathrm{~Hz}]$		
Description:	Sets the numerator natural frequency for current setpoint filter 9 (general filter).		
Dependency:	Current setpoint filter 9 is activated via p5200.4 and parameterized via p5222 ... p5225.		


p5225[0...n]	Current setpoint filter 9 numerator damping / I_set_filt 9 D_num		
SERVO (Ext	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
$\begin{aligned} & \text { SERVO_AC (Ext } \\ & \text { I setp filt), } \end{aligned}$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC (Ext	Not for motor type: REL	Scaling: -	Expert list: 1
I_setp_filt)	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for current setpoint filter 9 (general filter).		
Dependency:	Current setpoint filter 9 is activ	and parameterized via p	5225.


p5226[0...n]	Current setpoint filter 10 type / I_set_filt 10 type		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	2	1
	1		
Description:	Sets current setpoint filter 10 as lowpass filter (PT2) or general 2nd order filter.		
Value:	$1: \quad$ PT2 low pass		
	$2: \quad$ General 2nd order filter		
Dependency:	Current setpoint filter 10 is activated via p5200.5 and parameterized via p5227 ... p5230.		

### 2.2 List of parameters

Note: $\quad$ For a general 2nd order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.
The denominator damping can be determined from the equation for the 3 dB bandwidth:
f_3dB bandwidth = 2 * D_denominator * f_bandstop frequency

p5227[0...n]	Current setpoint filter 10 denominator natural frequency / I_set_filt1 fn_den		
SERVO (Ext	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_IAC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$
	$0.5[\mathrm{~Hz}]$	Ses	
Description:	Sets the denominator natural frequency for current setpoint filter 10 (PT2, general filter).		
Dependency:	Current setpoint filter 10 is activated via p5200.5 and parameterized via p5227 ... p5230.		

p5228[0...n] Current setpoint filter 10 denominator damping / I_set_filt10 D_den

I_setp_filt),
SERVO_AC (Ext
I_setp_filt),
SERVO_I_AC (Ext
I_setp_filt)

Description:
Dependency:

Calculated: CALC_MOD_CON Access level: 3
Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max Factory setting
10.000
0.700
p5229[0...n] Current setpoint filter 10 numerator natural frequency / I_set_filt 10 fn
SERVO (Ext
I_setp_filt),
SERVO AC (Ext
I_setp_filt),
SERVO_I_AC (Ext
I_setp_filt)

Description:
Dependency:

p5230[0...n]	Current setpoint filter $\mathbf{1 0}$ numerator damping / I_set_filt10 D_num		
SERVO (Ext	Can be changed: U, T	Calculated: -	Access level: 3
I_setp_filt),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5711
SERVO_AC (Ext	P-Group: Closed-loop control	Unit group: -	Unit selection: -
I_setp_filt),	Scaling: -	Expert list: 1	
SERVO_I_AC (Ext	Not for motor type: REL	Max	Factory setting
I_setp_filt)	Min	10.000	0.700
	0.000		
Description:	Sets the numerator damping for current setpoint filter 10 (general filter).		
Dependency:	Current setpoint filter 10 is activated via p5200.5 and parameterized via p5227 ... p5230.		



### 2.2 List of parameters

p5253	Cogging torque compensation periodicity factor / Cog_M_comp_period		
SERVO	Can be changed: $T$	Calculated: -	Access level: 3
(Cog_M_comp),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { SERVO_AC } \\ & \text { (Cog_M_comp), } \end{aligned}$	P-Group: Closed-loop control	Unit group: -	Unit selection: -
SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Cog_M_comp)	Min	Max	Factory setting
	0.00000	32768.00000	1.00000
Description:	Sets the factor for the periodicity for the cogging torque compensation.   For rotating motors, the reference value is one mechanical revolution, for linear motors, the pole pair wid		
Dependency:	Refer to: p5250, p5252, r5254, r5255, p5260		
Note:	For values < 1 , several table periods are passed through for each mechanical revolution or pole pair width, for values $>1$ several revolutions or pole pair widths are required for one table period.		
	The following must apply for endlessly rotating machines:		
	p0408 and p0408 * p5253 * ${ }^{\wedge}$ ^0 0418 must have a power of two less than $2^{\wedge} 24$.		


r5254[0...3]	Cogging torque compensation diagnostics / Cog_M_comp diag		
SERVO	Can be changed: -	Calculated: -	Access level: 3
(Cog_M_comp),	Data type: Integer16	Dyn. index: -	Func. diagram: -
SERVO_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
(Cog_M_comp),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC	Max	Factory setting	
(Cog_M_comp)	Min	-	-

Description: Displays diagnostics data for the cogging torque compensation.

Index:	$[0]=$ Average values for slowly learning
	$[1]=$ Actual table index
$[2]=$ Table index when starting learning	
	$[3]=$ Table index when ending learning
Dependency:	Refer to: p5250, p5252, p5253, r5255, p5260
Note:	For index [0]:
	Average values for slowly learning the cogging torque compensation. During learning, the average value is
incremented by 1 for each table period passed.	
	For index [1]:
	Currently used table index.
	For index [2]:
	Table index when starting slow learning.
	For index [3]:
	Table index when ending slow learning.
	For index [2, 3]:
	If the actual index when learning is decremented, then the table index at start and end is interchanged.


r5255[0...1]	CO: Cogging torque compensation input/output/Cog_M_comp I/O		
SERVO	Can be changed: -	Calculated: -	Access level: 3
(Cog_M_comp, Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC	Unit group: $8 _1$	Unit selection: p0505	
(Cog_M_comp, Lin),	P-Group: Displays, signals	Not for motor type: -	Scaling: p2003

Description: Display and connector output for input and output of the cogging torque compensation.
Index:
[0] = Input
[1] = Output
Dependency: Refer to: p5250, p5251, p5252, p5253, r5254, p5256, p5260, p5261

r5255[0...1]	CO: Cogging torque compensation input/output / Cog_M_comp I/O		
SERVO	Can be changed: -	Calculated: -	Access level: 3
(Cog_M_comp),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC	P-Group: Displays, signals	Unit group: $7 _1$	Unit selection: p0505
(Cog_M_comp),	Not for motor type: -	Scaling: p2003	Expert list: 1
SERVO_I_AC	Min	Factory setting	
(Cog_M_comp)	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	
	Display and connector output for input and output of the cogging torque compensation.		
Description:	$[0]=$ Input		
Index:	$[1]=$ Output		
	Refer to: $\mathrm{p} 5250, \mathrm{p} 5251, \mathrm{p} 5252, \mathrm{p} 5253, \mathrm{r} 5254, \mathrm{p} 5256, \mathrm{p} 5260, \mathrm{p} 5261$		


p5256[0...n]	Cogging torque compensation direction reversal hysteresis / Cog_M_comp hyst		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
(Cog_M_comp, Lin),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
SERVO_AC	P-Group: -	Unit group: -	Unit selection: -
(Cog_M_comp, Lin),	Not for motor type: -	Scaling: -	Max
SERVO_I_AC	$100.00[\mathrm{~m} / \mathrm{min}]$	Factory setting	
(Cog_M_comp, Lin)	Min	$0.40[\mathrm{~m} / \mathrm{min}]$	
	$0.00[m / \mathrm{min}]$	Sets the hysteresis for the direction-dependent switchover of the cogging torque tables.	
Description:	Refer to: p5250, p5251, p5252, p5253, r5254, r5255, p5260, p5261		
Dependency:	This setting is only active for $\mathrm{p} 5250.1=1$.		
Note:			


p5256[0...n]	Cogging torque compensation direction reversal hysteresis / Cog_M_comp hyst		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
(Cog_M_comp),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
SERVO_AC	P-Group: -	Unit group: -	Unit selection: -
(Cog_M_comp),	Not for motor type: -	Maxing: -	Expert list: 1
SERVO_I_AC	Min	$100.00[\mathrm{rpm}]$	Factory setting
(Cog_M_comp)	$0.00[\mathrm{rpm}]$	20.00 [rpm]	
	Sets the hysteresis for the direction-dependent switchover of the cogging torque tables.		
Description:	Refer to: p5250, p5251, p5252, p5253, r5254, r5255, p5260, p5261		
Dependency:	This setting is only active for p5250.1 =1.		
Note:			


p5257[0...19]	Cogging torque compensation frequency range real part / Cog_M_comp f real		
SERVO	Can be changed: U, T	Calculated: -	Access level: 4
(Cog_M_comp, Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC	Unit group: $8 _1$	Unit selection: p0505	
(Cog_M_comp, Lin),	P-Group: Closed-loop control	Not for motor type: -	Max
SERVO_I_AC	Min	Expert list: 1	
(Cog_M_comp, Lin)	1000000.000000 [N]	Factory setting	
	$-1000000.000000[\mathrm{~N}]$	$0.000000[\mathrm{~N}]$	
Description:	Display or setting of the real part of the multiple of the table for the cogging torque compensation (FFT from p5260).		
	After learning (p5251), this table is automatically populated from the values in p5260 or p5261. With p5251.4 = 1,		
	they can also be used to generate a cogging torque compensation table for p5260.		
	Parameters p5257, p5258 and p5259 of the same index describe one frequency point.		
Dependency:	Only 20 values with the highest absolute value are displayed.		


p5257[0...19]	Cogging torque compensation frequency range real part / Cog_M_comp f real		
SERVO	Can be changed: $U, T$	Calculated: -	Access level: 4
(Cog_M_comp),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
(Cog_M_comp),	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Cog_M_comp)	Min	Max	Factory setting
	-1000000.000000 [ Nm ]	$1000000.000000[\mathrm{Nm}]$	0.000000 [ Nm ]
Description:	Display or setting of the real part of the multiple of the table for the cogging torque compensation (FFT from p5260). After learning ( p 5251 ), this table is automatically populated from the values in p5260 or p5261. With p5251.4 $=1$, they can also be used to generate a cogging torque compensation table for p5260.		
	Parameters p5257, p5258 and p5259 of the same index describe one frequency point.		
Dependency:	Refer to: p5250, p5251, p5252, p5253, r5254, r5255, p5256, p5258, p5259, p5260, p5261		


p5258[0...19]	Cogging torque compensation frequency range imaginary part / Cog_M_comp f Imag		
SERVO	Can be changed: $U, T$	Calculated: -	Access level: 4
_M_comp, Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
(Cog M comp, Lin).	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Cog_M_comp,	Min	Max	Factory setting
	-1000000.000000 [N]	1000000.000000 [N]	$0.000000[\mathrm{~N}]$
Description:	Display or setting of the imaginary part of the multiple of the table for the cogging torque compensation (FFT from p5260).		
Dependency:	Refer to: p5250, p5251, p5252	, r5255, p5256, p5257	, p5261


p5258[0...19]	Cogging torque compensation frequency range imaginary part / Cog_M_comp f Imag		
SERVO	Can be changed: U, T	Calculated: -	Access level: 4
(Cog_M_comp),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
(Cog_M_comp),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC	Max	Factory setting	
(Cog_M_comp)	Min	$1000000.000000[\mathrm{Nm}]$	$0.000000[\mathrm{Nm}]$

Description: Display or setting of the imaginary part of the multiple of the table for the cogging torque compensation (FFT from p5260).
Dependency: Refer to: p5250, p5251, p5252, p5253, r5254, r5255, p5256, p5257, p5259, p5260, p5261

p5259[0...19]	Cogging torque compensation frequency range multiplicity / Cog_M_comp f multi		
SERVO	Can be changed: U, T	Calculated: -	Access level: 4
(Cog_M_comp),	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
SERVO_AC	P-Group: Closed-loop control	Unit group: -	Unit selection: -
(Cog_M_comp),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC	Max	Factory setting	
(Cog_M_comp)	Min	2048	0

Description: Display or setting of the multiple of the table for the cogging torque compensation (index of FFT from p5260).
Dependency: Refer to: p5250, p5251, p5252, p5253, r5254, r5255, p5256, p5257, p5258, p5260, p5261

p5260[0...4095]	Cogging torque compensation table / Cog_M_comp table		
SERVO	Can be changed: $U$, $T$	Calculated: -	Access level: 3
(Cog_M_comp, Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC (Cog_M_comp, Lin),	P-Group: Closed-loop control	Unit group: 8_1	Unit selection: p0505
SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Cog_M_comp, Lin)	Min	Max	Factory setting
	-1000000.000000 [ N ]	$1000000.000000[\mathrm{~N}]$	$0.000000[\mathrm{~N}]$
Description:	Display or setting of the compensation values for the cogging torque compensation		
	For p5250.1 $=1$, the following applies:		
	The table contains compensation values for the positive direction.		
	For p5250.1 $=0$, the following applies:		
	The table contains compensation values for the both directions.		
Dependency:	Refer to: p5250, p5251, p5252, p5253, r5254, r5255, p5256, p5261		
Note:	The table length used is set using p5252.		


p5260[0...4095]	Cogging torque compensation table / Cog_M_comp table		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
(Cog_M_comp),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC (Cog M comp),	P-Group: Closed-loop control	Unit group: 7_1	Unit selection: p0505
SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Cog_M_comp)	Min	Max	Factory setting
	-1000000.000000 [Nm]	1000000.000000 [ Nm ]	$0.000000[\mathrm{Nm}]$
Description:	Display or setting of the compensation values for the cogging torque compensation		
	For p5250.1 = 1, the following applies:		
	The table contains compensation values for the positive direction.		
	For p5250.1 $=0$, the following applies:		
	The table contains compensation values for the both directions.		
Dependency:	Refer to: p5250, p5251, p5252, p5253, r5254, r5255, p5256, p5261		
Note:	The table length used is set using p5252.		


p5261[0...4095]	Cogging torque compensation table negative direction / Cog_M_cmp tab neg		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
(Cog_M_comp, Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC	Unit group: -	Unit selection: -	
(Cog_M_comp, Lin),	P-Group: Closed-loop control	Not for motor type: -	Scaling: -
SERVO_I_AC	Max	Fxpert list: 1	
(Cog_M_comp, Lin)	Min	$1000000.000000[\mathrm{~N}]$	$0.000000[\mathrm{~N}]$
	$-1000000.000000[\mathrm{~N}]$		
Description:	Display or setting of the compensation values for the negative direction of the cogging torque compensation.		
Dependency:	Refer to: p5250, p5251, p5252, p5253, r5254, r5255, p5256, p5260		
Note:	The table length used is set using p5252.		
	This setting is only active for p5250.1 =1.		


p5261[0...4095]	Cogging torque compensation table negative direction / Cog_M_cmp tab neg		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
(Cog_M_comp),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC	Unit group: -	Unit selection: -	
(Cog_M_comp),	P-Group: Closed-loop control	Scaling: -	Expert list: 1
SERVO_I_AC	Not for motor type: -	Max	Factory setting
(Cog_M_comp)	Min	$1000000.000000[\mathrm{Nm}]$	$0.000000[\mathrm{Nm}]$
	$-1000000.000000[\mathrm{Nm}]$		
Description:	Display or setting of the compensation values for the negative direction of the cogging torque compensation.		
Dependency:	Refer to: p5250, p5251, p5252, p5253, r5254, r5255, p5256, p5260		

### 2.2 List of parameters

Note:	The table length used is set using p5252.
	This setting is only active for $\mathrm{p} 5250.1=1$.


p5265[0...n]	Periodic position error compensation amplitude 1/Pos err comp ampl1		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
(Cog_M_comp),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
SERVO_AC	P-Group: -	Unit group: -	Unit selection: -
(Cog_M_comp),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC	Max	Factory setting	
(Cog_M_comp)	Min	20000.0	0.0

Description: Amplitude to compensate periodic position errors in fine pulses for the error with one sinusoidal period per mechanical revolution.

The value is determined with the motor data identification routine (p1960).
Dependency: Refer to: p5250, p5266

## Note: Prerequisites:

- "Cogging torque compensation" function module activated (r0108.22 = 1).
- motor data identification carried out with transfer (p1959.0 = 1, p1960 = 1).
- compensation periodic position errors activated (p5250.2 = 1).
- encoder with absolute position information (unique zero mark, distance-coded zero marks, absolute encoder, 1-pole resolver, p5263.10).

p5266[0...n]	Periodic position error compensation angle 1 / Pos err comp ang 1		
SERVO	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
(Cog_M_comp),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(Cog M comp),	P-Group: -	Unit group: -	Unit selection: -
SERVO_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Cog_M_comp)	Min	Max	Factory setting
	-180.00 [ ${ }^{\circ}$ ]	$\left.180.00{ }^{\circ}{ }^{\circ}\right]$	0.00 [ ${ }^{\circ}$ ]
Description:	Angle to compensate periodic position errors for the error with one sinusoidal period per mechanical revolution. The value is determined with the motor data identification routine (p1960).		
Dependency:	Refer to: p5250, p5265		
Note:	Prerequisites:		
	- "Cogging torque compensation" function module activated (r0108.22 = 1).		
	- motor data identification carried out with transfer (p1959.0 = 1, p1960 = 1).		
	- compensation periodic position errors activated (p5250.2 = 1).		
	- encoder with absolute position information (unique zero mark, distance-coded zero marks, absolute encoder, 1-pole resolver, p5263.10).		


p5267[0...n]	Periodic position error compensation amplitude $2 /$ Pos err comp ampl2		
SERVO	Can be changed: U, T	Calculated: -	Access level: 3
(Cog_M_comp),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
SERVO_AC	P-Group: -	Unit group: -	Unit selection: -
(Cog_M_comp),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC	Min	Factory setting	
(Cog_M_comp)	0.0	0.0	
	Amplitude to compensate periodic position errors in fine pulses for the error with two sinusoidal periods per		
Description:	mechanical revolution.		
	The value is determined with the motor data identification routine $(p 1960)$.		

## Note:

Prerequisites:

- "Cogging torque compensation" function module activated (r0108.22 = 1).
- motor data identification carried out with transfer (p1959.0 = 1, p1960 = 1).
- compensation periodic position errors activated (p5250.2 = 1).
- encoder with absolute position information (unique zero mark, distance-coded zero marks, absolute encoder, 1-pole resolver, p5263.10).


p5271[0...n]	Online / One Button Tuning configuration / Ot OBT config				
SERVO (J_estimator,   Lin), SERVO_AC   (J_estimator, Lin),   SERVO_I_AC   (J_estimator, Lin)	Can be changed: T		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: DDS, p0180	Func. diagram: -	
	P-Group: -		Unit group: -	Unit selection: -	
	Not for motor type: REL		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	00001100 bin	
Description:	Sets the configuration for online tuning / One Button Tuning.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	PD controller for large load moments of inertia	Yes	No	-
	01	Reduce gain at low speeds	Yes	No	-
		Load adaptation Kp	Yes	No	5045
	03	Speed precontrol	Yes	No	5045
	04	Torque precontrol	Yes	No	5045
		Set maximum acceleration limiting	Yes	No	5045
		Do not change Kp	Yes	No	-
	07	Voltage feedforward control	Yes	No	-
Dependency:	Refer to: p5272, p5273, r5274, p5275				
Note:	For	00:			

For significant differences between the motor mass and load mass, or for low dynamic performance of the controller, then the P controller becomes a PD controller in the position control loop. As a consequence, the dynamic performance of the position controller is increased.
This function should only be set when the velocity precontrol (bit $3=1$ ) or the force precontrol (bit $4=1$ ) is active.
For bit 01:
At low velocities, the controller gain factors are automatically reduced in order to avoid noise and oscillation at standstill.
For bit 02:
The estimated load mass is taken into account for the velocity controller gain (see p5273).
For bit 03:
Activates the velocity precontrol for the basic positioner (EPOS).

### 2.2 List of parameters

For bit 04:
Activates the force precontrol for the basic positioner (EPOS).
For bit 05:
The maximum setpoint acceleration for the basic positioner (EPOS) is determined based on the estimated mass.
This is only realized once by setting the bit.
Prerequisite:
The drive pulses are inhibited and the mass was previously determined.
For bit 06:
The velocity controller gain set in p1460 is not changed when calculating the controller data.
For bit 07:
Activation of the voltage precontrol.


p5271[0...n]	Online / One Button Tuning configuration / Ot OBT config			
VECTOR	Can be changed: T	Calculated: -	Access level: 3	
(J_estimator),	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: -	
(J estimator),	P-Group: -	Unit group: -	Unit selection: -	
VECTOR_I_AC	Not for motor type: REL	Scaling: -	Expert list: 1	
(J_estimator)	Min	Max	Factory setting	
	-	-	00000000 bin	
Description:	Sets the configuration for online tuning / One Button Tuning.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	02 Load adaptation Kp	Yes	No	5045
	06 Do not change Kp	Yes	No	-
Dependency:	Refer to: p5272, p5273, r5274, p5275			
Note:	For bit 02:			
	The estimated load moment of inertia is taken into account for the speed controller gain (see p5273).			
	For bit 06:			
	The speed controller gain set in p1460 is not changed when calculating the controller data.			


p5272[0...n]	Online tuning dynamic factor / Ot dyn_factor		
SERVO (J_estimator,	Can be changed: U, T	Calculated: -	Access level: 2
Lin), SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator, Lin)   SERVO I AC	P-Group: -	Unit group: -	Unit selection: -
(J_estimator, Lin)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5.0 [\%]	1000.0 [\%]	100.0 [\%]
Description:	Sets the dynamic factor for the proportional gain of the velocity controller for online tuning.		
Dependency:	Refer to: p5271, p5273, r5274, p5275		
Notice:	The velocity control can become unstable for excessively high values.		
Note:	The stiffer the mechanical load coupling, the higher the dynamic factor can be set.		


p5272[0...n]	Online tuning dynamic factor / Ot dyn_factor		
SERVO (J_estimator),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator), SERVO_I_AC	P-Group: -	Unit group: -	Unit selection: -
(J_estimator)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5.0 [\%]	1000.0 [\%]	100.0 [\%]
Description:	Sets the dynamic factor for the proportional gain of the speed controller for online tuning.		
Dependency:	Refer to: p5271, p5273, r5274, p5275		
Notice:	The speed control can become unstable for excessively high values.		
Note:	The stiffer the mechanical load coupling, the higher the dynamic factor can be set.		
p5273[0...n]	Online tuning dynamic factor load / Ot dyn_factor load		
SERVO (J_estimator,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
Lin), SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5045
SERVO_I_AC	P-Group: -	Unit group: -	Unit selection: -
(J_estimator, Lin)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	30.0 [\%]
Description:	The value specifies which component of the estimated load mass is taken into account when adapting the velocity controller.		

### 2.2 List of parameters

Dependency:	Refer to: p5271, p5272, r5274, p5275
Notice:	The velocity control can become unstable for excessively high values.



p5275[0...n]	Online / One Button Tuning dynamic response time constant / Ot dyn T		
SERVO (J_estimator),	Can be changed: $U, T$	Calculated: -	Access level: 3
SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator),	P-Group: -	Unit group: -	Unit selection: -
(J_estimator)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	60.0 [ms]	7.5 [ms]
Description:	Sets the time constant for the precontrol symmetrization for online tuning / One Button Tuning. As a consequence, the drive is allocated a defined, dynamic response via its precontrol. For axes, which must interpolate with one another, the same value must be entered.   Examples:   $0 \mathrm{~ms}=$ travel without following error (Kv factor is infinity)   $5 \mathrm{~ms}=$ settling behavior as for PT1 with 5 ms (Kv factor $=12$ [1000/min])		
Dependency:	Refer to: p5271, p5272, p52		

Note: $\quad$ This time constant is only effective if p 5302.7 is set $=1$.
Otherwise, the precontrol symmetrization is adapted to the estimated dynamic response, therefore setting positioning
without any overshoot.

r5276[0...n]	Online / One Button Tuning maximum Kv factor estimated / Ot Kv estimated		
SERVO (J_estimator),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator),	P-Group: -	Unit group: -	Unit selection: -
SERVO_I_AC	Not for motor type: REL	Scaling: -	Expert list: 1
(J_estimator)	Min	Max	Factory setting
	$0.00[1000 \mathrm{rpm}]$	$100000.00[1000 \mathrm{rpm}]$	$-[1000 \mathrm{rpm}]$

Description: Displays the estimated maximum position controller gain for online tuning/One Button Tuning.
Dependency: Refer to: p5271, p5272, p5273, p5275
Warning: The calculation assumes that the DSC is activated in the drive and is controlled on the motor measuring system. If this is not the case, then excessively high values are displayed.
The value that is displayed does not take into account low-frequency resonance effects in the drive train. If necessary, the value must be significantly reduced.
Note: The value for the closed-loop position control is required by a higher-level control system.

r5277[0...n]	Online/One Button Tuning precontrol symmetrizing time estimated / Ot FFW estim		
SERVO (J_estimator),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5045
(J_estimator),	P-Group: -	Unit group: -	Unit selection: -
SERVO_I_AC	Not for motor type: REL	Max	Expert list: 1
(J_estimator)	Min	Factory setting	
	0.00 [ms]	Displays the estimated time constant for symmetrization of the speed precontrol.	- [ms]
	This is required to symmetrize the position controller for online tuning / One Button Tuning if the position control is		
Description:	realized in an external control system.		
	Refer to: p5271, p5272, p5273, p5275		
Dependency:	The calculation assumes that the DSC is activated in the drive and is controlled on the motor measuring system.		
Warning:	If this is not the case, then the time is not correctly calculated.		


p5280[0...n]	Current setpoint filter adaptation configuration / Filt adapt config		
SERVO (J_estimator),	Can be changed: $U, T$	Calculated: -	Access level: 3
SERVO_AC	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator),   SERVO I AC	P-Group: -	Unit group: -	Unit selection: -
(J_estimator)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1	1	0
Description:	Sets the configuration for the adaptive current setpoint filter. The adaptation acts on the filter set using p5281.		
Value:	$\begin{array}{ll}\text {-1: } & \text { Inactive and filte } \\ 0: & \text { Inactive } \\ 1: & \text { Active }\end{array}$		
Dependency:	The prerequisite for the adaptation of the current setpoint filter is that the "Moment of inertia estimator" function module is activated (r0108.10).		
	Refer to: p5281, p5282, p5283, p5284, r5285		
Notice:	If, when activating adaptation ( $p 5280=1$ ), the filter assigned via p5281 is still not active, then it is automatically activated.		

### 2.2 List of parameters

## Note:

If p5280 = - 1 :
The adaptation is deactivated and the assigned filter deactivated.
If p5280 = 0:
The adaptation is inactive. The actual setting of the filter parameters is kept in a volatile memory. To permanently save the values that have been determined, the parameters must be saved in a non-volatile memory ( $p 0977=1$ ). If p5280 = 1:
The adaptation is active. When a mechanical resonant frequency is excited, the filter frequency is adapted. Adaptation is temporarily inactive while the function generator generates a noise signal (p4820 = 4).

p5281[0...n]	Current setpoint filter adaptation assignment / Filt adapt assign		
SERVO (J_estimator),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator),   SERVO I AC	P-Group: -	Unit group: -	Unit selection: -
(J_estimator)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	10	0
Description:	Sets the current setpoint filter that is to be adapted.		
	Value $=0$ : No assignment		
	Value $=1$ : Current setpoint filter 1 assigned (basic system)		
	...		
	Value $=4$ : Current setpoint filter 4 assigned (basic system)		
	Value $=5$ : Current setpoint filter 5 assigned (function module, r0108.21)		
	...		
	Value $=10$ : Current setpoint filter 10 assigned (function module, r0108.21)		
Dependency:	Refer to: p5280, p5282, p5283, p5284, r5285		
	Refer to: F07419		
Notice:	Fault F07419 is output if this setting is changed when adaptation is active.		
Note:	If, when activating adaptation (p5280 = 1), the selected filter is still not active, then it is automatically activated.		


p5282[0...n]	Current setpoint filter adaptation limit frequency lower / Filt adapt flower		
SERVO (J_estimator),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(JERESVO I AC	P-Group: -	Unit group: -	Unit selection: -
(J_estimator)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	50 [Hz]	5000 [Hz]	250 [Hz]
Description:	Sets the lower limit frequency for the current setpoint filter adaptation.   If the actual frequency of the adapted filter falls below the lower limit frequency, then the frequency of the adapted filter is set to the lower limit frequency. This limit is only effective when adaptation is active ( $p 5280=1$ ). If adaptation is not active, then this limit only becomes effective at the time of the next activation.		
Dependency:	Refer to: p5280, p5281, p5283, p5284, r5285		
Note:	If a value is entered which exceeds the upper limit frequency (p5283), then the value is rejected.		


p5283[0...n]	Current setpoint filter adaptation limit frequency upper / Filt adapt f upper		
SERVO (J_estimator),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator), SERVO_I_AC	P-Group: -	Unit group: -	Unit selection: -
(J_estimator)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	200 [Hz]	10000 [Hz]	1500 [Hz]
Description:	If the actual frequency of the adapted filter exceeds the upper limit frequency, then the frequency of the adapted filter is set to the upper limit frequency. This limit is only effective when adaptation is active (p5280 = 1). If adaptation is not active, then this limit only becomes effective at the time of the next activation.		
	There is an internal maximu adapted filter and the curren   If the parameterized value e   - this parameter is immediat   - this parameter is limited to	upper limit frequency; this d oling time.   nal maximum value, then th internal maximum value if imum value the next time th	the damping (atten   applies:   is active.   tion is activated (p5
Dependency:	Refer to: p5280, p5281, p5282, p5284, r5285		
Note:	If a value is entered which falls below the lower limit frequency (p5282), then the value is rejected.		


p5284[0...n]	Current setpoint filter adaptation activation threshold / Filt adapt thresh		
SERVO (J_estimator),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
SERVO	P-Group: -	Unit group: -	Unit selection: -
(J_estimator)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [\%]	10000 [\%]	100 [\%]
Description:	Sets the activation threshold for the current setpoint filter adaptation.		
Dependency:	Refer to: p5280, p5281, p5282, p5283, r5285		
Note:	The value should be increased if, in operation, the filter frequency continuously changes significantly although the resonance frequency does not change.		
	The value should be reduced if the filter frequency adaptation cannot be set so that mechanical resonance is suppressed.		


r5285[0...n]	Current setpoint filter adaptation actual frequency / Filt adapt act f		
SERVO (J_estimator),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator),   SERVO I AC	P-Group: -	Unit group: -	Unit selection: -
(J_estimator)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the actual frequency of the adapted current setpoint filter.		
Dependency:	Refer to: p5280, p5281, p5282, p5283, p5284		
p5291	FFT tuning configuration / FFT tun config		
SERVO (J_estimator,	Can be changed: U, T	Calculated: -	Access level: 3
Lin), SERVO_AC	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
(J_estimator, Lin)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0000000000111001 bin
Description:	Sets the configuration for the "FFT tuning" function.   This function is used for One Button Tuning (p5300 = 1).		

### 2.2 List of parameters

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Noise excitation after pulse enable	Yes	No	-
	01	Set current setpoint filter (HF)	Yes	No	-
	02	Set speed controller gain (HF)	Yes	No	-
	03	Length of FFT window bit 0 (LF, HF)	Yes	No	-
	04	Length of FFT window bit 1 (LF, HF)	Yes	No	-
	05	Windowing the time signals using a Hamming window (LF, HF)	Yes	No	-
	06	Measure current controller	Yes	No	-
	07	Bandwidth bit 0 (LF)	Yes	No	-
	08	Bandwidth bit 1 (LF)	Yes	No	-
	09	Bandwidth bit 2 (LF)	Yes	No	-
	10	Measuring periods bit 0	Yes	No	-
	11	Measuring periods bit 1	Yes	No	-
	12	Inject noise onto speed setpoint	Yes	No	-
	13	Do not reduce Kp for measurement	Yes	No	-
	14	Current setpoint filter that inverts the control loop	Yes	No	-
Dependency:	Ref	to: r5293, r5294, r5295, p5296, p5297			
Note:	HF:	igh frequency			
	LF:	w frequency			
	For	00:			

A PRBS signal (pseudo random binary signal) is superimposed on the current setpoint to be able to better identify the mechanical controlled system.
For bit 01:
The identified mechanical resonance points are suppressed using current setpoint filters.
For bit 02:
The maximum velocity controller gain is determined from the identified mechanical controlled system.
For bits 03, 04:
The measured value buffer length is set using these bits:
Bit $04=0$ and bit $03=0->$ buffer length $=256$
Bit $04=0$ and bit $03=1->$ buffer length $=512$
Bit $04=1$ and bit $03=0->$ buffer length $=1024$
Bit $04=1$ and bit $03=1->$ buffer length $=2048$
For bit 05:
A Hamming window is used to filter the measured time signals.
For bit 06:
The measurement checks the current controller frequency characteristic. For high amplitudes in p5298, it is possible that the check is unsuccessful, as the converter reaches its voltage limit.
For bits 07, 08:
An aliasing filter is used for the measured values.
Bit $08=0$ and bit $07=0->$ filter frequency $=50 \mathrm{~Hz}$
Bit $08=0$ and bit $07=1->$ filter frequency $=100 \mathrm{~Hz}$
Bit $08=1$ and bit $07=0->$ filter frequency $=200 \mathrm{~Hz}$
Bit $08=1$ and bit $07=1$-> filter frequency $=400 \mathrm{~Hz}$
For bit 09:
Evaluation can be switched over from correlation to differential filter
For bits 10, 11:
Number of measuring periods.
Bit $11=0$ and bit $10=0->$ number of measurements $=1$
Bit $11=0$ and bit $10=1->$ number of measurements $=2$
Bit $11=1$ and bit $10=0->$ number of measurements $=4$
Bit $11=1$ and bit $10=1$-> number of measurements $=8$
For bit 12:
The PRBS signal is switched to the velocity setpoint (in front of the filter).
For bit 13:
The input signal for the force actual value is taken from in front of the current setpoints filters.


### 2.2 List of parameters

For bits 10, 11:
Number of measuring periods.
Bit $11=0$ and bit $10=0->$ number of measurements $=1$
Bit $11=0$ and bit $10=1->$ number of measurements $=2$
Bit $11=1$ and bit $10=0->$ number of measurements $=4$
Bit $11=1$ and bit $10=1->$ number of measurements $=8$
For bit 12:
The PRBS signal is switched to the speed setpoint (in front of the filter).
For bit 13:
The input signal for the torque actual value is taken from in front of the current setpoints filters.

p5292	FFT tuning dynamic factor / FFT tun dyn_factor		
SERVO (J_estimator,   Lin), SERVO_AC   (J_estimator, Lin),   SERVO_I_AC   (J_estimator, Lin)	Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: -   Not for motor type: REL   Min $25.0 \text { [\%] }$	Calculated:   Dyn. index: -   Unit group: -   Scaling: -   Max   125.0 [\%]	Access level: 2   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   80.0 [\%]
Description: Dependency: Notice:	Sets the dynamic factor for the proportional gain of the velocity controller for FFT tuning. Refer to: p5291   The velocity control can become unstable for excessively high values.		
$\begin{aligned} & \hline \text { p5292 } \\ & \text { SERVO (J_estimator), } \\ & \text { SERVO_AC } \\ & \text { (J_estimator), } \\ & \text { SERVO_I_AC } \\ & \text { (J_estimator) } \end{aligned}$	FFT tuning dynamic fac   Can be changed: U, T   Data type: FloatingPoint32   P-Group: -   Not for motor type: REL   Min   25.0 [\%]	un dyn_factor   Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   125.0 [\%]	Access level: 2   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   80.0 [\%]
Description: Dependency:	Sets the dynamic factor for the proportional gain of the speed controller for FFT tuning. This function is used for One Button Tuning (p5300 = 1).		
r5293   SERVO (J_estimator, Lin), SERVO_AC (J_estimator, Lin), SERVO_I_AC (J_estimator, Lin)	Velocity controller gain   Can be changed: -   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   - [Ns/m]	/ FFT tun Kp id   Calculated: -   Dyn. index: -   Unit group: 24_2   Scaling: -   Max   - [Ns/m]	Access level: 3   Func. diagram: -   Unit selection: p0505   Expert list: 1   Factory setting   - [ $\mathrm{Ns} / \mathrm{m}$ ]
Description:   Dependency:	Displays the maximum possible Kp gain of the velocity controller iterated from the FFT measurement. Refer to: p5291		
r5293   SERVO (J_estimator), SERVO_AC   (J_estimator),   SERVO_I_AC   (J_estimator)	FFT tuning speed cont   Can be changed: -   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   - [Nms/rad]	n identified / F   Calculated: -   Dyn. index: -   Unit group: 17_1   Scaling: -   Max   - [Nms/rad]	nt   Access level: 3   Func. diagram: -   Unit selection: p0505   Expert list: 1   Factory setting   - [Nms/rad]
Description: Dependency:	Displays the determined proportional gain $K p$ of the speed controller before FFT tuning. This function is used for One Button Tuning (p5300 = 1).		



### 2.2 List of parameters

p5296[0...2]	FFT tuning PRBS am	tun PRBS ampl	
$\begin{aligned} & \text { SERVO (J_estimator), } \\ & \text { SERVO_AC } \\ & \text { (J_estimator), } \\ & \text { SERVO_I_AC } \\ & \text { (J_estimator) } \end{aligned}$	Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: -   Not for motor type: REL Min $1.0 \text { [\%] }$	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   300.0 [\%]	Access level: 3   Func. diagram: -   Unit selection: -   Expert list: 1   Factory setting   [0] 10.0 [\%]   [1] 30.0 [\%]   [2] 5.0 [\%]
Description:	Sets the amplitude of the P The value refers to the mot This function is used for On Refer to: p5291	0333) and to the moto p5300 = 1).	(r0319).
p5297[0...2]   SERVO (J_estimator,   Lin), SERVO_AC   (J_estimator, Lin),   SERVO_I_AC   (J_estimator, Lin)	FFT tuning PRBS offs   Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P-Group: -   Not for motor type: REL   Min   -210000.0000 [m/min]	PRBS offs   Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   210000.0000 [m/min]	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   0.0000 [ $\mathrm{m} / \mathrm{min}$ ]
Description: Recommendation:	Setting the motor velocity o   The offset is intended to pre values   If the "Identify high frequenc applies to the offset velocity   p5297 > 15 / motor encoder   p5297 = $15 /$ p0408 / p0115	ffects, such as backlas $290=1$ ) is used togeth velocity controller samp	influencing the measured HTL encoder, then the following
Dependency:	Refer to: p5291		
p5297[0...2]	FFT tuning PRBS off	PRBS offs	
SERVO (J_estimator),   SERVO_AC   (J_estimator),   SERVO_I_AC   (J_estimator)	Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: -   Not for motor type: REL Min $-210000.0000[\mathrm{rpm}]$	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   210000.0000 [rpm]	Access level: 3   Func. diagram: -   Unit selection: -   Expert list: 1   Factory setting   0.0000 [rpm]
Description:	Sets the speed offset for the The offset is intended to prev values   This function is used for One	effects, such as backlas (p5300 = 1).	m influencing the measured
Recommendation:	If the "Identify high frequenc applies to the offset speed ( p5297 > 15 / motor encoder p5297 = $15 /$ p0408 / p0115	$290=1$ ) is used togeth   speed controller sampli	HTL encoder, then the following
Dependency:	Refer to: p5291		


r5298	FFT tuning amplitude response / FFT tun ampl_resp		
SERVO (J_estimator),   SERVO_AC   (J_estimator),   SERVO_I_AC   (J_estimator)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Amplitude response of the speed control loop in dB (units rpm/Nm or m/min/N).		
	During the One Button Tuning function, 1024 measured values are generated, and are then output in the speed controller sampling time.		
	For p5301.0 = 1 or p5301.1 = 1, in the representation, a measured value corresponds to (1/p0115[1])/2048 in [ Hz ].		
	For p5301.4 = 1 or p5301.5 = 1 in the representation, a measured value corresponds to 250/2048 in [Hz].		
	A trigger condition is required to trace the measured values (e.g. amplitude response r5298 <> 0).		
r5299	FFT tuning phase response / FFT tun ph_resp		
SERVO (J_estim SERVO_AC (J_estimator), SERVO_I_AC (J_estimator)	Can be changed: -   Data type: FloatingPoint32   P-Group: Closed-loop control	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: -
		Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
			-
Description:	Phase response of the speed control loop in degrees.		
	During the One Button Tuning function, 1024 measured values are generated, and are then output in the speed controller sampling time.		
	For $\mathrm{p} 5301.0=1$ or $\mathrm{p} 5301.1=1$, in the representation, a measured value corresponds to (1/p0115[1])/2048 in [Hz].		
	For p5301.4 = 1 or p5301.5 = 1 in the representation, a measured value corresponds to 250/2048 in [ Hz ].		
	A trigger condition is required to trace the measured values (e.g. amplitude response r5298 <> 0).		



## 2 Parameters

### 2.2 List of parameters

Dependency:	The prerequisite for the "auto tuning" function is that the "Moment of inertia estimator" function module is activated (r0108.10).
	The "Autotuning" function can only be selected for "Servo" control mode with position encoder.
	The motor must have already been commissioned so that autotuning functions error-free. A motor identification may be necessary beforehand (p1900 and following).
	One Button Tuning:
	p5301 configures the "One Button Tuning" function.
	p5292 if the required dynamic response of the control loops is set.
	p5308 is used to parameterize the traversing distance for the test signal.
	Other relevant parameters: p5309, p5296, p5297, p5275, r5274, r5393, r5394, r5395
	Online tuning:
	p5302 configures the "Online tuning" function.
	p5272 if the required dynamic response of the control loops is set.
	Other relevant parameters: p5271, p5275, r5274
	Refer to: p5271, p5272, p5273, r5274, p5275, p5292, r5293, r5294, r5295, p5296, p5297, p5301, p5302, p5308, p5309
Warning:	Only the motor measuring system is taken into account when optimizing the position controller. If an external measuring system is used for the position control, then this can result in an unstable controller setting.
	The "One Button Tuning" function does not support different sampling times for current and velocity controllers. For p0112 $=2$, in some instances different stability criteria are obtained. It is recommended that "One Button Tuning" is not used for this configuration.
Caution:	For some drive trains, the "online tuning" function can result in unstable settings (motor makes a whistling sound). This is especially the case for large load masses that are connected to the motor through a low-frequency coupling/connection. In this case, parameter p5272 or p5273 must be reduced.
Note:	If $\mathrm{p} 5300=-1$ :
	Autotuning is deactivated, and p 5300 is automatically set to 0 . In addition, the default setting values for the velocity and position controller are restored.
	If $\mathrm{p} 5300=0$ :
	Online tuning is inactive.
	To permanently back up the values determined for the velocity controller and position controller, the parameters must be saved in a non-volatile fashion (p0977 = 1 or "Copy RAM to ROM").
	The results of the moment of inertia estimator can be reset using p5300 $=0$. After p5300 $>0$, the parameters for moment of inertia and tuning must be determined again.
	If $\mathrm{p} 5300=1$ :
	One Button Tuning is active.
	The mass is determined once using a test signal. The controller parameters and current setpoint filters are additionally determined once using a noise signal as excitation source.
	If p5300 = 2:
	Online tuning is active.
	The mass is estimated. The controller parameters are recalculated if the mass noticeably changes.


p5300[0...n]	Autotuning selection / Autotuning select		
SERVO (J_estimator),	Can be changed: $T$	Calculated: -	Access level: 2
SERVO_AC	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
SERVO I AC	P-Group: -	Unit group: -	Unit selection: -
(J_estimator)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1	2	0
Description:	Sets activation/deactivation of the "auto tuning" function. If $\mathrm{p} 5300=1$ :		
	The "One button tuning" function is configured using p5301.		
	If $\mathrm{p} 300=2$ :		
	The "Online tuning" function is configured using p5302.		
	The following parameters are written to for the two functions:		
	p0430, p1160, p1400, p1413-p1426, p1428, p1429, p1433-p1435, p1441, p1460-p1465, p1498, p1513, p1656 p1676, p2533-p2539, p2567, p2572, p2573, p5280		


Value:	-1: Reset controller parameters   0: Inactive   1: One Button Tuning   2: Online tuning
Recommendation:	If p5300 = 1 "One Button Tuning" is used together with an TTL/HTL encoder, then the following applies: Offset speed (p5297) > 15 / motor encoder pulse number / speed controller sampling time p5297 > 15 / p0408 / p0115[2]
Dependency:	The prerequisite for the "auto tuning" function is that the "Moment of inertia estimator" function module is activated (r0108.10).   The "Autotuning" function can only be selected for "Servo" control mode with position encoder.   The motor must have already been commissioned so that autotuning functions error-free. A motor identification may be necessary beforehand (p1900 and following).   One Button Tuning:   p5301 configures the "One Button Tuning" function.   p5292 if the required dynamic response of the control loops is set.   p5308 is used to parameterize the traversing distance for the test signal.   Other relevant parameters: p5309, p5296, p5297, p5275, r5274, r5393, r5394, r5395   Online tuning:   p5302 configures the "Online tuning" function.   p5272 if the required dynamic response of the control loops is set.   Other relevant parameters: p5271, p5275, r5274   Refer to: p5271, p5272, p5273, r5274, p5275, p5292, r5293, r5294, r5295, p5296, p5297, p5301, p5302, p5308, p5309
Warning:	Only the motor measuring system is taken into account when optimizing the position controller. If an external measuring system is used for the position control, then this can result in an unstable controller setting.   The "One Button Tuning" function does not support different sampling times for current and speed controllers. For p0112 $=2$, in some instances different stability criteria are obtained. It is recommended that "One Button Tuning" is not used for this configuration.
Caution:	For some drive trains, the "online tuning" function can result in unstable settings (motor makes a whistling sound). This is especially the case for high load moments of inertia, which are coupled to the motor through a low-frequency connection/coupling. In this case, the values in parameter p5272 or p5273 must be reduced.
Note:	If $p 5300=-1$ :   Autotuning is deactivated, and p5300 is automatically set to 0 . In addition, the default setting values for the speed and position controller are restored.   If $\mathrm{p} 5300=0$ :   Online tuning is inactive.   To permanently save the values determined for the speed and position controllers, the parameters must be saved in a non-volatile manner ( p 0977 = 1 or "copy RAM to ROM").   If $\mathrm{p} 5300=1$ :   One Button Tuning is active.   The moment of inertia is determined once using a test signal. The controller parameters and current setpoint filters are additionally determined once using a noise signal as excitation source. The steps to be executed can be configured using p5301.   If $\mathrm{p} 5300=2$ :   Online tuning is active.   The moment of inertia is estimated. The controller parameters are recalculated if the moment of inertia noticeably changes. The steps to be executed can be configured using p5302.
p5301[0...n]	One Button Tuning configuration / OBT config
SERVO (J_estimator, Lin), SERVO_AC (J_estimator, Lin), SERVO_I_AC   (J_estimator, Lin)	Can be changed: U, T Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: DDS, p0180 Func. diagram: -   P-Group: - Unit group: - Unit selection: -   Not for motor type: REL Scaling: - Expert list: 1   Min Max Factory setting   - - 0000000000000111 bin
Description:	Setting the functions for One Button Tuning (p5300 = 1).   A test signal is required for some functions. Here, parameters p5307 to p5309 must be a taken into consideration.

### 2.2 List of parameters

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Setting the proportional gain Kp	Yes	No	-
	01	Setting current setpoint filter	Yes	No	-
	02	Activating the moment of inertia estimator	Yes	No	-
	04	Load oscillation detection	Yes	No	-
	05	Suppress detected load oscillation	Yes	No	-
	07	Activating synchronized axes	Yes	No	-
	08	Moment of inertia determination from frequency response	Yes	No	-
Dependency:	It is only possible to change the configuration if autotuning is not active (p5300 = 0).				
	Refer to: p5292, r5293, r5294, r5295, p5296, p5297, p5300, p5308, p5309				
Note:	For bit 00:				
	The velocity controller gain is determined and set using a noise signal.				

For bit 01:
Possibly required current setpoint filters are determined and set using a noise signal.
As a consequence, a higher dynamic performance can be achieved in the velocity control loop.
For bit 02:
Using this bit, the mass is determined using a test signal. If this bit is not set, then the load mass must be manually set using parameter p1498. The test signal must have been previously set using parameters p5308 and p5309.
For bit 07:
With this function, these axes are adapted to the dynamic response set in p 5275 . This is necessary for interpolating axes. The time in p5275 should be set according to the axis with the lowest dynamic response.

## p5301[0...n] One Button Tuning configuration / OBT config

SERVO ( J estimator), Can be changed: U T Calculated:
SERVO_AC
(J_estimator),
SERVO I AC
(J_estimator)

Can be changed: U, T
Data type: Unsigned32
P-Group: -
Not for motor type: REL
Min

Description: $\quad$ Setting the functions for One Button Tuning (p5300 = 1).
A test signal is required for some functions. Here, parameters p5307 to p5309 must be a taken into consideration.
Bit field:

Dependency: It is only possible to change the configuration if autotuning is not active (p5300=0).
Refer to: p5292, r5293, r5294, r5295, p5296, p5297, p5300, p5308, p5309
Note:
For bit 00:
The speed controller gain is determined and set using a noise signal.
For bit 01:
Possibly required current setpoint filters are determined and set using a noise signal.
As a consequence, a higher dynamic performance can be achieved in the speed control loop.
For bit 02:
Using this bit, the moment of inertia is determined using a test signal. If this bit is not set, then the load moment of inertia must be manually set using parameter p 1498 . The test signal must have been previously set using parameters p5308 and p5309.
For bit 04:
Using this bit, load oscillation detection is determined using a test signal. The traversing path must first be set using parameter p5308.

## Access level: 3

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0000000000000111 bin

Bit	Signal name	1 signal	0 signal	FP
00	Setting the proportional gain Kp	Yes	No	-
01	Setting current setpoint filter	Yes	No	-
02	Activating the moment of inertia estimator	Yes	No	-
04	Load oscillation detection	Yes	No	-
05	Suppress detected load oscillation	Yes	No	-
07	Activating synchronized axes	Yes	No	-
08	Moment of inertia determination from	Yes		-

Calculated: -
Dyn. index: DDS, p0180
Unit group: -
Scaling: -
Max
-

FP
-
-
-
-
-

For bit 05:
Using this bit, load oscillation detection is determined using a test signal, and transferred to p3752. The precondition is function module "APC" (r0108.7 = 1) and p3700.2 = 1. After executing the function, APC must be activated via $\mathrm{p} 3700.0=1$. The traversing path must first be set using parameter p5308.
For bit 07:
With this function, these axes are adapted to the dynamic response set in p5275. This is necessary for interpolating axes. The time in p5275 should be set according to the axis with the lowest dynamic response.
For bit 08:
Using this bit, the moment of inertia is determined from the frequency characteristic using a test signal, and is transferred to p1498. The traversing path must first be set using parameter p5308.

p5302[0...n]	Online tuning configuration / Ot config					
SERVO (J_estimator,   Lin), SERVO_AC   (J_estimator, Lin),   SERVO_I_AC   (J_estimator, Lin)		be changed: $U, T$	Calculated: -   Dyn. index: DDS, p0180   Unit group: -		Access level: 3	
		type: Unsigned32			Func.	
		up: -			Unit se	
		or motor type: REL	Scal	ng: -	Expert	
	Min		Max		Factor	
	-		-		00000	
Description:	Setting the functions for online tuning (p5300 = 2).					
Bit field:		Signal name		1 signal	0 signal	FP
		Activating the moment of inertia estimator		Yes	No	-
		Configuring the moment of inertia estimator		Cyclic	Once	-
		Activating the current setpoint filter adaptation		Yes	No	-
	07	Activating synchronized axes		Yes	No	-
	08	Moment of inertia determination from Yes frequency response			No	-
Dependency:	It is only possible to change the configuration if autotuning is not active (p5300 = 0).					
Caution:	Please note the general conditions for the moment of inertia estimator, online tuning as well as adaptive resonance filter in the following reference:   SINAMICS S120 Function Manual Drive Functions					
Note:	For bit 02:					
	When the bit is set, the mass is determined while traversing (moment of inertia estimator). If this bit is not set, then the load mass must be manually set using parameter p1498.					
	For bit 03:					
	If p5302.3 = 0, "Once" applies:					
	After having successfully determined the load mass ( p 1498 ), the moment of inertia estimator is deactivated. If p5302.3 = 1, "Cyclic" applies:					
	The mass is continually determined and the controller parameters adapted. After the mass has been successfully determined $(r 1407.26=1)$, we recommend that the parameters are saved in a non-volatile fashion. As a consequence, the controllers do not have to restabilize after the next switch on.					
	For bit 06:					
	The adaptation of a current setpoint filter can be set here (see p5280-p5285).					
	This adaptation may be necessary if a mechanical resonance frequency changes in operation. It can also be used to dampen a fixed resonance frequency. Once the control loop has stabilized, this bit should be deactivated and the determined parameters saved in a non-volatile fashion.					
	For bit 07:					
	When the function is activated, these axes are adapted to the dynamic response set in p5275. This is necessary for interpolating axes. The time in p5275 should be set according to the axis with the lowest dynamic response.					



r5306[0...n]	Autotuning status / Autotuning stat		
SERVO (J_estimator),	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator),	P-Group: -	Unit group: -	Unit selection: -
SERVO_IAC	Scaling: -	Expert list: 1	
(J_estimator)	Not for motor type: REL	Max	Factory setting
	Min	-	-
	-		
Description:	Displays the status of the auto tuning functions performed - "Online tuning" and "One Button Tuning".		
	The functions can be activated via p5300.		


Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Proportional gain Kp set	Yes	No	-
	01	Current setpoint filter set	Yes	No	-
	02	Moment of inertia estimation carried out	Yes	No	-
	04	Load vibration detection performed	Yes	No	-
	05	Detected load oscillation set	Yes	No	-
	06	Current setpoint filter adaptation active	Yes	No	-
	12	Online tuning active	Yes	No	-
	13	One Button Tuning successfully completed	Yes	No	-
	14	Controller parameters reset due to fault	Yes	No	-
Dependency:	Refer to: p5300, p5301, p5302				
Note:	For bit $00=1$ : The speed controller gain was set using One Button Tuning.				
	For bit 01 = 1: The current setpoint filter was set using One Button Tuning				
	For bit 02 1: The moment of inertia was determined.				
	For bit $04=1$ : Load oscillation detection was performed using One Button Tuning				
	For bit $05=1$ : Detected load oscillation suppression was set using One Button Tuning.				
	For bit $06=1$ : Adaptive resonance filters of the online tuning are active.				
	For bit $12=1$ : Online tuning is active and modifies the controller.				


p5307[0...n]	Activate One Button Tuning test signal / Act OBT test sig		
SERVO (J_estimator,	Can be changed: T	Calculated: -	Access level: 3
Lin), SERVO_AC	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator, Lin), P-Group: -   SERVO_I_AC Unit group: -			
(J_estimator, Lin) Not for motor type: - Scaling: -			
	Min	Max	Expert list: 1
	-	-	Factory setting
Description:	Setting to activate the test signal.		0000 bin
	For bit 01:		
	As setpoint velocity, the rated motor velocity is entered, alternating in the positive and negative directions.		


Bit field:	Bit	Signal name	1 signal	0 signal	FP
	01	Triangular test signal	ON	OFF	-
Dependency:	Refer to: p5308, p5309				
Note:	For bit 01:				
	This test signal can only be activated for p5308>0 and p5309 >				


p5307[0...n]	Activate One Button Tuning test signal / Act OBT test sig			
SERVO (J_estimator),   SERVO_AC   (J_estimator),   SERVO_I_AC   (J_estimator)	Can be changed: T	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: DDS, p0180	Func.	
	P-Group: -	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factory	
	-	-	0000 b	
Description:	Setting to activate the test signal.			
	For bit 01:			
	As setpoint speed, a triangular signal is entered, alternating in the positive and negative directions. Distance p5308 and duration p5309 are kept.			
	This function is used for One Button Tuning p5300 $=1$.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	01 Triangular test signal	ON	OFF	-
Dependency:	Refer to: p5308, p5309			
Note:	For bit 01:			
	This test signal can only be activated for p5308>0 and p5309>0.			
	Speed control with encoder is required to activate the test signal.			


p5308[0...n]	One Button Tuning test signal distance limiting / OBT test sig lim		
SERVO (J_estimator, Lin), SERVO_AC (J_estimator, Lin), SERVO_I_AC (J_estimator, Lin)	Can be changed: T   Data type: Integer32   P-Group: -   Not for motor type: -   Min   -30000 [mm]	Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   30000 [mm]	Access level: 3   Func. diagram:   Unit selection:   Expert list: 1   Factory setting   0 [mm]
Description:   Dependency:   Note:	Sets the distance limiting for the "Square wave with a rated velocity" test signal (p5307.1).   After activating the test signal ( p 5307.1 ), the traversing range is limited in the positive and negative directions to the set distance limit in mm .		
$\begin{aligned} & \hline \text { p5308[0...n] } \\ & \text { SERVO (J_estimator), } \\ & \text { SERVO_AC } \\ & \text { (J_estimator), } \\ & \text { SERVO_I_AC } \\ & \text { (J_estimator) } \end{aligned}$	One Button Tuning test signal distan   Can be changed: T   Data type: Integer32   P-Group: -   Not for motor type: -   Min   -30000 [ ${ }^{\circ}$ ]	tance limiting / OBT   Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   30000 [ ${ }^{\circ}$ ]	sig lim   Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   0 [ ${ }^{\circ}$ ]
Description:   Dependency:   Note:	Sets the distance limiting for the "Triangular test signal" (p5307.1).   After activating the test signal ( p 5307.1 ), the traversing range is limited in the positive and negative directions to the set distance limit (p5308).   This function is used for One Button Tuning p5300 = 1 to identify the total moment of inertia of the drive train.   Refer to: p5307   A value of 360 degrees corresponds to one motor revolution.   The position before the pulse enable is used as zero point.		
$\begin{aligned} & \hline \text { p5309[0...n] } \\ & \text { SERVO (J_estimator), } \\ & \text { SERVO_AC } \\ & \text { (J_estimator), } \\ & \text { SERVO_I_AC } \\ & \text { (J_estimator) } \end{aligned}$	One Button Tuning test signal durat   Can be changed: $T$   Data type: Unsigned32   P-Group: -   Not for motor type: -   Min   0 [ms]	ation / OBT test sig   Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   5000 [ms]	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   2000 [ms]
Description: Dependency:	Sets the test signal sequence duration (several This function is used for One Button Tuning p530   Refer to: p5307   Refer to: F07093	al acceleration operations) $5300=1$ to identify the total	t of inertia of the drive train.
$\begin{aligned} & \hline \text { p5310[0...n] } \\ & \text { VECTOR } \\ & \text { (J_estimator), } \\ & \text { VECTOR_AC } \\ & \text { (J_estimator), } \\ & \text { VECTOR_IAC } \\ & \text { (J_estimator) } \end{aligned}$	Moment of inertia precontrol configu   Can be changed: C2(3), U, T   Data type: Unsigned32   P-Group: Motor   Not for motor type: -   Min	guration / J_est con   Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   0000 bin
Description: Bit field:	Configuration of the moment of inertia precontro   Bit Signal name   00 Activating calculations   01 Activating the moment of inertia precontro	trol when the moment of in $\mathbf{1}$ signal Yes trol $\quad$ Yes	timator is active.


Dependency:	The function module "Moment of inertia estimator" (r0108.10) must be activated for the "Moment of inertia precontrol" function.			
	Refer to: r5311, p5312, p5313, p5314, p5315			
Note:	Possible bit combinations:			
	Bit 1, 0			
	= 0, $0-->$ function not active			
	= 0,1 --> cyclic calculation of the coefficients without moment of inertia precontrol (commissioning)			
	= 1, 0 --> moment of inertia precontrol activated (without cyclic calculation of the coefficients)			
	= 1, 1 --> moment of inertia precontrol activated (with cyclic calculation of the coefficients)			
	For bit 00:			
	Calculation for the constant and linear coefficients of the moment of inertia precontrol is activated. The results are written to parameters (p5312, p5313, p5314, p5315).			
	For bit 01:			
	The moment of inertia precontrol is activated.			
	The moment of inertia is calculated from the currently measured load torque and the saved coefficients (p5312, p5313, p5314, p5315).			
r5311[0...n]	Moment of inertia precontrol status word / J_prectrl ZSW			
VECTOR   (J_estimator),   VECTOR_AC   (J_estimator),   VECTOR_I_AC   (J_estimator)	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: DDS, p0180	Func.	
	P-Group: Motor	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the status word for the moment of inertia precontrol.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 New measuring points are available	Yes	No	-
	01 New parameters being calculated	Yes	No	-
	02 Moment of inertia precontrol active	Yes	No	-
	03 Calculation of positive coefficients completed	Yes	No	-
	04 Calculation of negative coefficients completed	Yes	No	-
	05 Results are being written to parameter	Yes	No	-
Dependency:	The function module "Moment of inertia estimator" (r0108.10) must be activated for the "Moment of inertia precontrol" function.			


p5312[0...n]	Moment of inertia precontrol linear positive / J_est lin pos		
VECTOR	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
(J_estimator),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator),	P-Group: Motor	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(J_estimator)	Min	Max	Factory setting
	-340.28235E36 [s ${ }^{2}$ ]	340.28235 E 36 [ ${ }^{2}$ ]	$0.000000\left[\mathrm{~s}^{2}\right]$
Description:	Sets the linear coefficients for moment of inertia precontrol in the positive direction when the moment of inertia estimator is active.		
	The estimated moment of inertia is obtained according to the following formula:		
	Moment of inertia ( $J$ ) = linear coefficient (p5312) * load torque + constant coefficient (p5313)		
Dependency:	The function module "Moment of inertia estimator" (r0108.10) must be activated for the "Moment of inertia precontrol" function.		
	Refer to: p5310, r5311, p5313, p5314, p5315		


p5313[0...n]	Moment of inertia precontrol constant positive / J_est const pos		
VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_ALL	Access level: 3
(J_estimator),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator),	P-Group: Motor	Unit group: 25_1	Unit selection: p0100
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(J_estimator)	Min	Max	Factory setting
	-340.28235E36 [kgm²]	340.28235 E 36 [ $\mathrm{kgm}^{2}$ ]	$0.000000\left[\mathrm{kgm}^{2}\right]$
Description:	Sets of the constant coefficients for moment of inertia precontrol in the positive direction when the moment of inertia estimator is active.		
	The estimated moment of inertia is obtained according to the following formula:		
	Moment of inertia ( J ) = linear coefficient (p5312) * load torque + constant coefficient (p5313)		
Dependency:	The function module "Moment of inertia estimator" (r0108.10) must be activated for the "Moment of inertia precontrol" function.		
	Refer to: p5310, r5311, p5312, p5314, p5315		


p5314[0...n]	Moment of inertia precontrol linear negative / J_est lin neg		
VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_ALL	Access level: 3
(J_estimator),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J estimator),	P-Group: Motor	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(J_estimator)	Min	Max	Factory setting
	-340.28235E36 [s²]	$340.28235 \mathrm{E} 36\left[\mathrm{~s}^{2}\right]$	$0.000000\left[\mathrm{~s}^{2}\right]$
Description:	Sets the linear coefficients for moment of inertia precontrol in the negative direction when the moment of inertia estimator is active.		
	The estimated moment of inertia is obtained according to the following formula:		
	Moment of inertia ( J ) = linear coefficient (p5314) * load torque + constant coefficient (p5315)		
Dependency:	The function module "Moment of inertia estimator" (r0108.10) must be activated for the "Moment of inertia precontrol" function.		
	Refer to: p5310, r5311, p5312, p5313, p5315		


p5315[0...n]	Moment of inertia precontrol constant negative / J_est const neg		
VECTOR	Can be changed: C2(3), U, T	Calculated: CALC_MOD_ALL	Access level: 3
(J_estimator),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J estimator),	P-Group: Motor	Unit group: 25_1	Unit selection: p0100
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
(J_estimator)	Min	Max	Factory setting
	-340.28235E36 [kgm]	$340.28235 \mathrm{E} 36\left[\mathrm{kgm}^{2}\right]$	$0.000000\left[\mathrm{kgm}^{2}\right]$
Description:	Sets the constant coefficients for moment of inertia precontrol in the negative direction when the moment of inertia estimator is active.		
	The estimated moment of inertia is obtained according to the following formula:		
	Moment of inertia ( J ) = linear coefficient (p5314) * load torque + constant coefficient (p5315)		
Dependency:	The function module "Moment of inertia estimator" (r0108.10) must be activated for the "Moment of inertia precontrol" function.		
	Refer to: p5310, r5311, p5312, p5313, p5314		


p5316[0...n]	Inertia precontrol cha	ia / J_precontrl t_ch J	
SERVO (J_estimator, Lin), SERVO_AC (J_estimator, Lin), SERVO_I_AC (J_estimator, Lin)	Can be changed: U, T   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: REL   Min   10.00 [ms]	Calculated: CALC_MOD_CON   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   5000.00 [ms]	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   500.00 [ms]
Description:	Sets the change time for the Lower values mean that faster For a higher value, this estim Refer to: p1400, p1560, p1562	ertia precontrol. possible. oothed more significantly.	
```p5316[0...n] SERVO (J_estimator), VECTOR (J_estimator), SERVO_AC (J_estimator), VECTOR_AC (J_estimator), SERVO_I_AC (J_estimator), VECTOR_I_AC (J_estimator)```	Moment of inertia prec   Can be changed: $U, T$   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: REL   Min   10.00 [ ms ]	ge time moment of inert   Calculated: CALC_MOD_CON   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   5000.00 [ms]	J_precontrl t_ch J   Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   500.00 [ms]
Description:	Sets the change time for the m Lower values mean that faster For a higher value, this estima Refer to: p1400, p1560, p1562	ia for the moment of inertia prec possible. oothed more significantly.	
p5320	Select moment of iner	ation / Sel mom_inert_	
SERVO (J_estimator), SERVO_AC (J_estimator), SERVO_I_AC (J_estimator)	Can be changed: U, T Data type: Integer16 P-Group: - Not for motor type: REL Min 0	Calculated: - Dyn. index: - Unit group: - Scaling: - Max 1	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting 0
Description:	A noise signal is injected into Activation of the moment of in For p5320 = 1: The moment of inertia determi	ermine the moment of inertia. tion d.	
Value:	0 : Inactive 1: \quad Start moment of inertia		
Dependency:	The prerequisite for the "Mom module is activated (r0108.10) The "Moment of inertia determ The motor must have already motor identification may be ne	termination" function is that the " n can only be selected for the "Se ioned so that "moment of inertia hand (p1900 and following).	ment of inertia estimator" function control mode with motor encode mination" functions error-free. A

2.2 List of parameters

r5321	Moment of inertia determination status word / J_determine ZSW				
SERVO (J_estimator), SERVO_AC (J_estimator), SERVO_I_AC (J_estimator)	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: -	Func.	
	P-Group: -		Unit group: -	Unit s	
	Not for motor type: REL		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the status word for the "Moment of inertia determination" function.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Measurement selected	Yes		-
	01	Measurement has started	Yes	No	-
		Measurement completed	Yes	No	-
	03	Evaluation has started	Yes	No	-
		Evaluation completed with	racy Yes	No	-
	05	Evaluation completed with	acy Yes	No	-
	06	Evaluation completed with	Yes	No	-

p5322[0...n]	Moment of inertia determination configuration / J_determine config							
SERVO (J_estimator), SERVO_AC (J_estimator), SERVO_I_AC (J_estimator)	Can be changed: U, T Data type: Unsigned32 P-Group: - Not for motor type: REL Min		Calculated: - Dyn. index: DDS, p0180 Unit group: - Scaling: - Max		Access level: 3			
			Func.					
			Unit s					
			Expert					
			Facto					
			0001 b					
Description:	Sets the configuration for the "Moment of inertia determination" function (p5320 $=1$).							
Bit field:		Signal name				1 signal	0 signal	FP
		Measurement while				Yes	No	-
		Do not reduce Kp for				Yes	No	-
Dependency:	The precondition for the "Moment of inertia measurement" function is that the "Moment of inertia estimator" function module is activated (r0108.10).							
	The "Moment of inertia measurement" function can only be selected for servo control with motor encoder. The motor must have already been commissioned so that "moment of inertia measurement " functions error-free. A motor identification may be necessary beforehand (p1900 and following).							

p5323[0...n]	Moment of inertia determination lower frequency limit / J_determ f_lim low		
SERVO (J_estimator),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
(J_estimator)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Hz]	1000.0 [Hz]	0.0 [Hz]
Description:	Evaluation of the moment of inertia from the set frequency.		
Dependency:	The precondition for the "Moment of inertia measurement" function is that the "Moment of inertia estimator" function module is activated (r0108.10).		
	The "Moment of inertia measurement" function can only be selected for servo control with motor encoder.		
	The motor must have already been commissioned so that "moment of inertia measurement " functions error-free. A motor identification may be necessary beforehand (p1900 and following).		

p5324[0...n]	Moment of inertia determination upper frequency limit / J_determ f_lim up		
SERVO (J_estimator),	Can be changed: U, T	Calculated: -	Access level: 3
SERVO_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(J_estimator), SERVO I AC	P-Group: -	Unit group: -	Unit selection: -
(J_estimator)	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Hz]	1000.0 [Hz]	0.0 [Hz]
Description:	Evaluation of the moment of inertia up to the set frequency.		
Dependency:	The precondition for the "Moment of inertia measurement" function is that the "Moment of inertia estimator" function module is activated (r0108.10).		
	The "Moment of inertia measurement" function can only be selected for servo control with motor encoder.		
	The motor must have already been commissioned so that "moment of inertia measurement " functions error-free. A motor identification may be necessary beforehand (p1900 and following).		

p5350[0...n]	Mot_temp_mod 1/3 boost factor at standstill / Standst boost_fact		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Unit group: -	Unit selection: -
	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.0000	2.0000	2.0000
Description:	Sets the boost factor for the copper losses at standstill for motor temperature models 1 and 3 . The entered factor is active for speed $\mathrm{n}=0$ [rpm].		
	This factor is linearly reduced down to 1 between speeds $\mathrm{n}=0 \ldots 1$ [rpm].		
	The following values are required to calculate the boost factor:		
	- thermal stall current (1_th0, catalog value)		
	The boost factor is calculated as follows:		
	- p5350 = (1_0 / I_th0)^2		
Dependency:	Refer to: p0318, p0351, p0612, p5390, p5391		
	Refer to: F07011, A07012, F07013, A07014		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	Temperature model 1 (I2t):		
	The following applies for firmware version < 4.7 SP6 or p0612.8 $=0$:		
	- parameter p5350 is not active. Internally, a fixed boost factor of 1.333 is used as basis for the calculation.		
	The following applies from firmware vers - parameter p5350 becomes active as d	4.7 SP6 and p0612.8 = 1:	

For bit 02:
The encoder temperature is measured using a temperature sensor. When the bit is set, a high temperature is identified, and a corresponding signal is additionally output.
For bit 08:
When reaching the motor temperature alarm threshold, reduction of the maximum current is set as response (p0610 $=1$). When the bit is set, reduction of the maximum current is active.

p5390[0...n]	Mot_temp_mod 1/3 alarm thr	/ A thresh	
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(3), U, T Data type: FloatingPoint32 P-Group: Motor Not for motor type: ASM, SESM, REL Min $0.0\left[{ }^{\circ} \mathrm{C}\right]$	Calculated: - Dyn. index: MDS, p0130 Unit group: 21_1 Scaling: - Max $200.0\left[{ }^{\circ} \mathrm{C}\right]$	Access level: 2 Func. diagram: 8017 Unit selection: p0505 Expert list: 1 Factory setting $110.0\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the alarm threshold for monitoring the motor temperature for motor temperature models 1 and 3 . The stator winding temperature (r0632) is used to initiate the signal. The following applies for temperature model 1 (I2t): - only effective from firmware version 4.7 SP6 and p0612.8 = 1. - Alarm A07012 is output after the alarm threshold is exceeded. - when commissioning a catalog motor for the first time, the threshold value is copied from p0605 to p5390. The following applies for temperature model 3 : - after the alarm threshold is exceeded, alarm A07012 is output and a calculated delay time ($t=p 5371 / p 5381$) is started. - if the delay time has expired and the alarm threshold has, in the meantime, not been fallen below, then fault F07011 is output.		
Dependency:	Refer to: r0034, p0605, p0612, r0632, p5391 Refer to: F07011, A07012, F07013, A07014		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The hysteresis is 2 K .		
p5391[0...n]	Mot_temp_mod 1/3 fault threshold / F thresh		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(3), U, T Data type: FloatingPoint32 P-Group: Motor Not for motor type: ASM, SESM, REL Min $0.0\left[{ }^{\circ} \mathrm{C}\right]$	Calculated: - Dyn. index: MDS, p0130 Unit group: 21_1 Scaling: - Max 200.0 [$\left.{ }^{\circ} \mathrm{C}\right]$	Access level: 2 Func. diagram: 8017 Unit selection: p0505 Expert list: 1 Factory setting $120.0\left[^{\circ} \mathrm{C}\right]$
Description:	Sets the fault threshold for monitoring the motor temperature for motor temperature models 1 and 3 . Fault F07011 is output after the fault threshold is exceeded. The stator winding temperature (r0632) is used to initiate the signal. The following applies for temperature model 1 (I2t): - only effective from firmware version 4.7 SP6 and p0612.8 = 1 . - when commissioning a catalog motor for the first time, the threshold value is copied from p0615 to p5391.		
Dependency:	Refer to: r0034, p0612, p0615, r0632, p5390		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The hysteresis is 2 K .		

2.2 List of parameters

r5397	Mot_temp_mod 1/3 ambient temperature image p0613 / AmbTmp image p613		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
SERVO-AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8019
SERVO_I_AC,	P-Group: Displays, signals	Unit group: 21_1	Unit selection: p0505
VECTOR_I_AC	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the ambient temperature for motor temperature models 1 and 3 . This value is used to calculate the utilization display (p 0034). The parameter value is an image of p0613.		
Dependency:	Refer to: r0034		
Note:	The following applies for firmware versio	4.7 SP6:	

r5398[0...n]	Mot_temp_mod 1/3 alarm threshold image p5390 / A thr image p5390		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
SERVOAC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8019
SERVO I AC,	P-Group: Displays, signals	Unit group: 21_1	Unit selection: 00505
VECTOR_I_AC	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the alarm threshold for monitoring the motor temperature for motor temperature models 1 and 3 . This value is used to calculate the utilization display (p0034). The parameter value is an image of p 5390 .		
Dependency:	Refer to: p5390		
	Refer to: F07011, A07012, F07013, A07014		
Note:	The following applies for firmware version < 4.7 SP6:		
	Users cannot see parameter p5390 (only Siemens internal).		

r5399[0...n]	Mot_temp_mod 1/3 fault threshold image p5391/F thr image p5391		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8019
VECTOR_AC,	P-Group: Displays, signals	Unit group: 21_1	Unit selection: p0505
SERVO_I_AC,	Not for motor type: ASM, SESM, REL	Scaling: -	Expert list: 1
VECTOR_I_AC	Max	Factory setting	
	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Sets the fault threshold for monitoring the motor temperature for motor temperature models 1 and 3 Fault F07011 is output after the fault threshold is exceeded.
The parameter value is an image of p5391.
Dependency:
Refer to: p5391
Refer to: F07011, A07012, F07013, A07014
Note:
The following applies for firmware version < 4.7 SP6:
Users cannot see parameter p5391 (only Siemens internal).

p5400	Grid droop control configuration / Grid droop ctr cfg			
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: T	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Closed-loop control	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-		0000 b	
Description:	Sets the configuration for the line droop control.			
Recommendation:	We recommend that the factory setting setting is kept.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
		Yes	No	
	01 dq transformation with grid droop angle	Yes	No	-
Dependency: Note:	Refer to: r5412, r5421, r5422, r5449			
	For bit 00:			
	For p5400.0 $=0$, the reactive current (r 5421) is used as input variable for the voltage droop (r5420).			
	Using this reactive current voltage droop, also in the case of line/grid voltage dips, a stable operating point for common operation with additional power generators in the island grid is obtained. This is also true if these generating units employ a reactive power voltage droop.			
	For p5400.0 = 1, the reactive power (r5422) is used as input variable for the voltage droop (r5420), therefore implementing a reactive power-voltage droop functionality.			
	For bit 01:			
	For p5400.1 = 0 , the line angle from the transformer model and PLL (r0094) are used to calculate the active current and reactive current (r5421, r5449).			
	For $\mathrm{p} 5400.1=1$, the grid supply angle from the grid supply droop (r 5412) is used to calculate the active and reactive current (r5421, r5449).			
$\overline{p 5401[0 \ldots 1]}$ A_INF (Line droop ctrl), R_INF (Line droop ctrl)	BI: Line droop control activation / Line drp act			
	Can be changed: U, T	Calculated: -	Acces	
	Data type: Unsigned32 / Binary	Dyn. index: -	Func.	
	P-Group: Commands	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
			[0] 0	
			[1] 1	
Description:	For index [0]:			
	Sets the signal source to activate line droop control for the infeed.			
	BI: $\mathrm{p} 5401[0]=1$ signal:			
	Activation of line droop control and deactivation of closed-loop DC link voltage control/closed-loop current control. BI: p5401[0] = 0 signal:			
	Activation of closed-loop DC link voltage control/closed-loop current control and deactivation of line droop control. For index [1]:			
	Setting the signal source to activate the line droop setpoints (p5405, p5406, p5415, p5416).			
	BI: p5401[1] = 1 signal:			
	Activates the setpoints.			
	BI: p 5401 [1] $=0$ signal:			
	Deactivates the setpoints.			
Index:	[0 = Line regulation [1] = Droop setpoints			
Dependency:	For p5401[0], the following applies:			
	The Smart Mode must be deactivated ($\mathrm{p} 3400.0=0$) to set a signal source.Refer to: 55402			

2.2 List of parameters

Notice:	Line droop control can only be activated if the power units have a gating unit with current limitation control (r0192.19
$=1$ or r0192.30 = 1).	
We urgently recommend at least one measure to dampen power oscillations (p5413, p5476) if, in an island grid,	
several generating sources are simultaneously active - and power is exchanged via the frequency droop (p5405).	
Fote: \quad For index [0]:	
So that closed-loop DC link voltage control is activated by the VECTOR drive object's technology controller (due to	
closed-loop DC link voltage control for the infeed being deactivated) the following BICO interconnection must be set:	
BI: p3513 (VECTOR) = r5402.0 (A_INF)	
For index [1]:	
	When the setpoints are deactivated, the smoothed actual values of these variables are used for the no-load values of
frequency and voltage. As a consequence, the average power is controlled so that it approaches zero. However,	
when the line frequency or line voltage changes, brief peak powers can occur according to the current limits that have	
been set (r5479).	
As the power is controlled to zero, in island grids continuous operation is only possible with p5401[1] = 0 if the grid is	
supplied by other generating units. Otherwise, line frequency and line voltage decreases to the shutdown limits.	
However, brief exceptions with the appropriate low frequency and amplitude deviations are possible and make sense	
(e.g. for switchover transitions in hot standby applications).	

r5402.0... 6
A_INF (Line droop ctrl), R_INF (Line droop ctrl)

Description: Bit field:

Note:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Line droop control not active	Yes	No	-
01	Line droop control active	Yes	No	-
02	Line droop control in single mode	Yes	No	-
03	Current limitation control active	Yes	No	7986
04	Operating state line short circuit active	Yes	No	-
05	Wobbulation modulation type active	Yes	No	-
06	Line droop f-U setpoints active	Yes		-

CO/BO: Line droop control status word / Line drp ZSW

Can be changed: - Calculated: -
Data type: Unsigned16 Dyn. index: -
P-Group: Closed-loop control
Not for motor type: -
Min

Unit group: -

Scaling: -

Max
-

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
\qquad

For bit 00, 01:
The line droop control is activated via binector input p5401[0].
The grid and DC link parameter identification must be deselected $(p 3410=0)$ in order to do this.
For bit 02:
The operating mode of the current hysteresis controller is specified via binector input p5451.
For bit 04:
The status word of the sequence control is displayed in r5452.
For bit 05:
The pulse frequency wobbulation is activated via p1810.2 = 1, and the wobbulation amplitude p1811 is enabled via p5456[0...2].4 $=0$.
For bit 06:
The no-load setpoints for frequency and voltage are activated using binector input p5401[1].

p5403[0...1]	CI: Line droop control current signal source / Line drp I s_src		
A_INF (Line droop	Can be changed: T	Calculated: -	Access level: 3
ctrl), R_INF (Line	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7982
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	-	-	[0] 3467[0]
			[1] 3467[1]
Description:	Sets the signal source for the current to be regulated in alpha/beta coordinates.		
Index:	$\begin{aligned} & {[0]=\text { Alpha }} \\ & {[1]=\text { Beta }} \end{aligned}$		
Dependency:	Refer to: p5404		
Note:	The following BICO interconnections are recommended:		
	- Droop control for current/voltage at the line filter: BI: p5403 = r3467 (BI: p5404 = r3468 must be set)		
	- Droop control for current/voltage at the line transformer: BI: p5403 = r5497 (BI: p5404 = r5488 or r5498 must be set)		

p5404[0...1]	CI: Line droop control voltage signal source / Line drp U s_src		
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7982
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	-	-	[0] 3468[0]
			[1] 3468[1]
Description:	Sets the signal source for the voltage to be regulated in alpha/beta coordinates.		
Index:	$\begin{aligned} & {[0]=\text { Alpha }} \\ & {[1]=\text { Beta }} \end{aligned}$		
Note:	The following BICO interconnections are recommended:		
	- Droop control for current/voltage at the line filter: BI: p5404 = r3468 (BI: p5403 $=$ r3467 must be set)		
	- Droop control for current/voltage at the line transformer: BI: p5404 = r5488 or r5498 (BI: p5403 = r5497 must be		

p5405

A_INF (Line droop ctrl), R_INF (Line droop ctrl)

Line droop control frequency droop no-load frequency / Line drp f_no-Id
Can

Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min
30.00 [\%]

Calculated: -

Dyn. index: -
Unit group: -
Scaling: PERCENT
Max
300.00 [\%]

Access level: 3
Func. diagram: 7982
Unit selection: -
Expert list: 1
Factory setting
100.00 [\%]

Description: Sets the no-load frequency (as a \% of p0211) for the line droop control active power frequency droop. Droop formula (without smoothing):
$\mathrm{r} 5410=(\mathrm{p} 5405+\mathrm{p} 5406+\mathrm{p} 5407 \times \mathrm{r} 5411[0] / \mathrm{r} 0206) \times \mathrm{p} 0211$
Dependency:
Refer to: p5409
Caution:
We urgently recommended that at least one measure is activated to dampen power oscillations (p5413, p5476).

The droop characteristic input variable is the active power r5411[0] at the selected connection point (p5403, p5404). The output frequency calculated using the above formula is filtered in accordance with the parameterized smoothing time (p5409).
The smoothed output frequency is displayed in r5410.

p5406[0...1]	CI: Line droop control frequency droop supplementary setpoint / L drp f_suppl_setp		
A_INF (Line droop ctrl, Line transf), R_INF (Line droop ctrl, Line transf)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7982
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	[0] 0
			[1] 5582[0]
Description:	Sets the signal source for the frequency droop supplementary setpoint (as a \% of p0211).		
Index:	[0] = Supplementary setpoint is smoothed [1] = Supplementary setpoint direct		
Dependency:	Refer to: p5405		
Notice:	For index [1]:		
	Setpoint steps without smoothing can result in significant equalization operations in the line supply and the overload of the inverter and the line components.		
Note:	For index [0]:		
	The setpoint signals are smoothed using a PT1 filter (p5409).		
	For index [1]:		
	If the signals for the unsmoothed setpoints are precisely reset to 0 (e.g. for p5483[3] = 1), then by internally adapting the smoothed setpoint state, an undesirable step-like frequency change is avoided. The signal for the smoothed setpoint should be adapted using a corresponding frequency change, if the frequency is to be kept constant.		
p5407	Line droop control frequency droop gradient / Line drp f grad		
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7982
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	5.00 [\%]
Description:	Sets the gradient of the frequency droop (as a \% of the rated frequency p0211 at the rated power r0206).		
Dependency:	Refer to: p5405		
p5408	CI: Line droop control frequency droop gradient dynamic / Line drp f grad dy		
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the additional gradient of the frequency characteristic.		
p5409	Line droop control frequency droop smoothing time / Line drp ft_sm		
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7982
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	150.00 [ms]
Description:	Sets the smoothing time for the output frequency of the active power frequency droop (r5410).		
Dependency:	Refer to: p5405		

Note: When the load changes, mechanical energy generation units induce a delayed change in frequency on account of their inertia. The converter tries to emulate this response with the assistance of the smoothing time. For the line to remain stable, all the energy generation units in a separate network have to respond in a similar manner during operation.

r5410	CO: Line droop control frequency droop output / Line drp f outp		
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7982
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the smoothed outp Droop formula (without smo r5410 $=$ (p5405 + p5406 +	he active power fr r0206) * p0211	
Dependency:	Refer to: p5405		

r5411[0...1]	CO: Line droop control frequency droop active power / Line drp f P_act		
A_INF (Line droop	Can be changed: -	Calculated: -	Access level: 3
ctrl), R_INF (Line	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7982
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the input active power of the active power frequency droop.		
	The active power is calculated for the currents and voltages defined with connector inputs p5403 and p5404.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$		
Dependency:	Refer to: p5409		
Note:	For index [1]:		
	The value is smoothed using a PT1 filter (smoothing time: p0045).		

r5412
 CO: Line droop control line angle / Line drp angle

A_INF (Line droop ctrl), R_INF (Line droop ctrl)

Can be changed: -
Data type: FloatingPoint32
P-Group: Displays, signals
Not for motor type: -
Min

- [${ }^{\circ}$]

Displays the actual line angle for line droop control.
The value is calculated by integrating the output frequency of the active power frequency droop (r5410).

p5413	Line droop control additional frequency droop gradient / Line droop add-f		
A_INF (Line droop	Can be changed: U, T	Calculated: -	Access level: 3
ctrl), R_INF (Line	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7982
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	10000.0 [\%]	0.0 [\%]
Description:	Sets the gradient for the additional, fast frequency droop.		
	The reference quantity is the gradient for the regular frequency droop (p5407).		
	The settings for the regular frequency droop (p5405 onwards) apply to the other droop parameters.		
	As a result of the short smoothing time, the supplementary frequency droop acts similar to a D component - and therefore as damping factor for the closed-loop line control.		

2.2 List of parameters

Recommendation: Typical setting values lie between 50% and 100%.
Dependency: Refer to: p5414, p5476
Note: \quad For example, a strong frequency dip can be generated when the load is connected with the additional frequency droop, and this can be used to emulate the behavior of a diesel generator.
The frequency is initially changed with the smoothing time p5414 in accordance with the additional droop, reaching the stationary end value in accordance with the time constant p5409 for the regular frequency droop.

The additional droop is deactivated with p5413 $=0$.

p5414	Line droop control additional frequency droop smoothing time / Line droop add-t		
A_INF (Line droop	Can be changed: U, T	Calculated: -	Access level: 3
ctrl), R_INF (Line	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7982
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	10.0 [\%]
Description:	Sets the smoothing time for the additional, fast frequency droop. The reference quantity is the smoothing time for the regular frequency droop (p5409).		
Recommendation:	Typical setting values lie between 10% and 20%.		
Dependency:	Refer to: p5413		
Note:	The smoothing time for the additional, fast frequency droop is less than or equal to the time constant for the regular frequency droop.		

2.2 List of parameters

p5419	Line droop control voltage droop smoothing time / Line drp U t_sm		
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7982
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	150.00 [ms]
Description:	Sets the smoothing time for the reactive current actual value (r5421[1]).		
	The smoothed reactive current is the input quantity for the reactive current voltage droop.		
Dependency:	Refer to: p5415		
Note:	When the load changes, mechanical energy generation units induce a delayed change in voltage on account of their electrical properties. The converter tries to emulate this response with the assistance of the smoothing time.		
	For the line to remain stable, all the energy generation units in a separate network have to respond in a similar manner during operation.		

r5420

A_INF (Line droop
ctrl), R_INF (Line
droop ctrl)

Description: Dependency:	Display and connector output for the smoothed output voltage of the reactive current voltage droop. Refer to: p5415
r5421[0...1]	CO: Line droop control voltage droop reactive current / Line drp U I_reac
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: - Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: 7982
	P-Group: Displays, signals Unit group: - Unit selection: -
	Not for motor type: - Scaling: p2002 Expert list: 1
	Min Max Factory setting
	$-[\mathrm{A}] \quad-[\mathrm{A}] \quad-[\mathrm{A}]$
Description:	Display and connector output for the input reactive current of the reactive current voltage droop. The reactive current is calculated for the currents and voltages defined with connector inputs p5403 and p5404.
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$
Dependency:	Refer to: p5419
Note:	For index [1]:
	The value is smoothed using a PT1 filter (smoothing time: p5419).

r5422[0...1]	CO: Line droop control voltage droop reactive power / Line drp U Q_reac		
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: 14_12	Unit selection: p0505
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kvar]	- [kvar]	- [kvar]
Description:	Display and connector output for the input reactive power of the reactive current voltage droop.		
	The reactive power is calculated for the currents and voltages defined with connector inputs p5403 and p5404.		
Index:	[0] = Unsmoothed		
Dependency:	Refer to: p5419		

p5426	Line droop control voltage control P gain / Line drp U_ctrl Kp
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: U, T Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: 7982 P-Group: Closed-loop control Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting $0.0[\%]$ $100.0[\%]$ $0.0[\%]$
Description: Dependency: Note:	Sets the proportional gain for the controller for voltage control at the connection point. The controller compensates internal voltage drops under load conditions and as such precisely converts the droop characteristic at the connection point (defined in p5425). Refer to: p5427 The proportional component of the controller is deactivated with p5426 $=0$.
p5427 A_INF (Line droop ctrl, Line transf), R_INF (Line droop ctrl, Line transf)	Line droop control voltage control integration time / Line drp U_ctrl Ti Can be changed: U, T Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: 7982 P-Group: Closed-loop control Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting $0.0[\mathrm{~ms}]$ $10000.0[\mathrm{~ms}]$ $500.0[\mathrm{~ms}]$
Description: Dependency: Note:	Sets the integration time for the controller for voltage control at the connection point. The controller compensates internal voltage drops under load conditions and as such precisely converts the droop characteristic at the connection point (defined in p5425). Refer to: p5426 The integral component of the controller is deactivated with p5427 $=0$.
p5428[0...3] A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Line droop control voltage control short circuit / Line drp U_ctrl sh
Description:	Sets the parameters for rapid precontrol of the output voltage in the event of a voltage dip. The values relate to the voltage setpoint from the voltage droop (r5420). The voltage output by the converter is formed from the product of the voltage setpoint and the adaptation factor, which is calculated in rapid precontrol.
Index:	[0] = Adaptation factor lower limit [1] = Adaptation factor increment current limit [2] = Adaptation factor increment voltage difference [3] = Adaptation factor increment increase
Dependency:	Refer to: r5452
Note:	Rapid adaptation of the voltage setpoint to a reduced line voltage (e.g. in the event of a line short circuit) reduces the number of additional switching operations completed by the lower-level rapid current hysteresis controller. For index [0]: Minimum value for the adaptation factor, must be complied with for the calculation of the reduced output voltage. The factory setting is appropriate if the inductance of the commutating reactor (p 0223) has the value p3421-p3424. Higher values for p5428[0] result in higher rms values of the currents in the case of a short circuit. However, current limiting also intervenes more - and more harmonics are generated. For excessively low values in p5428[0], the short-circuit displayed in $\mathrm{r} 5479[1]$ is no longer reached. The function is deactivated with $\mathrm{p} 5428[0]=100 \%$.

For index [1]:
When the current limit is reached, the adaptation factor is weighted with this factor in each sampling cycle. A value of 0 means that the adaptation factor will jump to the minimum value ($p 5428[0]$) if the current limit is reached. The function is deactivated for a value of 100%.
For index [2]:
If the voltage across the line reactor exceeds the minimum value ($\mathrm{p} 5428[0]$) for at least 2 current controller sampling times, the adaptation factor will be weighted with this factor ($p 5428[2]$) in every sampling cycle.
For index [3]:
If none of the above criteria for reducing the adaptation factor is met, the adaptation factor is increased by the percentage value $\mathrm{p} 5428[3]$ in each current controller sampling time (the increase is additive). If the adaptation factor reaches the maximum value of 100%, the effect of precontrol by means of multiplication by the droop setpoint r5420 is cancelled out.

p5431

A_INF (Line droop ctrl), R_INF (Line droop ctrl)

Description: Note:

Modulation depth controller dynamic response / Mod_ctrl dyn
Can be changed: U, T
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: -
Min
0.0 [ms]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
10000.0 [ms]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
10.0 [ms]

Sets the dynamic response for the modulation depth controller.
The modulation depth controller is deactivated with p5431 < p0115[0].

p5432[0...1]	Modulation depth controller output voltage limits / Mod_ctrl lim U		
A_INF (Line droop	Can be changed: U, T	Calculated: -	Access level: 3
ctrI), R_INF (Line	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
droop ctrl)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-200.0[V]$	$200.0[\mathrm{~V}]$	$[0] 100.0[\mathrm{~V}]$
			$[1]-100.0[\mathrm{~V}]$

Description: Sets the limits for the output voltage on the modulation depth controller.
Index: $\quad[0]=$ Maximum value
[1] = Minimum value

r5433	CO: Modulation depth controller output / Mod_ctrl outp		
A_INF (Line droop	Can be changed: -	Calculated: -	Access level: 3
ctrl), R_INF (Line	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
droop ctrl)	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	
Description:	Display and connector output for the modulation depth controller output.		

p5434	Direct component controller low pass limit frequency / I_dc_reg PT2 f
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: U, T Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: - P-Group: Displays, signals Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting $0.000[\mathrm{~Hz}]$ $1.000[\mathrm{~Hz}]$ $0.500[\mathrm{~Hz}]$
Description: Dependency:	Sets the limit frequency for the 2nd order low-pass filter to suppress the direct component in the converter current. Refer to: p5435
p5435	Direct component controller low pass damping / _dc_reg PT2 D
A INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: U, T Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: - P-Group: Displays, signals Unit group: Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0.001 10.000 1.000
Description: Dependency:	Sets the damping for the 2nd order low-pass filter to suppress the direct component in the converter current. Refer to: p5434
p5436	Direct component controller P gain / _dc_reg Kp
A INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: U, T Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: - P-Group: Displays, signals Unit group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0.0000 [ohm] 10.0000 [ohm] 0.0200 [ohm]
Description: Dependency:	Sets the proportional gain for the PI controller to suppress the direct component in the converter current. Refer to: p5437

p5438	Direct component controller limiting / I_dc_ctrl limit		
A_INF (Line droop	Can be changed: U, T	Calculated: -	Access level: 3
ctrl), R_INF (Line	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
droop ctrl)	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	$10.0[\%]$	Factory setting
	$0.0[\%]$	2.0 [\%]	
Description:	Sets the controller output voltage limiting for the direct component controller.		
	This value is entered as a percentage of the rated voltage (p0210).		

p5440	Harmonics controller bandpass filter activation / Harmonic bandp act				
A_INF (Line droop	Can	be changed: U, T	Calculated: -	Acces	
ctrl), R_INF (Line	Data	type: Unsigned16	Dyn. index: -	Func.	
droop ctri)	P-G	up: -	Unit group: -	Unit s	
	Not	or motor type: -	Scaling: -	Exper	
	Min		Max	Facto	
	-		-	0000 b	
Description:	Setting to activate the bandpass filter for the harmonics controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Filter 0	ON	OFF	-
		Filter 1	ON	OFF	-
	02	Filter 2	ON	OFF	-
	03	Filter 3	ON	OFF	-
Dependency:	Refer to: p5441, p5442, p5443				
Note:	Only filters 0 and 1 can be activated.				

2.2 List of parameters

p5441[0...3]	Harmonics controller bandpass filter gain / Bandpass gain		
A_INF (Line droop	Can be changed: U, T	Calculated: -	Access level: 4
ctrl), R_INF (Line	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
droop ctrr)	Unit group: -	Unit selection: -	
	P-Group: -	Scaling: -	Expert list: 1
	Not for motor type: -	Max	Factory setting
	Min	10000.00	
	0.00		
Description:	Sets the gain for the bandpass filter for the harmonics controller.		
Index:	$[0]=$ Filter 0		
	$[1]=$ Filter 1		
	$[2]=$ Filter 2		
Dependency:	$[3]=$ Filter 3		
	Refer to: p5440, p5442		

r5446[0...1]	CO: Line droop control line voltage active/reactive component / U_line P/Q comp		
A_INF (Line droop	Can be changed: -	Calculated: -	Access level: 3
ctrr)), R_NF (Line	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
droop ctrl)	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	
Description:	Displays the active/reactive component of the line voltage.		
Index:	$[0]=$ Active		
	$[1]=$ Reactive		

r5447	CO: Line droop control line voltage absolute value / I_line a	s val
A INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: - Calculated: -	Access level: 3
	Data type: FloatingPoint32 Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals Unit group: 6_2	Unit selection: p0505
	Not for motor type: - Scaling: p2002	Expert list: 1
	Min Max	Factory setting
	- [Arms] - [Arms]	- [Arms]
Description:	Displays the line current absolute value at the connection point (p5403, p5404).	
Dependency:	Refer to: r5448	
Note:	The following applies:	
	$\mathrm{r} 5447=\operatorname{sqrt}\left(\mathrm{r} 4448[0]^{\wedge} 2+\mathrm{r} 5448[1]^{\wedge} 2\right)$	

2.2 List of parameters

r5448[0...3]	Line droop control line current alpha/beta component / I_line A/B comp		
A_INF (Line droop	Can be changed: -	Calculated: -	Access level: 3
ctrl), R_INF (Line	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7982, 7983
droop ctrr)	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the alpha/beta components of the current.		
Index:	[0] $=$ Alpha [1] $=$ Beta [2]		
Dependency:	Refer to: r5447		
Note:	For index [0, 1]:		
	Displays the line current.		
	For index [2, 3]:		
	Displays the DC component of the power unit current for the DC component controller.		

r5449[0...1] CO: Line droop control line current active/reactive component / I_line P/Q comp

A INF (Line droop ctrl), R_INF (Line droop ctrl)

Can be changed: -
Data type: FloatingPoint32
P-Group: Displays, signals
Not for motor type: -
Min

- [A]

Displays the active/reactive component of the line current.
Description:
Index:
[0] = Active
[1] = Reactive
r5450[0...5]
A_INF (Line droop ctrl), R_INF (Line droop ctrl)

CO: Line droop setpoint active / Line drp setp act
Can be changed: -
Data type: FloatingPoint32
P-Group: -
Not for motor type: -
Min

- [\%] - [\%]

Description: Display and connector output for the effective setpoints of the line droop.
[0] = Voltage droop no-load operation
[1] = Voltage droop gradient
[2] = Frequency droop no-load operation
[3] = Frequency droop gradient
[4] = Voltage supplementary setpoint direct
[5] = Frequency supplementary setpoint direct

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

- [\%]

Index:

2.2 List of parameters

Notice:	The setting values are automatically set.
	This manual setting is only possible for the case that $\mathrm{p} 5478[0,1]=50 \%$, and it is critical that expert knowledge is available.
	For devices with r0192.19 $=0$ (e.g. Active Line Module Booksize), the maximum current limit can be set to p5453[5] $=105 \%$.
Note:	The value is referred to the internal reference current.
p5454[0...5]	Current hysteresis controller overcurrent hysteresis width / I_hyst_ctrl I hyst
A_INF (Line droop	Can be changed: U, T Calculated: - Access level: 4
ctrl), R_INF (Line	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
droop ctrl)	P-Group: Displays, signals Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	15.0 [\%] 50.0 [\%] 20.0 [\%]
Description:	Sets the permissible current hysteresis in the event of an overload and short circuit for the modulator to intervene and apply limiting.
	The effective current limits are calculated from the parameterized overcurrent (p 5453) and the hysteresis width (p5454).
Index:	[0] = No-load operation (p5451 = 1 signal)
	[1] = Normal operation (p5451 = 1 signal)
	[2] = Short-circuit operation ($\mathrm{p} 5451=1$ signal $)$
	[3] = No-load operation (p5451 $=0$ signal
	[4] = Normal operation (p5451 = 0 signal)
	[5] = Short-circuit operation (p5451 = 0 signal)
Dependency:	The hysteresis width (p5454) cannot be set greater than or equal to the overcurrent limit (p5453).
	Refer to: p5453, p5478
Notice:	The setting values are automatically set. This manual setting is only possible for the case that p5478[0, 1] $=50 \%$, and it is critical that expert knowledge is available.
Note:	The value is referred to the internal reference current.
p5455[0...5]	Current hysteresis controller overcurrent tolerance range / I_hyst_ctrl I tol
A_INF (Line droop	Can be changed: U, T Calculated: - Access level: 4
ctrl), R_INF (Line droop ctr)	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
	P-Group: Displays, signals Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	10.0 [\%] 100.0 [\%] 20.0 [\%]
Description:	Sets the permissible tolerance range in the event of an overload and short circuit for the modulator to intervene and apply limiting.
	The effective current limit is calculated from the overcurrent limit (p 5453) plus the overcurrent tolerance range (p 5455).
Index:	[0$]=$ No-load operation (p5451 $=1$ signal $)$
	[1] = Normal operation (p5451 = 1 signal)
	[2] = Short-circuit operation (p5451 = 1 signal)
	[3] = No-load operation (p5451 = 0 signal)
	[4] = Normal operation (p5451 = 0 signal)
	[5] = Short-circuit operation (p5451 = 0 signal)
Dependency:	Refer to: p5453, p5478
Notice:	The setting values are automatically set. This manual setting is only possible for the case that p5478[0, 1] = 50 \%, and it is critical that expert knowledge is available.
Note:	The value is referred to the internal reference current.

2.2 List of parameters

Note:	For p5458[0]:		
	Minimum time for operating state "Rated operation" for change to "No-load operation".		
	For p5458[1]:		
	Permissible short-circuit duration. If the short circuit is not cleared within this time, the main generator will shut down with fault F06850.		
p5459[0..3]	Current hysteresis controller sequence control state change / I_hyst_ctrl seq		
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index:	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	[0] 10.0 [\%]
			[1] 5.0 [\%]
			[2] 70.0 [\%]
			[3] 75.0 [\%]
Description:	Sets the limits for state change in the sequence control on the current hysteresis controller.		
Index:	[0] = Lower current limit no-loa [1] = Upper current limit norma [2] = Lower voltage limit short- [3] = Upper voltage limit short-	ation ation n operation	
Dependency:	Refer to: r5452		
Note:	The current value refers to r0209.		
	The voltage value refers to p0210.		
p5460[0...n]	VSM2 input line supply voltage, voltage scaler / VSM2 inp U_scaler		
A_INF (Line transf), R_INF (Line transf)	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100000.00 [\%]	0.00 [\%]
Description:	Sets a voltage scaler for Voltag	dule 2 (VSM2).	
Note:	When the 690 V input is used (X522) without voltage scaler, 0 \% should be entered.		
	When the 100 V input (X521) is used with voltage scaler to measure medium voltages, the dividing (scaling) factor multiplied by 100% should be entered.		
	Example:		
	1000 V line supply voltage, voltage scaling, 10:1		
	--> voltage at the VSM input is 100 V		
	--> p5460 = 10 * $100 \%=1000$ \%		

r5461[0...n] CO: VSM2 input line supply voltage u1-u2 / VSM2 inp u1-u2
A_INF (Line transf) R_INF (Line transf)

Can be changed: -
Data type: FloatingPoint32
P-Group: Closed-loop control Not for motor type: -
Min

- [V]

X521.1 or X522.1: Connection of L1
X521.2 or X522.2: Connection of L2

Access level: 3
Func. diagram: Unit selection: p0505
Expert list: 1
Factory setting

- [V]

Description: \quad Displays the voltage between phases L1 and L2.
Note:

r5462[0...n]	CO: VSM2 input line supply voltage u2 - u3 / VSM2 inp u2-u3		
A_INF (Line transf),	Can be changed: -	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Unit group: 5_3	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	$-[V]$	$-[V]$
Description:	Displays the voltage between phases L2 and L3.		
Note:	X521.2 or X522.2: Connection of L2		
	X521.3 or X522.3: Connection of L3		

r5464[0...n]	CO: VSM2 temperature evaluation status / VSM2 temp status		
A_INF (Line transf),	Can be changed: -	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: Unsigned16	Dyn. index: p0150	Func. diagram: -
	P-Group: Terminals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status of the temperature evaluation of Voltage Sensing Module 2 (VSM2).		
	This displays whether the temperature actual value has exceeded the fault/alarm threshold.		
Bit field:	Bit Signal name	1 signal	O signal
	00	Alarm is present	Yes
	01	Fault is present	Yes

p5465[0...n]	VSM2 temperature evaluation sensor type / VSM2 temp sens_typ		
A_INF (Line transf), R_INF (Line transf)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	6	0
Description:	Sets the temperature sensor for Voltage Sensing Module 2 (VSM2).		
	The temperature sensor is connected to terminals X520.5 and X520.6 on the VSM2.		
Value:	0: \quad No sensor		
	1: PTC		
	2: KTY84		
	6: PT1000		

r5466[0...n]
A_INF (Line transf),
R_INF (Line transf)

CO: VSM2 temperature actual value / VSM2 Temp_ActVal

Can be changed: -	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
P-Group: Closed-loop control	Unit group: $21 _1$	Unit selection: p 0505
Not for motor type: -	Scaling: p2006	Expert list: 1
Min	Max	Factory setting
$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Displays the temperature actual value of a temperature sensor connected to Voltage Sensing Module 2 (VSM2).		
Prerequisite:		
A KTY/PT1000 temperature sensor is connected, and p5465 is set $=2,6$.		
Refer to: p5465		
For sensor type PTC (p5465 = 1), the following applies:		
- Below the nominal response temperature, $\mathrm{r} 5466=-50^{\circ} \mathrm{C}$.		
- Above the nominal response temperature, $\mathrm{r} 5466=250^{\circ} \mathrm{C}$.		

p5467[0...n]	VSM2 overtemperature alarm threshold / VSM2 temp A_thresh		
A_INF (Line transf),	Can be changed: T	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: -	Unit group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	-100.00 [${ }^{\circ} \mathrm{C}$]	301.00 [${ }^{\circ} \mathrm{C}$]	150.00 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold for the temperature sensor on Voltage Sensing Module 2 (VSM2). Prerequisite: A KTY/PT1000 temperature sensor is connected, and p5465 is set $=2,6$.		
Depende			
Dependen	Refer to: F06255, A34211		
Note:	For sensor type KTY (p5465[0...1] = 2) or PT1000 (p5465[0...1] = 6) values $181 \ldots 300^{\circ} \mathrm{C}$ result in fault F06255. Monitoring is deactivated for $\mathrm{p} 5467[0 \ldots 1]=301$.		
p5468[0...n]	VSM2 overtemperature shutdown threshold / VSM2 temp F_thresh		
A_INF (Line transf),	Can be changed: T	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: -	Unit group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min		Factory setting
	-100.00 [${ }^{\circ} \mathrm{C}$]	301.00 [${ }^{\mathrm{C}}$]	180.00 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the shutdown threshold for the temperature sensor of the VSM2 to monitor a temperature. Prerequisite: A KTY/PT1000 temperature sensor is connected, and p5465 is set $=2,6$.		
Dependency:	Refer to: p5467		
	Refer to: F34207		
p5469[0...n]	VSM2 overtemperature hysteresis / VSM2 temp hyst		
A_INF (Line transf),	Can be changed: T	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: 00150	Func. diagram: -
	P-Group: -	Unit group: 21_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	1.00 [K]	50.00 [K]	3.00 [K]
Description:	Sets the hysteresis for the alarm threshold of the VSM2 to monitor a temperature. Refer to: p5467		
Dependency:			
p5470[0...n]	VSM2 10 V input CT gain / VSM2 CT_gain		
A_INF (Line transf),	Can be changed: T	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	0.000 [A]	1000.000 [A]	
Description:	Sets the CT gain of the CT connected at the 10 V input of Voltage Sensing Module 2 (VSM2). The parameter specifies the current magnitude in [A] referred to the input voltage at VSM2 in [V]. Example: CT with 1 V per 200 A . --> p5470 = 200		
Note:	The CT for phase 1 is connected at terminals X520.1 and X520.2 of VSM2. The CT for phase 2 is connected at terminals X520.3 and X520.4 of VSM2.		

r5471[0...n]	CO: VSM2 10 V input CT 1 actual value / VSM2 CT1 I_act		
A_INF (Line transf),	Can be changed: -	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the current actual value from current transducer (CT) 1 at the 10 V input of Voltage Sensing Module 2 (VSM2).		
Dependency:	Refer to: p5470		
Note:	The CT for phase 1 is connected at terminals X520.1 and X520.2 of VSM2.		
r5472[0...n]	CO: VSM2 10 V input CT 2 actual value / VSM2 CT2 I_act		
A_INF (Line transf), R_INF (Line transf)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the current actual value from current transducer (CT) 2 at the 10 V input of Voltage Sensing Module 2 (VSM2).		
Dependency:	Refer to: p5470		
Note:	The CT for phase 2 is connected at terminals X520.3 and X520.4 of VSM2.		
r5473[0...n]	CO: VSM2 10 V input 1 actual value / VSM2 inp 1 U_act		
A_INF (Line transf),	Can be changed: -	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual value of the voltage measured at the 10 V input 1 of Voltage Sensing Modules 2 (VSM2).		
Dependency:	Refer to: p5470		
Note:	10 V input 1: Terminals X520.1 and X520.2		
r5474[0...n]	CO: VSM2 10 V input 2 actual value / VSM2 inp 2 U_act		
A_INF (Line transf),	Can be changed: -	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual value of the voltage measured at the 10 V input 2 of Voltage Sensing Modules 2 (VSM2).		
Dependency:	Refer to: p5470		
Note:	10 V input 2: Terminals X520.3 and X520.4		

p5476	Line droop control damping gain / Line droop damp k		
A_INF (Line droop	Can be changed: U, T	Calculated: -	Access level: 4
ctrl), R_INF (Line	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7982
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	1000.0 [\%]	0.0 [\%]
Description:	In addition or alternatively to fast droop (p5413, p5414), with this D component power oscillations in the island line can be dampened.		
	The reference quantity is the gain of the regular frequency droop (p5407).		
Recommendation:	Typical setting values lie between 50% and 100%.		
Dependency:	Refer to: p5477		
Note:	With p5476 $=100 \%$, a frequency change from the power-frequency droop, unscaled for the integration of the line angle becomes effective.		
	With p5476 = 0, damping of	via the DT1 elem	

p5477	Line droop control damping smoothing time / Line droop damp T		
A_INF (Line droop ctrl), R_INF (Line droop ctrl)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7982
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5.0 [\%]	2000.0 [\%]	200.0 [\%]
Description:	Sets the smoothing time for the DT1 element of the frequency droop. The reference quantity is the smoothing time for the regular frequency droop (p5409).		
Recommendation:	Typical setting values lie between 100% and 200%.		
Dependency:	Refer to: p5476		
Note:	With a lower smoothing time, the corner frequency of the high pass filter formed by the DT1 element increases. To dampen resonance in the line, the corner frequency must lie below the resonant frequency, and the setting value for the smoothing time must be selected to be correspondingly high.		

p5478[0...1]	Line droop control current limits / Line droop I_lim		
A_INF (Line droop ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	50.0 [\%]	123.0 [\%]	[0] 90.0 [\%]
			[1] 123.0 [\%]
Description:	Setting for the permissible maximum current in the event of an overload and short circuit with active line droop control (p5401[0] = 1 signal).		
Index:	[0] = Normal operation [1] = Short-circuit operation		
Notice:	For devices with r0192.19 = 0 (e.g. Active Line Module Booksize), the maximum short-circuit current limit can be set to $\mathrm{p} 548[1]=100 \%$.		
Note:	The value is referred to r5479[5].		
	The current limits p5453, p5454 and p5455 for the gating unit are automatically set.		
	The current limits resulting from the setting values are displayed in r5479[0, 1].	In the case of $\mathrm{p} 5478[0]=50 \%$ and $\mathrm{p} 5478[1]=50 \%$, the current limits can be set manually ($\mathrm{p} 5453, \mathrm{p} 5454, \mathrm{p} 5455$).	

For index [0]:
Current limit for normal operation and for line short circuit in combined operation with a generator. Maximum value is 100 \%.
For index [1]:
Current limit for short circuit with a main generator in isolated operation in the line.

p5478[0...1]	Line droop control current limits / Line droop I_lim		
R_INF (Line droop ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	50.0 [\%]	123.0 [\%]	[0] 67.0 [\%]
			[1] 67.0 [\%]
Description:	Setting for the permissible maximum current in the event of an overload and short circuit with active line droop control (p5401[0] = 1 signal).		
Index:	[0] = Normal operation [1] = Short-circuit operation		
Notice:	For devices with r0192.19 $=0$ (e.g. Active Line Module Booksize), the maximum short-circuit current limit can be set to $p 5478[1]=100 \%$.		
	The value range is restricted as follows without license option S02:		
	51% < p $5478[0,1]<=67 \%$		
Note:	The value is referred to r5479[5].		
	The current limits p5453, p5454 and p5455 for the gating unit are automatically set.		
	In the case of $\mathrm{p} 5478[0]=50 \%$ and $\mathrm{p} 5478[1]=50 \%$, the current limits can be set manually ($\mathrm{p} 5453, \mathrm{p} 5454$, p 5455).		
	The current limits resulting from the setting values are displayed in $\mathrm{r} 5479[0,1]$.		
	For index [0]:		
	Current limit for normal operation and for line short circuit in combined operation with a generator. Maximum value is 100 \%.		
	For index [1]:		
	Current limit for short circuit with a main generator in isolated operation in the line.		

r5479[0...5] Line droop control current permissible / Line droop I perm

A INF (Line droop ctrl), R_INF (Line droop ctrl)

Description:
Index:

Note:

Can be changed: -
Data type: FloatingPoint32
P-Group: Displays, signals
Not for motor type: -
Min

- [Arms]

Displays the permissible converter line current with active line droop control (p5401[0] = 1 signal).
[0] = Overload current limiting
[1] = Short-circuit current limiting
[2] = Continuous current permissible at an ambient $40^{\circ} \mathrm{C}$
[3] = Continuous current permissible at an ambient $45^{\circ} \mathrm{C}$
[4] = Continuous current permissible at an ambient $50^{\circ} \mathrm{C}$
[5] = Reference current
For index [0]:
Permissible overload current and permissible current during a line short circuit in combined operation (p5451). The converter current is limited to this current value.
For index [1]:
Permissible current during a line short circuit in isolated operation ($p 5451$). The converter current is limited to this current value.

2.2 List of parameters

For index [2, 3, 4]:
Continuously permissible line current at cos phi = 1 for 12 t monitoring. The 12 t numerator ($\mathrm{rO036}$) is incremented above this current value with active line droop control (r5402.1 = 1).
The current limit is dependent on the ambient temperature.
Derating should be observed for cos phi < 1 in order to avoid overtemperatures.
For index [5]:
Reference value for setting the current limits with p5478[0, 1].
The value lies above the maximum current (r0209) of the power unit.

p5480

A_INF (Line transf), R_INF (Line transf)

Transformer magnetization mode / Transf mag mode
Can be changed: T
Data type: Integer16
P-Group: Commands
Not for motor type: -
Min
0
Sets the mode for the transformer magnetization.
Using this function, a transformer is magnetized using a voltage that is in synchronism with the external line supply; this means that no inrush currents flow when this transformer is connected to the line supply.
If value $=11$:
Automatic determination of the magnetizing inductance.
The magnetizing inductance determined in r5491 must be transferred to p5492 in order to take effect.
Observe notes regarding r5491.
If value $=12$:
Automatic determination of the transformer phase shift and the gain correction.
The transformer phase shift determined in r6440 must be transferred to p6420 in order to take effect.
The gain correction determined in r6441 must be transferred to p 6421 in order to take effect. If value $=13$:

Determination of the total leakage inductance of the transformer during line data identification. p3410 = 1 is set automatically and the inductance is measured on the next switch-on. Once the measurement has been completed the converter shuts down automatically and p3410 is set $=0$ and p5480 is set $=1$.

The total leakage inductance of the transformer determined in r5489 must be transferred to p5490 in order to take effect.
If value = 101
The infeed goes into line droop control, however the main switch/circuit breaker is not closed, and the transformer magnetization remains in the state r5482 $=4$.
Test operation requires the "Line droop control" function module to be activated (r0108.12 = 1).
If value = 102
As for test operation 1.
However, synchronization with the line is not realized (VSM2 measured data r5460 and following is not used); instead, the output voltage is generated corresponding to the rated data p0210, p0211, p5486.

Value:

Dependency:
Notice:

0: Deactivated Normal operation
11: Identification transformer magnetizing inductance
12: Identification transformer phase shift/gain correction
13: Identification total transformer leakage inductance
101: Test operation 1 (without activation of circuit breaker)
102: Test oper. 2 (w/o activation of circuit breaker, without VSM2)
Refer to: r5482, p5486, r5493, p5494, r5499, p5580
The feedback signal contact of the circuit breaker between the Active Interface Module and the island grid must be connected in parallel via binector input p0860.
For an active black start ($\mathrm{p} 588>0$), a separate transformer magnetization is not performed.
The transformer magnetizing function is used in order to magnetize a line transformer to which the Active Line
Module (ALM) is connected.
The precondition is that the transformer can be isolated from the line supply on the primary side using a circuit
breaker and that the DC link of the ALM is supplied from a separate power source before the circuit breaker is closed
(e.g. with a separate precharging transformer or for photovoltaic applications).
The circuit breaker between the Active Interface Module and the island grid is controlled via binector output r0863.1
The status of the transformer magnetization, black start and island grid synchronization is displayed in r5499.
The status of the sequence control for transformer magnetization, black start and island grid synchronization is
displayed in r5482.
If value = 13:
For weak line supplies, it is recommended to reduce the excitation current p3415 for identifying the inductance (e.g.
$\mathrm{p} 3415[0]=\mathrm{p} 3415[1]=5 \%)$.

p5481[0...2]	Transformer magnetiza	/ Transf ma	
A_INF (Line transf), R_INF (Line transf)	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.04 [s]	100.00 [s]	[0] 2.00 [s]
			[1] 1.00 [s]
			[2] 1.00 [s]
Description:	Sets the time values for the transformer magnetization.		
Index:	$\begin{aligned} & {[0]=\text { Voltage ramp ramp-up time }} \\ & {[1]=\text { Circuit breaker bounce time }} \\ & {[2]=\text { Line synchronization timeout }} \end{aligned}$		
Note:	For index [0]:		
	Sets the ramp duration for the transformer voltage. For index [1]:		
	An interruption-free connection between the line supply and the transformer is only guaranteed after the bounce time has expired.		
	The feedback signal contact of the circuit breaker between the Active Interface Module and the island grid must be connected in parallel via binector input p0860.		
	The wait state until the debounce time has expired is canceled if the following conditions are fulfilled: - feedback signal p0860 $=1$.		
	For index [2]:		
	Sets the permissible maximum time.		
	If the maximum time elapses without the line being synchronized, alarm A06502 is output.		
	The minimum duration of line synchronization is 25% of this maximum time, however, as a minimum 40 ms .		
r5482	CO: Line synchronization status / Line synch. status		
A_INF (Line transf), R_INF (Line transf)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	207	-
Description: Value:	Sets the state of the sequence control for transformer magnetization, black start and island grid synchronization.		
	0 : Initialization		
	1: Procedure inactive		
	2: Transformer magnetiza	ge ramp runnin	
	3: Transformer magnetiza	ronization in pr	
	4: Transformer magnetiza	SS enable	
	5: Transformer magnetiz.	e time for circui	

2.2 List of parameters

p5485[0...1]	Transformer magnetization voltage thresholds / Transf mag U_thr
A_INF (Line transf), R_INF (Line transf)	Can be changed: T Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: 7990, 7993
	P-Group: Commands Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0.0 [V] $300.0[\mathrm{~V}]$ [0] 35.0 [V]
	[1] 3.5 [V]
Description:	Sets the permissible voltage difference for closing the circuit breaker after transformer magnetization.
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$
Dependency:	Refer to: p5484
Note:	For index [0]:
	Sets the permissible absolute value of the instantaneous difference between the secondary voltages at the line transformer ($\mathrm{r} 5498[0,1]$) and the transformed primary voltage ($\mathrm{r} 5488[0,1]$).
	This condition must be met to reach the state r5482 $=4$.
	For index [1]:
	Sets the permissible absolute value of the averaged difference between the secondary voltages at the line transformer (r5498[0, 1]) and the transformed primary voltage (r5488[0, 1]).
	This condition must be met to reach the state r5482 $=4$.
p5486[0...1]	Transformer rated voltage primary / Transf U_rated pri
A_INF (Line transf), R_INF (Line transf)	Can be changed: C2(1, 2) Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
	P-Group: Converter Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0.00 [Vrms] 63000.00 [Vrms] 400.00 [Vrms]
Description:	Sets the primary rated voltage of the transformer.
Index:	[0] = Supply transformer [1] = Island grid transformer
Note:	For index [0]:
	Setting the rated primary voltage of the line transformer, at whose secondary the AIM and the ALM are connected. If there is a circuit breaker at the transformer primary side, then the transformer can be magnetized before closing this circuit breaker in order to avoid high inrush currents.
	The setting of this primary voltage and setting the device supply voltage (p0210) defines the transformer ratio.
	To magnetize the transformer, the voltage has to be measured at the line side of the circuit breaker. To do this, an additional VSM must be connected and parameterized using $\mathrm{p} 0150[0]$ and following. The voltage actual values of this VSM are displayed in $\mathrm{r} 5461[0]$ and $\mathrm{r} 5462[0]$. The voltages converted over to the transformer secondary side are displayed in $\mathrm{r} 5488[0,1,2]$.
	For index [1]:
	Setting the rated primary voltage of the line transformer; an island grid with ALM in the grid droop mode (p 5401) is connected to the secondary of this transformer. Typically, the transformer primary is connected to the grid or to another island grid through a circuit breaker.
	The setting of this primary voltage and setting the device supply voltage (p 0210) defines the island grid transformer ratio.
	To synchronize the island grid voltage with the external grid, the external grid voltage must be measured. To do this, an additional VSM must be connected and parameterized using $\mathrm{p} 0150[1]$ and following. The voltage actual values of this VSM are displayed in r5461[1] and r5462[1]. The voltages converted over to the transformer secondary side can be displayed in $\mathrm{r} 5488[3,4,5]$. To do this, the following BICO interconnections are acquired: $\mathrm{p} 5487[2]=r 5461[1]$, $\mathrm{p} 5487[3]=\mathrm{r} 5462[1]$.

2.2 List of parameters

p5487[0...3]	CI: Transformer primary voltage signal source / Trans U_prim s_src		
A_INF (Line transf), R_INF (Line transf)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	-	-	[0] 5461[0]
			[1] 5462[0]
			[2] 0
			[3] 0
Description:	Sets the signal sources for the measured phase voltages ($\mathbf{u} 12, \mathrm{u} 23$) on the primary side of the transformer, Using these measured values, the transformer voltages on the secondary side are calculated and displayed (r5488).		
Index:	[0] = Supply transformer u12 [1] = Supply transformer u23 [2] = Island grid transformer u12 [3] = Island grid transformer u23		
Dependency:	Refer to: p5486		
Notice:	To transform the measured primary voltages to the transformer secondary side (ALM connection point), in addition to specifying the ratio ($\mathrm{p} 0210, \mathrm{p} 5487$), the phase angle (p 6420) of the transformer must also be parameterized.		
	Before commissioning it is absolutely necessary that this phase angle is roughly set! Using the transformer test mode (p5480 = 12), for the supply transformer, this angle and a gain error can be finely set.		
Note:	The rated voltage for the transformer primary side is set using p5486.		
r5488[0...5]	CO: Transformer secondary voltage transformed / Transf U_sec trans		
A INF (Line transf),	Can be changed: -	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7990
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Display and connector output for alpha/beta components and amplitude of the calculated transformer secondary voltage.		
Index:	[0] = Supply transformer U alpha [1] = Supply transformer U beta [2] = Supply transformer U amplitude [3] = Island grid transformer U alpha [4] = Island grid transformer U beta [5] = Island grid transformer U amplitude		
Dependency:	Refer to: p5487		
Note:	For index [0, 1, 2]:		
	The signals from p5487[0, 1] are transformed for the transformer calculation.		
	To do this, the ratio ($\mathrm{p} 5486[0]$ / p 0210), the phase angle of the transformer ($\mathrm{p} 6420[0]$) as well as a correction factor for the voltage ratio ($\mathrm{p} 6421[0]$) are taken into account.		
	For index [3, 4, 5]:		
	The signals from p5487[2, 3] are transformed for the transformer calculation.		
	To do this, the ratio ($\mathrm{p} 5486[1]$ / p 0210), the phase angle of the transformer ($\mathrm{p} 6420[1]$) as well as a correction factor for the voltage ratio ($\mathrm{p} 6421[1]$) are taken into account.		

r5489	Transformer leakage inductance identified / Transf L_I ident		
A_INF (Line transf),	Can be changed: -	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the total leakage inductance of the supply transformer determined using the identification (p5480 = 13). The result of the identification must be entered into p5490.		
Dependency:	Refer to: p5480, p5490		
Notice:	During identification, the value previously entered in p5490 is not effective.		
Note:	The display value is reset to 0 at POWER ON.		
p5490	Transformer leakage inductance / Transf L_leak		
A_INF (Line transf), R_INF (Line transf)	Can be changed: $\mathrm{C} 2(1,2), \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001 [mH]	1000.000 [mH]	$0.100[\mathrm{mH}]$
Description:	Sets the total leakage inductance of the supply transformer.		
r5491	Transformer magnetizing inductance identified / Transf L_H ident		
A_INF (Line transf), R_INF (Line transf)	Can be changed: - Data type: FloatingPoint32	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min		Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the magnetizing inductance of the supply transformer determined using the identification (p5480 = 11). The result of the identification must be entered into p5492.		
Dependency:	Refer to: p5480, p5492		
Notice:	Overmodulation (r0074>97\%) during the measurement as a result of an excessively low DC link voltage, can have a significant influence on the measurement result. A countermeasure, for example, can be to reduce the output voltage using p5494.		
	The measurement result depends very strongly on precisely specifying the filter capacitance (p0221).		
	When filter monitoring is active ($\mathrm{p} 3678>0$), the current measured values of the VSM ($\mathrm{r} 3671, \mathrm{r} 3672$) are used to identify the magnetizing inductance. Incorrect VSM measured values result in excessively high deviations when determining the magnetizing inductance.		
Note:	During identification, the value previously entered in p5492 is not effective.		
	The display value is reset to 0 at POWER ON.		
	VSM: Voltage Sensing Module		
p5492	Transformer magnetizing inductance / Transf L_H		
A_INF (Line transf), R_INF (Line transf)	Can be changed: C2(1, 2), T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.10 [mH]	10000.00 [mH]	250.00 [mH]
Description:	Sets the magnetizing inductance of the supply transformer.		
Dependency:	Refer to: r5491		

2.2 List of parameters

p5494[0...1] Transformer magnetization scaling values / Traf mag scale

A_INF (Line transf) R_INF (Line transf)

Can be changed: C2(2), T
Data type: FloatingPoint32
P-Group: Converter
Not for motor type: -
Min
10.0 [\%]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
150.0 [\%]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
[0] 100.0 [\%]
[1] 40.0 [\%]

Description: Sets the scaling values for the transformer magnetization.

Index:	$[0]=$ Voltage setpoint $(90-100 \%)$
Dependency:	$[1]=$ Current limit $(150 \%$ deactivated)
Note:	Refer to: F06505
	For index [0]:
	If the precharging circuit of an application only creates a low DC link voltage, which is not sufficient to fully magnetize
	the transformer (modulation depth r0074 limited), then the target value for the magnetization can be reduced
	(p5494[0]).
	When closing the line contactor, the residual magnetization required only causes a relatively low recharging current
	surge that is generally within permissible limits.
	For index [1]:
	If, during transformer magnetization, the current limit is exceeded (r0068 > p5494[1] * r0207), then fault F06505 is
	output.

2.2 List of parameters

r5499.0... 6	CO/BO: Line synchronization status word / Sync status word				
A_INF (Line transf), R_INF (Line transf)	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Closed-loop control		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Display and connector output for the status word of line synchronization.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Line synchronization wait for switch on	Yes	No	-
	01	Transformer magnetization running	Yes	No	-
	02	Transformer magnetization completed	Yes	No	-
	03	Grid black start running	Yes	No	-
	04	Grid black start completed	Yes	No	-
	$\begin{aligned} & 05 \\ & 06 \end{aligned}$	Island grid synchronization running Island grid synchronization completed	Yes Yes	No	-

p5500	Dynamic grid support configuration / Dyn grid config				
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: T		lated: -	Access level: 4	
	Data type: Unsigned16		index: -	Func. diagram: 7996, 7997	
	P-Group: Closed-loop control U		group: -	Unit selection: -	
	Not for motor type: - Sc		g: -	Expert list: 1	
	Min M			Factory setting	
	- -			0000000010001000 bin	
Description:	Sets the configuration for the dynamic grid support.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Deactivate characteristic	Yes	No	-
	01	Line voltage alpha/beta amplitudes	No	Yes	-
		Grid support mode in the event of asymmetry	No	Yes	-
		Grid support negative phase-sequence system calculation	Yes	No	-
	04	Grid support neg sequence tolerance threshold characteristic	No	Yes	-
		Deactivating grid support characteristic limiting	Yes	No	-
		Grid support limit apparent current short time average value	Yes	No	-
	07	Grid support dynamic current limits per phase	Yes	No	-
		Grid support Q mode while FRT	Yes	No	-
		Grid support Z mode while FRT	Yes	No	-
		Permit active power during non-symmetrical FRT	Yes	No	-
Dependency:	Refer to: p5507, r5510, p5520				
Note:	For bit 00:				
	If p5500.0 $=0$ the output value of the grid support characteristic is added to the control's reactive current setpoin r0075 = p3610 + p3611 + r3471 + r5510[0]				
	If $\mathrm{p} 5500.0=1$ the dynamic reactive current setpoint p 3611 is subtracted if dynamic grid support is active ($\mathrm{p} 5502.1=$ 1).				
	In this case, the following applies:				

For bit 01:
Only active for p5500.3 $=0$.
If p5500.1 $=0$ the alpha and beta amplitudes of the line voltage, which were smoothed with p5507[2], are determined. The absolute value of the line voltage, calculated from these amplitudes, is used as input value for the characteristic for grid support. In the event of an asymmetrical line disturbance, oscillation of the reactive current setpoint (r 5510) is prevented.
If $\mathrm{p} 5500.1=1$, the smoothed absolute value of the measured line voltage is used as the input value for the grid support characteristic. Smoothing is set with p5507[3].
For bit 02:
Only effective if p5500.1 $=0$ and $\mathrm{p} 5500.3=0$.
If $p 5500.2=0$, the maximum value from the alpha and beta line voltage amplitudes is used as the input value for the grid support characteristic. The reactive current setpoint (r5510) will, therefore, remain virtually constant even in the event of asymmetrical line disturbance. Power fluctuations in the DC link are reduced.
If p5500.2 = 1, the mean value from the alpha and beta line voltage amplitudes is used as the input value for the grid support characteristic.
For bit 03:
For p5500.3 = 0, no negative phase-sequence system current setpoint according to the characteristic is calculated.
This means that the setpoints for the negative phase-sequence system current controller are also equal to 0 if the line supply is not symmetrical.
For p5500.3 = 1, for an asymmetrical line supply voltage, a negative phase-sequence system current setpoint is calculated, which counteracts the voltage asymmetry and therefore supports the grid.
The negative phase-sequence system current is impressed using the negative phase-sequence system controller (p3636 and following).
The negative phase-sequence system controller is automatically activated and deactivated (the following applies, p3640.0 = p5500.3).
For bit 04:
Only active for p5500.3=1.
For p5500.4 = 0, a negative phase-sequence system current setpoint according to characteristic p5505/p5506 is generated if the difference between two line phase voltage amplitudes is greater than p5509[9] - and the amplitude of at least one line phase voltage exceeds the line tolerance range according to the characteristic.
For p5500.4 = 1, an already supporting negative phase-sequence system current is impressed according to the characteristic, if only the difference between two line phase voltage amplitudes is greater than p5509[9].
For bit 05:
For p5500.5 = 1, the limiting of the support reactive current is not active according to the characteristic p5505/p5506. Instead, the current limits p5506[1] and p5506[3] are effective after adding the supplementary reactive current setpoints p3610 and p3611.
For bit 06:
For p5500.6 = 1, the apparent current is limited to the smoothed apparent current (r0027) effective at the start of an FRT. During this line fault, this value of the apparent current limit is continually effective.
For bit 07:
Only effective for $\mathrm{p} 5526.7=1$ and $\mathrm{p} 192.19=1$
For p5500.7 = 1, for each phase, a tolerance band is generated around the current setpoint, which the current actual value does not leave.
For p5500.7 = 0, a tolerance band is generated based on the current setpoint amplitude. The current actual value for each phase can be within this tolerance band.
For bit 08:
Only active for p5500.3 = 1 .
For p5500.8 = 1, during a line short-circuit $(r 5502.4=1)$ the active line infeed current is reduced to zero.
For p5500.8 = 0, during a line short circuit (r5502.4 = 1) the active line infeed current is increased within the effective current limits in order to achieve the highest possible active power. To support the line supply, the reactive current has priority over the active current.
For bit 09:
Only active for p5500.3=1.
For p5500.9 = 1, during a line short-circuit (r5502.4 = 1) the active line infeed current and the supporting reactive current are reduced to zero.
For p5500.9 = 0, the standard response of dynamic line support applies corresponding to p5500.8 $=0$.

2.2 List of parameters

For bit 10:
Only active for $\mathrm{p} 5500.3=1$.
For p5500.10 = 1, during an asymmetrical line short circuit (r5502.2 = 1) the active line infeed current is increased within the effective current limits in order to achieve the highest possible active power. To support the line supply, the reactive current has priority over the active current.
For p5500.10 $=0$, during an asymmetrical line short-circuit (r5502.2 $=1$) the active line infeed current is reduced to zero

p5501	BI: Dynamic grid support activation / Dyn grid act		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to activate dynamic grid support.		
	BI: p5501 = 1 signal:		
	Activates dynamic grid support.		
	BI: p5501 = 0 signal:		
	Deactivates dynamic grid support.		
Recommendation:	The smoothing time for the line PLL (p3458[1]) should be set to values higher than 20 ms so as to ensure stable operation even with significant dips in supply voltage.		
Dependency:	For p5501[0], the following applies:		
	The Smart Mode must be deactivated (p3400.0 = 0) to set a signal source.		
Notice:	Dynamic grid support can only be activated if the power units have a gating unit with current limitation control (r0192.19 = 1 or r0192.30 = 1).		
Note:	If grid support has been activated:		
	Line disturbance will trigger grid support in accordance with the set characteristic (p5505, p5506).		
	Line disturbance will generate the standard response to phase failures on the part of the infeed for drive application (see A06205).		

r5502.0... 4

A_INF (Dyn. grid support), R_INF (Dyn. grid support)

Description: Bit field:

Note:

CO/BO: Dynamic grid support status word / Dyn grid ZSW

Displays the status word for dynamic grid support

| Bit | Signal name
 Line voltage within the permissible
 tolerance range | $\mathbf{1}$ signal
 Les | $\mathbf{0}$ signal | No |
| :--- | :--- | :--- | :--- | :--- |\quad FP

Data type: Unsigned16
P-Group: Closed-loop control
Not for motor type: -
Min

Calculated: -
Dyn. index: -
Unit group:
Scaling: -
Max

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
signal
P

04 Operating state line short circuit active
Yes

For bit 02:
The tolerance range is set using p5509[8, 9].
For bit 04:
The status word of the sequence control is displayed in r5522.

p5503[0...1]	CI: Dynamic grid support current signal source / Dyn grid I sig_src		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	-	-	[0] 3467[0]
			[1] 3467[1]
Description:	Sets the signal source for the line current in alpha/beta coordinates.		
Index:	[0] = Alpha		
	[1] = Beta		
Dependency:	Refer to: p5504		
p5504[0...1]	CI: Dynamic grid control voltage signal source / Dyn grid U sig_src		
```A_INF (Dyn. grid support), R_INF (Dyn. grid support)```	Can be changed: $T$   Data type: Unsigned32 / FloatingPoint32   P-Group: Closed-loop control	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: 7996, 7999
		Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	-	-	[0] 3468[0]
			[1] 3468[1]
Description:	Sets the signal source for the line voltage in alpha/beta coordinates.		
	The signals are used as input values for the characteristic for dynamic grid support (p5505, p5506) and for the extended grid monitoring (p5540 and following).		
Index:	$\begin{aligned} & {[0]=\text { Alpha }} \\ & {[1]=\text { Beta }} \end{aligned}$		
Dependency:	Refer to: r0072, r3468, r5488, r5498, p5505, p5506		
Note:	Possible signal sources include for example r3468, r5488, r5498.		
	Associated frequency and phase angle of the line voltage are parameterized in separate connector inputs (p5518 p5519).		
	If $\mathrm{p} 5504[0]=0$ or $\mathrm{p} 5504[1]=0$ :		
	The model value of the voltage source calculated in the line PLL is used (r3468[4, 5]).		
p5505[0...3]	Dynamic grid support characteristic voltage values / Dyn grid char U		
$\begin{aligned} & \text { A_INF (Dyn. grid } \\ & \text { support), R_INF (Dyn. } \\ & \text { grid support) } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7996
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	[0] 10.0 [\%]
			[1] 50.0 [\%]
			[2] 10.0 [\%]
			[3] 50.0 [\%]
Description:	Sets the voltage values for the characteristic for dynamic grid support.		
	The characteristic points for positive and negative voltage deviation are set separately.		
	The positive and the negative characteristic are each defined based on their starting and finishing points.		
	Positive voltage deviation:		
	- Starting point: p5505[0], p5506[0]		
	- Finishing point: p5505[1], p5506[1]		
	Negative voltage deviation:		
	- Starting point: p5505[2], p5506[2]		
	- Finishing point: p5505[3], p5506[3]		

### 2.2 List of parameters

Index:	[ 0 ] = Characteristic positive starting point   [1] = Characteristic positive finishing point   [2] = Characteristic negative starting point   [3] = Characteristic negative finishing point		
Dependency:	Refer to: p5506		
Note:	The voltage values refer to p0210.		
	Dynamic grid support is not applied in the event of voltage deviations between the starting points of the positive and the negative characteristic (p5505[0], p5505[2]).		
	For p5500.5 $=1$, the following applies:		
	The reactive current setpoint is limited according to the set characteristic.		
	For p5500.5 $=0$, the following applies:		
	In the event of voltage deviations above the finishing points of the positive or the negative characteristic (p5505[1], $\mathrm{p} 5505[3]$ ), grid support is limited to the reactive current setpoint of the corresponding finishing point (p5506[1], p5506[3]).		
p5506[0...3]	Dynamic grid support characteristic reactive current setpoint / Dyn grid char I		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: $U$, $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7996
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min		Factory setting
	0.0 [\%]	500.0 [\%]	[0] 20.0 [\%]
			[1] 100.0 [\%]
			[2] 20.0 [\%]
			[3] 100.0 [\%]
Description:	Sets the reactive current setpoints for the characteristic for dynamic grid support.		
Index:	[0] = Characteristic positive starting point   [1] = Characteristic positive finishing point   [2] = Characteristic negative starting point   [3] = Characteristic negative finishing point		
Dependency:	Refer to: p5505, p5509		
Notice:	If the grid is not symmetrical (r5502.2 = 1), then the reactive current setpoint is multiplied by factor p5509[12].		
Note:	The values are referred to r0207.		
p5507[0...4]	Dynamic grid support times / Dyn grid times		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: $U, T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7996, 7998, 7999
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	[0] 500.00 [ms]
			[1] 2.00 [ms]
			[2] 20.00 [ms]
			[3] 4.00 [ms]
			[4] 8.00 [ms]
Description:	Sets the time values for dynamic grid support.		
Recommendation:	For index [0]:		
	For the run-on time p5507[0], the current limits parameterized for the dynamic grid support remain valid (e.g. p5509[11]). If a grid standard specifies that the active power is re-established faster, then we recommend that the run-on time is reduced (e.g. p5507[0] $=20 \mathrm{~ms}$ ).		
Index:	[0] = Minimum time dynamic grid support   [1] = Minimum time line disturbance   [2] = Smoothing time alpha/beta   [3] = Smoothing time instantaneous value   [4] = Minimum time non-symmetrical grid fault		


Dependency:	Refer to: p5500, p5509, p5529
Note:	For index [0]:
Minimum time for continuing grid support in accordance with the characteristic once the line voltage has returned to	
the permissible tolerance range between the two starting points (p5505[0], p5505[2]).	
For index [1]:	
Minimum time for line disturbance for the start of grid support in accordance with the characteristic.	
If the tolerance band between the two characteristic starting points is violated for at least this period of time, voltage	
control in accordance with characteristic will start up.	
For index [2]:	
Smoothing time for the calculation of the alpha amplitude and the beta amplitude of the line voltage if $p 5500.1=0$.	
An estimated value for the actual line voltage absolute value is calculated from the alpha and beta amplitudes and	
serves as the input value for the grid support characteristic.	
A smoothing time of less than a line period makes no sense.	
If the estimated absolute value deviates from the smoothed measured voltage absolute value by more than $25 \%$, the	
smoothed measured value is used. This corresponds to a temporary automatic changeover from p5500.1 = 0 to	
p5500.1 = 1.	
For index [3]:	
Smoothing time for the measured absolute value of the line voltage if p5500.1 = 1.	
The smoothed absolute value of the line voltage is used as the input value for the grid support characteristic.	
Setting p5507[3] = 0 deactivates smoothing.	
For index [4]:	
Minimum time for a non-symmetrical line disturbance for the start of grid support in accordance with the characteristic	
p5506 and scaling factor p5509[12].	
If the tolerance band between the two characteristic starting points is violated for at least this period of time, voltage	
control in accordance with characteristic will start up.	


p5508[0...1]	Dynamic grid support Vdc thresholds / Dyn grid Vdc thr		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: $\mathrm{C} 2(2), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7997
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-200 [V]	0 [V]	[0]-50 [V]
			[1] 0 [V]
Description:	Sets the thresholds for the DC link voltage (Vdc) to reduce the reactive current setpoint from dynamic grid support.		
	A value of 0 deactivates the particular intervention.		
	For index [0]:		
	The value represents an offset to the maximum DC link voltage.		
	For the intervention threshold, the following applies: r0297 + p5508[0]		
	For index [1]:		
	The value represents an offset to the setpoint of the DC link voltage.		
	The following applies to the intervention threshold: p3510 + p3511 + p5508[1]		
Index:	[0] = Offset overvoltage   [1] = Offset setpoint voltage		
Dependency:	Refer to: r0297		
Note:	To avoid imminent shutdown due to a DC link overvoltage, the reactive current setpoint is reduced for dynamic grid support. Instead of this, the available converter current is used as the active current to reduce the DC link voltage.		

### 2.2 List of parameters

p5509[0...13]	Dynamic grid support scaling values / Dyn grid scal		
A_INF (Dyn. grid	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
support), R_INF (Dyn.   grid support)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7996, 7997, 7998
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.10 [\%]	200.00 [\%]	[0] 40.00 [\%]
			[1] 40.00 [\%]
			[2] 4.00 [\%]
			[3] 1.00 [\%]
			[4] 100.00 [\%]
			[5] 100.00 [\%]
			[6] 1.00 [\%]
			[7] 0.10 [\%]
			[8] 0.10 [\%]
			[9] 10.00 [\%]
			[10] 5.00 [\%]
			[11] 100.00 [\%]
			[12] 100.00 [\%]
			[13] 3.00 [\%]
Description:	Sets the scaling values for dynamic grid support.		
Recommendation:	For index [0]:		
	If the reactive current setpoint increases to rapidly, at the start of a grid fault, this can result in DC link overvoltages. If possible, we then recommend p5509[0] = $5 \ldots 10 \%$.		
	For index [1]:		
	In order to guarantee that the support reactive current is kept, even when the Vdc thresholds p5508 are reached, we recommend p5509[1] $=0.1 \%$.		
	For index [7]:		
	If a support reactive current is also required for a non-symmetrical grid faults, then correspondingly p5509[7] must be set > $0.1 \%$ (typically $=100 \%$ ).		
	For index [8]:		
	If a support reactive current is also required for non-symmetrical grid faults, then we recommend p5509[8] > $20 \%$ in order to reduce Vdc oscillation.		
	For index [11]:		
	A value p5509[11] > $30 \%$ can help avoid DC link overvoltages during grid faults.		
Index:	$[0]=$ Ramp reactive current at the beginning/end of grid support		
	[2] = Ramp reactive current when Vdc threshold is undershot		
	[3] = Hysteresis line voltage to exit grid support		
	[4] = Reference voltage scaling		
	[5] = Current limitation scaling		
	$[6]=$ Line voltage change for fast negative sequence calculation		
	$[7]=$ Line asymmetry current limit positive phase-sequence system$[8]=$ Line asymmetry current limit negative phase-sequence system		
	[9] = Line asymmetry minimum value for start of grid support$[10]=$ Line asymmetry maximum value for end of grid support		
	[11] = Active current limitation scaling		
	[12] = Grid asymmetry grid support charac. reactive current scaling		
	[13] = Grid voltage change for fast precontrol adaptation		
Notice:	Refer to: p5505, p5506, p5508		
	For index [5]:		
	For devices with r0192.19 = 0 (e.g., Active Line Module Booksize), the maximum apparent current limit can be set to p5509[5] = $80 \%$.		

## Note:

For index [0]:
Change in the reactive current setpoint (\% per ms) at the beginning and end of dynamic grid support.
This avoids sudden changes in the reactive current if the starting points for the line voltage (p5505[0], p5505[2]) are overshot.
For index [1]:
Change in the reactive current setpoint (\% per ms) when the maximum Vdc threshold ( p 5508 ) is overshot.
To avoid beat phenomena, the following must apply: p5509[1] > p5509[2].
The reactive current ramp is deactivated with $p 5509[1]=0.1 \%$. The reactive current required for dynamic support is also kept, even when the Vdc threshold is reached.
For index [2]:
Change in the reactive current setpoint (\% per ms) when the maximum Vdc threshold ( p 5508 ) is undershot.
To avoid beat phenomena, the following must apply: p5509[1] > p5509[2].
For index [3]:
Sets the hysteresis for the line voltage to exit grid support (as a percentage of the supply voltage p0210).
To exit grid support, the line voltage must be in the interval reduced by the hysteresis width (the interval is defined with the starting points p5505[0] and p5505[2] and the hysteresis width p5509[3]).
For index [4]:
Sets the scaling factor for the reference voltage for dynamic grid support (as a percentage of the supply voltage p0210).
As a result, the product of $\mathrm{p} 0210 \times \mathrm{p} 5509[4]$ is applied as the voltage zero.
For index [5]:
Sets the scaling factor for the permissible maximum converter current absolute value for dynamic grid support (as a percentage of the converter maximum current r0209).
Values higher than $100 \%$ will not be applied.
Values greater than 80 \% can only be set, if the duration that can be set is less than or equal to 3 seconds for the short-circuit state p5528.
For Active Line Module Booksize, the setting value is limited to $80 \%$.
This value (independent of the grid voltage) is active if the "Dynamic grid support" function is active (p5501 = 1 signal)
For index [6]:
Only active for p5500.3 = 1 .
Sets the percentage voltage change (as a percentage of p0210) from which value the calculated positive phasesequence system and negative phase-sequence system amplitudes are quickly adapted. As a consequence, the grid is quickly supported when step-type faults occur.

For index [7]:
Only active for p5500.3 = 1 .
Sets the maximum positive phase-sequence system reactive current absolute value to support the grid in the case of line asymmetry $(r 5502.2=1)$ as a percentage of r0207.
If a symmetrical support reactive current (positive phase-sequence system current), is also specified for nonsymmetrical grid faults, then generally, p5509[7] should be set to $=100 \%$.
For index [8]:
Only active for p5500.3 = 1 .
Sets the maximum negative phase-sequence system absolute current to support the grid in the case of line asymmetry (r5502.2 = 1) as a percentage of r0207.
For the case p5509[7] = $100 \%$, we recommend setting p5509[8] > $20 \%$.
For index [9]:
Only active for p5500.3 = 1.
Sets the minimum value of the voltage asymmetry to impress a negative phase-sequence system current for asymmetrical grid support.
For p5500.4 = 1, a negative phase-sequence system current is already impressed, if the voltage asymmetry exceeds the set value.
For p5500.4 = 0, in addition, for at least one of the phase voltages, the tolerance condition from the characteristic p5505 / p5506 must be exceeded.
For index [10]:
Only active for p5500.3=1.
Sets the maximum value of the voltage asymmetry to end asymmetrical grid support.
This means that parameters p5509[9] and p5509[10] define a hysteresis range.

### 2.2 List of parameters

For index [11]:
Only active for p5500.3 = 1 .
Sets the scaling factor for the permissible negative active current value for dynamic grid support (as a percentage of the converter maximum current r0209).
For index [12]:
Only active for p5500.3 = 1 .
Sets the scaling factor for dynamic grid support for 2-phase grid dips. The gradient of the support characteristic p5505/p5506 is scaled using this factor if asymmetry (r5502.2=1) is present. The setting of p5509[0] is applicable for the transition ramp
For index [13]:
Only active for p5500.3 = 1 .
If the grid voltage dips by this voltage with respect to the value of p0210, then the voltage precontrol is quickly adapted based on the calculated positive phase-sequence system and negative phase-sequence system amplitudes.

r5510[0...8]	CO: Dynamic grid support output / Dyn grid outp		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7987, 7997
	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the reactive current setpoint.		
	The value is calculated according to the characteristic for dynamic grid support (p5505, p5506).		
Index:	[0] = Reactive current setpoint not limited [1] = Reactive current setpoint Vdc threshold		
	[2] = Reactive current setpoint ramp		
	[3] = Reactive current setpoint characteristic		
	[4] = Negative phase-sequence system active current setpoint unlimited		
	[5] = Neg phase-sequence system active current setpoint characteristic		
	[6] = Neg phase-sequence system reactive current setpoint unlimited		
	[7] = Negative phase-sequence reactive current setpoint characteristic		
	[8] = Dynamic limiting current setpoint		
Dependency:	Refer to: p5505, p5506		
Notice:	For index [0]:		
	During the ramp-up for the reactive current (r3402 = 8) the signal is not valid.		
Note:	For index [0]:		
	Output of characteristic following addition of reactive current setpoints prior to current limitation. The reactive current setpoint applied for current control including dynamic grid support is displayed in r0075.		
	For index [1]:		
	Output of characteristic following correction on the basis of the Vdc threshold (p5508).		
	For index [2]:		

Output of characteristic after ramp function.
For index [3]:
Output of characteristic for dynamic grid support.
For index [4]:
Setpoint for the active current in the negative phase-sequence system before current limiting.
For index [5]:
Output of the characteristic for the active current in the negative phase-sequence system.
For index [6]:
Setpoint for the reactive current in the negative phase-sequence system before current limiting.
For index [7]:
Output of the characteristic for the reactive current in the negative phase-sequence system.
For index [8]:
Displays the dynamic current setpoint limiting.

### 2.2 List of parameters



r5513[0...3]	CO: Dynamic grid support line voltage pos/neg phase-sequence system /         Dyn grid U pos/neg

Description: Display and connector output for the positive phase-sequence system component and negative phase-sequence system component of the line voltage (p5504).
Index: [0] = Positive phase-sequence system active component
[1] = Positive phase-sequence system reactive component
[2] = Negative phase-sequence system active component
[3] = Negative phase-sequence system reactive component
Dependency: Refer to: p5500, p5504
Note: The determined active and reactive voltages of the positive phase-sequence and negative phase-sequence systems are used to calculate grid support dependent upon the selected configuration (p5500.3).

### 2.2 List of parameters

r5514[0...1]	CO: Dynamic grid support current setpoint alpha/beta / Dyn grid I a/b		
A_INF (Dyn. grid	Can be changed: -	Calculated: -	Access level: 4
support), R_INF (Dyn.	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7997
grid support)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Display and connector output for the line current setpoint at the input terminals of the power unit in alpha/beta components.		
Index:	$\begin{aligned} & {[0]=\text { Alpha }} \\ & {[1]=\text { Beta }} \end{aligned}$		
r5515[0...1]	CO: Dynamic grid support active power display / Dyn grid P displ		
A_INF (Dyn. grid	Can be changed: -	Calculated: -	Access level: 3
support), R_INF (Dyn.	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Display and connector output for the active power at the defined line connection point via p5503 and p5504.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$		
Note:	For index [1]:		
	The value is smoothed using a PT1 filter (smoothing time: p0045).		


r5516[0...1]	CO: Dynamic grid support reactive power display / Dyn grid Q disp		
A_INF (Dyn. grid	Can be changed: -	Calculated: -	Access level: 3
support), R_INF (Dyn.	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: 14_12	Unit selection: p0505
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kvar]	- [kvar]	- [kvar]
Description:	Display and connector output for the reactive power at the defined line connection point via p5503 and p5504.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$		
Note:	For index [1]:		
	The value is smoothed using	oothing time: p0045)	


p5518	CI: Dynamic grid support line phase angle signal source / Dyn grid ang S_src		
A_INF (Dyn. grid	Can be changed: T	Calculated: -	Access level: 4
support), R_INF (Dyn.	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
grid support)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description: Sets the signal source for the line phase angle associated with the voltage signal p5504.
Note: $\quad$ For p5518 $=0$, the following applies:
The line voltage angle of the voltage source calculated from the line PLL is used (r0094).

p5519	CI: Dynamic grid support line frequency signal source / Line freq S_src		
A_INF (Dyn. grid	Can be changed: T	Calculated: -	Access level: 4
support), R_NF (Dyn.	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
grid support)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the line frequency associated with the voltage signal p5504.		
Note:	For p5519 = 0, the following applies:		
	The smoothed line frequency calculated by the line PLL is used (r0066).		


p5520	CI: Dynamic grid support FRT current limit signal source / FRT curr lim s_src		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7997
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the dynamic limiting of the apparent current during FRT (r5502.1 $=1$ ).		
	The effective current limit is obtained from p5520 * r0209.		
	Limiting is deactivated with the default setting p5520 $=1$.		
	With p5500.6 = 1, the internal value of the smoothed absolute current (corresponds to r0027), valid at the FRT start, is effective over the complete duration of FRT.		
Dependency:	Refer to: r0027, p5500, r5502, p5509		
	Refer to: F06850		


r5522.0... 3	CO/BO: Dynamic grid support sequence control status word / Dyn grid seq ZSW			
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: -	Calculated: -	Access	
		Dyn. index: -	Func.	
	P-Group: Closed-loop control	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the sequence control status word on the current hysteresis controller.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Initialization	Yes	No	-
	01 No load	Yes	No	-
	02 Normal	Yes	No	-
	03 Short circuit	Yes	No	-
Dependency:	Refer to: p5527, p5528, p5529			
	Refer to: F06850			


p5524[0...2] Dynamic grid support hysteresis width / Dyn grid hyst

A_INF (Dyn. grid	Can be changed: T	Calculated: -	Access level: 4
support), R_INF (Dyn.   grid support)	Data type: FloatingPoint32	P-Group: Displays, signals	Dyn. index: -


Description:	Sets the hysteresis width for the current limiting intervention of the modulator.
	Only for internal Siemens use.
Index:	$[0]=$ Line parallel operation: No-load operation
	$[1]$ = Line parallel operation: Normal operation
	$[2]=$ Line parallel operation: Short-circuit operation
Dependency:	Refer to: p5523
Note:	The value refers to r0209.
	The hysteresis width (p5524) cannot be set greater than or equal to the overcurrent limit (p5523).


p5525[0...2]	Dynamic grid support overcurrent tolerance range / Dyn grid I tol		
A_INF (Dyn. grid	Can be changed: T	Calculated: -	Access level: 4
support), R_INF (Dyn.	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
grid support)	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	$10.0[\%]$	20.0 [\%]	
Description:	Sets the tolerance range for the second stage of the current limiting.		
	Only for internal Siemens use.		
Index:	[0] = Line parallel operation: No-load operation		
	$[1]=$ Line parallel operation: Normal operation		
Dependency:	[2] = Line parallel operation: Short-circuit operation		
	Refer to: p5523		


Note:	The value refers to r0209.
	If the current absolute value of a phase exceeds the tolerance threshold ( $\mathrm{p} 5523+\mathrm{p} 5525$ ), then the pulses in all of the line phases are inhibited for one cycle.
	If the current actual value increases in spite of this second current limiting stage, then the system fault trips (F30001).


p5526[0...2]	Dynamic grid support overcurrent modulator configuration / Dyn grid I config		
A_INF (Dyn. grid	Can be changed: U, T	Calculated: -	Access level: 4
support), R_INF (Dyn. Data type: Unsigned16   grid support) P-Group: Modulation	Dyn. index: -	Func. diagram: -	
	Not for motor type: -	Unit group: -	Unit selection: -
	Min	Scaling: -	Expert list: 1
	-	Max	Factory setting
	-	$[0] 1000000010100000$ bin	
		$[1] 1000000010100000$ bin	
		$[2] 1000000010110000$ bin	


Description: Index:	Sets the configuration for the current hysteresis controller.				
	[0] [1] [2]	No-load state State normal operation Short-circuit operation state			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	04	Disable wobbulation amplitude	Yes	No	-
	05	Activate extended current limitation control	Yes	No	-
	06	Activate isochronous current limitation	Yes	No	-
	07	Activate voltage impression with dynamic current limits	Yes	No	-
	10	Activate pulse-locking/pulse-dropping function	Pulse-Dropping	Pulse-Locking	-
	15	Activate flat-top modulation	Yes	No	-

## Note:

For bit $04=0$ :
The pulse frequency wobbulation amplitude (p1811) is enabled (only applies if p1810.2 = 1).
For bit 04 = 1 :
The pulse frequency wobbulation amplitude (p1811) is disabled (only applies if p1810.2 = 1).
For bit 10:
The setting according to p1810.10 applies.

p5527[0...2]	Dynamic grid support changeover pulse frequency / Dyn grid chg f_pul		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	50.0 [\%]	200.0 [\%]	[0] 100.0 [\%]
			[1] 100.0 [\%]
			[2] 100.0 [\%]
Description:	Sets the pulse frequency for the operating states of the current hysteresis controller.		
Index:	[0] = Pulse frequency in no-load state   [1] = Pulse frequency in normal state   [2] = Pulse frequency in short circuit state		
Note:	The value refers to p1800.		
	Only factors of the pulse frequency in p1800 are permitted.		

### 2.2 List of parameters

p5528[0...4]	Dynamic grid control operating state times / Dyn grid t state		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	10.000 [s]	[0] 1.000 [s]
			[1] 2.000 [s]
			[2] 3.000 [s]
			[3] 0.050 [s]
			[4] 0.050 [s]
Description:	Sets the times for the operating states of the dynamic grid support.		
Index:	[0] = Minimum time in normal state		
	[1] = Maximum time in short circuit state		
	$[2]=$ Maximum time PLL inhibit		
	[3] = Wait time fast grid return		
	[4] = Calibration time fast grid		
Dependency:	Refer to: p5529		
	Refer to: A06849, F06850		
Note:	For index [0]:		
	Minimum time for operating state "Rated operation" for change to "No-load operation".		
	For index [1]:		
	Permissible short-circuit duration.		
	If the short circuit is not cleared within this time, then the system shuts down with fault F06850.		
	Values greater than 3 s can only be set if the maximum device current when a short-circuit occurs p5509[5] is limited to $80 \%$.		
	For index [2]:		
	During a grid short-circuit, the grid PLL is inhibited for a maximum of this time in order to prevent loss of orientation to the grid.		
	For index [3]:		
	Sets a wait time for the decay of transient processes at the start of a short-circuit (r5502.4 = 1).		
	After this time expires, a function to quickly identify grid recovery is activated (p5529[7]).		
	For index [4]:		
	Sets the calibration time for the function to quickly identify line recovery.		
	During this time (after wait time p5529[3] expires), automatically all of the actual current and voltage thresholds for the detection function are determined (see p5529[4, 5]).		


p5529[0...7]	Dynamic grid support sequence control scaling values / Dyn grid seq scal		
A_INF (Dyn. grid	Can be changed: U, T	Calculated: -	Access level: 4
support), R_INF (Dyn.	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
grid support)	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	[0] 10.0 [\%]
			[1] 5.0 [\%]
			[2] 65.0 [\%]
			[3] 70.0 [\%]
			[4] 15.0 [\%]
			[5] 15.0 [\%]
			[6] 100.0 [\%]
			[7] 105.0 [\%]
Description:	Sets the scaling values for the transformer magnetization.   [0] = Minimum current for change from no-load to rated operation   [1] = Maximum current for change from rated to no-load operation   [2] = Minimum voltage for state change to short circuit   [3] = Maximum voltage for change from short circuit to rated operation   [4] = Minimum voltage change to identify grid return   [5] = Minimum current change to identify grid return   [6] = Grid return ruggedness factor   [7] = Grid return fast precontrol voltage		
Index:			
Dependency:	Refer to: r5522		
Note:	For index [0...3]:		
	Sets the limits for the state change of the current hysteresis controller.		
	The current value refers to r0209.		
	The voltage value refers to p 0210 .		
	For index [4]:		
	Sets the voltage change that defines the "Grid return" event (as a percentage of p0210). For index [5]:		
	Sets the current change that defines the "Grid return" event (as a percentage of p0207).		
	Sets a scaling factor to identify grid return to increase the degree of ruggedness.		
	For index [7]:		
	Sets the precontrol value for the step-like (fast) adaptation of the output voltage when identifying a fast grid recovery (as a percentage of von p0210).		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Line monitoring configuration / Line monit config		
	Can be changed: T	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 7999
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0000011000000011 bin
Description:	Sets the configuration for line monitoring.		
	Line monitoring is activated using binector input p5541 $=1$ signal.		

### 2.2 List of parameters

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Voltage and frequency monitoring	Yes	No	-
	01	AISL frequency shift technique	Yes	No	-
	04	FRT voltage time characteristic	Yes	No	7999
	05	FRT shutdown delayed	Yes	No	7999
	07	FRT frequency-time characteristic	Yes	No	7999
	09	Line synchronization voltage/frequency check	Yes	No	-
	10	FRT time characteristic separate initiation	Yes	No	-
Dependency:	Refer to: p5541				
	Refer to: F06851				
Notice:	For bit 00:				
	Fault F06851 is additionally displayed if, as a result of a line voltage fault, the current control was inhibited (alarm A06205, r03405.2 = 1) - and the inhibit is continuously active while the wait time is elapsing (p5545[0]). To make reference to the temporarily active alarm A06205, fault F06200 is subsequently output.				
Note:	AISL: Anti Islanding				
	FRT: Fault Ride Through (riding through a grid fault)				
	HFRT: High Frequency Ride Through (riding through frequency increases)				
	HVRT: High Voltage Ride Through (riding through voltage increases)				
	LFRT: Low Frequency Ride Through (riding through frequency dips)				
	LVRT: Low Voltage Ride Through (riding through voltage dips)				
	For bit 00:				
	The monitoring thresholds of the voltage and frequency criterion are defined using p5543 and p5544. If these thresholds are violated, then this is flagged in status word r5542 bits 6 to 9 . If the violation remains during wait time p5545[0], then fault F06851 is output.				
	For bit 01:				
	The frequency shift technique actively changes the frequency that is fed in. For islanding formation this results in the permissible frequency bandwidth being violated. Shut down is realized via fault F06851.				
	For bit 04:				
	It is only possible to activate the FRT voltage-time characteristic (HVRT, LVRT) when the voltage and frequency monitoring are activated ( $p 5540.0=1$ ). The monitoring thresholds p5543 are deactivated. The voltage-time monitoring to be set using p5550 to p5554 applies (display in r5542 bits 10 and 11).				
	For bit 05:				
	Sets the response after a voltage dip (LVRT).				
	0 = immediate shutdown.				
	1 = shutdown only after the time in p5545[2] has expired.				
	For bit 07:				
	It is only possible to activate the FRT frequency-time characteristic (HFRT, LFRT) when the voltage and frequency monitoring are activated ( $p 5540.0=1$ ). The monitoring thresholds p5544 are deactivated. The frequency-time monitoring to be set using p5555 to p5559 applies (display in r5542 bits 12 and 13).				
	For bit 09:				
	The additional voltage and frequency check is activated when switching on. To do this, before operation is enabled, a check is made against the limits p5543[2, 3] and p5544[2, 3], and the system waits until these limits are maintained $(r 3402=7$ or $r 3402=12$ when transformer magnetization is active ( $p 5480>0)$ ).				
	If the voltage and frequency limits are violated, then this is indicated in status word r5542 bits 6 to 9.				
	For bit 10 (only effective for p5540.4 = 1 or p5540.7 = 1):				
	$0=$ when the overvoltage or undervoltage limit is violated (p5550[0, 1]), both curves (overvoltage and undervoltage curve) always start at the same time. Correspondingly applies for the frequency-time characteristics.				
	$1=$ activation of separate initiation of FRT voltage-time characteristics for an overvoltage or undervoltage event. Correspondingly applies for the frequency-time characteristics.				



### 2.2 List of parameters

p5543[0...3]	Line monitoring voltage threshold / Line mon U_thresh		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7999
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	50.0 [\%]	150.0 [\%]	[0] 110.0 [\%]
			[1] 88.0 [\%]
			[2] 100.0 [\%]
			[3] 100.0 [\%]
Description:	Sets the voltage thresholds for line monitoring. The setting is a percentage of p 0210 .		
Index:	[0] = Operation upper   [1] = Operation lower   [2] = Synchronization upper   [3] = Synchronization lower		
Dependency:	Refer to: F06851		
Note:	The active thresholds of the voltage criteria are obtained as follows:		
	Threshold, lower $=$ p0210 $\times$ p5543[1]		
	For index [0, 1]:		
	Effective monitoring limits in operation. Only effective if p5540.4 $=0$.		
	For index [2, 3]:		
	Effective monitoring limits for line synchronization and for automatic restart.		
	For a setting of $100 \%$, the separate limit values are deactivated, and the monitoring limits for regular operation apply (indices 0,1 independent of p 5540.4 ).		


p5544[0...3]	Line monitoring frequency threshold / Line mon_f thresh		
A_INF (Dyn. grid	Can be changed: T	Calculated: -	Access level: 3
support), R_INF (Dyn.	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7999
grid support)	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~Hz}]$	$5.0[\mathrm{~Hz}]$	$[0] 0.5[\mathrm{~Hz}]$
			$[1] 0.7[\mathrm{~Hz}]$
		$[2] 0.0[\mathrm{~Hz}]$	
		$[3] 0.0[\mathrm{~Hz}]$	


Description:	Sets the relative frequency thresholds for line monitoring.
	The setting is realized as a deviation from p0211.
Index:	$[0]=$ Operation upper
	$[1]=$ Operation lower
	$[2]=$ Synchronization upper
	$[3]=$ Synchronization lower
Dependency:	Refer to: F06851
Note:	The active thresholds of the frequency criteria are obtained as follows:
	Threshold, upper $=p 0211+p 5544[0]$
	Threshold, lower $=$ p0211 - p5544[1]
	For index $[0,1]:$
	Effective monitoring limits in operation. Only effective if p5540.7 $=0$.
	For index $[2,3]:$
	Effective monitoring limits for line synchronization and for automatic restart.
	With the setting 0 Hz, the separate limit values are deactivated and the monitoring limits for regular operation apply
	(index 0,1, independent of p5540.7).



p5547[0]	Line monitoring frequencies / Line monit f		
A_INF (Dyn. grid	Can be changed: $T$	Calculated: -	Access level: 4
support), R_INF (Dyn.	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7999
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.01 [Hz]	$1.00[\mathrm{~Hz}]$	$0.10[\mathrm{~Hz}]$
Description:	Sets the frequency for line monitoring.   [0] = AISL frequency shift excitation frequency		
Index:			
Note:	AISL: Anti Islanding		
	For index [0]:		
	For frequency changes below the set excitation frequency, a normal line frequency change is assumed. For frequency changes above the setpoint excitation frequency, the algorithm of anti-islanding is triggered.		


p5548[0]	Line monitoring gains / Line monit gains		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7999
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10.00	10.00	0.10
Description:			
Index:	[0] = AISL frequency shift frequency deviation		
Note:	AISL: Anti Islanding		
	For index [0]:		
	Sets the gain factor for the frequency deviation for the frequency shift technique.		
p5550[0...2]	Line monitoring line fault thresholds voltage characteristic / Line mon U_thresh		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7999
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	150.0 [\%]	[0] 120.0 [\%]
			[1] 80.0 [\%]
			[2] 5.0 [\%]

Description: Sets the voltage activation threshold, which when violated indicates a line fault for the FRT line monitoring.
The setting is a percentage of p 0210 .
Index: $\quad$ I0] HVRT vilage
$[0]=$ HVRT voltage
$[1]=$ LVRT voltage
$[2]=$ Hysteresis voltage

Dependency: $\quad$ This parameter is only effective for p5540.4 $=1$.
Note: $\quad$ FRT: Fault Ride Through (riding through a line fault)
HVRT: High Voltage Ride Through
LVRT: Low Voltage Ride Through
The effective voltage activation thresholds are obtained as follows:
Threshold HVRT $=$ p0210 $\times$ p5550[0]
Threshold LVRT = p0210 x p5550[1]
When these thresholds are violated, status bit r5542.10 is set $=1$ or r5542.11 is set $=1$.
If, taking into account hysteresis, the limits are no longer violated, then these bits are reset.

p5551[0...9]	Line monitoring HVRT time values / Line monit HVRT t		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: T   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   0.00 [s]	Calculated: -   Dyn. index:   Unit group:   Scaling: -   Max   1000.00 [s]	Access level: 3   Func. diagram: 7999   Unit selection: -   Expert list: 1   Factory setting   [0] 0.00 [s]   [1] 0.15 [s]   [2] 0.70 [s]   [3] 1.50 [s]   [4] 3.00 [s]   [5] 25.00 [s]   [6] 50.00 [s]   [7] 100.00 [s]   [8] 200.00 [s]   [9] 300.00 [s]
Description: Index:	Sets the time values of the HVRT voltage characteristic.$\begin{aligned} & {[0]=\text { Value } 0} \\ & {[1]=\text { Value } 1} \\ & {[2]=\text { Value } 2} \\ & {[3]=\text { Value } 3} \\ & {[4]=\text { Value } 4} \\ & {[5]=\text { Value } 5} \\ & {[6]=\text { Value } 6} \\ & {[7]=\text { Value } 7} \\ & {[8]=\text { Value } 8} \\ & {[9]=\text { Value } 9} \end{aligned}$		
Dependency: Note:	This parameter is only effective for $\mathrm{p} 5540.4=1$.   If the voltage does not return to the monitoring range ( p 5551 [9]) within the permissible tolerance range ( $\mathrm{p} 5550[0,2]$ ) then the system is shut down with fault F06851.		
p5552[0...9]	Line monitoring HVRT voltage values / Line monit HVRT U		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: T   Data type: FloatingPoint32   P-Group: Closed-loop control   Not for motor type: -   Min   101.0 [\%]	Calculated: -   Dyn. index:   Unit group:   Scaling: -   Max   150.0 [\%]	Access level: 3   Func. diagram: 7999   Unit selection: -   Expert list: 1   Factory setting $110.0 \text { [\%] }$
Description:	Sets the voltage values of the HVRT voltage characteristic. The setting is a percentage of p 0210 .		
Index:	$\begin{aligned} & {[0]=\text { Value } 0} \\ & {[1]=\text { Value } 1} \\ & {[2]=\text { Value } 2} \\ & {[3]=\text { Value } 3} \\ & {[4]=\text { Value } 4} \\ & {[5]=\text { Value } 5} \\ & {[6]=\text { Value } 6} \\ & {[7]=\text { Value } 7} \\ & {[8]=\text { Value } 8} \\ & {[9]=\text { Value } 9} \end{aligned}$		
Dependency: Note:	This parameter is only effectiv The effective thresholds are ob Threshold[index] $=$ p0210 x p5		

### 2.2 List of parameters

p5553[0...9]	Line monitoring LVRT time values / Line monit LVRT t		
A_INF (Dyn. grid	Can be changed: T	Calculated: -	Access level: 3
support), R_INF (Dyn.	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7999
grid support)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [s]	300.00 [s]	[0] 0.00 [s]
			[1] 0.15 [s]
			[2] 0.70 [s]
			[3] 1.50 [s]
			[4] 3.00 [s]
			[5] 25.00 [s]
			[6] 50.00 [s]
			[7] 100.00 [s]
			[8] 200.00 [s]
			[9] 300.00 [s]


Description:	Sets the time values of the LVRT voltage characteristic.
Index:	$[0]=$ Value 0
	$[1]=$ Value 1
$[2]=$ Value 2	
	$[3]=$ Value 3
$[4]=$ Value 4	
$[5]=$ Value 5	
	$[6]=$ Value 6
$[7]=$ Value 7	
	$[8]=$ Value 8
	$[9]=$ Value 9


p5554[0...9]	Line monitoring LVRT voltage values / Line monit LVRT U		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7999
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	99.0 [\%]	90.0 [\%]
Description:	Sets the voltage values of the LVRT voltage characteristic. The setting is a percentage of p 0210 .		
Index:	[ 0 ] = Value 0   [1] = Value 1   [2] = Value 2   [3] = Value 3   [4] = Value 4   [5] = Value 5   [6] = Value 6   $[7]=$ Value 7   [8] = Value 8   [ 9 ] = Value 9		
Dependency:	This parameter is only effective		
Note:	The effective thresholds are ob		
	Threshold[index] $=$ p $0210 \times \mathrm{p} 55$		


p5555[0...2]	Line monitoring line fault thresholds frequency characteristic / Line mon thresh f		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7999
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.0 [Hz]	20.0 [Hz]	[0] $0.5[\mathrm{~Hz}]$
			[1] -0.7 [Hz]
			[2] $0.2[\mathrm{~Hz}]$
Description:	Sets the frequency activation threshold for a line fault for the FRT line monitoring. The setting is realized as a difference to the rated frequency p0211.		
Index:	$\begin{aligned} & {[0]=\text { HFRT frequency }} \\ & {[1]=\text { LFRT frequency }} \\ & {[2]=\text { Hysteresis frequency }} \end{aligned}$		
Dependency: Note:	This parameter is only effective for p5540.7 = 1 .		
	FRT: Fault Ride Through (riding through a line fault)		
	HFRT: High Frequency Ride Through		
	LFRT: Low Frequency Ride Through		
	For index [0, 1]:		
	The effective frequency thresholds, which when violated indicate a line fault, are obtained as follows: Threshold HFRT $=$ p0211 + p5555[0]		
	Threshold LFRT = p0211-p5555[1]		
	When these thresholds are violated, status bit r5542.12 is set $=1$ or r5542.13 is set $=1$.		
	Only positive values are permitted when setting the hysteresis.		
p5556[0...9]	Line monitoring HFRT time values / Line monit HFRT t		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7999
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [s]	1000.00 [s]	[0] 0.00 [s]
			[1] 0.15 [s]
			[2] 0.70 [s]
			[3] 1.50 [s]
			[4] 3.00 [s]
			[5] 25.00 [s]
			[6] 50.00 [s]
			[7] 100.00 [s]
			[8] 200.00 [s]
			[9] 300.00 [s]
Description:	Setting the time values of the HFRT frequency characteristic.		
Index:	[0] = Value 0		
	[1] = Value 1		
	[2] = Value 2		
	[3] = Value 3		
	[4] = Value 4		
	[5] = Value 5		
	[6] = Value 6		
	[7] = Value 7		
	[8] = Value 8		
	[9] = Value 9		

### 2.2 List of parameters

Dependency: $\quad$ This parameter is only effective for $\mathrm{p} 5540.7=1$.
Note: If the frequency does not return to the monitoring range ( $\mathrm{p} 5556[9]$ ) within the permissible tolerance range ( $\mathrm{p} 5555[0$,
2]) then the system is shut down with fault F06851.

p5557[0...9]	Line monitoring HFRT frequency values / Line monit HFRT f		
A_INF (Dyn. grid	Can be changed: T	Calculated: -	Access level: 3
support), R_INF (Dyn.	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7999
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Hz]	20.0 [Hz]	1.5 [Hz]
Description:	Setting the frequency values of the HFRT frequency characteristic. The setting is realized as a difference to the rated frequency p0211.		
Index:	[ 0 ] = Value 0   [1] = Value 1   [2] = Value 2   [3] = Value 3   [4] = Value 4   [5] = Value 5   [6] = Value 6   [7] = Value 7   [8] = Value 8   [9] = Value 9		
Dependency:	This parameter is only effective		


p5558[0...9]	Line monitoring LFRT time values / Line monit LFRT t		
A_INF (Dyn. grid support), R_INF (Dyn. grid support)	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7999
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [s]	300.00 [s]	[0] 0.00 [s]
			[1] 0.15 [s]
			[2] 0.70 [s]
			[3] 1.50 [s]
			[4] 3.00 [s]
			[5] 25.00 [s]
			[6] 50.00 [s]
			[7] 100.00 [s]
			[8] 200.00 [s]
			[9] 300.00 [s]
Description:	Setting the time values of the LFRT frequency characteristic.		
Index:	$\begin{aligned} & {[0]=\text { Value } 0} \\ & {[1]=\text { Value } 1} \end{aligned}$		
	[2] = Value 2		
	[3] = Value 3		
	[4] = Value 4		
	[5] = Value 5		
	[6] = Value 6		
	[7] = Value 7		
	[8] = Value 8		
	[9] = Value 9		
Dependency:	This parameter is only effective for p5540.7 = 1.		
Note:	If the frequency does not return to the monitoring range (p5558[9]) within the permissible tolerance range (p5555[1, 2]) then the system is shut down with fault F06851.		


p5559[0...9]	Line monitoring LFRT frequency values / Line monit LFRT f		
A_INF (Dyn. grid	Can be changed: T	Calculated: -	Access level: 3
support), R_INF (Dyn.	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7999
grid support)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.0 [ Hz ]	0.0 [Hz]	-2.5 [Hz]
Description:	Setting the frequency values of the LFRT frequency characteristic. The setting is realized as a difference to the rated frequency p0211.		
Index:	[0] $=$ Value 0 $[1]=$ Value 1 $[2]=$ Value 2 $[3]=$ Value 3 $[4]=$ Value 4 $[5]=$ Value 5 $[6]=$ Value 6 $[7]=$ Value 7 $[8]=$ Value 8 $[9]=$ Value 9		
Dependency:	This parameter is only effective for $\mathrm{p} 5540.7=1$.		
p5571	BI: Line PLL2 activation signal source / LinePLL2 act s_src		
A_INF (Line transf), R_INF (Line transf)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	5499.5
Description:	Sets the signal source to activate the PLL2 to determine the frequency, phase angle and amplitude of an external line.		
	An island grid (p5493[0]) is synchronized to the output signals of PLL2 (r6311[1], r6313, r6314).		
	BI: p5501 = 1 signal:		
	Activation of the PLL2.		
	BI: p5501 $=0$ signal:		
	Deactivation of the PLL2.		
Dependency:	Refer to: r5572, p5574, r6311, r6313, r6314, r6316		
Note:	The BiCo interconnections of the PLL2 are preset for an application involving island grid synchronization. However, the PLL2 can be generally used for sinusoidal voltage characteristics.		

## r5572.0... 3

A_INF (Line transf),
R_INF (Line transf)

CO/BO: Line PLL2 status word / Line PLL2 status
Can be changed: -
Data type: Unsigned16
P-Group: Closed-loop control
Not for motor type: -
Min

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Description:	Display and connector output for the status word of PLL2.
	The value 0 signals is valid values for frequency and voltage within the parameterized tolerance limits.


Bit field:	Bit	Signal name	$\mathbf{1}$ signal	Fes	0 signal

Dependency: Refer to: p0281, p0282, p0284, p0285, r6311, r6313, r6314, r6316

### 2.2 List of parameters



## p5580

A_INF (Line transf),
R_INF (Line transf)

Island grid black start mode / Black start mode
Can be changed: T
Data type: Integer16
P-Group: Commands
Not for motor type: -
Min
0

## Calculated: -

Dyn. index: -
Unit group: -
Scaling: -
Max
3

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Description: Sets the mode for the black start.
An island grid, which at the start has no voltage, can be established using this function. In this case, the ALM acts as the grid voltage source or as grid generator for the connected island grid.
Prerequisite:
Activating function module "Line droop control" (r0108.12 = 1) and line droop operation (p5401).
If value $=0$ :
The black start is deactivated.
If value $=2$ :
At the next switch on, a black start is carried out. Here, the precondition is that the line voltage is close to zero (less than $p 5586[0]$ ). Using the grid droop control, the grid voltage is increased up to the rated value using a ramp function.
If value $=3$ :
At the next switch on, a black start is carried out if the grid voltage is less than p5586[0]. If on the other hand, a grid is connected within the regular tolerances (p0281, p0282), then a regular switching-on operation is carried out with synchronization to the existing grid voltage.
If, in so doing, transformer magnetization is activated (p5480 = 1), then this is performed.


## p5581[0...8]

A_INF (Line transf), R_INF (Line transf)

## Island grid times / Island grid t

Can be changed: T
Data type: FloatingPoint32
P-Group: Commands
Not for motor type: -
Min
0.10 [s]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
100.00 [s]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
[0] 2.00 [s]
[1] 1.00 [s]
[2] 60.00 [s]
[3] 1.00 [s]
[4] 0.10 [s]
[5] 1.00 [s]
[6] 60.00 [s]
[7] 1.00 [s]
[8] 0.10 [s]

Description: Sets the time parameters for transformer magnetization, black start and island grid synchronization.

Note:
[0] = Black start voltage ramp duration
[1] = Black start circuit breaker bounce time
[2] = Black start maximum time
[3] = Black start checking time
[4] = Black start ramp smoothing time
[5] = Synchronization circuit breaker bounce time
[6] = Synchronization maximum time
[7] = Synchronization check time
[8] = Synchronization ramp smoothing time
For index [0]:
Sets the ramp time for the grid voltage.
The ramp state r5482 = 107 is extended by the settling time, whose duration is obtained according to 3 * (p5427 + p5581[4]).
For index [1]:
Sets the bounce time for the circuit breaker at the line side of the line transformer.
An interruption-free connection between the line supply and the transformer is only guaranteed after the bounce time has expired.
For index [2]:
Sets the permissible maximum time.
If the maximum time elapses without the line being synchronized, fault F06503 is output.
For index [3]:
Sets the test of time for the line voltage before closing the circuit breaker.
The line voltage must be less than the threshold specified in p5586[0].

### 2.2 List of parameters

For index [4]:
Sets the smoothing time constant for an additional PT1 filtering of the voltage ramp.
For index [5]:
Sets the bounce time for the circuit breaker at the line side of the line transformer.
An interruption-free connection between the line supply and the transformer is only guaranteed after the bounce time has expired.
For index [6]:
Sets the permissible maximum time.
If the maximum time elapses without the line being synchronized, fault F06504 is output.
For index [7]:
Sets of the test time for the outer line supply, to which the system should be synchronized (voltage signals r5488[3, 4]). This line supply must maintain the regular tolerance for voltage and frequency (see p0281 ... p0285). The test is realized before synchronizing starts.
For index [8]:
Sets the smoothing time constant for an additional PT1 filtering of the voltage and frequency ramp.

r5582[0...1]	CO: Island grid synchronization setpoint control / Island sync setp.		
A_INF (Line transf),	Can be changed: -	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7995
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output of the supplementary setpoints for the frequency and voltage control during island grid synchronization.		
Index:	[ 0 ] = Setpoint ramp frequency   [1] = Setpoint ramp voltage		
Notice:	In order to avoid equalization operations, after island synchronization has been completed, it is not permissible that supplementary setpoints for frequency and voltage are suddenly set to zero (as step function). This is the reason that after ending synchronization, the setpoints are held constant and reset with the trigger signal p5583[2] $=1$.		
	In the same controller cycle, the signals for smoothed frequency (p5406[0]) and voltage (p5416[0]) are corrected by the corresponding absolute values!		
	The supplementary setpoints (r5582) are automatically reset when synchronization is canceled and when the grid droop ( p 5401 ) is deactivated with a change into regular closed-loop current control operation (with adaptation to the grid frequency).		
Note:	In the default setting, the setpoints are connected with the unfiltered setpoint inputs (no-load frequency p5406[1], noload voltage $\mathrm{p} 5416[1]$ ) of the grid droop. While synchronizing the island grid to an external grid, the amplitude, phase angle as well as the frequency of the island grid are adapted in this fashion.		
	The setpoints for synchronizing can also be used for synchronous voltage and frequency adaptation of additional power generating systems in the island grid.		

p5583[0...2]

A INF (Line transf) R_INF (Line transf)

BI: Island grid synchronization signal sources / Island sync s_src		
Can be changed: T	Calculated: -	Access level: 3
Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 7989
P-Group: Commands	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	$[0] 0$
		$[1] 0$
		$[2] 0$

## Description: Sets the signal sources for island grid synchronization.

Using the island grid synchronization function, an island grid can be synchronized with an external grid regarding frequency, phase angle and voltage amplitude.
After synchronization has been performed, a circuit breaker between the two grids can be closed (r5493.1).
Index:
[0] = Start
[1] = Circuit breaker feedback signal
[2] = Reset setpoints

## Notice:

For index [1]:
The feedback signal contact of the circuit breaker between the external grid and the island grid (in front of the grid transformer) must be connected in parallel via binector input p5583[1].
The feedback signal is required for a state change in the synchronization sequence control. This signal is not used to completely monitor the contactor (p0860 and following).
Note: In order to synchronize an island grid with an external grid, frequency, phase position and amplitude of the island grid must be changed in operation!
This assumes that the components of the island grid are suitable for these parameter changes and that the ALM is the only grid generator in the island grid.
For index [0]:
Signal source for the start command to synchronize the island grid with an external grid.
The target values for the synchronization, are the output values of the PLL2 (r6311[1], r6313, r6314).
The PLL2 must be activated at the latest when synchronization starts (p5571, p5574).
For index [1]:
Signal source for the feedback signal of the circuit breaker between the island grid and the external grid.
For index [2]:
Signal source to reset the supplementary setpoints for voltage and frequency(r5582[0, 1]) after island grid synchronization has been completed.
At the same time as the reset command, the external cyclic supplementary setpoints (p5406[0], p5416[0]) must be appropriately adapted.
p5584[0...2] Island grid synchronization controller dynamics / Island synch dyn

A_INF (Line transf),
R_INF (Line transf)
Can be changed: $T \quad$ Calculated: - Access level: 3

Data type: FloatingPoint32
P-Group: Commands
Not for motor type: -
Min
0.00 [ms]
Dyn. index: -
Unit group: -
Scaling: -
Max 1000.00 [ms]

Access level: 3
Func. diagram: 7995
Unit selection: -
Expert list: 1
Factory setting
[0] 100.00 [ms]
[1] 100.00 [ms]
[2] 100.00 [ms]

Description: Sets the time constants for the closed-loop control for the island grid synchronization.
Index:
[0] = Angle controller integration time
[1] = Voltage controller integration time
[2] = Control deviation smoothing time

p5585[0...1]	Island grid synchronization voltage thresholds / Island sync U_thr		
A_INF (Line transf), R_INF (Line transf)	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7995
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [V]	300.0 [V]	[0] 35.0 [V]
			[1] 3.5 [V]
Description:	Sets the permissible voltage difference between the space vectors of the line voltage and the Active Line Module (ALM).		
Index:	[0] = Unsmoothed   [1] = Smoothed		
Dependency:	Refer to: p5484		
Note:	For index [0]:		
	Sets the permissible absolute value of the instantaneous difference between the voltage in the island grid (r3468[4, $5]$ ) and the voltage of the external grid (r5488[3, 4]). This condition must be met to reach the state r5482 $=204$.		
	Sets the permissible absolute value of the averaged difference between the voltage in the island grid (r3468[4,5]) and the voltage of the external grid ( $\mathrm{r} 5488[3,4]$ ). This condition must be met to reach the state $\mathrm{r} 5482=204$.		



### 2.2 List of parameters

Dependency:	Refer to: p5589, p5590, p5591
Notice:	The set time values cannot be precisely implemented, but only rounded off to interval limits corresponding to the
current controller sampling time (p0115[0]).	
For index [0]:	
Sets the duration of the asymmetrical voltage output. After reaching the set duration, the asymmetry is exited and the	
regular symmetrical grid voltage droop becomes active again. To start an additional voltage asymmetry, a $0 / 1$ edge	
of the activation signal p5591 is first required.	
With p5588[0] = 0, the asymmetry set with p5590 is active without any time limit (up until it is deactivated with p5591	
= 0).	
For index [1]:	
Sets the duration of an initial ramp at the start of the asymmetrical voltage output.	
When required, with a ramp, overvoltages in systems that are capable of oscillation can be prevented.	
The ramp starts as soon as the trigger condition according to p5589 is fulfilled.	
During the ramp, the voltage output is changed step-by-step from the regular symmetrical rotating voltage vector into	
the asymmetry set using p5590.	
The ramp is part of the duration of the asymmetrical voltage output set using p5588[0].	
With p5588[1] = 0, the ramp is deactivated and the voltage is immediately changed (step function) to the set	
asymmetry (p5590).	
For index [2]:	
Sets the duration of an end ramp at the completion of the asymmetrical voltage output.	
When required, with a ramp, overvoltages in systems that are capable of oscillation can be prevented.	
The ramp starts as soon as the time for the asymmetrical voltage output has expired. As a consequence, the end	
ramp is not part of the duration set using p5588[0].	
During the ramp, the voltage output is changed step-by-step from the asymmetry set using p5590 to the regular	
symmetrical rotating voltage vector.	
With p5588[2] = 0, the ramp is deactivated and the voltage is immediately changed (step function) to the set	
asymmetry (p5590).	

## p5589

A_INF (Line droop
ctrl), R_INF (Line droop ctrl)

Description:
Dependency Notice:

## Note:

## Grid droop control asymmetry angle / Grid droop asym A

Can be changed: U, T	Calculated: -	Access level: 4
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Closed-loop control	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$-1.0\left[{ }^{\circ}\right]$	$360.0\left[{ }^{\circ}\right]$	$-1.0\left[^{\circ}\right]$

Sets the trigger angle for the asymmetrical voltage output.
Refer to: p5590, p5591
The set angular values cannot be precisely implemented, but only rounded off to interval limits corresponding to the current controller sampling time ( $\mathrm{p} 0115[0]$ ).
Example:
With p0115[0] $=0.25 \mathrm{~ms}$ and a 50 Hz line frequency, an angular resolution of 0.25 ms * 50 Hz * $360^{\circ}=4.5^{\circ}$ is obtained. The function is activated using binector input p5591 $=0 / 1$ signal.
After this function is activated, the start of asymmetry is delayed until the phase angle ( r 5412 ) reaches the value of p5589. This means that asymmetrical voltage changes can be implemented, which can be synchronized with the basic fundamental of the grid voltage - and that are reproducible
With p5589 < $0^{\circ}$, asymmetry starts immediately with the $0 / 1$ edge, and is therefore not synchronized with the grid voltage.


For index [0, 1, 2]:
Virtual three-phase voltage source in a delta connection.
Internally, the values are limited to the range 0 ... 100\%.
Setpoint voltage amplitude phase RS: U_RS = r5429 * root(2) * p5590[0]
Setpoint voltage amplitude phase ST: U_ST = r5429 * root(2) * p5590[1]
Setpoint voltage amplitude phase TR: U_TR = r5429 * root(2) * p5590[2]
The instantaneous voltages are internally adapted using a transformation matrix so that a zero system-free threephase voltage system is obtained. For example, a short circuit between phases $R$ and $S$ can be directly emulated using p5590[0].
For index $[3,4,5]$ :
Virtual three-phase voltage source in a star connection.
Internally, the values are limited to the range 0 ... 150\%.
Setpoint voltage amplitude phase R: U_R = r5429 * root(2/3) * p5590[3]
Setpoint voltage amplitude phase S: U_S = r5429 * $\operatorname{root}(2 / 3)^{*}$ p5590[4]
Setpoint voltage amplitude phase T: U_T = r5429 * root(2/3) * p5590[5]
As the sum of the 3 sinusoidal voltages must be 0 at any particular instant in time, the average value of the instantaneous voltages are subtracted in each phase (i.e. the zero system components are evenly distributed across the 3 branches). For example, this is the reason that $p 5590[3]=0 \%$ does not result in a DC voltage of 0 in phase $R$. For index [6, 7, 8]:
Zero system distribution of the virtual three-phase voltage source in a star connection.
Internally, the values are limited to the range -300 ... 300 \%.
Using these factors, it is defined with which component an existing zero system (instantaneous value u0 = (u_R + $\left.u_{-} S+u_{-} T\right) / 3$ ) should be subtracted in the individual phases.
Zero system correction phase R: u1_R = u_R - u0 * p5590[6]
Zero system correction phase S: u1_S = u_S - u0 * p5590[7]
Zero system correction phase T: u1_T = u_T - u0 * p5590[8]
In order to obtain a zero system-free U1 system, p5590[6] + p5590[7] +p5590[8] must $=300 \%$. If this condition is violated, then the remaining zero system component is evenly distributed across all 3 branches.
Example:
The combination of $p 5590[3]=0 \%$ and $p 5590[6]=0 \%$ results in a voltage 0 in phase $R$. The phase voltage U_ST keeps its rated value, the sinusoidal curves of the two other differential voltages lie one above the other.

## p5591

A_INF (Line droop ctrl), R_INF (Line droop ctrl)

## BI: Grid droop control asymmetry activation / Gr_droop asym act

Can be changed: $\mathrm{U}, \mathrm{T}$
Data type: Unsigned32 / Binary
P-Group: Commands
Not for motor type: -
Min

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Description: Sets the signal source to activate asymmetrical phase voltages in the grid droop mode.
$\mathrm{BI}:$ p5591 = change, from a 0 signal to a 1 signal:
Activates asymmetry.
BI: p5591 = 0 signal:
Deactivates asymmetry.
Danger: By scaling the phase voltages (p5590), phase short-circuits as well as overcontrol of the phase voltages (with overvoltages and high harmonic components) can be realized. This means that special care must be taken when using this function.
The complete system with all of the connected components must be designed for the resulting current and voltage levels in order to rule out injury and material damage.
Notice:
The function is activated with a 0/1 edge.
A fixed value saved in the ROM p5591 = 1 is therefore not sufficient to activate (for instance, after a POWER ON).
Note:

The precondition to output asymmetrical voltages is that the grid droop control is activated (p5401 = 1 signal).
Duration and start of the asymmetry can be set with p5588 or p5589.

### 2.2 List of parameters

r5592.0... 5	CO/BO: Grid droop control asymmetry status word / Gr_droop asym ZSW			
A_INF (Line droop	Can be changed: -	Calculated: -	Acces	
ctrl), R_INF (Line	Data type: Unsigned16	Dyn. index: -	Func	
	P-Group: Closed-loop control	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Facto	
	-	-	-	
Description:	Display and BICO output for the status word of the asymmetrical grid droop.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Asymmetry deactivated	Yes	No	-
	01 Wait for trigger	Yes	No	-
	02 Starting ramp active	Yes	No	-
	03 Asymmetry active	Yes	No	-
	04 End ramp active	Yes	No	-
	05 Asymmetry exited	Yes	No	-
Note:	For bit 00:			
	The asymmetrical voltage output is activated via binector input p5591.			
	The precondition is active grid droop control (r5401.1 = 1).			
	For bit 05:			
	Final state after completion of the time-limited asymmetry. To create additional an voltage asymmetry, a new activation edge is required (p5591).			


p5594[0...8]	CO: Grid droop control asymmetry fixed setpoints / Gr_droop_asym fix		
A_INF (Line droop	Can be changed: U, T	Calculated: -	Access level: 4
ctrl), R_INF (Line	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	300.00 [\%]	100.00 [\%]
Description:	Setting and connector output of steady state percentage values for the asymmetry (p5590).		
Index:	[0] = Differential voltage factor RS   [1] = Differential voltage factor ST   [2] = Differential voltage factor TR   [3] = Phase voltage factor R   [4] = Phase voltage factor S   [5] = Phase voltage factor T   [6] = Zero system voltage factor R0   [7] = Zero system voltage factor S0   [8] = Zero system voltage factor T0		
Dependency:	Refer to: p5590		


r5600	Pe energy-saving mode ID / Pe mode ID		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: 2381,2382
CU_S120_PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Max	Factory setting	
CU_S150_DP	Min	-	
	0		
Description:	Displays the PROFlenergy mode ID of the effective energy-saving mode.		
Value:	$0: \quad$ POWER OFF		
	$2: \quad$ Energy-saving mode		
	$240:$ Operation		
	$255: \quad$ Ready		


p5602[0...1]	Pe energy-saving mode pause time minimal / Pe mod t_pause min		
CU_S_AC_DP, CU S AC PN, CU_S120_PN, CU S150 PN, CU_S120_DP, CU_S150_DP	Can be changed: T   Data type: Unsigned32   P-Group: Communications   Not for motor type: -   Min   300000 [ms]	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   4294967295 [ms]	Access level: 3   Func. diagram: 2381   Unit selection: -   Expert list: 1   Factory setting   [0] 300000 [ms]   [1] 480000 [ms]
Description:	Sets the minimum possible pause time for the energy-saving mode.   The value is the sum of the following times:   - Energy-saving mode transition time   - Operating state transition time regular   - Energy-saving mode, time of minimum stay		
Index:	$\begin{aligned} & {[0]=\text { Reserved }} \\ & {[1]=\text { Mode } 2} \end{aligned}$		
Note:	It is not permissible that the value is less than the state transition time" (system properties).   Pe: PROFlenergy profiles	the sum of the "en	de transition time" and the "operating
p5606[0..1]	Pe energy-saving mode time of maximum stay / Pe t_max_stay		
CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP	Can be changed: T   Data type: Unsigned32   P-Group: Communications   Not for motor type: -   Min   0 [ms]	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   4294967295 [ms]	Access level: 3   Func. diagram: 2381   Unit selection: -   Expert list: 1   Factory setting   4294967295 [ms]
Description: Index:   Note:	Sets the time of maximum stay for the energy-saving mode.$\begin{aligned} & {[0]=\text { Reserved }} \\ & {[1]=\text { Mode } 2} \end{aligned}$		
p5611	Pe energy-saving properties general / Pe properties gen		
CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP	Can be changed: T   Data type: Unsigned32   P-Group: Communications   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram: 2381, 2382   Unit selection: -   Expert list: 1   Factory setting   0000 bin
Description: Bit field:	Sets the general properties for energy-saving.   Bit Signal name   00 Inhibit PROFlenergy control commands	1 signal Yes	$\mathbf{0}$ signal FP   No -
Note:	Pe: PROFlenergy profiles		

### 2.2 List of parameters

r5613.0... 1	CO/BO: Pe energy-saving active/inactive / Pe save act/inact				
CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP	Can be changed: -		Calculated: - Acces		
	Data	type: Unsigned8	Dyn. index: -	Func.	
	P-Gr	up: Communications	Unit group: -	Unit s	
	Not	motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Disp	y and binector output	lay PROFlenerg	ctive or ina	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Pe active	Yes	No	
		Pe inactive	Yes	No	-
Note:	Bit 0 Pe:	and bit 1 are inverse of ROFIenergy profiles			


p6277[0...n]	Reverse field excitation speed setpoint rotat field inversion / RFE n_set revers		
VECTOR ( $\mathrm{n} / \mathrm{M}$ ),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC (n/M),	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_1_AC (n/M)	P-Group: Setpoints	Unit group: 3_1	Unit selection: p0505
	Not for motor type: ASM, PMSM, REL, RESM	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-20000.00 [rpm]	20000.00 [rpm]	0.00 [rpm]
Description:	Sets the speed setpoint for rotating field inversion of the stator current in the reverse field exciter. Refer to: p6278		
Dependency:			


p6278[0...n]	Reverse field excit speed setp rotat field inversion hysteresis / n_inverse IE Hyst		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: Setpoints	Unit group: $3 _1$	Unit selection: $p 0505$
	Not for motor type: -	Scaling: p 2000	Expert list: 1
	Min	Max	Factory setting
	$-20000.00[\mathrm{rpm}]$	$20000.00[\mathrm{rpm}]$	$10.00[\mathrm{rpm}]$

Description: Sets the hysteresis of the speed setpoint for rotating field inversion of the stator current in the reverse field exciter. Dependency: Refer to: p1821, p6277
Caution: When changing the direction of rotation of the main machine using p1821, it must be checked as to whether the


r6311[0...1]	CO: Line PLL2 frequency / Line PLL2 f		
A_INF (Line transf), R_INF (Line transf)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p0514	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description: Index:	Display and connector output for the line frequency determined with PLL2 for the voltage signals specified in p5574.   [0] = Unsmoothed   [1] = Smoothed		
Note:	A positive sign of the frequency is obtained when the line supply phases $\mathrm{U}, \mathrm{V}$ and W are connected with the correct phase sequence.		
	A negative sign of the frequency is obtained when the 3 line phases are interchanged therefore designating a negative direction of the rotating field of the 3-phase line supply voltage.		
	For index [0]:		
	Displays the instantaneous value.		
	The following applies for the dynamic time constant of the PLL2: p3458[1] * p6423		
	For index [1]:		
	Displays the values additionally smoothed with a time constant of 50 ms (suitable for monitoring the frequency).		
r6313	CO: Line PLL2 smoot	/ Line PLL2 U	
A_INF (Line transf), R_INF (Line transf)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6799, 8026
	P-Group: Displays, signals	Unit group: 5_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min		Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display the rms value calculated with PLL2 for the voltage signals specified in p5574.		
Dependency:	Refer to: p3472		
Note:	The following applies to the smoothing time: p3458[1] * p6425		
r6314	CO: Line PLL2 phase angle / Line PLL2 ph_angle		
A_INF (Line transf),   R_INF (Line transf)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	- [ ${ }^{\circ}$ ]	- [ ${ }^{\circ}$ ]	- [ ${ }^{\circ}$ ]
Description:	Display the phase angle calculated with PLL2 for the voltage signals specified in p5574.		
r6316	CO: Line PLL2 line supply angle measured / Line PLL2 ang meas		
A_INF (Line transf),   R_INF (Line transf)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	- [ ${ }^{\circ}$ ]	- [ ${ }^{\circ}$ ]	- [ ${ }^{\circ}$ ]
Description:	Displays the actual value for the phase angle of the voltage signals (p5574) for the PLL2.		


p6397	Motor Module phase shift second system / MM ph_sh 2nd sys		
VECTOR,	Can be changed: C2(2), T	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	8	0
Description:	Sets the phase shift of the second system with respect to the first system for the Motor Module for a 12-pulse gating unit.		
Value:	0: Shift by $+30^{\circ}$		
	1: Shift by $-30^{\circ}$		
	2: Shift by $0^{\circ}$		
	3: Shift by $+90^{\circ}$		
	4: Shift by $-90^{\circ}$		
	5: Shift by $+120^{\circ}$		
	6: Shift by $-120^{\circ}$		
	7: Shift by $+150^{\circ}$		
	8: Shift by $-150^{\circ}$		
Dependency:	Refer to: p7003		
Notice:	The parameter is only evaluated if p7003 $=2$.		
Note:	For p6397 = 0 the following applies: The second systems leads for a positive direction of rotation.		
	For p6397 = 1 the following applies: The second systems lags for a positive direction of rotation.		
p6420[0...1]	Phase shift input voltage VSM to the drive converter / INF U VSM/conv		
A_INF (Line transf),	Can be changed: $T$	Calculated: -	Access level: 3
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: All groups	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-180.00 [ ${ }^{\circ}$ ]	179.90 [ $\left.{ }^{\circ}\right]$	$0.00{ }^{\text {[ }]}$
Description:	Sets the phase shift between the synchronizing voltage measured by the Voltage Sensing Module (VSM) and the actual drive converter input voltage.		
Index:	[ 0 ] = Supply transformer   [1] = Island grid transformer		
Warning:	Switching-in with a significantly incorrectly parameterized offset angle (> $5^{\circ}$ ) can cause a peak current intervention and / or triggering the crowbar thyristor.		
Caution: $\qquad$   !	VSM, under certain circumstances, a line supply fault can be signaled. When this occurs for the first time after changing the parameter, the fault can be ignored and acknowledged.	If this parameter is changed in the "ready for operation" state and if a synchronizing voltage is already available at the	
Note:	If the converter input voltage (= secondary side voltage of the power transformer) lags the synchronizing voltage measured by the VSM by $30^{\circ}$, then p6420 should be set to $-30^{\circ}$.		
p6421[0...1]	Line supply voltage sensing gain adaptation / U_line gain		
A_INF (Line transf), R_INF (Line transf)	Can be changed: C2(2), T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	50.000 [\%]	200.000 [\%]	100.000 [\%]
Description:	Sets the gain factor identified in p6441 to finely calibrate the line voltage detection.		
Index:	[0] = Supply transformer		
Dependency:	[1] = Island grid transformer Refer to: r6441		


p6422	Line supply voltage r	direction / U	
A_INF (Line transf), R_INF (Line transf)	Can be changed: C2(2), T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to reverse the rotating field direction of the synchronizing voltage system measured by the Voltage Sensing Module (VSM).		
Value:	0 : $\quad$ Rotating field direction positive   1: Rotating field negative		
Warning: $\qquad$   1	Only use in an emergency if it is not possible to correct the wiring. Extreme caution must be applied in this case when measuring the phase shift (p6420).		
Note:	Allows the rotating field direction to be adapted if there is inconsistency in the wiring.		
p6423	PLL dynamic / PLL dynamic		
A_INF (Line transf),	Can be changed: C2(2), T	Calculated: -	Access level: 4
R_INF (Line transf)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	2.000 [\%]	500.000 [\%]	20.000 [\%]
Description:	Sets the dynamic response for the line supply voltage PLL.		
Note:	Higher values increase the dynamic response but also the tendency of the PLL to oscillate (instability).		
p6425	Line voltage active/react. power comp. smoothing time constant / U_line p/q t_smth		
A_INF (Line transf), R_INF (Line transf)	Can be changed: $\mathrm{C} 2(2)$, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.000 [ms]	5000.000 [ms]	100.000 [ms]
Description:   Dependency:	Sets the smoothing time constant for the active and reactive component of the line supply voltage. Refer to: r6313		
r6440	Transf phase offset identified / Tr ph_shift ident		
A_INF (Line transf),   R_INF (Line transf)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: All groups	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ $\left.{ }^{\circ}\right]$	- [ $\left.{ }^{\circ}\right]$	- [ $\left.{ }^{\circ}\right]$
Description:	Displays the phase shift between the primary and secondary voltages of the line transformer identified by automatic transformer identification (p5480 = 12).		
Dependency:	Refer to: p5480, p6420		

### 2.2 List of parameters

The phase shift relates to the primary side of the transformer, which is connected to the line. The secondary side is
connected to the infeed.
The display value is reset to 0 at POWER ON.
Example:
A Dy5n transformer has a phase shift of $-5 \times 30^{\circ}=-150^{\circ}$.
This means that the secondary voltage is shifted from the primary voltage by $-150^{\circ}$, the primary voltage leads by 150
${ }^{\circ}$.
The result should be entered into p6420. During identification, the value previously entered in p6420 is not effective.

## r6441

Transformer gain adaptation identified / Transf gain ident		
Can be changed: -	Calculated: -	Access level: 2
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Closed-loop control	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$-[\%]$	$-[\%]$	$-[\%]$


Description:	Displays the gain factor correction identified $(\mathrm{p} 5480=12)$ for fine calibration of the line transformer transformation
	ratio.
Dependency:	Refer to: p6421
Note:	The result should be entered in parameter p6421. During identification, the value previously entered in p6421 is not
	effective.


p6577[0...29]	BI: Circuit monitoring functions signal source / I_cct_monit S_src		
CU_I	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 8032
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	0

Description: Sets the signal sources for the current monitoring functions.
BI: p6577[x] = 0 signal
Protective breaker tripped.
BI: $\mathrm{p} 6577[\mathrm{x}]=1$ signal
Protective breaker not tripped.
Index: [0] = Protective breaker trip main circuit
[1] = Protective breaker trip, main circuit 1
[2] = Protective breaker trip, main circuit 2
[3] = Protective breaker trip internal 24 V circuit
[4] = Protective breaker trip internal 24 V circuit 1
[5] = Protective breaker trip internal 24 V circuit 2
[6] = Protective breaker trip external 24 V circuit
[7] = Protective breaker trip external 24 V circuit 1
[8] = Protective breaker trip external 24 V circuit 2
[9] = Protective breaker trip PU supply 24 V circuit
[10] = Protective breaker trip PU supply 24 V circuit 1
[11] = Protective breaker trip PU supply 24 V circuit 2
[12] = Protective breaker trip PLC 24 V circuit
[13] = Protective breaker trip synchronizing voltage
[14] = Protective breaker trip fan circuit
[15] = Protective breaker trip synchronizing voltage 1
[16] = Protective breaker trip synchronizing voltage 2
[17] = Protective breaker trip excitation 230 V AC circuit
[18] = Protective breaker trip output cooling unit 230 V AC circuit
[19] $=$ Protective breaker trip door solenoids 24 V circuit
[20] = Prot. breaker trip lighting supply/socket outlets 230 V AC cct
[21] = Protective breaker trip SITOP 24 V circuit
[22] = Protective breaker trip 22


p6700[0...n]	Voltage model angle smoothing / U_mod ang smooth		
VECTOR $(\mathrm{n} / \mathrm{M})$,	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC $(\mathrm{n} / \mathrm{M})$,	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
VECTOR_I_AC $(\mathrm{n} / \mathrm{M})$	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: ASM, PMSM, REL,	Scaling: -	Expert list: 1
	RESM		
	Min	Max	Factory setting
	$0[\mathrm{~ms}]$	$100[\mathrm{~ms}]$	$0[\mathrm{~ms}]$
Description:	Sets the smoothing of the flux orientation of the voltage model for a separately excited synchronous motor		


p6870[0...n]	VSM offset voltage u1-u2 / VSM offset u1-u2		
VECTOR ( $\mathrm{n} / \mathrm{M}$ ),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ),	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-100.000 [V]	100.000 [V]	0.000 [V]
Description:	Offset voltage between phases L1 and L2 for the Voltage Sensing Module (VSM). The value is automatically determined with the drive switched-off and stationary when the offset calculation is enabled. The last determined value is saved if the offset calculation is inhibited. If the offset calculation is inhibited, then a fixed value can also be entered here.		
Dependency:	Refer to: p6903		
Note:	Offset calibration is only automatically activated if the resulting motor voltage is less than $1 \%$ of the rated voltage.		


p6871[0...n]	VSM offset voltage u2-u3 / VSM offset u2-u3		
VECTOR ( $\mathrm{n} / \mathrm{M}$ ),   VECTOR_AC ( $\mathrm{n} / \mathrm{M}$ ),   VECTOR_I_AC ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-100.000 [V]	100.000 [V]	0.000 [V]
Description:	Offset voltage between phases L2 and L3 for the Voltage Sensing Module (VSM).		
	The value is automatically determined with the drive switched-off and stationary when the offset calculation is enabled. The last determined value is saved if the offset calculation is inhibited. If the offset calculation is inhibited, then a fixed value can also be entered here.		
Dependency:	Refer to: p6903		
Note:	Offset calibration is only automatically activated if the resulting motor voltage is less than $1 \%$ of the rated voltage.		
p6903[0...n]	Voltage actual values offset mode / U_ActVal offs mode		
VECTOR (n/M), VECTOR_AC (n/M), VECTOR_I_AC (n/M)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	1
Description:	Sets the offset mode for voltage actual value sensing.		
	When the mode is enabled ( $\mathrm{p} 6903=0$ ), for a pulse inhibit for stator and excitation and zero speed, the offset calibration is automatically started.		
	Offset calibration is inhibited when the mode is inhibited ( $\mathrm{p} 6903=1$ ). The values last determined in p6870 and p6871 are saved. However, they can also be overwritten by a fixed value.		

[^4]1: Offset calculation inhibited

Dependency:	Refer to: p6870, p6871
Note:	Offset mode can only be set for actual value sensing functions that are available in the hardware.



r6992.0...15	CO/BO: Recorder status word / Rec ZSW		
SERVO (Rec),	Can be changed: -	Calculated: -	Access level: 4
VECTOR (Rec),	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8144,8145
SERVO_AC (Rec),	P-Group: Displays, signals	Unit group: -	Unit selection: -
VECTOR_AC (Rec),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Rec),	Max	Factory setting	
VECTOR_I_AC (Rec), Min	-	-	
A_INF (Rec), S_INF	-		
(Rec), RINF (Rec),			
BINF (Rec)			


Description:	Display and BICO output for the status word of the recorder.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Internal activation	Set	Not set	-
	01	External activation	Set	Not set	-
	02	Internal trigger	Set	Not set	-
	03	External trigger 1.1	Set	Not set	-
	04	External trigger 1.2	Set	Not set	-
	05	External trigger 1.3	Set	Not set	-
	06	External trigger 1.4	Set	Not set	-
	07	External trigger 2.1	Set	Not set	-
	08	External trigger 2.2	Set	Not set	-
	09	External trigger 2.3	Set	Not set	-
	10	Hardware trigger	Set	Not set	-
	11	Data buffering running	Yes	No	-
	12	Post trigger time running	Yes	No	-
	13	Data being stored	Yes	No	-
	14	Data buffer full	Yes	No	-
	15	Trigger group signal	Set	Not set	-
Dependency:	Refer to: p6993, p6994, r6997, p6998, p6999				
	Refer to: A49998				

### 2.2 List of parameters

p6993[0...2]	Recorder trigger 2 bit mask / Rec trig 2 mask		
SERVO (Rec),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR (Rec),	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8144
SERVOAC (Rec),	P-Group: -	Unit group: -	Unit selection: -
VECTOR_AC (Rec),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Rec),	Max	Factory setting	
VECTOR_I_AC (Rec), Min	FFFF FFFF hex	0001 hex	
A_INF (Rec), S_INF	0000 hex		
(Rec), R_INF (Rec),			
B_INF (Rec)			

Description: Sets the bit mask for trigger signal 2 ( p 6994 ) of the recorder.
Trigger 2.1 is formed by ANDing the signal source in p6994[0] and the bit mask in p6993[0]. Trigger 2.2 is formed by ANDing the signal source in p6994[1] and the bit mask in p6993[1]. Trigger 2.3 is formed by ANDing the signal source in p6994[2] and the bit mask in p6993[2].
Index:
[0] = Trigger 2.1
[1] = Trigger 2.2
[2] = Trigger 2.3
Dependency: Refer to: p6994
p6994[0...2] CI: Recorder trigger 2 signal source / Rec trig 2 S_src

VECTOR (Rec), SERVO_AC (Rec), VECTOR_AC (Rec), SERVO I AC (Rec), VECTOR_I_AC (Rec), M
A_INF (Rec), S_INF
(Rec), R_INF (Rec),
B_INF (Rec)
Description: $\quad$ Sets the signal source for trigger 2 of the recorder.
Trigger 2.1 is formed by ANDing the signal source in p6994[0] and the bit mask in p6993[0].
Trigger 2.2 is formed by ANDing the signal source in p6994[1] and the bit mask in p6993[1].
Trigger 2.3 is formed by ANDing the signal source in p6994[2] and the bit mask in p6993[2].
Index:

Dependency:
[0] = Trigger 2.1
[1] = Trigger 2.2
[2] = Trigger 2.3
Refer to: p6993

p6996[0...63]	Recorder signals / Rec sig		
SERVO (Rec), VECTOR (Rec), SERVO AC (Rec), VECTOR_AC (Rec), SERVO_I_AC (Rec), VECTOR_I_AC (Rec)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8144
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	996553699	[0] 3600
			[1] 3700
			[2] 3701
			[3] 3703
			[4] 3705
			[5] 3706
			[6] 3707
			[7] 3708
			[8] 3709
			[9] 3710
			[10] 3711
			[11] 3712
			[12] 3713
			[13] 3714
			[14] 3715
			[15] 3716
			[16] 3717
			[17] 3718
			[18] 5600
			[19] 6000
			[20] 6100
			[21] 6300
			[22] 6600
			[23] 6800
			[24] 6900
			[25] 6901
			[26] 6902
			[27] 6906
			[28] 7000
			[29] 7200
			[30] 7300
			[31] 7400
			[32] 7500
			[33] 7600
			[34] 7700
			[35] 7800
			[36] 8000
			[37] 8200
			[38] 8300
			[39] 8400
			[...] ...

[^5]| p6996[0...63] | Recorder signals / Rec sig |  |  |
| :---: | :---: | :---: | :---: |
| A_INF (Rec), R_INF (Rec) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 | Dyn. index: - | Func. diagram: 8144 |
|  | P-Group: Commands | Unit group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 996553699 | [0] 3600 |
|  |  |  | [1] 3700 |
|  |  |  | [2] 3701 |
|  |  |  | [3] 3703 |
|  |  |  | [4] 3705 |
|  |  |  | [5] 3706 |
|  |  |  | [6] 3707 |
|  |  |  | [7] 3708 |
|  |  |  | [8] 3709 |
|  |  |  | [9] 3710 |
|  |  |  | [10] 3713 |
|  |  |  | [11] 3714 |
|  |  |  | [12] 3715 |
|  |  |  | [13] 3716 |
|  |  |  | [14] 3717 |
|  |  |  | [15] 3718 |
|  |  |  | [16] 6600 |
|  |  |  | [17] 6900 |
|  |  |  | [18] 6901 |
|  |  |  | [19] 6902 |
|  |  |  | [20] 6906 |
|  |  |  | [21] 6800 |
|  |  |  | [22] 7000 |
|  |  |  | [23] 7400 |
|  |  |  | [24] 7500 |
|  |  |  | [25] 7600 |
|  |  |  | [26] 7700 |
|  |  |  | [27] 7800 |
|  |  |  | [28] 8200 |
|  |  |  | [29] 8800 |
|  |  |  | [30] 9400 |
|  |  |  | [31] 89800 |
|  |  |  | [32] 89900 |
|  |  |  | [33] 7201 |
|  |  |  | [34] 340200 |
|  |  |  | [35] 355400 |
|  |  |  | [36] 366100 |
|  |  |  | [37] 366200 |
|  |  |  | [38] 183800 |
|  |  |  | [39] 183900 |
|  |  |  | [...] ... |

[^6]| p6996[0...63] | Recorder signals / Rec sig |  |  |
| :---: | :---: | :---: | :---: |
| B_INF (Rec) | Can be changed: $\mathrm{U}, \mathrm{T}$ | Calculated: - | Access level: 4 |
|  | Data type: Unsigned32 | Dyn. index: - | Func. diagram: 8144 |
|  | P-Group: Commands | Unit group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | 0 | 996553699 | [0] 3600 |
|  |  |  | [1] 3700 |
|  |  |  | [2] 3701 |
|  |  |  | [3] 3703 |
|  |  |  | [4] 3711 |
|  |  |  | [5] 3712 |
|  |  |  | [6] 6600 |
|  |  |  | [7] 6800 |
|  |  |  | [8] 7000 |
|  |  |  | [9] 8200 |
|  |  |  | [10] 9400 |
|  |  |  | [11] 89800 |
|  |  |  | [12] 89900 |
|  |  |  | [13] 7200 |
|  |  |  | [14] 183800 |
|  |  |  | [15] 183900 |
|  |  |  | [16] 723000 |
|  |  |  | [17] 723001 |
|  |  |  | [18] 703100 |
|  |  |  | [19...63] 0 |

Description: Setting to parameterize the signals for the recorder.

p6996[0...63]	Recorder signals / Rec sig		
S_INF (Rec)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8144
	P-Group: Commands	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	996553699	[0] 3600
			[1] 3700
			[2] 3701
			[3] 3703
			[4] 3705
			[5] 3706
			[6] 3707
			[7] 3708
			[8] 3709
			[9] 3710
			[10] 3711
			[11] 3712
			[12] 3713
			[13] 3714
			[14] 3715
			[15] 3716
			[16] 3717
			[17] 3718
			[18] 6600
			[19] 6900
			[20] 6901
			[21] 6902
			[22] 6906
			[23] 6800
			[24] 7000
			[25] 7600
			[26] 7700
			[27] 7800
			[28] 9400
			[29] 89800
			[30] 89900
			[31] 7200
			[32] 183800
			[33] 183900
			[34] 340500
			[35] 345200
			[36] 344501
			[37] 344602
			[38] 344700
			[39] 366100
			[...] ...

[^7]| r6997 | CO: Recorder sequencer state / Rec state |  |  |
| :---: | :---: | :---: | :---: |
| SERVO (Rec), | Can be changed: - | Calculated: - | Access level: 4 |
| VECTOR (Rec), | Data type: Integer16 | Dyn. index: - | Func. diagram: 8145 |
| VECTOR AC (Rec), | P-Group: Closed-loop control | Unit group: - | Unit selection: - |
| SERVO_I_AC ( Rec ), | Not for motor type: - | Scaling: - | Expert list: 1 |
| VECTOR_I_AC (Rec), | Min | Max | Factory setting |
| A_INF (Rec), S_INF (Rec), R_INF (Rec), B_INF (Rec) | 0 | 60 | F |
| Description: | Display and connector output of the state of the sequencer for the recorder. |  |  |
| Value: | 0 : Not active |  |  |
|  | 10: Active |  |  |
|  | 20: Post trigger time running |  |  |
|  | 30: Prepare data save operation |  |  |
|  | 40: Start data save |  |  |
|  | 50: End data save |  |  |
|  | 60: Configuration |  |  |


p6998[0...4]	BI: Recorder trigger 1 signal sources / Rec trig 1 S_src		
SERVO (Rec),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR (Rec),	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 8144
SERVOAC (Rec),	P-Group: -	Unit group: -	Unit selection: -
VECTOR_AC (Rec),	Not for motor type: -	Scaling: -	Expert list: 1
SERVOI_AC (Rec),	Max	Factory setting	
VECTOR_I_AC (Rec), Min	-	$[0] 1$	
A_INF (Rec), S_INF	-	$[1 \ldots 4] 0$	
(Rec), R_INF (Rec),			
B_INF (Rec)			

Description: Sets the signal sources to activate and trigger the recorder.
Index: $\quad[0]=$ Activating
[1] = Trigger 1.1
[2] = Trigger 1.2
[3] = Trigger 1.3
[4] = Trigger 1.4

p6999[0...4]	Recorder parameterization / Rec par		
SERVO (Rec), VECTOR (Rec), SERVO_AC (Rec), VECTOR_AC (Rec), SERVO_I_AC (Rec), VECTOR_I_AC (Rec), A_INF (Rec), S_INF (Rec), R_INF (Rec), B_INF (Rec)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: 8144, 8145
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2000	[0] 1
			[1] 1000
			[2] 900
			[3] 0
			[4] 0
Description:	Setting to parameterize the recorder.		
	The recorder supplies up to 64 internal variables (depending on the parameterization). The maximum recording time is 2000 ms . The variables are acquired in the current controller sampling time - and a pretrigger can be set. The values can then be acyclically written to the memory card.		
Index:	$[0]=\text { Enable }$		
	[1] = Recording time   [2] = Pre-trigger time		
	[4] = Recording factor		
Dependency:	Refer to: A49998		

### 2.2 List of parameters

## Note:

For index [0]:
Enables or disables the function.
p6999[0] = 0
Inhibits the function.
p6999[0] = 1
Enables the function.
For index [1]:
Sets the recording time, [ms].
A maximum of 8000 measuring points can be recorded across all drive objects. 1 measuring point is created in one current controller sampling time.
Example:
The "Recorder" function module is activated on 4 drive objects. The current controller sampling time ( $\mathrm{p} 0115[0]$ ) is 250 $\mu \mathrm{s}$.
--> every drive object can record a maximum of 8000/4 $=2000$ measuring points.
--> the recording time that can be realized is $2000 * 0.250 \mathrm{~ms}=500 \mathrm{~ms}$.
Note:

- the recording time that can be realized is displayed in r6991[1].
- if the recording time is set too long, then it is automatically reduced to what can be realized.

For index [2]:
Sets the pretrigger time, [ms].
This time is included in the recording time and cannot be longer than the recording time p6999[1].
Note:

- when the recording time is automatically reduced, the pretrigger time is correspondingly reduced as well.
- the pretrigger time that can be realized is displayed in r6991[2].

For index [3]:
Enables or disables the output of message A49998 when the trigger event is triggered.
For index [4]:
p6999[4] $=n, n=0 \ldots 4$
Recording with the factor, which extends the record time p6999[1] and the pre-trigger time p6999[2] $2^{\wedge} n$ times, and reduces the number of signals $2^{\wedge} n$ times.
Example:
Number of drive objects $=1, \mathrm{p} 0115[0]=250 \mu \mathrm{~s}, \mathrm{p} 6999[1]=2000, \mathrm{p} 6999[2]=1000, \mathrm{p} 6999[4]=4$
--> recording time: 2000 ms * $2^{\wedge} 4=32 \mathrm{~s}$, pre-trigger time: 1000 ms * $2^{\wedge} 4=16 \mathrm{~s}$, number of signals 64/16 $=4$.
When setting p6999[4] to 0 , the results are as follows:
--> recording time: 2000 ms , pre-trigger time: 1000 ms , number of signals: 64

r7000	CO: Par_circuit No. of active power units / Qty act	
VECTOR (Parallel),	Can be changed: -	Calculated: -
VECTOR_AC	Data type: Unsigned16	Dyn. index: -
(Parallel),	P-Group: Modulation	Unit group: -
VECTOR_I_AC	Not for motor type: -	Scaling: -
(Parallel), A_INF	Min	Max
(Parallel), S_IN	-	
(Parallel), R_INF	-	
(Parallel), B_INF		
(Parallel)		
Description:	Displays the active power units for a parallel circuit configuration.	
Dependency:	Refer to: p7001	


p7001[0...n]	Par_circuit powe	U enable	
VECTOR (Parallel),	Can be changed: T	Calculated: -	Access level: 3
VECTOR_AC	Data type: Integer16	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),   VECTOR I AC	P-Group: Modulation	Unit group: -	Unit selection: -
(Parallel), A_INF	Not for motor type: -	Scaling: -	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R INF (Parallel), B_INF (Parallel)	0	1	1
Description:	Setting to enable the p	connection.	
Value:	$0:$ Deactivated   1: Activated		
Dependency:	Refer to: r7000		
Caution:	For a parallel connectio		
$\widehat{d}$	When deactivating ind connection involved ar contactor). Motor feed from the DC link.	ng this parameter, it is not p nits should be disconnected sconnected. In addition, de	that the power uni line supply (for exa ver units should be
Note:	For motors with separa p7001 is automatically	$7003=1$ ) it is not possible deactivated via p0125 or	an individual power


r7002[0...n]	CO: Par_circuit status power units / Status PU		
Calculated: -			
VECTOR (Parallel),	Can be changed: -	Acce	
VECTOR_AC	Data type: Integer16	Dyn. index: PDS, p0120	Func.
(Parallel),	Unit group: -	Unit	
VECTOR_I_AC	P-Group: Modulation	Scaling: -	Expe
(Parallel), A_INF	Not for motor type: -	Max	Facto
(Parallel), S_INF	Min	1	-
(Parallel), R_NF	0		
(Parallel), B_INF			
(Parallel)			
Description:	Display and connector output for the status of the power units in a parallel connection.		
Value:	$0: \quad$ Pulses inhibited		
	1: Pulses enabled		
Dependency:	Refer to: r7000, p7001		



### 2.2 List of parameters

Note: $\quad$ For p7003 = 0:

- the motor data identification routine ( p 1910 ) determines the stator resistance and the cable resistance. The cable resistance of an individual Motor Module is entered into p0352.
- the current symmetrizing is activated as standard after the motor data identification routine (p7035 = 1).
- individual Motor Modules can be activated and deactivated (p7001).

For p7003 = 1, 2 :

- the motor data identification routine ( p 1910 ) determines the total (overall) resistance. The cable resistance is not measured, but instead, entered as a component of the total resistance (refer to p0352).
- all Motor Modules are activated. It is not possible to deactivate a Motor Module.

p7010	Par_circuit current asymmetry	alarm threshold / i_asym A thresh	
VECTOR (Parallel),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
(Parallel),	Unit group: -	Unit selection: -	
VECTOR_ICAC	P-Group: Modulation	Scaling: PERCENT	Expert list: 1
(Parallel)_A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$100[\%]$	$20[\%]$
(Parallel), R_INF	$2[\%]$		


Description:	Sets the alarm threshold to detect current asymmetry in the parallel circuit configuration.
The deviation between the measured values and average value is evaluated.	
The specified value is referred to the rated power unit current (p7251[0]).	
Dependency:	Refer to: r 7251
	Refer to: A 05052


p7011	Par_circuit DC link voltage asymmetry alarm threshold / Vdc_dissym A thrsh		
VECTOR (Parallel),	Can be changed: $U, T$	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
(Parallel),   VECTOR I AC	P-Group: Modulation	Unit group: -	Unit selection: -
(Parallel), A_INF	Not for motor type: -	Scaling: PERCENT	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel), B_INF (Parallel)	2 [\%]	100 [\%]	10 [\%]
Description:	Sets the alarm threshold to detect asymmetry of the DC link voltages in the parallel circuit configuration. The deviation between the measured values and average value is evaluated.   The specified value is referred to the rated link voltage.		
Dependency:	Refer to: A05053		


p7015	Par_circuit holding brake power unit data set / Brake PDS		
VECTOR (Parallel),	Can be changed: $\mathrm{C} 2(2), \mathrm{T}$	Calculated: -	Access level: 3
VECTOR_AC	Data type: Integer16	Dyn. index: -	Func. diagram: 2701, 2814
VECTOR_I_AC	P-Group: Converter	Unit group: -	Unit selection: -
(Parallel)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	99	99
Description:	Sets the power unit data set for a parallel connection via which the holding brake is controlled.		
Value:	0 : Power unit data set 0		
	1: Power unit data set 1		
	2: Power unit data set 2		
	3: Power unit data set 3		
	4: Power unit data set 4		
	5: Power unit data set 5		
	6: Power unit data set 6		
	7: Power unit data set 7		
	99: No holding brake connected		
Dependency:	Refer to: p0120, p0121		



r7025	CO: Par_circuit max. deviation currents phase U / Phase U Max i_dev		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
(Paraller),	P-Group: Displays, signals	Unit group: 6_5	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Scaling: p2002	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel)	- [A]	- [A]	- [A]
Description:	Displays the maximum absolute deviation of the measured current actual values of phase $U$ from the average value as peak value.		
Dependency:	The deviation of the individual currents from the average value is displayed in r 7020 .		
	Refer to: r7020, r7026, r7027		
	Refer to: A05052		
r7026	CO: Par_circuit max. deviation currents phase V / Phase V Max i_dev		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
(Parallel),	P-Group: Displays, signals	Unit group: 6_5	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Scaling: p2002	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel)	- [A]	- [A]	
Description:	Displays the maximum absolute deviation of the measured current actual values of phase V from the average value as peak value.		
Dependency:	The deviation of the individual currents from the average value is displayed in r 7021 .		
	Refer to: r7021, r7025, r7027		
	Refer to: A05052		
r7027	CO: Par_circuit max. deviation currents phase W / Phase W Max i_dev		
VECTOR (Parallel),   VECTOR_AC   (Parallel),   VECTOR_I_AC   (Parallel), A_INF   (Parallel), S_INF   (Parallel), R_INF   (Parallel)	Can be changed: -   Data type: FloatingPoint32   P-Group: Displays, signals   Not for motor type: -	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: -
		Unit group: 6_5	Unit selection: p0505
		Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the maximum absolute deviation of the measured current actual values of phase W from the average value as peak value.		
	The deviation of the individual currents from the average value is displayed in r 7022 .		
Dependency:	Refer to: r7022, r7025, r7026		
	Refer to: A05052		


r7030[0...n]	CO: Par_circuit DC link voltage deviation / Vdc deviation		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_I_AC	P-Group: Displays, signals	Unit group: -	Unit selection: -
(Parallel), A_INF	Not for motor type: -	Scaling: p2001	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel), B_INF	- [V]	- [V]	- [V]
(Parallel)			
Description:	Displays the deviation of the measured DC link voltage from the average value. The maximum deviation from the average value is displayed in r7031.		
Dependency:	Refer to: r7031		


r7031	CO: Par_circuit DC link voltage maximum deviation / Vdc deviation max.		
VECTOR (Parallel), VECTOR_AC (Parallel), VECTOR_I_AC (Parallel), A_INF (Parallel), S_INF (Parallel), R_INF (Parallel), B_INF (Parallel)	Can be changed: -   Data type: FloatingPoint32   P-Group: Displays, signals   Not for motor type: -   Min   - [V]	Calculated: -   Dyn. index: -   Unit group: -   Scaling: p2001   Max   - [V]	Access level: 3   Func. diagram:   Unit selection:   Expert list: 1   Factory setting   - [V]
Description:	Displays the maximum absolute deviation of the measured DC link voltage from the average value. The deviation of the individual voltages from the average value is displayed in r 7030 .		
p7035[0...n]   VECTOR (Parallel),   VECTOR_AC   (Parallel),   VECTOR_I_AC   (Parallel)	Par_circuit circulatin   Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: Integer16   P-Group: Modulation   Not for motor type: -   Min   0	ntrol operating mode / I_c   Calculated: -   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   1	ctrl mode   Access level: 3   Func. diagram:   Unit selection:   Expert list: 1   Factory setting   1
Description: Value: Dependency:	Sets the operating mode of The circulating current contr   0 : Circulating current   1: Circulating current   Circulating current control is	rrent control. etrical distribution of the total cur   separate, offset motor winding sy	s to the individual converters. $(\mathrm{p} 7003=2) .$
$\begin{aligned} & \hline \text { p7035 } \\ & \text { A_INF (Parallel), } \\ & \text { S_INF (Parallel), } \\ & \text { R_INF (Parallel) } \end{aligned}$	Infeed par_circuit cir   Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: Integer16   P-Group: Modulation   Not for motor type: -   Min   0	ent control operating mo   Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   1	/ I_cct_ctrl mode   Access level: 3   Func. diagram: -   Unit selection:   Expert list: 1   Factory setting   1
Description: Value:	Sets the operating mode of   The circulating current contr   0 : Circulating current   1: Circulating current	rrent control. etrical distribution of the total cur	s to the individual converters.
$\overline{p 7036[0 \ldots n]}$   VECTOR (Parallel),   VECTOR_AC   (Parallel),   VECTOR_I_AC   (Parallel)	Par_circuit circulatin   Can be changed: U, T   Data type: FloatingPoint32   P-Group: Modulation   Not for motor type: -   Min   0.00000 [ohm]	ntrol proportional gain / C   Calculated: CALC_MOD_CON   Dyn. index: DDS, p0180   Unit group: -   Scaling: -   Max   200.00000 [ohm]	_I Kp   Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   0.00000 [ohm]
Description:	Sets the proportional gain for the circulating current controller. The parameter is pre-set to the cable resistance.		


p7036	Infeed par_cct circulating current controller proportional gain / Circ_I Kp		
A_INF (Parallel),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
S_INF (Parallel),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [\%]	1000.00000 [\%]	100.00000 [\%]
Description:	Sets the scaled proportional gain for the circulating current controller.		
Note:	A value of $100 \%$ corresponds to the basic setting derived from loop control parameters (p3421, p3622).		
p7037[0...n]	Par_circuit circulating current control integral time / I_circ Tn		
VECTOR (Parallel),	Can be changed: $U$, $T$	Calculated: CALC_MOD_CON	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
$\begin{aligned} & \text { (Parallel), } \\ & \text { VECTOR_IAC } \end{aligned}$	P-Group: Modulation	Unit group: -	Unit selection: -
(Parallel)	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	2.0	1000.0	4.0
Description:	Sets the integral time of the circulating current controller.   The parameter is referred to the current controller sampling time (p0115[0]).		
Dependency:	Refer to: p0115		
Note:	Using p7037 = 1000, the integral component is deactivated (held in operation). This is the preferred setting for operation with separate motor winding system.		


p7037	Infeed par_cct circulating current control integral time / I_circ Tn		
A_INF (Parallel),	Can be changed: U, T	Calculated: -	Access level: 3
S_INF (Parallel),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
R_INF (Parallel)	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\%]$	$100000.0[\%]$	
	Sets the scaled integral time of the circulating current controller.		
Description:	A value of $100 \%$ corresponds to the basic setting derived from the current controller sampling time p0115[0].		
Note:	The integral component of the controller is deactivated with p7037 $=0$.		


p7038[0...n]	Par_circuit circulating current control limit / I_circ limit		
VECTOR (Parallel),	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
(Parallel), Unit group: -			
VECTOR_I_AC	P-Group: Modulation	Scaling: -	Unit selection: -
(Parallel)	Not for motor type: -	Max	Expert list: 1
	Min	$100[\%]$	Factory setting
	$1[\%]$	$[\%]$	
Description:	Sets the limit of the circulating current controller output values.		
	The parameter is, depending on the phase, referred to the valve lockout times (p1828, p1829, p1830).		


p7038	Infeed par_circuit circulating current control limit / I_circ limit		
A_INF (Parallel),	Can be changed: U, T	Calculated: -	Access level: 3
S_INF (Parallel),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
R_INF (Parallel)	P-Group: Modulation	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$1[\%]$	$100[\%]$	$100[\%]$
Description:	Sets the limit of the circulating current controller output values.		
	The parameter is, depending on the phase, referred to the valve lockout times (p1828, p1829, p1830).		


p7040[0...n]	Par_circuit correction valve lockout time phase U / Comp t_lockout U		
VECTOR (Parallel),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: -	Unit selection: -	
VECTOR_I_AC	P-Group: Modulation	Scaling: -	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$1000000.00[\mu \mathrm{~s}]$	$0.00[\mu \mathrm{~s}]$
(Parallel), R_INF	$-1000000.00[\mu \mathrm{~s}]$		

For the particular Motor Module, the correction time must be added to the valve lockout time to be compensated for phase U (p1828).
The corrective value is used to compensate variations/spread in the valve lockout times of Motor Modules for a parallel circuit configuration.

Dependency:	Refer to: p1828		
p7042[0...n]	Par_circuit correction valve lockout time phase V / Comp t_lockout V		
VECTOR (Parallel),	Can be changed: U, T	Calculated: -	Access level: 4
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	P-Group: Modulation	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Max	Expert list: 1
(Parallel), A_INF	Min	$1000000.00[\mu \mathrm{~s}]$	Factory setting
(Parallel), S_INF	$-1000000.00[\mu \mathrm{~s}]$	Parallel), R_INF	

Description: For the particular Motor Module, the correction time must be added to the valve lockout time to be compensated for phase V (p1829).
The corrective value is used to compensate variations/spread in the valve lockout times of Motor Modules for a parallel circuit configuration.
Dependency: Refer to: p1829

p7044[0...n]	Par_circuit correction valve lockout time phase W / Comp t_lockout W		
VECTOR (Parallel),	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),   VECTOR I AC	P-Group: Modulation	Unit group: -	Unit selection: -
(Parallel), A_INF	Not for motor type: -	Scaling: -	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF   (Parallel)	-1000000.00 [ $\mu \mathrm{s}$ ]	1000000.00 [ $\mu \mathrm{s}$ ]	0.00 [ $\mu \mathrm{s}$ ]
Description:	For the particular Motor Module, the correction time must be added to the valve lockout time to be compensated for phase W (p1830).		
	The corrective value is used to compensate variations/spread in the valve lockout times of Motor Modules for a parallel circuit configuration.		
Dependency:	Refer to: p1830		


r7050[0...n]	Par_circuit circulating current phase U / Circ_I_phase U		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),   VECTOR I AC	P-Group: Displays, signals	Unit group: 6_5	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Scaling: p2002	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF   (Parallel)	- [A]	- [A]	- [A]

Description: Displays the circulating current of phase $U$ as peak value.

$\mathbf{r 7 0 5 1 [ 0 . . . n ] ~}$	Par_circuit circulating current phase V/Circ_I_phase V		
VECTOR (Parallel),	Can be changed: -	Calculated: -	
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Access level: 3
(Parallel),	Unit group: $6 _5$	Func. diagram: -	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2002	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Max	Expert list: 1
(Parallel), S_INF	Min	$-[A]$	Factory setting
(Parallel), R_INF	$-[A]$	$-[A]$	
(Parallel)			

Description: Displays the circulating current of phase V as peak value.

r7052[0...n]	Par_circuit circulating current phase W / Circ_I_phase W		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),   VECTOR_I_AC	P-Group: Displays, signals	Unit group: 6_5	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Scaling: p2002	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel)	- [A]	- [A]	- [A]

r7100[0...99] Par_circuit ring buffer fault/alarm code / Fault/alarm code

VECTOR (Parallel)
VECTOR_AC
(Parallel),
VECTOR_I_AC
(Parallel), A_INF (Parallel), S_INF
(Parallel), R_INF (Parallel), B_INF
(Parallel)
Description: Ring buffer for faults and alarms that have occurred from power units connected in parallel (Motor Module, Active Line Infeed, Voltage Sensing Module).
Displays the fault/alarm code.
Dependency: Refer to: r7101, r7102, r7103
Note: $\quad$ The last fault case that occurred is documented in index 0 .
The parameter is reset to 0 at POWER ON.

r7101[0...99]	Par_circuit ring buffer data set number / Ring buffer Ds_no		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
(Parallel),   VECTOR I AC	P-Group: Displays, signals	Unit group: -	Unit selection: -
(Parallel), A_INF	Not for motor type: -	Scaling: -	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel), B_INF (Parallel)	-	-	Factory seting
Description:	Ring buffer for faults and ala Line Infeed, Voltage Sensin p7101 < 100:   Displays the Power unit Dat p7101 >= 100:   Displays the Voltage Sensin	curred from pow   S).   et number (VSN	parallel (Motor Module, Active
Dependency:	Refer to: r7100, r7102, r710		
Note:	The last fault case that occu The parameter is reset to 0	ed in index 0.	


r7102[0...99]	Par_circuit ring buffer fault/alarm received / F/A received		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
(Parallel),	P-Group: Displays, signals	Unit group: -	Unit selection: -
VECTOR_I_AC	Scaling: -	Expert list: 1	
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	-	-
(Parallel), R_INF -   (Parallel), B_INF			
(Parallel)			


Description:	Ring buffer for faults and alarms that have occurred from power units connected in parallel (Motor Module, Active   Line Infeed, Voltage Sensing Module).         Displays the relative system runtime when the fault or alarm occurred.
Dependency:	Refer to: $\mathrm{r} 7100, \mathrm{r} 7101, \mathrm{r} 7103$
Note:	The last fault case that occurred is documented in index 0.
	The parameter is reset to 0 at POWER ON.

r7103[0...99] Par_circuit ring buffer fault/alarm gone / F/A gone

VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: Unsigned32	Dyn. index: -	
(Parallel),	P-Group: Displays, signals	Unit group: -	Func. diagram: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Unit selection: -
(Parallel), A_INF	Min	Max	Expert list: 1
(Parallel), S_INF	-	Factory setting	
(Parallel), R_INF	-	-	

(Parallel)

Description:	Ring buffer for faults and alarms that have occurred from power units connected in parallel (Motor Module, Active
	Line Infeed, Voltage Sensing Module).
	Displays the relative system runtime when the fault or alarm was withdrawn.
Dependency:	Refer to: r7100, r7101, r7102
Note:	The last fault case that occurred is documented in index 0.
	The parameter is reset to 0 at POWER ON.

### 2.2 List of parameters

r7199[0...n]	Par_circuit power unit temperatures capacitor air discharge /PU temp capacitor		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTORRAC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $21 _1$	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2006	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
(Parallel), R_INF	$-\left[{ }^{\circ} \mathrm{C}\right]$		
(Parallel), B_INF			

(Parallel)
Description: Displays the air discharge temperature of the DC link capacitors in the power unit for a parallel connection. The maximum value of all power units is displayed in r0037[20].

$\mathbf{r 7 2 0 0 [ 0 . . . n ] ~}$	Par_circuit power unit overload I2t / PU overload I2t		
VECTOR (Parallel),	Can be changed: -	Calculated: -	
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Access level: 3
(Parallel),	P-Group: Displays, signals	Unit group: -	Unit selection: -
VECTOR_I_AC	Scaling: PERCENT	Expert list: 1	
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-[\%]$	$-[\%]$
(Parallel), R_INF	$-[\%]$		

Description: Displays the overload of the particular power unit in a parallel circuit configuration calculated using the I2t function. The maximum value of all power units is displayed in r0036.

r7201[0...n]	CO: Par_circuit power unit temperatures max. inverter / PU temp max inv		
VECTOR (Parallel),   VECTOR_AC   (Parallel),   VECTOR_I_AC   (Parallel), A_INF   (Parallel), S_INF   (Parallel), R_INF   (Parallel), B_INF   (Parallel)	Can be changed: -   Data type: FloatingPoint32   P-Group: Displays, signals   Not for motor type: -   Min   $-\left[{ }^{\circ} \mathrm{C}\right]$	Calculated: -   Dyn. index: PDS, p0120   Unit group: 21_1   Scaling: p2006   Max $-\left[{ }^{\circ} \mathrm{C}\right]$	Access level: 3   Func. diagram: -   Unit selection: p0505   Expert list: 1   Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the maximum inverter temperature in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[0].		


$\mathbf{r 7 2 0 2 [ 0 . . . n ] ~}$	Par_circuit power unit temperatures max. depletion layer / PU TempMaxDepLayer		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	P-Group: Displays, signals	Unit group: $21 _1$	Unit selection: p0505
VECTOR_I_AC	Scaling: p2006	Expert list: 1	
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
(Parallel), R_INF	$-\left[{ }^{\circ} \mathrm{C}\right]$		

(Parallel)
Description: Displays the maximum depletion layer temperature in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[1].

r7203[0...n]	CO: Par_circuit power unit temperatures max. rectifier / PU temp max rect		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $21 _1$	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2006	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
(Parallel), R_INF	$-\left[{ }^{\circ} \mathrm{C}\right]$		

Description: Displays the maximum rectifier temperature in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[2].

$\mathbf{r 7 2 0 4 [ 0 . . . n ] ~}$	CO: Par_circuit power unit temperatures air intake / PU temp air intake		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $21 _1$	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: $p 2006$	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
(Parallel), R_INF	$-\left[{ }^{\circ} \mathrm{C}\right]$		

## (Parallel)

Description: Displays the air intake temperature in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[3].

r7205[0...n]	Par_circuit power unit temperatures electronics / PU temp electr		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $21 _1$	Unit selection: 00505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2006	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
(Parallel), R_INF	$-\left[{ }^{\circ} \mathrm{C}\right]$		
(Parallel), B_INF			

(Parallel)
Description: Displays the temperature of the electronics module in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[4].

r7206[0...n]	Par_circuit power unit temperatures inverter 1/PU temp inv 1		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: 21_1	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2006	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
(Parallel), R_NF	$-\left[{ }^{\circ} \mathrm{C}\right]$		
(Parallel), B_NF			
(Parallel)			
Description:	Displays the inverter temperature 1 in the power unit for a parallel circuit configuration.		
	The maximum value of all power units is displayed in r0037[5].		

### 2.2 List of parameters

r7207[0...n]	Par_circuit power unit temperatures inverter 2 / PU temp inv 2		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	P-Group: Displays, signals	Unit group: 21_1	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Scaling: p2006	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel), B_INF	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	- [ $\left.{ }^{\circ} \mathrm{C}\right]$

Description: Displays the inverter temperature 2 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[6].

$\mathbf{r 7 2 0 8 [ 0 . . . n ] ~}$	Par_circuit power unit temperatures inverter 3/PU temp inv 3		
VECTOR (Paralleel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $21 _1$	Unit selection: p0505	
VECTORR_AC	P-Group: Displays, signals	Scaling: p2006	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
(Parallel), R_INF	$-\left[{ }^{\circ} \mathrm{C}\right]$		

(Parallel)
Description: Displays the inverter temperature 3 in the power unit for a parallel circuit configuration.
The maximum value of all power units is displayed in r0037[7]

r7209[0...n]	Par_circuit power unit temperatures inverter 4 / PU temp inv $\mathbf{4}$		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $21 _1$	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2006	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
(Parallel), R_INF	$-\left[{ }^{\circ} \mathrm{C}\right]$		

(Parallel)
Description: Displays the inverter temperature 4 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[8].

r7210[0...n]	Par_circuit power unit temperatures inverter 5 / PU temp inv 5		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR I AC	P-Group: Displays, signals	Unit group: 21_1	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Scaling: p2006	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel), B_INF (Parallel)	$-\left[{ }^{\circ} \mathrm{C}\right]$	- [ $\left.{ }^{\circ} \mathrm{C}\right]$	- [ $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the inverter temperature 5 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[9].		


r7211[0...n]	Par_circuit power unit temperatures inverter 6 / PU temp inv 6		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),   VECTOR I AC	P-Group: Displays, signals	Unit group: 21_1	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Scaling: p2006	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF   (Parallel), B_INF	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Displays the inverter temperature 6 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[10].

r7212[0...n]	Par_circuit power unit temperatures inverter 1 / PU temp rect 1		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Paralleel),	Unit group: $21 _1$	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2006	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
(Parallel), R_INF	$-\left[{ }^{\circ} \mathrm{C}\right]$		

(Parallel)
Description: Displays rectifier temperature 1 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[11].

r7213[0...n]	Par_circuit power unit temperatures inverter 2 / PU temp rect $\mathbf{2}$		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $21 _1$	Unit selection: $p 0505$	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2006	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
(Parallel), R_INF	$-\left[{ }^{\circ} \mathrm{C}\right]$		

Description: Displays rectifier temperature 2 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[12].

r7214[0...n]	Par_circuit power unit temperatures depletion layer 1 / PU temp DepLayer 1		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),   VECTOR I AC	P-Group: Displays, signals	Unit group: 21_1	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Scaling: p2006	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel), B_INF (Parallel)	$-\left[{ }^{\circ} \mathrm{C}\right]$	- [ ${ }^{\circ} \mathrm{C}$ ]	- [ $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays depletion layer temperature 1 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[13].		



r7217[0...n]	Par_circuit power unit temperatures depletion layer 4 / PU temp DepLayer 4		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $21 _1$	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2006	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
(Parallel), R_INF	$-\left[{ }^{\circ} \mathrm{C}\right]$		
(Parallel), B_INF			

(Parallel)
Description: Displays depletion layer temperature 4 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[16].

r7218[0...n]	Par_circuit power unit temperatures depletion layer 5 / PU temp DepLayer 5		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_I_AC	P-Group: Displays, signals	Unit group: 21_1	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Scaling: p2006	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel), B_INF (Parallel)	$-\left[{ }^{\circ} \mathrm{C}\right]$	- [ $\left.{ }^{\circ} \mathrm{C}\right]$	- [ ${ }^{\circ} \mathrm{C}$ ]
Description:	Displays depletion layer temperature 5 in the power unit for a parallel circuit configuration.		


r7219[0...n]	Par_circuit power unit temperatures depletion layer 6 / PU temp DepLayer 6		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR I AC	P-Group: Displays, signals	Unit group: 21_1	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Scaling: p2006	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel), B_INF (Parallel)	$-\left[{ }^{\circ} \mathrm{C}\right]$	- [ $\left.{ }^{\circ} \mathrm{C}\right]$	- [ ${ }^{\circ} \mathrm{C}$ ]
Description:	Displays depletion layer temperature 6 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[18].		


r7220[0...n]	CO: Par_circuit drive output current maximum / Drv I_outp max		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: -	Unit selection: -	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2002	Expert list: 1
(Parallel)	Not for motor type: -	Max	Factory setting
	Min	$-[$ Arms $]$	$-[$ Arms $]$
	- [Arms]		
Description:	Displays the maximum output current of the power unit.		
	The minimum value of all power units multiplied by the number of Motor Modules is displayed in r0067.		


r7220[0...n]	Infeed par_circuit absolute current value motoring permissible / INF I_abs mot perm		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
S_INF (Parallel),	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the currently permissible line-side absolute current when motoring.		


r7221[0...n]	Infeed par_circuit absolute current regenerating permissible / INF I_absRegenPerm		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
S_INF (Parallel),	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
R_INF (Parallel)	P-Group: Displays, signals	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	
Description:	Displays the currently permissible line-side absolute regenerative current.		
	The minimum value of all power units multiplied by the number of Motor Modules is displayed in r0067[1].		


r7222[0...n]	CO: Par_circuit abs	ctual value / I_act	
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	P-Group: Displays, signals	Unit group: 6_2	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Scaling: p2002	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF   (Parallel)	- [Arms]	- [Arms]	- [Arms]


r7223[0...n]	CO: Par_circuit phase current actual value phase U/I_phase U act val		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $6 _5$	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p 2002	Expert list: 1
(Parallel), A_NF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-[A]$	$-[A]$
(Parallel), R_INF	$-[A]$		

Description: Displays the measured actual value of phase $U$ as peak value. The summed value of all power units is displayed in r0069[0].

r7224[0...n]	CO: Par_circuit phase current actual value phase V/I_phase V act val		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $6 _5$	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2002	Expert list: 1
(Parallel), A_NF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-[A]$	$-[A]$
(Parallel), R_INF	$-[A]$		

Description: Displays the measured actual value of phase $V$ as peak value. The summed value of all power units is displayed in r0069[1].

r7225[0...n]	CO: Par_circuit phase current actual value phase W / I_phase W act val		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $6 _5$	Unit selection: p0505	
VECTOR_IAC	P-Group: Displays, signals	Scaling: p2002	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-[A]$	$-[A]$
(Parallel), R_INF	$-[A]$		

Description: Displays the measured actual value of phase $W$ as peak value.
The summed value of all power units is displayed in r0069[2].

r7226[0...n]	CO: Par_circuit phase current actual value phase U offset / I_phase U offset		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $6 _5$	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2002	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	- [A]	$-[A]$
(Parallel), R_INF	- [A]		

Description: $\quad$ Displays the measured offset of phase $U$ as peak value. The summed value of all power units is displayed in r0069[3].

r7227[0...n]	CO: Par_circuit phase current actual value phase V offset / I_phase V offset		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $6 _5$	Unit selection: 00505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2002	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-[A]$	$-[A]$
(Parallel), R_INF	$-[A]$		
(Parallel)			
Description:	Displays the measured offset of phase $V$ as peak value.		
	The summed value of all power units is displayed in r0069[4].		


$\mathbf{r 7 2 2 8 [ 0 . . . n ] ~}$	CO: Par_circuit phase current actual value phase W offset / I_phase W offset		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $6 _5$	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2002	Expert list: 1
(Parallel),A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-[A]$	$-[A]$
(Parallel), R_INF	- [A]		

Description: Displays the measured offset of phase W as peak value. The summed value of all power units is displayed in r0069[5]

r7229[0...n]	CO: Par_circuit phase current actual value sum U, V, W / I_phase sum UVW		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: $6 _5$	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2002	Expert list: 1
(Parallel), A_INF	Not for motor type: -	Max	Factory setting
(Parallel), S_INF	Min	$-[A]$	$-[A]$
(Parallel), R_INF	$-[A]$		

Description: Display and connector output for the measured sum of the currents in phases $\mathrm{U}, \mathrm{V}$ and W as instantaneous value. The summed value of all power units is displayed in r0069[6].

r7230[0...n]	CO: Par_circuit DC link voltage actual value / Vdc_act		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),   VECTOR I AC	P-Group: Displays, signals	Unit group: 5_2	Unit selection: p0505
(Parallel), A_INF	Not for motor type: -	Scaling: p2001	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel), B_INF (Parallel)	- [V]	- [V]	- [V]
Description:	Displays the measured actual value of the $D C$ link voltage. The average value of all power units is displayed in r0070.		


r7231[0...n]	CO: Par_circuit phase voltage actual value phase U/ U_phase U act val		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
VECTOR_I_AC	P-Group: Displays, signals	Unit group: 5_3	Unit selection: p0505
(Parallel), S_INF	Not for motor type: -	Scaling: p2001	Expert list: 1
(Parallel)	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual voltage, phase $U$.   The average value of all power units is displayed in r0089[0].		
r7231[0...n]	CO: Par_circuit phase voltage actual value phase U/ U_phase U act val		
A_INF (Parallel),   R_INF (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Unit group: 5_3	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual voltage,		


r7232[0...n]	CO: Par_circuit phase voltage actual value phase V/U_phase V act val		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: 5_3	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2001	Expert list: 1
(Parallel), S_INF	Not for motor type: -	Max	Factory setting
(Parallel)	Min	$-[V]$	$-[V]$
	$-[V]$		
Description:	Displays the actual voltage, phase V.		
	The average value of all power units is displayed in r0089[1].		


r7232[0...n]	CO: Par_circuit phase voltage actual value phase V/U_phase V act val		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
R_INF (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Unit group: 5_3	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	$-[V]$
Description:	Displays the actual voltage, phase V.		


r7233[0...n]	CO: Par_circuit phase voltage actual value phase W / U_phase W act val		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),	Unit group: 5_3	Unit selection: p0505	
VECTOR_I_AC	P-Group: Displays, signals	Scaling: p2001	Expert list: 1
(Parallel), S_INF	Not for motor type: -	Max	Factory setting
(Parallel)	Min	$-[V]$	$-[V]$
	$-[V]$		
Description:	Displays the actual voltage, phase W.		
	The average value of all power units is displayed in r0089[2].		


r7233[0...n]	CO: Par_circuit phase voltage actual value phase W / U_phase W act val		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
R_INF (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Unit group: 5_3	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	$-[V]$
Description:	Displays the actual voltage, phase W.		


r7240[0...n]	Par_circuit gating unit status word 1 / Gating unit ZSW1		
VECTOR (Parallel),	Can be changed: -	Calculated: -	Access level: 4
VECTOR_AC	Data type: Unsigned16	Dyn. index: PDS, p0120	Func. diagram: -
(Parallel),   VECTOR I AC	P-Group: Displays, signals	Unit group: -	Unit selection: -
(Parallel), A_INF	Not for motor type: -	Scaling: -	Expert list: 1
(Parallel), S_INF	Min	Max	Factory setting
(Parallel), R_INF (Parallel)			

Description: Displays status word 1 of the power unit.

Bit field:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Fault time-critical	ON	OFF	-
01	Gating unit mode bit 0	ON	OFF	-
02	Pulse enable	ON	OFF	-
03	Upper switch-off signal path	Inactive	Active	-
04	Lower switch-off signal path	Inactive	Active	-


	05	Gating unit mode bit 1	ON	OFF	-
	06	Gating unit mode bit 2	ON	OFF	-
	07	Brake state	ON	OFF	-
	08	Brake diagnostics	ON	OFF	-
	09	Armature short-circuit braking	Active	Not active	-
	10	Gating unit state bit 0	ON	OFF	-
	11	Gating unit state bit 1	ON	OFF	-
	12	Gating unit state bit 2	ON	OFF	-
	13	Alarm status bit 0	ON	OFF	-
	14	Alarm status bit 1	ON	OFF	-
	15	Diagnostics 24 V	ON	OFF	-
r7250[0...4]	Par_circuit power unit rated power / PU P_rated				
VECTOR (Parallel),   VECTOR_AC   (Parallel),   VECTOR_I_AC   (Parallel), A_INF   (Parallel), S_INF   (Parallel), R_INF   (Parallel), B_INF   (Parallel)	Can   Dat   P-G   No   Min   - [k	changed: -   type: FloatingPoint32   up: Converter   or motor type: -	Calculated: -   Dyn. index: -   Unit group: 14_6   Scaling: -   Max   - [kW]	Access   Func. d   Unit sel   Expert   Factory   - [kW]	
Description:	Displays the rated power of the individual power units connected in parallel for various load duty cycles. The sum of the rated powers of all power units connected in parallel is displayed in r0206.				
Index:	$\begin{aligned} & {[0]=\text { Rated value }} \\ & {[1]=\text { Load duty cycle with low overload }} \\ & {[2]=\text { Load duty cycle with high overload }} \\ & {[3]=\text { S1 cont duty cyc }} \\ & {[4]=\text { S } 6 \text { load duty cycle }} \end{aligned}$				
Dependency:	The value is displayed in [kW] or [hp].				
	Refer to: p0100, p0205				
r7251[0...4]	Par_circuit power unit rated current / PU PI_rated				
VECTOR (Parallel),   VECTOR_AC   (Parallel),   VECTOR_I_AC   (Parallel), A_INF   (Parallel), S_INF   (Parallel), R_INF   (Parallel), B_INF   (Parallel)	Ca   Dat   P-G   No   Min $-[A$	changed: -   type: FloatingPoint32   up: Converter   or motor type: -	Calculated: -   Dyn. index:   Unit group:   Scaling: -   Max   - [Arms]	Access   Func. d   Unit sel   Expert   Factory   - [Arms]	
Description:	Displays the rated current of the individual power units connected in parallel for various load duty cycles. The sum of the rated currents of all power units connected in parallel is displayed in r0207.				
Index:	$\begin{aligned} & {[0]=\text { Rated value }} \\ & {[1]=\text { Load duty cycle with low overload }} \\ & {[2]=\text { Load duty cycle with high overload }} \\ & {[3]=\text { S1 cont duty cyc }} \\ & {[4]=\text { S } 6 \text { load duty cycle }} \end{aligned}$				
Dependency:	Refer to: p0205				

### 2.2 List of parameters



r7305[0...n]	Par_circuit VSM temperature evaluation status / VSM temp status			
$\begin{aligned} & \text { A_INF (Parallel), } \\ & \text { S_INF (Parallel), } \\ & \text { R_INF (Parallel) } \end{aligned}$	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: p0140	Func.	
	P-Group: Terminals	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the status of the temperature evaluation of the particular Voltage Sensing Module (VSM) for a parallel circuit configuration.			
	This displays whether the temperature actual value has exceeded the fault/alarm threshold.			
	The overall status of the temperature evaluation of all VSMs is displayed in r3664.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Alarm is present	Yes	No	-
	01 Fault is present	Yes	No	-
Dependency:	Refer to: p3665, r3666, p3667, p3668			
r7306[0...n]	CO: Par_connect VSM temperature actual value / VSM Temp_ActVal			
$\begin{aligned} & \text { A_INF (Parallel), } \\ & \text { S_INF (Parallel), } \\ & \text { R_INF (Parallel) } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: p0140	Func. diagram: -	
	P-Group: Closed-loop control	Unit group: 21_1	Unit selection: p0505	
	Not for motor type: -	Scaling: p2006	Expert list: 1	
	Min	Max	Factory setting	
	- [ ${ }^{\circ} \mathrm{C}$ ]	- [ $\left.{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	
Description:	Displays the temperature actual value of a temperature sensor connected to the Voltage Sensing Module (VSM) for a parallel connection.			
	The maximum value is displayed in r3666.			
	Prerequisite:			
	A KTY/PT1000 temperature sensor is connected, and p3665 is set $=2,6$.			
Dependency:	Refer to: p3665			
r7310[0...n]	CO: Par_circuit VSM 10 V input CT1 actual value / VSM CT 1 I_act			
$\begin{aligned} & \text { A_INF (Parallel), } \\ & \text { S_INF (Parallel), } \\ & \text { R_INF (Parallel) } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: p0140	Func. diagram: -	
	P-Group: Closed-loop control	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: p2002	Expert list: 1	
	Min	Max	Factory setting	
	- [A]	- [A]	- [A]	
Description:	Displays the current actual value from current transducer (CT) 1 at the 10 V input of the particular Voltage Sensing Module (VSM) for a parallel circuit configuration.			
Dependency:	Refer to: p3670			
Note:	The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM.			
r7311[0...n]	CO: Par_circuit VSM 10 V input CT2 actual value / VSM CT 2 I_act			
A_INF (Parallel),   S_INF (Parallel),   R_INF (Parallel)	Can be changed: -   Data type: FloatingPoint32   P-Group: Closed-loop control	Calculated: -	Access level: 3	
		Dyn. index: p0140	Func. diagram: -	
		Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: p2002	Expert list: 1	
	Min	Max	Factory setting	
	- [A]	- [A]	- [A]	
Description:	Displays the current actual value from current transducer (CT) 2 at the 10 V input of the particular Voltage Sensing Module (VSM) for a parallel circuit configuration.   The average value of all VSMs is displayed in r3672.			

### 2.2 List of parameters

Dependency:	Refer to: p3670
Note:	The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM.


r7315[0...n]	CO: Par_circuit VSM 10 V input 1 actual value / VSM inp 1 U_act		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
S_INF (Parallel),	Data type: FloatingPoint32	Dyn. index: p0140	Func. diagram: -
R_INF (Parallel)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual value of the voltage measured at the 10 V input 1 of the Voltage Sensing Modules (VSM). The average value of all VSM is displayed in r3673.		
Dependency:	Refer to: p3670		
Note:	10 V input 1: Terminals X520.1		


r7316[0...n]	CO: Par_circuit VSM 10 V input 2 actual value / VSM inp 2 U_act		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
S_INF (Parallel),	Data type: FloatingPoint32	Dyn. index: p0140	Func. diagram: -
	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual value of the voltage measured at the 10 V input 2 of the Voltage Sensing Modules (VSM). The average value of all VSMs is displayed in r3674.		
Dependency:	Refer to: p3670		
Note:	10 V input 2: Terminals X520.3		



r7321[0...n]	Par_circuit VSM line filter capacitance phase V / VSM filt C phase V		
A_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 4
S_INF (Parallel),	Data type: FloatingPoint32	Dyn. index: p0140	Func. diagram: -
R_INF (Parallel)	P-Group: Closed-loop control	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	$-[\mu F]$	Factory setting
	$-[\mu F]$	$-[\mu F]$	
Description:	Displays the capacitance of the line filter, phase $V$ of the particular Voltage Sensing Module (VSM).		
	The average value of all VSMs is displayed in r3677[1].		
Dependency:	Refer to: p3676		
Note:	Prerequisites:		
	The monitoring of the filter capacitance is activated.		



r7758[0...19]	KHP Control Unit serial number / KHP CU ser_no		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned8	Unit group: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Scaling: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Expert list: 1	
CU_S150_PN,	Min	Factory setting	
CU_S120_DP,	-	-	
CU_S150_DP,			
CU_I_D410	Displays the actual serial number of the Control Unit.		
Description:	The individual characters of the serial number are displayed in the ASCII code in the indices.		
	For the commissioning tool, the ASCII characters are displayed uncoded.		
Dependency:	Refer to: p7765, p7766, p7767, p7768		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:	KHP: Know-How Protection		

p7759[0...19] KHP Control Unit reference serial number / KHP CU ref ser_no
CU_I, CU_NX_CX, Can be changed: T Calculated: - Access level: 3
CU_S_AC_DP
CU_S_AC_PN,
CU_S120_PN,
CU_S150_PN,
CU_S120_DP,
CU_S150_DP,
CU_I_D410

Description: Sets the reference serial number for the Control Unit. Using this parameter, if a Control Unit and/or a memory card is replaced at the end customer, the OEM can again adapt the project to the modified hardware.
Dependency: Refer to: p7765, p7766, p7767, p7768
Note:
KHP: Know-How Protection

- the OEM may only change this parameter for the use case "Sending encrypted SINAMICS data".
- SINAMICS only evaluates this parameter when powering up from the encrypted "Load into file system..." output or when powering up from the encrypted PS files. The evaluation is only made when know-how protection and memory card copy protection have been activated.


### 2.2 List of parameters





p7763	KHP OEM exception list number of indices for p7764 / KHP OEM qty p7764		
All objects	Can be changed: $U, T$	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	1


Description:	Sets the number of parameters for the OEM exception list (p7764[0..n]).
	$\mathrm{p} 7764[0 \ldots \mathrm{n}]$, with $\mathrm{n}=\mathrm{p} 7763-1$
Dependency:	Refer to: p 7764
Note:	KHP: Know-How Protection
	Even if know-how protection is set, parameters in this list can be read and written to.


p7764[0...n]	KHP OEM exception list / KHP OEM excep list		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: p7763	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 1	
CU_S150_PN,	Mor motor type: -	Max	Factory setting
CU_S120_DP,	Min	65535	$[0] 7766$
CU_S150_DP,	0		$[1 \ldots 499] 0$
CU_I_D410			
Description:	OEM exception list $(p 7764[0 \ldots \mathrm{n}]$ for setting parameters that should be excluded from know-how protection.		


Dependency:	The number of indices depends on p 7763.
	Refer to: p 7763
Note:	KHP: Know-How Protection
	Even if know-how protection is set, parameters in this list can be read and written to.



p7765	KHP configuration / KHP config					
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: U, T			Calculated: -	Access level: 3	
	Data type: Unsigned16 D			Dyn. index: -	Func. diagram: -	
	P-Group: - Un			Unit group: -	Unit selection: -	
	Not for motor type: - Scal			Scaling: -	Expert list: 1	
	Min		Max		Factory setting	
	-		-		0000 bin	
Description:	Configuration settings for know-how protection.					
	For bit 00, 01:					
	When KHP is activated, this means that the OEM can define whether the parameters and DCC data encrypted on the memory card should be protected before using on other memory cards/Control Units.					
	For bit 02:					
	This means that the OEM can define whether it is possible or not to trace the drive data using the device trace function although KHP is activated.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Extended copy prot memory card and		Yes	No	-
		Basic copy protec memory card		Yes	No	-
		Permit trace and $m$ diagnostic purpos		Yes	No	-
Dependency:	Refer to: p7766, p7767, p7768					
Note:	KHP: Know-How Protection					
	For copy protection, the serial numbers of the memory card and/or Control Unit are checked.					
	The memory card copy protection and preventing data to be traced are only effective when the know-how protection has been activated.					
	For bit 00, 01:					
	If both bits are inadvertently set to 1 (e.g. at the BOP), then the setting of bit 0 applies.					
	There is no copy protection if both bits are set to 0 .					



p7767[0..29]	KHP password new / KHP passw new	
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -
CU_S_AC_PN,	P-Group: -	Unit group: -
CU_S120_PN,	Not for motor type: -	Scaling: -
CU_S150_PN,	Max	
CU_S120_DP,	Min	-
CU_S150_DP,	-	
CU_I_D410		
Description:	Sets the new password for know-how protection.	
Dependency:	Refer to: p7766, p7768	
Note:	KHP: Know-How Protection	
	When reading, p7767[0...29] $=42$ dec (ASCII character $=" * ")$ is displayed.	

## p7768[0...29] KHP password confirmation / KHP passw confirm

CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -
CU_S_AC_PN,	P-Group: -	Unit group: -
CU_S120_PN,	Not for motor type: -	Scaling: -
CU_S150_PN,	Min	Max
CU_S120_DP,	-	-
CU_S150_DP,	Confirms the new password for know-how protection.	
CU_I_D410	Refer to: p7766, p7767	
Description:	KHP: Know-How Protection	
Dependency:	When reading, p7768[0...29] = 42 dec (ASCII character $=$ "*" $)$ is displayed.	



### 2.2 List of parameters



p7786[0...n]	Service report / Service report					
SERVO, VECTOR,   SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC,   A_INF, S_INF, B_INF	Can be changed: U, T C			lated: -	Acces	
	Data type: Unsigned16 D			Dyn. index: PDS, p0120	Func. diagram: -	
	P-Group: - U			Unit group: -	Unit selection: -	
	Not for motor type: - S			Scaling: -	Expert list: 1	
	Min		Max		Factory setting	
	-		-		0000000000000000 bin	
Description:	Service parameter to internally document repairs.					
	After a component has been replaced, this must be confirmed using p7786[PDS]. $x=0 / 1$. The "Generate report" function is then automatically executed.					
	After the procedure has been completed, p7786[PDS] is automatically set $=0$.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Control Interface		Yes	No	-
		Valve 1 replaced		Yes	No	-
		Valve 2 replaced		Yes	No	-
	03	Valve 3 replaced		Yes	No	-
		Valve 4 replaced		Yes	No	-
		Valve 5 replaced		Yes	No	-
		Valve 6 replaced		Yes	No	-
		Generate report		Yes	No	-
Notice:	The write process can take several minutes (p7786[PDS].x = 1). It is not permissible that the device is switched off during the procedure (only when p7786 = 0).					
Note:	The power unit involved can be assigned the correct P index using p0124 (power unit detection via LED).					


p7788	Power unit sign-of-life monitoring tolerance window / PU SoL monit tol		
SERVO, VECTOR,	Can be changed: C2(2), U, T	Calculated: -	Access level: 4
SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
VECTOR_AC, SERVO_IAC,	P-Group: Converter	Unit group: -	Unit selection: -
VECTOR_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
A_INF, S_INF, R_INF,	Min	Max	Factory setting
B_INF	1	1000	10
Description:	Sets the tolerance window for the sign of life monitoring for communication to the power unit.		
Dependency:	Refer to: A30853		
Note:	An active window is generated by means of DRIVE-CLiQ telegrams.		
	If more than one sign-of-life error appears in the window, then A30853 is output.		
	The lower the value in p7788, the greater the monitoring tolerance.		


p7789	Power unit sign-of-life monitoring fault threshold / PU SoL monit F_thr		
SERVO, VECTOR,	Can be changed: C2(2), U, T	Calculated: -	Access level: 4
SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Converter	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Max	Factory setting
VECTOR_IAAC,	Not for motor type: -	1000	1
A_INF, S_INF, R_INF,	Min	0	
B_INF	0		
Description:	Sets the number of consecutive sign-of-life errors that are tolerated for communication to the power unit.		
Dependency:	Refer to: F30008		
Note:	F30008 is output in the case of a fault.		
	The higher the value in the parameter, the higher the monitoring tolerance.		



### 2.2 List of parameters

Value:	0 :	No signal
	1:	Pulse frequency
	2 :	Phase current U
	3:	Phase current V
	4:	Phase current W
	5:	IGBT chip temperature
	6:	Heat sink temperature
	7:	DC link voltage
	8:	Modulat_depth
	9 9:	Angle
Index:	[0] = Trace channel 0	
	[1] = Trace channel 1	
	[2] = Trace channel 2	
	[3] = Trace channel 3	
	[4] = Trace channel 4	
	[5] = Trace channel 5	
	[6] = Trace channel 6	
	[7] = Trace channel 7	
	[8] = Trace channel 8	
	[9] = Trace channel 9	
	[10] = Trace channel 10	
	[11] = Trace channel 11	
	[12] = Trace channel 12	
	[13] = Trace channel 13	
	[14] = Trace channel 14	
	[15] = Trace channel 15	
Dependency:	Refer to: p7791, p7792	
	Refer to: A01302	
Note:	In the operation state, when a trigger event occurs, the trace data of the signals are saved in the component. The oldest trace data is overwritten after more than 5 trigger events.	
	The trigger event can be set in p7791.	
	By activating p7792, the trace data of the component is written to files on the non-volatile storage medium (memory card). Experts can then evaluate this data.	

## p7791

## Component trace trigger / Comp trace trigger

SERVO, VECTOR,
SERVO_I_AC, VECTOR_I_AC,
A INF, S INF, R INF
(Parallel), B_INF

Can be changed: C2(2), U, T
Data type: Integer16
P-Group: Converter
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
2

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Description: Sets the trigger event for the component trace.
Value:

Dependency: Refer to: p7790, p7792
Note: $\quad$ F30001 is output if the power unit detects an overcurrent condition.
F30002 is output if the power unit detects an overvoltage condition in the DC link.
F30021 is output if the power unit detects a ground fault.
F30022 is output if the power unit detects an Uce fault.

p7792	Upload component trace data / Upload comp trace		
SERVO, VECTOR,	Can be changed: C2(2), U, T	Calculated: -	Access level: 4
SERVO_I_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_I_AC,   A INF SINF, R INF	P-Group: Converter	Unit group: -	Unit selection: -
(Parallel), $\mathrm{B}_{\text {- }} \mathrm{INF}^{-}$	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to upload and save the trace data of the component trace.   Experts can then evaluate this data.		
Value:	0 : Inactive   1: Upload and save active		
Dependency:	Refer to: p7790, p7791		
Notice:	Trace files of this component already available on the non-volatile storage medium are overwritten after backup has been activated.		
p7820	DRIVE-CLiQ component component number / DQ compo_no		
CU_I, CU_NX_CX,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,   CU S120 PN	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0		
Description:	Sets the component number of the DRIVE-CLiQ component whose parameters are to be accessed.		
Dependency:	Refer to: p7821, p7822, r7823		
p7821	DRIVE-CLiQ component parameter number / DQ para_no		
CU_I, CU_NX_CX,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	65535	0
Description:	Sets the parameter number to access a parameter of a DRIVE-CLiQ component.		
Dependency:	Refer to: p7820, p7822, r7823		

### 2.2 List of parameters



r7823[0...254]	DRIVE-CLiQ component read parameter value / Read DQ value		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_SAC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_SAC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	-	-
CU_S150_DP,	-		
CU_I_D410			
Description:	Displays the parameter value read from the DRIVE-CLiQ component.		
Dependency:	Refer to: p 7820, p7821, p7822		


r7825[0...6]	DRIVE-CLiQ component versions / DQ comp version
CU_I, CU_NX_CX,   CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU S150 PN,   CU_S120_DP,   CU_S150_DP,   CU_I_D410	Can be changed: - Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: - Func. diagram: -   P-Group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting
Description: Index:	Displays the firmware and EEPROM versions of the DRIVE-CLiQ component selected using p7828[1].   [0] = Reference firmware version   [1] = Actual firmware version   [2] = EEPROMO version   [3] = EEPROM1 version   [4] = EEPROM2 version   [5] = EEPROM3 version   [6] = EEPROM4 version
Dependency:	Refer to: p7828
Note:	For index [0]:
	Firmware version on the memory card/device memory.
	For index [1]:
	Actual firmware version of the DRIVE-CLiQ component.
	For index [2...6]:
	Actual EEPROM version of the DRIVE-CLiQ component.



### 2.2 List of parameters




### 2.2 List of parameters

```
10597: ENC_ID_CD_ANGLE
10598: ENC ID MECH ANGLE HI
10599: ENC_ID_RM_PŌS_PHI_COMMU
10600: ENC_ID_PHI_COMMU
10601: ENC_ID_SUBTRACE_ANGLE
10612: ENC_ID_DIFF_CD_INC
10613: ENC_ID_RM_POS_PHI_COMMU_RFG
10628: ENC_ID_MECH_ANGLE
10629: ENC_ID_MECH_RM_POS
10644: ENC_ID_INIT_VECTOR
10645: FEAT_INIT_VECTOR
10660: ENC_ID_SENSOR_STATE
10661: ENC_ID_BASIC_SYSTEM
10662: ENC_ID_REFMARK_STATUS
10663: ENC ID DSA STATUS1 SENSOR
10664: ENC_ID_DSA_RMSTAT_HANDSHAKE
10665: ENC ID DSA CONTROL1 SENSOR
10667: ENC_ID_SAFETY
10669: ENC ID SUB STATE
10676: ENC_ID_COUNTCORR_SAW_VALUE
10677: ENC_ID_COUNTCORR_ABS_VALUE
10678: ENC_ID_SAWTOOTH_CORR
10680: ENC ID SM XIST1 CORRECTED QUADRANTS
10692: ENC_ID_RESISTANCE_CALIB_INSTANT
10693: ENC_ID_SERPROT_POS
10700: ENC_ID_AB_VIOL_COUNT
10701: ENC_ID_SUBTRACE_TRACK_A_TRIG
10702: ENC_ID_SUBTRACE_TRACK_B_TRIG
10723: ENC ID ACT STATEMACHINE FUNCTION
10724: ENC_ID_ACT_FUNMAN_FUNCTION
10725: ENC_ID_SAFETY_COUNTER_CRC
10728: ENC_ID_SUBTRACE_AREA
10740: ENC_ID_POS_ABSOLUTE
10741: ENC ID POS REFMARK
10742: ENC_ID_SAWTOOTH
10743: ENC_ID_SAFETY_PULSE_COUNTER
10745: ENC_ID_EIU_ZEROCTRL
10756: ENC_ID_DSA_ACTUAL_SPEED
10757: ENC_ID_SPEED_DEV_ABS
10772: ENC_ID_DSA_POS_XIST1
10788: ENC_ID_AB_CROSS_CORR
10789: ENC_ID_AB_GAIN_Y_CORR
10790: ENC_ID_AB_PEAK_CORR
11825: ENC ID RES TRANSITION RATIO
11826: ENC_ID_RES_PHASE_SHIFT
12088: ENC ID SM DIFF PULSE ACCU
15150: ENC_ID_SPINDLE_S1_RAW
15151: ENC_ID_SPINDLE_S4_RAW
15152: ENC_ID_SPINDLE_S5_RAW
15155: ENC_ID_SPINDLE_S1_CAL
15156: ENC_ID_SPINDLE_S4_CAL
15157: ENC_ID_SPINDLE_S5_CAL
```

r7832[0...23]	Telegram diagnostics numerical format / Telegr diag format		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: -	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Max	Expert list: 1
VECTOR_I_AC, ENC	Not for motor type: -	14	Factory setting
	Min	-1	-
Description:	Displays the original numerical format of the signals contained in the telegram.		
	The associated signal number is represented in the appropriate index of r7831.		


Value:	$-1:$	Unknown
	$0:$	Boolean
	$1:$	Signed 1 byte
	$2:$	Signed 2 byte
	$3:$	Signed 4 byte
	$4:$	Signed 8 byte
	$5:$	Unsigned 1 byte
	$6:$	Unsigned 2 byte
	$7:$	Unsigned 4 byte
	$8:$	Unsigned 8 byte
	$9:$	Float 4 byte
	$10:$	Double 8 byte
	$11:$	mm dd yy HH MM SS MS DOW
	$12:$	ASCII string
	$13:$	SINUMERIK frame type
Dependency:	$14:$	SINUMERIK axis type
	Refer to: r7831	

r7833[0...23] Telegram diagnostics unsigned / Telegr diag unsign

SERVO, VECTOR,	Can be changed: -	Calculated: -
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -
VECTOR_AC,	P-Group: -	Unit group: -
SERVO_I_AC,	Scaling: -	
VECTOR_I_AC, ENC	Not for motor type: -	Max
	Min	-
Description:	-	Parameter to display a DSA signal in the unsigned-integer format.
	The associated signal number is represented at the appropriate index in r7831.	


r7834[0...23]	Telegram diagnostics signed / Telegr diag sign		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: Integer32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: -	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Max	Expert list: 1
VECTOR_I_AC, ENC	Not for motor type: -	Factory setting	
	Min	-	
Description:	-	Parameter to display a DSA signal in the signed-integer format.	
	The associated signal number is represented at the appropriate index in r7831.		


r7835[0...23]	Telegram diagnostics real / Telegr diag real		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: -	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Max	Expert list: 1
VECTOR_I_AC, ENC	Not for motor type: -	-	Factory setting
	Min	-	
Description:	-	Parameter to display a DSA signal in the float format.	
	The associated signal number is represented at the appropriate index in r7831.		

### 2.2 List of parameters



63:	Newton seconds/meter
64:	Micronewton
65:	Liters / minute
66:	Bar
67:	Cubic centimeters
68:	Millimeter / volt minute
69:	Newton/Volt
80:	Millivolts peak-to-peak
81:	Volt rms
82:	Millivolts rms
83:	Amps rms
84:	Micro amps rms
85:	Micrometers / revolution
90:	Tenths of a second
91:	Hundredths of a second
92:	10 microseconds
93:	Pulses
94:	256 pulses
95:	Tenths of a pulse
96:	Revolutions
97:	100 revolutions / minute
98:	10 revolutions / minute
99:	0.1 revolutions / minute
100:	Thousandth revolution / minute
101:	Pulses / second
102:	100 pulses / second
103:	10 revolutions / (minute x seconds)
104:	10000 pulses/second^2
105:	0.1 Hertz
106:	0.01 Hertz
107:	0.1 / seconds
108:	Factor 0.1
109:	Factor 0.01
110:	Factor 0.001
111:	Factor 0.0001
112:	0.1 Volt peak-to-peak
113:	0.1 Volt peak-to-peak
114:	0.1 amps peak-to-peak
115:	Watt
116:	100 Watt
117:	10 Watt
118:	0.01 percent
119:	1/second^3
120:	0.01 percent/millisecond
121:	Pulses / revolution
122:	Microfarads
123:	Milliohm
124:	0.01 Newton meter
125:	Kilogram millimeter^2
126:	Rad / (seconds newton meter)
127:	Henry
128:	Kelvin
129:	Hours
130:	Kilohertz
131:	Milliamperes peak-to-peak
132:	Millifarads
133:	Meter
135:	Kilowatt hours
136:	Percent
137:	Amps / Volt
138:	Volt
139:	Millivolts
140:	Microvolts
141:	Amps
142:	Milliamperes
143:	Micro amps


144:	Milliamperes rms
145:	Millimeter
146:	Nanometer
147:	Joules




r7850[0...n]	Drive object operational/not operational / DO ready for oper		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU S120 PN	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-32786	32767	-
Description:	Displays whether, for an activated drive object, all activated topology components are available or not (or whether these can be addressed).		
0 : Drive object not ready for operation			
1: Drive object ready for operation			


p7852	Number of indices for r7853 / Qty indices r7853		
CU_I, CU_NX_CX,	Can be changed: $U, T$	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	1	200	1
Description:	Displays the number of indices for $\mathrm{r} 7853[0 \ldots \mathrm{n}$ ].		
	This corresponds to the number of DRIVE-CLiQ components that are in the target topology.		
Dependency:	Refer to: r7853		
Note:	The values are valid if all available Control Units adopt the "Initialization finished" state (r3988 = 800) following power up.		
r7853[0...n]	Component available/not available / Comp present		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: p7852	Func. diagram: -
CU S120 PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0000 hex	FFFF hex	-
Description:	Displays the component and whether this component is currently present.		
	High byte: Component number		
	Low byte: 0/1 (not available/available)		
Dependency:	Refer to: p7852		
Note:	The values are valid if all available Control Units adopt the "Initialization finished" state $(r 3988=800)$ following power up.		

### 2.2 List of parameters

p7857	Sub-boot mode / Sub-boot mode		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC,   A_INF, S_INF, R_INF, B_INF, TM31, TM41, TM17, TM15,   TM15DI_DO, TM120, TM150, TB30,   TM54F_MA,   TM54F_SL, ENC, HUB, CU_LINK	Can be changed: U, T   Data type: Integer16   P-Group: -   Not for motor type: -   Min   0	Calculated:   Dyn. index:   Unit group: -   Scaling: -   Max   1	Access level: 4   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   1
Description:   Value:	Sets the mode for the sub-boot.   0: Sub-boot manual   1: Sub-boot automatic		
Note:	For p7857 $=0$ (manual sub-boot) the followin The parameter should be set to 1 to start the	g applies: sub-boot.	


p7859[0...199]	Component number global / Comp_no global		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group:	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Max	Factory setting	
CU_S12ODP,	Min	32767	0


Description:	Sets the global and unique component number in a drive system with several Control Units.
	Each index of the parameter corresponds to a possible local component number on the corresponding Control Unit.
	The indices are allocated to the global component numbers as follows:
	p7859[0]: Not used
	p7859[1]: Sets the global component number for the local component number 1
	p7859[2]: Sets the global component number for the local component number 2
	p7859[199]: Sets the global component number for the local component number 199
Notice:	This parameter is preferably set via suitable commissioning tool (e.g. UpdateAgent, STARTER, SCOUT).
	Changing the parameter via the AOP (Advanced Operator Panel) or BOP (Basic Operator Panel) can destroy a valid unique setting.
Note:	The parameter is not influenced by setting the factory setting.
r7867	Status/configuration changes global / Changes global
CU_I, CU_NX_CX,	Can be changed: - Calculated: - Access level: 4
CU_S_AC_DP,	Data type: Unsigned32 Dyn. index: - Func. diagram: -
CU_S120_PN,	P-Group: - Unit group: - Unit selection: -
CU_S150_PN,	Not for motor type: - Scaling: - Expert list: 1
CU_S120_DP,	Min Max Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	- - -
Description:	Displays status and configuration changes of all of the drive objects in the complete unit.
	When changing the status or the configuration of the Control Unit or a drive object, the value of this parameter is incremented.
Dependency:	Refer to: r7868, r7869, r7870


r7868[0...24]	Configuration changes drive object reference / Config_chng DO
CU_I, CU_NX_CX,   CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   CU_I_D410	Can be changed: - Calculated: - Access level: 4   Data type: Unsigned32 Dyn. index: - Func. diagram: -   P-Group: - Unit group: Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:	Reference to the drive objects whose configuration has changed.   Index 0:   When changing one of the following indices, then the value in this index is increased. Index 1...n:   The drive object with object number in $\mathrm{p} 0101[\mathrm{n}-1]$ has changed its configuration.   Example:   r7868[3] was incremented since the last time it was read.   --> the configuration of the drive object with object number in p0101[2] was changed.
Index:	[ 0 ] = Sum of the following indices   [1] = Object number in p0101[0]   [2] = Object number in p0101[1]   [3] = Object number in p0101[2]   [4] = Object number in p0101[3]   [5] = Object number in p0101[4]   [6] = Object number in p0101[5]   [7] = Object number in p0101[6]   [8] = Object number in p0101[7]   [9] = Object number in p0101[8]   [10] = Object number in p0101[9]   [11] = Object number in p0101[10]   [12] = Object number in p0101[11]   [13] = Object number in p0101[12]   [14] = Object number in p0101[13]   [15] = Object number in p0101[14]   [16] = Object number in p0101[15]   [17] = Object number in p0101[16]   [18] = Object number in p0101[17]   [19] = Object number in p0101[18]   [20] = Object number in p0101[19]   [21] = Object number in p0101[20]   [22] = Object number in p0101[21]   [23] = Object number in p0101[22]   [24] = Object number in p0101[23]
Dependency:	Refer to: p0101, r7867, r7871

### 2.2 List of parameters




	$\begin{aligned} & \text { [6] = DRIVE-CLiQ sockets (p0109) } \\ & \text { [7] = Technology Extensions } \\ & \text { [8] = Topology comparison result } \end{aligned}$
Dependency:	Refer to: r7867, r7871
Note:	For index [0]:
	When changing one of the following indices, then the value in this index is incremented.
	For index [1]:
	Drive object configuration. When changing r7871[0] on a drive object, the value in this index is incremented.
	For index [2]:
	Drive object, configuration unit. When changing either p0101 or r0102, the value in this index is incremented.
	For index [3]:
	PROFIBUS configuration unit. When changing p0978, the value in this index is incremented.
	For index [4]:
	DRIVE-CLiQ actual topology. When changing either r9900 or r9901, the value in this index is incremented.
	For index [5]:
	DRIVE-CLiQ target topology. When changing either p9902 or p9903, the value in this index is incremented.
	For index [6]:
	DRIVE-CLiQ sockets. When changing p0109, the value in this index is incremented.
	For index [7]:
	Technology Extensions When changing Technology Extensions, the value in this index is incremented.
	For index [8]:
	Topology comparison result. When changing the topology comparison result, the value in this index is incremented.


r7871[0..15]	Configuration changes drive object / Config_chng DO		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	崖
Description:	Displays the configuration changes on the drive object.		
Index:	[0] = Sum of the following indices		
	[1] = p0107, p0108, p0171, p0172 or p0173		
	[2] = Drive object name (p0199)		
	[3] = Structure-relevant parameters (e.g. p0180)		
	[4] = BICO interconnections		
	[5] = Activate/deactivate drive object		
	[6] = Data backup required		
	[7] = Reserved		
	[8] = Reference or changeover parameters (e.g. p2000)		
	[9] = Parameter count through Drive Control Chart (DCC)		
	[10] = p0107, p0108		
	[11] = Reserved		
	[12] = Write protection and know-how protection status		
	[13] = Reserved		
	[14] = Reserved		
	[15] = Reserved		
Dependency:	Refer to: r7868, r7870		
Note:	For index [0]:		
	When changing one of the following indices, then the value in this index is incremented.		
	For index [1]:		
	Drive object commissioning: When changing p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.		
	For index [2]:		
	Drive object name. When changing p0199, the value in this index is incremented.		

### 2.2 List of parameters

For index [3]:
Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.

For index [4]:
Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
For index [5]:
Drive object activity: When changing p0105, the value in this index is incremented.
For index [6]:
Drive object, data save.
0 : There are no parameter changes to save.
1: There are parameter changes to save.
For index [8]:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.
For index [9]:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
For index [10]:
Drive object configuration. When changing p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.


For index [4]:
Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
For index [5]:
Drive object activity: When changing p0105, the value in this index is incremented.
For index [6]:
Drive object, data save.
0 : There are no parameter changes to save.
1: There are parameter changes to save.
For index [7]:
Drive object component activity: When changing either p0125 or p0145, the value in this index is incremented.
For index [8]:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.

For index [9]:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
For index [10]:
Drive object configuration. When changing p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.
For index [11]:
Drive object bearing. When changing p0530 or p0531, the value in this index is incremented.
For index [12]:
Drive object configuration. When activating/deactivating write protection or know-how protection, the value in this index is incremented.
For index [15]:
SERVO/VECTOR configuration. When changing p0300, p0301 or p0400, the value in this index is incremented.

$\begin{aligned} & \hline \mathbf{r 7 8 7 1 [ 0 . . 1 5 ]} \\ & \text { A_INF, S_INF, R_INF, } \\ & \text { B_INF } \end{aligned}$	Configuration changes drive object / Config_chng DO		
	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the configuration changes on the drive object.		
Index:	[0] = Sum of the following indices		
	$[1]=p 0010, p 0107, p 0108$		
	[2] = Drive object name (p0199)		
	[3] = Structure-relevant parameters (e.g. p0180)		
	[4] = BICO interconnections		
	[5] = Activate/deactivate drive object		
	[6] = Data backup required		
	[7] = Activate/deactivate component		
	[8] = Reference or changeover parameters (e.g. p2000)		
	[9] = Parameter count through Drive Control Chart (DCC)		
	[10] = p0107, p0108		
	[11] = Reserved		
	[12] = Write protection and know-how protection status		
	[13] = Reserved		
	[14] = Reserved		
	[15] = Reserved		
Dependency:	Refer to: r7868, r7870		
Note:	For index [0]:		
	When changing one of the following indices, then the value in this index is incremented.		
	For index [1]:		
	Drive object commissioning: When changing p0010, p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.		

### 2.2 List of parameters

For index [2]:
Drive object name. When changing p0199, the value in this index is incremented.
For index [3]:
Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.
For index [4]:
Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
For index [5]:
Drive object activity: When changing p0105, the value in this index is incremented.
For index [6]:
Drive object, data save
0 : There are no parameter changes to save.
1: There are parameter changes to save.
For index [7]:
Drive object component activity: When changing either p0125 or p0145, the value in this index is incremented.
For index [8]:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.

For index [9]:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.

For index [10]:
Drive object configuration. When changing p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.


For index [3]:
Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.
For index [4]:
Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
For index [5]:
Drive object activity: When changing p0105, the value in this index is incremented.
For index [6]:
Drive object, data save.
0 : There are no parameter changes to save.
1: There are parameter changes to save.
For index [8]:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.
For index [9]:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
For index [10]:
Drive object configuration. When changing either p0107 or p0108, the value in this index is incremented.
For index [12]:
Drive object configuration. When activating/deactivating write protection or know-how protection, the value in this index is incremented.


### 2.2 List of parameters

For index [4]:
Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
For index [6]:
Drive object, data save.
0 : There are no parameter changes to save.
1: There are parameter changes to save.
For index [8]:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.
For index [9]:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.

For index [10]:
Drive object configuration. When changing p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.

r7871[0...15]	Configuration changes drive object / Config_chng DO		
ENC	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the configuration changes on the drive object.		
Index:	[0] = Sum of the following indices		
	[1] $=$ p0010, p0107, p0108, p0171, p0172 or p0173		
	[2] = Drive object name (p0199)		
	[3] = Structure-relevant parameters (e.g. p0180)		
	[4] = BICO interconnections		
	[5] = Activate/deactivate drive object		
	[6] = Data backup required		
	[7] = Activate/deactivate component		
	[8] = Reference or changeover parameters (e.g. p2000)		
	[9] = Parameter count through Drive Control Chart (DCC)		
	[10] $=$ p0107, p0108, p0171, p0172 or p0173		
	[11] = p0530 or p0531		
	[12] = Write protection and know-how protection status		
	[13] = Reserved		
	[14] = Reserved		
	[15] = Enc type (p0400)		
Dependency:	Refer to: r7868, r7870		
Note:	For index [0]:		
	When changing one of the following indices, then the value in this index is incremented.		
	For index [1]:		

Drive object configuration. When changing p0010, p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.
For index [2]:
Drive object name. When changing p0199, the value in this index is incremented.
For index [3]:
Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.
For index [4]:
Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
For index [6]:
Drive object, data save.
0 : There are no parameter changes to save.
1: There are parameter changes to save.

For index [8]:
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304 ...), the value in this index is incremented.
For index [9]:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
For index [15]:
Encoder configuration. When changing p0400, the value in this index is incremented.



### 2.2 List of parameters

	[10] = Drive object number object 10
	[11] = Drive object number object 11
	[12] = Drive object number object 12
	[13] = Drive object number object 13
	[14] = Drive object number object 14
	[15] = Drive object number object 15
	[16] = Drive object number object 16
	[17] = Drive object number object 17
	[18] = Drive object number object 18
	[19] = Drive object number object 19
	[20] = Drive object number object 20
	[21] = Drive object number object 21
	[22] = Drive object number object 22
	[23] = Drive object number object 23
Notice:	This parameter may only be used by qualified service personnel.
Note:	If the same drive object numbers are used and if the existing drive object numbers in the system are entered
	incompletely, the content of this parameter is ignored entirely. The behavior as with factory setting will then become


r7901[0...81]	Sampling times / t_sample	
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: - Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: - Unit group: -   Not for motor type: - Scaling: -   Min Max   $-[\mu \mathrm{s}]$ $-[\mu \mathrm{s}]$	Access level: 4   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   - [ Ls ]
Description:	Displays the sampling times currently present on the drive unit. r7901[0...63]: sampling times of hardware time slices. r7901[64...82]: sampling times of software time slices. r7901[x] $=0$, means the following: No methods have been registered in the time slice involved.	
Note:	The basis for the software time slices is T_NRK = p7901[15].	



p8500[0...7]	BI: Input signal bit-serially 0 / Input_sig bit 0		
CU_I, CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 2
CU_S_AC_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2195
CU_S120_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Max	Factory setting	
CU_S150_DP,	Min	-	0

Description: Sets the signal source for bit-serial input signals.

[^8]

### 2.2 List of parameters

$[16]$	$=$ To BO: r8511.16
$[17]$	$=$ To BO: r8511.17
$[18]$	$=$ To BO: r8511.18
$[19]$	$=$ To BO: r8511.19
$[20]$	$=$ To BO: 8511.20
$[21]$	$=$ To BO: r8511.21
Dependency: $\quad$	Refer to: r8511


p8501[0...21]	BI: Send data transfer bit-serially 1 / Send trans bit 1		
CU_NX_CX	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2194
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	[0] 722.0
			[1] 722.1
			[2] 722.2
			[3] 722.3
			[4...7] 0
			[8] 722.8
			[9] 722.9
			[10] 722.10
			[11] 722.11
			[12...15] 0
			[16] 722.16
			[17] 722.17
			$\text { [18...21] } 0$
Description:	Sets the signal source for bitwise data transfer.		
	These signals are transferred to another Control Unit and are located there in binector output: r8511.0 ... 21 for further interconnection.		
Index:			
	[1] = To BO: r8511.1		
	[2] = То BO: r8511.2		
	$[3]=\text { To BO: r8511.3 }$		
	[4] = То BO: r 8511.4		
	[5] = To BO: 88511.5		
	[ 6 ] $=$ To BO: 88511.6		
	[7] = То BO: 88511.7		
	[8] = To BO: r8511.8		
	[9] = То BO: r8511.9		
	[10] = To BO: 88511.10		
	[11] = To BO: 88511.11		
	[12] = To BO: 88511.12		
	[13] = То BO: 88511.13		
	[14] = То BO: r 8511.14		
	[15] = To BO: 88511.15		
	[16] = To BO: r8511.16		
	[17] = To BO: 88511.17		
	[18] = To BO: 88511.18		
	[19] = То BO: 88511.19		
	[20] = То BO: r8511.20		
	[21] = To BO: r8511.21		
Dependency:	Refer to: r8511		


p8501[0...21]	BI: Send data transfer bit-serially 1 / Send trans bit 1		
CU_LINK	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2194
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	[0] 722.0
			[1] 722.1
			[2] 722.2
			[3] 722.3
			[4] 722.4
			[5] 722.5
			[6] 722.6
			[7] 722.7
			[8] 722.8
			[9] 722.9
			[10] 722.10
			[11] 722.11
			[12] 722.12
			[13] 722.13
			[14] 722.14
			[15] 722.15
			[16] 722.16
			[17] 722.17
			[18] 0
			[19] 0
			[20] 722.20
			[21] 722.21
Description:	Sets the signal source for bitwise data transfer.		
	These signals are transferred to another Control Unit and are located there in binector output: r8511.0 ... 21 for further interconnection.		
Index:	[0] = To BO: r8511.0		
	[1] = To BO: r8511.1		
	[2] = To BO: r8511.2		
	$[3]=\text { To BO: r8511.3 }$		
	[4] = То BO: r8511.4		
	[5] = To BO: r8511.5		
	[6] = To BO: r8511.6		
	[7] = To BO: r8511.7		
	[8] = To BO: r8511.8		
	[9] = To BO: r8511.9		
	[10] = To BO: r8511.10		
	[11] = To BO: r8511.11		
	[12] = To BO: r8511.12		
	[13] = To BO: r8511.13		
	[14] = To BO: r8511.14		
	[15] = To BO: r8511.15		
	[16] = To BO: r8511.16		
	[17] = To BO: r8511.17		
	[18] = То BO: r8511.18		
	[19] = To BO: r8511.19		
	[20] = To BO: r8511.20		
	[21] = To BO: r8511.21		
Dependency:	Refer to: r8511		

### 2.2 List of parameters

p8502	CI: Input signal word-serially 0 / Input_sig word 0		
CU_I, CU_S_AC_DP,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
CU_S_AC_PN,	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 2195
$\begin{aligned} & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \end{aligned}$	P-Group: -	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: PERCENT	Expert list: 1
CU_S150_DP,	Min	Max	Factory setting
CU_I_D410	-	-	0
Description:	Sets the signal source for word-serial input signals.   This signal value is available at connector output r8512 for interconnection.		
Dependency:	Refer to: r8512		
p8502	CI: Send data transfer word-serially 0 / Send trans word 0		
CU_NX_CX, CU_LINK	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 2194
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the word-serial data transfer (process signal).   This signal value is transferred to another Control Unit and is located at connector output 88512 for further interconnection.		
Dependency:	Refer to: r8512		
p8503	CI: Input signal word-serially 1 / Input_sig word 1		
CU_I, CU_S_AC_DP,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
CU_S_AC_PN,	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 2195
CU S150 PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: PERCENT	Expert list: 1
CU_S150_DP,	Min	Max	Factory setting
CU_I_D410	-	-	0
Description:	Sets the signal source for word-serial input signals.   This signal value is available in connector output 88513 for further interconnection.		
Dependency:	Refer to: r8513		
p8503	CI: Send data transfer word-serially 1 / Send trans word 1		
CU_NX_CX, CU_LINK	Can be changed: $U$, $T$	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 2194
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the word-serial data transfer (process signal).   This signal value is transferred to another Control Unit and is located at connector output 88513 for further interconnection.		
Dependency:	Refer to: r8513		


p8504	Cl: Input signal word-serially 2 / Input_sig word 2		
CU_I, CU_S_AC_DP,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
CU_S_AC_PN,	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 2195
CU_S120_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: PERCENT	Expert list: 1
CU_S150_DP,	Min	Max	Factory setting
CU_I_D410	-	-	0
Description:	Sets the signal source for word-serial input signals.   This signal value is available in connector output r8514 for further interconnection.		
Dependency:	Refer to: r8514		
p8504	CI: Send data transfer word-serially 2 / Send trans word 2		
CU_NX_CX, CU_LINK	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 2194
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the word-serial data transfer (process signal).		
	This signal value is transferred to another Control Unit and is located at connector output r8514 for further interconnection.		
Dependency:	Refer to: r8514		
p8505	CI: Input signal word-serially 3 / Input_sig word 3		
CU_I, CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 2
CU_S_AC_PN,	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 2195
CU_S150_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: PERCENT	Expert list: 1
CU_S150_DP,	Min	Max	Factory setting
CU__D410	-	-	0
Description:	Sets the signal source for word-serial input signals.   This signal value is available in connector output r8515 for further interconnection.		
Dependency:	Refer to: 88515		
p8505	CI: Send data transfer word-serially 3 / Send trans word 3		
CU_NX_CX, CU_LINK	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 2194
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the word-serial data transfer (process signal).		
	This signal value is transferred to another Control Unit and is located at connector output r8515 for further interconnection.		
Dependency:	Refer to: r8515		

### 2.2 List of parameters

r8510.0... 7	BO: Output signal bit-serially 0 / Outp_sig bit 0				
CU_I, CU_S_AC_DP,	Can be changed: -		Calculated: -	Access level: 2	
CU_S_AC_PN,	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2195	
$\begin{aligned} & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \end{aligned}$	P-Group: -		Unit group: -	Unit selection: -	
CU_S120_DP,	Not for motor type: -		Scaling: -	Expert list: 1	
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Min		Max	Factory setting	
	-		-	-	
Description:	Display and binector output for the signal interconnected via binector input p8500[0...7].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	From BI: $\mathrm{p} 8500[0]$	ON	OFF	-
	01	From BI: p8500[1]	ON	OFF	-
	02	From BI: p8500[2]	ON	OFF	-
	03	From BI: $\mathrm{p} 8500[3]$	ON	OFF	-
	04	From BI: p8500[4]	ON	OFF	-
	05	From BI: p8500[5]	ON	OFF	-
	06	From BI: p8500[6]	ON	OFF	-
	07	From BI: p8500[7]	ON	OFF	-
Dependency:	Refe	to: p8500			


r8510.0... 7	BO: Receive data transfer bit-serially 0 / Recv trans bit 0				
CU_NX_CX, CU_LINK	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned32		Dyn. index: -	Func.	
	P-Group: -		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Display and binector output for the bit-serial received data.				
	These signals were interconnected and transferred to another Control Unit via binector input p8500[0...7].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		From BI: p8500[0]	ON	OFF	-
		From BI: $\mathrm{p} 8500[1]$	ON	OFF	-
		From BI: p8500[2]	ON	OFF	-
		From BI: $\mathrm{p} 8500[3]$	ON	OFF	-
		From BI: p8500[4]	ON	OFF	-
	05	From BI: p8500[5]	ON	OFF	-
	06	From BI: p8500[6]	ON	OFF	-
	07	From BI: p8500[7]	ON	OFF	-

Dependency: Refer to: p8500

r8511.0... 21	BO: Output signal bit-serially 1 / Outp_sig bit 1				
CU_I, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned32		Dyn. index: -	Func. did	
	P-Group: -		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factory	
	-		-	-	
Description:	Display and binector output for the signal interconnected via binector input p8501[0...21].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	From BI: p8501[0]	ON	OFF	-
		From BI: $\mathrm{p} 8501[1]$	ON	OFF	-
		From BI: $\mathrm{p} 8501[2]$	ON	OFF	-
	03	From BI: p8501[3]	ON	OFF	-
	04	From BI: p8501[4]	ON	OFF	-
	05	From BI: $\mathrm{p} 8501[5]$	ON	OFF	-
	06	From BI: p8501[6]	ON	OFF	-
	07	From BI: p8501[7]	ON	OFF	-


	08	From BI: p8501[8]	ON	OFF	-
	09	From BI: p8501[9]	ON	OFF	-
	10	From BI: p8501[10]	ON	OFF	-
	11	From BI: p8501[11]	ON	OFF	-
	12	From BI: p8501[12]	ON	OFF	-
	13	From BI: p8501[13]	ON	OFF	-
	14	From BI: p8501[14]	ON	OFF	-
	15	From BI: p8501[15]	ON	OFF	-
	16	From BI: p8501[16]	ON	OFF	-
	17	From BI: p8501[17]	ON	OFF	-
	18	From BI: p8501[18]	ON	OFF	-
	19	From BI: p8501[19]	ON	OFF	-
	20	From BI: p8501[20]	ON	OFF	-
	21	From BI: p8501[21]	ON	OFF	-
Dependency:	Refer to: p8501				
r8511.0... 21	BO: Receive data transfer bit-serially 1 / Recv trans bit 1				
CU_NX_CX, CU_LINK	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2194	
	P-Group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and binector output for the bit-serial received data.				
	These signals were interconnected and transferred to another Control Unit via binector input p8501[0...21].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		From BI: p8501[0]	ON	OFF	-
		From BI: p8501[1]	ON	OFF	-
		From BI: p8501[2]	ON	OFF	-
		From BI: p8501[3]	ON	OFF	-
		From BI: p8501[4]	ON	OFF	-
	05	From BI: p8501[5]	ON	OFF	-
		From BI: p8501[6]	ON	OFF	-
		From BI: p8501[7]	ON	OFF	-
	08	From BI: p8501[8]	ON	OFF	-
	09	From BI: p8501[9]	ON	OFF	-
	10	From BI: p8501[10]	ON	OFF	-
	11	From BI: p8501[11]	ON	OFF	-
		From BI: p8501[12]	ON	OFF	-
		From BI: p8501[13]	ON	OFF	-
		From BI: p8501[14]	ON	OFF	-
		From BI: p8501[15]	ON	OFF	-
		From BI: p8501[16]	ON	OFF	-
		From BI: p8501[17]	ON	OFF	-
		From BI: p8501[18]	ON	OFF	-
		From BI: p8501[19]	ON	OFF	-
		From BI: p8501[20]	ON	OFF	-
	21	From BI: p8501[21]	ON	OFF	-
Dependency:	Refer to: p8501				
r8512	CO: Output signal word-serially 0 / Outp_sig word 0				
CU_I, CU_S_AC_DP,	Can be changed: -		Calculated: -	Access level: 2	
CU_S_AC_PN,	Data type: FloatingPoint32P-Group: -		Dyn. index: -	Func. diagram: 2195	
CU_S120_PN, CU_S150_PN,			Unit group: -	Unit selection: -	
CU_S120_DP,	Not for motor type: -		Scaling: PERCENT	Expert list: 1	
CU_S150_DP,	Min		Max	Factory setting	
CU__D410			- [\%]	- [\%]	
Description:	Display and connector output for the signal interconnected via connector input p8502.				
Dependency:	Refer to: p8502				

### 2.2 List of parameters




### 2.2 List of parameters

p8550	AOP LOCAL/REMOTE / AOP LOCAL/REMOTE				
CU_I, CU_NX_CX,   CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   CU_I D410			Calculated: - Acces		
	Can be changed: U, T		Dyn. index: -	Func. diagram: -	
	P-Group: -		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000000000001001 bin	
Description:	Setting for saving the actual configuration of the Advanced Operator Panel (AOP).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	LOCAL save	Yes	No	-
	01	Start in LOCAL	Yes	No	-
		Change in oper	Yes	No	-
	03	OFF acts like OFF1	Yes	No	-
	04	OFF acts like OFF2	Yes	No	-
	05	OFF acts like OFF3	Yes	No	-
	06	Reserved	Yes	No	-
		CW/CCW active	Yes	No	-
		Jog active	Yes	No	-
		Save speed setpoint	Yes	No	-
		Inhibit operation	Yes	No	-
		Inhibit parameterization	Yes	No	-
p8552	IOP speed unit / IOP speed unit				
CU_I, CU_NX_CX,	Can be changed: T		Calculated: -	Access level: 3	
CU_S_AC_DP,	Data type: Integer16		Dyn. index: -	Func. diagram: -	
CU_S120_PN,	P-Group: -		Unit group: -	Unit selection: -	
CU_S150_PN,	Not for motor type: -		Scaling: -	Expert list: 1	
CU_S120_DP,	Min		Max	Factory setting	
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$					
Description:	Sets the unit for displaying and entering speeds.				
Value:		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{rpm} \end{aligned}$			
r8570[0...39]	Macro drive object / Macro DO				
CU_I, CU_NX_CX,   CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   CU_I_D410, SERVO,   VECTOR, HLA,   SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM31,   TM15DI_DO, TM120,   TM150	Can Data P-Gr Not Min	be changed: -   type: Unsigned32 up: -   or motor type: -	Calculated:   Dyn. index: -   Unit group:   Scaling: -   Max	Acces   Func.   Unit se   Expert   Factor	
Description:   Dependency:   Note:	Disp   Refe   For	ays the macro file saved   to: p0015   value $=9999999$, the fol	ate directory on th   The read opera	evice mem	



r8572[0...39]	Macro Connector Inputs (CI) for speed setpoints / Macro CI n_set		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 1
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: -	Unit group: -	
SERVO_I_AC,	Not for motor type: -	Scaling: -	Unit selection: -
VECTOR_I_AC,	Max	Expert list: 0	
A_INF, S_INF, R_INF, Min	-	Factory setting	
B_INF	-	-	


Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory
Dependency:	Refer to: p1000
Note:	For a value $=9999999$, the following applies: The read operation is still running.


r8573[0...39]	Macro Connector Inputs (CI) for torque setpoints / Macro CI M_set		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 1
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: -	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 0
VECTOR_I_AC,	Max	Factory setting	
A_INF, S_INF, R_INF, Min	-	-	


Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.
Dependency:	Refer to: p1500
Note:	For a value $=9999999$, the following applies: The read operation is still running.

### 2.2 List of parameters

r8585	Macro execution actu	ecuted	
CU_I, CU_NX_CX,   CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   CU_I_D410, SERVO,   VECTOR, HLA,   SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM31,   TM15DI_DO, TM120,   TM150, TB30	Can be changed: -   Data type: Unsigned16   P-Group: -   Not for motor type: -   Min	Calculated:   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 1   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the macro currently   Refer to: p0015, p0700, p10	on the drive ob r8571, r8572	
r8600   CU_S120_PN (CAN), CU_S150_PN (CAN), CU_S120_DP (CAN), CU_S150_DP (CAN)	CAN device type / De   Can be changed: -   Data type: Unsigned32   P-Group: Communications   Not for motor type: -   Min	Calculated:   Dyn. index:   Unit group:   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting
Description:	Displays all of the devices r8600   $=00000000$ hex: No drive   = FFFF0192 hex: Several   = FFFF0191 hex: Several   = 02010192 hex: 1 Vector   = 00020192 hex: 1 Servo drive   $=01000192$ hex: 1 Active Li   = 00080191 hex: 1 Termina	AN bus after r   an Active Line a Terminal Mo	vector drive
Note:	Corresponds to the CANopen For each detected drive, the	splayed in obj	* $x$ (x: drive numb



### 2.2 List of parameters

p8604[0...1]	CAN life guarding / Life guarding		
CU_S120_PN (CAN), CU_S150_PN (CAN), CU_S120_DP (CAN), CU_S150_DP (CAN)	Can be changed: $T$   Data type: Unsigned16   P-Group: -   Not for motor type: -   Min   0	Calculated:   Dyn. index: -   Unit group: -   Scaling: -   Max   65535	Access level: 3   Func. diagram:   Unit selection:   Expert list: 1   Factory setting   0
Description: Index:	Sets the life guarding parameter for the following CANopen objects:   - 100C hex: Guard Time   - 100D hex: Life Time Factor   The life time is derived by multiplying guard time by the life time factor.   [ 0 ] = Time interval [ms] for the life time   [1] = Factor for the lifetime		
Dependency:	Refer to: p8606   Refer to: F08700		
Note:	For p8604[0] $=0$ and/or p8604[1] $=0$, the life guarding event service (monitoring the node guarding, fault F08700 with fault value $=2$ ) is deactivated.   The node guarding protocol is active without the life guarding event service, if the heartbeat protocol is deactivated (p8606 = 0).		
p8606	CAN Producer Heartbeat Time / Prod Heartb Time		
CU_S120_PN (CAN), CU_S150_PN (CAN), CU_S120_DP (CAN), CU_S150_DP (CAN)	Can be changed: $T$   Data type: Unsigned16   P-Group: -   Not for motor type: -   Min   0 [ms]	Calculated:   Dyn. index:   Unit group: -   Scaling: -   Max   65535 [ms]	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   0 [ms]
Description:	Sets the time [ms] to cyclically send heartbeat telegrams. The smallest cycle is 100 ms .   For p8606 = 0, heartbeat telegrams are not sent.		
Dependency:	Refer to: p8604		
Note:	Corresponds to the CANopen object 1017 hex.		

## r8607[0...3] CAN Identity Object / Identity object

CU_S120 PN (CAN)
CU_S150_PN (CAN)
CU_S120_DP (CAN)
CU_S150_DP (CAN)

Can be changed: -
Data type: Unsigned32
P-Group: Communications
Not for motor type: -
Min

General device information display.
Description:
[0] = Vendor ID
[1] = Product code
[2] = Revision number
[3] = Serial number Index:

## Access level: 3

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

Note:	Corresponds to the CANopen object 1018 hex.   For index [3]:   The SINAMICS serial number comprises 60 bits.   Of these bits, the following are displayed in this index:   Bits 0 ... 19: Consecutive number   Bits 20 ... 23: Production ID   - 0 hex: Development   - 1 hex: P1 unique number   -2 hex: P2 unique number   - 3 hex: WA unique number   - 9 hex: Pattern   - F hex: All others   Bits 24 ... 27: Month of manufacture (0 means January, B means December)   Bits 28 ... 31: Year of manufacture ( 0 means 2002)
p8608[0...1]	CAN Clear Bus Off Error / Clear bus off err
$\begin{aligned} & \text { CU_S120_PN (CAN), } \\ & \text { CU_S150_PN (CAN), } \\ & \text { CU_S120_DP (CAN), } \\ & \text { CU_S150_DP (CAN) } \end{aligned}$	Can be changed: U, T Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Func. diagram: -   P-Group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 1 0
Description:	As a result of a Bus Off error, the CAN controller is set into the initialization state.   For index [0]:   The CAN controller is manually started after resolving the cause of the error with p8608[0] = 1   For index [1]:   The automatic CAN bus start function is activated using p8608[1] = 1 .   At 2 second intervals, the CAN controller is automatically restarted until the cause of the error has been resolved and   a CAN connection has been established.
Value:	0 : Inactive   1: $\quad$ Start CAN controller
Index:	[0] = Manual controller start function   [1] = Activating the automatic controller start function
Note:	For index [0]:   This parameter is automatically reset to 0 after start.
p8609[0...1]	CAN Error Behavior / Error behavior
$\begin{aligned} & \text { CU_S120_PN (CAN), } \\ & \text { CU_S150_PN (CAN), } \\ & \text { CU_S120_DP (CAN), } \\ & \text { CU_S150_DP (CAN) } \end{aligned}$	Can be changed: T Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Func. diagram: -   P-Group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 2 1
Description:   Value:	Sets the behavior of the CAN node referred to the communications error or equipment fault.   0: Pre-operational   1: No change   2: Stopped
Index:	[0] = Behavior for communication errors   [1] = Behavior for device faults
Note:	Corresponds to the CANopen object 1029 hex.

### 2.2 List of parameters


[20] = Number of faults drive 3
[21] = Fault 1/ drive 3
[22] = Fault 2/ drive 3
[23] = Fault 3/ drive 3
[24] = Fault 4/ drive 3
[25] = Fault 5/ drive 3
[26] = Fault 6/ drive 3
[27] = Fault 7/ drive 3
[28] = Fault 8/ drive 3
[29] $=$ Number of faults drive 4
[30] = Fault 1/ drive 4
[31] = Fault 2/ drive 4
[32] = Fault 3/ drive 4
[33] = Fault 4/ drive 4
[34] = Fault 5/ drive 4
[35] = Fault 6/ drive 4
[36] = Fault 7/ drive 4
[37] = Fault 8/ drive 4
[38] = Number of faults drive 5
[39] = Fault 1/ drive 5
[40] = Fault 2/ drive 5
[41] = Fault 3/ drive 5
[42] = Fault 4/ drive 5
[43] = Fault 5/ drive 5
[44] = Fault 6/ drive 5
[45] = Fault 7/ drive 5
[46] = Fault 8/ drive 5
[47] = Number of faults drive 6
[48] = Fault 1/ drive 6
[49] = Fault 2/ drive 6
[50] = Fault 3/ drive 6
[51] = Fault 4/ drive 6
[52] = Fault 5/ drive 6
[53] = Fault 6/ drive 6
[54] = Fault 7/ drive 6
[55] = Fault 8/ drive 6
[56] $=$ Number of faults drive 7
[57] = Fault 1/ drive 7
[58] = Fault 2/ drive 7
[59] = Fault 3/drive 7
[60] = Fault 4/ drive 7
[61] = Fault 5/ drive 7
[62] = Fault 6/ drive 7
[63] = Fault 7/ drive 7
[64] = Fault 8/ drive 7
[65] = Number of faults drive 8
[66] = Fault 1/ drive 8
[67] = Fault 2/ drive 8
[68] = Fault 3/ drive 8
[69] = Fault 4/ drive 8
[70] = Fault 5/ drive 8
[71] = Fault 6/ drive 8
[72] = Fault 7/ drive 8
[73] = Fault 8/ drive 8
[74] = Number of faults Control Unit
[75] = Fault 1/Control Unit
[76] = Fault 2/Control Unit
[77] = Fault 3/Control Unit
[78] = Fault 4/Control Unit
[79] = Fault 5/Control Unit
[80] = Fault 6/Control Unit
[81] = Fault 7/Control Unit
[82] = Fault 8/Control Unit
Dependency:
Refer to: r8743

### 2.2 List of parameters

Note: $\quad$ Corresponds to the CANopen object 1003 hex.
The assignment of the drive object (drive object number) to the CANopen Device Module is displayed using parameter r 8743.

p8612[0...1]	CAN drive object server SDO / DO server SDO		
CU_S120_PN (CAN),	Can be changed: T	Calculated: -	Access level: 3
CU_S150_PN (CAN),	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S120_DP (CAN), CU S150 DP (CAN),	P-Group: Communications	Unit group: -	Unit selection: -
SERVO (CAN),	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR (CAN)	Min	Max	Factory setting
	0581 hex	8000 067F hex	80000000 hex
Description:	Using these SDO servers, it is possible to access manufacturer-specific CANopen objects of the supported drive objects.		
Index:	[0] = COB-ID drive object from the client to the server   [1] = COB-ID drive object from the server to the client		
Dependency:	Refer to: r8610		
Note:	SDO: Service Data Object		
	Regarding the drive object Control Unit:		
	Regarding the drive object with closed-loop control functions:		


p8620	CAN Node-ID / Node ID		
CU_S120_PN (CAN),	Can be changed: $T$	Calculated: -	Access level: 2
CU_S150_PN (CAN),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S120_DP (CAN), CU S150 DP (CAN)	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	127	126
Description:	Display or setting of the CANopen Node ID.		
	The Node ID can be set as follows:		
	1) Using the address switch on the Control Unit.		
	--> p8620 can then only be read and displays the selected Node ID.		
	--> A change only becomes effective after a POWER ON.		
	--> CANopen Node ID and PROFIBUS address are identical.		
	2) Using p8620		
	--> Only if address 0 is set using the address switch.		
	--> the Node ID is set as standard to 126.		
	--> A change only becomes effective after save and POWER ON.		
Dependency:	Refer to: r8621		
Note:	Every node ID change only becomes effective after a POWER ON.		
	The active node ID is displayed in r8621.		
	The parameter is not influenced by setting the factory setting.		
	It is only possible to independently set CANopen node ID and the PROFIBUS address using p0918 and p8620 (prerequisite: the address 0 is set for the address switch).		


r8621	CAN Node-ID active /		
CU_S120_PN (CAN),   CU_S150_PN (CAN),   CU_S120_DP (CAN),   CU_S150_DP (CAN)	Can be changed: -   Data type: Unsigned8   P-Group: Communications   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   -	Access level: 3   Func. diagram: -   Unit selection: -   Expert list: 1   Factory setting
Description:   Dependency:	Displays the active CANope   Refer to: p8620		
p8622   CU_S120_PN (CAN),   CU_S150_PN (CAN),   CU_S120_DP (CAN),   CU_S150_DP (CAN)	CAN bit rate / Bit rate   Can be changed: T   Data type: Integer16   P-Group: -   Not for motor type: -   Min   0	Calculated:   Dyn. index:   Unit group: -   Scaling: -   Max   7	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   6
Description:	Setting the bit rate for the C   The appropriate bit timings   Example:   Bit rate $=20 \mathrm{kbit} / \mathrm{s}$--> p8622	are defined in   ed bit timing is	sub-index.
Value:	0: $1 \mathrm{Mbit} / \mathrm{s}$   1: $800 \mathrm{kbit} / \mathrm{s}$   2: $500 \mathrm{kbit} / \mathrm{s}$   3: $250 \mathrm{kbit} / \mathrm{s}$   4: $125 \mathrm{kbit} / \mathrm{s}$   5: $50 \mathrm{kbit} / \mathrm{s}$   6: $20 \mathrm{kbit} / \mathrm{s}$   7: $10 \mathrm{kbit} / \mathrm{s}$		
Dependency: Note:	Refer to: p8623   The parameter is not influen	e factory setting	

### 2.2 List of parameters

p8623[0...7]	CAN Bit Timing selection / Bit timing select		
CU_S120_PN (CAN), CU_S150_PN (CAN), CU_S120_DP (CAN), CU_S150_DP (CAN)	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	000F 7FFF hex	[0] 1405 hex
			[1] 1605 hex
			[2] $1 \mathrm{C05}$ hex
			[3] 1COB hex
			[4] 1C17 hex
			[5] 1C3B hex
			[6] 00021 C 15 hex
			[7] 0004 1C2B hex
Description:	Sets the bit timing for the C_CAN controller to the associated and selected bit rate (p8622).		
	Bits are distributed to the following parameters of the C_CAN controller in p8623[0...7]:		
	Bit 0 ... 5: BRP (Baud Rate Prescaler)		
	Bit 6 ... 7: SJW (Synchronization Jump Width)		
	Bit $8 . . .11$ : TSEG1 (Time Segment 1, before the sampling point)		
	Bit 12 ... 14: TSEG2 (Time Segment 2, after the sampling point)		
	Bit 15: Reserved		
	Bit 16 ... 19: BRPE (Baud Rate Prescaler Extension)		
	Bit 20 ... 31: Reserved		
	Example:		
	Bit rate $=20 \mathrm{kbit} / \mathrm{s}$--> p8622 $=6$--> associated bit timing is in p8623[6] --> 0001 2FB6		
Recommendation: Index:	Use the factory setting when setting the bit timing.		
	[0] $=1 \mathrm{Mbit} / \mathrm{s}$		
	[1] $=800 \mathrm{kbit} / \mathrm{s}$		
	[2] $=500 \mathrm{kbit} / \mathrm{s}$		
	[3] $=250 \mathrm{kbit} / \mathrm{s}$		
	[4] $=125 \mathrm{kbit} / \mathrm{s}$		
	[5] $=50 \mathrm{kbit} / \mathrm{s}$		
	$[6]=20 \mathrm{kbit} / \mathrm{s}$		
	$[7]=10 \mathrm{kbit} / \mathrm{s}$		
Dependency:	Refer to: p8622		
Note:	The parameter is not infl	e factory setting.	



### 2.2 List of parameters



p8684	CAN NMT state after booting / NMT state aft boot		
CU_S120_PN (CAN),	Can be changed: T	Calculated: -	
CU_S150_PN (CAN),	Data type: Integer16	Dyn. index: -	Access level: 3
CU_S120_DP (CAN),	P-Group: -	Unit group: -	Unit selection: -
CU_S150_DP (CAN)	Scaling: -	Expert list: 1	
	Not for motor type: -	Max	Factory setting
	Min	127	127
	4		
Description:	Sets the CANopen NMT state that is effective after booting.		
Value:	4:	Stopped	
	5:	Operational	

Dependency:
Note:

p8685	CAN NMT states / NMT states		
CU_S120_PN (CAN),	Can be changed: U, T	Calculated: -	Access level: 3
CU_S150_PN (CAN),	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S120_DP (CAN),	P-Group: Communications	Unit group: -	Unit selection: -
CU_S150_DP (CAN)	Not for motor type: -	Max	Expert list: 1


p8700[0...1]	CAN Receive PDO 1 / Receive PDO 1		
SERVO (CAN),	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex
			[1] 00FE hex
Description:	Sets the communication parameters for CANopen Receive Process Data Object 1 (RPDO 1).		
Index:	[1] = PDO transmission type		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANopen object 1400 hex +40 hex *x (x: Drive number $0 \ldots 7$ ).		
	Transmission types 0, 1, FE and FF can be set.		
	PDO: Process Data Object		


p8701[0...1]	CAN Receive PDO 2 / Receive PDO 2		
SERVO (CAN),	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex
			[1] 00FE hex
Description:	Sets the communication parameters for CANopen Receive Process Data Object 2 (RPDO 2).		
Index:	[0] = PDO COB-ID		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANopen object 1401 hex +40 hex * x (x: Drive number $0 \ldots 7$ ).		
	Transmission types 0, 1, FE and FF can be set.		
	PDO: Process Data Object		


p8702[0..1]	CAN Receive PDO 3 / Receive PDO 3		
SERVO (CAN),	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex
			[1] 00FE hex
Description:	Sets the communication parameters for CANopen Receive Process Data Object 3 (RPDO 3).		
Index:	[0] = PDO COB-ID		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANopen object 1402 hex +40 hex *x (x: Drive number $0 \ldots 7$ ).		
	Transmission types 0, 1, FE and FF can be set.		
	PDO: Process Data Object		


p8703[0...1]	CAN Receive PDO 4 / Receive PDO 4		
SERVO (CAN),	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex
			[1] 00FE hex
Description:	Sets the communication parameters for CANopen Receive Process Data Object 4 (RPDO 4).		
Index:	[0] = PDO COB-ID		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANopen object 1403 hex +40 hex *x (x: Drive number $0 \ldots 7$...		
	Transmission types 0, 1, FE and FF can be set.		
	PDO: Process Data Object		


p8704[0...1]	CAN Receive PDO 5 / Receive PDO 5		
SERVO (CAN), VECTOR (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex
			[1] 00FE hex
Description: Index:	Sets the communication parameters for CANopen Receive Process Data Object 5 (RPDO 5).$\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \end{aligned}$		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANope   Transmission types 0, 1, FE   PDO: Process Data Object	x +40 hex * $x$ (x:	
p8705[0..1]	CAN Receive PDO 6 / Receive PDO 6		
SERVO (CAN), VECTOR (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex   [1] 00FE hex
Description: Index:	Sets the communication parameters for CANopen Receive Process Data Object 6 (RPDO 6).$\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \end{aligned}$		
Dependency: Note:	A valid COB-ID can only be Corresponds to the CANope Transmission types 0, 1, FE PDO: Process Data Object	(existing) chan $x+40$ hex * $x$ (x: et.	
p8706[0..1]	CAN Receive PDO 7 / Receive PDO 7		
SERVO (CAN), VECTOR (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex
			[1] 00FE hex
Description: Index:	$\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \end{aligned}$		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANope   Transmission types 0, 1, FE   PDO: Process Data Object	$\text { x + } 40 \text { hex * x (x: }$ et.	


p8707[0...1]	CAN Receive PDO 8 / Receive PDO 8		
SERVO (CAN),	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex
			[1] 00FE hex
Description:	Sets the communication parameters for CANopen Receive Process Data Object 8 (RPDO 8).		
Index:	[0] = PDO COB-ID		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANopen object 1407 hex +40 hex * x (x: Drive number $0 \ldots 7$ ).		
	Transmission types 0, 1, FE and FF can be set.		
	PDO: Process Data Object		


p8710[0...3]	CAN Receive Mapping for RPDO 1 / Mapping RPDO 1		
SERVO (CAN),	Can be changed: C1(3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204,9206
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex

Description: Sets the mapping parameters for CANopen Receive Process Data Object 1 (RPDO 1).

## Index:

[0] = Mapped object 1
[1] = Mapped object 2
[2] = Mapped object 3
[3] = Mapped object 4
Note: Corresponds to the CANopen object 1600 hex +40 hex * $x$ (x: Drive number $0 \ldots 7$ ).
Dummy mapping not supported.
The parameter can only be written online when the associated COB ID in p870x is set as invalid.

p8711[0...3]	CAN Receive Mapping for RPDO 2 / Mapping RPDO 2		
SERVO (CAN),	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 2 (RPDO 2).		
Index:	$[0]=$ Mapped object 1 $[1]=$ Mapped object 2 $[2]=$ Mapped object 3 $[3]=$ Mapped object 4		
Note:	Corresponds to the CANopen object 1601 hex +40 hex *x (x: Drive number $0 \ldots 7$ ).		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		


p8712[0...3]	CAN Receive Mapping for RPDO 3 / Mapping RPDO 3		
SERVO (CAN),	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 3 (RPDO 3).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1602 hex + 40 hex *x (x: Drive number $0 \ldots 7$...		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		


p8713[0...3]	CAN Receive Mapping for RPDO 4 / Mapping RPDO 4		
SERVO (CAN),	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 4 (RPDO 4).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1603 hex +40 hex * x (x: Drive number $0 \ldots 7$...		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		


p8714[0...3]	CAN Receive Mapping for RPDO 5 / Mapping RPDO 5		
SERVO (CAN),	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 5 (RPDO 5).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1604 hex + 40 hex *x (x: Drive number $0 \ldots 7$ ).		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		


p8715[0...3]	CAN Receive Mapping for RPDO 6 / Mapping RPDO 6		
SERVO (CAN),	Can be changed: C1(3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 6 (RPDO 6).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1605 hex +40 hex * x (x: Drive number $0 \ldots .7$ ).		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		


p8716[0...3]	CAN Receive Mapping for RPDO 7 / Mapping RPDO 7		
SERVO (CAN),	Can be changed: $\mathrm{C} 1(3)$, T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 7 (RPDO 7).		
Index:	[ 0 ] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1606 hex +40 hex *x (x: Drive number $0 \ldots . .7$ ).		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		


p8717[0...3]	CAN Receive Mapping for RPDO 8 / Mapping RPDO 8		
SERVO (CAN),	Can be changed: C1(3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 8 (RPDO 8).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANope Dummy mapping not suppor The parameter can only be w	$\text { ex + } 40 \text { hex * x (x: }$	7).   is set as invalid.



### 2.2 List of parameters

p8722[0...4]	CAN Transmit PDO 3 / Transmit PDO 3
SERVO (CAN), VECTOR (CAN)	Can be changed: C1(3), T Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: - Func. diagram: 9208,9210   P-Group: Communications Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0000 hex C000 06DF hex $[0]$ C000 06DF hex     $[1] 00 \mathrm{FE}$ hex     $[2] 0000$ hex    $[3] 0000$ hex      $[4] 0000$ hex
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 3 (TPDO 3). $\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & {[2]=\text { Inhibit time (in } 100 \mu \mathrm{~s} \text { ) }} \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$
Dependency:   Notice:   Note:	A valid COB-ID can only be set for the available (existing) channel.   For inhibit time and event timer, the following apply:   A value that is not a multiple integer of the CANopen sampling time is rounded-off. Corresponds to the CANopen object 1802 hex +40 hex * $x$ (x: Drive number 0 ... 7). Transmission types $0,1 \ldots$ F0, FE and FF can be set.   p8848: CANopen sampling time   PDO: Process Data Object
p8723[0...4]	CAN Transmit PDO 4 / Transmit PDO 4
SERVO (CAN), VECTOR (CAN)	Can be changed: C1(3), T Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: - Func. diagram: 9208,9210   P-Group: Communications Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0000 hex C000 06DF hex $[0]$ C000 06DF hex     $[1] 00 \mathrm{FE}$ hex    $[2] 0000$ hex     $[3] 0000$ hex      $[4] 0000$ hex
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 4 (TPDO 4). $\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$
Dependency: Notice:	A valid COB-ID can only be set for the available (existing) channel.   For inhibit time and event timer, the following apply:   A value that is not a multiple integer of the CANopen sampling time is rounded-off.
Note:	Corresponds to the CANopen object 1803 hex +40 hex * $x$ ( $x$ : Drive number $0 \ldots 7$ ). Transmission types $0,1 \ldots$ F0, FE and FF can be set.   p8848: CANopen sampling time   PDO: Process Data Object



### 2.2 List of parameters

p8726[0...4]	CAN Transmit PDO 7 / Transmit PDO 7		
SERVO (CAN), VECTOR (CAN)	Can be changed: $\mathrm{C} 1(3)$, T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	C000 06DF hex	[0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 7 (TPDO 7).		
	[1] = PDO transmission type		
	[2] = Inhibit time (in $100 \mu \mathrm{~s}$ )		
	[3] = Reserved		
	[4] = Event timer (in ms)		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Notice:	For inhibit time and event timer, the following apply:		
	A value that is not a multiple integer of the CANopen sampling time is rounded-off.		
Note:	Corresponds to the CANopen object 1806 hex +40 hex * x (x: Drive number $0 \ldots .7$ ).		
	Transmission types $0,1 \ldots$ F0, FE and FF can be set.		
	p8848: CANopen sampling timePDO: Process Data Object		

## p8727[0...4] CAN Transmit PDO 8 / Transmit PDO 8

SERVO (CAN), VECTOR (CAN)

Can be changed: C1(3), T
Data type: Unsigned32
P-Group: Communications
Not for motor type: -
Min
0000 hex

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
C000 06DF hex

Access level: 3
Func. diagram: 9208
Unit selection: -
Expert list: 1
Factory setting
[0] C000 06DF hex
[1] 00FE hex
[2] 0000 hex
[3] 0000 hex
[4] 0000 hex

Description: Sets the communication parameters for CANopen Transmit Process Data Object 8 (TPDO 8).
[0] = PDO COB-ID
[1] = PDO transmission type
[2] = Inhibit time (in $100 \mu \mathrm{~s}$ )
[3] = Reserved
[4] = Event timer (in ms)
Dependency: A valid COB-ID can only be set for the available (existing) channel.
Notice:
For inhibit time and event timer, the following apply:
A value that is not a multiple integer of the CANopen sampling time is rounded-off.
Note: Corresponds to the CANopen object 1807 hex +40 hex ${ }^{*} \mathrm{x}$ (x: Drive number $0 \ldots 7$ ).
Transmission types $0,1 \ldots$ F0, FE and FF can be set.
p8848: CANopen sampling time
PDO: Process Data Object

p8730[0...3]	CAN Transmit Mapping for TPDO 1 / Mapping TPDO 1		
SERVO (CAN),	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 1 (TPDO 1).		
Index:	[0] = Mapped object 1		
	[1] = Mapped object 2		
	[2] = Mapped object 3		
	[3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A00 hex + 40 hex * x (x: Drive number $0 \ldots 7$ ).		
	The parameter can only be written online when the associated COB ID in p 872 x is set as invalid.		


p8731[0..3]	CAN Transmit Mapping for TPDO 2 / Mapping TPDO 2		
SERVO (CAN),	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 2 (TPDO 2).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A01 hex + 40 hex * x (x: Drive number $0 \ldots 7$ ).		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		


p8732[0..3]	CAN Transmit Mapping for TPDO 3 / Mapping TPDO 3		
SERVO (CAN),	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 3 (TPDO 3).		
Index:	[0] = Mapped object 1		
	[1] = Mapped object 2		
	[2] = Mapped object 3		
	[3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A02 hex + 40 hex * x (x: Drive number $0 \ldots 7$ ).		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		


p8733[0...3]	CAN Transmit Mapping for TPDO 4 / Mapping TPDO 4		
SERVO (CAN),	Can be changed: C1(3), T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208,9210
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 4 (TPDO 4).		

### 2.2 List of parameters

Index:	[ 0 ] = Mapped object 1
	[1] = Mapped object 2
	[2] = Mapped object 3
	[3] = Mapped object 4
Note:	Corresponds to the CANopen object 1A03 hex + 40 hex * x (x: Drive number $0 \ldots .7$ ).
	The parameter can only be written online when the associated COB ID in p872x is


p8734[0...3]	CAN Transmit Mapping for TPDO 5 / Mapping TPDO 5		
SERVO (CAN),	Can be changed: $\mathrm{C} 1(3)$, T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 5 (TPDO 5).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:			
	The parameter can only be written online when the associated COB ID in p 872 x is set as invalid.		


p8735[0...3]	CAN Transmit Mapping for TPDO 6 / Mapping TPDO 6		
SERVO (CAN),	Can be changed: $\mathrm{C} 1(3)$, T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 6 (TPDO 6).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A05 hex +40 hex * x (x: Drive number $0 \ldots . .7$ ).		
	The parameter can only be w	en the associated	is set as invalid.


p8736[0...3]	CAN Transmit Mapping for TPDO 7 / Mapping TPDO 7		
SERVO (CAN),	Can be changed: $\mathrm{C} 1(3)$, T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 7 (TPDO 7).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A06 hex + 40 hex * x (x: Drive number 0 ... 7).		
	written online when the associated COB ID		


p8737[0...3]	CAN Transmit Mapping for TPDO 8 / Mapping TPDO 8		
SERVO (CAN), VECTOR (CAN)	Can be changed: C1(3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 8 (TPDO 8).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A07 hex + 40 hex * x (x: Drive number $0 \ldots 7$ ).		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		
r8739	Minimum CAN processing time / t_processing min		
CU_S120_PN (CAN),   CU_S150_PN (CAN),   CU_S120_DP (CAN),   CU_S150_DP (CAN)	Can be changed: -   Data type: FloatingPoint32	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ $\mu \mathrm{s}$ ]	- [ $\mu \mathrm{s}$ ]	- [ $\mu \mathrm{s}$ ]
Description:	The total number of valid TPDO of all CANopen supported drive objects is defined using the following ratio CAN sampling time (p8848) / CAN minimum processing time (r8739)		
Dependency:	Refer to: r8742, p8848		
	Refer to: A08758		
Note:	For r8739 = 0.0, the following applies:		
	The total number of valid TPDO of all CANopen-supported drive objects is not limited.		
r8742[0...1]	CAN PDO available number / PDO available no.		
CU_S120_PN (CAN), CU_S150_PN (CAN), CU_S120_DP (CAN), CU_S150_DP (CAN)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the RPDO or TPDO channels that are still available.		
Index:	[0] = RPDO		
Dependency:	Refer to: A08758		
Note:	RPDO: Receive Process Data Object		
	TPDO: Transmit Process Data Object		
	The total number of valid RP hardware.   The total number of valid TP CAN sampling time (p8848)	en supported dri   en supported driv processing time	d RPDO as a result of using the following ra

### 2.2 List of parameters



Note:	Index 0 corresponds to the CANopen object 5800 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 1 corresponds to the CANopen object 5801 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 2 corresponds to the CANopen object 5802 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 3 corresponds to the CANopen object 5803 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 4 corresponds to the CANopen object 5804 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 5 corresponds to the CANopen object 5805 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 6 corresponds to the CANopen object 5806 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 7 corresponds to the CANopen object 5807 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 8 corresponds to the CANopen object 5808 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 9 corresponds to the CANopen object 5809 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 10 corresponds to the CANopen object 580A hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 11 corresponds to the CANopen object 580B hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 12 corresponds to the CANopen object 580C hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 13 corresponds to the CANopen object 580D hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 14 corresponds to the CANopen object 580E hex +80 hex * x (x: Drive number $0 \ldots 7$ ).
	Index 15 corresponds to the CANopen object 580F hex +80 hex * x (x: Drive number $0 \ldots 7$ ).


p8746[0...15]	CI: CAN free PZD send objects 16 bit / Free PZD send 16		
SERVO (CAN), VECTOR (CAN)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for free PZD send objects 16 bit for SDO transfer.		
	An index can only be used, if the corresponding object has not been mapped in a PDO.		
Index:	[0] = PZD object 0		
	[1] = PZD object 1		
	[2] = PZD object 2		
	[3] = PZD object 3		
	[4] = PZD object 4		
	[5] = PZD object 5		
	[6] = PZD object 6		
	[7] = PZD object 7		
	[8] = PZD object 8		
	[9] = PZD object 9		
	[10] = PZD object 10		
	[11] = PZD object 11		
	[12] = PZD object 12		
	[13] = PZD object 13		
	[14] = PZD object 14		
	[15] = PZD object 15		
Note:	Index 0 corresponds to the CANopen object 5810 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 1 corresponds to the CANopen object 5811 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 2 corresponds to the CANopen object 5812 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 3 corresponds to the CANopen object 5813 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 4 corresponds to the CANopen object 5814 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 5 corresponds to the CANopen object 5815 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 6 corresponds to the CANopen object 5816 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 7 corresponds to the CANopen object 5817 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ).		
	Index 8 corresponds to the CANopen object 5818 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 9 corresponds to the CANopen object 5819 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 10 corresponds to the CANopen object 581A hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 11 corresponds to the CANopen object 581B hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 12 corresponds to the CANopen object 581C hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		

Index 13 corresponds to the CANopen object 581D hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 14 corresponds to the CANopen object 581E hex +80 hex * $x$ ( $x$ : Drive number $0 \ldots 7$ ). Index 15 corresponds to the CANopen object 581F hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ).

r8747[0...7]	CO: CAN free PZD receive objects 32 bit / Free PZD recv 32		
SERVO (CAN), VECTOR (CAN)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Access to free PZD receive objects 32 bit using the SDO transfer.		
	An index can only be used, if the corresponding object has not been mapped in a PDO.		
Index:	[0] = PZD object 0		
	[1] = PZD object 1		
	[2] = PZD object 2		
	[3] = PZD object 3		
	[4] = PZD object 4		
	[5] = PZD object 5		
	[6] = PZD object 6		
	[7] = PZD object 7		
Note:	Index 0 corresponds to the CANopen object 5820 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 1 corresponds to the CANopen object 5821 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 2 corresponds to the CANopen object 5822 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 3 corresponds to the CANopen object 5823 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ).		
	Index 4 corresponds to the CANopen object 5824 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 5 corresponds to the CANopen object 5825 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 6 corresponds to the CANopen object 5826 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 7 corresponds to the CANopen object 5827 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		


p8748[0...7]	CI: CAN free PZD send objects 32 bit / Free PZD send 32		
SERVO (CAN),	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for free PZD send objects 32 bit for SDO transfer.		
	An index can only be used, if the corresponding object has not been mapped in a PDO.		
Index:	[0] = PZD object 0		
	[1] = PZD object 1		
	[2] = PZD object 2		
	[3] = PZD object 3		
	[4] = PZD object 4		
	[5] = PZD object 5		
	[6] = PZD object 6		
	[7] = PZD object 7		
Note:	Index 0 corresponds to the CANopen object 5830 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 1 corresponds to the CANopen object 5831 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 2 corresponds to the CANopen object 5832 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ).		
	Index 3 corresponds to the CANopen object 5833 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 4 corresponds to the CANopen object 5834 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 5 corresponds to the CANopen object 5835 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 6 corresponds to the CANopen object 5836 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		
	Index 7 corresponds to the CANopen object 5837 hex +80 hex * x (x: Drive number $0 \ldots 7$ ).		


r8750[0...15]   SERVO (CAN),   VECTOR (CAN)	CAN mapped 16-bit receive objects / RPDO 16 mapped		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the mapped 16-bit receive CANopen objects in the process data buffer. Example:		
Index:	$\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & \text { [8] = PZD } 9 \\ & \text { [9] = PZD } 10 \\ & \text { [10] = PZD } 11 \\ & \text { [11] = PZD } 12 \\ & \text { [12] = PZD } 13 \\ & {[13]=\text { PZD } 14} \\ & \text { [14] = PZD } 15 \\ & \text { [15] = PZD } 16 \end{aligned}$		
r8751[0..15]	CAN mapped 16-bit transmit objects / TPDO 16 mapped		
SERVO (CAN),	Can be changed: -	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min		Factory setting
	-	-	-
Description: Index:	Displays mapped 16-bit tran $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & {[10]=\text { PZD } 11} \\ & {[11]=\text { PZD } 12} \\ & {[12]=\text { PZD } 13} \\ & {[13]=\text { PZD } 14} \\ & {[14]=\text { PZD } 15} \\ & {[15]=\text { PZD } 16} \end{aligned}$	bjects in the pro	
Dependency:	Refer to: 88750		

### 2.2 List of parameters



r8761[0...14]	CAN mapped 32-bit transmit objects / TPDO 32 mapped		
SERVO (CAN),	Can be changed: -	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting

Description: Displays mapped 32-bit transmit CANopen objects in the process data buffer.

Index:	[0] = PZD $1+2$
	[1] = PZD $2+3$
	[2] $=$ PZD $3+4$
	[3] $=$ PZD $4+5$
	$[4]=$ PZD $5+6$
	[5] $=$ PZD $6+7$
	[6] $=$ PZD $7+8$
	[7] $=$ PZD $8+9$
	[8] $=$ PZD $9+10$
	[ 9 ] P PZD $10+11$
	[10] = PZD $11+12$
	[11] = PZD 12 + 13
	[12] $=$ PZD 13 + 14
	[13] = PZD $14+15$
	[14] = PZD $15+16$


r8762	CO: CAN operating mode display / Op mode display		
SERVO (CAN),	Can be changed: -	Calculated: -	Access level: 3
VECTOR (CAN)	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the currently effective CANopen operating mode.		
	To send the CANopen object 0x6061 mapped in a TPDO, this parameter can be correspondingly interconnected in		
	the PZD interface.		



p8787	BI: CAN status word bit	s word bit 1	
SERVO (CAN), VECTOR (CAN)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9226
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for bit 15 of the CANopen status word.   Refer to: r8784		
Dependency:			
p8790	CAN control word - auto interconnection / STW interc auto		
SERVO (CAN), VECTOR (CAN)	Can be changed: C1(3), T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description: Value:	Sets the automatic BICO interconnection of the CANopen control word.		
	0 : No interconnection   1: Interconnection		
Dependency:   Note:	Refer to: r2050, r2090, r2091, r2092, r2093, r8750, r8795, r8850, r8890, r8891, r8892, r8893		
	The following BICO interconnections are automatically established if the CANopen control word is mapped at one of the locations $x=0 \ldots 3$ in the receive process data buffer.		
	For SINAMICS S120 with CBC10, the PZD interface IF2 is used:		
	BI: p0840.0 = r889x. 0		
	BI: p0844.0 = r889x. 1		
	BI: p0848.0 = r889x. 2		
	BI: p0852.0 = r889x. 3		
	BI: p2103.0 = r889x. 7		
	For SINAMICS S110, the PZD interface IF1 is used:		
	BI: p0840.0 = r209x. 0		
	BI: p0844.0 = r209x. 1		
	BI: p0848.0 = r209x. 2		
	BI: p0852.0 $=$ r209x. 3		
	BI: p2103.0 = r209x. 7		
	The write access is rejected if a CANopen control word is not mapped at one of these locations.		
	This causes the commissioning tool to interrupt the project download.		
$\overline{\mathrm{p} 8791}$	CAN stop option code / Stop opt_code		
SERVO (CAN), VECTOR (CAN)	Can be changed: $\mathrm{C} 1(3)$, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1	3	-1
Description: Value:	Setting for the CANopen control word bit 8 "Stop" (CANopen STW.8).		
Value:	-1: No interconnection   1: Interconnection CANopen   3: Interconnection CANopen	p1142   p1140	
Dependency:	Refer to: r8750, r8795, r8850		
Note:	Corresponds to the CANopen object 605D hex +800 hex * $x$ (x: drive number $0 \ldots .7$ ).		
	The BICO interconnection is established, if the CANopen control word is mapped at one of the locations $x=0 \ldots 3$ in the receive process data buffer.		



### 2.2 List of parameters

Note:	For index [0]:		
	Corresponds to the CANopen object 60FF hex + 800 hex * x (x: Drive number $0 \ldots 7$ ).		
	The displayed parameter value is scaled via the reference speed p2000:		
	40000000 hex corresponds to p2000		
r8797[0]	CO: CAN profile torque mode 116 setpoints / Pr Tq mod I16 set		
SERVO (CAN), VECTOR (CAN)	Can be changed: -	Calculated: -	Acc
	Data type: Integer16	Dyn. index: -	Fu
	P-Group: -	Unit group: -	Unit
	Not for motor type: -	Scaling: 4000H	Ex
	Min	Max	Fact
	-	-	-
Description:	Display and connector output to interconnect standardized I16 setpoint CANopen objects of the profile torque mode for SDO transfer.		
	An index can only be used, if the corresponding object has not been mapped in a PDO.		
Index:	[0] = Target torque		
Note:	For index [0]:		
	Corresponds to the CANopen object 6071 hex +800 hex * x (x: Drive number $0 \ldots 7)$.		
	The displayed parameter value is scaled via the reference torque p2003:		
	4000 hex corresponds to p2003		


p8798[0..1]	CAN speed conversion factor / n_conv_factor		
SERVO (CAN), VECTOR (CAN)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	4294967295	1
Description:	The factor converts the required velocity units into the internal velocity units ( $\mathrm{U} / \mathrm{s}$ ).		
	With the factory setting, for CANopen, the velocity units are increments/second.		
	The parameter corresponds to the CANopen object 6094 hex.		
	The internal velocity is calculated as follows:		
	n_set_internal = object 6094.1 / object 6094.2 * 1/(p0408 * $2^{\wedge}$ p0418) * n_set_bus		
Index:	$\begin{aligned} & {[0]=\text { Numerator }} \\ & {[1]=\text { Denominator }} \end{aligned}$		


p8806[0...53]	Identification and Maintenance 1/I\&M 1		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Scaling: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Max	Expert list: 1
CU_S120_DP,	Min	Factory setting	
CU_S150_DP	-		
	Parameters for the PROFINET data set "Identification and Maintenance 1" (I\&M 1).		
Description:	This information is known as "System identifier" and "Location identifier".		
	Refer to: p8807, p8808		
Dependency:	Only characters belonging to the standard ASCII character set may be used (32 dec to 126 dec).		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:	For p8806[0...31]:		
	System identifier.		
	For p8806[32...53]:		



r8809[0...53]	Identification and Maintenance 4 / I\&M 4		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Max	Expert list: 1
CU_S120_DP,	Min	Factory setting	
CU_S150_DP	-	-	
	Parameters for the PROFINET data set "Identification and Maintenance 4" (I\&M 4).		
Description:	This information is known as "Signature".		

### 2.2 List of parameters

Note: | Parameter r8809 contains the information described below. |
| :--- |
| For r8809[0...3]: |
| Contains the value from r9781[0] "SI change tracking checksum functional". |
| For r8809[4...7]: |
| Contains the value from r9782[0] "SI change tracking time stamp checksum functional". |
| For r8809[8...53]: |
| Reserved. |

p8811 SINAMICS Link project selection / Project sel
CBE20)
CU_S150_PN (PN
CBE20),
CU_S120_DP (PN
CBE20),
CU_S150_DP (PN
CBE20)

Description: Value:

Note: SINAMICS Link requires that the appropriate CBE20 firmware version is selected ( $\mathrm{p} 8835=3$ ).
The parameter must be set the same for all participants.
A change only becomes effective after a POWER ON.
The parameter is not influenced by setting the factory setting.


p8815[0...1]	IF1/IF2 PZD functionality selection / IF1/IF2 PZD fct		
CU_S120_PN,	Can be changed: C 1 (1)	Calculated: -	Access level: 3
CU_S150_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_S120_DP, } \\ & \text { CU_S150_DP } \end{aligned}$	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	1
Description:	Selects the PZD interface for the clock cycle synchronization functionality and PROFIsafe.		
Value:	$\begin{array}{ll} \text { 1: } & \text { Interface } 1 \text { (IF1) } \\ \text { 2: } & \text { Interface } 2 \text { (IF2) } \end{array}$		
Index:	$\begin{aligned} & {[0]=\text { Isochronous mode }} \\ & {[1]=\text { PROFIsafe }} \end{aligned}$		
Dependency:	Refer to: p8839		
Note:	A change only becomes effe Example:   p8815[0] = 1: IF1 supports the   p8815[1] = 2: IF2 supports	ER ON, reset o mode.	


p8835	CBE20 firmware selection / CBE20 FW sel		
CU_S120_PN (PN	Can be changed: C1(1)	Calculated: -	Access level: 3
CBE20),	Data type: Integer16	Dyn. index: -	Func. diagram: 2197,2198
CU_S150_PN (PN	P-Group: Communications	Unit group: -	Unit selection: -
CBE20),	Scaling: -	Expert list: 1	
CU_S120_DP (PN	Not for motor type: -	Factory setting	
CBE20),	Min	1	
CU_S150_DP (PN	1	99	
CBE20)			
Description:	Selects the firmware version for the CBE20.		
Value:	$1: \quad$ PROFINET Device		
	$2: \quad$ PROFINET gate		
	$3: \quad$ SINAMICS Link		
	$4:$	EtherNet/IP	
	$5: \quad$ Modbus TCP		
	$99: \quad$ Customer-specific from the OEM directory		
	A change only becomes effective after a POWER ON.		
	The parameter is not influenced by setting the factory setting.		
	CBE20: Communication Board Ethernet 20		


p8836	SINAMICS link node address / Node address		
CU_S120_PN (PN	Can be changed: C1(1)	Calculated: -	Access level: 3
CBE20),	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2198
$\text { CBE } 20 \text { ), }$	P-Group: Communications	Unit group: -	Unit selection: -
CU_S120_DP (PN	Not for motor type: -	Scaling: -	Expert list: 1
CBE20),	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP (PN } \\ & \text { CBE20) } \end{aligned}$	0	64	0
Description:	Selects the node address for the SINAMICS Link on the Communication Board Ethernet 20 (CBE20). p8836 $=0$ : SINAMICS Link deactivated p8836 $=1 \ldots$ 64: SINAMICS Link node address		
Dependency:	Refer to: p8811, p8835		
Note:	The maximum number of pe SINAMICS Link requires tha   A change only becomes effe The parameter is not influen	nt addresses is CBE20 firmwa WER ON.   e factory setting	selection p8811. (p8835 = 3).


p8837	IF2 STW1.10 = 0 mode / IF2 STW1.10=0
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM41, ENC	Can be changed: T Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Func. diagram: -   P-Group: Communications Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 2 2
Description:	Sets the processing mode for PROFIdrive STW1.10 "master control by PLC".   Generally, control world 1 is received with the first receive word (PZD1) (this is in conformance to the PROFIdrive profile). The behavior of STW1.10 $=0$ corresponds to that of the PROFIdrive profile. For other applications that deviate from this, the behavior can be adapted using this particular parameter.
Value:	```0 : Freeze setpoints and continue to process sign-of-life Freeze setpoints and sign-of-life Do not freeze setpoints```
Recommendation: Note:	Do not change the setting p2037 $=0$.   If the STW1 is not transferred according to the PROFIdrive with PZD1 (with bit 10 "master control by PLC"), then p2037 should be set to 2 .
p8839[0...1]	PZD interface hardware assignment / PZD IF HW assign
CU_S120_PN, CU S150 PN, CU S120 DP, CU_S150_DP	Can be changed: C1(1) Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Func. diagram: 2197, 2198   P-Group: Communications Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 99 99
Description: Value:	Assignment of the hardware for cyclic communications via PZD interface 1 (IF1) and interface 2 (IF2).   0: Inactive   1: Control Unit onboard   2: COMM BOARD   99: Automatic
Index:	$\begin{aligned} & {[0]=\text { Interface } 1} \\ & {[1]=\text { Interface } 2} \end{aligned}$
Dependency:	Refer to: p2030, p8815
Note:	For value $=99$ (automatic) the following applies:   - if a COMM BOARD is not inserted, then the onboard interface (PROFIBUS/PROFINET/USS) communicates via IF1.   - if a CBE20 is inserted, then the following applies:   -- CU320-2 DP: PROFINET CBE20 communicates via IF1 and PROFIBUS/USS via IF2.   -- CU320-2 PN: PROFINET onboard communicates via IF1 and PROFINET CBE20 via IF2.   - CAN CBC10 always communicates via IF2.   For a value not equal to 99 (automatic) the following applies:   - both indices must be set to a number not equal to 99 (automatic).   A change only becomes effective after POWER ON, reset or download.


p8840	COMM BOARD monitoring time / CB t_monit		
CU_S120_PN (COMM	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
BOARD, PN CBE20),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S150_PN (COMM   BOARD, PN CBE20),	P-Group: Communications	Unit group: -	Unit selection: -
CU_S120_DP (COMM	Not for motor type: -	Scaling: -	Expert list: 1
BOARD, PN CBE20),	Min	Max	Factory setting
BOARD, PN CBE20)	0 [ms]	65535000 [ms]	20 [ms]
Description:	Sets the monitoring time to If, during this time, the Contr message is output.	ss data receive receive any proc	MM BOARD, then


Dependency:	Refer to: p 8835
Note:	This monitoring function only monitors the connection between the Control Unit and COMM BOARD and not the data
traffic on the fieldbus.	
	For CBE20, the parameter is only active for firmware version "SINAMICS Link" or "EtherNet/IP" (p8835 $=3,4,5)$.
	For CBE20 firmware version Modbus TCP $(p 8835=5)$ then the fieldbus data traffic is also monitored.
	Value $=0:$ Monitoring is deactivated.


p8841[0...239]	COMM BOARD send configuration data / CB s config_dat		
CU_S120_PN (COMM	Can be changed: U, T	Calculated: -	Access level: 3
BOARD, PN CBE20),	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S150_PN (COMM	P-Group: Communications	Unit group: -	Unit selection: -
BOARD, PN CBE20),	Scaling: -	Expert list: 1	
CU_S120_DP (COMM	Not for motor type: -	Max	Factory setting
BOARD, PN CBE20),	Min	05535	
CU_S150_DP (COMM	0		
BOARD, PN CBE20)			
Description:	Sets the send configuration data for the COMM BOARD.		
	The setting is activated with p8842.		
Dependency:	Refer to: p8842		
Note:	The configuration data are specific to the inserted COMM BOARD.		


p8842	Activate COMM BOARD send configuration / CB s config act		
CU_S120_PN (COMM	Can be changed: U, T	Calculated: -	Access level: 3
BOARD, PN CBE20),	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2199,2200
CU_S150_PN (COMM	P-Group: Communications	Unit group: -	Unit selection: -
BOARD, PN CBE20),	Scaling: -	Expert list: 1	
CU_S120_DP (COMM	Not for motor type: -	Max	Factory setting
BOARD, PN CBE20),	Min	1	0
CU_S150_DP (COMM	0		

Description: Activate a modified send configuration for COMM BOARD.
With p8842 = 1, the values in p8841 are transferred to the COMM BOARD and activated. After this, p8842 is automatically set to zero.
Dependency: Refer to: p8841
Note: $\quad$ For CBE20, certain SINAMICS parameters are newly evaluated and activated. An existing, cyclic bus connection is interrupted.
For CBE20, the parameter is only active for firmware selection "SINAMICS Link" (p8835 = 3).

r8843.0... 2	BO: IF2 PZD state / IF2 PZD state					
CU_S_AC_DP,	Can be changed: -		Calculated: -		Access level: 3	
CU_S_AC_PN,	Data type: Unsigned8		Dyn. index: -		Func. diagram: 2410	
	P-Group: Communications		Unit group: -		Unit selection: -	
CU_S120_DP,	Not for motor type: -		Scaling: -		Expert list: 1	
CU_S150_DP	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the PROFIdrive PZD state.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Setpoint failure		Yes	No	-
		Clock cycle synchron		Yes	No	-
		Fieldbus operation		Yes	No	-
Dependency:	Refer to: p2044					
Note:	When using the "setpoint failure" signal, the bus can be monitored and an application-specific response triggered when the setpoint fails.					



r8849[0...139]	COMM BOARD receive configuration data / CB r config_dat		
CU_S120_PN (COMM	Can be changed: -	Calculated: -	Access level: 3
BOARD, PN CBE20),	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S150_PN (COMM	Unit selection: -		
BOARD, PN CBE20),	P-Group: Communications	Unit group: -	Expert list: 1
CU_S120_DP (COMM	Not for motor type: -	Scaling: -	Factory setting
BOARD, PN CBE20),	Min	Max	-
CU_S150_DP (COMM	-		
BOARD, PN CBE20)			
Description:	Displays the receive configuration data for the COMM BOARD.		
Note:	For CBE20, the parameter is only active for firmware version "SINAMICS Link" or "EtherNet/IP" (p8835 = 3, 4).		


r8850[0...19]	CO: IF2 PZD receive word / IF2 PZD recv word		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: 2491
$\begin{aligned} & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \end{aligned}$	P-Group: Communications	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: 4000 H	Expert list: 1
CU_S150_DP	Min	Max	Factory setting
	-	-	-
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		



### 2.2 List of parameters

r8850[0...31]	CO: IF2 PZD receive word / IF2 PZD recv word		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC, VECTOR_I_AC	Data type: Integer16	Dyn. index: -	Func. diagram: 2485, 2491, 9204, 9206
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format.		
Index:	$[0]=$ PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	$[30]=$ PZD 31$[31]=$ PZD 32		
Dependency:	Refer to: r8860, r8890, r8891, r8892, r8893		
Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.		
	A BICO interconnection for a single PZD can only take place either on r8850 or r8860.		
Note:	IF2: Interface 2		
	PZD1 to PZD4 are displayed bit-serially in r8890 to r8893.		


r8850[0...9]	CO: IF2 PZD receive word / IF2 PZD recv word		
A_INF, S_INF, R_INF, B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2491
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000 H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
Note:	IF2: Interface 2		
	PZD1 to PZD2 are displayed bit-serially in r8890 to r8891.		
r8850[0...4]	CO: IF2 PZD receive word / IF2 PZD recv word		
TM31, TM15DI_DO, TM120, TM150, TB30	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2491
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
Note:	IF2: Interface 2		
	PZD1 to PZD2 are displayed bit-serially in r8890 to r8891.		
r8850[0...3]	CO: IF2 PZD receive	D recv word	
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2485, 2491 9204, 9206
	P-Group: Communications	Unit group: -	Unit selection:-
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
		-	
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
Dependency:	Refer to: r8860, r8890, r8891, r8892, r8893		
Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer FloatingPoint data types.		
	A BICO interconnection for a single PZD can only take place either on r8850 or r8860.		

### 2.2 List of parameters

Note: $\quad$ IF2: Interface 2.

p8851[0...24]	CI: IF2 PZD
CU_S_AC_DP, CU S AC PN, CU_S120_PN, CU_S150 PN, CU_S120_DP, CU_S150_DP	Can be change
	Data type: Unsi
	P-Group: Comm
	Not for motor ty
	Min
	-
Description:	Selects the PZD
Index:	[0] = PZD 1
	[1] = PZD 2
	[2] = PZD 3
	[3] = PZD 4
	[4] = PZD 5
	[5] = PZD 6
	[6] = PZD 7
	[7] = PZD 8
	[8] = PZD 9
	[9] = PZD 10
	[10] = PZD 11
	[11] = PZD 12
	[12] = PZD 13
	[13] = PZD 14
	[14] = PZD 15
	[15] = PZD 16
	[16] = PZD 17
	[17] = PZD 18
	[18] = PZD 19
	[19] = PZD 20
	[20] = PZD 21
	[21] = PZD 22
	[22] = PZD 23
	[23] = PZD 24
	[24] = PZD 25
Note:	IF2: Interface 2

p8851[0...27] CI: IF2 PZD send word / IF2 PZD send word

SERVO HLA Can be changed: U, T Calculated:
SERVO, HLA

SERVO_I_AC, TM41
Data type: Unsigned32 / Integer16
P-Group: Communications

Not for motor type: -
Min

Selects the PZD (actual values) to be sent via interface 2 in the word format.
Description:
Index:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] $=$ PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14

## Access level: 3

Func. diagram: 2487, 9208
Unit selection: -
Expert list: 1
Factory setting
0

Func. diagram: 2493, 9210
Unit selection: -
Expert list: 1
Factory setting 0

	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
Dependency:	Refer to: p8861		
Note:	IF2: Interface 2		
p8851[0...31]	CI: IF2 PZD send word / IF2 PZD send word		
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 2487, 9208
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) to be sent via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	[30] = PZD 31		
	[31] = PZD 32		
Dependency:	Refer to: p8861		
Note:	IF2: Interface 2		


p8851[0...9]	CI: IF2 PZD send word / IF2 PZD send word		
A_INF, S_INF, R_INF,	Can be changed: U, T	Calculated: -	Access level: 3
B_INF	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 2493, 9210
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) to be sent via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
Note:	IF2: Interface 2		


p8851[0...4]	CI: IF2 PZD send word / IF2 PZD send word		
TM31, TM15DI_DO,	Can be changed: U, T	Calculated: -	Access level: 3
TM120, TM150, TB30	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 2493,9210
	P-Group: Communications	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: 4000 H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) to be sent via interface 2 in the word format.		
Index:	$[0]=$ PZD 1		
	$[1]=$ PZD 2		
	$[2]=$ PZD 3		
	$[3]=$ PZD 4		
	$[4]=$ PZD 5		
	IF2: Interface 2		

p8851[0...11] CI: IF2 PZD send word / IF2 PZD send word

ENC

Description: Selects the PZD (actual values) to be sent via interface 2 in the word format.
Index:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12

Access level: 3
Func. diagram: 2487, 9208
Unit selection: -
Expert list: 1
Factory setting
0

Dependency:	Refer to: p8861
Note:	IF2: Interface 2



r8853[0...27]	IF2 diagnostics PZD send / IF2 diag PZD send					
SERVO, HLA, SERVO_AC, SERVO_I_AC, TM41	Can be changed: -   Data type: Unsigned16		Calculated:   Dyn. index: -	Access level: 3		
			Func.   9210			
	P-G	up: Communications		Unit group: -	Unit se	
	Not	motor type: -	Scaling: -	Expert		
	Min		Max	Factor		
	-		-	-		
Description: Index:	Displays the sent PZD (actual values) sent via interface 2.					
	[0] = PZD 1					
	[1] = PZD 2					
	[2] = PZD 3					
	[3] = PZD 4					
	[4] = PZD 5					
	[5] = PZD 6					
	[6] = PZD 7					
	[7] = PZD 8					
	[8] = PZD 9					
	[ 9 ] P PZD 10					
	[10] = PZD 11					
	[11] = PZD 12					
	[12] = PZD 13					
	[13] = PZD 14					
	[14] = PZD 15					
	[15] = PZD 16					
	[16] = PZD 17					
	[17] = PZD 18					
	[18] = PZD 19					
	[19] = PZD 20					
	[20] = PZD 21					
	[21] = PZD 22					
	[22] $=$ PZD 23					
	[23] = PZD 24					
	[24] = PZD 25					
	[25] = PZD 26					
	[26] = PZD 27					
	[27] = PZD 28					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	00	Bit 0	ON	OFF	-	
	01	Bit 1	ON	OFF	-	
	02	Bit 2	ON	OFF	-	
	03	Bit 3	ON	OFF	-	
	04	Bit 4	ON	OFF	-	
	05	Bit 5	ON	OFF	-	
	06	Bit 6	ON	OFF	-	
	07	Bit 7	ON	OFF	-	
	08	Bit 8	ON	OFF	-	
	09	Bit 9	ON	OFF	-	
	10	Bit 10	ON	OFF	-	
	11	Bit 11	ON	OFF	-	
	12	Bit 12	ON	OFF	-	
	13	Bit 13	ON	OFF	-	
	14	Bit 14	ON	OFF	-	
	15	Bit 15	ON	OFF	-	
Dependency:	Refe	to: p8851, p8861				
Note:	IF2:	nterface 2				


r8853[0...31]	IF2 diagnostics PZD send / IF2 diag PZD send				
VECTOR,   VECTOR_AC,   VECTOR_I_AC		e changed: -	Calculated: -	Access	
		type: Unsigned16	Dyn. index: -	Func.   9210	
	P-G	up: Communications	Unit group: -	Unit se	
	Not	motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description: Index:	Displays the sent PZD (actual values) sent via interface 2.				
	[0] = PZD 1				
	[1] = PZD 2				
	[2] = PZD 3				
	[3] = PZD 4				
	[4] = PZD 5				
	[5] = PZD 6				
	[ 6 ] P PZD 7				
	[7] = PZD 8				
	[8] = PZD 9				
	[ 9 ] = PZD 10				
	[10] = PZD 11				
	[11] = PZD 12				
	[12] = PZD 13				
	[13] = PZD 14				
	[14] = PZD 15				
	[15] = PZD 16				
	[16] = PZD 17				
	[17] = PZD 18				
	[18] = PZD 19				
	[19] = PZD 20				
	[20] = PZD 21				
	[21] = PZD 22				
	[22] = PZD 23				
	[23] = PZD 24				
	[24] = PZD 25				
	[25] = PZD 26				
	[26] = PZD 27				
	[27] = PZD 28				
	[28] = PZD 29				
	[29] = PZD 30				
	$[30]=$ PZD 31$[31]=$ PZD 32				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refer to: p8851, p8861				
Note:	IF2: Interface 2				


r8853[0...9]	IF2 diagnostics PZD send / IF2 diag PZD send				
$\begin{aligned} & \text { A_INF, S_INF, R_INF, } \\ & \text { B_INF } \end{aligned}$	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Communications		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description: Index:	Displays the sent PZD (actual values) sent via interface 2.				
	[0] = PZD 1				
	[1] = PZD 2				
	[2] = PZD 3				
	[3] = PZD 4				
	[4] = PZD 5				
	[5] = PZD 6				
	[6] = PZD 7				
	[7] = PZD 8				
	[8] = PZD 9				
	[9] = PZD 10				
Bit field:		Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
		Bit 2	ON	OFF	-
		Bit 3	ON	OFF	-
		Bit 4	ON	OFF	-
		Bit 5	ON	OFF	-
		Bit 6	ON	OFF	-
		Bit 7	ON	OFF	-
		Bit 8	ON	OFF	-
		Bit 9	ON	OFF	-
		Bit 10	ON	OFF	-
		Bit 11	ON	OFF	-
		Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
		Bit 15	ON	OFF	-
Note:	IF2: Interface 2				
r8853[0...4]	IF2 diagnostics PZD send / IF2 diag PZD send				
TM31, TM15DI_DO,	Can be changed: -		Calculated: -	Acces	
TM120, TM150, TB30	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Communications		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the sent PZD (actual values) sent via interface 2.				
Index:	[0] [1] [2] [3] [4]	PZD 1 PZD 2 PZD 3 PZD 4 PZD 5			
Bit field:		Signal name	1 signal	0 signal	FP
	Bit 00	Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
	01	Bit 2	ON	OFF	-
		Bit 3	ON	OFF	-
	03 04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-


	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	
	14	Bit 14	ON	OFF	
	15	Bit 15	ON	OFF	
Note:	IF2	Iterface 2			
r8853[0...11]	IF2	agnostics PZD	ag PZD send		
ENC	Can	be changed: -	Calculated: -	Acces	
	Dat	type: Unsigned16	Dyn. index: -	Func.   9210	
		up: Communications	Unit group: -	Unit	
	Not	or motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Disp	ays the sent PZD (actu	via interface 2.		
Index:	[0]	PZD 1			
	[1]	PZD 2			
	[2]	PZD 3			
	[3]	PZD 4			
	[4]	PZD 5			
	[5]	PZD 6			
	[6]	PZD 7			
	[7]	PZD 8			
	[8]	PZD 9			
	[9]	PZD 10			
	[10]	PZD 11			
	[11]	PZD 12			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Ref	to: p8851, p8861			
Note:	IF2	Interface 2			

### 2.2 List of parameters

r8854	COMM BOARD state / CB state		
CU_S120_PN (COMM	Can be changed: -	Calculated: -	Access level: 3
BOARD, PN CBE20),	Data type: Integer16	Dyn. index: -	Func. diagram: -
BOARD, PN CBE20),	P-Group: Communications	Unit group: -	Unit selection: -
CU_S120_DP (COMM	Not for motor type: -	Scaling: -	Expert list: 1
BOARD, PN CBE20),	Min	Max	Factory setting
CU_S150_DP (COMM BOARD, PN CBE20)	0	255	-
Description:	Status display for COMM BOARD.		
Value:	0 : No initialization		
	Fatal fault		
	Initialization		
	Send configuration		
	Receive configuration		
	Non-cyclic communication		
	Cyclic communications but no setpoints (stop/no clock cycle)		
	255: Cyclic communication		
Note:	For CBE20, the parameter is only active for firmware version "SINAMICS Link" (p8835 = 3).		
	For firmware version "PROFINET Device" or "EtherNet/IP" (p8835 = 1, 4), parameter p8956 should be observed.		


r8858[0...39]	COMM BOARD read diagnostics channel / CB diag_chan read		
CU_S120_PN (COMM	Can be changed: -	Calculated: -	Access level: 3
BOARD, PN CBE20),	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
BOARD, PN CBE20),	P-Group: Communications	Unit group: -	Unit selection: -
CU_S120_DP (COMM	Not for motor type: -	Scaling: -	Expert list: 1
BOARD, PN CBE20),	Min	Max	Factory setting
CU_S150_DP (COMM BOARD, PN CBE20)			,
Description:	Displays the COMM BOARD diagnostics data.		
Note:	The display depends on the COMM BOARD being used.		
	For CBE20, the parameter is only active for firmware version "SINAMICS Link" or "EtherNet/IP" (p8835 = 3, 4). Example for CBE20:		
	r8858[0] = 4201 --> Siemens CBE20		
	r8858[1] = 3 --> firmware version = SINAMICS Link (see p8835)		
	r8858[2 ... 39] --> only for internal Siemens diagnostics.		

r8859[0...7] COMM BOARD identification data / CB ident_data

CU_S120_PN (COMM BOAARD, P̄N CBE20), CU_S150_PN (COMM BOARD, PN CBE20), CU_S120_DP (COMM BOARD, PN CBE20), Mi CU_S150_DP (COMM BOARD, PN CBE20)

Description: Displays the COMM BOARD identification data
Can be changed: -
Data type: Unsigned16
P-Group: Communications
Not for motor type: -
Min
0

Description: Displays the COMM BOARD identification data

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
65535

Index:
[0] = Version interface structure
[1] = Version interface driver
[2] = Company (Siemens = 42)
[3] = CB type
[4] = Firmware version
[5] = Firmware date (year)
[6] = Firmware date (day/month)
[7] = Firmware patch/hot fix

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Note:	Example for CBE20:
	r8859[0] = 100 --> version of the interface structure V1.00
	r8859[1] = 111 --> version of the interface driver V1.11
	r8859[2] = 42 --> SIEMENS
	r8859[3] = 0 --> CBE20
	r8859[4] = 1200 --> first part, firmware version V12.00 (second part, see index 7)
	r8859[5] = 2010 --> year 2010
	r8859[6] = 2306 --> 23rd June
	r8859[7] = 1300 --> second part, firmware version (complete version: V12.00.13.00)

## r8860[0...18]

SERVO, HLA,
SERVO AC, SERVO_I_AC, TM41

CO: IF2 PZD receive double word / IF2 PZD recv DW

Data type: Integer32
P-Group: Communications
Not for motor type: -
Min

Calculated: -
Dyn. index: -

Unit group: -
Scaling: 4000H
Max

Access level: 3
Func. diagram: 2485, 9204 9206

Unit selection: -
Expert list: 1
Factory setting

Description: Connector output for interconnecting the PZD (setpoints) received via interface 2 in the double word format.
Index:

Dependency:
Notice: $\quad$ Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.
A BICO interconnection for a single PZD can only take place either on r8850 or r8860.
A maximum of 4 indices of the "trace" function can be used.
Note: IF2: Interface 2

r8860[0...30]	CO: IF2 PZD receive double word / IF2 PZD recv DW		
VECTOR,	Can be changed: -	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer32	Dyn. index: -	Func. diagram: 2485, 9204,
VECTOR_I_AC		Unit group: -	Un06
	P-Group: Communications	Scaling: 4000H	Expert list: 1
	Not for motor type: -	Max	Factory setting
	Min	-	-
	-		
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the double word format.		
Index:	$[0]=$ PZD $1+2$		
	$[1]=$ PZD $2+3$		

### 2.2 List of parameters

	[4] $=$ PZD $5+6$		
	$\text { [5] = PZD } 6+7$		
	$[6]=P Z D 7+8$		
	$[7]=$ PZD $8+9$		
	[8] $=$ PZD $9+10$		
	[9] = PZD $10+11$		
	[10] = PZD $11+12$		
	[11] = PZD $12+13$		
	[12] = PZD 13 + 14		
	[13] = PZD $14+15$		
	[14] = PZD 15 + 16		
	[15] = PZD 16-17		
	[16] $=$ PZD 17 + 18		
	[17] = PZD $18+19$		
	[18] = PZD 19 + 20		
	[19] = PZD $20+21$		
	[20] = PZD $21+22$		
	[21] = PZD $22+23$		
	[22] $=$ PZD $23+24$		
	[23] $=$ PZD $24+25$		
	[24] P PZD $25+26$		
	[25] = PZD $26+27$		
	[26] = PZD $27+28$		
	[27] = PZD $28+29$		
	[28] $=$ PZD $29+30$		
	$[29]=$ PZD $30+31$$[30]=$ PZD $31+32$		
Dependency:	Refer to: 8850		
Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.		
	A BICO interconnection for a single PZD can only take place either on r8850 or 88860.		
	A maximum of 4 indices of the "trace" function can be used.		
Note:	IF2: Interface 2		
r8860[0...2]	CO: IF2 PZD receive double word / IF2 PZD recv DW		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: 2485, 9204, 9206
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output for interco	(setpoints) receiv	in the double word format.
Index:	[0] = PZD $1+2$		
	[1] $=$ PZD $2+3$		
	[2] = PZD $3+4$		
Dependency:	Refer to: r8850		
Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.		
	A BICO interconnection for a single PZD can only take place either on r8850 or r8860.		
Note:	IF2: Interface 2		


$\begin{aligned} & \hline \text { p8861[0...26] } \\ & \text { SERVO, HLA, } \\ & \text { SERVO_AC, } \\ & \text { SERVO_I_AC, TM41 } \end{aligned}$	CI: IF2 PZD send double word / IF2 PZD send DW		
	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 2487, 9208, 9210
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:   Index:	Selects the PZD (actual values) to	interface 2 in the	
Dependency:   Notice:   Note:	A BICO interconnection for a single PZD can only take place either on p8851 or p8861. IF2: Interface 2		
p8861[0...30]	CI: IF2 PZD send double word / IF2 PZD send DW		
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can be changed: U, T   Data type: Unsigned32 / Integer32	Calculated: Dyn. index:	Access level: 3   Func. diagram: 2487, 9208, 9210
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description: Index:	Selects the PZD (actual values) to $\begin{aligned} & {[0]=\text { PZD } 1+2} \\ & {[1]=\text { PZD } 2+3} \\ & {[2]=\text { PZD } 3+4} \\ & {[3]=\text { PZD } 4+5} \\ & {[4]=\text { PZD } 5+6} \\ & {[5]=\text { PZD } 6+7} \\ & {[6]=\text { PZD } 7+8} \\ & {[7]=\text { PZD } 8+9} \\ & {[8]=\text { PZD } 9+10} \\ & {[9]=\text { PZD } 10+11} \end{aligned}$	interface 2 in the	

### 2.2 List of parameters

	[10] = PZD $11+12$
	[11] = PZD 12 + 13
	[12] = PZD 13 + 14
	[13] = PZD $14+15$
	[14] = PZD 15 + 16
	[15] = PZD 16 + 17
	[16] $=$ PZD 17 + 18
	[17] = PZD $18+19$
	[18] = PZD 19 + 20
	[19] = PZD $20+21$
	[20] = PZD $21+22$
	[21] = PZD $22+23$
	[22] P PZD $23+24$
	[23] = PZD $24+25$
	[24] = PZD $25+26$
	[25] = PZD $26+27$
	[26] = PZD $27+28$
	[27] = PZD $28+29$
	[28] = PZD $29+30$
	[29] = PZD $30+31$
	[ 30$]=$ PZD $31+32$
Dependency:	Refer to: p8851
Notice:	A BICO interconnection for a single PZD can only take place either on p8851 or p8861.
Note:	IF2: Interface 2

p8861[0...10]

ENC

Index:

Dependency:
Notice:
CI: IF2 PZD send double word / IF2 PZD send DW

Can be changed: $\mathrm{U}, \mathrm{T}$
Data type: Unsigned32 / Integer32

P-Group: Communications
Not for motor type: -
Min

Calculated: -
Dyn. index: -

Unit group: -
Scaling: 4000H
Max

Access level: 3
Func. diagram: 2487, 9208, 9210

Unit selection: -
Expert list: 1
Factory setting

Description: Selects the PZD (actual values) to be sent via interface 2 in the double word format.
[0] = PZD $1+2$
[1] $=$ PZD $2+3$
[2] $=$ PZD $3+4$
[3] $=$ PZD $4+5$
[4] $=$ PZD $5+6$
[5] = PZD $6+7$
[6] = PZD $7+8$
[7] = PZD $8+9$
[8] $=$ PZD $9+10$
[9] = PZD $10+11$
[10] = PZD $11+12$
Refer to: p8851
A BICO interconnection for a single PZD can only take place either on p8851 or p8861.
Note: IF2: Interface 2

r8863[0...26]	IF2 diagnostics PZD send double word / IF2 diag send DW				
SERVO, HLA,		e changed: -	Calculated: -	Access level: 3	
SERVO_AC,	Dat	ype: Unsigned32	Dyn. index: -	Func. diagram: 2487	
SERVO_I_AC, TM41		up: Communications	Unit group: -	Unit selection: -	
		motor type: -	Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the PZD sent via interface 2 (actual values) with double word format.				
Index:	$[0]=$ PZD $1+2$				
	[1] = PZD $2+3$				
	[2] = PZD $3+4$				
	[3] $=$ PZD $4+5$				
	[4] $=$ PZD $5+6$				
	[5] = PZD $6+7$				
	$[6]=$ PZD $7+8$				
	[ $7 \mathrm{l}=\mathrm{PZD} 8+9$				
	[8] $=$ PZD $9+10$				
	[9] = PZD 10 + 11				
	[10] = PZD 11 + 12				
	[11] $=$ PZD 12 + 13				
	[12] = PZD 13 + 14				
	[13] = PZD $14+15$				
	[14] = PZD 15 + 16				
	[15] $=$ PZD 16 + 17				
	[16] = PZD 17 + 18				
	[17] = PZD 18 + 19				
	[18] = PZD 19 + 20				
	[19] = PZD $20+21$				
	[20] = PZD $21+22$				
	[21] = PZD $22+23$				
	[22] $=$ PZD $23+24$				
	[23] $=$ PZD $24+25$				
	[24] $=$ PZD $25+26$				
	$[25]=$ PZD $26+27$$[26]=$ PZD $27+28$				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	
	01	Bit 1	ON	OFF	
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-

### 2.2 List of parameters

	26	Bit 26	ON	OFF	-
	27	Bit 27	ON	OFF	-
	28	Bit 28	ON	OFF	-
	29	Bit 29	ON	OFF	-
	30	Bit 30	ON	OFF	-
	31	Bit 31	ON	OFF	-
Notice:	A maximum of 4 indices of the "trace" function can be used. IF2: Interface 2				
Note:					
r8863[0..30]	IF2 diagnostics PZD send double word / IF2 diag send DW				
VECTOR,	Can be changed: -		Calculated: -	Access level: 3	
VECTOR_AC,	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2487	
(OR_1_A	P-Group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling:	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the PZD sent via interface 2 (actual values) with double word format.				
Index:	[0] = PZD $1+2$				
	[1] = PZD $2+3$				
	[2] = PZD $3+4$				
	[3] = PZD $4+5$				
	[4] = PZD $5+6$				
	[5] = PZD $6+7$				
	[6] = PZD $7+8$				
	[7] = PZD $8+9$				
	[8] = PZD $9+10$				
	[9] = PZD $10+11$				
	[10] = PZD $11+12$				
	[11] = PZD $12+13$				
	[12] = PZD $13+14$				
	[13] = PZD $14+15$				
	[14] = PZD $15+16$				
	[15] = PZD 16 + 17				
	[16] = PZD $17+18$				
	[17] = PZD $18+19$				
	[18] = PZD $19+20$				
	[19] = PZD $20+21$				
	[20] = PZD $21+22$				
	[21] = PZD $22+23$				
	[22] = PZD $23+24$				
	[23] = PZD $24+25$				
	[24] = PZD $25+26$				
	[25] = PZD $26+27$				
	[26] = PZD $27+28$				
	[27] = PZD $28+29$				
	[28] = PZD $29+30$				
	[29] = PZD $30+31$				
	[30] = PZD $31+32$				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-


13	Bit 13	ON	OFF
14	Bit 14	ON	OFF
15	Bit 15	ON	OFF
16	Bit 16	ON	OFF
17	Bit 17	ON	OFF
18	Bit 18	ON	OFF
19	Bit 19	ON	OFF
20	Bit 20	ON	OFF
21	Bit 21	ON	OFF
22	Bit 22	ON	OFF
23	Bit 23	ON	OFF
24	Bit 24	ON	OFF
25	Bit 25	ON	
26	Bit 26	ON	OFF
27	Bit 27	ON	OFF
28	Bit 28	ON	OFF
29	Bit 29	ON	OFF
30	Bit 30	ON	OFF
31	Bit 31	ON	OFF
A		OFF	

Notice: A maximum of 4 indices of the "trace" function can be used.
Note: IF2: Interface 2

r8863[0...10]	IF2 diagnostics PZD send double word / IF2 diag send DW				
ENC	Can be changed: -		Calculated: - Acces		
	Data type: Unsigned32		Dyn. index: - Func.		
	P-Group: Communications		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description: Index:	Displays the PZD sent via interface 2 (actual values) with double word format.				
	$[0]=$ PZD $1+2$				
	[1] $=$ PZD $2+3$				
	$[2]=$ PZD $3+4$				
	[3] $=$ PZD $4+5$				
	[4] $=$ PZD $5+6$				
	[5] $=$ PZD $6+7$				
	$[6]=$ PZD $7+8$				
	[ 7 ] = PZD $8+9$				
	[8] $=$ PZD $9+10$				
	[9] = PZD $10+11$				
	[10]	PZD $11+12$			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-

### 2.2 List of parameters

20	Bit 20	ON	OFF
21	Bit 21	ON	OFF
22	Bit 22	ON	OFF
23	Bit 23	ON	OFF
24	Bit 24	ON	OFF
25	Bit 25	ON	OFF
26	Bit 26	ON	OFF
27	Bit 27	ON	OFF
28	Bit 28	ON	OFF
29	Bit 29	ON	OFF
30	Bit 30	ON	OFF
31	Bit 31	ON	OFF

Notice: A maximum of 4 indices of the "trace" function can be used.
Note: IF2: Interface 2

p8864	IF1 PROFIdrive first supplementary telegram selection / IF1 Pd 1. sup_tel		
SERVO, VECTOR,	Can be changed: C2(1), T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2423
VECTOR_AC,	P-Group: Communications	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	999	
	700		
Description:	Sets the first supplementary telegram.		
Value:	$700: \quad$ Supplementary telegram 700, PZD-0/3		
	$701: \quad$ Supplementary telegram 701, PZD-2/5		
	$750:$ Supplementary telegram 750, PZD-3/1		
Dependency:	$999: \quad$ Free telegram configuration with BICO		
	For p0922 equal to p2079 equal to 999, then p8864 is locked.		
	Refer to: p0922, p2070, p2071, p2079, p8865, p60122		
	The clearance to the PZD telegram can be increased using p2070/p2071.		
	After changing p0922/p2079 or p2070/p2071, then p8864 must be set again.		


p8865	IF1 PROFIdrive second supplementary telegram selection / IF1 Pd 2. sup_tel		
SERVO, VECTOR,	Can be changed: C2(1), T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2423
VECTOR_AC,	P-Group: Communications	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	700	999	999
Description:	Sets the second supplementary telegram.		
Value:	700: Supplementary telegram 700, PZD-0/3		
	701: Supplementary telegram 701, PZD-2/5		
	750: Supplementary telegram 750, PZD-3/1		
	999: Free telegram configuration with BICO		
Dependency:	For p8864 equal to 999, then p8865 is locked.		
	Refer to: p0922, p2079, p8864, p60122		
Note:	The second supplementary telegram is attached directly to the first supplementary telegram.		
	After changing p0922/p2079, p2070/p2071 or p8864, then p8865 must be set again.		


r8867[0...1]	IF2 PZD maximum interconnected / IF2 PZDmaxIntercon		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S150_PN,	Scaling: -	Expert list: 1	
CU_S120_DP,	Mot for motor type: -	Factory setting	
CU_S150_DP,	Min	-	-
SERVO, VECTOR,	-		
HLA, SERVO_AC,			
VECTOR_AC,			
SERVO_I_AC,			
VECTOR_I_AC,			
A_INF, S_INF, R_INF,			
B_INF, TM31, TM41,			
TM15DI_DO, TM120,			
TM150, TB30, ENC			
Description:	Display for the maximum interconnected PZD in the receive/send direction		
	Index 0: receive (r8850, r8860)		


p8870[0...15]	SINAMICS Link PZD receive word / PZD recv word		
CU_S120_PN (PN	Can be changed: T	Calculated: -	Access level: 3
CBE20),	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2198, 2199
CBE20),	P-Group: Communications	Unit group: -	Unit selection: -
CU_S120_DP (PN	Not for motor type: -	Scaling: -	Expert list: 1
CBE20),	Min	Max	Factory setting
CU_S150_DP (PN CBE20), SERVO (PN	0	32	$0$
CBE20), HLA (PN			
CBE20), A_INF (PN			
CBE20), S_INF (PN			
CBE20), R_INF (PN			
CBE20), B_INF (PN			
CBE20), TM31 (PN			
CBE20), TM41 (PN			
CBE20), TM17 (PN			
CBE20), TM15 (PN			
CBE20), TM15DI_DO			
(PN CBE20), TM120			
(PN CBE20), TM150			
(PN CBE20), TB30			
(PN CBE20), ENC (PN			
CBE20)			
Description:	Assignment of a PZD to a telegram word from a SINAMICS Link receive telegram.		
	For p8839[0] = 2 (COMM BOARD via interface 1), the following applies:		
	- PZD p2050[index] is assigned by means of p8870[index], p8872[index].		
	For p8839[1] = 2 (COMM BOARD via interface 2), the following applies:		
	- using p8870[index], p8872[index], the PZD is assigned r8850[Index].		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		

### 2.2 List of parameters

	$[13]=$ PZD 14
	$[14]=$ PZD 15
	$[15]=$ PZD 16
Dependency: $\quad$	Refer to: p8872
Note:	Value range:
	$0:$ Not used
	$1 \ldots 32:$ telegram word
	A pair of values p8870[index], p8872[index] may only be used once in single a device.
	A change only becomes effective after POWER ON, reset, project download or p8842 $=1$.

## p8870[0...31] SINAMICS Link PZD receive word / PZD recv word

VECTOR (PN CBE20)	Can be changed: $T$	Calculated: -
	Data type: Unsigned16	Dyn. index: -
P-Group: Communications	Unit group: -	
Not for motor type: -	Scaling: -	
Min	Max	
0	32	

Access level: 3
Func. diagram: 2198, 2199
Unit selection: -
Expert list: 1
Factory setting
0

Description: Assignment of a PZD to a telegram word from a SINAMICS Link receive telegram.
For p8839[0] $=2$ (COMM BOARD via interface 1), the following applies:

- PZD p2050[index] is assigned by means of p8870[index], p8872[index].

For p8839[1] = 2 (COMM BOARD via interface 2), the following applies:

- using p8870[index], p8872[index], the PZD is assigned r8850[Index].

Index:	[0] = PZD 1
	[1] = PZD 2
	[2] = PZD 3
	[3] = PZD 4
	[4] = PZD 5
	[5] = PZD 6
	[6] = PZD 7
	[7] = PZD 8
	[8] = PZD 9
	[9] = PZD 10
	[10] = PZD 11
	[11] = PZD 12
	[12] = PZD 13
	[13] = PZD 14
	[14] = PZD 15
	[15] = PZD 16
	[16] = PZD 17
	[17] = PZD 18
	[18] = PZD 19
	[19] = PZD 20
	[20] = PZD 21
	[21] = PZD 22
	[22] = PZD 23
	[23] = PZD 24
	[24] = PZD 25
	[25] = PZD 26
	[26] = PZD 27
	[27] = PZD 28
	[28] = PZD 29
	[29] = PZD 30
	[30] = PZD 31
	[31] = PZD 32
Dependency:	Refer to: p8872
Note:	Value range:
	0 : Not used
	$1 . . .32$ : telegram word
	A pair of values p8870[index], p8872[index] may only be used once in single a device.
	A change only becomes effective after POWER ON, reset, project download or p8842 $=1$.


p8871[0...15]	SINAMICS Link PZD send word / PZD send word		
CU_S120_PN (PN	Can be changed: T	Calculated: -	Access level: 3
CBE20),	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2198, 2199
CU_S150_PN (PN CBE20),	P-Group: Communications	Unit group: -	Unit selection: -
CU_S120_DP (PN	Not for motor type: -	Scaling: -	Expert list: 1
CBE20),	Min	Max	Factory setting
CU_S150_DP (PN CBE20), SERVO (PN	0	32	0
CBE20), HLA (PN			
CBE20), A_INF (PN			
CBE20), S_INF (PN			
CBE20), R_INF (PN			
CBE20), , _INF (PN			
CBE20), TM31 (PN			
CBE20), TM41 (PN			
CBE20), TM17 (PN			
CBE20), TM15 (PN			
CBE20), TM15DI_DO			
(PN CBE20), TM120			
(PN CBE20), TM150			
(PN CBE20), TB30			
(PN CBE20), ENC (PN			
CBE20)			

Description: Assigns a PZD to a telegram word in the SINAMICS Link send telegram. For p8839[0] = 2 (COMM BOARD via interface 1), the following applies: - p8871[index] assigns PZD p2051[index].

For p8839[1] = 2 (COMM BOARD via interface 2), the following applies: - p8871[index] assigns PZD p8851[index].

Index:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
Dependency: Refer to: p2051, p8851
Refer to: A50002
Note: Value range:
0 : Not used
1 ... 32: send telegram word
A specific telegram word send may only be used once within a single device.
A change only becomes effective after POWER ON, reset, project download or p8842 $=1$.

### 2.2 List of parameters

p8871[0...31]	SINAMICS Link PZD send word / PZD send word		
VECTOR (PN CBE20)	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2198, 2199
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	32	0
Description:	Assigns a PZD to a telegram word in the SINAMICS Link send telegram.		
	For p8839[0] = 2 (COMM BOARD via interface 1), the following applies:		
	- p8871[index] assigns PZD p2051 [index].		
	For p8839[1] = 2 (COMM BOARD via interface 2), the following applies:		
	- p8871[index] assigns PZD p8851 [index].		
Index:			
	$\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \end{aligned}$		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[ 9 ] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	[30] = PZD 31		
	[31] = PZD 32		
Dependency:	Refer to: p2051, p8851		
	Refer to: A50002		
Note:	Value range:		
	0: Not used		
	1 ... 32: send telegram word		
	A specific telegram word send may only be used once within a single device.		
	A change only becomes effe	ER ON, reset, p	$842=1$.



### 2.2 List of parameters



r8874[0...19]	IF2 diagnostics bus address PZD receive / IF2 diag addr recv		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Max	Factory setting	

Description: Displays the bus address of sender from which the PZD is received.
Index:
$[0]=$ PZD 1
$[1]=$ PZD 2
$[2]=$ PZD 3
$[3]=$ PZD 4
$[4]=$ PZD 5
$[5]=$ PZD 6
$[6]=$ PZD 7
$[7]=$ PZD 8
$[8]=$ PZD 9
$[9]=$ PZD 10
$[10]=$ PZD 11
$[11]=$ PZD 12
$[12]=$ PZD 13
$[13=$ PZD 14
$[14]=$ PZD 15
$[15]=$ PZD 16
$[16]=$ PZD 17
$[17]=$ PZD 18
$[18]=$ PZD 19
$[19]=$ PZD 20


### 2.2 List of parameters



r8874[0...3]	IF2 diagnostics bus address PZD receive / IF2 diag addr recv		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the bus address of sender from which the PZD is received.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
Note:	IF2: Interface 2		
	Value range:		
	0-125: Bus address of the sender		
	255: Not assigned		


r8875[0...19]	IF2 diagnostics telegram offset PZD receive / IF diag offs recv		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_DP	Min	Max	Factory setting
	-	-	-
Description:	Displays the byte offset of the PZD in the receive telegram.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[ 9 ] PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		

### 2.2 List of parameters



	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	[30] = PZD 31		
	[31] = PZD 32		
Note:	IF2: Interface 2		
	Value range:		
	0-242: Byte offset		
	255: Not assigned		
r8875[0...9]	IF2 diagnostics telegram offset PZD receive / IF diag offs recv		
$\begin{aligned} & \text { A_INF, S_INF, R_INF, } \\ & \text { B_INF } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Index:	Displays the byte offset of the PZD in the receive telegram.		
	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
r8875[0..4] IF2 diagnostics telegram offset PZD receive / IF diag offs recv			
TM31, TM15DI_DO, TM120, TM150, TB30	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the byte offset of the PZD in the receive telegram.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		

### 2.2 List of parameters



r8876[0...24]	IF2 diagnostics telegram offset PZD send / IF2 diag offs send		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120-PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_DP	Min	Max	Factory setting
	-	-	-
Description:	Displays the byte offset of the PZD in the send telegram.		
Index:	$\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\operatorname{PZD} 2} \end{aligned}$		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		



### 2.2 List of parameters

	[10] = PZD 11
	[11] = PZD 12
	[12] = PZD 13
	[13] = PZD 14
	[14] = PZD 15
	[15] = PZD 16
	[16] = PZD 17
	[17] = PZD 18
	[18] = PZD 19
	[19] = PZD 20
	[20] = PZD 21
	[21] = PZD 22
	[22] = PZD 23
	[23] = PZD 24
	[24] = PZD 25
	[25] = PZD 26
	[26] = PZD 27
	[27] = PZD 28
	[28] = PZD 29
	[29] = PZD 30
	[30] = PZD 31
	[31] = PZD 32
Note:	IF2: Interface 2
	Value range:
	0-242: Byte offset
	255: Not assigned

r8876[0...9] IF2 diagnostics telegram offset PZD send / IF2 diag offs send

A_INF, S_INF, R_INF, Can be changed: -
B_INF Data type: Unsigned16
P-Group: Communications
Not for motor type: -
Min

Displays the byte offset of the PZD in the send telegram.
Description:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
$[7]=$ PZD 8
[8] = PZD 9
[9] = PZD 10
Index:

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
-
r8876[0...4] IF2 diagnostics telegram offset PZD send / IF2 diag offs send

TM31, TM15DI_DO,
TM120, TM150, TB30

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max

Access level: 3
Func. diagram: Unit selection: -

Expert list: 1
Factory setting

IF2 diagnostics telegram offset PZD send / IF2 diag offs send

Data type: Unsigned16
P-Group: Communications
Not for motor type: -
Min
-

Displays the byte offset of the PZD in the send telegram
Index: $\quad[0]=$ PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5


### 2.2 List of parameters





### 2.2 List of parameters



p8888[0...4]	IF2 invert binector-connector converter status word / Bin/con ZSW inv		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2489
CU_S120_PN,	P-Group: Communications	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Factory setting	
CU_S150_DP,	-	0000 0000 00000000 bin	
SERVO, VECTOR,	-		
HLA, SERVO_AC,			
VECTOR_AC,			
SERVO_I_AC,			
VECTOR_I_AC,			
A_INF, S_INF, R_INF,			
B_INF, TM31, TM41,			
TM15DI_DO, TM120,			
TM150, ENC	Setting to invert the individual binector inputs of the binector-connector converter.		
Description:	[0] = Status word 1		
Index:	[1] = Status word 2		



r8890.0... 15	BO: IF2 PZD1 receive bit-serial / IF2 PZD1 recv bitw				
CU_S_AC_DP,	Can be changed: -		Calculated: -	Access level: 3	
CU_S_AC_PN,   CU_S120_PN,	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2485, 2491,$\text { 9204, } 9206$	
$\begin{aligned} & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \end{aligned}$	P-Group: Communications		Unit group: -	Unit selection: -	
CU_S150_DP,	Not for motor type: -		Scaling: -	Expert list: 1	
SERVO, VECTOR,   HLA SERVO AC	Min		Max	Factory setting	
VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM31, TM41,   TM15DI_DO, TM120,   TM150, TB30, ENC	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD1 (normally control word 1) received via interface 2.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refer to: r8850				
Note:	IF2: Interface 2				



		Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refer to: r8850				
Note:	IF2: Interface 2				
r8892.0... 15	BO: IF2 PZD3 receive bit-serial / IF2 PZD3 recv bitw				
CU_S_AC_DP,	Can be changed: -		Calculated: -	Access level: 3	
CU_S_AC_PN,   CU_S120_PN,	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2485, 9204, 9206	
CU S120 DP,	P-Group: Communications		Unit group: -	Unit selection: -	
CU_S150_DP,	Not for motor type: -		Scaling: -	Expert list: 1	
SERVO, VECTOR,   HLA SERVO AC	Min		Max	Factory setting	
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC, } \\ & \text { TM41, ENC } \end{aligned}$	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD3 received via interface 2.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refer to: r8850				
Note:	IF2: Interface 2				

### 2.2 List of parameters




	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	
	11	Bit 11	ON	OFF	
	12	Bit 12	ON	OFF	
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	
	15	Bit 15	ON	OFF	
Dependency:	Ref	to: p8899			
r8895.0... 15	BO	IF2 connector-bi	erter binector	/bin out	
CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC,   A_INF, S_INF, R_INF B_INF, TM31, TM41, TM15DI_DO, TM120, TM150, ENC	Can	be changed: -   type: Unsigned16   oup: Communications or motor type: -	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max	Acces   Func.   Unit s   Expert   Factor	
Description:		ctor output for bit-serial PZD is selected via p88	of a PZD word re		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:		to: p8898, p8899			

### 2.2 List of parameters

p8898[0..1]	IF2 invert connector-binector converter binector output / Con/bin outp inv			
CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM31, TM41,   TM15DI_DO, TM120,   TM150, ENC	Can be changed: U, T   Data type: Unsigned16   P-Group: Communications   Not for motor type: -   Min	Calculated: -   Dyn. index:   Unit group:   Scaling: -   Max	Access le Func. dia Unit selec Expert lis Factory s 00000000	
Description:	Setting to invert the individual binector outputs of the connector-binector converter. Using p8898[0], the signals of Cl : $\mathrm{p} 8899[0]$ are influenced. Using p8898[1], the signals of Cl : p8899[1] are influenced.			
Bit field:	Bit Signal name   00 Bit 0   01 Bit 1   02 Bit 2   03 Bit 3   04 Bit 4   05 Bit 5   06 Bit 6   07 Bit 7   08 Bit 8   09 Bit 9   10 Bit 10   11 Bit 11   12 Bit 12   13 Bit 13   14 Bit 14   15 Bit 15	1 signal Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted	0 signal   Not inverted   Not inverted   Not inverted   Not inverted   Not inverted   Not inverted   Not inverted   Not inverted   Not inverted   Not inverted   Not inverted   Not inverted   Not inverted   Not inverted   Not inverted   Not inverted	FP
Dependency:	Refer to: r8894, r8895, p8899			
p8899[0...1]   CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM31, TM41,   TM15DI_DO, TM120,   TM150, ENC	CI: IF2 connector-binector   Can be changed: U, T   Data type: Unsigned32 / Integer16   P-Group: Communications   Not for motor type: -   Min	ter signal s   Calculated:   Dyn. index:   Unit group:   Scaling: -   Max	n S_src   Access   Func. dia   Unit sele   Expert li   Factory   0	
Description:	Sets the signal source for the connector-binector converter.   A PZD receive word can be selected as signal source. The signals are available to be serially passed-on (interconnection).			
Dependency:	Refer to: r8850, r8894, r8895, p8898			

Note: $\quad$ From the signal source set via the connector input, the corresponding lower 16 bits are converted.

p8900[0...239]	IE Name of Station / IE Name Stat		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Scaling: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Max	Expert list: 1
CU_S120_DP,	Min	Factory setting	
CU_S150_DP	-	-	
	Sets the station name for the Industrial Ethernet interface (X127) on the Control Unit.		
Description:	The actual station name is displayed in r8910.		
	Refer to: p8905, r8910		
Dependency:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:	The interface configuration (p8900 and following) is activated with p8905 = 1.		
	The parameter is not influenced by setting the factory setting.		


p8901[0...3]	IE IP address / IE IP addr		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Max	Expert list: 1
CU_S120_DP,	Min	Factory setting	
CU_S150_DP	0	0	
	Sets the IP address for the Industrial Ethernet interface (X127) on the Control Unit.		
Description:	The actual IP address is displayed in r8911.		
	Refer to: p8905, r8911		
Dependency:	The interface configuration (p8900 and following) is activated with p8905 = 1.		
Note:	The parameter is not influenced by setting the factory setting.		


p8902[0...3]	IE default gateway / IE Def Gateway		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned8	Unit group: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Scaling: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Expert list: 1	
CU_S120_DP,	Min	Factory setting	
CU_S150_DP	0	0	
	Sets the default gateway for the Industrial Ethernet interface (X127) on the Control Unit.		
Description:	The actual default gateway is displayed in r8912.		
	Refer to: p8905, r8912		
Dependency:	The setting p8902[0...3] $=0$ or p8902 = p8901 (own IP address) means that a standard gateway has not been set.		
Note:	The interface configuration (p8900 and following) is activated with p8905 = 1.		
	The parameter is not influenced by setting the factory setting.		


p8903[0...3]	IE Subnet Mask / IE Subnet Mask		
CU_S_AC_DP,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \end{aligned}$	P-Group: -	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_DP	Min	Max	Factory setting
	0	255	0
Description:	Sets the subnet mask for the Industrial Ethernet interface (X127) on the Control Unit. The actual subnet mask is displayed in r 8913 .		
Dependency:	Refer to: p8905, r8913		
Note:	The interface configuration (p8900 and following) is activated with p8905 $=1$. The parameter is not influenced by setting the factory setting.		


p8904	IE DHCP mode / IE DHCP mode		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Integer16	Func. diagram: -	
CU_S120_PN,	P-Group: -	Unit selection: -	
CU_S10_PN,	Unit group: -	Expert list: 1	
CU_S120_DP,	Not motor type: -	Scaling: -	Factory setting
CU_S150_DP	Min	0	
	0	3	
Description:	Sets the DHCP mode for the Industrial Ethernet interface (X127) on the Control Unit.		
	The actual DHCP mode is displayed in parameter r8914.		
Value:	$0: \quad$ DHCP off		
	$2: \quad$ DHCP on, identification using MAC address		
Dependency:	$3: \quad$ RHCP on, identification via name of station		
Note:	Refer to: p8905, r8914		
	The interface configuration (p8900 and following) is activated with p8905.		
	The parameter is not influenced by setting the factory setting.		



p8908	Activate FTP / Act FTP		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Unit group: -	Expert list: 1
CU_S150_PN,	Mot		
CU_S120_DP,	Not for motor type: -	Factory setting	
CU_S150_DP	Min	0	
	0	1	0
Description:	Activation of the FTP server.		
	Permits the FTP access to the /INSTALL/SINAMICS directory of the memory card.		
Value:	$0: \quad$ No		
Note:	1: Yes		
	Activation of the FTP server becomes effective immediately.		
	Deactivation only becomes effective after a POWER ON of the Control Unit.		
	Before the first commissioning, the FTP server is activated irrespective of the parameter setting.		


r8909	PN device ID / PN device ID		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \end{aligned}$	P-Group: -	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_DP	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFINET Device ID.		
	Every SINAMICS device type has its own PROFINET Device ID and its own PROFINET GSD.		
Note:	List of the SINAMICS Device IDs:		
	0501 hex: S120/S150		
	0504 hex: G130/G150		
	050A hex: DC MASTER		
	050C hex: MV		
	050F hex: G120P		
	0510 hex: G120C		
	0511 hex: G120 CU240E-2		
	0512 hex: G120D		
	0513 hex: G120 CU250S-2 Vector		
	0514 hex: G110M		
	051B hex: S210		


r8910[0...239]	IE Name of Station actual / IE Name Stat act		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 1
CU_S_AC_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S12O_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S10_PN,	Scaling: -	Expert list: 1	
CU_S120_DP,	Not for motor type: -	Max	Factory setting
CU_S150_DP	Min	-	-
	-		

### 2.2 List of parameters

r8911[0...3]	IE IP address actual / IE IP addr act		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 1
CU_S_AC_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S12OPN,	P-Group: -	Unit group: -	Unit selection: -
CU_S10_PN,	Scaling: -	Expert list: 1	
CU_S120_DP,	Not for motor type: -	Max	Factory setting
CU_S150_DP	Min	255	-
	0		
Description:	Displays the actual IP address for the Industrial Ethernet interface (X127) on the Control Unit.		


r8912[0...3]	IE default gateway actual / IE Def Gateway act		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 1
CU_S_AC_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S12O_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S10_PN,	Scaling: -	Expert list: 1	
CU_S120_DP,	Not for motor type: -	Max	Factory setting
CU_S150_DP	Min	255	-
	0		
	Description:	Displays the actual default gateway for the Industrial Ethernet interface (X127) on the Control Unit.	


r8913[0...3]	IE Subnet Mask actual / IE Subnet Mask act		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 1
CU_S_AC_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Max	Factory setting	
CU_S150_DP	Min	255	-

Description: Displays the actual subnet mask for the Industrial Ethernet interface (X127) on the Control Unit.

r8914	IE DHCP mode actual / IE DHCP mode act		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 1
CU_S_AC_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S150_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_DP	Min	Max	Factory setting
	0	3	-
Description:	Displays the actual DHCP mode for the Industrial Ethernet interface (X127) on the Control Unit.		
Value:	0: DHCP off		
	2: DHCP on, iden	ddress	
	3: DHCP on, iden	station	


r8915[0...5]	IE MAC address / IE MAC addr		
CU_S_AC_DP,	Can be changed: -	Calculated: -	Access level: 1
CU_S_AC_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S12ODP,	Max	Factory setting	
CU_S150_DP	Min	00FF hex	-
	0000 hex		
Description:	Displays the MAC address for the Industrial Ethernet interface (X127) on the Control Unit.		


p8920[0...239]	PN Name of Station / PN Name Stat		
CU_S_AC_PN,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Sets the station name for the onboard PROFINET interface on the Control Unit. The actual station name is displayed in r8930.		
Dependency:	Refer to: p8925, r8930		
Note:	An ASCII table (excerpt)   The interface configurati   The parameter is not inf PN: PROFINET	xample, in the ap wing) is activated e factory setting	anual.


p8921[0...3]	PN IP address / PN IP addr		
CU_S_AC_PN,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	255	Factory setting
	0	0	
Description:	Sets the IP address for the onboard PROFINET interface on the Control Unit.		
Dependency:	The actual IP address is displayed in r8931.		
Note:	Refer to: p8925, r8931		
	The interface configuration (p8920 and following) is activated with p8925.		


p8922[0...3]	PN Default Gateway / PN Def Gateway		
CU_S_AC_PN,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0


Description:	Sets the default gateway for the onboard PROFINET interface on the Control Unit.
	The actual standard gateway is displayed in r8932.
Dependency:	Refer to: $\mathrm{p} 8925, \mathrm{r} 8932$
Note:	The setting p8922[0...3] = 0 or $\mathrm{p} 8922=\mathrm{p} 8921$ (own IP address) means that a standard gateway has not been set.
	The interface configuration (p8920 and following) is activated with p8925.
	The parameter is not influenced by setting the factory setting.


p8923[0...3]	PN Subnet Mask / PN Subnet Mask		
CU_S_AC_PN,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	255	Factory setting
	0	0	
Description:	Sets the subnet mask for the onboard PROFINET interface on the Control Unit.		
	The actual subnet mask is displayed in r8933.		
Dependency:	Refer to: p8925, r8933		

### 2.2 List of parameters


p8925
CU_S_AC_PN,
CU_S120_PN,
CU_S150_PN

CU_S_AC_PN,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	3	Factory setting
Description:	0	Setting to activate the interface configuration for the onboard PROFINET interface on the Control Unit.	
	p8925 is automatically set to 0 at the end of the operation.	0	

Value:

## Activate PN interface configuration / PN IF config

	$1: \quad$ Activate configuration
	$2: \quad$ Activate and save configuration
Dependency:	$3: \quad$ Delete configuration
	Refer to: p8920, p8921, p8922, p8923, p8924
Notice:	Refer to: A08563
	When the DHCP mode is active (p8924 > 0), then PROFINET communication via this interface is no longer possible!
Note:	However, the interface can be used by the STARTER/SCOUT commissioning tool.
	When a project is downloaded, the interface configuration is only activated if, in the offline project, parameter p8925
is set =1 or 2.	
	For p8925 = 1:
	The interface configuration (p8920 and following) is activated.
	For p8925 = 2:
	The interface configuration (p8920 and following) is activated and saved to non-volatile memory.
	For p8925 = 3:
	Restores all memory locations for the interface configuration to the factory settings.
	The factory settings for the interface configuration are loaded on activation (p8925 = 1) or at the next POWER ON.


r8930[0...239]	PN Name of Station actual / PN Name Stat act		
CU_S_AC_PN,	Can be changed: -	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the actual station name for the onboard PROFINET interface on the Control Unit.		


8931[0_..3]	PN IP address actual / PN IP addr act		
CU_S_AC_PN,	Can be changed: -	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	
Description:	Displays the actual IP address for the onboard PROFINET interface on the Control Unit.		


r8932[0...3]	PN Default Gateway actual / PN Def Gateway act		
CU_S_AC_PN,	Can be changed: -	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	-
Description:	Displays the actual default gateway for the onboard PROFINET interface on the Control Unit.		
r8933[0...3]	PN Subnet Mask actual / PN Subnet Mask act		
$\begin{aligned} & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & C U _S 150 \text { PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	-
Description:	Displays the actual subnet mask for the onboard PROFINET interface on the Control Unit.		
r8934	PN DHCP Mode actual / PN DHCP Mode act		
CU_S_AC_PN, CU_S120_PN, CU_S150_PN	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	-
Description:	Displays the actual DHCP mode for the onboard PROFINET interface on the Control Unit.		
Value:	0: DHCP off   2: DHCP on, ident   3: DHCP on, ident	adress tation	
Notice:	When the DHCP mode longer possible! Howev	value not equal e used for com	munication via this as STARTER or SC

### 2.2 List of parameters




### 2.2 List of parameters

Note: $\quad$ An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.
The interface configuration (p8940 and following) is activated with p8945.
The parameter is not influenced by setting the factory setting.

p8941[0...3]	CBE2x IP address / CBE2x IP addr		
CU_S120_PN (PN	Can be changed: U, T	Calculated: -	Access level: 3
CBE20, PN CBE25),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN (PN	P-Group: -	Unit group: -	Unit selection: -
CBE20, PN CBE25),	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP (PN	Max	Factory setting	
CBE20.PN CBE25),	Min	255	0
CU_S150_DP (PN	0		

Description: Sets the IP address for the Communication Board Ethernet 20/25 (CBE20/CBE25).
Dependency: Refer to: p8945, r8951
Note: $\quad$ The interface configuration (p8940 and following) is activated with p8945.
The parameter is not influenced by setting the factory setting.

p8942[0...3]	CBE2x Default Gateway / CBE2x Def Gateway		
CU_S120_PN (PN	Can be changed: U, T	Calculated: -	Access level: 3
CBE20, PN CBE25),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN (PN	P-Group: -	Unit group: -	Unit selection: -
CBE20, PN CBE25),	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP (PN	Max	Factory setting	
CBE20, PN CBE25),	Min	255	0

CBE20, PN CBE25)
Description: Sets the standard gateway for the Communication Board Ethernet 20/25 (CBE20/CBE25).
Dependency: Refer to: p8945, r8952
Note: $\quad$ The setting p8942[0...3] $=0$ or p8942 = p8941 (own IP address) means that a standard gateway has not been set.
The interface configuration (p8940 and following) is activated with p8945.
The parameter is not influenced by setting the factory setting.

p8943[0...3]	CBE2x Subnet Mask / CBE2x Subnet Mask		
CU_S120_PN (PN	Can be changed: U, T	Calculated: -	Access level: 3
CBE20, PN CBE25),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN (PN	P-Group: -	Unit group: -	Unit selection: -
CBE20, PN CBE25),	Not for motor type: -	Max	Expert list: 1
CU_S120_DP (PN	Min	Factory setting	
CBE20, PN CBE25),	Min	0	
CU_S150_DP (PN	0		
CBE20, PN CBE25)			
Description:	Sets the subnet mask for the Communication Board Ethernet 20/25 (CBE20/CBE25).		
Dependency:	Refer to: p8945, r8953		
Note:	The interface configuration (p8940 and following) is activated with p8945.		
	The parameter is not influenced by setting the factory setting.		


p8944	CBE2x DHCP Mode / CBE2x DHCP Mode		
CU_S120_PN (PN	Can be changed: U, T	Calculated: -	Access level: 3
CBE20, PN CBE25),	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S150_PN (PN	P-Group: -	Unit group: -	Unit selection: -
CBE20, PN CBE25),	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP (PN	Max	Factory setting	
CBE20, PN CBE25),	Min	3	0
CU_S150_DP (PN	0		

## Description: Sets the DHCP mode for the Communication Board Ethernet 20/25 (CBE20/CBE25).

Value:

[^9]

r8950[0...239]	CBE2x Name of Station actual / CBE2x Name act		
CU_S120_PN (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20, PN CBE25),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN (PN	P-Group: -	Unit group: -	Unit selection: -
CBE20, PN CBE25),	Not for motor type: -	Max	Expert list: 1
CU_S120_DP (PN	-	Factory setting	
CBE20, PN CBE25),	Min	-	-
CU_S150_DP (PN	-		
CBE20, PN CBE25)			
Description:	Displays the actual station name for the Communication Board Ethernet 20/25 (CBE20/CBE25).		


r8951[0...3]	CBE2x IP Address actual / CBE2x IP addr		
CU_S120_PN (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20, PN CBE25),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN (PN	P-Group: -	Unit group: -	Unit selection: -
CBE20, PN CBE25),	Not for motor type: -	Max	Expert list: 1
CU_S120_DP (PN	Factory setting		
CBE20, PN CBE25),	Min	255	-
CU_S150_DP (PN	0		
CBE20, PN CBE25)		Fisplays the actual IP address for the Communication Board Ethernet 20/25 (CBE20/CBE25).	


r8952[0...3]	CBE2x Default Gateway actual / CBE2x def GW act		
CU_S120_PN (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20, PN CBE25),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150-PN (PN	Unit group: -	Unit selection: -	
CBE20, PN CBE25),	P-Group: -	Unt for motor type: -	Scaling: -
CU_S120DP (PN	Max	Expert list: 1	
CBE20, PN CBE25),	Min	Factory setting	
CU_S150_DP (PN	0	-	
CBE20, PN CBE25)			

Description: Displays the actual standard gateway for the Communication Board Ethernet 20/25 (CBE20/CBE25).

r8953[0...3]	CBE2x Subnet Mask actual / CBE2x Sub Mask act		
CU_S120_PN (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20, PN CBE25),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN (PN	P-Group: -	Unit group: -	Unit selection: -
CBE20, PN CBE25),	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP (PN	Max	Factory setting	
CBE20, PN CBE25),	Min	255	-
CU_S150DP (PN	0		

Description: Displays the actual subnet mask for the Communication Board Ethernet 20/25 (CBE20/CBE25).

r8954	CBE2x DHCP Mode actual / CBE2x DHCP act		
CU_S120_PN (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20, PN CBE25),	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S150_PN (PN	P-Group: -	Unit group: -	Unit selection: -
CBE20, PN CBE25),	Not for motor type: -	Max	Factory setting
CU_S120_DP (PN	Fist: 1		
CBE20, PN CBE25),	Min	3	-
CU_S150_DP (PN	0		
CBE20, PN CBE25)			
Description:	Displays the actual DHCP mode for the Communication Board Ethernet 20/25 (CBE20/CBE25).		
Value:	$0: \quad$ DHCP off		
	$2:$	DHCP on, identification using MAC address	
Notice:	$3:$	DHCP on, identification via name of station	
	When the DHCP mode is active (parameter value greater than 0), PROFINET communication via this interface is no		
	longer possible! However, the interface can be used by the STARTER/SCOUT commissioning tool.		


r8955[0...5]	CBE2x MAC address / CBE2x MAC Addr		
CU_S120_PN (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20, PN CBE25),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN (PN	U-Group: -	Unit group: -	Unit selection: -
CBE20, PN CBE25),	Not for motor type: -	Max	Expert list: 1
CU_S120_DP (PN	Factory setting		
CBE20,PN CBE25),	Min	00FF hex	-
CU_S150_DP (PN	0000 hex		
CBE20, PN CBE25)			
Description:	Displays the MAC address for the Communication Board Ethernet 20/25 (CBE20/CBE25).		



### 2.2 List of parameters



r8960[0...3]	PN subslot controller assignment / PN subslot assign		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 1	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	8	-
CU_S150_DP,	0		

CU I D410, SERVO,
VECTOR, HLA,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC,
A_INF, S_INF, R_INF,
B_INF, TM31, TM41,
TM15DI_DO, TM120
TM150, TB30, ENC

Description:	Displays the controller assignment of a PROFINET subslot on the actual drive object.
	The display is only relevant for Shared Device.
Index:	$[0]=$ Subslot 2 PROFIsafe
	$[1]=$ Subslot 3 PZD telegram
	$[2]=$ Subslot 4 PZD supplementary data
	$[3]=$ Subslot 5 PZD supplementary data
Dependency:	Refer to: r8961, r8962
Note:	Example:
	If the parameter contains the value 2 in index [1], then this means that subslot 3 is assigned to controller 2.


r8961[0...3]	PN IP Address Remote Controller 1 / IP Addr Rem Ctrl1		
CU_S_AC_PN,	Can be changed: -	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	-
Description:	Displays the IP address of the first PROFINET controller connected with the device via PN onboard.		


r8962[0...3]	PN IP Address Remote Controller 2 / IP Addr Rem Ctrl2		
CU_S_AC_PN,	Can be changed: -	Calculated: -	Access level: 3
CU_S20_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Fxpert list: 1
	Min	255	Factory setting
	0		
Description:	Displays the IP address of the second PROFINET controller connected with the device via PN onboard.		
	The display is only relevant for Shared Device - or system redundancy.		


p8969	PROFIsafe wait for clock synchronization / PS wait sync		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Factory setting	
CU_S150_DP	0	0	0
	0		
Description:	Setting for the behavior of a PROFlsafe communication connection depending on another isochronous		
	communication connection.		


Value:	$0:$	No
	$1:$	Yes

Recommendation: A value of 1 is recommended, if problems are encountered with the PROFIsafe connection when synchronizing.

## Note: $\quad$ If value $=1$ :

A PROFIsafe connection is only accepted if an isochronous connection exists.
Relevant, if PROFIsafe and isochronous operation are configured via various communication connections (e.g. PROFINET Shared Device).

### 2.2 List of parameters

r8970[0...3]	CBE2x subslot controller assignment / CBE2x subslot				
CU_S120_PN (PN	Can be changed: -	Calculated: -	Access level: 3		
CBE20, PN CBE25),	Data type: Unsigned8	Dyn. index: -	Func. diagram:		
CU_S150_PN (PN CBE20, PN CBE25),	P-Group: -	Unit group: -	Unit selection: -		
CU_S120_DP (PN	Not for motor type: -	Scaling: -	Expert list: 1		
CBE20, PN CBE25),	Min	Max	Factory setting		
CU_S150_DP (PN CBE20, PN CBE25),	0	8	-		
SERVO (PN CBE20),					
VECTOR (PN CBE20),					
HLA (PN CBE20),					
SERVO_AC (PN					
CBE20), VECTOR_AC					
(PN CBE20),					
SERVO_I_AC (PN					
CBE20),					
VECTOR_I AC (PN					
CBE20), A INF (PN					
CBE20), S_INF (PN					
CBE20), R_INF (PN					
CBE20), B_INF (PN					
CBE20), TM31 (PN					
CBE20), TM41 (PN					
CBE20), TM17 (PN					
CBE20), TM15 (PN					
CBE20), TM15DI_DO					
(PN CBE20), TM120					
(PN CBE20), TM150					
(PN CBE20), TB30					
(PN CBE20), ENC (PN					
CBE20)					
Description:	Displays the controller assignment of a PROFINET subslot on the actual drive object.$[0]=$ Subslot 2 PROFIsafe$[1]=$ Subslot 3 PZD telegram$[2]=$ Subslot 4 PZD supplementary data$[3]$ = Subslot 5 PZD supplementary data				
Index:					
Dependency:	Refer to: r8971, r8972				
Note:	Example:				
	If the parameter contai	[1], then this m	assigned to cont		


r8971[0...3]	CBE2x IP Address Remote Controller 1 / CBE2x IP Rem Ctrl1		
CU_S120_PN (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20, PN CBE25),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN (PN	P-Group: -	Unit group: -	Unit selection: -
CBE20, PN CBE25),	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP (PN	Max	Factory setting	
CBE20, PN CBE25),	Min	255	-
CU_S150_DP (PN	0		

Description: Displays the IP address of the first PROFINET controller connected with the device via CBE20/CBE25.

88972[0...3]	CBE2x IP Address Remote Controller 2 / CBE2x IP Rem Ctrl2		
CU_S120_PN (PN	Can be changed: -	Calculated: -	Access level: 3
CBE20, PN CBE25),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S150_PN (PN	P-Group: -	Unit group: -	Unit selection: -
CBE20, PN CBE25),	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP (PN	Max	Factory setting	
CBE20.PN CBE25),	Min	255	-
CU_S150_DP (PN	0		

[^10]| p8984[0...1] | BI: Web server interface enable signal source / Webserv enab s_src |  |  |
| :--- | :--- | :--- | :--- |
| CU_S_AC_PN, | Can be changed: T | Calculated: - | Access level: 3 |
| CU_S120_PN, | Data type: Unsigned32 / Binary | Dyn. index: - | Func. diagram: - |
| CU_S150_PN | P-Group: - | Unit group: - | Unit selection: - |
|  | Not for motor type: - | Scaling: - | Expert list: 1 |
|  | Min | Max | Factory setting |
|  | - | - | $[1] 1$ |
|  |  |  |  |


Description:	Sets the signal source to enable the interface to access the web server.
Index:	$[0]=$ Reserved
	$[1]=$ PROFINET X150
Dependency:	The web server must be activated using p8986.0 = 1 before it can be used.
	Refer to: p8986
Note:	BI:p8984[1] = 1 signal:
	PROFINET interface X150 is enabled for access to the web server.
	BI:p8984[1] = 0 signal:
	PROFINET interface X150 is blocked for access to the web server.


p8985[0...1]	Web server interface configuration / WebServ interf con		
CU_S_AC_PN,	Can be changed: T	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S150_PN	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	$[0] 0000$ bin	
			$[1] 0001$ bin


Description:	Setting to block the interface for the http access to the web server.		
Index:	$\begin{aligned} & {[0]=\text { Reserved }} \\ & {[1]=\text { PROFINET X150 }} \end{aligned}$		
Bit field:	Bit Signal name $\mathbf{1}$ signal   00 Inhibit access via https Yes	0 signal No	FP
Dependency:	p8985[1]. 0 is only relevant for:   - p8986.0 = 1 (activate web server)   - p8986.1 = 0 (enable http)   - p8984[1] = 1 signal (enable the web server for X150)   Refer to: p8984, p8986		
Note:	$\mathrm{p} 8985[1] .0=1:$   PROFINET interface X 150 is blocked for http access to the web server. $\text { p8985[1]. } 0=0:$   PROFINET interface X150 is enabled for http access to the web server.		


p8986	Web server configuration / Web serv config		
CU_S_AC_DP,	Can be changed: T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Scaling: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Max	Expert list: 1
CU_S120_DP,	Min	Factory setting	
CU_S150_DP	-	0101 bin	
	Setting to activate and configure the "Web server" function in the drive.		
Description:	It is possible to access the web server via the integrated Ethernet and PROFINET interfaces of the drive. The     addressing is realized via the set IP address.		

### 2.2 List of parameters

Bit field:	Bit	Signal name	1 signal	F	
	00	Activating	Yes	No	-
	01	Only permit access via https	Yes	No	
	02	Enable "SINAMICS" user	Yes	No	
	03	Enable "Administrator" user	Yes	No	


p8987[0...1]	Web server port assignment / WebServ PortAssign		
CU_S_AC_DP,	Can be changed: T	Calculated: -	Access level: 3
CU_S_AC_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S12O_DP,	Max	Factory setting	
CU_S150_DP	Min	32767	$[0] 80$
	1		$[1] 443$

Description: Sets the port assignment for the web server.
Index: [0] = Port for standard transfer (http)
[1] = Port for secure transfer (https)
Note: $\quad$ With the exception of values 80 and 443 , values greater than or equal to 1024 are permitted.

p8994[0...1]	$\mathrm{BI}:$ Commissioning tool interface enable signal source / Comm enab s_src		
CU_S_AC_PN,	Can be changed: T	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	[0] 1
			[1] 1
Description:	Sets the signal source to enable the interface to access a commissioning tool.		
Index:	[0] = Reserved		
Note:	The parameter influences access operations initiated by STARTER, Startdrive and SIMATIC HMI.		
	BI: p8994[1] = 1 signal:		
	PROFINET interface X 150 is enabled for access by a commissioning tool.		
	BI: p8994[1] = 0 signal:		
	PROFINET interface X150 is blocked for access by a commissioning tool.		



### 2.2 List of parameters

r9208[0...50]	Topology direct access string / Topo access string		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Topology	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Max	Expert list: 1
CU_S150_PN,	Min	Factory setting	
CU_S120_DP,	Min	-	
CU_S15_DP,	-		
CU_I_D410			
Description:	Displays the value for the property set in p9206.		
	A value is only displayed for string type properties.		
Dependency:	Refer to: p9206, r9207		
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		




### 2.2 List of parameters

p9300	SI Motion monitoring clock cycle (Motor Module) / SI Mtn clock MM		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram:
SERVO_I_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	500.00 [ $\mu \mathrm{s}$ ]	25000.00 [ $\mu \mathrm{s}$ ]	12000.00 [ ss ]
Description:	Sets the monitoring clock cycle for safe motion monitoring. Refer to: p9500, p9511		
Dependency:			
	Refer to: F01652		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The monitoring clock cycle must be a multiple of the actual value sensing clock cycle in p9311 or of the DP clock cycle.		
	A change only becomes effective after a POWER ON.		


p9301	SI Motion enable safety functions (Motor Module) / SI Mtn enable MM				
SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	Can be changed: C2(95) Ca		lated: -	Access level: 3	
	Data type: Unsigned32 Dy		index: -	Func. diagram: -	
	P-Group: Safety Integrated Unt		group: -	Unit selection: -	
	Not for motor type: - S		ng: -	Expert list: 1	
	Min M			Factory setting	
	-		-	00000000000000000000 000000000000 bin	
Description:	Sets the enable signals for the safe motion monitoring.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Enable SOS/SLS	Enable	Inhibit	-
	01	Enable SLP	Enable	Inhibit	-
	02	Enable absolute position	Enable	Inhibit	-
		Enable actual value synchronization	Enable	Inhibit	-
	16	Enable SSM hysteresis and filtering	Enable	Inhibit	2823
	17	Enable SDI	Enable	Inhibit	2824
	18	Enable SS2E	Enable	Inhibit	-
	20	Enable Safely-Limited Acceleration	Enable	Inhibit	-
	23	Enable deactivation SOS/SLS during an external STOP A	Enable	Inhibit	-
	24	Enable transfer SLS limit value via PROFIsafe	Enable	Inhibit	-
	25	Enable transfer safe position via PROFIsafe	Enable	Inhibit	-
	26	Enable safe gearbox switchover	Enable	Inhibit	-
	27	Enable referencing via SCC	Enable	Inhibit	-
	28	Enable safe cam	Enable	Inhibit	-
	29	Enable synchronous transfer safe position via PROFIsafe	Enable	Inhibit	-
	30	Enable F-DI in PROFIsafe telegram 900	Enable	Inhibit	-
Dependency:	Refer to: p9501				
	Refer to: F01682, F01683				
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.				

Note: $\quad$| A change only becomes effective after a POWER ON. |
| :--- |
| SCA: Safe Cam |
| SDI: Safe Direction (safe motion direction) |
| SLA: Safely-Limited Acceleration |
| SLP: Safely-Limited Position |
| SLS: Safely-Limited Speed |
| SOS: Safe Operating Stop |
| SP: Safe Position |
| SS2E: Safe Stop 2 external (Safe Stop 2 with external stop, external STOP D) |
| SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring) |

p9301	SI Motion enable safety functions (Motor Module) / SI Mtn enable MM				
SERVO, VECTOR, HLA			Calculated: - Acces		
	Can be changed: C2(95)   Data type: Unsigned32		index: -	Func.	
	P-Group: Safety Integrated U		group: -	Unit s	
	Not for motor type: - S		ng: -	Expert	
	Min M		Max	Factory setting	
	-		-	00000000000000000000 000000000000 bin	
Description:	Sets the enable signals for the safe motion monitoring.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Enable SOS/SLS	Enable	Inhibit	-
	01	Enable SLP	Enable	Inhibit	-
	02	Enable absolute position	Enable	Inhibit	-
	03	Enable actual value synchronization	Enable	Inhibit	-
	16	Enable SSM hysteresis and filtering	Enable	Inhibit	2823
	17	Enable SDI	Enable	Inhibit	2824
	18	Enable SS2E	Enable	Inhibit	-
	20	Enable Safely-Limited Acceleration	Enable	Inhibit	-
	23	Enable deactivation SOS/SLS during an external STOP A	Enable	Inhibit	-
	24	Enable transfer SLS limit value via PROFIsafe	Enable	Inhibit	-
	25	Enable transfer safe position via PROFIsafe	Enable	Inhibit	-
	26	Enable safe gearbox switchover	Enable	Inhibit	-
	27	Enable referencing via SCC	Enable	Inhibit	-
	28	Enable safe cam	Enable	Inhibit	-
		Enable synchronous transfer safe position via PROFIsafe	Enable	Inhibit	-
Dependency:	Refer to: p9501				
	Refer to: F01682, F01683				
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.				
Note:	A change only becomes effective after a POWER ON.				
	SCA: Safe Cam				
	SDI: Safe Direction (safe motion direction)				
	SLA: Safely-Limited Acceleration				
	SLP: Safely-Limited Position				
	SLS: Safely-Limited Speed				
	SOS: Safe Operating Stop				
	SP: Safe Position				
	SS2E: Safe Stop 2 external (Safe Stop 2 with external stop, external STOP D)				
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)				

### 2.2 List of parameters

$\mathbf{p 9 3 0 2}$
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC


SI Motion axis type (Motor Module) / SI Mtn AxisType MM		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: Integer16	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	1	0

Description: $\quad$ Sets the axis type (linear axis or rotary axis/spindle).
Value: $\quad 0$ : Linear axis
1: Rotary axis/spindle
Dependency: Refer to: p9502
Notice: $\quad$ This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note: $\quad$ For the commissioning tool, after changing over the axis type, the units dependent on the axis type are only updated after a project upload.
A change only becomes effective after a POWER ON.

p9303	SI Motion SCA (SN) enable (MM) / SI Mtn SCA enab MM				
SERVO, VECTOR, HLA, SERVO_AC, VECTOR AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(95)$		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram:	
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	00000000000000000000 000000000000 bin	
Description:	Setting to enable the function "Safe Cam" (SCA).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Enable SCA1 (SN1)	Enable	Inhibit	-
	01	Enable SCA2 (SN2)	Enable	Inhibit	-
	02	Enable SCA3 (SN3)	Enable	Inhibit	-
	03	Enable SCA4 (SN4)	Enable	Inhibit	-
	04	Enable SCA5 (SN5)	Enable	Inhibit	-
	05	Enable SCA6 (SN6)	Enable	Inhibit	-
	06	Enable SCA7 (SN7)	Enable	Inhibit	-
	07	Enable SCA8 (SN8)	Enable	Inhibit	-
	08	Enable SCA9 (SN9)	Enable	Inhibit	-
	09	Enable SCA10 (SN10)	Enable	Inhibit	-
	10	Enable SCA11 (SN11)	Enable	Inhibit	-
	11	Enable SCA12 (SN12)	Enable	Inhibit	-
	12	Enable SCA13 (SN13)	Enable	Inhibit	-
	13	Enable SCA14 (SN14)	Enable	Inhibit	-
	14	Enable SCA15 (SN15)	Enable	Inhibit	-
	15	Enable SCA16 (SN16)	Enable	Inhibit	-
	16	Enable SCA17 (SN17)	Enable	Inhibit	-
	17	Enable SCA18 (SN18)	Enable	Inhibit	-
	18	Enable SCA19 (SN19)	Enable	Inhibit	-
	19	Enable SCA20 (SN20)	Enable	Inhibit	-
	20	Enable SCA21 (SN21)	Enable	Inhibit	-
	21	Enable SCA22 (SN22)	Enable	Inhibit	-
	22	Enable SCA23 (SN23)	Enable	Inhibit	-
	23	Enable SCA24 (SN24)	Enable	Inhibit	-
	24	Enable SCA25 (SN25)	Enable	Inhibit	-
	25	Enable SCA26 (SN26)	Enable	Inhibit	-
	26	Enable SCA27 (SN27)	Enable	Inhibit	-
	27	Enable SCA28 (SN28)	Enable	Inhibit	-
	28	Enable SCA29 (SN29)	Enable	Inhibit	-
	29	Enable SCA30 (SN30)	Enable	Inhibit	-
Dependency:	Refer to: p9501				
	Ref	to: F01686			


Note:	The "Safe Cam" function (SCA) can either be enabled using p9501 or p9503. SCA: Safe Cam / SN: Safe software cam
p9305	SI Motion SP modulo value (Motor Module) / SI mtn SP mod MM
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95) Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $0\left[^{\circ}\right]$ $737280\left[{ }^{\circ}\right]$ $0\left[{ }^{\circ}\right]$
Description:	Sets the modulo value in degrees for rotary axes of the "Safe position" function.   This modulo value is taken into account when safely referencing as well as when transferring the safe position via PROFIsafe when the absolute position is enabled.   The value should be set, so that it is precisely at $2^{\wedge} n$ revolutions, so that when the range that can be represented (+/2048) overflows, this does not cause the position actual value to jump.   The modulo function is deactivated for a value $=0$.
Dependency:	Refer to: F01681
Notice:	When the "SLP" function is activated, the modulo function must be deactivated as otherwise fault F30681 will be output.   If the absolute position is not enabled, then the parameterized modulo value is not taken into account.   This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	SLP: Safely-Limited Position   SP: Safe Position


p9306	SI Motion function specification (Motor Module) / SI Mtn fct_spc MM		
HLA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Sets the function specification for the safe motion monitoring.		
Value:	$\begin{array}{ll}0: & \text { Safety with encoder } \\ 2: & \text { Safety with encoder }\end{array}$	oring (SAM) / de (SBR)	
Dependency:	Refer to: C30711		
Notice:	This parameter is overwritten	ction of the safe	d in the drive.


p9306	SI Motion function specification (Motor Module) / SI Mtn fct_spc MM		
SERVO, VECTOR,	Can be changed: C 2 (95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC, SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description:	Sets the function specification for the safe motion monitoring.		
Value:	0: Safety with encoder and accel_monitoring (SAM) / delay time		
	1: Safety without encoder and brake ramp (SBR)		
	2: Safety with encoder and brake ramp (SBR)		
	3: Safety without encoder with accel_monitoring (SAM) / delay time		
Dependency:	Refer to: C30711		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		

### 2.2 List of parameters

p9307	SI Motion function configuration MM / SI mtn config MM			
HLA	Can be changed: C2(95) C	Calculated: -	Access level: 3	
	Data type: Unsigned32 D	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated U	Unit group: -	Unit selection: -	
	Not for motor type: - S	Scaling: -	Expert list: 1	
	Min M	Max	Factory setting	
	- -	-	00000000 bin	
Description:	Sets the function configuration for the safe motion monitoring functions.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Extended message acknowledgment	Yes	No	-
	01 Setpoint velocity limit for STOP F	No	Yes	-
	03 SS1 with OFF3 (brake response)	SS1E external stop	SS1 with OFF3	-
	06 Configuration test stop motion monitoring functions	g Test automatic	Test manual	-
Dependency:	Refer to: C01711			
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.			
Note:	For bit 00:			
	When the function is activated, a safety-relevant acknowledgment (internal event acknowledge) can be performed by selecting/deselecting STO.			
	When the function is activated, the active setpoint velocity limit (CO: r 9733 ) is set to zero when STOP $F$ is active. For bit 03:			
	When the bit is activated - when selecting function SS1 or activating a STOP B - an SS1E or a STOP B with stop, which should be externally initiated, is triggered instead of SS1 with a drive-based braking response. As a consequence, brake monitoring (SBR, SAM) is deactivated.   SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)			


$\mathbf{p 9 3 0 7}$
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC


Description:	Sets the function configuration for the safe motion monitoring functions.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Extended message acknowledgment	Yes	No	-
	01	Setpoint velocity limit for STOP F	No	Yes	-
	02	Actual value sensing encoderless motor type	Synchronous motor	Induction motor	-
	03	SS1 with OFF3 (brake response)	SS1E external stop	SS1 with OFF3	-
	05	Actual value sensing sensorless edge modulation	Yes	No	-
	06	Configuration test stop motion monitoring functions	Test automatic	Test manual	-
Dependency:	Refer to: C01711				
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.				
Note:	For bit 00:				
	When the function is activated, a safety-relevant acknowledgment (internal event acknowledge) can be performed by selecting/deselecting STO.				

For bit 01:
When the function is activated, the active setpoint velocity limit (CO: r9733) is set to zero when STOP F is active.

### 2.2 List of parameters

For bit 02:
This bit defines the type of motor, which the sensorless actual value sensing evaluates.
For bit $=0$, the actual velocity is calculated for an induction motor.
For bit $=1$, the actual velocity is calculated for a synchronous motor. This value depends on the setting in p0300.
Bit $=0$ should be set if no motor is defined $(\mathrm{p} 0300=0)$.
For bit 03:
When the bit is activated - when selecting function SS1 or activating a STOP B - an SS1E or a STOP B with Stop, which should be externally initiated, is triggered instead of SS1 with a drive-based braking response. As a consequence, brake monitoring (SBR, SAM) is deactivated.
SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)
For bit 05:
This bit defines the type of modulation, which the sensorless actual value sensing evaluates.
For bit $=0$, the actual velocity is calculated for space vector modulation.
For bit $=1$, the actual velocity is calculated for edge modulation. This value depends on the setting in p1802.
For bit 06:
When the bit is active, the test stop of the Extended Functions and the test stop of the onboard F-DO is carried out. The onboard F-DO can be deactivated via p10146.

p9307	SI Motion function configuration MM / SI mtn config MM				
SERVO, VECTOR	Can be changed: C2(95) C		Calculated: -	Access level: 3	
		type: Unsigned32 Dy	Dyn. index: -	Func. diagram: -	
		up: Safety Integrated Un	Unit group: -	Unit selection: -	
		or motor type: - Sc	Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	00000000 bin	
Description:	Sets the function configuration for the safe motion monitoring functions.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Extended message acknowledgment	Yes	No	-
	01	Setpoint velocity limit for STOP F	No	Yes	-
	02	Actual value sensing encoderless motor type	Synchronous motor	Induction motor	-
	03	SS1 with OFF3 (brake response)	SS1E external stop	SS1 with OFF3	-
	05	Actual value sensing sensorless edge modulation	Yes	No	-
	06	Configuration test stop motion monitoring functions	Test automatic	Test manual	-
Dependency:	Refer to: C01711				
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.				
Note:	For bit 00:				
	When the function is activated, a safety-relevant acknowledgment (internal event acknowledge) can be performed by selecting/deselecting STO.				
	For bit 01:				
	When the function is activated, the active setpoint velocity limit (CO: r9733) is set to zero when STOP F is active. For bit 02:				
	This bit defines the type of motor, which the sensorless actual value sensing evaluates.				
	For bit $=0$, the actual velocity is calculated for an induction motor.				
	For bit $=1$, the actual velocity is calculated for a synchronous motor. This value depends on the setting in p0300. Bit $=0$ should be set if no motor is defined $(p 0300=0)$.				
	For bit 03:				
	When the bit is activated - when selecting function SS1 or activating a STOP B - an SS1E or a STOP B with Stop, which should be externally initiated, is triggered instead of SS1 with a drive-based braking response. As a consequence, brake monitoring (SBR, SAM) is deactivated.				
	SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)				
	For bit 05:				
	This bit defines the type of modulation, which the sensorless actual value sensing evaluates.				
	For bit $=0$, the actual velocity is calculated for space vector modulation.				
	For bit $=1$, the actual velocity is calculated for edge modulation. This value depends on the setting in p1802.				

p9309
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description: Bit field:

Dependency:
Notice:

## Note:

SI Motion behavior during pulse suppression (Motor Module) / SI Mtn behav IL MM		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: Unsigned32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	0000000011111111 bin

Sets the behavior of safety functions and their feedback during pulse suppression in encoderless operation.

Bit	Signal name	1 signal	0 signal	FP
00	SSM during pulse suppression and encoderless	Becomes inactive	Remains active	-
08	SDI during pulse suppression and encoderless	Becomes inactive	Remains active	-

Refer to: C01711
This parameter is overwritten by the copy function of the safety functions integrated in the drive. For bit 00:
If the OFF1 or the OFF3 ramp-down time is too low, or there is an insufficient clearance between the SSM limit speed, and the shutdown speed, then it is possible that the "speed under limit value" signal does not change to 1 , because no speed actual value below the SSM limit was able to be identified before pulse cancellation. In this case, the OFF1 or the OFF3 ramp-down time or the clearance between the SSM limit speed and shutdown speed must be increased.
SDI: Safe Direction (safe motion direction)
SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)
For bit 00:
For bit = 1 and with the SSM safety function activated, the following applies:

- During pulse suppression, monitoring is switched off and the feedback signal has a 0 signal level.

For bit $=0$ and with the SSM safety function activated, the following applies:

- Monitoring continues during pulse suppression. The feedback signal last displayed before pulse suppression is kept and the system goes into the STO state.
For bit 08:
For bit = 1 and with the SDI safety function activated, the following applies:
- During pulse suppression, monitoring is switched off and the status signal indicates inactive.

For bit $=0$ and with the SDI safety function activated, the following applies:

- Monitoring continues during pulse suppression. The status signal indicates active and the system goes into the STO state.

Note: $\quad$ The parameter is only active for drive-based motion monitoring functions $(\mathrm{p} 9801.2=1)$.
The monitoring clock cycle from p9300 must be an integer multiple of this parameter.
In the case of motion monitoring functions with encoder, the clock cycle time for actual value sensing must be an
integer multiple of the current controller clock cycle and at least 4 times slower than the current controller clock cycle.
A factor of at least 8 is recommended.
The clock cycle time of the actual value sensing should not be set to more than 8 ms.
A change only becomes effective after a POWER ON.

p9311
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description:

## Dependency:

Notice: $\quad$ This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:
Refer to: p0115, p9300, p9511
Refer to: F01652

The parameter is only active for drive-based motion monitoring functions (p9801.2 = 1).

## SI Motion actual value sensing clock cycle (Motor Module) / SI Mtn act clk MM

Can be changed: C2(95)
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
0.0000 [ $\mu \mathrm{s}$ ]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
25000.0000 [ $\mu \mathrm{s}$ ]

Access level: 3
Func. diagram: Unit selection: -
Expert list: 1
Factory setting
0.0000 [ hs ]

Sets the clock cycle time of the actual value sensing for safe motion monitoring. Setting criteria if the motion monitoring functions are executed with an encoder. - a slower clock cycle time reduces the maximum permissible velocity - however, it ensures a lower load of the Control Unit for safe actual value sensing.

- the maximum permissible velocity which, when exceeded, can mean that errors occur during safe actual value sensing, is displayed in r9730.
- the isochronous PROFIBUS clock cycle is used as a clock cycle time for actual value sensing with a setting of 0 ms ; the setting is 1 ms if isochronous operation is not being used.
Setting criteria if the motion monitoring functions are executed without an encoder:
- the actual value sensing clock cycle must be set to the same value as the current controller clock cycle (p0115[0]). For SINAMICS S120M, the following applies:
Only setting p9311 $=0$ or 2 ms is possible (a value of 0 is internally assumed to be 2 ).

The monitoring clock cycle from p9300 must be an integer multiple of this parameter.
In the case of motion monitoring functions with encoder, the clock cycle time for actual value sensing must be an integer multiple of the current controller clock cycle and at least 4 times slower than the current controller clock cycle. A factor of at least 8 is recommended.
The clock cycle time of the actual value sensing should not be set to more than 8 ms .
A change only becomes effective after a POWER ON.

## p9312

SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

Description:

Bit field:

Dependency:

Notice: $\quad$ This parameter is overwritten by the copy function of the safety functions integrated in the drive.

### 2.2 List of parameters

Note:	A change becomes immediately effective after exiting the safety commissioning mode.
	SDI: Safe Direction (safe motion direction)
	SLS: Safely-Limited Speed


p9313	SI Motion non safety-relevant measuring steps POS1 (MM) / nsrPOS1 MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	4294967295	22000
	0		
Description:	Sets the non safety-relevant measuring steps of position value POS1.		
	The encoder that is used for the safe motion monitoring functions on processor 2, must be parameterized in this		
	parameter.		


p9314	SI Motion absolute encoder linear measuring steps (MM) / EncLinMeasStep MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	$4294967295[\mathrm{~nm}]$	$100[\mathrm{~nm}]$
	$0[\mathrm{~nm}]$		
Description:	Sets the resolution of the absolute position for a linear absolute encoder.		
	The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be		
	parameterized in this parameter.		
Dependency:	Refer to: p9514		


p9315	SI Motion coarse position value configuration (Motor Module) / SI Mtn s config MM				
SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC, SERVO_I_AC, VECTOR_I_AC			Calculated: - Acces		
	Can be changed: C2(95)		Dyn. index: - Func.		
	Data type: Unsigned32		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factory setting	
	-		-	00000000000000000000 000000000000 bin	
Description:	Sets the encoder configuration for the redundant coarse position value.				
	The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be parameterized in this parameter.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Incrementer	Yes		
	01	Encoder CRC least significant byte first	Yes	No	-
	02	Redundant coarse position val. most significant bit left-aligned	Yes	No	-
	04	Binary comparison not possible	Yes	No	-
	05	Single-channel encoder	Yes	No	-
	16	DRIVE-CLiQ encoder	Yes	No	-
	17	EnDat 2.2 converter	Yes	No	-
Dependency:	Refer to: r0474, p9515				


p9316	SI Motion encoder configuration, safety functions (Motor Module) / SI Mtn enc_cfg MM			
HLA	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Func	
	P-Group: Safety Integrated	Unit group: -	Unit s	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	0000	
Description:	Sets the configuration for the encoder and position actual value.			
	The encoder that is used for the safe motion monitoring functions on the Hydraulic Module must be parameterized in this parameter.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Encoder rotating/linear	Linear	Rotating	
	01 Position actual value sign change	Yes	No	-
	04 No STOP A after encoder fault for 1 encoder safety	Yes	No	-
Dependency:	Refer to: p0404, p0410, p9516			
p9316	SI Motion encoder configuration, safety functions (Motor Module) / SI Mtn enc_cfg MM			
SERVO, VECTOR,   SERVO_AC,   VECTOR_AC,   SERVO_IAC,   VECTOR_I_AC	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	00000000 bin	
Description:	Sets the configuration for the encoder and position actual value.			
	The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter.			
Bit field:	Bit Signal name   00 Encoder rotating/linear   01 Position actual value sign change   04 No STOP A after encoder fault for 1 encoder safety	1 signal   Linear   Yes   Yes	0 signal   Rotating   No	FP
				-
				-
			No	-
Dependency:	Refer to: p0404, p0410, p9516			
p9317	SI Motion linear scale grid division (Motor Module) / SI Mtn grid MM			
SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_IAC,   VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [ mm ]	$250000000.00[\mathrm{~nm}]$	10000.00 [ nm ]	
Description:	Sets the grid division for a linear encoder.			
	The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be parameterized in this parameter.			
Dependency:	Refer to: p0407, p9316			



## p9320

SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

## Description:

Dependency:
Notice:

SI Motion spindle pitch (Motor Module) / SI Mtn sp_pitch MM
Can be changed: C2(95)
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
0.1000 [ mm ]
en $8388.0000[\mathrm{~mm}]$
Calculated: -
Dyn. index: -
Unit group: -
Unit group: - Unit selection: -
Scaling: - Expert list: 1
Max Factory setting
$8388.0000[\mathrm{~mm}] \quad 10.0000[\mathrm{~mm}]$
Sets the gear ratio between the encoder and load in $\mathrm{mm} /$ revolution for a linear axis with rotary encoder.
The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be parameterized in this parameter.
Refer to: p9520
The fourth decimal point can be rounded-off depending on the size of the entered number (from 3 places before the decimal point).

p9321[0...7]	SI Motion gearbox encoder (motor)/load denom (Motor Module) / SI Mtn gearDenomMM		
HLA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2147000000	1
Description:	Sets the denominator for the gearbox between the encoder and load. The active gearbox stage can be switched over via PROFIsafe.		



### 2.2 List of parameters

p9322[0...7]	SI Motion gearbox encoder (motor)/load numerator (Motor Module) / SI Mtn gear num MM		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC, SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2147000000	1
Description:	Sets the numerator for the gearbox between the encoder (or motor in the case of encoderless monitoring functions) and the load.		
	The active gearbox stage can be switched over via PROFIsafe.		
Index:	[0] = Gearbox 1		
	[1] = Gearbox 2		
	[2] = Gearbox 3		
	[3] = Gearbox 4		
	[4] = Gearbox 5		
	[5] = Gearbox 6		
	[6] = Gearbox 7		
	[7] = Gearbox 8		
Dependency:	Refer to: p9321		
Note:	In the case of encoderless monitoring functions, the pole pair number must be multiplied by the numerator of the gearbox ratio.		
	Example:		
	Gearbox ratio 1:4, pole pair number (r0313) $=2$		
	--> p9321 = 1, p9322 = $8(4 \times 2)$		

## p9323

SERVO, VECTOR,

SI Motion red. coarse position value valid bits (Motor Module) / Valid bits MM		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: Unsigned16	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	16	9

Description: Sets the number of valid bits of the redundant coarse position value.
The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be parameterized in this parameter.
Dependency: Refer to: r0470, p9523

p9324	SI Motion redundant coarse pos. value fine resolution bits (MM)/SI Mtn fine bit MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Max	Factory setting
VECTOR_I_AC	Not for motor type: -	16	-2
	Min		
	-16		
Description:	Sets the number of valid bits for the fine resolution of the redundant coarse position value.		
	The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be		
	parameterized in this parameter.		
Dependency:	Refer to: r0471, p9524		


p9325	SI Motion redundant coarse pos. value relevant bits (MM) / Relevant bits MM		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	16	16
Description:	Sets the number of relevant bits for the redundant coarse position value.		
	The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be parameterized in this parameter.		
Dependency:	Refer to: p0414, r0472, p9525		
p9326	SI Motion encoder assignment (Motor Module) / SI Mtn encoder MM		
HLA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	3	2
Description:	Sets the number of the encoder, which is used on the Motor Module for safe motion monitoring function		
Dependency:	For the safe motion monitoring functions, the redundant safety position actual value sensing must be activated in the appropriate encoder data set ( $\mathrm{p} 0430.19=1$ ).		
	Refer to: p0187, p0188, p0189, p0430, p9526		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	- for p9526 = 1, the encoder for the closed-loop speed control is used for the second channel of the motion monitoring functions (1-encoder system). This setting is only permissible when using a DQI encoder.   - a change only becomes effective after a POWER ON.		


$\mathbf{p 9 3 2 6}$
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC


SI Motion encoder assignment (Motor Module) / SI Mtn encoder MM		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: Unsigned32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
1	3	1

Description: Sets the number of the encoder, which is used on the Motor Module for safe motion monitoring functions.
Dependency: For the safe motion monitoring functions, the redundant safety position actual value sensing must be activated in the appropriate encoder data set ( $\mathrm{p} 0430.19=1$ ).
Refer to: p0187, p0188, p0189, p0430, p9526
Notice: $\quad$ This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note: A change only becomes effective after a POWER ON.
For p9326 = 1, the following applies:
Motor Module uses an encoder for closed-loop speed control, it involves a 1-encoder system.

p9328[0...11]	SI Motion Sensor Module Node Identifier (Motor Module) / SI Mtn SM Ident MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	00 FF hex	0000 hex
	0000 hex		
Description:	Sets the node identifier of the Sensor Module that is used by the Motor Module/Hydraulic Module for the motion		
	monitoring functions.		

### 2.2 List of parameters

Dependency:	Refer to: r9881		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
p9329	SI Motion Gx_XIST1 coarse pos safe most significant bit (MM) / Gx_XIST1 MSB MM		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	31	14
Description:	Sets the bit number for the safe most significant bit (MSB) of the Gx_XIST1 coarse position.		
	The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be parameterized in this parameter.		
Dependency:	Refer to: p0415, r0475, p9529		
Note:	MSB: Most Significant Bit		
p9330	SI Motion standstill tolerance (Motor Module) / SI Mtn SOS Tol MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [mm]	100.000 [mm]	1.000 [mm]
Description:	Sets the tolerance for the function "Safe Operating Stop" (SOS).		
Dependency:	Refer to: p9530		
	Refer to: C01707		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	SOS: Safe Operating Stop		
p9330	SI Motion standstill tolerance (Motor Module) / SI Mtn SOS Tol MM		
SERVO (Safety rot),	Can be changed: C 2 (95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
rot), VECTOR_AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Safety	Min	Max	Factory setting
rot), VECTOR_I_AC   (Safety rot)	$\left.0.000{ }^{[ }{ }^{\circ}\right]$	$100.000\left[{ }^{\circ}\right]$	$\left.1.000{ }^{\circ}{ }^{\circ}\right]$
Description:	Sets the tolerance for the function "Safe Operating Stop" (SOS).		
Dependency:	Refer to: p9530		
	Refer to: C01707		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive. SOS: Safe Operating Stop		
Note:			




p9335[0...1]	SI Motion SLP lower limit values (Motor Module) / SI Mtn SLPIowLimMM		
SERVO, VECTOR,	Can be changed: C 2 (95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2822
SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2147000.000 [mm]	2147000.000 [mm]	-100000.000 [mm]
Description:	Sets the lower limit for the function "Safely-Limited Position" (SLP).		
Index:	$\begin{aligned} & {[0]=\text { Limit value SLP1 (SE1) }} \\ & {[1]=\text { Limit value SLP2 (SE2) }} \end{aligned}$		
Dependency:	Refer to: p9501, p9534, p9562		
	Refer to: C01715		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The following applies to the setting of these limits:		
	$-\mathrm{p} 9334[\mathrm{x}]>\mathrm{p} 9335[\mathrm{x}]$		
	- p9335[x] must lie in the valid traversing range (-737280 ... 737280).		
	SLP: Safely-Limited Position / SE: Safe software limit switches		


p9335[0..1]	SI Motion SLP Iower limit values (Motor Module) / SI Mtn SLPIowLimMM		
SERVO (Safety rot),	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2822
rot), VECTOR AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Safety	Min	Max	Factory setting
rot), VECTOR_I_AC   (Safety rot)	-2147000.000 [ ${ }^{\circ}$ ]	$2147000.000\left[{ }^{\circ}\right]$	-100000.000 [ ${ }^{\circ}$ ]
Description:	Sets the lower limit for the function "Safely-Limited Position" (SLP).		
Index:	[0] = Limit value SLP1 (SE1)		
Dependency:	Refer to: p9501, p9534, p9562		
	Refer to: C01715		
Notice:	This parameter is overwritten	ction of the safety	d in the drive.

Note: $\quad$| The following applies to the setting of these limits: |
| :--- |
| $-\mathrm{p} 9334[\mathrm{x}]>\mathrm{p} 9335[\mathrm{x}]$ |
|  | $\mathrm{p} 9335[\mathrm{x}]$ must lie in the valid traversing range $(-737280 \ldots 737280)$.



### 2.2 List of parameters

p9336[0...29]	SI Motion SCA (SN) plus cam position (MM) / SI Mtn SCA+ MM		
SERVO (Safety rot),	Can be changed: C 2 (95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC (Safety rot), VECTOR AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Safety	Min	Max	Factory setting
rot), VECTOR_I_AC (Safety rot)   (Safety rot)	-2147000.000 [ ${ }^{\circ}$	$2147000.000{ }^{[0]}$	10.000 [ ${ }^{\circ}$
Description:	Sets the plus cam position for the function "Safe Cam" (SCA).		
Index:	[0] = Cam position SCA1 (SN1)		
	[1] = Cam position SCA2 (SN2)		
	[2] = Cam position SCA3 (SN3)		
	[3] = Cam position SCA4 (SN4)		
	[4] = Cam position SCA5 (SN5)		
	[5] = Cam position SCA6 (SN6)		
	[6] = Cam position SCA7 (SN7)		
	[7] = Cam position SCA8 (SN8)		
	[8] = Cam position SCA9 (SN9)		
	[9] = Cam position SCA10 (SN10)		
	[10] = Cam position SCA11 (SN11)		
	[11] = Cam position SCA12 (SN12)		
	[12] = Cam position SCA13 (SN13)		
	[13] = Cam position SCA14 (SN14)		
	[14] = Cam position SCA15 (SN15)		
	[15] = Cam position SCA16 (SN16)		
	[16] = Cam position SCA17 (SN17)		
	[17] = Cam position SCA18 (SN18)		
	[18] = Cam position SCA19 (SN19)		
	[19] = Cam position SCA20 (SN20)		
	[20] = Cam position SCA21 (SN21)		
	[21] = Cam position SCA22 (SN22)		
	[22] = Cam position SCA23 (SN23)		
	[23] = Cam position SCA24 (SN24)		
	[24] = Cam position SCA25 (SN25)		
	[25] = Cam position SCA26 (SN26)		
	[26] = Cam position SCA27 (SN27)		
	[27] = Cam position SCA28 (SN28)		
	[28] = Cam position SCA29 (SN29)		
	[29] = Cam position SCA30 (SN30)		
Dependency:	Refer to: p9501, p9503, p9537		
Note:	A change only becomes effective after a POWER ON.		
	SCA: Safe Cam / SN: Safe software		


p9337[0...29]	SI Motion SCA (SN) minus cam position (MM) /	
SERVO, VECTOR, HLA, SERVO_AC, VECTOR AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95) Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: Safety Integrated Unit group: -   Not for motor type: - Scaling: -   Min Max   $-2147000.000[\mathrm{~mm}]$ $2147000.000[\mathrm{~mm}]$	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   -10.000 [mm]
Description: Index:	Sets the minus cam position for the function "Safe Cam" (SCA).   [0] = Cam position SCA1 (SN1)   [1] = Cam position SCA2 (SN2)   [2] = Cam position SCA3 (SN3)   [3] = Cam position SCA4 (SN4)   [4] = Cam position SCA5 (SN5)   [5] = Cam position SCA6 (SN6)   [6] = Cam position SCA7 (SN7)   [7] = Cam position SCA8 (SN8)   [8] = Cam position SCA9 (SN9)   [9] = Cam position SCA10 (SN10)   [10] = Cam position SCA11 (SN11)   [11] = Cam position SCA12 (SN12)   [12] = Cam position SCA13 (SN13)   [13] = Cam position SCA14 (SN14)   [14] = Cam position SCA15 (SN15)   [15] = Cam position SCA16 (SN16)   [16] = Cam position SCA17 (SN17)   [17] = Cam position SCA18 (SN18)   [18] = Cam position SCA19 (SN19)   [19] = Cam position SCA20 (SN20)   [20] = Cam position SCA21 (SN21)   [21] = Cam position SCA22 (SN22)   [22] = Cam position SCA23 (SN23)   [23] = Cam position SCA24 (SN24)   [24] = Cam position SCA25 (SN25)   [25] = Cam position SCA26 (SN26)   [26] = Cam position SCA27 (SN27)   [27] = Cam position SCA28 (SN28)   [28] = Cam position SCA29 (SN29)   [29] = Cam position SCA30 (SN30)	
Dependency:	Refer to: p9501, p9503, p9536	
Note:	A change only becomes effective after a POWER ON. SCA: Safe Cam / SN: Safe software cam	




p9342	SI Motion act val comparison tol (cross-check) (Motor Module) / SI Mtn actV tol MM
HLA	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
	P-Group: Safety Integrated Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0.0010 [mm] 360.0000 [mm] 0.1000 [mm]
Description:	Sets the tolerance for the data cross-check of the actual position between the two monitoring channels.
Dependency:	
	Refer to: C01711
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	For a linear axis, the tolerance is internally limited to 10 mm .
	For a "linear axis with rotating motor" and factory setting of p9320, p9321 and p9322, the factory setting of p9342 corresponds to a position tolerance of $36^{\circ}$ on the motor side.
p9342	SI Motion act val comparison tol (cross-check) (Motor Module) / SI Mtn actV tol MM
SERVO, VECTOR,   SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
	P-Group: Safety Integrated Unit group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0.0010 [mm] 360.0000 [mm] 0.1000 [mm]
Description:	Sets the tolerance for the data cross-check of the actual position between the two monitoring channels.   For encoderless motion monitoring functions, the tolerance must be set to a higher value ( 12 degrees rotary, 1 mm linear).
Dependency:	Refer to: p9542
	Refer to: C01711
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	For a linear axis, the tolerance is internally limited to 10 mm .
	For a "linear axis with rotating motor" and factory setting of p9320, p9321 and p9322, the factory setting of p9342 corresponds to a position tolerance of $36^{\circ}$ on the motor side.




### 2.2 List of parameters

Note: $\quad$ The filter time is effective only if the function is enabled ( $\mathrm{p} 9301.16=\mathrm{p} 9501.16=1$ ).
The set time is rounded internally to an integer multiple of the monitoring clock cycle.
The parameter is included in the data cross-check of the two monitoring channels.
SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)

## p9346

SERVO, VECTOR, HLA, SERVO AC, VECTOR_AC, SERVO I AC, VECTOR_I_AC

## Description:

Dependency:

## Caution:

Notice:
Note:
SI Motion SSM velocity limit (Motor Module) / SI Mtn SSM v_limMM

Can be changed: C2(95) Calculated: -
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
0.00 [ $\mathrm{mm} / \mathrm{min}$ ]

Dyn. index: -
Unit group: -
Scaling: -
Max
1000000.00 [mm/min]

Access level: 3
Func. diagram: 2823
Unit selection: -
Expert list: 1
Factory setting
20.00 [ $\mathrm{mm} / \mathrm{min}$ ]

Sets the velocity limit for the SSM feedback signal to detect standstill ( $n<n x$ ). When this limit value is undershot, the signal "SSM feedback signal active" is set. For p9368 $=$ p9568 $=0$, the value in p9346/p9546 is also applicable for SAM/SBR. Refer to: p9546 The "SAM/SBR" function is deactivated if the selected threshold value is undershot.

This parameter is overwritten by the copy function of the safety functions integrated in the drive. SAM: Safe Acceleration Monitor (safe acceleration monitoring) SBR: Safe Brake Ramp (safe brake ramp monitoring)
SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)
p9346

SI Motion SSM velocity limit (Motor Module) / SI Mtn SSM v_limMM
SERVO (Safety rot),
VECTOR (Safety rot),
SERVO AC (Safety
rot), VECTOR_AC
(Safety rot),
SERVO_I_AC (Safety
rot), VECTOR I AC
(Safety rot)
Description:
Calculated: -
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -

## Min

0.00 [rpm]

Dyn. index: -
Unit group: -
Scaling: -
Max
1000000.00 [rpm]

Access level: 3
Func. diagram: 2823
Unit selection: -
Expert list: 1
Factory setting
20.00 [rpm]

Sets the velocity limit for the SSM feedback signal to detect standstill ( $n<n x$ ). When this limit value is undershot, the signal "SSM feedback signal active" is set. For p9368 $=$ p9568 $=0$, the value in p9346/p9546 is also applicable for SAM/SBR.
Dependency: Refer to: p9546

Caution: The "SAM/SBR" function is deactivated if the selected threshold value is undershot

Notice: $\quad$ This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:

SBR: Safe Brake Ramp (safe brake ramp monitoring)
SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)

## p9347

SERVO, VECTOR,
hLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

SI Motion SSM velocity hysteresis (Motor Module) / SI Mtn SSM Hyst MM		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2823
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.0010[\mathrm{~mm} / \mathrm{min}]$	$500.0000[\mathrm{~mm} / \mathrm{min}]$	$10.0000[\mathrm{~mm} / \mathrm{min}]$
Sets the velocity hysteresis for the SSM feedback signal to detect standstill ( $\mathrm{n}<\mathrm{nx}$ ).		
Refer to: C01711		
This parameter is overwritten by the copy function of the safety functions integrated in the drive.		

Note: $\quad$| The velocity hysteresis is effective only if the function is enabled $(\mathrm{p} 9301.16=\mathrm{p} 9501.16=1)$. |
| :--- |
| The parameter is included in the data cross-check of the two monitoring channels. |
| SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring) |

## p9347

SERVO (Safety rot), VECTOR (Safety rot), SERVO_AC (Safety rot), VECTOR_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR_I_AC (Safety rot)
Description: Dependency: Notice: Note:

SI Motion SSM velocity hysteresis (Motor Module) / SI Mtn SSM Hyst MM Can be changed: $\mathrm{C} 2(95)$
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min 0.0010 [rpm]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
500.0000 [rpm]

Access level: 3
Func. diagram: 2823
Unit selection: -
Expert list: 1
Factory setting
10.0000 [rpm]

Sets the velocity hysteresis for the SSM feedback signal to detect standstill ( $\mathrm{n}<\mathrm{nx}$ ). Refer to: C01711
This parameter is overwritten by the copy function of the safety functions integrated in the drive. The velocity hysteresis is effective only if the function is enabled ( $\mathrm{p} 9301.16=\mathrm{p} 9501.16=1$ ). The parameter is included in the data cross-check of the two monitoring channels. SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)

p9348	SI Motion SAM actual velocity tolerance (Motor Module) / SI Mtn SAM tol MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mathrm{mm} / \mathrm{min}$ ]	120000.00 [mm/min]	300.00 [ $\mathrm{mm} / \mathrm{min}$ ]
Description:	Sets the velocity tolerance for the "SAM" function.		
Dependency:	Refer to: p9548		
	Refer to: C01706		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	SAM: Safe Acceleration Monitor (safe acceleration monitoring)		
p9348	SI Motion SAM actual velocity tolerance (Motor Module) / SI Mtn SAM tol MM		
SERVO (Safety rot),	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
rot), VECTOR_AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Safety	Min	Max	Factory setting
(Safety rot)	0.00 [rpm]	120000.00 [rpm]	300.00 [rpm]
Description:	Sets the velocity tolerance for the "SAM" function.		
Dependency:	Refer to: p9548		
	Refer to: C01706		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	SAM: Safe Acceleration Monitor (safe acceleration monitoring)		


p9349	SI Motion slip velocity tolerance (Motor Module) / SI Mtn slip MM		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,   SERVO I AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [mm/min]	6000.00 [mm/min]	6.00 [mm/min]
Description:	Sets the velocity tolerance that is used for a 2 -encoder system in cross-check between the two monitoring channels. Refer to: p9301, p9342, p9549		
Dependency:			
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	If the "actual value synchronization" is not enabled (p9301.3 $=0$ ), then the value parameterized in p9342 is used as tolerance in the data cross-check.		
p9349	SI Motion slip velocity tolerance (Motor Module) / SI Mtn slip MM		
SERVO (Safety rot),	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
rot), VECTOR AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Safety	Min	Max	Factory setting
(Safety rot)	0.00 [rpm]	6000.00 [rpm]	6.00 [rpm]
Description:	Sets the velocity tolerance that is used for a 2-encoder system in cross-check between the two monitoring channels.		
Dependency:	Refer to: p9301, p9342, p9549		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	If the "actual value synchronization" is not enabled (p9301.3 $=0$ ), then the value parameterized in p9342 is used as tolerance in the data cross-check.		
p9351	SI Motion SLS(SG) changeover/SOS (SBH) delay time (MM) / SI SLS/SOS t MM		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mu \mathrm{s}$ ]	600000000.00 [ $\mu \mathrm{s}$ ]	100000.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the delay time for the SLS changeover and for the activation of SOS for the functions "Safely-Limited Speed" (SLS) and "Safe Operating Stop" (SOS).		
	When transitioning from a higher to a lower Safely-Limited Speed level, and when activating Safe Operating Stop (SOS), within this delay time, the "old" speed level remains active.		
	This delay is also applicable when activating SLS from the state "SOS and SLS inactive" and activating SOS from the state "SOS inactive".		
Dependency:	Refer to: p9551		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle. SLS: Safely-Limited Speed		
	SOS: Safe Operating Stop		

p9352
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC

SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC

Description:
Dependency:
Notice:

SI Motion transition time STOP C to SOS (Motor Module) / SI Mtn t C->SOS MM		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.00[\mu \mathrm{~s}]$	$600000000.00[\mu \mathrm{~s}]$	$100000.00[\mu \mathrm{~s}]$

Description:
Sets the transition time from STOP C to "Safe Operating Stop" (SOS). Dependency: Refer to: p9552
Notice: $\quad$ This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note: $\quad$ The set time is rounded internally to an integer multiple of the monitoring clock cycle. SOS: Safe Operating Stop

p9353	SI Motion transition time STOP D to SOS (Motor Module) / SI Mtn t D->SOS MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Expert list: 1
SERVO_I_AC,	Scaling: -	Max	Factory setting
VECTOR_I_AC	Not for motor type: -	$600000000.00[\mu \mathrm{~s}]$	$100000.00[\mu \mathrm{~s}]$
	Min		
	$0.00[\mathrm{ss}]$		
Description:	Sets the transition time from STOP D to "Safe Operating Stop" (SOS).		
Dependency:	Refer to: p9553		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		
	SOS: Safe Operating Stop		

## p9354

SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC

Description: SI Motion transition time STOP E to SOS (Motor Module) / SI Mtn t E->SOS MM Can be changed: C2(95)

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
600000000.00 [ $\mu \mathrm{s}$ ]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
100000.00 [ Ls ]

Sets the transition time from STOP E to "Safe Operating Stop" (SOS). Refer to: p9554
This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Notice:
The set time is rounded internally to an integer multiple of the monitoring clock cycle.
SOS: Safe Operating Stop

## $\overline{\mathrm{p} 9355}$

SERVO, VECTOR
HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

Description: Dependency:
Notice:
SI Motion transition time STOP F to STOP B (Motor Module) / SI Mtn t F->B MM
Can be changed: C2(95)
Data type: FloatingPoint32 P-Group: Safety Integrated
Not for motor type: -
Min
0.00 [ $\mu \mathrm{s}$ ]

Sets the transition time from STOP F to STOP B.
Refer to: C01711
This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:

The set time is rounded internally to an integer multiple of the monitoring clock cycle.

### 2.2 List of parameters

p9356	SI Motion STOP A delay time (Motor Module) / SI Mtn IL t_del MM		
HLA	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mu \mathrm{s}$ ]	3600000000.00 [ $\mu \mathrm{s}$ ]	100000.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the delay time for STOP A after STOP B / SS1.		
Dependency:	Refer to: p9360, p9556		
	Refer to: C01701		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		
p9356	SI Motion STOP A delay time (Motor Module) / SI Mtn IL t_del MM		
SERVO, VECTOR SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mu \mathrm{s}$ ]	3600000000.00 [ $\mu \mathrm{s}$ ]	100000.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the delay time for STOP A after STOP B / SS1.		
	In the case of encoderless motion monitoring functions with safe brake ramp monitoring ( $\mathrm{p} 9306=1$ ) and the OFF3 ramp enabled at the same time ( $\mathrm{p} 9507.3=0$ ), the parameter has no effect.		
Dependency:	Refer to: p9360, p9556		
	Refer to: C01701		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		
p9357	SI Motion STO test time (Motor Module) / SI Mtn IL t MM		
HLA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mu \mathrm{s}$ ]	10000000.00 [ $\mu \mathrm{s}$ ]	500000.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the time after which STO must be active when initiating the test stop.		
Dependency:	Refer to: p9557		
	Refer to: C01798		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		



### 2.2 List of parameters

Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	The shutdown velocity has no effect for a value $=0$.
	SS1: Safe Stop 1


p9360	SI Motion pulse suppression shutdown speed (Motor Module) / SI Mtn IL n_sh MM		
SERVO (Safety rot),	Can be changed: C 2 (95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC (Safety rot), VECTOR AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Safety	Min	Max	Factory setting
rot), VECTOR_I_AC   (Safety rot)	0.00 [rpm]	6000.00 [rpm]	0.00 [rpm]
Description:	Sets the shutdown speed for the pulse suppression.		
	Below this speed "standstill" is assumed and for STOP B / SS1, the pulses are suppressed (by changing to STOP A).		
Dependency:	Refer to: p9356, p9560		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The shutdown speed has no effect for a value $=0$.		
	SS1: Safe Stop 1		


p9362[0..1]	SI Motion SLP stop response (Motor Module) / SI mtn SLP stop MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group:	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	0	14	2

Description: Sets the stop response for the function "Safely-Limited Position" (SLP).

## Value:

0: STOP A
STOP B
STOP C
STOP D
STOP E
STOP A with delayed stop response when the bus fails
STOP B with delayed stop response when the bus fails STOP C with delayed stop response when the bus fails STOP D with delayed stop response when the bus fails STOP E with delayed stop response when the bus fails
Index: [0] = Limit value SLP1 (SE1)
[1] = Limit value SLP2 (SE2)
Dependency: Refer to: p9534, p9535
Note: In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F).
SLP: Safely-Limited Position

p9363[0...3]	SI Motion SLS stop response (Motor Module) / SI Mtn SLS Stop MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	0	14	2

Description: Sets the stop response for the function "Safely-Limited Speed" (SLS).
These settings apply to the individual limit values for SLS.
In the case of encoderless motion monitoring ( $\mathrm{p} 9506 / \mathrm{p} 9306=1,3$ ), only a value of 0 or 1 is permitted.


p9365	SI Motion SDI delay time (Motor Module) / SI Mtn SDI t MM		
SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_IAC,   VECTOR_I_AC	Can be changed: C2(95)   Data type: FloatingPoint32   P-Group: Safety Integrated   Not for motor type: -   Min   0.00 [ $\mu \mathrm{s}$ ]	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   $600000000.00[\mu \mathrm{~s}]$	Access level: 3   Func. diagram: 2824   Unit selection: -   Expert list: 1   Factory setting   100000.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the delay time for the function "Safe motion direction" (SDI).   After selecting the SDI function, then for a maximum of this time, motion in the monitored direction is permissible. This time can therefore be used for braking any motion.		
Dependency:	Refer to: p9364, p9366		
Notice:   Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle. SDI: Safe Direction (safe motion direction)		
p9366	SI Motion SDI stop response (Motor Module) / SI Mtn SDI Stop MM		
HLA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2824
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	14	1
Description:	Sets the stop response for the function "Safe motion direction" (SDI). This setting applies to both directions of motion.		
Value:	0: STOP A   1: STOP B   2: STOP C   3: STOP D   4: STOP E   10: STOP A with delayed   11: STOP B with delayed   12: STOP C with delayed   13: STOP D with delayed   14: STOP E with delayed	when the bus fails when the bus fails when the bus fails when the bus fails when the bus fails	
Dependency:	Refer to: p9364, p9365		
Notice:   Note:	In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F).   SDI: Safe Direction (safe motion direction)		


p9366	SI Motion SDI stop response (Motor Module) / SI Mtn SDI Stop MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: 2824
VECTOR_AC,	P-Group: Safety Integrated	Unit group:	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	14	1
	0		
Description:	Sets the stop response for the function "Safe motion direction" (SDI).		
	This setting applies to both directions of motion.		
	In the case of encoderless motion monitoring (p9306 = 1), only a value of 0 or 1 is permitted.		


Value:	$0: \quad$ STOP A	
	$1: \quad$ STOP B	
	$2: \quad$ STOP C	
	$3:$	STOP D
	$4:$	STOP E
	$10: \quad$ STOP A with delayed stop response when the bus fails	
	$11: \quad$ STOP B with delayed stop response when the bus fails	
	$12: \quad$ STOP C with delayed stop response when the bus fails	
	$13: \quad$ STOP D with delayed stop response when the bus fails	
Dependency:	$14: \quad$ STOP E with delayed stop response when the bus fails	
	Refer to: p9364, p9365	
Notice:	Refer to: C30716	
Note:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.	
	In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety	
	functions (e.g. via PROFIsafe or TM54F).	
	SDI: Safe Direction (safe motion direction)	



p9368	SI Motion SAM/SBR velocity limit (Motor Module) / SI Mtn SAM v_limMM		
SERVO (Safety rot),	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC (Safety	P-Group: Safety Integrated	Unit group: -	Unit selection: -
rot), VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
Safety rot), Max   SERVO_IAC (Safety Min   rot), VECTOR_I_AC $0.00[r p m]$   (Safety rot) $\quad 1000.00[\mathrm{rpm}]$	Factory setting		
			$0.00[\mathrm{rpm}]$


Description:	Sets the velocity limit for the "SAM" and "SBR" functions.
If the drive is being ramped down, but accelerates by the tolerance in p9548/p9348, then the SAM function identifies	
this and a STOP A is initiated.	
The monitoring operates as follows:	
- monitoring by SAM is activated for SS1 (or STOP B) and SS2 (or STOP C).	
- the SAM limit value is frozen after the velocity limit in p9568/p9368 is undershot.	
- SAM monitoring is still executed until the transition time to SOS/STO has expired.	
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.

### 2.2 List of parameters

Note: $\quad$| SAM: Safe Acceleration Monitor (safe acceleration monitoring) |
| :--- |
| SBR: Safe Brake Ramp (safe brake ramp monitoring) |
| SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring) |
| For p9568 = p9368 =0, the following applies: |
| The value in p9546/p9346 $($ SSM $)$ is applied as the velocity limit for SAM/SBR. |

p9370	SI Motion acceptance test mode (Motor Module) / SI Mtn acc_mod MM		
SERVO, VECTOR,	Can be changed: C2(95), U, T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_I_AC, } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	00AC hex	0000 hex
Description:	Setting to select and de-select the acceptance test mode.		
Value:	0 : [ 00 hex$]$ De-select the acceptance test mode   172: [AC hex] Select the acceptance test mode		
Dependency:	Refer to: p9358, r9371		
	Refer to: C01799		
Note:	The acceptance test mode can only be selected if the motion monitoring functions integrated in the drive are enabled (p9601.2/p9801.2).		

r9371
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description:
Value:
SI Motion acceptance test status (Motor Module) / SI Mtn acc_stat MM
SERVO, VECTOR HLA, SERVO_AC, SERVO_I_AC, VECTOR_I_AC

Can be changed: -
Data type: Integer16
P-Group: Safety Integrated
Not for motor type: -
Min
0000 hex
Displays the status of the acceptance test mode.
0: [00 hex] Acc_mode inactive
12: [OC hex] Acc_mode not possible due to POWER ON fault
13: [OD hex] Acc_mode not possible due to incorrect ID in p9370
15: [OF hex] Acc_mode not possible due to expired Acc_timer
172: [AC hex] Acc_mode active
Dependency: Refer to: p9358, p9370
Refer to: C01799

$\overline{\mathrm{p} 9374}$	otion safe position scaling (Motor Module) / SI mtn SP scal MM
SERVO, VECTOR,	Can be changed: C2(95) Calculated: - Access level: 3
HLA, SERVO_AC,	Data type: Integer32 Dyn. index: - Func. diagram: -
VECTOR_AC,   SERVO IAC,	P-Group: Safety Integrated Unit group: - Unit selection: -
VECTOR_I_AC	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	11000001000
Description:	Sets the scaling factor to transfer the safe position via PROFIsafe in the 16-bit notation.
Dependency:	Refer to: r9713
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	The parameter is only effective when PROFIsafe telegram 901 is selected.
	By selecting a suitable scaling of the 32 bit position actual value (r9713[0]), it must be ensured that the scaled position actual value is not greater than 16 bit. The scaling is realized by dividing r9713[0] with this scaling factor.
	If, during operation, a position actual value is determined, which cannot be scaled to the 16 bits, then message C30711 with value 7001 is output and safety stop response STOP F.


p9377	SI Motion SLP delay time (Motor Module) / SI mtn SLP t MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mu \mathrm{s}$ ]	600000000.00 [ $\mu \mathrm{s}$ ]	0.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the delay time:   - between selecting and activating the "Safely-Limited Position" (SLP) function.		
Dependency:	Refer to: p9301, p9334, p9335		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle. SLP: Safely-Limited Position		


$\mathbf{p 9 3 7 8}$
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC


Description:	Sets the acceleration limit for the "Safely-Limited Acceleration" function (SLA).
Dependency:	Refer to: p9379
	Refer to: C30717
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.
	SLA: Safely-Limited Acceleration


p9378	SI Motion SLA acceleration limit (MM) / SI Mtn SLA lim_MM		
SERVO (Safety rot),	Can be changed: C 2 (95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2838
rot), VECTOR_AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Safety	Min	Max	Factory setting
rot), VECTOR_I_AC   (Safety rot)	$0.00\left[\mathrm{rev} / \mathrm{s}^{2}\right]$	$1000.00\left[\mathrm{rev} / \mathrm{s}^{2}\right]$	$1.00\left[\mathrm{rev} / \mathrm{s}^{2}\right]$
Description:	Sets the acceleration limit for the "Safely-Limited Acceleration" function (SLA).		
Dependency:	Refer to: p9379		
	Refer to: C30717		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		
	SLA: Safely-Limited Acceleration		

p9379
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_IAC

SI Motion SLA stop response (Motor Module) / SI Mtn SLA stop MM		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: Integer16	Dyn. index: -	Func. diagram: 2838
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	14	1


Description:	Sets the stop response for the "Safely-Limited Acceleration" function (SLA).
Value:	0: STOP A
	1: STOP B
	2: STOP C
	3: STOP D
	4: STOP E
	10: STOP A with delayed stop response when the bus fails
	11: STOP B with delayed stop response when the bus fails
	12: STOP C with delayed stop response when the bus fails
	13: STOP D with delayed stop response when the bus fails
	14: STOP E with delayed stop response when the bus fails
Dependency:	Refer to: p9378
	Refer to: C30717
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.
	SLA: Safely-Limited Acceleration


p9380	SI Motion stop response delay bus failure (Motor Module) / SI Mtn t to IL MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	Factory setting	
	$0.00[\mu \mathrm{~s}]$	$0.00[\mu \mathrm{~s}]$	
	Sets the delay time, after which the stop response parameterized in p9612 for bus failure is executed.		
Description:	Refer to: p9363		
Dependency:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Notice:	In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety		
Note:	functions (e.g. via PROFIsafe or TM54F).		
	The main use of the wait time is the function "Extended stopping and retraction" (ESR).		


$\mathbf{p 9 3 8 1}$
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC

Description:

Dependency:
Notice:

SI Motion brake ramp reference value (Motor Module) / SI Mtn ramp ref MM		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$600.0000[\mathrm{~mm} / \mathrm{min}]$	$240000.0000[\mathrm{~mm} / \mathrm{min}]$	$1500.0000[\mathrm{~mm} / \mathrm{min}]$
Sets the reference value to define the brake ramp.		
The rate of rise of the brake ramp depends upon p9381 (reference value) and p9383 (monitoring time).		
Refer to: p9382, p9383		
This parameter is overwritten by the copy function of the safety functions integrated in the drive.		


p9381	ramp reference value (Motor Module) / SI Mtn ram
SERVO (Safety rot), VECTOR (Safety rot), SERVO_AC (Safety rot), VECTOR_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR_I_AC (Safety rot)	Can be changed: C2(95) Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $600.0000[\mathrm{rpm}]$ $240000.0000[\mathrm{rpm}]$ $1500.0000[\mathrm{rpm}]$
Description:   Dependency:   Notice:	Sets the reference value to define the brake ramp.   The rate of rise of the brake ramp depends upon p9381 (reference value) and p9383 (monitoring time).   Refer to: p9382, p9383   This parameter is overwritten by the copy function of the safety functions integrated in the drive.
p9382   SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	SI Motion brake ramp delay time (Motor Module) / SI Mtn rp t_del MM     Can be changed: C2(95) Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $10000.00[\mu \mathrm{~s}]$ $99000000.00[\mu \mathrm{~s}]$ $250000.00[\mu \mathrm{~s}]$
Description:   Dependency:   Notice:   Note:	Sets the delay time for monitoring the brake ramp.   Monitoring of the brake ramp starts once the delay time has elapsed.   Refer to: p9381, p9383   This parameter is overwritten by the copy function of the safety functions integrated in the drive.   The set time is rounded internally to an integer multiple of the monitoring clock cycle.   Internally, the set time is limited downwards to 2 safety monitoring clock cycles (2 * p9500/p9300).
p9383   SERVO, VECTOR, SERVO AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	SI Motion brake ramp monitoring time (Motor Module) / SI Mtn rp t_mon MM     Can be changed: C2(95) Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $500.00[\mathrm{~ms}]$ $3600000.00[\mathrm{~ms}]$ $10000.00[\mathrm{~ms}]$
Description:   Dependency:   Notice:   Note:	Sets the monitoring time to define the brake ramp.   The rate of rise of the brake ramp depends upon p9381 (reference value) and p9383 (monitoring time).   Refer to: p9381, p9382   This parameter is overwritten by the copy function of the safety functions integrated in the drive.   The set time is rounded internally to an integer multiple of the monitoring clock cycle.
p9385   SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	SI Motion actual value sensing sensorless fault tolerance (MM) / ActVal sI tol MM
Description:	Sets the tolerance of the plausibility monitoring of the current and voltage angle.   A higher value results in a higher degree of ruggedness when reversing at low speeds, as well as in the field weakening range for load steps.   An increase is advantageous, if the current or voltage at the motor become small.
Dependency:	Refer to: p9507   Refer to: F30681, C30711

### 2.2 List of parameters

Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
	Reducing this value can have a negative impact on the actual value sensing and the plausibility check.
When the value is increased, this results in a longer evaluation delay and a higher velocity deviation (r9787).	
Note: $\quad$ This parameter is only effective for encoderless actual value sensing (p9506/p9306 =1, 3).	
For synchronous motors, the value 4 must be set.	
	If value $=-1$ :
	- for synchronous motors, the calculation is automatically made with the value 4.
	- for induction motors, the calculation is automatically made with a value of 0 (if the code number of the power unit
p0201[0] < 14000, otherwise with a value of 2 ).	


p9386	SI Motion actual value sensing sensorless delay time (MM) / ActVal sl t_del MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	$5.00[\mathrm{~ms}]$	$1000.00[\mathrm{~ms}]$	$100.00[\mathrm{~ms}]$

Description: Sets the delay time to evaluate the encoderless actual value sensing after the pulses have been enabled. The value must be greater than or equal to the motor magnetizing time ( p 0346 ).

## Dependency: Refer to: C30711

## Caution:

The safety functionality is only completely guaranteed after this time has expired.

Notice: $\quad$ This parameter is overwritten by the copy function of the safety functions integrated in the drive. If this value is reduced, this can have a negative impact on the actual value acquisition and plausibility check - and result in Safety message C30711 with the message value 1041 or 1042.
Note: $\quad$ This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3). The set time is rounded internally to an integer multiple of the monitoring clock cycle.

$\mathbf{p 9 3 8 7}$
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC


SI Motion actual value sensing sensorless filter time (MM) / Actv sl t_filt MM		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.00[\mu \mathrm{~s}]$	$100000.00[\mu \mathrm{~s}]$	$25000.00[\mu \mathrm{~s}]$

Description: Sets the filter time for smoothing the actual value with sensorless actual value sensing.
Notice: $\quad$ This parameter is overwritten by the copy function of the safety functions integrated in the drive. A longer filter time results in a longer response time.
Note: $\quad$ This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3). The smoothing is realized with a 1st order lowpass filter For p9387 = minimum value, the filter is deactivated.
The set time is rounded internally to an integer multiple of the monitoring clock cycle.

p9388	SI Motion actual value sensing sensorless minimum current (MM) / ActVal sl I_min MM		
SERVO, VECTOR,	Can be changed: C 2 (95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	1000.00 [\%]	10.00 [\%]
Description:	Sets the minimum current for encoderless actual value sensing referred to 1 A (i.e. $1 \%=10 \mathrm{~mA}$ ).   - the value must be increased if C30711 has occurred with message value 1042.   - the value must be decreased if C30711 has occurred with message value 1041.   For synchronous motors, the following condition must be fulfilled: $\|\mathrm{p} 0305 \times \mathrm{p} 9783\|>=\mathrm{p} 9388 \times 1.2$		
Recommendation:	If required, the correct value of the motor minimum current should be determined by making the appropriate measurements.		
Dependency:	Refer to: r9785		
	Refer to: C30711		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive. If this percentage value is reduced excessively, then this can result in a safety message and an inaccurate actual value.		
Note:	This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3).		
p9389	SI Motion actual value sensing sensorless accel. limit (MM) / ActVal sl a_lim MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.00 [\%]	3300.00 [\%]	100.00 [\%]
Description:	Sets the acceleration limit to filter velocity fluctuations.   If this percentage value is increased, when accelerating, velocity peaks that do not reflect the real velocity characteristic can occur.   If this value is decreased, and this dampens the velocity peaks when accelerating.   - the value must be increased if C30711 with message value 1043 has occurred.   - the value must be lowered if acceleration procedures have led to an excessive Safety actual velocity.		
Recommendation:	The setting of this parameter depends on the motor and closed-loop control, and must be newly determined for each configuration.		
	To do this, a measurement should be performed while the actual value jumps, and the limit in r9785[0] must be set so low using p9389, so that it is exceeded by the value in r9785[1] a maximum of four times per second. The actual value correction filter intervenes at this instant in time. The step is no longer so drastic.		
Dependency:	Refer to: r9784		
	Refer to: C30711		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3).		
	For p9389 = maximum value, the filter is deactivated.		
	Diagnostics parameter p9784 must be used to correctly set this parameter.		

### 2.2 List of parameters

r9390[0...3]	SI Motion version safety motion monitoring (Motor Module) / SI Mtn Version MM		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram:
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection:
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the Safety Integrated version for the safe monitoring functions.		
Index:	[ 0 ] = Safety Version (major release)		
	[1] = Safety Version (minor release)		
	[2] = Safety Version (baselevel or patch)		
	[3] = Safety Version (hotfix)		
Dependency:	Refer to: r9590, r9770, r9870, r9890		
Note:	Example:		
	$\mathrm{r} 9390[0]=2, \mathrm{r9390}[1]=60, \mathrm{r} 9390[2]=1, \mathrm{r} 9390[3]=0$--> SI Motion version Vo2.60.01.00		


r9398[0...1]	SI Motion actual checksum SI parameters (Motor Module) / SI Mtn act CRC MM		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Max	Factory setting
VECTOR_I_AC	Not for motor type: -	-	-
	Min	-	
	-		
Description:	Displays the checksum for the checked Safety Integrated parameters of the motion monitoring function (actual		
lndex:	checksum) on the Motor Module/Hydraulic Module.		
	[0] = Checksum over SI parameters for motion monitoring		
Dependency:	[1] = Checksum over SI parameters with hardware reference		
Note:	Refer to: p9399		


p9399[0...1]	SI Motion reference checksum SI parameters (Motor Module) / SI Mtn setp CRC MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Max	Factory setting
VECTOR_I_AC	Not for motor type: -	FFFF FFFF hex	0000 hex
	Min		
	0000 hex		
Description:	Sets the checksum for the checked Safety Integrated parameters of the motion monitoring function (reference		
	checksum) on the Motor Module/Hydraulic Module.		
Index:	$[0]=$ Checksum over SI parameters for motion monitoring		
Dependency:	[1] = Checksum over SI parameters with hardware reference		
Note:	Refer to: r9398		



## r9408[0...19] PS file fault code parameter not transferred / PS fault code

All objects

Description: Only for internal Siemens service purposes.
Dependency: Refer to: r9406, r9407

### 2.2 List of parameters

Note:	All indices from r9406 to r9408 designate the same parameter. r9406[x] parameter number, parameter not accepted r9407[x] parameter index, parameter not accepted r9408[x] fault code, parameter not accepted		
r9409	Number of parameters to be saved / Qty par to save		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of modified parameters and those that have still not be saved for this drive object. Refer to: p0971, p0977		
Dependency:			
Notice:	Inherent to the system, the list of the parameters to be backed up is empty after the following actions: - Download		
	- Warm restart		
	- Factory setting		
	In these cases, a new parameter backup must be initiated, which is then the starting point for the list of modified parameters.		
Note:	The modified parameters that still need to be saved are internally listed in r9410 ... r9419.		


r9450[0...29]	Reference value change parameter with unsuccessful calculation /   Ref_chg par n poss


SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: -	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC,	-	Fax	-
A_INF, S_INF, R_INF,	Min		
B_INF, TM41, ENC	-		
Description:	Displays the parameters for which the re-calculation was unsuccessful after an internal system reference value		
Dependency:	change.	Refer to: F07086	


r9451[0...29]	Units changeover adapted parameters / Unit_chngov par		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 1
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: -	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_IAC,	-	Factory setting	
A_INF, S_INF, R_INF,	Min	-	
B_INF, TM41, ENC	-		
Description:	Displays the parameters whose parameter would have to be changed during a units changeover.		
Dependency:	Refer to: F07088		


r9481	Number of BICO interconnections / BICO count		
CU_I, CU_NX_CX,   CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   CU_I_D410, SERVO,   VECTOR, HLA,   SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM31, TM41,   TM17, TM15,   TM15DI_DO, TM120,   TM150, TB30,   TM54F_MA,   TM54F_SL, ENC, CU_LINK	Can be changed: -   Data type: Unsigned16   P-Group: Commands   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram: -   Unit selection:   Expert list: 0   Factory setting
Description:   Dependency:   Note:	Displays the number of BICO interconnections (signal sinks).   Refer to: r9482, r9483   The selected BICO interconnections should be entered into r9482 and r9483.		
r9482[0...n]   CU_I, CU_NX_CX,   CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   CU_I_D410, SERVO,   VECTOR, HLA,   SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM31, TM41,   TM17, TM15,   TM15DI_DO, TM120,   TM150, TB30,   TM54F_MA,   TM54F_SL, ENC, CU_LINK	BICO interconnect   Can be changed: -   Data type: Unsigned32   P-Group: Commands   Not for motor type: -   Min	meters / BICO   Calculated: -   Dyn. index: r9481   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection:   Expert list: 0   Factory setting
Description:	Displays the signal sinks (binector/connector inputs, $\mathrm{BI} / \mathrm{Cl}$ parameters). The number of BICO interconnections is displayed in r9481.		
Dependency:	Refer to: r9481, r9483		
Note:	The list is sorted accordi r9842[0]: Interconnection r9842[1]: Interconnection	and is structured as $\begin{aligned} & \text { O coded), r9843[0]: } \\ & \text { O coded), r9843[1]: } \end{aligned}$	(signal source, BICO coded)   (signal source, BICO coded)

### 2.2 List of parameters

r9483[0...n]	BICO interconnections BO/CO parameters / BICO BO/CO par		
CU_I, CU_NX_CX,   CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   CU_I_D410, SERVO,   VECTOR, HLA,   SERVO_AC,   VECTOR_AC,   SERVO_IAC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM31, TM41,   TM17, TM15,   TM15DI_DO, TM120,   TM150, TB30,   TM54F_MA,   TM54F_SL, ENC,   CU_LINK	Can be changed: -   Data type: Unsigned32   P-Group: Commands   Not for motor type: -   Min	Calculated: -   Dyn. index: r9481   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:	Displays the signal sources (binector/connector outputs, $\mathrm{BO} / \mathrm{CO}$ parameters). The number of BICO interconnections is displayed in r9481.		
Dependency:	Refer to: r9481, r9482		
Note:	The list is sorted accordi r9842[0]: Interconnection r9842[1]: Interconnection	and is structured as coded), r9843[0]: coded), r9843[1]:	(signal source, BICO coded) (signal source, BICO coded)


p9484	BICO interconnections search signal source / BICO S_src srch
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CUS120_DP, } \\ & \text { CUSS150_DP, } \\ & \text { CUUI_D410, SERVO, } \\ & \text { VECTOR, HLA, } \\ & \text { SERVO_AC, } \\ & \text { VECTOR_AC, } \\ & \text { SERVO_I_AC, } \\ & \text { VECCTOR_I_AC, } \\ & \text { A_INF, S_INF, R_INF, } \\ & \text { B_INF, TM31, TM41, } \\ & \text { TM11, TM15, } \\ & \text { TM15DI_DO, TM120, } \\ & \text { TM150, TB30, } \\ & \text { TM54F_MA, } \\ & \text { TM54F_SL, ENC, } \\ & \text { CU_LINK } \end{aligned}$	Can be changed: U, T Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: - Func. diagram: -   P-Group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 0   Min Max Factory setting   0 4294967295 0
Description:	Sets the signal source ( $\mathrm{BO} / \mathrm{CO}$ parameter, BICO coded) to search in the signal sinks.   The question is answered:   How often is a connection made to a signal source in the drive object and from which index are these interconnections saved (r9482 and r9483)?
Dependency:	Refer to: r9481, r9482, r9483, r9485, r9486


r9485	BICO interconnections signal source search count / BICO S_src srch
CU_I, CU_NX_CX,   CU_S_AC_DP,   CU_S_AC_PN,   CU_S120_PN,   CU_S150_PN,   CU_S120_DP,   CU_S150_DP,   CU_I_D410, SERVO,   VECTOR, HLA,   SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC,   A_INF, S_INF, R_INF,   B_INF, TM31, TM41,   TM17, TM15,   TM15DI_DO, TM120,   TM150, TB30,   TM54F_MA,   TM54F_SL, ENC, CU_LINK	Can be changed: - Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Func. diagram: -   P-Group: - Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 0   Min Max Factory setting   - - -
Description:   Dependency:   Note:	Displays the number of BICO interconnections to the signal sink being searched for.   Refer to: r9481, r9482, r9483, p9484, r9486   The signal source to be searched is set in p9484 (BICO-coded).   The search result is contained in r9482 and r9483 and is specified by the count (r9485) and the first index (r9486).
r9486   CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410, SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC, A_INF, S_INF, R_INF, B_INF, TM31, TM41, TM17, TM15,   TM15DI_DO, TM120, TM150, TB30, TM54F_MA, TM54F_SL, ENC, CU_LINK	BICO interconnections signal source search first index / BICO S_src srchldx
Description: Dependency: Note:	Displays the first index of the signal source being searched for.   Refer to: r9481, r9482, r9483, p9484, r9485   The signal source to be searched is set in p9484 (BICO-coded).   The search result is contained in r9482 and r9483 and is specified by the count (r9485) and the first index (r9486).




### 2.2 List of parameters




### 2.2 List of parameters

p9500	SI Motion monitoring clock cycle (Control Unit) / SI Mtn clock CU		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.50000 [ms]	25.00000 [ms]	12.00000 [ms]
Description:	Sets the monitoring clock cycle for safe motion monitoring.		
Dependency:	Refer to: r2064, p9511		
	Refer to: F01652		
Note:	A change only becomes effective after a POWER ON.		
	The monitoring clock cycle must be a multiple of the actual value sensing clock cycle (see the parameter description for p9511).		


p9501	SI Motion enable safety functions (Control Unit) / SI Mtn enable CU				
SERVOAC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95) Ca		Calculated: -	Access level: 3	
	Data type: Unsigned32 D		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated U			Unit selection: -	
	Not for motor type: - S		Unit group: -	Expert list: 1	
	Min M		Max	Factory setting	
	-		-	00000000000000000000 000000000000 bin	
Description:	Sets the enable signals for the safe motion monitoring.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Enable SOS/SLS (SBH/SG)	Enable	Inhibit	-
		Enable SLP (SE)	Enable	Inhibit	-
		Enable absolute position	Enable	Inhibit	-
		Enable actual value synchronization	Enable	Inhibit	-
		Enable SSM ( $\mathrm{n}<\mathrm{nx}$ ) hysteresis and filtering	Enable	Inhibit	2823
		Enable SDI	Enable	Inhibit	2824
	18	Enable SS2E	Enable	Inhibit	-
		Enable Safely-Limited Acceleration	Enable	Inhibit	-
		Enable deactivation SOS/SLS during an external STOP A	Enable	Inhibit	-
		Enable transfer SLS (SG) limit value via PROFIsafe	Enable	Inhibit	-
		Enable transfer safe position via PROFIsafe	Enable	Inhibit	-
		Enable safe gearbox switchover	Enable	Inhibit	-
		Enable referencing via SCC	Enable	Inhibit	-
		Enable safe cam	Enable	Inhibit	-
		Enable synchronous transfer safe position via PROFIsafe	Enable	Inhibit	-
		Enable F-DI in PROFIsafe telegram	Enable	Inhibit	-
Dependency:	Refer to: F01682, F01683				
Note:	For bit $30=1$, PROFIsafe telegrams 31, 901, 902 must be configured in the F host.				
	A change only becomes effective after a POWER ON.				
	SCA: Safe Cam				
	SDI: Safe Direction (safe motion direction)				
	SLA: Safely-Limited Acceleration				
	SLS: Safely-Limited Speed / SG: Safely reduced speed				
	SOS: Safe Operating Stop / SBH: Safe operating stop				
	SS2E: Safe Stop 2 external (Safe Stop 2 with external stop, external STOP D)				
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)				


p9501	SI Motion enable safety functions (Control Unit) / SI Mtn enable CU				
SERVO, VECTOR, HLA	Can be changed: $\mathrm{C} 2(95)$		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
			-	00000000000000000000 000000000000 bin	
Description:	Sets the enable signals for the safe motion monitoring.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Enable SOS/SLS (SBH/SG)	Enable	Inhibit	-
	01	Enable SLP (SE)	Enable	Inhibit	-
	02	Enable absolute position	Enable	Inhibit	-
	03	Enable actual value synchronization	Enable	Inhibit	-
	16	Enable SSM ( $n<n x$ ) hysteresis and filtering	Enable	Inhibit	2823
	17	Enable SDI	Enable	Inhibit	2824
	18	Enable SS2E	Enable	Inhibit	-
	20	Enable Safely-Limited Acceleration	Enable	Inhibit	-
	23	Enable deactivation SOS/SLS during an external STOP A	Enable	Inhibit	-
	24	Enable transfer SLS (SG) limit value via PROFIsafe	Enable	Inhibit	-
	25	Enable transfer safe position via PROFIsafe	Enable	Inhibit	-
	26	Enable safe gearbox switchover	Enable	Inhibit	-
	27	Enable referencing via SCC	Enable	Inhibit	-
	28	Enable safe cam	Enable	Inhibit	-
	29	Enable synchronous transfer safe position via PROFIsafe	Enable	Inhibit	-
Dependency:	Refer to: F01682, F01683				
Note:	A change only becomes effective after a POWER ON.				
	SCA: Safe Cam / SN: Safe software cam				
	SDI: Safe Direction (safe motion direction)				
	SLA: Safely-Limited Acceleration				
	SLS: Safely-Limited Speed / SG: Safely reduced speed				
	SOS: Safe Operating Stop / SBH: Safe operating stop				
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)				


p9502	SI Motion axis type (Control Unit) / SI Mtn ax type CU		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	0	
	0		
Description:	Sets the axis type (linear axis or rotary axis/spindle).		
Value:	$0: \quad$ Linear axis		
Note:	$1: \quad$ Rotary axis/spindle		
	For the commissioning tool, after changing over the axis type, the units dependent on the axis type are only updated		
	after a project upload.		


p9503	SI Motion SCA (SN) enable (Control Unit) / SI Mtn SCA enab				
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC			Calculated: -	Access	
	Data type: Unsigned32		Dyn. index: -	Func. did	
	P-Group: Safety Integrated		Unit group: -	Unit sel	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factory	
	-		-	00000000000000000000	
Description:	Setting to enable the function "Safe Cam" (SCA).				
Bit field:		Signal name	1 signal	0 signal	FP
		Enable SCA1 (SN1)	Enable	Inhibit	-
		Enable SCA2 (SN2)	Enable	Inhibit	-
		Enable SCA3 (SN3)	Enable	Inhibit	-
		Enable SCA4 (SN4)	Enable	Inhibit	-
		Enable SCA5 (SN5)	Enable	Inhibit	-
		Enable SCA6 (SN6)	Enable	Inhibit	-
		Enable SCA7 (SN7)	Enable	Inhibit	-
	07	Enable SCA8 (SN8)	Enable	Inhibit	-
	08	Enable SCA9 (SN9)	Enable	Inhibit	-
	09	Enable SCA10 (SN10)	Enable	Inhibit	-
	10	Enable SCA11 (SN11)	Enable	Inhibit	-
	11	Enable SCA12 (SN12)	Enable	Inhibit	-
	12	Enable SCA13 (SN13)	Enable	Inhibit	-
	13	Enable SCA14 (SN14)	Enable	Inhibit	-
	14	Enable SCA15 (SN15)	Enable	Inhibit	-
	15	Enable SCA16 (SN16)	Enable	Inhibit	-
	16	Enable SCA17 (SN17)	Enable	Inhibit	-
	17	Enable SCA18 (SN18)	Enable	Inhibit	-
	18	Enable SCA19 (SN19)	Enable	Inhibit	-
	19	Enable SCA20 (SN20)	Enable	Inhibit	-
	20	Enable SCA21 (SN21)	Enable	Inhibit	-
	21	Enable SCA22 (SN22)	Enable	Inhibit	-
	22	Enable SCA23 (SN23)	Enable	Inhibit	-
	23	Enable SCA24 (SN24)	Enable	Inhibit	-
		Enable SCA25 (SN25)	Enable	Inhibit	-
	25	Enable SCA26 (SN26)	Enable	Inhibit	-
	26	Enable SCA27 (SN27)	Enable	Inhibit	-
	27	Enable SCA28 (SN28)	Enable	Inhibit	-
		Enable SCA29 (SN29)	Enable	Inhibit	-
		Enable SCA30 (SN30)	Enable	Inhibit	-
Dependency:	Refer to: p9501				
	Refer to: F01686				
Note:	SCA: Safe Cam / SN: Safe software cam				
p9505	SI Motion SP modulo value (Control Unit) / SI mtn SP mod CU				
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)		Calculated: -	Access	
	Data type: FloatingPoint32		Dyn. index: -	Func. did	
	P-Group: Safety Integrated		Unit group: -	Unit sel	
			Scaling: -	Expert	
	Min		Max	Factory	
	$\left.0{ }^{[ }{ }^{\circ}\right]$		$737280{ }^{[0]}$	$0{ }^{\circ}{ }^{\circ}$	
Description:	Sets the modulo value in degrees for rotary axes of the "Safe position" function.				
	This modulo value is taken into account when safely referencing as well as when transferring the safe position via PROFIsafe when the absolute position is enabled.				
	The value should be set, so that it is precisely at $2^{\wedge} \mathrm{n}$ revolutions, so that when the range that can be represented ( + 2048) overflows, this does not cause the position actual value to jump.   The modulo function is deactivated for a value $=0$.				



### 2.2 List of parameters

## Note:

For bit 00:
When the function is activated, a safety-relevant acknowledgment (internal event acknowledge) can be performed by selecting/deselecting STO
For bit 01:
When the function is activated, the active setpoint velocity limit (CO: r9733) is set to zero when STOP F is active. For bit 03:
When the bit is activated - when selecting function SS1 or activating a STOP B - an SS1E or a STOP B with Stop, which should be externally initiated, is triggered instead of SS1 with a drive-based braking response. As a consequence, brake monitoring (SBR, SAM) is deactivated.
SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)
For bit 06:
For the automatic test stop, the test stop can still be initiated via binector input p9705.
The automatic test stop is executed after power up, partial power up or a warm restart.
SI Motion function specification (Control Unit) / SI Mtn config CU

## p9507 <br> SERVO AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC <br> Description: Bit field:

Data type: Unsigned32
P-Group: Safety Integrated
Not for motor type: -

## Min

Sets the function configuration for the safe motion monitoring functions.
Bit Signal name 1 signal 0 signal FP

00 Extended message acknowledgment Yes No
01 Setpoint velocity limit for STOP F No
02 Actual value sensing encoderless motor type
03 SS1 with OFF3 (brake response) SS1E external stop SS1 with OFF3 -
05 Actual value sensing sensorless edge modulation
06 Configuration test stop motion monitoring functions
Dependency: Refer to: C01711
Note:

For bit 00:
When the function is activated, a safety-relevant acknowledgment (internal event acknowledge) can be performed by selecting/deselecting STO.
For bit 01:
When the function is activated, the active setpoint velocity limit (CO: r9733) is set to zero when STOP F is active.
For bit 02:
This bit defines the type of motor, which the sensorless actual value sensing evaluates.
For bit $=0$, the actual velocity is calculated for an induction motor.
For bit $=1$, the actual velocity is calculated for a synchronous motor. This value depends on the setting in p0300 .
Bit $=0$ should be set if no motor is defined $(\mathrm{p} 0300=0)$.
For bit 03:
When the bit is activated - when selecting function SS1 or activating a STOP B - an SS1E or a STOP B with Stop, which should be externally initiated, is triggered instead of SS1 with a drive-based braking response. As a consequence, brake monitoring (SBR, SAM) is deactivated.
SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)
For bit 05:
This bit defines the type of modulation, which the sensorless actual value sensing evaluates.
For bit $=0$, the actual velocity is calculated for space vector modulation.
For bit $=1$, the actual velocity is calculated for edge modulation. This value depends on the setting in p1802.

For bit 06:
When the bit is active, the test stop of the Extended Functions and the test stop of the onboard F-DO is carried out. The onboard F-DO can be deactivated via p10046.
Also for the automatic test stop, the test stop of the F-DO can be started using binector input p10007. The test stop for Extended Functions can still be started via p9705.
The automatic test stop is executed after power up, partial power up or a warm restart.

p9507	SI Motion function specification (Control Unit) / SI Mtn config CU				
SERVO, VECTOR	Can be changed: C2(95) C		Calculated: -	Access level: 3	
	Data type: Unsigned32 Dy		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated U		Unit group: -	Unit selection: -	
	Not for motor type: - S		Scaling: -	Expert list: 1	
	Min Max		Max	Factory setting	
	- -			00000000 bin	
Description:	Sets the function configuration for the safe motion monitoring functions.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Extended message acknowledgment	Yes	No	
	01	Setpoint velocity limit for STOP F	No	Yes	-
	02	Actual value sensing encoderless motor type	Synchronous motor	Induction motor	-
	03	SS1 with OFF3 (brake response)	SS1E external stop	SS1 with OFF3	-
	05	Actual value sensing sensorless edge modulation	Yes	No	-
	06	Configuration test stop motion monitoring functions	Test automatic	Test manual	-
Dependency:	Refer to: C01711				
Note:	For bit 00:				
	When the function is activated, a safety-relevant acknowledgment (internal event acknowledge) can be performed by selecting/deselecting STO.				
	For bit 01:				
	When the function is activated, the active setpoint velocity limit (CO: r9733) is set to zero when STOP F is active. For bit 02:				
	This bit defines the type of motor, which the sensorless actual value sensing evaluates.				
	For bit $=0$, the actual velocity is calculated for an induction motor.				
	For bit $=1$, the actual velocity is calculated for a synchronous motor. This value depends on the setting in p 0300 . Bit $=0$ should be set if no motor is defined $(\mathrm{p} 0300=0)$.				
	For bit 03:				
	When the bit is activated - when selecting function SS1 or activating a STOP B - an SS1E or a STOP B with Stop, which should be externally initiated, is triggered instead of SS1 with a drive-based braking response. As a consequence, brake monitoring (SBR, SAM) is deactivated.				
	SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)				
	For bit 05:				
	This bit defines the type of modulation, which the sensorless actual value sensing evaluates.				
	For bit $=0$, the actual velocity is calculated for space vector modulation.				
	For bit $=1$, the actual velocity is calculated for edge modulation. This value depends on the setting in p1802.				
	For bit 06:				
	For the automatic test stop, the test stop can still be initiated via binector input p9705.				
		tomatic test stop is executed after power	partial power up or a	restart.	

p9509
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description: Bit field:

Dependency:
Notice:

## Note:

SI Motion behavior during pulse suppression (Control Unit) / SI Mtn behav IL CU		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: Unsigned32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	0000000011111111 bin

Sets the behavior of safety functions and their feedback during pulse suppression in encoderless operation.

Bit	Signal name	1 signal	0 signal	FP
00	SSM during pulse suppression and encoderless	Becomes inactive	Remains active	-
08	SDI during pulse suppression and encoderless	Becomes inactive	Remains active	-

Refer to: C01711
For bit 00:
If the OFF1 or the OFF3 ramp-down time is too low, or there is an insufficient clearance between the SSM limit speed, and the shutdown speed, then it is possible that the "speed under limit value" signal does not change to 1 , because no speed actual value below the SSM limit was able to be identified before pulse cancellation. In this case, the OFF1 or the OFF3 ramp-down time or the clearance between the SSM limit speed and shutdown speed must be increased.
SDI: Safe Direction (safe motion direction)
SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)
For bit 00:
For bit = 1 and with the SSM safety function activated, the following applies:

- During pulse suppression, monitoring is switched off and the feedback signal has a 0 signal level.

For bit = 0 and with the SSM safety function activated, the following applies:

- Monitoring continues during pulse suppression. The feedback signal last displayed before pulse suppression is kept and the system goes into the STO state.
For bit 08:
For bit = 1 and with the SDI safety function activated, the following applies:
- During pulse suppression, monitoring is switched off and the status signal indicates inactive.

For bit $=0$ and with the SDI safety function activated, the following applies:

- Monitoring continues during pulse suppression. The status signal indicates active and the system goes into the STO state.

p9510
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC


Description:	Setting for isochronous communication between PROFIdrive controller and Control Unit.
	The parameter is only relevant, if the safety-relevant motion monitoring functions integrated in the drive have been enabled (p9601.2 =1).
	If a PROFIdrive controller exchanges process data isochronously with the Control Unit, then p9510 must be set to 1 . This also applies if the drive itself does not exchange process data isochronously.
	Examples for isochronous communication:
	- isochronous control for the motion control (e.g. SIMOTION).
	- isochronous PROFIsafe master (e.g. SIMATIC S7-400F).
Value:	0 : Communication not isochronous
	1: Communication isochronous
Dependency:	Refer to: C01711, A01796
Notice:	As of firmware version 2.6, the parameter has no effect.



$\mathbf{p 9 5 1 1}$
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC

Description:
p9512
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Select SI Motion safety functions without selection (CU) / SI Mtn w/o sel CU		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: Unsigned32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	0000000000010000 bin

Description: Sets the safety functions without selection. The safety functions without selection are enabled with p9601.5/p9801.5. Using this parameter, the individual motion monitoring functions can then be selected (e.g. SLS, SDI positive, SDI negative), which should then be permanently selected.

Bit field:	Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal
	04	SLS static (CU)	Static selected	Static deselected

## p9513

SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

SI Motion non safety-relevant measuring steps POS1 (CU) / nsrPOS1 CU
Can be changed: $\mathrm{C} 2(95) \quad$ Calculated: - Access level: 3

Data type: Unsigned32
P-Group: Safety Integrated
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
4294967295

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
22000

Description: Sets the non safety-relevant measuring steps of position value POS1.
The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.
Dependency: Refer to: p0416, r0473, p9313
Refer to: F01670
Note: $\quad$ For safety functions that are not enabled ( $\mathrm{p} 9501=0$ ), the following applies:

- p9513 is automatically set the same as r0416 when the system boots.

For safety functions that are enabled (p9501 > 0), the following applies:

- p9513 is checked to see that it matches r0416.


p9516
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description:	Sets the configuration for the motor encoder and position actual value.				
	The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.				
Bit field:		Signal name	1 signal	0 signal	FP
		Motor encoder rotating/linear	Linear	Rotating	-
		Position actual value sign change	Yes	No	-
	04	No STOP A after encoder fault for 1 encoder safety	Yes	No	-
Dependency:	Refer to: p0404, p0410				
	Refer to: F01671				
Note:	For safety functions that are not enabled (p9501 = 0), the following applies:				
	- p9516.0 is automatically set the same as p0404.0 when the system boots.				
	- p9516.1 is automatically set the same as p0410.1 when the system boots.				
	For safety functions that are enabled (p9501 > 0), the following applies:				
	- p9516.0 is checked to identify whether it coincides with p0404.0.				


$\mathbf{p 9 5 1 7}$
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC

SI Motion linear encoder grid division (Control Unit) / SI Mtn grid CU
Can be changed: C2(95) Calculated: - Access lever

Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
0.00 [nm]

Sets the grid division for a linear encoder.
The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.
Dependency: Refer to: p0407, p9516
Refer to: F01671
Note: $\quad$ For safety functions that have not been enabled ( $\mathrm{p} 9501=0$ ), the following applies: When booting p9517 is automatically set the same as p0407.
For safety functions that are enabled (p9501 > 0), the following applies: p9517 is checked whether it coincides with p0407.

p9518	SI Motion encoder pulses per revolution (Control Unit) / SI Mtn puls/rev CU		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	Factory setting	
	0	2048	
Description:	Sets the number of encoder pulses per revolution for rotary encoders.		
	The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this		
	parameter.		
Dependency:	Refer to: p0408, p9516		
	Refer to: F01671		

Note: $\quad$ For safety functions that have not been enabled ( $\mathrm{p} 9501=0$ ), the following applies: When booting, p9518 is automatically set the same as p0408.
For safety functions that are enabled (p9501 > 0), the following applies: p9518 is checked whether it coincides with p0408.

p9519	SI Motion fine resolution G1_XIST1 (Control Unit) / SI Mtn G1_XIST1 CU		
SERVO, VECTOR,	Can be changed: C 2 (95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC, SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	2	18	11
Description:	Sets the fine resolution for G1_XIST1 in bits.		
	The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.		
Dependency:	Refer to: p0418		
	Refer to: F01671		
Note:	G1_XIST1: Encoder 1 position actual value 1 (PROFIdrive)		
	For safety functions that are not enabled (p9501 = 0), the following applies:		
	- p9519 is automatically set the same as p0418 at run-up.		
	For safety functions that are enabled (p9501 > 0), the following applies:		


p9520	SI Motion spindle pitch (Control Unit) / SI Mtn Sp_pitch CU		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC, SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1000 [mm]	8388.0000 [mm]	10.0000 [mm]
Description:	Sets the gear ratio between the encoder and load in mm/revolution for a linear axis with rotary encoder.		
Notice:	The fourth decimal point can be rounded-off depending on the size of the entered number (from 3 places before the decimal point).		
p9521[0...7]	SI Motion gearbox encoder/load denominator (Control Unit) / SI Mtn gear den CU		
HLA	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2147000000	1
Description:	Sets the denominator for the gearbox between the encoder and load. The active gearbox stage can be switched over via PROFIsafe.		
Index:	[0] = Gearbox 1		
	[1] = Gearbox 2		
	[2] = Gearbox 3		
	[3] = Gearbox 4		
	[4] = Gearbox 5		
	[5] = Gearbox 6		
	[6] = Gearbox 7		
	[7] = Gearbox 8		
Dependency:	Refer to: p9522		

### 2.2 List of parameters



Dependency:	Refer to: p9521
Note:	In the case of encoderless monitoring functions, the pole pair number must be multiplied by the numerator of the gearbox ratio.   Example:   Gearbox ratio 1:4, pole pair number (r0313) $=2$ $\text { --> p9521 = 1, p9522 = } 8(4 \times 2)$
p9523	SI Motion redundant coarse pos. value valid bits (Control Unit) / Valid bits CU
SERVO, VECTOR,   HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95) Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 16 9
Description:	Sets the number of valid bits of the redundant coarse position value.   The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.
Dependency: Note:	Refer to: r0470, p9323   - after starting the copy function (p9700 = 57 hex), p9523 is set the same as r0470.
p9524	SI Motion Redundant coarse pos. value fine resolution bits (CU) / SI Mtn fine bit CU
SERVO, VECTOR,   HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95) Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   -16 16 -2
Description:	Sets the number of valid bits for the fine resolution of the redundant coarse position value.   The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.
Dependency:   Note:	Refer to: r0471, p9324   - after starting the copy function (p9700 = 57 hex), p9524 is set the same as r0471.
p9525	SI Motion Redundant coarse pos. value relevant bits (CU) / Relevant bits CU
SERVO, VECTOR,   HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95) Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 16 16
Description:	Sets the number of relevant bits for the redundant coarse position value.   The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.
Dependency:	Refer to: p0414, r0472, p9325
Note:	For safety functions that are not enabled (p9501 = 0), the following applies: - p9525 is automatically set the same as r0472 when the system boots. For safety functions that are enabled ( $\mathrm{p} 9501>0$ ), the following applies: - p9525 is checked to see that it matches r0472.


p9526	SI Motion encoder assignment second channel / SI Mtn enc chan 2		
HLA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	3	2
Description:	Sets the number of the encoder, which is used by the second channel for safe motion monitoring functions.		
Dependency:	For the safe motion monitoring functions, the redundant safety position actual value sensing must be activated in the appropriate encoder data set (p0430.19 = 1).		
	Refer to: p0187, p0188, p0189, p0430		
Note:	- for p9526 = 1, the encoder for the closed-loop speed control is used for the second channel of the motion monitoring functions (1-encoder system). This setting is only permissible when using a DQI encoder.		
p9526	SI Motion encoder assignment second channel / SI Mtn enc chan 2		
SERVO, VECTOR,	Can be changed: C 2 (95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	3	1
Description:	Sets the number of the encoder that the second channel (control, Motor Module) uses for safe motion monitoring functions.		
Dependency:	For the safe motion monitoring functions, the redundant safety position actual value sensing must be activated in the appropriate encoder data set ( $\mathrm{p} 0430.19=1$ ).		
	Refer to: p0187, p0188, p0189, p0430		
Note:	For p9526 $=1$, the encoder for the closed-loop speed control is used for the second channel of the motion monitoring functions ( 1 -encoder system).		
	A change only becomes effective after a POWER ON.		
p9529	SI Motion Gx_XIST1 coarse pos. safe most significant bit (CU) / Gx_XIST1 MSB CU		
SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	31	14
Description:	Sets the bit number for the safe most significant bit (MSB) of the Gx_XIST1 coarse position.		
	The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.		
Dependency:	Refer to: p0415, r0475, p9329		
Note:	For safety functions that are not enabled (p9501 = 0), the following applies:		
	- p9529 is automatically set the same as r0475 when the system boots.		
	For safety functions that are enabled ( $\mathrm{p} 9501>0$ ), the following applies:		
	- p9529 is checked to see that it matches r0475.		
	MSB: Most Significant Bit		



### 2.2 List of parameters

Dependency:	Refer to: p9532, p9561, p9563
	Refer to: C01714
Note:	SLS: Safely-Limited Speed / SG: Safely reduced speed


p9532[0...15]	SI Motion SLS (SG) override factor (Control Unit) / SI Mtn SLS over CU
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95), U, T Calculated: - Access level: 4   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $0.000[\%]$ $100.000[\%]$ $100.000[\%]$
Description: Index:	Sets the override factor for the limit value for SLS2 and SLS4 for the function "Safely-Limited Speed" (SLS).   [0] = SLS (SG) override factor 0   [1] = SLS (SG) override factor 1   [2] = SLS (SG) override factor 2   [3] = SLS (SG) override factor 3   [4] = SLS (SG) override factor 4   [5] = SLS (SG) override factor 5   [6] = SLS (SG) override factor 6   [7] = SLS (SG) override factor 7   [8] = SLS (SG) override factor 8   [9] = SLS (SG) override factor 9   [10] = SLS (SG) override factor 10   [11] = SLS (SG) override factor 11   [12] = SLS (SG) override factor 12   [13] = SLS (SG) override factor 13   [14] = SLS (SG) override factor 14   [15] = SLS (SG) override factor 15
Dependency:	Refer to: p9501, p9531
Note:	The actual override factor for SLS2 and SLS4 is selected using the safety-relevant inputs (SGE). SLS: Safely-Limited Speed / SG: Safely reduced speed


p9533	SI Motion SLS setpoint speed limiting (Control Unit) / SI Mtn SLS set_lim		
HLA	Can be changed: C2(95), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [\%]	100.000 [\%]	80.000 [\%]
Description:	This is an evaluation factor to define the setpoint limit from the selected actual speed limit.		
Dependency:	This parameter only has to be parameterized for the motion monitoring functions integrated in the drive (p9601.2 = 1)		
	$\mathrm{r9733}[0]=\mathrm{p} 9531[\mathrm{x}] \times \mathrm{p} 9533$ (converted from the load side to the actuator side)		
	$\mathrm{r} 9733[1]=-\mathrm{p} 9531[\mathrm{x}] \times \mathrm{p} 9533$ (converted from the load side to the actuator side)		
	[ x$]=$ Selected SLS stage		
	Conversion factor from the actuator side to the load side:		
	- actuator type = rotary and axis type = linear: p9522 / (p9521 x p9520)		
	- otherwise: p9522 / p9521		
	Refer to: p9501, p9531, p9601		
Note:	The active actual speed limit is selected via safety-relevant inputs (SGE).		
	When selecting SOS or a STOP A ... D, setpoint 0 is specified in r9733.		
	SLS: Safely-Limited Speed		

p9533
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

SI Motion SLS setpoint speed limiting (Control Unit) / SI Mtn SLS set_lim		
Can be changed: C2(95), U, T	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0.000 [\%]	100.000 [\%]	80.000 [\%]
This is an evaluation factor to define the setpoint limit from the selected actual speed limit.		
The active SLS limit value is evaluated with this factor and is made available as setpoint limit in r9733.		
This parameter only has to be parameterized for the motion monitoring functions integrated in the drive (p9601.2 $=1$ )		
$\mathrm{r9733}[0]=\mathrm{p} 9531[\mathrm{x}] \times \mathrm{p} 9533$ (converted from the load side to the motor side)		
r9733[1] = - p9531[x] x p9533 (converted from the load side to the motor side)		
$[x]=$ Selected SLS stage		
Conversion factor from the motor side to the load side:		
- motor type = rotary and axis type = linear: p9522 / (p9521 x p9520)		
- otherwise: p9522 / p9521		
Refer to: p9501, p9531, p9601		
The active actual speed limit is selected via safety-relevant inputs (SGE).		
When selecting SOS or a STOP A ... D, setpoint 0 is specified in r9733.		
SLS: Safely-Limited Speed		



p9534[0...1]	SI Motion SLP (SE) upper limit values (Control Unit) / SI Mtn SLP up lim		
SERVO (Safety rot),	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2822
SERVO_AC (Safety	P-Group: Safety Integrated	Unit group: -	Unit selection: -
rot), VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Safety rot),	Max	Factory setting	
SERVO_IAC (Safety	Min	$2147000.000\left[{ }^{\circ}\right]$	$100000.000\left[{ }^{\circ}\right]$
rot), VECTOR_I_AC	$-2147000.000\left[{ }^{\circ}\right]$		
(Safety rot)			
Description: Sets the upper limit for the function "Safely-Limited Position" (SLP).			
Index: $[0]=$ Limit value SLP1 (SE1)			
	[1] = Limit value SLP2 (SE2)		
Dependency:	Refer to: p9501, p9535, p9562		
	Refer to: C01715		

### 2.2 List of parameters

Note: $\quad$| The following applies to the setting of these limits: |  |
| :--- | :--- |
|  | $-\mathrm{p} 9534[\mathrm{x}]>\mathrm{p} 9535[\mathrm{x}]$ |
|  | $-\mathrm{p} 9534[\mathrm{x}]$ must lie in the valid traversing range $(-737280 \ldots 737280)$. |
|  | SLP: Safely-Limited Position / SE: Safe software limit switches |



p9535[0..1]	SI Motion SLP (SE) lower limit values (Control Unit) / SI Mtn SLP Iow lim		
SERVO (Safety rot),	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2822
SERVO_AC (Safety rot), VECTOR AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Safety	Min	Max	Factory setting
(Safety rot)	-2147000.000 [ $\left.{ }^{\circ}\right]$	2147000.000 [ ${ }^{\circ}$ ]	-100000.000 [ ${ }^{\circ}$ ]
Description:	Sets the lower limit for the function "Safely-Limited Position" (SLP).		
Index:	[0] = Limit value SLP1 (SE1)		
Dependency:	Refer to: p9501, p9534, p9562		
	Refer to: C01715		
Note:	The following applies to the setting of these limits:		
	- p9534[x] > p9535[x]		
	- p9535[x] must lie in the valid traversing range (-737280 ... 737280).		
	SLP: Safely-Limited Position / SE: Safe software limit switches		



### 2.2 List of parameters

	[10] = Cam position SCA11 (SN11)		
	[11] = Cam position SCA12 (SN12)		
	[12] = Cam position SCA13 (SN13)		
	[13] = Cam position SCA14 (SN14)		
	[14] = Cam position SCA15 (SN15)		
	[15] = Cam position SCA16 (SN16)		
	[16] = Cam position SCA17 (SN17)		
	[17] = Cam position SCA18 (SN18)		
	[18] = Cam position SCA19 (SN19)		
	[19] = Cam position SCA20 (SN20)		
	[20] = Cam position SCA21 (SN21)		
	[21] = Cam position SCA22 (SN22)		
	[22] = Cam position SCA23 (SN23)		
	[23] = Cam position SCA24 (SN24)		
	[24] = Cam position SCA25 (SN25)		
	[25] = Cam position SCA26 (SN26)		
	[26] = Cam position SCA27 (SN27)		
	[27] = Cam position SCA28 (SN28)		
	[28] = Cam position SCA29 (SN29)		
	[29] = Cam position SCA30 (SN30)		
Dependency:	Refer to: p9501, p9503, p9537		
Note:	SCA: Safe Cam / SN: Safe software cam		
p9537[0...29]	SI Motion SCA (SN) minus cam position (Control Unit) / SI Mtn SCA-		
SERVO, VECTOR,   HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2147000.000 [mm]	2147000.000 [mm]	-10.000 [mm]
Description: Index:	Sets the minus cam position for the function "Safe Cam" (SCA).		
	[0] = Cam position SCA1 (SN1)		
	[1] = Cam position SCA2 (SN2)		
	[2] = Cam position SCA3 (SN3)		
	[3] = Cam position SCA4 (SN4)		
	[4] = Cam position SCA5 (SN5)		
	[5] = Cam position SCA6 (SN6)		
	[6] = Cam position SCA7 (SN7)		
	[7] = Cam position SCA8 (SN8)		
	[8] = Cam position SCA9 (SN9)		
	[9] = Cam position SCA10 (SN10)		
	[10] = Cam position SCA11 (SN11)		
	[11] = Cam position SCA12 (SN12)		
	[12] = Cam position SCA13 (SN13)		
	[13] = Cam position SCA14 (SN14)		
	[14] = Cam position SCA15 (SN15)		
	[15] = Cam position SCA16 (SN16)		
	[16] = Cam position SCA17 (SN17)		
	[17] = Cam position SCA18 (SN18)		
	[18] = Cam position SCA19 (SN19)		
	[19] = Cam position SCA20 (SN20)		
	[20] = Cam position SCA21 (SN21)		
	[21] = Cam position SCA22 (SN22)		
	[22] = Cam position SCA23 (SN23)		
	[23] = Cam position SCA24 (SN24)		
	[24] = Cam position SCA25 (SN25)		
	[25] = Cam position SCA26 (SN26)		
	[26] = Cam position SCA27 (SN27)		
	$[27]=$ Cam position SCA28 (SN28)$[28]=$ Cam position SCA29 (SN29)		
	[29] = Cam position SCA30 (SN30)		

Refer to: p9501, p9503, p9536
SCA: Safe Cam / SN: Safe software cam
SI Motion SCA (SN) minus cam position (Control Unit) / SI Mtn SCA-

Dependency:
Note:


Index:
p9537[0...29]
SERVO (Safety rot),
VECTOR (Safety rot), SERVO_AC (Safety

SERVO_I_AC (Safety
rot), VECTOR_I_AC

Can be changed: C2(95)
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
$-2147000.000\left[{ }^{\circ}\right]$
Sets the minus cam position for the function "Safe Cam" (SCA).
[0] = Cam position SCA1 (SN1)
[1] = Cam position SCA2 (SN2)
[2] = Cam position SCA3 (SN3)
[3] = Cam position SCA4 (SN4)
[4] = Cam position SCA5 (SN5)
[5] = Cam position SCA6 (SN6)
[6] = Cam position SCA7 (SN7)
[7] = Cam position SCA8 (SN8)
[8] = Cam position SCA9 (SN9)
[9] = Cam position SCA10 (SN10)
[10] = Cam position SCA11 (SN11)
[11] = Cam position SCA12 (SN12)
[12] = Cam position SCA13 (SN13)
[13] = Cam position SCA14 (SN14)
[14] = Cam position SCA15 (SN15)
[15] = Cam position SCA16 (SN16)
[16] = Cam position SCA17 (SN17)
[17] = Cam position SCA18 (SN18)
[18] = Cam position SCA19 (SN19)
[19] = Cam position SCA20 (SN20)
[20] = Cam position SCA21 (SN21)
[21] = Cam position SCA22 (SN22)
[22] = Cam position SCA23 (SN23)
[23] = Cam position SCA24 (SN24)
[24] = Cam position SCA25 (SN25)
[25] = Cam position SCA26 (SN26)
[26] = Cam position SCA27 (SN27)
[27] = Cam position SCA28 (SN28)
[28] = Cam position SCA29 (SN29)
[29] = Cam position SCA30 (SN30)
Dependency:
Note:

Refer to: p9501, p9503, p9536
SCA: Safe Cam / SN: Safe software cam

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
-10.000 [ ${ }^{\circ}$ ]

### 2.2 List of parameters

p9538[0...29]	SI Motion SCA (SN) cam track assignment (Control Unit) / SI Mtn SCA assign.
SERVO, VECTOR,	Can be changed: C2(95), U, T Calculated: - Access level: 4
SERVO_AC,	Data type: Unsigned32 Dyn. index: - Func. diagram: -
VECTOR_AC,   SERVO I AC,	P-Group: Safety Integrated Unit group: - Unit selection: -
VECTOR_I_AC	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	100414 [0] 100
	[1] 101
	[2] 102
	[3] 103
	[4] 104
	[5] 105
	[6] 106
	[7] 107
	[8] 108
	[9] 109
	[10] 110
	[11] 111
	[12] 112
	[13] 113
	[14] 114
	[15] 200
	[16] 201
	[17] 202
	[18] 203
	[19] 204
	[20] 205
	[21] 206
	[22] 207
	[23] 208
	[24] 209
	[25] 210
	[26] 211
	[27] 212
	[28] 213
	[29] 214
Description:	Assigns the individual cams to the maximum of 4 cam tracks and defines the numerical value for the SGA "cam range".
	p9538[0...29] = CBA dec
	$\mathrm{C}=$ Assignment of the cam to the cam track.
	Valid values are 1, 2, 3, 4.
	BA = Numerical value for the SGA "cam range".
	If the position lies in the range of this cam, the value BA is signaled to the safety-relevant logic via the SGA "cam range" of the cam track set using C.
	Valid values are $0 \ldots$ 14. Each numerical value may only be used once for each cam track.
	Examples:
	p9538[0] $=207$
	Cam 1 (index 0 ) is assigned cam track 2. If the position lies within the range of this cam, a value of 7 is entered in the SGA "cam range" of the second cam track.
	p9538[5] $=100$
	Cam 6 (index 5) is assigned cam track 1 . If the position lies within the range of this cam, a value of 0 is entered in the SGA "cam range" of the first cam track.



p9540	SI Motion SCA (SN) tolerance (Control Unit) / SI Mtn SCA tol CU		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	$10.0000[\mathrm{~mm}]$	$0.1000[\mathrm{~mm}]$
	$0.0010[\mathrm{~mm}]$		
Description:	Sets the tolerance for the function "Safe Cam" (SCA).		
	Within this tolerance, both monitoring channels may signal different signal states of the same safe cam.		


p9540	SI Motion SCA (SN) tolerance (Control Unit) / SI Mtn SCA tol CU		
SERVO (Safety rot),	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
rot), VECTOR AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Safety	Min	Max	Factory setting
rot), VECTOR_I_AC (Safety rot)	0.0010 [ $\left.{ }^{\circ}\right]$	10.0000 [ ${ }^{\circ}$ ]	0.1000 [ $\left.{ }^{\circ}\right]$
Description:	Sets the tolerance for the function "Safe Cam" (SCA).		

p9541
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description: Sets the comparison algorithm for the encoder position monitoring functions.
The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.


Description: Sets the tolerance for the data cross-check of the actual position between the two monitoring channels.
Dependency:
Refer to: C01711
Note:
For a linear axis, the tolerance is internally limited to 10 mm .
p9542
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description:

Dependency:
Note:

SI Motion act val comparison tol (cross-check) (Control Unit) / SI Mtn act tol CU
Can be changed: C2(95) Calculated: - Access level: 3

Data type: FloatingPoint32 Dyn. index: -P-Group: Safety Integrated Not for motor type: Min 0.0010 [mm]
$360.0000[\mathrm{~mm}$ For encoderless motion monitoring functions, the tolerance must be set to a higher value ( 12 degrees rotary, 1 mm linear).
Refer to: C01711
For a linear axis, the tolerance is internally limited to 10 mm .
For a "linear axis with rotating motor" and factory setting of p9520, p9521 and p9522, the factory setting of p9542 corresponds to a position tolerance of $36^{\circ}$ on the motor side.

## p9542

SERVO (Safety rot), VECTOR (Safety rot), SERVO_AC (Safety rot), VECTOR_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR_I_AC (Safety rot)
Description:

SI Motion act val comparison tol (cross-check) (Control Unit) / SI Mtn act tol CU

Dyn. index: -
Unit group: -
Scaling: -

## Max

$360.0000\left[^{\circ}\right.$ ]

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0.1000 [ ${ }^{\circ}$ ]

Sets the tolerance for the data cross-check of the actual position between the two monitoring channels. For encoderless motion monitoring functions, the tolerance must be set to a higher value ( 12 degrees rotary, 1 mm linear).
Dependency: Refer to: C01711

## p9543

SERVO, VECTOR
HLA, SERVO_AC, VECTOR AC, SERVO_I_AC, VECTOR_I_AC

Description: Sets the factor to increase the tolerance for the data cross-check of the actual position between the two monitoring channels while the gearbox stage is being switched over.
This factor is effective when actual value synchronization is activated and when deactivated.
Depending on the following tolerance, the following is obtained:

- actual value synchronization activated: p9549 * p9543
- actual value synchronization deactivated: p9542 * p9543

p9544
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

### 2.2 List of parameters

Dependency:	Refer to: C01711
Note:	For linear axes, the maximum value is limited to 1 mm.


p9544	SI Motion actual value comparison tolerance (referencing) (CU) / SI Mtn ref tol		
SERVO (Safety rot),	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram:
SERVO_AC (Safety   rot), VECTOR AC	P-Group: Safety Integrated	Unit group: -	Unit selection:
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Safety	Min	Max	Factory setting
rot), VECTOR_I_AC   (Safety rot)	$0.0000\left[{ }^{\circ}\right]$	$36.0000\left[{ }^{\circ}\right]$	0.0100 [ ${ }^{\circ}$ ]
Description:	Sets the tolerance for checking the actual values.		
	For an incremental encoder, the actual values are checked after referencing; for an absolute encoder, when switching on.		
Dependency:	Refer to: C01711		
Note:	For linear axes, the maximum value is limited to 1 mm .		

## p9545

SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

## Description:

Note:
SI Motion SSM (SGA $\mathbf{n}<\mathbf{n x}$ ) filter time (Control Unit) / SI Mtn SSM filt CU
Data type: FloatingPoint32 Dyn. index: - Func. diagram: 2823
P-Group: Safety Integrated Unit group: - Unit selection: -

Not for motor type: - Scaling: - Expert list: 1
Min Max Factory setting
0.00 [ms] $500.00[\mathrm{~ms}] \quad 0.00$ [ms]

Note:
Sets the filter time for the SSM feedback signal to detect standstill ( $n<n x$ ).
The filter time is effective only if the function is enabled (p9501.16 = 1 ).
The parameter is included in the data cross-check of the two monitoring channels.
The set time is rounded internally to an integer multiple of the monitoring clock cycle. SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)

## p9546

SERVO, VECTOR,
SI Motion SSM (SGA $\mathbf{n}<\mathbf{n x}$ ) speed limit (CU) / SI Mtn SSM v_limCU HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

## Description:

Caution:

p9546
SERVO (Safe
VECTOR (Sa
SERVO_AC (
rot), VECTOR
(Safety rot),
SERVO_IAC
rot), VECTOR
(Safety rot)
Description:
Caution:
!

SI Motion SSM (SGA $\mathbf{n}<\mathbf{n x}$ ) speed limit (CU) / SI Mtn SSM v_limCU		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2823
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.00[\mathrm{rpm}]$	$1000000.00[\mathrm{rpm}]$	$20.00[\mathrm{rpm}]$

Sets the velocity limit for the SSM feedback signal to detect standstill ( $n<n x$ ). When this limit value is undershot, the signal "SSM feedback signal active" (SGA $n<n _x$ ) is set. For p9568 = 0 , the value in p9546 is also applicable for SAM/SBR.
The following applies for p9506 = 3:
The "SAM/SBR" function is deactivated if the selected threshold value is undershot.
F-DO: Failsafe Digital Output / SGA: Safety-related output
SAM: Safe Acceleration Monitor (safe acceleration monitoring)
SBR: Safe Brake Ramp (safe brake ramp monitoring)
SSM: Safe Speed Monitor (safety-related feedback signal from the speed monitoring) / SGA n < nx: Safety-related output n < nx

## p9547

SERVO, VECTOR,
HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

Description: Dependency: Note:

SI Motion SSM (SGA n < nx) velocity hysteresis (CU) / SI Mtn SSM hyst CU		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2823
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0.0010 [mm/min]	500.0000 [mm/min]	10.0000 [mm/min]
Sets the velocity hysteresis for the SSM feedback signal to detect standstill ( $\mathrm{n}<\mathrm{nx}$ ) .		
Refer to: C01711		
The velocity hysteresis is effective only if the function is enabled (p9501.16 = 1).		
The parameter is included in the data cross-check of the two monitoring channels.		
SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)		

p9547
SERVO (Safety rot), VECTOR (Safety rot), SERVO_AC (Safety rot), VECTOR_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR_I_AC (Safety rot)
Description:
Dependency:
Note:

SI Motion SSM (SGA $\mathbf{n}<\mathbf{n x}$ ) velocity hysteresis (CU) / SI Mtn SSM hyst CU

Can be changed: C2(95)
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
0.0010 [rpm]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
500.0000 [rpm]

Access level: 3
Func. diagram: 2823
Unit selection: -
Expert list: 1
Factory setting
10.0000 [rpm]

Sets the velocity hysteresis for the SSM feedback signal to detect standstill ( $n<n x$ ).
Refer to: C01711
The velocity hysteresis is effective only if the function is enabled (p9501.16 = 1).
The parameter is included in the data cross-check of the two monitoring channels.
SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)
p9548
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description: Sets the velocity tolerance for the "SAM" function. Dependency: Note:

SI Motion SAM actual speed tolerance (Control Unit) / SI Mtn SAM tol CU		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.00[\mathrm{~mm} / \mathrm{min}]$	$120000.00[\mathrm{~mm} / \mathrm{min}]$	$300.00[\mathrm{~mm} / \mathrm{min}]$
Sets the velocity tolerance for the "SAM" function.		
Refer to: C01706		
SAM: Safe Acceleration Monitor (safe acceleration monitoring)		
SI Motion SAM actual speed tolerance (Control Unit) / SI Mtn SAM tol CU		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.00[r p m]$	$120000.00[r p m]$	$300.00[r p m]$


p9548	SI Motion SAM actual speed tolerance (Control U	
SERVO (Safety rot),	Can be changed: C2(95)	Calculated: -
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -
SERVO_AC (Safety	P-Group: Safety Integrated	Unit group: -
rot), VECTOR_AC	Not for motor type: -	Scaling: -
(Safety rot),	Max	
SERVO_IAC (Safety	Min	$120000.00[\mathrm{rpm}]$
rot), VECTOR_I_AC	$0.00[r p m]$	
(Safety rot)		
Description:	Sets the velocity tolerance for the "SAM" function.	
Dependency:	Refer to: C01706	
Note:	SAM: Safe Acceleration Monitor (safe acceleration monitoring)	


p9549	SI Motion slip velocity tolerance (Control Unit) / SI Mtn slip tol		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [mm/min]	6000.00 [mm/min]	6.00 [ $\mathrm{mm} / \mathrm{min}$ ]
Description:	Sets the velocity tolerance that is used for a 2-encoder system in cross-check between the two monitoring channels.		
Dependency:	Refer to: p9501, p9542		
Note:	If the "actual value synchronization" is not enabled (p9501.3 $=0$ ), then the value parameterized in p 9542 is used as tolerance in the data cross-check.		




## p9552

SERVO, VECTOR HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

Description:

## SI Motion transition time STOP C to SOS (SBH) (Control Unit) / SI Mtn t C->SOS CU

Note:

Calculated: - Access level: 3
Dyn. index: -
Unit group: - Unit selection: -
Scaling: - Expert list: 1
Max Factory setting
600000.00 [ms] 100.00 [ms]
$\quad$ Sets the transition time from STOP C to "Safe Operating Stop" (SOS)
The set time is rounded internally to an integer multiple of the monitoring clock cycle. SOS: Safe Operating Stop / SBH: Safe operating stop

p9553	SI Motion transition time STOP D to SOS (SBH) (Control Unit) / SI Mtn t D->SOS CU		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	$600000.00[\mathrm{~ms}]$	$100.00[\mathrm{~ms}]$
	$0.00[\mathrm{~ms}]$		
Description:	Sets the transition time from STOP D to "Safe Operating Stop" (SOS).		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		
	SOS: Safe Operating Stop / SBH: Safe operating stop		


p9554	SI Motion transition time STOP E to SOS (SBH) (Control Unit) / SI Mtn t E->SOS CU
SERVO, VECTOR,   hLA, SERVO_AC,   VECTOR_AC,   SERVO_IAC,   VECTOR_I_AC	Can be changed: C2(95) Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $0.00[\mathrm{~ms}]$ $600000.00[\mathrm{~ms}]$ $100.00[\mathrm{~ms}]$
Description:   Dependency:   Note:	Sets the transition time from STOP E to "Safe Operating Stop" (SOS).   Refer to: p9354   The set time is rounded internally to an integer multiple of the monitoring clock cycle.   SOS: Safe Operating Stop / SBH: Safe operating stop
p9555   SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	SI Motion transition time STOP F to STOP B (Control Unit) / SI Mtn t F->B CU
Description: Dependency: Note:	Sets the transition time from STOP F to STOP B.   Refer to: C01711   The set time is rounded internally to an integer multiple of the monitoring clock cycle.
p9556 HLA	SI Motion STOP A delay time (Control Unit) / SI Mtn IL t_del CU
Description:   Dependency:   Note:	Sets the delay time for STOP A after STOP B.   Refer to: p9560   Refer to: C01701   The set time is rounded internally to an integer multiple of the monitoring clock cycle.
p9556   SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	SI Motion STOP A delay time (Control Unit) / SI Mtn IL t_del CU
Description:	Sets the delay time for STOP A after STOP B.   In the case of encoderless motion monitoring functions with safe brake ramp monitoring (p9506 = 1) and the OFF3 ramp enabled at the same time ( $\mathrm{p} 9507.3=0$ ), the parameter has no effect.
Dependency:	Refer to: p9560   Refer to: C01701
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.


p9557	SI Motion STO test time (Control Unit) / SI Mtn STO t_test		
HLA	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	500.00 [ms]
Description:	Sets the time after which STO must be active when initiating the test stop.		
Dependency:	Refer to: C01798		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle. STO: Safe Torque Off		
p9557	SI Motion STO test time (Control Unit) / SI Mtn STO t_test		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	100.00 [ms]
Description:	Sets the time after which STO must be active when initiating the test stop.		
Dependency:	Refer to: C01798		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle. STO: Safe Torque Off		
p9558	SI Motion acceptance test mode time limit (Control Unit) / SI Mtn acc t CU		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling:-	Expert list: 1
	Min	Max	Factory setting
	5000.00 [ms]	100000.00 [ms]	40000.00 [ms]
Description:	Sets the maximum time for the acceptance test mode.   If the acceptance test mode takes longer than the selected time limit, then the mode is automatically terminated.		
Dependency:	Refer to: C01799		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		
p9559	SI Motion forced checking procedure timer (Control Unit) / SI Mtn dyn timer		
SERVO, VECTOR, HLA, SERVO AC, VECTOR AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [h]	9000.00 [h]	8.00 [h]
Description:	Sets the time interval for carrying out the forced checking procedure and testing the safety motion monitoring functions integrated in the drives.		
	Within the parameterized time, the safety functions must have been tested at least once (including de-selection of the "STO" function).		
	This monitoring time is reset each time the test is carried out.		
	The signal source to initiate the forced checking procedure is set in p9705.		
Dependency:			
	Refer to: A01697, C01798		
Note:	STO: Safe Torque Off		

### 2.2 List of parameters

p9560	SI Motion STO shutdown velocity (Control Unit) / SI Mtn IL v_shutCU		
HLA	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [mm/min]	6000.00 [mm/min]	0.00 [mm/min]
Description:	Sets the shutdown velocity for activating STO.   Below this velocity "standstill" is assumed and for STOP B / SS1, STO is selected.		
Dependency:	Refer to: p9556		
Note:	The shutdown velocity has n SS1: Safe Stop 1 STO: Safe Torque Off	ue $=0$.	
p9560	SI Motion STO shutdown velocity (Control Unit) / SI Mtn IL v_shutCU		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [mm/min]	6000.00 [mm/min]	0.00 [mm/min]
Description:	Below this velocity "standstill" is assumed and for STOP B / SS1, STO is selected. In the case of encoderless motion monitoring functions, the parameter must be >0 (recommended va		
Dependency:	Refer to: p9556		
Note:	The shutdown velocity has n SS1: Safe Stop 1 STO: Safe Torque Off	ue $=0$.	
p9560	SI Motion pulse suppression shutdown speed (Control Unit) / SI Mtn IL n_shutCU		
SERVO (Safety rot),	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
rot), VECTOR AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_IIAC (Safety	Min	Max	Factory setting
rot), VECTOR_I_AC   (Safety rot)	0.00 [rpm]	6000.00 [rpm]	0.00 [rpm]
Description:	Sets the shutdown speed for the pulse suppression.		
	Below this speed "standstill" is assumed and for STOP B / SS1, the pulses are suppressed (by changing to STOP A)		
Dependency:	Refer to: p9556		
Note:	The shutdown speed has no effect for a value $=0$.		
	SS1: Safe Stop 1		


p9561	SI Motion SLS (SG) stop response (Control Unit) / SI Mtn SLS resp		
SERVO, VECTOR,	Can be changed: C2(95), U, T	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC, SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	14	5
Description:	Sets the stop response for the function "Safely-Limited Speed" (SLS).		
	This setting applies for all SLS limit values.		
	An input value of less than 5 signifies personnel protection, from 10 and upwards, machine protection		
	This parameter can only be used for SINUMERIK Safety Integrated.		
	For motion monitoring functions integrated in the drive, only a value of 5 is permissible. Other settings result in the safety message C01711/C30711 with message value 44.		
Value:	0: STOP A		
	1: STOP B		
	2: STOP C		
	3: STOP D		
	4: STOP E		
	5: Sets the stop response via p9563 (SLS-specific)		
	10: STOP A with delayed STO when the bus fails		
	11: STOP B with delayed STO when the bus fails		
	12: STOP C with delayed STO when the bus fails		
	13: STOP D with delayed STO when the bus fails		
	14: STOP E with delayed STO when the bus fails		
Dependency:	Refer to: p9531, p9563, p9580		
Note:	SLS: Safely-Limited Speed / SG: Safely reduced speed		
p9562[0...1]	SI Motion SLP (SE) stop response (Control Unit) / SI Mtn SLP Stop CU		
SERVO, VECTOR,   HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	14	2
Description:	Sets the stop response for the function "Safely-Limited Position" (SLP).		
Value:	0 0 STOP A		
	1: STOP B		
	2: STOP C		
	3: STOP D		
	4: STOP E		
	10: STOP A with delayed stop	when the bus fa	
	11: STOP B with delayed stop	when the bus fa	
	12: STOP C with delayed stop	when the bus fals	
	13: STOP D with delayed sto	when the bus fa	
	14: STOP E with delayed sto	when the bus fa	
Index:	[0] = Limit value SLP1 (SE1)		
Dependency:	Refer to: p9534, p9535		
Note:	In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F).		
	SLP: Safely-Limited Position / SE: Safe software limit switches		

### 2.2 List of parameters

p9563[0...3]	SI Motion SLS (SG)-specific stop response (Control Unit) / SI Mtn SLS stop CU		
HLA	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	14	2
Description:	Sets the SLS-specific stop response for the function "Safely-Limited Speed" (SLS).   These settings apply to the individual limit values for SLS.		
Value:	0 : STOP A   1: STOP B   2: STOP C   3: STOP D   4: STOP E   10: STOP A with delayed   11: STOP B with delayed   12: STOP C with delayed   13: STOP D with delayed   14: STOP E with delayed	when the bus fails when the bus fails when the bus fails when the bus fails when the bus fails	
Index:	$\begin{aligned} & {[0]=\text { Limit value SLS1 }} \\ & {[1]=\text { Limit value SLS2 }} \\ & {[2]=\text { Limit value SLS3 }} \\ & {[3]=\text { Limit value SLS4 }} \end{aligned}$		
Dependency:	Refer to: p9531, p9561, p958		
Note:	In the extended sense, a bus functions (e.g. via PROFIsafe SLS: Safely-Limited Speed /	seen here as a co ced speed	in the control signals
p9563[0...3]	SI Motion SLS (SG)-specific stop response (Control Unit) / SI Mtn SLS stop CU		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram:
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO_I_AC, } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	14	2
Description:	Sets the SLS-specific stop response for the function "Safely-Limited Speed" (SLS).   These settings apply to the individual limit values for SLS.		
Value:	0 : STOP A   1: STOP B   2: STOP C   3: STOP D   4: STOP E   10: STOP A with delayed   11: STOP B with delayed   12: STOP C with delayed   13: STOP D with delayed   14: STOP E with delayed	when the bus fails when the bus fails when the bus fails when the bus fails when the bus fails	
Index:	$\begin{aligned} & \text { [0] = Limit value SLS1 } \\ & {[1]=\text { Limit value SLS2 }} \\ & {[2]=\text { Limit value SLS3 }} \\ & {[3]=\text { Limit value SLS4 }} \end{aligned}$		
Dependency:	Refer to: p9531, p9561, p958		
Notice:	In the case of encoderless m	(p9506/p9306 = 1	f 0 or 1 is permitted.

Note: In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F). SLS: Safely-Limited Speed / SG: Safely reduced speed


### 2.2 List of parameters

p9566	SI Motion SDI stop response (Control Unit) / SI Mtn SDI Stop CU		
HLA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2824
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	14	1
Description:	Sets the stop response for the function "Safe motion direction" (SDI).		
	This setting applies to both directions of motion.		
Value:	0: STOP A		
	1: STOP B		
	2: STOP C		
	3: STOP D		
	4: STOP E		
	10: STOP A with delayed stop response when the bus fails		
	11: STOP $B$ with delayed stop response when the bus fails		
	12: STOP C with delayed stop response when the bus fails		
	13: STOP D with delayed stop response when the bus fails		
	14: STOP E with delayed stop response when the bus fails		
Dependency:	Refer to: p9564, p9565		
	Refer to: C01716		
Note:	In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F).		
	SDI: Safe Direction (safe motion direction)		
p9566	SI Motion SDI stop response (Control Unit) / SI Mtn SDI Stop CU		
SERVO, VECTOR, SERVO AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2824
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	14	1
Description:	Sets the stop response for the function "Safe motion direction" (SDI). This setting applies to both directions of motion.		
Value:	0 0: STOP A		
	1: STOP B		
	2: STOP C		
	3: STOP D		
	4: STOP E		
	10: STOP A with delayed stop response when the bus fails		
	11: STOP $B$ with delayed stop response when the bus fails		
	12: STOP C with delayed stop response when the bus fails		
	13: STOP D with delayed stop response when the bus fails		
	14: STOP E with delayed	when the bus fails	
Dependency:	Refer to: p9564, p9565		
	Refer to: C01716		
Notice:	In the case of encoderless motion monitoring ( $\mathrm{p} 9506=1$ ), only a value of 0 or 1 is permitted.		
Note:	In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F).   SDI: Safe Direction (safe motion direction)		



### 2.2 List of parameters



p9572	SI Motion reference position (Control Unit) / SI mtn rel_pos		
HLA	Can be changed: C2(95), U, T		Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-737280.000 [mm]	737280.000 [mm]	0.000 [mm]
Description:	The reference position entered in this parameter, is used as safe absolute position when setting p9573. If errors are identified when performing the plausibility checks, then message C01711 is output with message value 1003		
p9572	SI Motion reference position (Control Unit) / SI mtn rel_pos		
SERVO, VECTOR,	Can be changed: C 2 (95), U, T	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram:
VECTOR_AC, SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-737280.000 [mm]	737280.000 [mm]	0.000 [mm]
Description:	The reference position entered in this parameter, is used as safe absolute position when setting p9573. If errors are identified when performing the plausibility checks, then message C01711 is output with message value 1003		
Note:	The unit depends on the selected axis type, linear or rotary axis, in p9502		
p9572	SI Motion reference position (Control Unit) / SI mtn rel_pos		
SERVO (Safety rot),	Can be changed: C2(95), U, T	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC (Safety rot), VECTOR AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Safety	Min	Max	Factory setting
rot), VECTOR_I_AC   (Safety rot)	-737280.000 [ ${ }^{\circ}$ ]	$\left.737280.000{ }^{\circ}{ }^{\circ}\right]$	$\left.0.000{ }^{\circ}{ }^{\circ}\right]$
Description:	The reference position entered in this parameter, is used as safe absolute position when setting p9573. If errors are identified when performing the plausibility checks, then message C01711 is output with message value 1003		
Note:	The unit depends on the selected axis type, linear or rotary axis, in p9502		
p9573	SI Motion accept reference position (Control Unit) / SI mtn ref_pos		
SERVO, VECTOR,	Can be changed: C2(95), U, T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,   SERVO_IAC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	263	0
Description:	The safe absolute position is rejected or newly set using this parameter.   If errors are identified when performing the plausibility checks, then message C01711 is output with message value 1003		
Value:	0: No action   89: Set reference position at standstill   122: Declare reference position invalid   263: Referencing via SCC		
Dependency:	Refer to: p9572		
Note:	SCC: Safety Control Channel		

p9574
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_IAC

p9578
SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC


SI Motion SLA acceleration limit (CU) / SI Mtn SLA lim_CU		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.00\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	$1000.00\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	$1.00\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Sets the acceleration limit for the "Safely-Limited Acceleration" function (SLA).		
Refer to: p9579		
Refer to: C01717		
The set time is rounded internally to an integer multiple of the monitoring clock cycle.		
SLA: Safely-Limited Acceleration		


p9578	SI Motion SLA acceleration limit (CU) / SI Mtn SLA lim_CU		
SERVO (Safety rot),	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
rot), VECTOR AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I AC (Safety	Min	Max	Factory setting
rot), VECTOR_I_AC   (Safety rot)	$0.00\left[\mathrm{rev} / \mathrm{s}^{2}\right]$	$1000.00\left[\mathrm{rev} / \mathrm{s}^{2}\right]$	1.00 [rev/s ${ }^{\text {² }}$ ]
Description:	Sets the acceleration limit for the "Safely-Limited Acceleration" function (SLA).		
Dependency:	Refer to: p9579		
	Refer to: C01717		
Note:	The set time is rounded inte SLA: Safely-Limited Acceler	er multiple of the	


p9579	SI Motion SLA stop response (Control Unit) / SI Mtn SLA stop CU		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	14	1
Description:	Sets the stop response for the "Safely-Limited Acceleration" function (SLA).		
Value:	0: STOP A		
	1: STOP B		
	2: STOP C		
	3: STOP D		
	4: STOP E		
	10: STOP A with delayed stop response when the bus fails		
	11: STOP B with delayed stop response when the bus fails		
	12: STOP C with delayed stop response when the bus fails		
	13: STOP D with delayed stop response when the bus fails		
	14: STOP E with delayed stop response when the bus fails		
Dependency:	Refer to: p9578		
	Refer to: C01717		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle. SLA: Safely-Limited Acceleration		


p9580	SI Motion stop response delay bus failure (Control Unit) / SI Mtn t to IL CU		
SERVO, VECTOR,	Can be changed: C 2 (95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	800.00 [ms]	0.00 [ms]
Description:	Sets the delay time, after which the stop response parameterized in p9612 for bus failure is executed Refer to: p9561, p9563		
Dependency:			
Note:	In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F).		
	The main use of the wait time is the function "Extended stopping and retraction" (ESR).		
	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		


p9581	SI Motion brake ramp reference value (Control Unit) / SI Mtn ramp ref CU		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	$240000.0000[\mathrm{~mm} / \mathrm{min}]$	$1500.0000[\mathrm{~mm} / \mathrm{min}]$
	$600.0000[\mathrm{~mm} / \mathrm{min}]$		
Description:	Sets the reference value to define the brake ramp.		
	The rate of rise of the brake ramp depends upon p9581 (reference value) and p9583 (monitoring time).		
Dependency:	Refer to: p9582, p9583		


p9583
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

SI Motion brake ramp monitoring time (Control Unit) / SI Mtn rp t_mon CU		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0.50 [s]	3600.00 [s]	10.00 [s]
Sets the monitoring time to define the brake ramp.		
The rate of rise of the brake ramp depends upon p9581 (reference value) and p9583 (monitoring time)		
Refer to: p9581, p9582		
e set time is rounded in		

## p9585

SERVO, VECTOR,
SERVO_AC,
VECTOR AC,
SERVO_IAC,
VECTOR_I_AC

## Description:

## Dependency:

Notice: $\quad$ Reducing this value can have a negative impact on the actual value sensing and the plausibility check. When the value is increased, this results in a longer evaluation delay and a higher velocity deviation (r9787).
Note: $\quad$ This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3). For synchronous motors, the value 4 must be set.

If value $=-1$ :

- for synchronous motors, the calculation is automatically made with the value 4.
- for induction motors, the calculation is automatically made with a value of 0 (if the code number of the power unit p0201[0] < 14000, otherwise with a value of 2).


## p9586

SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

SI Motion actual value sensing sensorless delay time (CU) / ActVal sl t_del CU

Can be changed: C2(95)
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
5.00 [ms]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
1000.00 [ms]

Access level: 3
Func. diagram: Unit selection: -

Expert list: 1
Factory setting
100.00 [ms]

Description: Sets the delay time to evaluate the encoderless actual value sensing after the pulses have been enabled. The value must be greater than or equal to the motor magnetizing time ( p 0346 ).
Refer to: C01711
The safety functionality is only completely guaranteed after this time has expired.

## Caution:

## Notice:

If this value is reduced, this can have a negative impact on the actual value acquisition and plausibility check - and result in Safety message C01711 with the message value 1041 or 1042.
Note: $\quad$ This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3).
The set time is rounded internally to an integer multiple of the monitoring clock cycle.
p9587
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

SI Motion actual value sensing sensorless filter time (CU) / Actv sl t_filt CU		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.00[\mathrm{~ms}]$	$100.00[\mathrm{~ms}]$	25.00 [ms]

Description: Sets the filter time for smoothing the actual value with sensorless actual value sensing.
Notice: A longer filter time results in a longer response time.
Note: $\quad$ This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3).
The smoothing is realized with a 1st order lowpass filter
For p9587 = minimum value, the filter is deactivated.
The set time is rounded internally to an integer multiple of the monitoring clock cycle.

p9588
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC


SI Motion actual value sensing sensorless minimum current (CU) / ActVal sI I_min CU			
Can be changed: C2(95)	Calculated: -	Access level: 3	
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -	
P-Group: Safety Integrated	Unit group: -	Unit selection: -	
Not for motor type: -	Scaling: -	Expert list: 1	
Min	Max	Factory setting	
0.00 [\%]	1000.00 [\%]	10.00 [\%]	
Sets the minimum current for encoderless actual value sensing referred to 1 A (i.e. $1 \%=10 \mathrm{~mA}$ ). - the value must be increased if C01711 has occurred with message value 1042.   - the value must be decreased if C01711 has occurred with message value 1041.			
For synchronous motors, the following condition must be fulfilled: \|p0305 x p9783	>= p9588 1.2		
If required, the correct value of the motor minimum current should be determined by making the appropriate measurements.			
Refer to: r9785			
Refer to: C01711			
If this percentage value is reduced excessively, then this can result in a safety message and an inaccurate actual value.			
This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3).			

## p9589

SI Motion act. value sensing sensorless acceleration limit (CU) / ActVal sl a_lim CU

SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC

Description:

Recommendation: The setting of this parameter depends on the motor and closed-loop control, and must be newly determined for each
Can be changed: C2(95)
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
10.00 [\%]

If this percentage value is increased, when accelerating, velocity peaks that do not reflect the real velocity characteristic can occur.
If this value is decreased, and this dampens the velocity peaks when accelerating.

- the value must be increased if C01711 with message value 1043 has occurred.
- the value must be lowered if acceleration procedures have led to an excessive Safety actual velocity. configuration.
To do this, a measurement should be performed while the actual value jumps, and the limit in r9785[0] must be set so low using p9589, so that it is exceeded by the value in r9785[1] a maximum of four times per second. The actual value correction filter intervenes at this instant in time. The step is no longer so drastic.

Dependency:	Refer to: r 9784
	Refer to: C 01711
Note:	This parameter is only effective for encoderless actual value sensing $(\mathrm{p} 9506 / \mathrm{p} 9306=1,3)$.
	For p9589 = maximum value, the filter is deactivated.
	Diagnostics parameter p9784 must be used to correctly set this parameter.


r9590[0...3]	SI Motion version safety motion monitoring (Control Unit) / SI Mtn version CU		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Sot for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Max	Factory setting	
	-	-	-

Description: Displays the Safety Integrated version for the safe monitoring functions.

Index:	$[0]=$ Safety Version (major release)
	$[1]=$ Safety Version (minor release)
	$[2]=$ Safety Version (baselevel or patch)
	$[3]=$ Safety Version (hotfix)
Dependency:	Refer to: r9770, r9870, r9890
Note:	Example:
	$r 9590[0]=2, r 9590[1]=60, r 9590[2]=1, r 9590[3]=0$--> SI Motion version V02.60.01.00


p9601	Sl enable functions integrated in the drive (Control Unit) / SI enable fct CU		
HLA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	00000000 bin

Description: Sets the enable signals for the safety functions integrated in the drive and the type of selection on the Control Unit. The following settings are permitted:
0000 hex:
Safety functions integrated in the drive inhibited (no safety function).
0001 hex:
Basic functions are enabled via onboard terminals (permissible for r9771.0 = 1).
0004 hex:
Extended functions via Terminal Module 54F (TM54F) have been enabled (permissible for r9771.5 = 1).
0005 hex:
Extended functions via Terminal Module 54F (TM54F) and the basic functions via onboard terminals have been enabled (permissible for r9771.5 = 1).
0008 hex:
Basic functions are enabled via PROFIsafe (permissible for r9771.6 = 1).
0009 hex:
Basic functions are enabled via PROFIsafe onboard terminals (permissible for r9771.6 = 1).
000C hex:
Extended functions are enabled via PROFIsafe (permissible for r9771.4 = 1).
000D hex:
Extended functions are enabled via PROFIsafe and basic functions via onboard terminals (permissible for r9771.4 = 1).

0024 hex:
Extended functions without selection are enabled (permissible for r9771.16 = 1).
0025 hex:
Extended functions without selection and basic functions via onboard terminals are enabled (permissible for r9771.16 = 1).

### 2.2 List of parameters

	0040 hex:				
	Basic functions are enabled via TM54F				
	0041 hex:				
	Basic functions are enabled via TM54F and onboard terminals.				
Bit field:	Bit	Signal name	1 signal	0 signal	
	00	STO (SH) via terminals (CU) enable	Enable	Inhibit	2810
	02	Enable motion monitoring functions integrated in drive (CU)	Enable	Inhibit	-
	03	Enable PROFIsafe (CU)	Enable	Inhibit	-
	05	Enab motion monit functions integr in drive w/out selection (CU)	Enable	Inhibit	-
	06	Basic functions via TM54F	Enable	Inhibit	-
Dependency:	Refer to: r9771, p9801				
Note:	A change always becomes effective only after a POWER ON. Exception: Changes to p9601.0 become effective immediately.				
	CU: Control Unit				
	STO: Safe Torque Off / SH: Safe standstill				
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)				
	SI: Safety Integrated				
	SMM: Safe Motion Monitoring				
p9601	SI enable functions integrated in the drive (Control Unit) / SI enable fct CU				
SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC	Can be changed: C2(95) C		Calculated: -	Acces	
	Data type: Unsigned32 Dy		Dyn. index: -	Func.	
	P-Group: Safety Integrated Un		Unit group: -	Unit s	
	Not for motor type: - Sc		Scaling: -	Exper	
	Min Max		Max	Factor	
	- -			0000	
Description:	Sets the enable signals for the safety functions integrated in the drive and the type of selection on the Control Unit. Not all of the settings listed below will be permissible, depending on the Control Unit and Motor Module or Power Module being used:				
	0000 hex:				
	Safety functions integrated in the drive inhibited (no safety function).				
	0001 hex:				
	Basic functions are enabled via onboard terminals (permissible for r9771.0 $=1$ ).				
	0004 hex:				
	Extended functions via Terminal Module 54F (TM54F) have been enabled (permissible for r9771.5 = 1). 0005 hex:				
	Extended functions via Terminal Module 54F (TM54F) and the basic functions via onboard terminals have been enabled (permissible for r9771.5 = 1).				
	0008 hex:				
	Basic functions are enabled via PROFIsafe (permissible for r9771.6 = 1).				
	0009 hex:				
	Basic functions are enabled via PROFIsafe onboard terminals (permissible for r9771.6 $=1$ ).000C hex:				
	Extended functions are enabled via PROFIsafe (permissible for r9771.4 = 1).				
	000D hex:				
	Extended functions are enabled via PROFIsafe and basic functions via onboard terminals (permissible for r9771.4 $=$ 1).				
	0014 hex:				
	Extended functions via integrated F-DI/F-DO have been enabled. 0024 hex:				
	Extended functions without selection are enabled (permissible for r9771.16=1).				
		hex:			
	Extended functions without selection and basic functions via onboard terminals are enabled (permissible for r9771.16 $=1$ ).				


	0040 hex:				
	Basic functions are enabled via TM54F				
	0041 hex:				
	Basic functions are enabled via TM54F and onboard terminals.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	STO (SH) via terminals (CU) enable	Enable	Inhibit	2810
	02	Enable motion monitoring functions integrated in drive (CU)	Enable	Inhibit	-
	03	Enable PROFIsafe (CU)	Enable	Inhibit	-
	04	Enable onboard F-DI	Onboard F-DI	F-DI with TM54F	-
	05	Enab motion monit functions integr in drive w/out selection (CU)	Enable	Inhibit	-
	06	Basic functions via TM54F	Enable	Inhibit	-
Dependency:	Refer to: r9771, p9801				
Note:	A change always becomes effective only after a POWER ON. Exception: Changes to p9601.0 become effective immediately.				
	In addition to all of the combinations listed above, using bit 7, the "STO via Power Module terminals" function can be enabled (this is permissible for r9771.19 = 1).				
	CU: Control Unit				
	STO: Safe Torque Off / SH: Safe standstill				
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)				
	SI: Safety Integrated				
	SMM: Safe Motion Monitoring				
	F-DI: Failsafe Digital Input				
	F-DO: Failsafe Digital Output				
p9601		able functions integrated in the	rive (Contr	enable fct C	
SERVO, VECTOR	Can be changed: $\mathrm{C} 2(95)$ Calculated: - Access level:				
	Data type: Unsigned32 Dy		index: -	Func. diagram	
	P-Group: Safety Integrated Un		group: -	Unit selection	
	Not for motor type: - Scaider		ng: -	Expert list: 1	
	Min M			Factory setting	
	-			00000000 bin	
Description:	Sets the enable signals for the safety functions integrated in the drive and the type of selection on the Control Unit.				
	Not all of the settings listed below will be permissible, depending on the Control Unit and Motor Module or Power Module being used:				
	0000 hex:				
	Safety functions integrated in the drive inhibited (no safety function).				
	0001 hex:				
	Basic functions are enabled via onboard terminals (permissible for r9771.0 = 1).				
	0004 hex:				
	Extended functions via Terminal Module 54F (TM54F) have been enabled (permissible for r9771.5 = 1). 0005 hex:				
	Extended functions via Terminal Module 54F (TM54F) and the basic functions via onboard terminals have been enabled (permissible for r9771.5 = 1).				
	0008 hex:				
	Basic functions are enabled via PROFIsafe (permissible for r9771.6 = 1).				
	0009 hex:				
	Basic functions are enabled via PROFIsafe onboard terminals (permissible for r9771.6 = 1).				
	000C hex:				
	Extended functions are enabled via PROFIsafe (permissible for r9771.4 = 1).				
	000D hex:				
	Extended functions are enabled via PROFIsafe and basic functions via onboard terminals (permissible for r9771.4 = 1).				
	0024 hex:				
	Extended functions without selection are enabled (permissible for r9771.16 = 1).				

### 2.2 List of parameters



$\overline{\mathrm{p} 9610}$	SI PROFIsafe address	nit) / SI PRO	
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65534	0
Description:	Sets the PROFIsafe address for the Control Unit.		
Dependency:	Refer to: p9810		
Note:	A change only becomes effective after a POWER ON.		
p9611	SI PROFIsafe telegram selection (Control Unit) / SI Ps telegram CU		
SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	998	998
Description: Value:	Sets the PROFIsafe telegram number for the Control Unit.		
	0: No PROFIsafe telegram selected		
	30: PROFIsafe standard telegram 30, PZD-1/1		
	31: PROFIsafe standard telegram 31, PZD-2/2		
	900: PROFIsafe SIEMENS telegram 900, PZD-2/2		
	901: PROFIsafe SIEMENS telegram 901, PZD-3/5		
	902: PROFIsafe SIEMENS telegram 902, PZD-3/6		
Dependency:   Note:	Refer to: p9811, p60022		
	A change only becomes effective after a POWER ON.		
	For p9601.3 = p9801.3 = 1 (PROFIsafe enabled), the following variants exist when parameterizing PROFIsafe telegram 30:		
	- p9611 $=$ p9811 $=998$ and p60022 $=0$		
	- p9611 $=$ p9811 $=998$ and p60022 $=30$		
	- p9611 = p9811 = 30 and p60022 $=30$		
$\overline{\mathrm{p} 9612}$	SI PROFIsafe failure response (Control Unit) / SI Ps fail CU		
SERVO, VECTOR, hLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description: Sets the stop response when		Sets the stop response when PROFIsafe communication fails.	
Value:	$\begin{array}{ll} \text { 0: } & \text { STOP A } \\ \text { 1: } & \text { STOP B } \end{array}$		
Dependency:   Note:	Refer to: p9812		
Note:	For the set stop response STOP B, in order that the OFF3 ramp is actually maintained, when just using Safety Basic Functions, the following must be carefully observed:		
	- the transition time STOP F to STOP A (p9658, p9858) must be set longer or equal to the SS1 delay time (p9652, p9852).		
	- if a higher-level control responds to a drive fault by withdrawing the controller enable signals, for faults F01611 and F30611, the message type must be changed to alarm (p2118, p2119).		

### 2.2 List of parameters

p9620[0...7]	BI: SI signal source for STO (SH)/SS1 (Control Unit) / SI S_srcSTO/SS1 CU		
HLA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2810
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0



Description:	Sets the signal source for the following functions on the Control Unit:
	STO: Safe Torque Off / SH: Safe standstill
	SBC: Safe Brake Control
	SS1: Safe Stop 1 (time monitored)
Dependency: $\quad$	Refer to: p9601
Note:	The following signal sources are permitted:
	- fixed zero (standard setting).
	- digital inputs DI $0 \ldots 7,16,17,20,21$ on the Control Unit 320-2 (CU320-2).
	- digital inputs DI $0 \ldots 3,16,17$ on the Controller Extensions (CX32-2, NX10.3, NX15.3).
	- digital inputs DI $0 \ldots 3,16$ on the Control Unit $310-2$ (CU310-2).
	It is not permitted to establish an interconnection to a digital input in the simulation mode.
	For a parallel circuit configuration of n power units, the following applies:
	p9620[0] = Signal source for power unit 1
	$\ldots$
	p9620[n-1] = Signal source for power unit n



### 2.2 List of parameters

Index:	$\begin{aligned} & {[0]=\text { Activating }} \\ & {[1]=\text { Deactivating }} \end{aligned}$		
Dependency:	Refer to: p9825		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		
	CU: Control Unit		
p9626	SI HLA shutoff valve feedback signal contact configuration (CU) / FS config CU		
HLA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	5	0
Description:	Sets the feedback signal contacts of the shutoff valve to be monitored.		
	The sensors for the feedback signal of the shutoff valves are connected via X281/X282.		
Value:	0 : $\quad \mathrm{NC}$ contact/NO contact (NC/NO)		
	1: NC contact/NC conta		
	2: NO contact/NO conta		
	4: $\quad$ NC contact (NC)		
	5: $\quad \mathrm{NO}$ contact (NO)		
Dependency:	Refer to: p9826		
Note:	CU: Control Unit		
	NC: Normally Closed contact		
	NO: Normally Open contact		

## p9650

SERVO, VECTOR
HLA, SERVO AC VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

## Description:

## Dependency:

Note:

## SI SGE changeover discrepancy time (Control Unit) / SI SGE chg t CU

Can be changed: C2(95)
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
0.00 [ms]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
2000.00 [ms]

Access level: 3
Func. diagram: 2810
Unit selection: -
Expert list: 1
Factory setting
500.00 [ms]

Sets the discrepancy time to change over the safety-related inputs (SGE) on the Control Unit.
An SGE changeover is not effective simultaneously due to the different runtimes in the two monitoring channels. After an SGE changeover, dynamic data is not subject to a data cross-check during this discrepancy time.

For a data cross-check between p9650 and p9850, a difference of one Safety monitoring clock cycle is tolerated.
The set time is rounded internally to an integer multiple of the monitoring clock cycle.
SGE: Safety-related input (e.g. STO terminals)

## p9651

SI STO/SS1 debounce time (Control Unit) / SI STO t_debou CU

Description:

Can be changed: C2(95)
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
0.00 [ms]

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
100.00 [ms]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0.00 [ms]

Note:
Sets the debounce time for the failsafe digital inputs used to control STO/SS1.
The debounce time is rounded to whole milliseconds. It specifies the maximum duration of a fault pulse at the failsafe digital inputs with no reaction/influence on the selection or deselection of the Safety Basic Functions.
Example:
Debounce time $=1 \mathrm{~ms}$ : Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed.
Debounce time $=3 \mathrm{~ms}$ : Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.
The set debounce time impacts the response time of the safety function.

## SI STO/SBC/SS1 debounce time (Control Unit) / SI STO t_debou CU

p9651
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

SERVO, VECTOR, VECTOR SERVO I AC, VECTOR_I_AC

Description: Notice:

Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.00[\mathrm{~ms}]$	$100.00[\mathrm{~ms}]$	$0.00[\mathrm{~ms}]$

Sets the debounce time for the failsafe digital inputs used to control STO/SBC/SS1.
To filter noise pulses or test impulses from F-DOs, there is the following dependency on the parameter p0799[0]:

- if p0799[0] is less than 1 ms , then $\mathrm{p} 9651=1 \mathrm{~ms}$ or a multiple integer of 1 ms .
- if p0799[0] is greater or equal to 1 ms , then p 9651 must $=$ p0799[0] - or must be a multiple integer of p0799[0].

Note: $\quad$ The debounce time is rounded to whole milliseconds. It specifies the maximum duration of a fault pulse at the failsafe digital inputs with no reaction/influence on the selection or deselection of the Safety Basic Functions.
Example:
Debounce time $=1 \mathrm{~ms}$ : Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed.
Debounce time $=3 \mathrm{~ms}$ : Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed. The set debounce time impacts the response time of the safety function.

p9652	SI Safe Stop 1 delay time / SI Stop 1 t_del		
HLA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [s]	300.00 [s]	0.00 [s]
Description:	Sets the delay time for STO for the function "Safe Stop 1" (SS1) on the Control Unit to brake along the OFF3 down ramp (p1135).		
Recommendation:	The delay time should be set as follows so that the drive can completely decelerate along the OFF3 ramp before the transition into STO:		
	Delay time >= p1135 + p1228		
Dependency:	Refer to: p1135, p9852		
Note:	Pulse cancellation after failure of PROFIsafe communication is delayed by this time if "STOP B" is set (p9612 = 1).		
	For a data cross-check between p9652 and p9852, a difference of one Safety monitoring clock cycle is tolerated.		
	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)		

## p9652

SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC

Description: Sets the delay time of the pulse suppression for the function "Safe Stop 1" (SS1) on the Control Unit to brake along the OFF3 down ramp ( p 1135 ).
Recommendation: In order that the drive can completely ramp-down along the OFF3 ramp and a motor holding brake that is possibly available can close, then the delay time should be set as follows:
Motor holding brake parameterized: delay time >= p1135 + p1228 +p 1217
Motor holding brake not parameterized: delay time >= p1135 + p1228
Dependency: Refer to: p1135, p9852

Note: $\quad$ Pulse cancellation after failure of PROFIsafe communication is delayed by this time if "STOP B" is set $(p 9612=1)$. For a data cross-check between p9652 and p9852, a difference of one Safety monitoring clock cycle is tolerated. The set time is rounded internally to an integer multiple of the monitoring clock cycle. SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)

## p9653

SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

Description:
Value:

Note: $\quad$ SS1: Safe Stop 1 (Safe Stop 1, corresponds to Stop Category 1 acc. to EN60204)
SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)
SS1E requires the externally initiated stop in order to be in conformance with stop Category 1.
With this parameter, a switchover is made from SS1 to SS1E, and the drive-based braking response of function SS1 (time controlled) of the Basic Functions is deactivated.
Sets the drive-based braking response for the "Safe Stop 1" (SS1) function.
0 : SS1 with OFF3
1: SS1E external stop
SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)
SS1E requires the externally initiated stop in order to be in conformance with stop Category 1.
With this parameter, a switchover is made from SS1 to SS1E, and the drive-based braking response of function SS1
(time controlled) of the Basic Functions is deactivated.


## p9659

SERVO, VECTOR,
HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

Sl forced checking procedure timer / SI FCP Timer
Can be changed: $\mathrm{C} 2(95) \quad$ Calculated: -
Data type: FloatingPoint32 Dyn. index: -
P-Group: Safety Integrated Unit group: -
Scaling: -
Max
9000.00 [h]

Not for motor type: -
Min
0.00 [h]

Access level: 3
Func. diagram: 2810
Unit selection: -
Expert list: 1
Factory setting
8.00 [h]

Description: Sets the time interval for carrying out the forced checking procedure and testing the Safety switch-off signal paths. Within the parameterized time, STO must have been de-selected at least once. The monitoring time is reset each time that STO is de-selected.

## Dependency:

Refer to: A01699
Note: $\quad$ STO: Safe Torque Off / SH: Safe standstill

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Access level: 3
Func. diagram: 2802
Unit selection: -
Expert list: 1
Factory setting
0.00 [ms]

	Within the parameterized time, STO must have been de-selected at least once. The monitoring time is reset each
time that STO is de-selected.	
Dependency:	Refer to: A01699
Note:	STO: Safe Torque Off / SH: Safe standstill


r9660	SI forced checking procedure remaining time / SI FCP remain		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC, SERVO_I_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [h]	- [h]	- [h]
Description:	Displays the time remaining before dynamization and testing of the safety switch-off signal paths (forced checking procedure).		
Dependency:	Refer to: A01699		
p9665[0...255]	SI Motor Module parameter save / SI MM par save		
SERVO, VECTOR,	Can be changed: C 2 (95), U, T	Calculated: -	Access level: 4
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	00FF hex	0000 hex
Description:	Save the safety parameters for the basic functions on the Motor Module/Hydraulic Module.		
Note:	The parameter values are saved in the following indices:		
	p9801: index 20... 23		
	p9802: index 28... 31		
	p9810: index 36... 39		
	p9811: index 116... 119		
	p9812: indices 148... 151		
	p9821: index 84... 87		
	p9822[0]: index 92... 95		
	p9822[1]: index 100... 103		
	p9825[0]: index 124... 127		
	p9825[1]: index 132... 135		
	p9826: index 140... 143		
	p9850: index 44...47		
	p9851: index 76... 79		
	p9852: index 52... 55		
	p9858: index 60...63		
	p9897: index 108... 111		
	p9899: index 68... 71		
	Depending on the existing technology, configuration and firmware version, it is possible that not all of the listed parameters are available.		




p9697	SI Motion bus failure STO/SH delay time (CU) / SI Mtn STO t CU
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	Can be changed: C2(95) Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $0.00[\mathrm{~ms}]$ $800.00[\mathrm{~ms}]$ $0.00[\mathrm{~ms}]$
Description:   Note:	Sets the delay time for STO after bus failure on the Control Unit (e.g. used for ESR). The set time is rounded internally to an integer multiple of the monitoring clock cycle.   ESR: Extended Stop and Retract   STO: Safe Torque Off / SH: Safe standstill
p9700	SI Motion copy function / SI Mtn copy fct
HLA	Can be changed: C2(95), U, T Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0000 hex 00D0 hex 0000 hex
Description:	Setting to start the required copy function.   After starting, the appropriate parameters are copied from the Control Unit to the Hydraulic Module. Once copying is complete, the parameter is automatically reset to zero.
Value:	0 : [00 hex] Copy function ended   29: [1D hex] Start copy function node identifier   46: [2E hex] Start copy function encoder parameters   87: [57 hex] Start copy function SI parameters   208: [DO hex] Start copy function SI basic parameters
Note:	For value $=57$ hex, $2 E$ hex and DO hex:   The value can only be set if the safety commissioning mode is set and the Safety Integrated password was entered.   For value = DO hex:   The following parameters are copied after starting the copy function: p9601 --> p9801, p9610 --> 9810, p9611 --> 9811, p9625 --> p9825, p9626 --> p9826, p9650 --> p9850, p9651 --> p9851, p9652 --> p9852, p9658 --> p9858, p9697 --> p9897
p9700	SI Motion copy function / SI Mtn copy fct
SERVO, VECTOR, SERVO_AC, VECTOR AC, SERVO_IAC, VECTOR_I_AC	Can be changed: C2(95), U, T Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0000 hex 00D0 hex 0000 hex
Description:	Setting to start the required copy function.   After starting, the appropriate parameters are copied from the Control Unit to the Motor Module. Once copying is complete, the parameter is automatically reset to zero.
Value:	0 : [00 hex] Copy function ended   29: [1D hex] Start copy function node identifier   46: [2E hex] Start copy function encoder parameters   87: [57 hex] Start copy function SI parameters   208: [DO hex] Start copy function SI basic parameters




p9701	Acknowledge SI motion data change / Ackn SI Mtn dat		
TM54F_MA,	Can be changed: C2(95), U, T	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Maling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex hex	0000 hex	
Description:	Setting to transfer the reference checksums from the associated actual checksums after changes (SI parameters,		
	hardware).		

### 2.2 List of parameters

Value:	$0: \quad[00$ hex] Data unchanged
	$172: \quad[$ AC hex] Acknowledge data change complete
	$236: \quad[\mathrm{EC}$ hex] Acknowledge hardware CRC
Dependency:	Refer to: r9398, p9399, r9728, p9729, r9798, p9799, r9898, p9899
Note:	For value =AC hex:
	These values can only be set if the safety commissioning mode is set and the Safety Integrated password was
	entered.
	SI: Safety Integrated

## p9702

SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC

SI Acknowledge component replacement / Comp_replace ackn		
Can be changed: C2(95), U, T	Calculated: -	Access level: 3
Data type: Integer16	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	29	0

Description: Setting to acknowledge that a component has been replaced.
By writing 29 to this parameter, the unique identifier of a safety-relevant component is transferred into the drive parameterization.

| Value: | $0: \quad[00 \mathrm{hex}]$ hardware replacement acknowledge ready |
| :--- | :--- | :--- |
|  | $29: \quad[1 \mathrm{D} \mathrm{hex]} \mathrm{hardware} \mathrm{replacement} \mathrm{acknowledgment}$ |

Dependency: Refer to: F01640
Notice: It is not permissible that the safety commissioning mode is set in order to write to this parameter.
Note: After successful execution, this parameter is automatically reset to zero.
Data must then be saved in a non-volatile fashion (p0977 = 1 or p0971 = 1 or "copy RAM to ROM").
The parameter cannot be written to using a project download, and cannot be set in an offline project.

r9703.0.. 31	CO/BO: SI Motion SCA status signal (Control Unit) / SI Mtn SCA stat CU				
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -		Calculated: - Acces		
	Data type: Unsigned32		Dyn. index: - Func.		
	Data type: Unsigned32   P-Group: Safety Integrated		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and BICO output for the status signals of the SCA function in monitoring channel 1.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Position at safe output cam 1	Yes	No	-
	01	Position at safe output cam 2	Yes	No	-
	02	Position at safe output cam 3	Yes	No	-
	03	Position at safe output cam 4	Yes	No	-
	04	Position at safe output cam 5	Yes	No	-
	05	Position at safe output cam 6	Yes	No	-
	06	Position at safe output cam 7	Yes	No	-
	07	Position at safe output cam 8	Yes	No	-
	08	Position at safe output cam 9	Yes	No	-
	09	Position at safe output cam 10	Yes	No	-
	10	Position at safe output cam 11	Yes	No	-
	11	Position at safe output cam 12	Yes	No	-
	12	Position at safe output cam 13	Yes	No	-
	13	Position at safe output cam 14	Yes	No	-
	14	Position at safe output cam 15	Yes	No	-
	15	Position at safe output cam 16	Yes	No	-
	16	Position at safe output cam 17	Yes	No	-
	17	Position at safe output cam 18	Yes	No	-
	18	Position at safe output cam 19	Yes	No	-
	19	Position at safe output cam 20	Yes	No	-
	20	Position at safe output cam 21	Yes	No	-
	21	Position at safe output cam 22	Yes	No	-

## Note:

22	Position at safe output cam 23	Yes	No	
23	Position at safe output cam 24	Yes	No	-
24	Position at safe output cam 25	Yes	No	-
25	Position at safe output cam 26	Yes	No	-
26	Position at safe output cam 27	Yes	No	-
27	Position at safe output cam 28	Yes	No	-
28	Position at safe output cam 29	Yes	No	-
29	Position at safe output cam 30	Yes	No	
30	Function "Safe cam" active	Yes	No	-
31	Function "Safe cam" valid	Yes	-	
SCA: Safe Cam		-		
This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety				
Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero.				


p9705	BI: SI Motion: Test stop signal source / SI Mtn test stop		
SERVO, VECTOR,	Can be changed: C 2 (95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2837
VECTOR_AC, SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the test stop of the safety-relevant motion monitoring functions.		
Notice:	Before setting the signal source in p9705 it must be ensured that the signal source is at a logical 0 .		
	If, in the Safety commissioning mode, the signal source in p9705 is set - and it already has a logical 1 - then a test stop is immediately initiated and the messages C01711/C30711 are output with message value 1005 .		
Note:	It is not permissible to use TM54	tart the test stop.	



r9708[0...5]	SI Motion diagnostics safe position / SI mtn safe pos		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2822, 2836
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mm]	- [mm]	- [mm]
Description:	Displays the actual load-side actual values of both monitoring channels and their difference.		
Index:	[ 0 ] = Load-side actual value   [1] = Load-side actual value   [2] = Load-side actual value   [3] = Load-side max. actual   [4] = Load-side actual value   [5] = Load-side additional ac	hannel second channel CU - second ch via PROFIsafe nce CU - second	
Dependency:	Refer to: r9713		
Note:	For index [0]:		
	The display of the load-side position actual value on the Control Unit is updated in the monitoring clock cycle.		
	The display of the load-side position actual value on the second channel is updated in the KDV clock cycle (r9724) and delayed by one KDV clock cycle.		
	For index [2]:		
	The difference between the load-side position actual value on the Control Unit and load-side position actual value in the second channel is updated in the KDV clock cycle (r9724) and delayed by one KDV clock cycle.		
	For index [3]:		
	The maximum difference between the load-side position actual value on the Control Unit and the load-side position actual value on the second channel.		
	For index [4]:		
	Displays the load-side position actual value when enabling the function "Safe position via PROFIsafe".		
	The value is an average value from the values in index 0 and 1.		
	When the function is not enabled, the content corresponds to the value in index 0 .		
	For index [5]:		
	The display of the maximum additional difference between the load-side position actual value on the Control Unit, and the load-side position actual value in the second channel, which can occur as a result of the actual value sensing delay in the EnDat 2.2 converter.		
	Input in p9542: p9708[3] $+\mathrm{p} 9708[5]$, after performing the measurement for the mechanical tolerance by performing a test run, where, after completion, the maximum tolerance that has occurred is displayed in $\mathrm{p} 9708[3]$.		


For index [0]:
The display of the load-side position actual value on the Control Unit is updated in the monitoring clock cycle.
For index [1]:
The display of the load-side position actual value on the second channel is updated in the KDV clock cycle (r9724)
and delayed by one KDV clock cycle.
For index [2]:
The difference between the load-side position actual value on the Control Unit and load-side position actual value in
the second channel is updated in the KDV clock cycle (r9724) and delayed by one KDV clock cycle.
For index [3]:
The maximum difference between the load-side position actual value on the Control Unit and the load-side position
actual value on the second channel.
For index [4]:
Displays the load-side position actual value when enabling the function "Safe position via PROFIsafe".
The value is an average value from the values in index 0 and 1.
When the function is not enabled, the content corresponds to the value in index 0 .
For index [5]:
The display of the maximum additional difference between the load-side position actual value on the Control Unit,
and the load-side position actual value in the second channel, which can occur as a result of the actual value sensing
delay in the EnDat 2.2 converter.
Input in p9542: p9708[3] + p9708[5], after performing the measurement for the mechanical tolerance by performing a
test run, where, after completion, the maximum tolerance that has occurred is displayed in p9708[3].
KDV: Data cross-check


### 2.2 List of parameters

Note:	SBR: Safe Brake Ramp (safe brake ramp monitoring)
	SDI: Safe Direction (safe motion direction)
SLA: Safely-Limited Acceleration	
	SLP: Safely-Limited Position
	SLS: Safely-Limited Speed
SOS: Safe Operating Stop	


r9711[0..1]	SI Motion diagnostics result list 2 / SI Mtn res_list 2				
SERVO, VECTOR,   HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays result list 2 that, for the data cross-check between the monitoring channels, led to the fault.				
Index:		Result list second channel Result list drive			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Actual value > upper limit SCA1+	Yes	No	-
	01	Actual value > lower limit SCA1+	Yes	No	-
	02	Actual value > upper limit SCA1-	Yes	No	-
	03	Actual value > lower limit SCA1-	Yes	No	-
	04	Actual value > upper limit SCA2+	Yes	No	-
	05	Actual value > lower limit SCA2+	Yes	No	-
	06	Actual value > upper limit SCA2-	Yes	No	-
	07	Actual value > lower limit SCA2-	Yes	No	-
	08	Actual value > upper limit SCA3+	Yes	No	-
	09	Actual value > lower limit SCA3+	Yes	No	-
	10	Actual value > upper limit SCA3-	Yes	No	-
	11	Actual value > lower limit SCA3-	Yes	No	-
	12	Actual value > upper limit SCA4+	Yes	No	-
	13	Actual value > lower limit SCA4+	Yes	No	-
	14	Actual value > upper limit SCA4-	Yes	No	-
	15	Actual value > lower limit SCA4-	Yes	No	-
	16	Actual value > upper limit SSM+	Yes	No	-
	17	Actual value > lower limit SSM+	Yes	No	-
	18	Actual value > upper limit SSM-	Yes	No	-
	19	Actual value > lower limit SSM-	Yes	No	-
		Actual value > upper limit modulo	Yes	No	-
	21	Actual value > lower limit modulo	Yes	No	-
Dependency:	Refer to: C01711				
Note:	SCA: Safe Cam				
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the speed monitoring)				


r9712	CO: SI motion diagnostics position actual value on the actuator side /SI Mtn s_act act		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Maxpert list: 1
	Min	-	Factory setting
Description:	-	-	
Note:	Display and connector output of the current position actual value on the actuator side for the motion monitoring		
	functions on the Control Unit.		




Notice:	For index [2]:				
	This SLS velocity limit can, as a result of conversion into the internal monitoring format, deviate from the specified SLS velocity limit (see r9732).				
Note:	The display is updated in the safety monitoring clock cycle.				
	For linear axes, the following unit applies: millimeters per minute				
	For rotary axes, the following unit applies: revolutions per minute				
r9718.23	CO/BO: SI Motion control signals 1 / SI Mtn ctrl_sig 1				
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -		Calculated: -	Access level: 4	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Control signal 1 for safety-relevant motion monitoring functions.				
Bit field:		Signal name	1 signal	0 signal	FP
		Set offset for TfS to the actual torque	Set	Reset	-
Note:	TfS: Traverse to fixed stop				
r9718.23	CO/BO: SI Motion control signals 1 / SI Mtn ctrl_sig 1				
SERVO (Lin),   SERVO_AC (Lin),   SERVO_I_AC (Lin)	Can be changed: -		Calculated: -	Access level: 4	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Unit group: -	Unit selec	
	Not for motor type: -		Scaling: -	Expert lis	
	Min		Max	Factory setting	
	-		-	-	
Description:	Control signal 1 for safety-relevant motion monitoring functions.				
Bit field:		Signal name	1 signal	0 signal   Reset	FP
		Set offset for TfS to the actual force	Set		-
Note:	TfS: Traverse to fixed stop				
r9719.0... 31	CO/BO: SI Motion control signals 2 / SI Mtn ctrl_sig 2				
HLA	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Control signal 2 for safety-relevant motion monitoring functions.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	De-select SOS/SLS (SBH/SG)	Yes	No	-
	01	De-select SOS (SBH)	Yes	No	-
	03	Select SLS (SG) bit 0	Set	Not set	-
	04	Select SLS (SG) bit 1	Set	Not set	-
	05	Deselect SDI positive	Yes	No	-
	06	Deselect SDI negative	Yes	No	-
	07	Deselect SLP	Yes	No	-
	08	Gearbox selection bit 0	Set	Not set	-
	09	Gearbox selection bit 1	Set	Not set	-
	10	Gearbox selection bit 2	Set	Not set	-
	11	Gear change	Set	Not set	-
	12	Select SLP (SE) position range	SLP2 (SE2)	SLP1 (SE1)	-
	14	Deselect SCA	Yes	No	-
	15	Select test stop	Yes	No	-
	16	SGE valid	Yes	No	-
	17	Deselect SLA	Yes	No	-

### 2.2 List of parameters



SCA: Safe Cam
SDI: Safe Direction (safe motion direction)
SLA: Safely-Limited Acceleration
SLP: Safely-Limited Position / SE: Safe software limit switches
SLS: Safely-Limited Speed / SG: Safely reduced speed
SOS: Safe Operating Stop / SBH: Safe operating stop

r9720.0... 28	CO/BO: SI Motion control signals integrated in the drive / SI Mtn integ STW				
SERVO, VECTOR,   HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: -	Func.	
	P-Group: Safety Integrated		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Facto	
	- - -				
Description:	Control signals for safety-relevant motion monitoring functions integrated in the drive.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	De-select STO	Yes	No	-
	01	De-select SS1	Yes	No	-
	02	De-select SS2	Yes	No	-
	03	De-select SOS	Yes	No	-
	04	De-select SLS	Yes	No	-
	06	Deselect SLP	Yes	No	2822
	07	Acknowledgment	Signal edge active	No	-
	08	Deselect SLA	Yes	No	2838
	09	Select SLS bit 0	Set	Not set	-
	10	Select SLS bit 1	Set	Not set	-
	12	Deselect SDI positive	Yes	No	2824
	13	Deselect SDI negative	Yes	No	2824
	19	Select SLP position range	SLP2	SLP1	2822
	23	Deselect SCA	Yes	No	-
	24	Select gearbox bit 0	Set	Not set	-
	25	Select gearbox bit 1	Set	Not set	-
	26	Select gearbox bit 2	Set	Not set	-
	27	Gear change	Set	Not set	-
	28	Deselect SS2E	Yes	No	-

Note: $\quad$ This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero.

r9721.0... 15	CO/BO: SI Motion status signals (Control Unit) / SI Mtn stat_sig CU				
HLA	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and BICO output for the status signals of the safe motion monitoring functions on monitoring channel 1 .				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	SOS or SLS active	Yes	No	-
	01	SOS active	Yes	No	-
	02	STO active	Yes	No	-
	03	Active SLS stage bit 0	Set	Not set	-
	04	Active SLS stage bit 1	Set	Not set	-
	05	Velocity below limit value n_x	Yes	No	-
	06	SLP active	Yes	No	-
	07	Safely referenced	Yes	No	-
	08	SDI positive active	Yes	No	-
	09	SDI negative active	Yes	No	-
	10	SLP active position area	SLP2	SLP1	-
	11	SLA active	Yes	No	-

### 2.2 List of parameters

12	STOP A or STOP B or STO or SS1 active	Yes	No
13	STOP C or SS2 active	Yes	Nes
14	STOP D or SS2E active	Yes	No

Note: $\quad$ This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero.


Note: $\quad$ This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero.

r9722.0... 31	CO/BO: SI Motion drive-integrated status signals (Control Unit) / SI Mtn int stat CU				
SERVO, VECTOR, HLA, SERVO AC, VECTOR_AC, SERVO IAC, VECTOR_I_AC			Calculated: - Acces		
	Can be changed: -   Data type: Unsigned32		Dyn. index: -	Func.	905
		up: Safety Integrated	Unit group: -	Unit s	
	Not	or motor type: -	Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description:	Stat	signal for safety-relevant motion mon	ring functions i	rive on mo	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	STO or safe pulse suppression active	Yes	No	-
	01	SS1 active	Yes	No	
	02	SS2 active	Yes	No	-
	03	SOS active	Yes	No	-
	04	SLS active	Yes	No	-
	06	SLP active	Yes	No	2822
	07	Internal event	No	Yes	-
	08	SLA active	Yes	No	2838
	09	Active SLS stage bit 0	Set	Not set	-
	10	Active SLS stage bit 1	Set	Not set	-
	11	SOS selected	Yes	No	-
	12	SDI positive active	Yes	No	2824
	13	SDI negative active	Yes	No	2824
	15	SSM (speed below limit value)	Yes	No	2823
	19	SLP active position area	SLP2	SLP1	2822


22	SP valid	Yes	No	-
23	Safely referenced	Yes	No	-
28	SS2E active	Yes	No	-
30	SLP limit upper maintained	Yes	No	2822
31	SLP limit lower maintained	Yes	No	2822


Notice:	For bit 07:				
	The signal state behaves in an opposite way to the PROFIsafe Standard.				
Note:	This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero.   For bit 07:   An internal event is displayed if a STOP A ... F is active.				
$\begin{aligned} & \hline \text { r9722.0... } 31 \\ & \text { SERVO (Lin), } \\ & \text { SERVO_AC (Lin), } \\ & \text { SERVO_I_AC (Lin) } \end{aligned}$	CO/BO: SI Motion drive-integrated status signals (Control Unit) / SI Mtn int stat CU				
	Can be changed: -		Calculated: - Acces		
	Data type: Unsigned32		Dyn. index: - Func.		
	P-Group: Safety Integrated		Unit group: - Unit s		
	Not for motor type: -		Scaling: - Exper		
	Min		Max	Factory setting	
	-		-	-	
Description:	Status signal for safety-relevant motion monitoring functions integrated in the drive on monitoring channel 1.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	STO or safe pulse suppression active	Yes	No	-
	01	SS1 active	Yes	No	-
	02	SS2 active	Yes	No	-
	03	SOS active	Yes	No	-
	04	SLS active	Yes	No	-
	06	SLP active	Yes	No	2822
	07	Internal event	No	Yes	-
	08	SLA active	Yes	No	2838
	09	Active SLS stage bit 0	Set	Not set	-
	10	Active SLS stage bit 1	Set	Not set	-
	11	SOS selected	Yes	No	-
	12	SDI positive active	Yes	No	2824
	13	SDI negative active	Yes	No	2824
		SSM (velocity below limit value)	Yes	No	2823
	19	SLP active position area	SLP2	SLP1	2822
	22	SP valid	Yes	No	-
	23	Safely referenced	Yes	No	-
	28	SS2E active	Yes	No	-
		SLP limit upper maintained	Yes	No	2822
	31	SLP limit lower maintained	Yes	No	2822
Notice:	For bit 07:				
	The signal state behaves in an opposite way to the PROFIsafe Standard.				
Note:	This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero.				
	For bit 07:				
	An internal event is displayed if a STOP A ... F is active.				

### 2.2 List of parameters

r9723.0... 17	CO/BO: SI Motion diagnostic signals integrated in the drive / SI Mtn integ diag				
HLA	Can	be changed: - C	Calculated: -	Acces	
	Data	type: Unsigned32 D	Dyn. index: -	Func.	
	P-G	up: Safety Integrated U	Unit group: -	Unit s	
	Not	or motor type: - S	Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the diagnostic signals for safety-relevant motion monitoring functions integrated in the drive.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Forced checking procedure required	Yes	No	
	01	STOP F and then STOP B active	Yes	No	2819
	02	Communication failure	Yes	No	
	03	Actual value sensing supplies valid value	ue Yes	No	2821
	12	Test stop active	Yes	No	-
	16	SAM/SBR active	Yes	No	2820
	17	Position referenced	Yes	No	2821

Note:
For bit 00:
A required dynamization is also displayed via alarm A01679.
For bit 01:
This bit can be used, to execute a drive-based or control-based ESR.
For bit 12:
An active test stop is also displayed using the safety message C01798.
ESR: Extended Stop and Retract
SAM: Safe Acceleration Monitor (safe acceleration monitoring)
SBR: Safe Brake Ramp (safe brake ramp monitoring)

r9723.0... 17	CO/BO: SI Motion diagnostic signals integrated in the drive / SIMtn integ diag				
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -		Calculated: - Acce		
	Data type: Unsigned32		Dyn. index: - Func.		
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the diagnostic signals for safety-relevant motion monitoring functions integrated in the drive.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Forced checking proce	Yes	No	-
	01	STOP F and then STO	Yes	No	2819
	02	Communication failure	Yes	No	-
	03	Actual value sensing s	ue Yes	No	2821
	04	Encoderless act val se technique for U/f contr	Yes	No	-
	09	Safe pulse suppressio	Yes	No	-
	12	Test stop active	Yes	No	-
	16	SAM/SBR active	Yes	No	2820
	17	Position referenced	Yes	No	2821

Note:
For bit 00:
A required dynamization is also displayed via alarm A01679.
For bit 01:
This bit can be used, to execute a drive-based or control-based ESR.
For bit 04:
When sensing the velocity without encoder, a distinction is made between the closed-loop speed controlled and open-loop speed controlled (U/f) modes.
For bit 09:
Safe pulse pulse cancellation is a state that can only occur for the combination of velocity sensing without encoder (p9506) and drive-integrated motion monitoring functions without selection (p9601.5). In this state, internally an STO is initiated, which can be withdrawn again using an OFF1 enable.

For bit 12:
An active test stop is also displayed using the safety message C01798.
ESR: Extended Stop and Retract
SAM: Safe Acceleration Monitor (safe acceleration monitoring)
SBR: Safe Brake Ramp (safe brake ramp monitoring)


### 2.2 List of parameters



r9730	SI Motion Safe maximum velocity / SI mtn safe v_Max		
SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC	Can be changed: -   Data type: FloatingPoint32   P-Group: Safety Integrated   Not for motor type: -   Min   - [mm/min]	Calculated:   Dyn. index:   Unit group: -   Scaling: -   Max   - [mm/min]	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   - [mm/min]
Description:	This parameter indicates up to which load velocity the safe encoder actual values (redundant encoder coarse position) can still be correctly detected as a result of the particular encoder parameterization.   This parameter is only of significance for enabled safety with encoder (otherwise "0").		
Note:	If the value displayed is exceeded, message C01711 is output indicating relevant subsequent faults.		
r9730	SI Motion Safe max	SImth	
SERVO (Safety rot), VECTOR (Safety rot), SERVO_AC (Safety rot), VECTOR_AC (Safety rot), SERVO_I AC (Safety rot), VECTOR_I_AC (Safety rot)	Can be changed: -   Data type: FloatingPoint32   P-Group: Safety Integrated   Not for motor type: -   Min   - [rpm]	Calculated:   Dyn. index:   Unit group: -   Scaling: -   Max   - [rpm]	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting - [rpm]
Description:	Displays the safe maximum a result of the actual value s This parameter indicates up position) can still be correctly This parameter is only of sig	oad side) that is   locity the safe result of the partic bled safety with	afe motion monitoring functions as   (redundant encoder coarse eterization.   0").
Note:	If the value displayed is exceeded, message C01711 is output indicating relevant subsequent faults.		
r9731	SI Motion safe position accuracy / SI Mtn pos_accur		
SERVO, VECTOR, HLA, SERVO_AC, VECTOR AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -   Data type: FloatingPoint32   P-Group: Safety Integrated   Not for motor type: -   Min   - [mm]	Calculated: -   Dyn. index:   Unit group:   Scaling: -   Max   - [mm]	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   - [mm]
Description:	Displays the safe position accur As a result of the actual valu maximum.   In the case of a 2-encoder s - is displayed here.	e).   e motion monit   acy of the poore	ccuracy can be achieved as the   It of the number of encoder pulses
Note:	The parameter is only of significance for enabled safety with encoder (otherwise "0").		



r9732[0...1]	SI Motion velocity re	ln v_res	
SERVO (Safety rot),	Can be changed: -	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_AC (Safety rot), VECTOR_AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
(Safety rot),	Not for motor type: -	Scaling: -	Expert list: 1
SERVO_I_AC (Safety	Min	Max	Factory setting
rot), VECTOR_I_AC   (Safety rot)	- [rpm]	- [rpm]	- [rpm]


Description:	Displays the velocity resolution for safety-relevant motion monitoring functions.
	For index [0]:
	Displays the safe velocity resolution (load side). Setpoints for velocity limits or parameter changes for velocities below this threshold have no effect.
	For index [1]:
	Displays the safe velocity accuracy based on the safe encoder accuracy
Index:	[0] = Actual velocity resolution   [1] = Minimum velocity resolution
Note:	For index [0]:
	This parameter does not provide any information about the actual accuracy of the velocity sensing. This depends on the type of actual value sensing, the gear factors as well as the quality of the encoder being used.
	Conversion of:
	(internal fixed value/ Tsi) to mm/min (linear) or rpm (rotary) with Tsi $=$ p9500 (SI Motion monitoring clock cycle).
	Example:
	For Tsi $=12 \mathrm{~ms}, \mathrm{r9732}[0]=5 \mathrm{~mm} / \mathrm{min}$ (linear) or $1 / 72 \mathrm{rpm}$ (rotary) is obtained.
	For index [1]:
	- for a 2-encoder system with non safety-capable encoders, this means the poorer value for both encoders. Index[1] takes into account the coarse resolution of the encoder only
	Internal calculation, which also incorporates the factor for the motor-load side conversion, the gearbox ratio and the safety monitoring clock cycle. Result returns mm/min (linear) or rpm (rotary).
	- for safety without encoder, index 1 is not relevant, and is always the value of zero.


r9733[0...2]	CO: SI Motion setpoint speed limit effective / SI Mtn setp_lim		
HLA	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2820, 2824, 3630
	P-Group: Safety Integrated	Unit group: 4_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [m/min]	- [m/min]	- [m/min]
Description:	Displays the necessary setpoint speed limit as a result of the selected motion monitoring functions.		
	Contrary to the parameterization of the SI limit values, this parameter specifies the actuator-side limit value and not the load-side limit value.		
Recommendation:	For the ramp-function generator, by appropriately interconnecting the speed limits p1051 and p1052 with r9733[0, 1], a drive-based setpoint velocity limiting can be realized.		
	- CI: p1051 = r9733[0]		
	- CI: p1052 = r9733[1]		
	Additional limiting can also be activated using connector input p1085 and p1088.		
Index:	[0] = Setpoint limiting positiv   [1] = Setpoint limiting negati   [2] = Setpoint limit absolute		

### 2.2 List of parameters

Dependency:	For SLS: r9733[0] = p9531[x] x p9533 (converted from the load side to the actuator side)
	For SDI negative: $\mathrm{r9733}[0]=0$
	For SLS: r9733[1] = - p9531[x] x p9533 (converted from the load side to the actuator side)
	For SDI positive: r9733[1] = 0
	[x] = Selected SLS stage
	Conversion factor from the actuator side to the load side:
	- actuator = rotary and axis type = linear: p9522 / (p9521 x p9520)
	- otherwise: p9522 / p9521
	Refer to: p9531, p9533
Notice:	If p1051 $=$ r9733[0] is interconnected, p1052 $=$ r9733[1] must also be interconnected and vice versa.
	If only the absolute value of the setpoint velocity limiting is required, r9733[2] must be interconnected.
Note:	If the "SLS" or "SDI" function is not selected, r9733[0] shows p1082 and r9733[1] shows -p1082.
	The display in r9733 can be delayed by up to one Safety monitoring clock cycle as compared to the display in r9719/r9720 and r9721/r9722.

r9733[0...2] CO: SI Motion setpoint speed limit effective / SI Mtn setp_lim

SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

Can be changed: -
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min

- [rpm]

Calculated: -
Dyn. index: -
Unit group: 3_1
Scaling: p2000

## Max

- [rpm]

Access level: 3
Func. diagram: 2820, 2824, 3630

Unit selection: p0505
Expert list: 1
Factory setting

- [rpm]

Description: Displays the necessary setpoint speed limit as a result of the selected motion monitoring functions. Contrary to the parameterization of the SI limit values, this parameter specifies the motor-side limit value and not the load-side limit value.
Recommendation: For the ramp-function generator, by appropriately interconnecting the speed limits p1051 and p1052 with r9733[0, 1], a drive-based setpoint velocity limiting can be realized.

- CI: p1051 = r9733[0]
- CI: p1052 = r9733[1]

Additional limiting can also be activated using connector input p1085 and p1088.
Index:
[0] = Setpoint limiting positive
[1] = Setpoint limiting negative
[2] = Setpoint limit absolute
Dependency: $\quad$ For SLS: $\mathrm{r9733}[0]=\mathrm{p} 9531[\mathrm{x}] \times \mathrm{p} 9533$ (converted from the load side to the motor side)
For SDI negative: $\mathrm{r9733}[0]=0$
For SLS: r9733[1] = - p9531[x] x p9533 (converted from the load side to the motor side)
For SDI positive: r9733[1] = 0
[x] = Selected SLS stage
Conversion factor from the motor side to the load side:

- motor type = rotary and axis type = linear: p9522 / (p9521 x p9520)
- otherwise: p9522 / p9521

Refer to: p9531, p9533
Notice: $\quad$ If $\mathrm{p} 1051=\mathrm{r} 9733[0]$ is interconnected, $\mathrm{p} 1052=\mathrm{r} 9733[1]$ must also be interconnected and vice versa.
If only the absolute value of the setpoint velocity limiting is required, r9733[2] must be interconnected.
Note: The unit changeover between linear and rotary axis is not implemented via the safety changeover (p9502) but by the linear motor changeover.
If the "SLS" or "SDI" function is not selected, r9733[0] shows p1082 and r9733[1] shows -p1082.
The display in r9733 can be delayed by up to one Safety monitoring clock cycle as compared to the display in r9719/r9720 and r9721/r9722.
When selecting SOS or a STOP A ... D, setpoint 0 is specified in r9733.


r9734.0... 15	CO/BO: SI Safety Information Channel status word S_ZSW1B / SIC S_ZSW1B				
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -		Calculated: - Acces		
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Safety Integrated		Unit group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factory	
	-		-	-	
Description:	Display and BICO output for status word S_ZSW1B of the Safety Information Channel.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	STO active	Yes	No	-
	01	SS1 active	Yes	No	-
	02	SS2 active	Yes	No	-
	03	SOS active	Yes	No	-
	04	SLS active	Yes	No	-
	05	SOS selected	Yes	No	-
	06	SLS selected	Yes	No	-
	07	Internal event	Yes	No	-
	08	SLA selected	Yes	No	-
	09	Select SLS bit0	Yes	No	-

### 2.2 List of parameters

		Select SLS bit1	Yes	No	-
		SDI positive selected	Yes	No	-
		SDI negative selected	Yes	No	-
		ESR retract requested	Yes	No	-
	15	Safety message present	Yes	No	-
Note:		Safety Information Channel			
	For	t 07:			
		rnal event is displayed if a STOP	$F$ is active.		
r9735[0...1]	SI	tion diagnostics result	/ SI Mtn res		
SERVO, VECTOR,	Can	be changed: -	Calculated: -	Access	
HLA, SERVO_AC,	Dat	type: Unsigned32	Dyn. index: -	Func.	
VECTOR_AC, SERVO I AC,		up: Safety Integrated	Unit group: -	Unit se	
VECTOR_I_AC	Not	r motor type: -	Scaling: -	Exper	
	Min		Max	Factory	
	-		-	-	
Description:	Disp	ys result list 3 , that for the data c	heck with the con		
Index:		Result list second channel Result list drive			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Actual value > upper limit SN1+	Yes	No	-
	01	Actual value > lower limit SN1+	Yes	No	-
	02	Actual value > upper limit SN1-	Yes	No	-
	03	Actual value > lower limit SN1-	Yes	No	-
	04	Actual value > upper limit SN2+	Yes	No	-
	05	Actual value > lower limit SN2+	Yes	No	-
	06	Actual value > upper limit SN2-	Yes	No	-
	07	Actual value > lower limit SN2-	Yes	No	-
	08	Actual value > upper limit SN3+	Yes	No	-
	09	Actual value > lower limit SN3+	Yes	No	-
	10	Actual value > upper limit SN3-	Yes	No	-
	11	Actual value > lower limit SN3-	Yes	No	-
	12	Actual value > upper limit SN4+	Yes	No	-
	13	Actual value > lower limit SN4+	Yes	No	-
	14	Actual value > upper limit SN4-	Yes	No	-
	15	Actual value > lower limit SN4-	Yes	No	-
	16	Actual value > upper limit SN5+	Yes	No	-
	17	Actual value > lower limit SN5+	Yes	No	-
	18	Actual value > upper limit SN5-	Yes	No	-
	19	Actual value > lower limit SN5-	Yes	No	-
	20	Actual value > upper limit SN6+	Yes	No	-
	21	Actual value > lower limit SN6+	Yes	No	-
	22	Actual value > upper limit SN6-	Yes	No	-
	23	Actual value > lower limit SN6-	Yes	No	-
Dependency:	Ref	to: C01711			


r9736[0...1]	SI Motion diagnostics result list 4 / SI Mtn res_list 4				
SERVO, VECTOR,		be changed: -	Calculated: -	Acces	
HLA, SERVO_AC,		type: Unsigned32	Dyn. index: -	Func.	
VECTOR_AC, SERVO I AC,		oup: Safety Integrated	Unit group: -	Unit s	
VECTOR_I_AC		or motor type: -	Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description:	Displays result list 4, that for the data cross-check with the control, led to the fault.				
Index:	[0] = Result list second channel				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Actual value > upper limit SN7+	Yes	No	-
	01	Actual value > lower limit SN7+	Yes	No	-
	02	Actual value > upper limit SN7-	Yes	No	-
	03	Actual value > lower limit SN7-	Yes	No	-
	04	Actual value > upper limit SN8+	Yes	No	-
	05	Actual value > lower limit SN8+	Yes	No	-
	06	Actual value > upper limit SN8-	Yes	No	-
	07	Actual value > lower limit SN8-	Yes	No	-
	08	Actual value > upper limit SN9+	Yes	No	-
	09	Actual value > lower limit SN9+	Yes	No	-
	10	Actual value > upper limit SN9-	Yes	No	-
	11	Actual value > lower limit SN9-	Yes	No	-
	12	Actual value > upper limit SN10+	Yes	No	-
	13	Actual value > lower limit SN10+	Yes	No	-
	14	Actual value > upper limit SN10-	Yes	No	-
	15	Actual value > lower limit SN10-	Yes	No	-
	16	Actual value > upper limit SN11+	Yes	No	-
	17	Actual value > lower limit SN11+	Yes	No	-
	18	Actual value > upper limit SN11-	Yes	No	-
	19	Actual value > lower limit SN11-	Yes	No	-
	20	Actual value > upper limit SN12+	Yes	No	-
	21	Actual value > lower limit SN12+	Yes	No	-
		Actual value > upper limit SN12-	Yes	No	-
	23	Actual value > lower limit SN12-	Yes	No	-
Dependency:	Refer to: C01711				
r9737[0...1]	SI Motion diagnostics result list 5 / SI Mtn res_list 5				
SERVO, VECTOR,	Can be changed: -		Calculated: -	Acces	
HLA, SERVO_AC, VECTOR AC	Data type: Unsigned32		Dyn. index: -	Func.	
SERVO_I_AC,	P-Group: Safety Integrated		Unit group: -	Unit se	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description:	Displays result list 5, that for the data cross-check with the control, led to the fault.				
Index:	[ 0 ] = Result list second channel [1] = Result list drive				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Actual value > upper limit SN13+	Yes	No	-
	01	Actual value > lower limit SN13+	Yes	No	-
	02	Actual value > upper limit SN13-	Yes	No	-
	03	Actual value > lower limit SN13-	Yes	No	-
	04	Actual value > upper limit SN14+	Yes	No	-
	05	Actual value > lower limit SN14+	Yes	No	-
	06	Actual value > upper limit SN14-	Yes	No	-
	07	Actual value > lower limit SN14-	Yes	No	-
	08	Actual value > upper limit SN15+	Yes	No	-
	09	Actual value > lower limit SN15+	Yes	No	-
	10	Actual value > upper limit SN15-	Yes	No	-

### 2.2 List of parameters

	11	Actual value > lower limit SN15-	Yes	No	-
	12	Actual value > upper limit SN16+	Yes	No	-
	13	Actual value > lower limit SN16+	Yes	No	-
	14	Actual value > upper limit SN16-	Yes	No	-
	15	Actual value > lower limit SN16-	Yes	No	-
	16	Actual value > upper limit SN17+	Yes	No	-
	17	Actual value > lower limit SN17+	Yes	No	-
	18	Actual value > upper limit SN17-	Yes	No	-
	19	Actual value > lower limit SN17-	Yes	No	-
		Actual value > upper limit SN18+	Yes	No	-
	21	Actual value > lower limit SN18+	Yes	No	-
	22	Actual value > upper limit SN18-	Yes	No	-
	23	Actual value > lower limit SN18-	Yes	No	-
Dependency:	Refe	to: C01711			
r9738[0...1]		otion diagnostics result lis	/ SI Mtn res		
SERVO, VECTOR,	Can	be changed: -	Calculated: -	Acces	
HLA, SERVO_AC,	Data	type: Unsigned32	Dyn. index: -	Func.	
VECTOR_AC,		up: Safety Integrated	Unit group: -	Unit s	
VECTOR_I_AC	Not	or motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Disp	ays result list 5, that for the data cro	check with the con		
Index:		Result list second channel Result list drive			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Actual value > upper limit SN19+	Yes	No	-
	01	Actual value > lower limit SN19+	Yes	No	-
	02	Actual value > upper limit SN19-	Yes	No	-
	03	Actual value > lower limit SN19-	Yes	No	-
	04	Actual value > upper limit SN20+	Yes	No	-
	05	Actual value > lower limit SN20+	Yes	No	-
	06	Actual value > upper limit SN20-	Yes	No	-
	07	Actual value > lower limit SN20-	Yes	No	-
	08	Actual value > upper limit SN21+	Yes	No	-
	09	Actual value > lower limit SN21+	Yes	No	-
	10	Actual value > upper limit SN21-	Yes	No	-
	11	Actual value > lower limit SN21-	Yes	No	-
	12	Actual value > upper limit SN22+	Yes	No	-
	13	Actual value > lower limit SN22+	Yes	No	-
	14	Actual value > upper limit SN22-	Yes	No	-
	15	Actual value > lower limit SN22-	Yes	No	-
	16	Actual value > upper limit SN23+	Yes	No	-
	17	Actual value > lower limit SN23+	Yes	No	-
	18	Actual value > upper limit SN23-	Yes	No	-
	19	Actual value > lower limit SN23-	Yes	No	-
	20	Actual value > upper limit SN24+	Yes	No	-
	21	Actual value > lower limit SN24+	Yes	No	-
	22	Actual value > upper limit SN24-	Yes	No	-
	23	Actual value > lower limit SN24-	Yes	No	-
Dependency:	Refe	to: C01711			


r9739[0...1]	SI Motion diagnostics result list 7 / SI Mtn res_list 7				
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -		Calculated: - Access level: 3		
	Data type: Unsigned32		Dyn. index: -		
	P-Group: Safety Integrated		Unit group: - Unit s		
	Not for motor type: -		Scaling: - Exp		
	Min		Max	Factory setting	
	-		-		
Description:	Displays result list 7, that for the data cross-check with the control, led to the fault.				
Index:	[0] = Result list second channel				
Bit field:		Signal name	1 signal	0 signal	FP
		Actual value > upper limit SN25+	Yes	No	-
		Actual value > lower limit SN25+	Yes	No	-
		Actual value > upper limit SN25-	Yes	No	-
	03	Actual value > lower limit SN25-	Yes	No	-
		Actual value > upper limit SN26+	Yes	No	-
	05	Actual value > lower limit SN26+	Yes	No	-
		Actual value > upper limit SN26-	Yes	No	-
	07	Actual value > lower limit SN26-	Yes	No	-
		Actual value > upper limit SN27+	Yes	No	-
	09	Actual value > lower limit SN27+	Yes	No	-
		Actual value > upper limit SN27-	Yes	No	-
	11	Actual value > lower limit SN27-	Yes	No	-
		Actual value > upper limit SN28+	Yes	No	-
		Actual value > lower limit SN28+	Yes	No	-
		Actual value > upper limit SN28-	Yes	No	-
	15	Actual value > lower limit SN28-	Yes	No	-
		Actual value > upper limit SN29+	Yes	No	-
	17	Actual value > lower limit SN29+	Yes	No	-
		Actual value > upper limit SN29-	Yes	No	-
	19	Actual value > lower limit SN29-	Yes	No	-
		Actual value > upper limit SN30+	Yes	No	-
		Actual value > lower limit SN30+	Yes	No	-
		Actual value > upper limit SN30-	Yes	No	-
	23	Actual value > lower limit SN30-	Yes	No	-
Dependency:	Refer to: C01711				
p9740	SI Motion user agreement selection/de-selection MM / SI mtn UserAgr MM				
SERVO, VECTOR,	Can be changed: C2(95), U, T		Calculated: -	Access level: 3	
HLA, SERVO_AC,	Data type: Integer16		Dyn. index: -	Func. diagram: -	
SERVO_I_AC,	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
VECTOR_1_AC	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	0000 hex		00AC hex	0000 hex	
Description:	Setting to select and de-select the user agreement on the Motor Module/Hydraulic Module.				
Value:	0: $\quad$ [00 hex] De-select user agreement172: $[A C$ hex] Select user agreement				
Dependency:	Refer to: r9741				


r9741	SI Motion user agreement inside the drive MM / SI Mtn UserAgr int		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: 2822
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	-	Factory setting
	-	-	
Description:	Displays the internal state of the user agreement.		
	Value $=0:$ User agreement is not set.		
	Value $=$ AC hex: User agreement is set.		

Description: Displays the internal state of the user agreement

Dependency:

## SI Motion user agreement inside the drive MM / SI Mtn UserAgr int



Note: SIC: Safety Information Channel

r9744	Sl message buffer changes, counter / SI msg_buffer chng		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Messages	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	-	Factory setting
	-	-	
Description:	Displays the changes of the safety message buffer.		
Recommendation:	This counter is incremented every time that the safety message buffer changes.		
Dependency:	This is used to check whether the safety message buffer has been read out consistently.		


r9745[0...63]	Sl components / SI comp		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Messages	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	-	-	
Description:	Displays the component of the safety message that has occurred.		
Note:	Value $=0:$ Assignment to a component not possible.		



r9750[0...63]	SI diagnostic attributes / SI diag_attr				
SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_IAC,   VECTOR_I_AC	Can be changed: -   Data type: Unsigned32   P-Group: Messages   Not for motor type: -   Min		Calculated: -	Access level: 3	
			Dyn. index: -	Func. diagram: -	
			Unit group: -	Unit selection: -	
			Scaling: -	Expert list: 1	
			Max	Factory setting	
				-	
Description:	Displays the diagnostic attributes of the safety messages that have occurred.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Hardware replacement recommended	Yes	No	
	15	Message has gone	Yes	No	-
	16	PROFIdrive fault class bit 0	High	Low	-
	17	PROFIdrive fault class bit 1	High	Low	
	18	PROFIdrive fault class bit 2	High	Low	-
	19	PROFIdrive fault class bit 3	High	Low	-
	20	PROFIdrive fault class bit 4	High	Low	
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).				
	The structure of the SI message buffer and the assignment of the indices is shown in r9747.				
	For bits $20 . . .16$ :				
	Bits 20, 19, 18, 17, $16=0,0,0,0,0-->$ PROFldrive message class 0 : not assigned				
	Bit $20,19,18,17,16=0,0,0,0,1-->$ PROFIdrive message class 1: hardware faultsoftware error				
	Bits 20, 19, 18, 17, $16=0,0,0,1,0-->$ PROFIdrive message class 2 : line fault				
	Bits $20,19,18,17,16=0,0,0,1,1$--> PROFIdrive message class 3 : supply voltage fault				
	Bits 20, 19, 18, 17, $16=0,0,1,0,0-->$ PROFIdrive message class 4: DC link fault				
	Bits $20,19,18,17,16=0,0,1,0,1-$-> PROFldrive message class 5 : power electronics faulted				
	Bits $20,19,18,17,16=0,0,1,1,0$--> PROFldrive message class 6 : overtemperature electronic components				
	Bits $20,19,18,17,16=0,0,1,1,1-->$ PROFIdrive message class 7 : ground faul/phase fault detected				
	Bits 20, 19, 18, 17, $16=0,1,0,0,0-->$ PROFIdrive message class 8: motor overload				
	Bits $20,19,18,17,16=0,1,0,0,1-->$ PROFIdrive message class 9 : communication error to the higher-level control				
	Bits $20,19,18,17,16=0,1,0,1,0-->$ PROFIdrive message class 10 : safe monitoring channel has identified an error				
	Bits $20,19,18,17,16=0,1,0,1,1$--> PROFIdrive message class 11: incorrect position actual value/speed actual value or not available				
	Bits 20, 19, 18, 17, $16=0,1,1,0,0$--> PROFIdrive message class 12: internal (DRIVE-CLiQ) communication error				
	Bits 20, 19, 18, 17, $16=0,1,1,1,0-->$ PROFIdrive message class 14: braking controller/Braking Module faulted				
	Bits 20, 19, 18, 17, $16=0,1,1,1,1$--> PROFIdrive message class 15 : line filter faulted				
	Bits $20,19,18,17,16=1,0,0,0,0-->$ PROFIdrive message class 16 : external measured value/signal state outside the permissible range				
	Bits $20,19,18,17,16=1,0,0,0,1-$-> PROFldrive message class 17: application/technology function faulted				
	Bits $20,19,18,17,16=1,0,0,1,0-->$ PROFIdrive message class 18: error in the parameterization/configuration/commissioning sequence				
	Bits $20,19,18,17,16=1,0,0,1,1$--> PROFIdrive message class 19: general drive fault				
	Bits $20,19,18,17,16=0,1,1,0,0$--> PROFldrive message class 20 : auxiliary unit faulted				


p9752	SI message cases co	_cases c	
SERVO, VECTOR, hLA, SERVO_AC, VECTOR AC, SERVO_IAC, VECTOR_I_AC	Can be changed: $U, T$   Data type: Unsigned16   P-Group: Messages   Not for motor type: -   Min   0	Calculated:   Dyn. index:   Unit group: -   Scaling: -   Max   65535	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   0
Description: Dependency:   Note:	Number of safety messages The safety message buffer Refer to: r9744, r9747, r974 The parameter is reset to 0	ed since the la tting the param r9754, r9755,	
r9753[0...63]   SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	SI message value for Can be changed: -   Data type: FloatingPoint32   P-Group: Messages   Not for motor type: -   Min	/ SI msg_va   Calculated:   Dyn. index:   Unit group:   Scaling: -   Max   -	Access level: 3   Func. diagram:   Unit selection:   Expert list: 1   Factory setting
Description:   Dependency:	Displays additional informat   Refer to: r9744, r9747, r974	ety message th r9754, r9755,	at values.
r9754[0...63]   SERVO, VECTOR, hLA, SERVO AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	SI message time rece   Can be changed: -   Data type: Unsigned16   P-Group: Messages   Not for motor type: -   Min	/ SI t_msg   Calculated:   Dyn. index:   Unit group:   Scaling: -   Max   -	Access level: 3   Func. diagram:   Unit selection:   Expert list: 1   Factory setting
Description:   Dependency:	Displays the relative system   Refer to: r9744, r9747, r974	when the safety r9753, r9755,	
r9755[0...63]   SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	SI message time rem   Can be changed: -   Data type: Unsigned32   P-Group: Messages   Not for motor type: -   Min   - [ms]	seconds / S   Calculated:   Dyn. index:   Unit group:   Scaling: -   Max   - [ms]	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   - [ms]
Description:   Dependency:	Displays the relative system   Refer to: r9744, r9747, r9748	conds when th r9753, r9754,	s removed.
r9756[0...63]   SERVO, VECTOR, hLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	SI message time rem   Can be changed: -   Data type: Unsigned16   P-Group: Messages   Not for motor type: -   Min	/ SI t_msg   Calculated:   Dyn. index:   Unit group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting
Description:   Dependency:	Displays the relative system runtime in days when the safety message was removed. Refer to: r9744, r9747, r9748, r9749, p9752, r9753, r9754, r9755		


$\overline{\mathrm{p} 9761}$	SI password input / SI password inp		
SERVO, VECTOR,	Can be changed: C1, C2(95), T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2800
SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Enters the Safety Integrated password.		
Note:	It is not possible to change Safety Integrated parameters until the Safety Integrated password has been entered.		
$\overline{\mathbf{p 9 7 6 2}}$	SI password new / SI password new		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2800
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Enters a new Safety Integrated password.		
Dependency:	A change made to the Safety Integrated password must be acknowledged in the following parameter:		


p9763	SI password acknowledgment / SI ackn password		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2800
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	FFFF FFFF hex	Factory setting
	Min	0000 hex	
	0000 hex		
Description:	Acknowledges the new Safety Integrated password.		
Dependency:	Refer to: p9762		
Note:	The new password entered into p9762 must be re-entered in order to acknowledge.		
	p9762 = p9763 = 0 is automatically set after the new Safety Integrated password has been successfully		


r9765	SI Motion forced check procedure remaining time (Control Unit) / SI Mtn dyn remain
SERVO, VECTOR,	Can be changed: - Calculated: - Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
VECTOR_AC, SERVO_I_AC,	P-Group: Safety Integrated Unit group: - Unit selection: -
VECTOR_I_AC	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	$-[\mathrm{h}] \quad-\mathrm{h}] \quad-[\mathrm{h}]$
Description:	Displays the time remaining until the next dynamization and testing of the safety motion monitoring functions integrated in the drives.
	The signal source to initiate the forced checking procedure is parameterized in p 9705.
Dependency:	Refer to: p9705
	Refer to: C01798



### 2.2 List of parameters




### 2.2 List of parameters

SSM: Safe Speed Monitor (safety-related feedback signal from the speed monitoring) / SGA $n<n x$ : Safety-related output n < nx
STO: Safe Torque Off / SH: Safe standstill
For bit 16:
SS1E is supported for Safety Extended Functions.



r9773.0... 31	CO/BO: SI status (Control Unit + Hydraulic Module) / SI status CU+HM				
HLA	Can be changed: - C		ulated: -	Access	
	Data type: Unsigned32 Dy		index: -	Func.	
	P-Group: Safety Integrated Unither		group: -	Unit se	
	Not for motor type: - S		ng: -	Expert	
	Min Max			Factor	
	-	-		-	
Description:	Display and BICO output of the Safety Integrated status on the drive (Control Unit + Hydraulic Module).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	STO selected in drive	Yes		2804
	01	STO active in drive	Yes	No	2804
	02	SS1 delay time active in the drive	Yes	No	2804
	05	SS1 selected in the drive (Basic Functions)	Yes	No	-
	06	SS1 active in the drive (Basic Functions)	Yes	No	-
	31	Test stop required for STO	Yes	No	2810

Note: $\quad$ This status is formed from the AND operation of the relevant status of the two monitoring channels.


Note: $\quad$ This status is formed from the AND operation of the relevant status of the two monitoring channels.


Note:	A group is formed by appropriately grouping the terminals for the function "Safe Torque Off" (STO).   The status of a group of n drives is, for drives 1 to $\mathrm{n}-1$ displayed with a delay of one monitoring clock cycle; this is a system-related effect.
r9774.0... 31	CO/BO: SI status (group STO) / SI stat group STO
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: - Calculated: - Access level: 2   Data type: Unsigned32 Dyn. index: - Func. diagram: 2804   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Descriptio	Display and BICO output for the Safety Integrated status of the group to which this drive belongs.   These signals are an AND logic operation of the individual status signals of the drives included in this group.
Bit field:	Bit Signal name $\mathbf{1}$ signal $\mathbf{0}$ signal FP   00 STO selected in group Yes No 2804   01 STO active in group Yes No 2804   02 SS1 delay time active in group Yes No -   04 SBC requested in group Yes No 2804   05 SS1 selected in group (Basic Functions) Yes No -   06 SS1 active in group (Basic Functions) Yes No -   31 Switch-off signal paths of the group must be Yes No 2804
Dependency: Notice:	Refer to: p9620, r9773   If a drive belonging to a group is deactivated via p0105, then the signals in r9774 can no longer be correctly displayed (Remedy: Before deactivating, remove this drive from the group).
Note:	A group is formed by appropriately grouping the terminals for the function "Safe Torque Off" (STO).   The status of a group of $n$ drives is, for drives 1 to $n-1$ displayed with a delay of one monitoring clock cycle; this is a system-related effect.

## r9776.0... 3 BO: SI diagnostics / SI diag

SERVO, VECTOR,
HLA, SERVO AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

Description: Bit field:

Can be changed: -
Data type: Unsigned32
P-Group: Safety Integrated
Not for motor type: -
Min

The parameter is used for diagnostics.

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Safety parameter changed POWER ON   required	Yes	No	-
01	Safety functions enabled	Yes	No	-
02	Safety component replaced and data save   required	Yes	No	-
03	Safety component replaced and   acknowledge/save required	Yes		

Dependency: Refer to: r9793

## Note:

Calculated: -	Access level: 3
Dyn. index: -	Func. diagram: -
Unit group: -	Unit selection: -
Scaling: -	Expert list: 1
Max	Factory setting
-	-

Calculated: -
Dyn. index: -
Unit group: -

Max -

For bit $00=1$ :

At least one Safety parameter has been changed that will only take effect after a POWER ON.
For bit $01=1$ :
Safety functions (basic functions or extended functions) have been enabled and are active.
For bit $02=1$ :
A safety-relevant component has been replaced. Data save required (p0977 = 1 or $\mathrm{p} 0971=1$ or "copy RAM to ROM").
For bit 03 = 1:
A safety-relevant component has been replaced. Acknowledge (p9702 = 29) and save (p0977 = 1 or p0971 = 1 or "Copy RAM to ROM") required.



### 2.2 List of parameters

r9784[0...1]	SI Motion diagnostics sensorless acceleration / Diag sla	
SERVO (Safety rot), VECTOR (Safety rot), SERVO_AC (Safety rot), VECTTOR_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR_I_AC (Safety rot)	Can be changed: - Calculated: -   Data type: FloatingPoint32 Dyn. index:   P-Group: Safety Integrated Unit group:   Not for motor type: - Scaling: -   Min Max   $-\left[r e v / \mathrm{s}^{2}\right]$ $-\left[\mathrm{rev} / \mathrm{s}^{2}\right]$	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting - [rev/s²]
Description: Index:   Dependency:   Note:	Display to diagnose acceleration values of the encoderless actual values sensing   [ 0 ] = Setpoint acceleration value   [1] = Actual acceleration value   Refer to: p9589   For index [0]:   Shows the parameterized acceleration value of p9589.   For index [1]:   Shows the actually measured acceleration values of the encoderless actual value	sensing
r9785[0...1]   SERVO, VECTOR, SERVOAC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	SI Motion diagnostics sensorless minimum current / Diag s    Can be changed: - Calculated: -   Data type: FloatingPoint32 Dyn. index: -   P-Group: Safety Integrated Unit group: _ $_{-}$   Not for motor type: - Scaling: -   Min Max   $-[\mathrm{mA}]$ $-[\mathrm{mA}]$	_min   Access level: 3   Func. diagram: -   Unit selection: p0505   Expert list: 1   Factory setting   - [mA]
Description: Index:   Dependency:   Note:	Display to diagnose currents of the encoderless actual value sensing.   [0] = Minimum current parameterized   [1] = Minimum current measured   Refer to: p9588   For index [0]:   Displays the parameterized minimum current of p9588.   For index [1]:   Displays the currently measured current of the encoderless actual value sensing	

r9786[0...2] SI Motion diagnostics sensorless angle / Diag sl angle

SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	$-\left[^{\circ}\right]$	$-\left[^{\circ}\right]$	$-\left[^{\circ}\right]$

Description: Display to diagnose the angle for sensorless actual value sensing.
Index: $\quad[0]=$ Plausibility angle actual value
[1] = Voltage angle actual value
[2] = Current angle actual value
Dependency: Refer to: p9585
Note: For index [0]:
Displays the actual plausibility angle.
For index [1]:
Displays the actual voltage angle.
For index [2]:
Displays the actual current angle.

r9787	SI Motion diagnostics sensorless velocity deviation / Diag sl v_dev
SERVO, VECTOR,   SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC	Can be changed: - Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $-[\mathrm{mm} / \mathrm{min}]$ $-[\mathrm{mm} / \mathrm{min}]$ $-[\mathrm{mm} / \mathrm{min}]$
Description:   Dependency:   Note:	Displays the actual velocity deviation for sensorless actual value sensing.   This value is calculated when setting p9585/p9385.   The actual velocity has a deviation of $+/-\mathrm{r} 9787$ for 6 ms * $\mathrm{p} 9585 / \mathrm{p} 9385$ within a monitoring time of 1 s .   Refer to: p9585   For linear axes, the following unit applies: millimeters per minute   For rotary axes, the following unit applies: revolutions per minute
r9787   SERVO (Safety rot), VECTOR (Safety rot), SERVO_AC (Safety rot), VECTOR_AC (Safety rot), SERVO_I_AC (Safety rot), VECTOR_I_AC (Safety rot)	SI Motion diagnostics sensorless velocity deviation / Diag sl v_dev     Can be changed: - Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $-[r p m]$ $-[r p m]$ $-[r p m]$
Description:   Dependency:   Note:	Displays the actual velocity deviation for sensorless actual value sensing.   This value is calculated when setting p9585/p9385.   The actual velocity has a deviation of $+/-\mathrm{r} 9787$ for 6 ms * $\mathrm{p} 9585 / \mathrm{p} 9385$ within a monitoring time of 1 s .   Refer to: p9585   For linear axes, the following unit applies: millimeters per minute   For rotary axes, the following unit applies: revolutions per minute
r9790   SERVO, VECTOR,   HLA, SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC	SI Motion SLA acceleration resolution / SI Mtn SLA a_res     Can be changed: - Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $-\left[\mathrm{m} / \mathrm{s}^{2}\right]$ $-\left[\mathrm{m} / \mathrm{s}^{2}\right]$ $-\left[\mathrm{m} / \mathrm{s}^{2}\right]$
Description:	Displays the acceleration resolution (load side) for the "SLA" function.   Setpoints for acceleration limits or parameter changes for acceleration levels below this threshold have no effect.
Note:	This parameter does not provide any information about the actual accuracy of the acceleration sensing. This depends on the type of actual value sensing, the gear factors as well as the quality of the encoder being used.   Conversion of:   (internal fixed value/ $\mathrm{Tsi}^{2}$ ) to $\mathrm{m} / \mathrm{s}^{2}$ (linear) or $1 / \mathrm{s}^{2}$ (rotary) with $\mathrm{Tsi}=\mathrm{p} 9500$ (SI motion monitoring clock cycle)   Example:   For Tsi $=12 \mathrm{~ms}, \mathrm{r} 9790=0.006944 \mathrm{~m} / \mathrm{s}^{2}$ (linear) or $0.0192901 / \mathrm{s}^{2}$ (rotary) is obtained.   Internal calculation, which also incorporates the factor for the motor-load side conversion, the gearbox ratio and the safety monitoring clock cycle.   Result is $0.006944 \mathrm{~m} / \mathrm{s}^{2}$ (linear) or $0.0192901 / \mathrm{s}^{2}$ (rotary).   The result listed above is applicable for the default setting of spindle pitch and gear unit stage.   SLA: Safely-Limited Acceleration



	SI diagnostics STOP F (Control Unit) / SI diag STOP F CU
SERVO, VECTOR, HLA, SERVO_AC, VECTOR AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: - Calculated: - Access level: 2   Data type: Unsigned32 Dyn. index: - Func. diagram: 2802   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:   Dependency:   Note:	Displays the number of the cross-checked data item which has caused STOP F on the Control Unit.   Refer to: r9895   Refer to: F01611   A complete list of numbers for cross-checked data items appears in fault F01611.
r9798   SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	SI actual checksum SI parameters (Control Unit) / SI act_checksum CU
Description:   Dependency:	Displays the checksum over the checked Safety Integrated parameters on the Control Unit (actual checksum). Refer to: p9799, r9898
p9799   SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	SI reference checksum SI parameters (Control Unit) / SI set_checksum CU     Can be changed: C2(95) Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: - Func. diagram: 2800   P-Group: Safety Integrated Unit group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0000 hex FFFF FFFF hex 0000 hex
Description:   Dependency:	Sets the checksum for the checked Safety Integrated parameters on the Control Unit (reference checksum). Refer to: r9798, p9899
p9801 HLA	SI enable functions integrated in the drive (Motor Module) / SI enable fct MM
Description:	Sets the enable signals for the safety functions integrated in the drive and the type of selection on the Hydraulic Module.   The following settings are permitted:   0000 hex:   Safety functions integrated in the drive inhibited (no safety function).   0001 hex:   Basic functions are enabled via onboard terminals (permissible for r9871.0 = 1).   0004 hex:   Extended functions via Terminal Module 54F (TM54F) have been enabled (permissible for r9871.5 = 1).   0005 hex:   Extended functions via Terminal Module 54F (TM54F) and the basic functions via onboard terminals have been enabled (permissible for r9871.5 = 1).

### 2.2 List of parameters

0008 hex:
Basic functions are enabled via PROFIsafe (permissible for r9871.6 = 1).
0009 hex:
Basic functions are enabled via PROFIsafe onboard terminals (permissible for r9871.6 = 1).
000C hex:
Extended functions are enabled via PROFIsafe (permissible for r9871.4 = 1).
000D hex:
Extended functions are enabled via PROFIsafe and basic functions via onboard terminals (permissible for r9871.4 = 1).

0024 hex:
Extended functions without selection are enabled (permissible for r9871.16 = 1).
0025 hex:
Extended functions without selection and basic functions via onboard terminals are enabled (permissible for r9871.16
= 1).
0040 hex:
Basic functions are enabled via TM54F
0041 hex:
Basic functions are enabled via TM54F and onboard terminals

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	STO (SH) via terminals (MM) enable	Enable	Inhibit	2810
	02	Enable motion monitoring functions integrated in drive (MM)	Enable	Inhibit	-
	03	Enable PROFIsafe (MM)	Enable	Inhibit	-
	05	Enab motion monit functions integr in drive w/out selection (MM)	Enable	Inhibit	-
	06	Basic functions via TM54F	Enable	Inhibit	-
Dependency:	Refer to: p9601, r9871				
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.				
Note:	A change always becomes effective only after a POWER ON. Exception: Changes to p9801.0 become effective immediately.				
	SI: Safety Integrated				
	SMM: Safe Motion Monitoring				
	STO: Safe Torque Off / SH: Safe standstill				
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)				


p9801	SI enable functions integrated in the drive (Motor Module) / SI enable fct MM		
SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	00000000 bin
Description:	Sets the enable signals for the safety functions integrated in the drive and the type of selection on the Motor Module.		
	Not all of the settings listed below will be permissible, depending on the Control Unit and Motor Module or Power Module being used:		
	Safety functions integrated in the drive inhibited (no safety function).		
	0001 hex:		
	Basic functions are enabled via onboard terminals (permissible for r9871.0 = 1).		
	0004 hex:		
	Extended functions via Terminal Module 54F (TM54F) have been enabled (permissible for r9871.5 = 1) 0005 hex:		
	Extended functions via Terminal Module 54F (TM54F) and the basic functions via onboard terminals h		
	0008 hex:		

Basic functions are enabled via PROFIsafe (permissible for r9871.6 = 1).

	0009 hex:				
	Basic functions are enabled via PROFIsafe onboard terminals (permissible for r9871.6 = 1).				
	000C hex:				
	Extended functions are enabled via PROFIsafe (permissible for r9871.4 = 1).				
	000D hex:				
	Extended functions are enabled via PROFIsafe and basic functions via onboard terminals (permissible for r9871.4 = 1).				
	0014 hex:				
	Extended functions via integrated F-DI/F-DO have been enabled.				
	0024 hex:				
	Extended functions without selection are enabled (permissible for r9871.16 = 1).				
	0025 hex:				
	Extended functions without selection and basic functions via onboard terminals are enabled (permissible for r9871.16 $=1$ ).				
	0040 hex:				
	Basic functions are enabled via TM54F				
	0041 hex:				
	Basic functions are enabled via TM54F and onboard terminals.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	STO (SH) via terminals (MM) enable	Enable	Inhibit	2810
		Enable motion monitoring functions integrated in drive (MM)	Enable	Inhibit	-
		Enable PROFIsafe (MM)	Enable	Inhibit	-
	04	Enable onboard F-DI	Onboard F-DI	F-DI with TM54F	-
	05	Enab motion monit functions integr in drive w/out selection (MM)	Enable	Inhibit	-
	06	Basic functions via TM54F	Enable	Inhibit	-
Dependency:	Refer to: p9601, r9871				
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.				
Note:	A change always becomes effective only after a POWER ON. Exception: Changes to p9801.0 become effective immediately.				
	MM: Motor Module				
	SI: Safety Integrated				
	SMM: Safe Motion Monitoring				
	STO: Safe Torque Off / SH: Safe standstill				
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)				
	F-DI: Failsafe Digital Input				
	F-DO: Failsafe Digital Output				
p9801	Sl enable functions integrated in the drive (Motor Module) / SI enable fct MM				
SERVO, VECTOR	Can be changed: C2(95) Ca		ulated: -	Access level:	
	Data type: Unsigned16 Dy		index: -	Func. diagram	
	P-Group: Safety Integrated Un		group: -	Unit selection:	
	Not for motor type: - Scalicher		ng: -	Expert list: 1	
	Min M			Factory setting	
	-			00000000 bin	
Description:	Sets the enable signals for the safety functions integrated in the drive and the type of selection on the Motor Module.				
	Not all of the settings listed below will be permissible, depending on the Control Unit and Motor Module or Power Module being used:				
	0000 hex:				
	Safety functions integrated in the drive inhibited (no safety function).				
	0001 hex:				
	Basic functions are enabled via onboard terminals (permissible for r9871.0 = 1).				
	0004 hex:				
	Extended functions via Terminal Module 54F (TM54F) have been enabled (permissible for r9871.5 = 1).				

### 2.2 List of parameters



p9802	SI enable Safe Brake Control (Motor Module) / SI enable SBC MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: Integer32	Dyn. index: -	Func. diagram: 2814
VECTOR_AC, SERVO IAC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the enable signal for the "Safe Brake Control" function (SBC) on the Motor Module.   0: Inhibit SBC   1: Enable SBC		
Dependency:	Refer to: p9602		
Notice:	This parameter is overwritten	ction of the saf	d in the drive.


Note:	The "Safe Brake Control" function is not activated until at least one safety monitoring function has been enabled (i.e. p9501 not equal to 0 and/or p9801 not equal to 0 ).		
	It does not make sense to parameterize "no motor holding brake available" and enable "Safe Brake Control" (p1215 $=0, p 9602=$ p9802 = 1) if there is no motor holding brake.		
	The parameterization "motor holding brake the same as sequence control, connection via BICO" and "Safe Brake Control" enabled ( $p 1215=3$, p9602 $=1$, p9802 $=1$ ) is not practical.		
	The parameterization "motor holding brake without feedback signals" and "Safe Brake Control" enabled ( $p 1278=1$, p9602 = 1, p9802 = 1) is not permissible.		
	MM: Motor Module		
	SBC: Safe Brake Control		
	SI: Safety Integrated		
p9810	SI PROFIsafe address (Motor Module) / SI Ps address MM		
SERVO, VECTOR,	Can be changed: C 2 (95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
SERVO I AC,	P-Group: Safety Integrated	Unit group:	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65534	0
Description:	Sets the PROFIsafe address of the Motor Module/Hydraulic module.		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
p9811	SI PROFIsafe telegram selection (Motor Module) / SI Ps telegram MM		
HLA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	998	998
Description:	Sets the PROFIsafe telegram number for the Hydraulic Module.		
Value:	0: No PROFIsafe telegr		
	30: PROFIsafe standard	D-1/1	
	31: PROFIsafe standard	D-2/2	
	900: PROFIsafe SIEMENS	PZD-2/2	
	901: PROFIsafe SIEMENS	PZD-3/5	
	902: PROFIsafe SIEMENS	PZD-3/6	
	903: PROFIsafe SIEMENS	PZD-3/5	
	998: Compatibility mode (	ersion < 4.5)	
Dependency:	Refer to: p9611, p60022		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
	For p9601.3 = p9801.3 = 1 (PROFIsafe enabled), the following variants exist when parameterizing PROFIsafe telegram 30:		
	- p9611 $=$ p9811 = 998 and p60022 $=0$		
	- p9611 $=$ p9811 $=998$ and p60022 $=30$		
	- p9611 $=$ p9811 $=30$ and p60022 $=30$		

### 2.2 List of parameters



## p9812

SERVO, VECTOR,
HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

## SI PROFIsafe failure response (Motor Module) / SI Ps fail MM

Can be changed: C2(95)
Data type: Integer16
P-Group: Safety Integrated
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
1

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting 0

Description: Sets the stop response when PROFIsafe communication fails.
Value:
Dependency:
Notice:
Note: $\quad$ For the set stop response STOP B, in order that the OFF3 ramp is actually maintained, when just using Safety Basic Functions, the following must be carefully observed:

- the transition time STOP F to STOP A (p9658, p9858) must be set longer or equal to the SS1 delay time (p9652, p9852).
- if a higher-level control responds to a drive fault by withdrawing the controller enable signals, for faults F01611 and F30611, the message type must be changed to alarm (p2118, p2119).
p9821
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description:

Dependency:
Notice:

BI: SI Safe Brake Adapter signal source (Motor Module) / SI SBA S_src MM		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2814
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	0

Note:
Sets the signal source for Safe Brake Adapter (SBA).
This defines via which digital input the Safe Brake Adapter feedback signal is read-in (SBA_DIAG). p9621/p9821 = 0 :
There is no Safe Brake Control (SBC) with Safe Brake Adapter (SBA) available.
p9621/p9821 = r0722.x ( $x=0,1 \ldots 7$ )
Safe Brake Adapter and Booksize unit (no Communication Interface Module (CIM)).
p9621/p9821 = r9872.3
Safe Brake Adapter and Chassis unit (CIM).
Refer to: p9601, p9602, p9621
This parameter is overwritten by the copy function of the safety functions integrated in the drive.
No difference is tolerated for a data cross-check between p9621 and p9821.
To use the "Safe Brake Adapter" function the following must apply:
p9601 $=$ p9801 <> 0 and p9602 = p9802 = 1

p9822[0...1]	SI SBA relay delay times (Motor Module) / SI SBA relay t MM		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2814
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mu \mathrm{s}$ ]	1000000.00 [ $\mu \mathrm{s}$ ]	[0] 100000.00 [ $\mu \mathrm{s}$ ]
			[1] 65000.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the delay times for activating and deactivating the Safe Brake Adapter relay.		
	The relay-specific minimum delay times for evaluating the feedback signal contacts have to be set. They differ for the activation and deactivation of one and the same relay.		
Index:	[0] = Wait time activation   [1] = Wait time deactivation		
Dependency:	Refer to: p9622		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		
	For index [0]:		
	Wait time switch on = drop-out time + bounce time NO contact + effect of the free-wheeling diode in the Safe Brake Adapter		
	For index [1]:		
	Wait time switch off = response time + bounce time NC contact + effect of the free-wheeling diode in the Safe Brake Adapter		




## p9851

SERVO, VECTOR, SERVO_AC, VECTOR AC, SERVO_IAC, VECTOR_I_AC

SI STO/SBC/SS1 debounce time (Motor Module) / SI STO t_debou MM
Can be changed: C2(95) Calculated: - Access level: 3
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
0.00 [ $\mu \mathrm{s}$ ]

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0.00 [ $\mu \mathrm{s}$ ]

Description:
Notice:
Sets the debounce time for the EP terminal of the Motor Module.

Note:
This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Rounding effects can occur in the last decimal place of the parameterized time.
The debounce time is rounded to whole milliseconds. It specifies the maximum duration of a fault pulse at the failsafe digital inputs with no reaction/influence on the selection or deselection of the Safety Basic Functions.
Example:
Debounce time $=1 \mathrm{~ms}$ : Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed.
Debounce time $=3 \mathrm{~ms}$ : Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.

p9852
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC

Description: Sets the delay time of the pulse suppression for the function "Safe Stop 1" (SS1) on the Motor Module to brake along the OFF3 down ramp (p1135).
Recommendation: In order that the drive can completely ramp-down along the OFF3 ramp and a motor holding brake that is possibly available can close, then the delay time should be set as follows:
Motor holding brake parameterized: delay time >= p1135 + p1228 + p1217
Motor holding brake not parameterized: delay time >= p1135 + p1228
Dependency:
Notice:
Refer to: p1135, p9652
This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note: $\quad$ Pulse cancellation after failure of PROFIsafe communication is delayed by this time if "STOP B" is set ( $\mathrm{p} 9812=1$ ).
For a data cross-check between p9652 and p9852, a difference of one Safety monitoring clock cycle is tolerated. Rounding effects can occur in the last decimal place of the parameterized time.
The set time is rounded internally to an integer multiple of the monitoring clock cycle.
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)

p9858	SI transition time STOP F to STOP A (Motor Module) / SI STOP F->A MM		
SERVO, VECTOR,	Can be changed: C 2 (95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2802
VECTOR_AC, SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mu \mathrm{s}$ ]	30000000.00 [ $\mu \mathrm{s}$ ]	0.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the transition period from STOP F to STOP A on the Motor Module/Hydraulic Module.		
Dependency:	Refer to: p9658, r9895		
	Refer to: F30611		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	For a data cross-check between p9658 and p9858, a difference of one Safety monitoring clock cycle is tolerated.		
	Rounding effects can occur in the last decimal place of the parameterized time.		
	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		
	If a higher-level control responds to a drive fault by withdrawing the controller enable signals, for faults F01611 and F30611, the message type must be changed to alarm ( $\mathrm{p} 2118, \mathrm{p} 2119$ ). As a consequence, the drive can still be braked in a controlled fashion during this delay time.		
	STOP F: Defect in a monitoring channel (error in the data cross-check)		
	STOP A: STO as a result of a fault detected by Safety Integrated		


r9870[0...3]	SI version drive-integrated safety function (Motor Module) / SI version MM		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2802
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	-	Factory setting
	-	-	
Description:	Displays the Safety Integrated version for the drive-integrated safety functions on the Motor Module/Hydraulic		

Index:
[0] = Safety Version (major release)
[1] = Safety Version (minor release)
[2] = Safety Version (baselevel or patch)
[3] = Safety Version (hotfix)

Dependency:   Note:	Refer to: r9770, r9890 Example:				
r9871	SI	mmon functions (Motor Module)	SI gene		
HLA	Can be changed: - Cala	be changed: - Calcula	Calculated: -	Access level: 3	
	Data type: Unsigned32 Dy		Dyn. index: -	Func. diagram: 2804	
	P-Group: Safety Integrated Un		Unit group: -	Unit selection: -	
	Not	or motor type: - Scalin	Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the supported Safety Integrated monitoring functions supported on both monitoring channels. The Motor Module/Hydraulic Module determines this display.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		STO supported via terminals	Yes	No	2804
		Extended Functions supported (p9501 > 0)	Yes	No	2804
		SS1 supported	Yes	No	2804
		Extended Functions PROFIsafe supported	Yes	No	-
		Extended Functions integrated in drive supported (p9601.2 = 1)	Yes	No	-
		Basic Functions PROFIsafe supported	Yes	No	-
		Extended Functions encoderless supported	Yes	No	-
		Extended Functions SDI supported	Yes	No	-
		Extended Functions SSM encoderless supported	Yes	No	-
		ESR delay of the pulse suppression	Yes	No	-
		SLS limit SP supported via PROFIsafe	Yes	No	-
		Safety functions without selection, SLP, SS1E supported	Yes	No	-
		Safe gearbox stage switchover ref supported via SCC	Yes	No	-
		Controlling Basic Functions with TM54F	Yes	No	-
		STOP B for PROFIsafe failure supported	Yes	No	-
		SBR with encoder and SS2E supported	Yes	No	-
		SCA, deactivation SOS/SLS during an external STOP A	Yes	No	-
		Synchronous safe position and SLA via PROFIsafe supported	Yes	No	-
Dependency:	Refer to: r9771				
Note:	ESR: Extended Stop and Retract				
	MM: Motor Module				
	SBC: Safe Brake Control				
	SBR: Safe Brake Ramp (safe brake ramp monitoring)				
	SCA: Safe Cam				
	SCC: Safety Control Channel				
	SDI: Safe Direction (safe motion direction)				
	SI: Safety Integrated				
	SLA: Safely-Limited Acceleration				
	SLP: Safely-Limited Position				
	SLS: Safely-Limited Speed / SG: Safely reduced speed				
	SOS: Safe Operating Stop / SBH: Safe operating stop				
	SP: Safe Position				
	SS1: Safe Stop 1				
	SS1E: Safe Stop 1 External (Safe Stop 1 with external stop)				
	SS2E: Safe Stop 2 external (Safe Stop 2 with external stop, external STOP D)				
	SSM: Safe Speed Monitor (safety-related feedback signal from the speed monitoring) / SGA n < nx: Safety-related output $\mathrm{n}<\mathrm{nx}$				

### 2.2 List of parameters

STO: Safe Torque Off / SH: Safe standstill
For bit 16:
SS1E is supported for Safety Extended Functions.


```
Note: ESR: Extended Stop and Retract
MM: Motor Module
SBC: Safe Brake Control
SBR: Safe Brake Ramp (safe brake ramp monitoring)
SCA: Safe Cam
SCC: Safety Control Channel
SDI: Safe Direction (safe motion direction)
SI: Safety Integrated
SLA: Safely-Limited Acceleration
SLP: Safely-Limited Position
SLS: Safely-Limited Speed / SG: Safely reduced speed
SOS: Safe Operating Stop / SBH: Safe operating stop
SP: Safe Position
SS1: Safe Stop 1
SS1E: Safe Stop 1 External (Safe Stop 1 with external stop)
SS2E: Safe Stop 2 external (Safe Stop 2 with external stop, external STOP D)
SSM: Safe Speed Monitor (safety-related feedback signal from the speed monitoring) / SGA n < nx: Safety-related
output n < nx
STO: Safe Torque Off / SH: Safe standstill
For bit 16:
SS1E is supported for Safety Extended Functions.
```



### 2.2 List of parameters

Note:
For bit 00:
When STO is selected, the cause is displayed in bits 16 ... 21.
For bit 05:
When SS1 is selected, the cause is displayed in bits 22 and 23.
For bit 18:
When the bit is set, STO is selected via PROFIsafe or Terminal Module 54F (TM54F).
SMM: Safe Motion Monitoring
For bit 22, 23:
These bits show via which path the SS1 was triggered, i.e. what has started the SS1 delay time.
If the SS1 delay time is not started (e.g. because an STO is triggered at the same time), neither of the two bits is set. For bit 25,26 :
DI 0 (X281.3/X282.3, axis 1/2)
DI 1 (X281.2/X282.2, axis 1/2)


For bit 22, 23 :
These bits show via which path the SS1 was triggered, i.e. what has started the SS1 delay time. If the SS1 delay time is not started (e.g. because an STO is triggered at the same time), neither of the two bits is set. For bit 24:
Only for a parallel connection and active motion monitoring functions.

r9880	Sl monitoring clock cycle (Motor Module)/SI monitor_clck MM		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2802
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	$-[m s]$	Factory setting
	$-[m s]$	$-[m s]$	
Description:	Displays the clock cycle time for the Safety Integrated Basic Functions on the Motor Module/Hydraulic Module.		
Dependency:	Refer to: r0110, p0115, r9780		
Note:	Information about the interrelationship between the monitoring clock cycle and the response times can be taken from		


r9881[0...11]	SI Motion Sensor Module Node Identifier second channel / SI Mtn SM Ident		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Max	Factory setting	
	Min	-	-

Description: Displays the Node Identifier of the Sensor Module that the second channel uses for the motion monitoring functions.

r9890[0...2]	SI version (Sensor Module) / SI version SM		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
VECTOR_AC, SERVO_I_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the Safety Integrated version on the Sensor Module.		
Index:	$\begin{aligned} & {[0]=\text { Safety Version (major } r} \\ & {[1]=\text { Safety Version (minor } r} \\ & {[2]=\text { Safety Version (basele }} \end{aligned}$		
Dependency:	Refer to: r9770, r9870		
Note:	Example:		
r9894[0..19]	SI cross-check list (Motor Module) / SI KDV_list MM		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2802
SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of the data that are being presently cross-checked on the Motor Module/Hydraulic Module. The content of the list of cross-checked data is dependent upon the particular application.		
Dependency:	Refer to: r9794		

### 2.2 List of parameters

```
Note: KDV: Data cross-check
Example:
r9894[0] = 1 (monitoring clock cycle)
r9894[1] = 2 (enable safety functions)
r9894[2] = 3 (F-DI changeover, tolerance time)
The complete list of numbers for data cross-check is listed in Fault F30611.
```

r9895	SI diagnostics STOP F (Motor Module)/SI diag STOP F MM		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 2
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2802
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	-	Faxtory setting
	-	-	

Description: Displays the number of the cross-checked data item which caused STOP F on the Motor Module/Hydraulic Module.

Note: $\quad$ The complete list of numbers for data cross-check is listed in Fault F30611.

p9897	SI Motion bus failure STO delay time (MM) / SI Mtn IL t_del MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	$800000.00[\mu \mathrm{~s}]$	Factory setting
	$0.00[\mu \mathrm{~s}]$	$0.00[\mu \mathrm{~s}]$	
	Sets the delay time for STO after bus failure on the Motor Module/Hydraulic Module (e.g. used for ESR).		
Description:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Notice:	Rounding effects can occur in the last decimal place of the parameterized time. The set time is rounded internally to		
Note:	an integer multiple of the monitoring clock cycle.		
	ESR: Extended Stop and Retract		
	STO: Safe Torque Off / SH: Safe standstill		

r9898
SERVO, VECTOR, HLA, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC

Dependency

Data type: Unsigned32
P-Group: Safety Integrated
Not for motor type: -
Min
-
Displays the checksum for the checked Safety Integrated parameters on the Motor Module/Hydraulic Module (actual checksum).
Calculated: - Access level: 3

Dyn. index: - Func. diagram: 2800
Unit group: - Unit selection: -
Scaling: - Expert list: 1
Max Factory setting
-

Refer to: r9798, p9899

p9899	SI reference checksum SI parameters (Motor Module) / SI set_checksum MM		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2800
SERVO_I_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the checksum for the checked Safety Integrated parameters on the Motor Module/Hydraulic Module (reference checksum).		
Dependency:	Refer to: p9799, r9898		
r9900	Actual topology number of indices / Act topo indices		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP, $C U S A C P N$	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S120_PN,	P-Group: Topology	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-	-
Description:	Displays the number of indices of the actual topology.		
Dependency:	Refer to: r9901		
Note:	Only for internal Siemens use.		
	The parameter is not displayed for the STARTER commissioning tool.		

### 2.2 List of parameters



p9903[0...n]	Target topology / Target topo	
$\begin{aligned} & \text { CU_I, CU_NX_CX, } \\ & \text { CU_S_AC_DP, } \\ & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \\ & \text { CU_S150_PN, } \\ & \text { CU_S120_DP, } \\ & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	Can be changed: - Calculated: -   Data type: Unsigned16 Dyn. index: p9902   P-Group: Topology Unit group: -   Not for motor type: - Scaling: -   Min Max   0000 hex FFFF hex	Access level: 3   Func. diagram: -   Unit selection:   Expert list: 0   Factory setting   0000 hex
Description:	Sets the target topology of the drive unit.   The target topology is sub-divided into several sections. Each of the following dat General data on the topology:   - version   - attribute to compare the actual topology and target topology   - number of components   Data on a component:   - type component of the Node Identifier of the component   - number of DRIVE-CLiQ sockets in the Node Identifier   - manufacturer and version of the Node Identifier   - serial number of the Node Identifier (4 indices)   - index of the component   - article number (8 indices)   - attribute to compare the actual topology and target topology of the component   - component number   - number of port types   - port type   - number of ports of the port type   - component number of the associated/linked component   - number of the associated/linked port   - component number of the associated/linked component   - number of the associated port, etc.   Data on the next component:   - etc.	is saved under an index.
Dependency:		
Note:	The target topology can only be changed using the commissioning tool. The parameter is not displayed for the STARTER commissioning tool. Changes only become effective when the state of p0009 = 101 changes to 0 or	

p9904
CU_I, CU_NX_CX,
CU_S_AC_DP,
CU_S_AC_PN,
CU_S120_PN,
CU_S15O_PN,
CU_S12ODP,
CU_S15ODP,
CU_I_D410

Topology comparison acknowledge differences / Topo_compare ackn		
Can be changed: C1(1)	Calculated: -	Access level: 3
Data type: Unsigned32	Dyn. index: -	Func. diagram: -
P-Group: Topology	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0000 hex	FFFF FFFF hex	0000 hex

## Description:

Note: $\quad$ In order to permanently accept the acknowledgment of the fault that can be resolved, then it must be saved in a non-
volatile fashion (p0977).

## p9905

CU_I, CU_NX_CX,
CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN,
CU_S150_PN,
CU_S120_DP,
CU_S150_DP, CU_I_D410

## Description:

Note:

## Device specialization / Specialization

Can be changed: C1(1)
Data type: Unsigned16
P-Group: Topology
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
2

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

With p9905 = 1, the serial numbers and the hardware versions of all of the components are transferred from the actual topology into the target topology and a new comparison is started.
For this device specialization, the components of the target topology may only differ from those of the actual topology by the serial numbers.
With p9905 $=2$, the serial numbers, the hardware versions and the article numbers of all of the components are transferred from the actual topology into the target topology and a new comparison is started.
For this device specialization, the components of the target topology may only differ from those of the actual topology by the serial numbers and article numbers.
p9905 is automatically set to 0 at the end of the operation.
In order to permanently accept the data, it is necessary to save in a non-volatile fashion (p0977).


### 2.2 List of parameters

Note: $\quad$\begin{tabular}{l}
The electronic rating plate comprises the following data: <br>

- component type (e.g. "SMC20") <br>
- article number (e.g. "6SL3055-0AA0-5BAO") <br>
- manufacturer (e.g. SIEMENS) <br>
- hardware version (e.g. "A") <br>
- Serial No. (e.g. "T-P30050495") <br>
When comparing the topology, the following data is compared in the target and actual topologies: <br>
p9908 = 0: Component type, Article No., Hardware version, Manufacturer, Serial No. <br>
p9908 = 1: Component type, Article Number <br>
p9908 = 2: Component type <br>
p9908 = 3: Component class (e.g. Sensor Module or Motor Module)
\end{tabular}

p9909	Topology comparison component replacement / Topo_cmpr replace		
CU_I, CU_NX_CX,	Can be changed: C1(1)	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Topology	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	1	1

Description: $\quad$ For $\mathrm{p} 9909=1$, the serial number and the hardware version of the new replaced component is automatically transferred from the actual topology into the target topology and then saved in a non-volatile fashion.
For the components that have been replaced, the electronic rating plate must match as far as the following data is concerned:

- component type (e.g. "SMC20")
- article number (e.g. "6SL3055-0AA0-5BAO")

For p9909 = 0, serial numbers and hardware versions are not automatically transferred. In this case, the transfer must be made using p9904.
Dependency: Refer to: p9904, p9905
Note: $\quad$ The modified target topology is automatically saved in a non-volatile fashion when the drive object runs-up (e.g. after a POWER ON).
Special case for Control Unit and option slot modules:
When replacing these components, independent of p9909, the serial number and hardware version are automatically transferred and saved in a non-volatile fashion.

p9910	Target topology accept additional components / Add comp accept		
CU_I, CU_NX_CX,	Can be changed: C1(1)	Calculated: -	Access level: 1
CU_S_AC_DP,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: Topology	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Max	Expert list: 1
CU_S150_PN,	Min	6	Factory setting
CU_S120_DP,	0		0
CU_S150_DP,			
CU_I_D410	Accept additional inserted DRIVE-CLiQ components into the target topology.		
Description:	The corresponding drive objects are added to the project.		
	$0: \quad$ No selection		
Value:	$1:$	Drive object type SERVO	
	$2:$	Drive object type VECTOR	
	$3:$	SINAMICS GM (DFEMV \& VECTORMV)	
	$4:$	SINAMICS SM (AFEMV \& VECTORMV)	
	$5:$	SINAMICS GL (VECTORGL)	
	$6:$	SINAMICS SL (VECTORSL)	


p9911[0...6]	Insert drive object / Drv_obj insert		
CU_I, CU_NX_CX,	Can be changed: C1(1)	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: All groups	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Max	Factory setting	
CU_S12ODP,	Min	4294967295	0
CU_S150_DP,	0		

Index:

Note:

CU_I, CU_NX_CX,	Can be changed: C1(3)	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: All groups	Unit group:	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Min	Max	Factory setting
CU_S120_DP,	0	0	0


Description:	Drive objects can be deleted using this parameter.
	Index 0:
	The values $2 \ldots 62$ are permissible.
	Index 1:
	$=0:$ Ready.
	$=1:$ Reset (only indices 0 and 1)
	$=2:$ Reset all (indices 0 and 1 and flagged entries).
	$=3:$ Check and flag for deletion.
	$=30:$ Check and flag for deletion. Keep target topology.
Index:	[0] $=$ Drive object number
Note:	[1] = Reset or check and flag for deletion
	Only for internal Siemens use.

### 2.2 List of parameters

p9913[0...2]	Change drive object number / Change drv_obj_no		
CU_I, CU_NX_CX,	Can be changed: C1(4)	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: All groups	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	62	0
CU_S150_DP,	0		


Description:	Existing drive objects can be assigned new numbers using these parameters.
	Index 0:
	The values $2 \ldots 62$ are permissible.
	Index 1:
	The values $2 \ldots 62$ are permissible.
	Index 2:
	= 0: Ready.
	= 1: Reset (only indices $0 \ldots 2$ ).
	= 2: Reset all (indices $0 \ldots 2$ and flagged entries).
	= 3: Check and flag for modification.
Index:	[0] = Drive object number old   [1] = Drive object number new
	[2] = Reset or check and flag for modification
Note:	Only for internal Siemens use.
	The parameter is not displayed for the STARTER commissioning tool.


p9914[0...2]	Change component number / Change comp_no		
CU_I, CU_NX_CX,	Can be changed: C1	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: All groups	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S150_PN,	Min	Max	Factory setting
CU_S120_DP,	199	0	


Description:	You can change the number of topology components using this parameter.
	Index 0:
	The values $2 \ldots 199$ are permissible.
	Index 1:
	The values $2 \ldots 199$ are permissible.
	Index 2:
	= 0: Ready .
	= 1: Reset (only indices $0 . . .2$ ).
	= 2: Reset all (indices $0 \ldots 2$ and flagged entries).
	= 3: Check and flag for modification.
Index:	
	[1] = Component number new
	[2] = Reset or check and flag for modification
Note:	Only for internal Siemens use.
	The parameter is not displayed for the STARTER commissioning tool.


p9915	DRIVE-CLiQ data transfer error shutdown threshold master / DQ fault master		
CU_I, CU_NX_CX,	Can be changed: C1(1)	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
$\mathrm{CU}^{-} \mathrm{S} 120 \text { PN, }$	P-Group: Topology	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0000 hex	0007 07FF hex	0007 02FF hex
Description:	Only for internal Siemens service purposes.		
p9916	DRIVE-CLiQ data transfer error shutdown threshold slave / DQ fault slave		
CU_I, CU_NX_CX,	Can be changed: C 1 (1)	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU S120 PN,	P-Group: Topology	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0000 hex	0007 07FF hex	0007 02FF hex
Description:	Only for internal Siemens service purposes.		
p9917[0...1]	Delete component / Delete comp		
CU_I, CU_NX_CX,	Can be changed: C 1 (30)	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU S 120 PN,	P-Group: All groups	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 0
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	0	199	0
Description:	Excessive components that have not been assigned can be removed from the component target topology using this parameter.		
	Index 0:		
	The values $2 \ldots 199$ are permissible.		
	Index 1:		
	= 0: Ready.		
	= 1: Reset (only indices 0 and 1)		
	= 2: Reset all (indices 0 and 1 and flagged entries).		
	= 3: Check and flag for deletion.		
Index:	[0] = Component number		
Note:	Only for internal Siemens use.		
	The parameter is not displayed for the STARTER commissioning tool.		

### 2.2 List of parameters



p9920[0...99]	Licensing enter license key / Enter license key		
CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: -	Func. diagram:
	P-Group: -	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Enters the license key for this drive unit.		
	Example of the license key:		
	EACZ-QBCA $=696567904581666765 \mathrm{dec}$ (ASCII characters)		
	Index 0 = license key character 1 (e.g. 69 dec )		
	Index 1 = license key character 2 (e.g. 65 dec )		
	...		
	Index 8 = license key character 9 (e.g. 65 dec )		
	Index 9 = license key character 10 (e.g. 0 dec)		
	...		
Dependency:	Refer to: r7843, p9921		
	Refer to: F13000, A13001, F13010		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
	With the STARTER commissioning tool, the ASCII characters are not entered coded, i.e. the license key characters can be entered as printed in the Certificate of License. In this case, the commissioning tool codes the characters.		
Note:	For an invalid license key, all the indices have the value 0 dec .		
	Only the ASCII characters contained in a license key can be entered ("1" to "9", "A" to "H", "K" to "N", "P" to "Z" as well as "-").		
	When manually changing p9920[x] to the value 0 dec, all the values of all the following indices are also set to 0 dec. After entering the license key, the license key must be activated (p9921).		
	The following fault and LED indicate that the licensing is not adequate:		
	- F13000 --> licensing not adequate		
	- LED READY --> flashes red at approximately 2 Hz		


p9921	Licensing activate license key / Act license key		
CU_S_AC_DP,	Can be changed: U, T	Calculated: -	Access level: 2
CU_S_AC_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU S150 PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_DP,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_DP	Min	Max	Factory setting
	0	1	0
Description:	Activates the entered license key.		
	The following is executed when activating the license key.		
	- the checksum of the entered license key is checked.		
	- the entered license key is saved in a non-volatile fashion on the memory card.		
	- re-enter the license key.		
Value:	0 : Inactive		
	1: Activate start license key		
Dependency:	Refer to: p9920		
	Refer to: F13000, A13001, F13010		
Note:	Before activation, the license key entered using parameter p9920 is checked. If this check identifies an error activation is rejected. In this case, writing a 1 to p9921 is rejected.		
	When the license key has been activated, p9921 is automatically set to 0 .		

### 2.2 List of parameters



p9931[0...194]	System logbook module selection / SYSLOG mod select.		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_PN,	Sot for motor type: -	Max	Expert list: 1
CU_S150_PN,	FFFF FFFF hex	Factory setting	
CU_S120_DP,	Min		0000 hex
CU_S150_DP,	0000 hex		
CU_I_D410			
Description:	Only for service purposes.	Calculated: -	Access level: 4
p9932	Save system logbook EEPROM / SYSLOG EEPROM save	Func. diagram: -	
CU_I, CU_NX_CX,	Can be changed: U, T	Un. index: -	Unit selection: -
CU_S_AC_DP,	Data type: Unsigned8	Unit group: -	Expert list: 1
CU_S_AC_PN,	P-Group: -	Factory setting	
CU_S120_PN,	Not for motor type: -	Max	0
CU_S150_PN,	255		
CU_S120_DP,	Min		
CU_I_D410_DP,	0		
Description:	Only for service purposes.		


r9935.0	BO: POWER ON delay signal / POWER ON t_delay			
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Acces	
CU_S_AC_DP,	Data type: Unsigned8	Dyn. index: -	Func.	
$\begin{aligned} & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \end{aligned}$	P-Group: -	Unit group: -	Unit s	
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert	
CU_S120_DP,	Min	Max	Factor	
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	-	-		
Description:	Display and binector output for a delay after POWER ON.			
	After switch-on, binector output r9935.0 is set with the start of the first sampling time and is again reset after approx. 100 ms .			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 POWER ON delay signal	High	Low	



### 2.2 List of parameters

p9937	DRIVE-CLiQ diagnostic configuration / DQ diag config				
CU_I, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_PN, CU_S150_PN, CU_S120_DP, CU_S150_DP, CU_I_D410		be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4	
		type: Unsigned16	Dyn. index: -	Func. diagram: -	
		oup: -	Unit group: -	Unit selection: -	
		or motor type: -	Scaling: -	Expert list: 1	
	Mi		Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Sets the configuration for the DRIVE-CLiQ diagnostics (error counter r9936).				
	Using this function, connections and cables of DRIVE-CLiQ connections can be checked for transfer errors. The error counter is evaluated in the PHY blocks involved.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Alarm for connection error	Yes	No	-
	08	Reset error counter	Yes	No	-
Dependency:	Refer to: r9936, p9938				
	Refer to: A01839				
Note:	For bit 00:				
	To activate this function, p9938 must be set to 0 (inactive).				
	After changing the error counter (r9936), an appropriate alarm is output.				
	The alarm automatically disappears after 5 seconds.				
	For bit 08:				
	With p9937.8 = 1, the error counters are reset (r9936[0...199]).				
	After the reset, p9937.8 is automatically set to 0 .				




### 2.2 List of parameters




r9979	Sampling time with largest total utilization / t_sampl Ig total		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 1	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	$-[\mu \mathrm{s}]$	$-[\mu \mathrm{s}]$
CU_S150_DP,	$-[\mu \mathrm{s}]$		
CU_I_D410			
Description:	Displays the sampling time with the largest total utilization.		
Dependency:	Refer to: r7901, r9976		
	Refer to: F01054		
Note:	The largest total utilization is displayed in r9976[5].		
	Total utilization:		
	Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).		


r9980[0_..165]	Sampling times utilization calculated / t_sampl util calc		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S150_PN,	Max	Factory setting	
CU_S120_DP,	Min	$-[\%]$	$-[\%]$
CU_S150_DP,	$-[\%]$		

Description: Displays the calculated utilizations for the active sampling times based on the existing target topology.
Index:
[0] = Net utilization 0
[1] = Total utilization 0
[2] = Net utilization 1
[3] = Total utilization 1
[4] = Net utilization 2
[5] = Total utilization 2
[6] = Net utilization 3
[7] = Total utilization 3
[8] = Net utilization 4
[9] = Total utilization 4
[10] = Net utilization 5
[11] $=$ Total utilization 5
[12] = Net utilization 6
[13] $=$ Total utilization 6
[14] = Net utilization 7
[15] = Total utilization 7
[16] = Net utilization 8
[17] $=$ Total utilization 8
[18] = Net utilization 9
[19] = Total utilization 9
[20] = Net utilization 10
[21] = Total utilization 10
[22] = Net utilization 11
[23] = Total utilization 11
[24] = Net utilization 12
[25] = Total utilization 12
[26] = Net utilization 13
[27] = Total utilization 13
[28] = Net utilization 14
[29] = Total utilization 14
[30] = Net utilization 15
[31] = Total utilization 15
[32] = Net utilization 16
[33] = Total utilization 16
[34] = Net utilization 17
[35] = Total utilization 17
[36] = Net utilization 18
[37] = Total utilization 18
[38] = Net utilization 19
[39] = Total utilization 19
[40] = Net utilization 20
[41] = Total utilization 20
[42] = Net utilization 21
[43] = Total utilization 21
[44] = Net utilization 22
[45] = Total utilization 22
[46] = Net utilization 23
[47] = Total utilization 23
[48] = Net utilization 24
[49] = Total utilization 24
[50] = Net utilization 25
[51] = Total utilization 25
[52] = Net utilization 26
[53] = Total utilization 26
[54] = Net utilization 27
[55] = Total utilization 27
[56] = Net utilization 28
[57] = Total utilization 28
[58] = Net utilization 29
[59] = Total utilization 29
[60] = Net utilization 30
[61] = Total utilization 30
[62] = Net utilization 31
[63] = Total utilization 31
[64] = Net utilization 32
[65] = Total utilization 32
[66] = Net utilization 33
[67] = Total utilization 33
[68] = Net utilization 34
[69] = Total utilization 34
[70] = Net utilization 35
[71] = Total utilization 35
[72] = Net utilization 36
[73] = Total utilization 36
[74] = Net utilization 37
[75] = Total utilization 37
[76] = Net utilization 38
[77] = Total utilization 38
[78] = Net utilization 39
[79] = Total utilization 39
[80] = Net utilization 40
[81] = Total utilization 40
[82] = Net utilization 41
[83] = Total utilization 41
[84] = Net utilization 42
[85] = Total utilization 42
[86] = Net utilization 43
[87] = Total utilization 43
[88] = Net utilization 44
[89] = Total utilization 44
[90] = Net utilization 45
[91] = Total utilization 45
[92] = Net utilization 46
[93] = Total utilization 46
[94] = Net utilization 47
[95] = Total utilization 47
[96] = Net utilization 48
[97] = Total utilization 48
[98] = Net utilization 49
[99] $=$ Total utilization 49
[100] = Net utilization 50
[101] $=$ Total utilization 50
[102] = Net utilization 51
[103] = Total utilization 51
[104] = Net utilization 52
[105] $=$ Total utilization 52
[106] = Net utilization 53
[107] = Total utilization 53
[108] = Net utilization 54
[109] = Total utilization 54
[110] = Net utilization 55
[111] $=$ Total utilization 55
[112] $=$ Net utilization 56
[113] $=$ Total utilization 56
[114] = Net utilization 57
[115] $=$ Total utilization 57
[116] $=$ Net utilization 58
[117] = Total utilization 58
[118] = Net utilization 59
[119] = Total utilization 59
[120] = Net utilization 60
[121] $=$ Total utilization 60
[122] = Net utilization 61
[123] = Total utilization 61
[124] = Net utilization 62
[125] = Total utilization 62
[126] = Net utilization 63
[127] $=$ Total utilization 63
[128] = Net utilization 64
[129] $=$ Total utilization 64
[130] = Net utilization 65
[131] $=$ Total utilization 65
[132] = Net utilization 66
[133] $=$ Total utilization 66
[134] = Net utilization 67
[135] = Total utilization 67
[136] = Net utilization 68
[137] $=$ Total utilization 68
[138] = Net utilization 69
[139] = Total utilization 69
[140] = Net utilization 70
[141] = Total utilization 70
[142] = Net utilization 71
[143] = Total utilization 71
[144] = Net utilization 72
[145] = Total utilization 72
[146] = Net utilization 73
[147] = Total utilization 73
[148] = Net utilization 74
[149] = Total utilization 74
[150] = Net utilization 75
[151] = Total utilization 75
[152] = Net utilization 76
[153] $=$ Total utilization 76
[154] = Net utilization 77
[155] $=$ Total utilization 77
[156] = Net utilization 78
[157] $=$ Total utilization 78
[158] = Net utilization 79
[159] $=$ Total utilization 79
[160] = Net utilization 80
[161] $=$ Total utilization 80
[162] = Net utilization 81
[163] $=$ Total utilization 81
[164] = Net utilization 82
[165] $=$ Total utilization 82

### 2.2 List of parameters

Dependency:	Refer to: r7901, r9976, r9979
	Refer to: F01054

Note: $\quad$ The corresponding sampling times can be read out in parameter r7901.
Net utilization:
Computing time load that is only called by the sampling time involved.
Total utilization:
Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).

r9981[0...165]	Sampling times utilization measured /t_sampl util meas		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S12OPN,	Scaling: -	Expert list: 1	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	$-[\%]$	$-[\%]$
CU_S150_DP,	$-[\%]$		

Description: Displays the utilizations measured for the active sampling times.
Index: $\quad[0]=$ Net utilization 0
[1] = Total utilization 0
[2] = Net utilization 1
[3] = Total utilization 1
[4] = Net utilization 2
[5] = Total utilization 2
[6] = Net utilization 3
[7] = Total utilization 3
[8] = Net utilization 4
[9] = Total utilization 4
[10] = Net utilization 5
[11] = Total utilization 5
[12] $=$ Net utilization 6
[13] = Total utilization 6
[14] = Net utilization 7
[15] = Total utilization 7
[16] = Net utilization 8
[17] = Total utilization 8
[18] = Net utilization 9
[19] = Total utilization 9
[20] = Net utilization 10
[21] = Total utilization 10
[22] = Net utilization 11
[23] = Total utilization 11
[24] = Net utilization 12
[25] = Total utilization 12
[26] = Net utilization 13
[27] = Total utilization 13
[28] = Net utilization 14
[29] = Total utilization 14
[30] = Net utilization 15
[31] = Total utilization 15
[32] = Net utilization 16
[33] = Total utilization 16
[34] = Net utilization 17
[35] = Total utilization 17
[36] = Net utilization 18
[37] = Total utilization 18
[38] = Net utilization 19
[39] = Total utilization 19
[40] = Net utilization 20
[41] = Total utilization 20
[42] = Net utilization 21
[43] = Total utilization 21
[44] = Net utilization 22
[45] = Total utilization 22
[46] = Net utilization 23
[47] = Total utilization 23
[48] = Net utilization 24
[49] = Total utilization 24
[50] = Net utilization 25
[51] = Total utilization 25
[52] = Net utilization 26
[53] = Total utilization 26
[54] = Net utilization 27
[55] = Total utilization 27
[56] = Net utilization 28
[57] = Total utilization 28
[58] = Net utilization 29
[59] = Total utilization 29
[60] = Net utilization 30
[61] = Total utilization 30
[62] = Net utilization 31
[63] = Total utilization 31
[64] = Net utilization 32
[65] = Total utilization 32
[66] = Net utilization 33
[67] = Total utilization 33
[68] = Net utilization 34
[69] = Total utilization 34
[70] = Net utilization 35
[71] = Total utilization 35
[72] $=$ Net utilization 36
[73] = Total utilization 36
[74] = Net utilization 37
[75] = Total utilization 37
[76] = Net utilization 38
[77] = Total utilization 38
[78] = Net utilization 39
[79] = Total utilization 39
[80] = Net utilization 40
[81] = Total utilization 40
[82] = Net utilization 41
[83] = Total utilization 41
[84] = Net utilization 42
[85] = Total utilization 42
[86] = Net utilization 43
[87] = Total utilization 43
[88] = Net utilization 44
[89] = Total utilization 44
[90] = Net utilization 45
[91] = Total utilization 45
[92] = Net utilization 46
[93] = Total utilization 46
[94] = Net utilization 47
[95] = Total utilization 47
[96] = Net utilization 48
[97] = Total utilization 48
[98] = Net utilization 49
[99] = Total utilization 49
[100] = Net utilization 50
[101] $=$ Total utilization 50
[102] = Net utilization 51
[103] = Total utilization 51
[104] = Net utilization 52
[105] $=$ Total utilization 52
[106] = Net utilization 53
[107] $=$ Total utilization 53
[108] $=$ Net utilization 54
[109] $=$ Total utilization 54
[110] = Net utilization 55
[111] $=$ Total utilization 55

### 2.2 List of parameters

	[112] = Net utilization 56
	[113] = Total utilization 56
	[114] = Net utilization 57
	[115] = Total utilization 57
	[116] = Net utilization 58
	[117] = Total utilization 58
	[118] = Net utilization 59
	[119] = Total utilization 59
	[120] = Net utilization 60
	[121] = Total utilization 60
	[122] = Net utilization 61
	[123] = Total utilization 61
	[124] = Net utilization 62
	[125] = Total utilization 62
	[126] = Net utilization 63
	[127] = Total utilization 63
	[128] = Net utilization 64
	[129] = Total utilization 64
	[130] = Net utilization 65
	[131] = Total utilization 65
	[132] = Net utilization 66
	[133] = Total utilization 66
	[134] = Net utilization 67
	[135] = Total utilization 67
	[136] = Net utilization 68
	[137] = Total utilization 68
	[138] = Net utilization 69
	[139] = Total utilization 69
	[140] $=$ Net utilization 70
	[141] = Total utilization 70
	[142] = Net utilization 71
	[143] = Total utilization 71
	[144] = Net utilization 72
	[145] = Total utilization 72
	[146] = Net utilization 73
	[147] = Total utilization 73
	[148] = Net utilization 74
	[149] = Total utilization 74
	[150] = Net utilization 75
	[151] = Total utilization 75
	[152] = Net utilization 76
	[153] = Total utilization 76
	[154] = Net utilization 77
	[155] = Total utilization 77
	[156] = Net utilization 78
	[157] = Total utilization 78
	[158] = Net utilization 79
	[159] = Total utilization 79
	[160] $=$ Net utilization 80
	[161] = Total utilization 80
	[162] = Net utilization 81
	[163] = Total utilization 81
	[164] = Net utilization 82
	[165] = Total utilization 82
Dependency:	Refer to: r7901, r9975, r9980
	Refer to: F01054
Note:	The corresponding sampling times can be read out in parameter r7901.
	Net utilization:
	Computing time load that is only called by the sampling time involved.
	Total utilization:
	Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).


r9982[0...4]	Data memory utilization / Mem_util dat_mem		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S15O_PN,	Max	Factory setting	
CU_S120_DP,	Min	$-[\%]$	$-[\%]$
CU_S150_DP,	$-[\%]$		

Description: Displays the calculated data memory utilization rates based on the existing target topology.
Index:
[0] = Fast data memory 1
[1] = Fast data memory 2
[2] = Fast data memory 3
[3] = Fast data memory 4
[4] = Reserved
Dependency: Refer to: F01068

r9983[0...4]	Measured data memory utilization (actual load)/ Mem_ut dat_mem ms		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CUS120_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CUSS150_PN,	Max	Factory setting	
CUUS120_DP,	Min	$-[\%]$	$-[\%]$
CU_S150_DP,	$-[\%]$		

Description: Displays the measured data memory utilization rates based on the existing target topology.
Index: [0] = Fast Memory 1
[1] = Fast Memory 2
[2] = Fast Memory 3
[3] = Fast Memory 4
[4] = Heap
Dependency: Refer to: F01068

r9984[0...4]	Data memory utilization TEC / Data mem util TEC	
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -
CU_S_AC_PN,	P-Group: -	Unit group: -
CU_S120_PN,	Not for motor type: -	Scaling: -
CU_S150_PN,	Min	Max
CU_S120_DP,	$-[\%]$	$-[\%]$
CU_S150_DP,		
CU_I_D410	Displays the data memory utilization as a result of Technology Extensions.	
Description:	[0] = Fast Memory 1	
Index:	[1] Fast Memory 2	
	$[2]=$ Fast Memory 3	
	[3] Fast Memory 4	
	[4] = Reserved	
Dependency:	Refer to: F01068	
Note:	TEC: Technology Extension	


r9986[0...7]	DRIVE-CLiQ system load / DQ system load		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_PN,	Sot for motor type: -	Max	Expert list: 1
CU_S150_PN,	Min	Factory setting	
CU_S120_DP,	$-[\%]$	$-[\%]$	
CU_S150_DP,	$-[\%]$		
CU_I_D410			
Description:	Displays the calculated DRIVE-CLiQ system utilization based on the existing target topology.		
	The values are only available in the "Initialization finished" state (r3988 = 800).		
	Index $0 \ldots 7$ corresponds to DRIVE-CLiQ socket X100 ... X107.		
Dependency:	Refer to: F01340		


r9987[0...7]	DRIVE-CLiQ bandwidth load / DQ bandw load		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU S120 PN	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	- [\%]	- [\%]	- [\%]
Description:	Displays the calculated DRIVE-CLiQ bandwidth utilization based on the existing target topology. The values are only available in the "Initialization finished" state (r3988 = 800). Index 0 ... 7 corresponds to DRIVE-CLiQ socket X100 ... X107.   Refer to: F01340		
Dependency:			


r9988[0...7]	DRIVE-CLiQ DPRAM load / DQ DPRAM load		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 3
CU_S_AC_DP,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_S_AC_PN, } \\ & \text { CU_S120_PN, } \end{aligned}$	P-Group: -	Unit group: -	Unit selection: -
CU_S150_PN,	Not for motor type: -	Scaling: -	Expert list: 1
CU_S120_DP,	Min	Max	Factory setting
$\begin{aligned} & \text { CU_S150_DP, } \\ & \text { CU_I_D410 } \end{aligned}$	- [\%]		
Description:	Displays the calculated DRIVE-CLiQ DPRAM load based on the existing target topology. The values are not made available until the RUNUP READY (800) state is adopted (see p3988). Index 0 ... 7 corresponds to DRIVE-CLiQ socket X100 ... X107.		
Dependency:	Refer to: F01340		


p9990	DO memory usage actual value determination selection / Mem_use ActVal sel		
CU_I, CU_NX_CX,	Can be changed: U, T	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_PN,	Not for motor type: -	Max	Expert list: 1
CU_S150_PN,	Factory setting		
CU_S120_DP,	Min	0	
CU_S150_DP,	0		
CU_I_D410			
Description:	The meaning of the parameter differs for reading and writing.		
	Read:		
	- Returns the number of memory areas monitored.		
	Write:		
	- Memory usage of a drive object: Enter drive object number		
	- Memory usage of the complete system: Enter value 65535		


r9991[0...4]	Memory usage drive object actual value / Mem_use DO ActVal		
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -	Access level: 4
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_S_AC_PN,	P-Group: -	Unit group: -	Unit selection: -
CU_S120_PN,	Scaling: -	Expert list: 1	
CU_S150_PN,	Not for motor type: -	Max	Factory setting
CU_S120_DP,	Min	-	
CU_S150_DP,	-		
CU_I_D410			
Description:	Displays the memory usage for each drive object as actual value.		
Index:	$[0]=$ Fast Memory 1		
	$[1]=$ Fast Memory 2		
	$[2]=$ Fast Memory 3		
	$[3]=$ Fast Memory 4		
	$[4]=$ Heap		


r9992[0...4]	Memory usage drive object reference value / Mem_u	
CU_I, CU_NX_CX,	Can be changed: -	Calculated: -
CU_S_AC_DP,	Data type: Unsigned32	Dyn. index: -
CU_S_AC_PN,	P-Group: -	Unit group: -
CU_S120_PN,	Not for motor type: -	Scaling: -
CU_S150_PN,	Min	Max
CU_S120_DP,	-	
CU_S150_DP,	-	
CU_I_D410		
Description:	Displays the memory usage for each drive object as reference value.	
Index:	$[0]=$ Fast Memory 1	
	$[1]=$ Fast Memory 2	
	$[2]=$ Fast Memory 3	
	$[3]=$ Fast Memory 4	
	$[4]=$ Heap	



### 2.2 List of parameters

p10000[0...5]	SI TM54F communication clock cycle / TM54F comm_cycle		
TM54F_MA,TM54F_SL	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [ms]	25.00000 [ms]	[0] 12.00000 [ms]   [1...5] 0.00000 [ms]
Description:	Sets the safety communication clock cycle with which the TM54F communicates with a drive. The communication clock cycle must correspond to the safety monitoring clock cycle of the drive.		
Index:	[ 0 ] = Drive 1   [1] = Drive 2   [2] = Drive 3   [3] = Drive 4   [4] = Drive 5   [5] = Drive 6		
Note:	- if only index 0 of $p 10000$ is used, then $\mathrm{p} 10000[0$ d defines the communication clock cycle that is applicable for all drives used in $\mathrm{p} 10010[$. In this case, all safety monitoring clock cycles on the Control Unit must be identical with p10000[0].		
	- the minimum communication clock cycle is 1 ms .		


p10001	SI Motion delay time for test stop at DO (processor 1) / SI t_delay DO P1		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_I_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$4.00[\mathrm{~ms}]$	$2000.00[\mathrm{~ms}]$	$500.00[\mathrm{~ms}]$


Description:	Sets the delay time for testing the digital output.
	Within this time, for a forced checking procedure of the digital output, the signal must have been detected via the
corresponding readback input (p10047).	


p10001	SI TM54F delay time for test stop at DO 0 ... DO 3 / SI t_delay DO		
TM54F_MA,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
TM54F_SL	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	2.00 [ms]	2000.00 [ms]	500.00 [ms]
Description:	Within this time, for a forced checking procedure of the digital outputs, the signal must have been detected via the corresponding readback input ( p 10047 ).		
Dependency:	Refer to: p10003, p10007, p10041, p10046		
Note:	The delay time must be set to a value greater than the debounce time (p10017).		
	The set time is rounded internally to an integer multiple of the TM54F sampling time (r10015).		




Value:	0 :	Static selected		
	1:	F-DI 0 (X521.2/3/6)		
	2 :	F-DI 1 (X521.4/5/7)		
	3:	F-DI 2 (X522.1/2/7)		
	4:	F-DI 3 (X522.3/4/8)		
	5:	F-DI 4 (X522.5/6/9)		
	6:	F-DI 5 (X531.2/3/6)		
	7:	F-DI 6 (X531.4/5/7)		
	8:	F-DI 7 (X532.1/2/7)		
	9:	F-DI 8 (X532.3/4/8)		
	10:	F-DI 9 (X532.5/6/9)		
	255:	Static deselected		
Dependency:	Refer to: A35081			
Note:	The values "static selected" and "static deselected" result in an inactive function of the safe acknowledgment.			
p10007	BI: SI Motion forced checking procedure F-DO signal source / SI dynF-DI/DOs_src			
SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)		Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary		Dyn. index: -	Func. diagram: 2892
	P-Group: Safety Integrated		Unit group: -	Unit selection: -
	Not for motor type: -		Scaling: -	Expert list: 1
	Min		Max	Factory setting
	-		-	0
Description:	Selects an input terminal to start the test stop.			
	The test stop is started with a $0 / 1$ signal at the input terminal and is then only possible if the drive is not in commissioning mode.			
Dependency:	Refer to: p10001, p10002, p10003, p10040, p10046			
p10007	BI: SI TM54F forced checking procedure F-DI/F-DO signal source / SI dynF-DI/DOs_src			
TM54F_MA	Can be changed: C 2 (95)		Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary		Dyn. index: -	Func. diagram: 2892
	P-Group: Safety Integrated		Unit group: -	Unit selection: -
	Not for motor type: -		Scaling: -	Expert list: 1
	Min		Max	Factory setting
			-	0
Description:	Sets the signal source to initiate the test stop.			
	For example, a digital input of the Control Unit or one of the other Terminal Modules can be set as signal source			
	The test stop is triggered on a $0 / 1$ signal edge.			
	The TM54F must be in the "ready" state ( $0010=0$ ).			
Dependency:	Refer to: p10001, p10003, p10041, p10046			
Notice:	Digital inputs of the TM54F must not be used to trigger the test stop.			
p10008	SI TM54F operating mode / SI op_mod			
TM54F_MA,   TM54F_SL	Can be changed: C2(95)		Calculated: -	Access level: 4
	Data type: Integer16		Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated		Unit group: -	Unit selection: -
	Not for motor type: -		Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		1	1
Description: Sets the operating mode for the			Sets the operating mode for the Terminal Module 54F (TM54F).	
Value:	0 : Function interface			
	1: Control interface			
Note:	Para	eter being prepared. For th	version, the fun	supported.

### 2.2 List of parameters

p10009	SI Motion SLP retraction F-DI (processor 1) / SLP retrF-DI P1		
SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description:	Selects a failsafe digital input (F-DI) for the "SLP retract" function.		
	A rising edge at this F-DI makes it possible to retract the axis, if at this instant in time indicates a violation of the SLP limit.		
	After safe acknowledgment of the active safety faults, the drive can be traversed in the direction of the permitted position range.		
	In the retract mode, SLP becomes inactive, and SDI, if enabled, is selected in the direction of the permitted position range.		
	A 0 signal at the F-DI for retraction, deactivates the active retraction mode (SLP becomes active again, and SDI selected corresponding to the actual F-DIs).		
Value:	0 : Function inactive		
	1: F-DI 0		
	3: F-DI 2		

Note:

- retraction is only possible if SDI is not already selected in the opposite direction of the permitted position range.
- a discrepancy at this F-DI must be acknowledged using a safe acknowledgment.

F-DI: Failsafe Digital Input
SDI: Safe Direction (safe motion direction)
SLP: Safely-Limited Position

p10009	SI TM54F SLP retract F-DI / SI SLP retr F-DI		
TM54F_MA, TM54F_SL	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	10	0
Description:	Selects a failsafe digital input (F-DI) for the "SLP retract" function.		
	A rising edge at this F-DI makes it possible to retract the drives, which at this instant in time indicate a violation of the SLP limit.		
	After safe acknowledgment of the active safety faults, the drives can be traversed in the direction of the permitted position range.		
	In the retract mode, SLP becomes inactive, and SDI, if enabled, is selected in the direction of the permitted position range.		

## Value:

A 0 signal at the F-DI for retraction, deactivates the active retraction mode (SLP becomes active again, and SDI selected corresponding to the actual F-DIs).
Function inactive
F-DI 0 (X521.2/3/6)
F-DI 1 (X521.4/5/7)
F-DI 2 (X522.1/2/7)
F-DI 3 (X522.3/4/8)
F-DI 4 (X522.5/6/9)
F-DI 5 (X531.2/3/6)
F-DI 6 (X531.4/5/7)
F-DI 7 (X532.1/2/7)
F-DI 8 (X532.3/4/8)
F-DI 9 (X532.5/6/9)
Note: $\quad$ - retraction is only possible if SDI is not already selected in the opposite direction of the permitted position range. $\quad$ - a discrepancy at this F-DI must be acknowledged using a safe acknowledgment. $\quad$ F-DI: Failsafe Digital Input $\quad$ SDI: Safe Direction (safe motion direction) $\quad$ SLP: Safely-Limited Position


p10011[0...5]	SI TM54F drive group assignment / SI drv_gr assign		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 3
TM54F_SL	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2892
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	4	1
Description:	Sets the drive group for the drives that are available.		
	A drive group is a combination of several drives with the same types of behavior.		
Index:	[0] = Drive 1		
	[1] = Drive 2		
	[2] = Drive 3		
	[3] = Drive 4		
	[4] = Drive 5		
	[5] = Drive 6		
Note:	If the basic functions are controlled via the TM54F, then within a drive group, only drives with basic functions or drives with extended functions can be assigned.		


p10012[0...5]	SI TM54F Motor/Hydraulic Module Node Identifier Word 1 / SI MM/HM Node ID 1		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 4
TM54F_SL	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	FFFF FFFF hex	Factory setting
	000 hex	0000 hex	
Description:	Sets the actual Node Identifier (word 1, bit $0 \ldots 31$ ) for the Motor/Hydraulic Modules.		


Index:	$[0]=$ Drive 1
	$[1]=$ Drive 2
	$[2]=$ Drive 3
	$[3]=$ Drive 4
	$[4]=$ Drive 5
	$[5]=$ Drive 6
Dependency:	Refer to: p10013, p10014

### 2.2 List of parameters

Note:	The Node Identifier ( 96 bit ) is represented in the following 3 parameters.
	p10012[0] word 1 (bit $0 . .3$ ) for Motor/Hydraulic Module 1
	...
	p10012[5] word 1 (bit 0 ... 31) for Motor/Hydraulic Module 6
	p10013[0] word 2 (bit 32 ... 63) for Motor/Hydraulic Module 1
	...
	p10013[5] word 2 (bit 32 ... 63) for Motor/Hydraulic Module 6
	p10014[0] word 3 (bit 64 ... 95) for Motor/Hydraulic Module 1
	...
	p10014[5] word 3 (bit 64 ... 95) for Motor/Hydraulic Module 6


p10013[0...5]	SI TM54F Motor/Hydraulic Module Node Identifier Word 2 / SI MM Node ID 2		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 4
TM54F_SL	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	0000 hex	
Description:	Sets the actual Node Identifier (word 2, bit $32 \ldots 63)$ for the Motor/Hydraulic Modules.		


Index:	$[0]=$ Drive 1
	$[1]=$ Drive 2
	$[2]=$ Drive 3
	$[3]=$ Drive 4
	$[4]=$ Drive 5
	$[5]=$ Drive 6
Dependency:	Refer to: p10012, p10014
Note:	The complete Node Identifier (96 bit) is represented in p10012, p10013 and p10014.


p10014[0...5]	SI TM54F Motor/Hydraulic Module Node Identifier Word 3 / SI MM Node ID 3		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 4
TM54F_SL	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the actual Node Identifier (word 3, bit $64 . . .95$ ) for the Motor/Hydraulic Modules.		
Index:	[0] = Drive 1		
	[1] = Drive 2		
	[2] = Drive 3		
	[3] = Drive 4		
	[4] = Drive 5		
	[5] = Drive 6		
Dependency:	Refer to: p10012, p10013		
Note:	The complete Node Identifier (96 bit) is represented in p10012, p10013 and p10014.		



p10017	SI Motion digital inputs debounce time (processor 1)/SI DI t_debounceP1		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
SERVO_IAC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$100.00[\mathrm{~ms}]$	
	Sets the debounce time for digital inputs.		

Notice: To filter noise pulses or test impulses from F-DOs, there is the following dependency on the parameter p0799[0]:
- if p0799[0] is less than 1 ms , then $\mathrm{p} 10017=1 \mathrm{~ms}$ or a multiple integer of 1 ms .
- if p0799[0] is greater or equal to 1 ms , then p 10017 must $=\mathrm{p} 0799[0]$ - or must be a multiple integer of $\mathrm{p} 0799[0]$.
Note: Example:
Debounce time $=1 \mathrm{~ms}$ : Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed.
Debounce time $=3 \mathrm{~ms}$ : Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.
The debounce result can be read in r10051.
The set debounce time impacts the response time of the safety function.

p10017	SI TM54F digital inputs debounce time / SI DI t_debounce		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 3
TM54F_SL	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Factory setting	
	$1.00[\mathrm{~ms}]$	1.00 [ms $]$	
Description:	Sets the debounce time for digital inputs.		
	The debounce time is accepted rounded off to whole milliseconds.		
	The debounce time acts on the following digital inputs:		
	- Failsafe digital inputs (F-DI).		
	- Single-channel digital inputs (DI).		

### 2.2 List of parameters

Notice:	To filter noise pulses or test impulses from F-DOs, there is the following dependency on the parameter $p 0799[0]:$
	- if $p 0799[0]$ is less than 1 ms , then $\mathrm{p} 10017=1 \mathrm{~ms}$ or a multiple integer of 1 ms.
Note:	- if $p 0799[0]$ is greater or equal to 1 ms, then p 10017 must $=p 0799[0]-$ or must be a multiple integer of $p 0799[0]$.
	Example:
	Debounce time $=1 \mathrm{~ms}:$ Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed.
	Debounce time $=3 \mathrm{~ms}:$ Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.
	The debounce result can be read in r 10051.


p10020[0...3]	SI TM54F special operating mode selection / SI spec op sel		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 4
TM54F_SL	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	1

Description: Sets the special operating mode for the operating mode "function interface".
0 = Inactive
1 = Safe Operating Stop with braking (SS2)
2 = Safe Operating Stop without braking (SOS)
3 = Safely reduced speed without standstill (SLS)
4 = Safely reduced speed with agreement (SS2 --> SLS)

Index:	$[0]=$ Drive group 1
	$[1]=$ Drive group 2
	$[2]=$ Drive group 3
	$[3]=$ Drive group 4
Dependency:	Refer to: p10008

Note: Parameter being prepared. For this firmware version, the function interface is not supported.
SLS: Safely-Limited Speed
SOS: Safe Operating Stop
SS2: Safe Stop 2

p10021[0...3]	SI TM54F Emergency Stop stop response / SI Emergency Stop		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 4
TM54F_SL	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0

Description: Sets the stop response for the drive group for Emergency Stop.
The input terminal for Emergency Stop is set in p10038.
0 = Stop reaction STO
1 = Stop reaction SS1
2 = Stop reaction SS2
Index:
[0] = Drive group 1
[1] = Drive group 2
[2] = Drive group 3
[3] = Drive group 4
Dependency: Refer to: p10008, p10038
Note: Parameter being prepared. For this firmware version, the function interface is not supported.

p10022	SI Motion STO input terminal (processor 1) /	
SERVO_AC,	Can be changed: C2(95) Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16 Dyn. index: -	Func. diagram: 2900, 2905
SERVO_I_AC, VECTOR I AC	P-Group: Safety Integrated Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	0255	0
Description:	Sets the failsafe digital input (F-DI) for the "STO" function.	
Value:	0: Static selected	
	1: F-DI 0	
	2: F-DI 1	
	3: F-DI 2	
	255: Static deselected	
Dependency:	Refer to: p10122	
Note:	If value $=0$ :	
	No terminal assigned, safety function always selected.	
	If value $=255$ :	
	No terminal assigned, safety function always deselected.	
	F-DI: Failsafe Digital Input	
	STO: Safe Torque Off	



### 2.2 List of parameters

p10023	SI Motion SS1 input terminal (processor 1) / S	
SERVO_AC,	Can be changed: C2(95) Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16 Dyn. index: -	Func. diagram: 2900, 2905
SERVO_I_AC, VECTOR_I AC	P-Group: Safety Integrated Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	0255	0
Description:	Sets the failsafe digital input (F-DI) for the "SS1" function.	
Value:	0 : Static selected	
	1: F-DI 0	
	2: F-DI 1	
	3: F-DI 2	
	255: Static deselected	
Dependency:	Refer to: p10123	
Note:	If value $=0$ :	
	No terminal assigned, safety function always selected.	
	If value $=255$ :	
	No terminal assigned, safety function always deselected.	
	F-DI: Failsafe Digital Input	
	SS1: Safe Stop 1	


p10023[0...3]	SI TM54F SS1 input terminal / SI SS1 F-DI		
TM54F_MA,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: 2900, 2905
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the "SS1" function (operating mode "control interface").		
Value:	0 : Static selected		
	1: F-DI 0 (X521.2/3/6)		
	2: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	6: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	8: F-DI 7 (X532.1/2/7)		
	9: F-DI 8 (X532.3/4/8)		
	10: F-DI 9 (X532.5/6/9)		
	255: Static deselected		
Index:	[0] = Drive group 1		
	[1] = Drive group 2		
	[2] = Drive group 3		
	[3] = Drive group 4		
Note:	If value $=0$ :		
	No terminal assigned, safety function always selected.		
	If value $=255$ :		
	No terminal assigned, safety function always deselected.		
	F-DI: Failsafe Digital Input		
	SS1: Safe Stop 1		


p10024	SI Motion SS2 input terminal (processor 1) / SI Mtn SS2 F-DI P1		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the "SS2" function.		
Value:	0 0. Static selected		
	1: F-DI 0		
	2: F-DI 1		
	3: F-DI 2		
	255: Static deselected		
Note:	If value $=0$ :		
	No terminal assigned, safety function always selected.		
	If value $=255$ :		
	No terminal assigned, safety function always deselected.		
	F-DI: Failsafe Digital Input		
	SS2: Safe Stop 2		


p10024[0...3]	SI TM54F SS2 input	SS2 F-DI	
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input	S2" function (op	interface").
Value:	0: Static selected		
	1: F-DI 0 (X521.2/3/6)		
	2: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	6: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	8: F-DI 7 (X532.1/2/7)		
	9: F-DI 8 (X532.3/4/8)		
	10: F-DI 9 (X532.5/6/9)		
	255: Static deselected		
Index:	[0] = Drive group 1		
	[1] = Drive group 2		
	[2] = Drive group 3		
	[3] = Drive group 4		
Note:	If value $=0$ :		
	No terminal assigned, safety	selected.	
	If value $=255$ :		
	No terminal assigned, safety	deselected.	
	F-DI: Failsafe Digital Input		
	SS2: Safe Stop 2		

### 2.2 List of parameters

p10025	SI Motion SOS input terminal (processor 1) / SI Mtn SOS F-DI P1		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the "SOS" function.		
Value:	0 : Static selected		
	1: F-DI 0		
	2: F-DI 1		
	3: F-DI 2		
	255: Static deselected		
Note:	If value $=0$ :		
	No terminal assigned, safety function always selected.		
	If value $=255$ :		
	No terminal assigned, safety function always deselected.		
	F-DI: Failsafe Digital Input		
	SOS: Safe Operating Stop		


p10025[0...3]	SI TM54F SOS input terminal / SI SOS F-DI		
TM54F_MA,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the "SOS" function (operating mode "control interface").		
Value:			
	$\begin{array}{ll} 0: & \text { Static selected } \\ \text { 1: } & \text { F-D } 0(\text { (X521.2/3/6 }) \end{array}$		
	2: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	F-DI 7 (X532.1/2/7)		
	F-DI 8 (X532.3/4/8)		
	10: F-DI 9 (X532.5/6/9)		
	255: Static deselected		
Index:	[0] = Drive group 1		
	[1] = Drive group 2		
	[2] = Drive group 3		
	[3] = Drive group 4		
Note:	If value $=0$ :		
	No terminal assigned, safety function always selected.		
	If value $=255$ :		
	No terminal assigned, safety function always deselected.		
	F-DI: Failsafe Digital InputSOS: Safe Operating Stop		


p10026	SI Motion SLS input terminal (processor 1)	
SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95) Calculated: -	Access level: 3
	Data type: Integer16 Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated Unit group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	0255	0
Description:	Sets the failsafe digital input (F-DI) for the "SLS" function.	
Value:		
	1: F-DI 0	
	3: F-DI 2	
	255: Static deselected	
Dependency:   Note:	Refer to: p10126	
	If value $=0$ :	
	No terminal assigned, safety function always selected.	
	If value $=255$ :	
	No terminal assigned, safety function always deselected.	
	F-DI: Failsafe Digital Input	
	SLS: Safely-Limited Speed	


p10026[0...3]	SI TM54F SLS input terminal / SI SLS F-DI		
TM54F_MA,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the "SLS" function (operating mode "control interface").		
Value:	0: Static selected		
	1: F-DI 0 (X521.2/3/6)		
	2: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	6: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	8: F-DI 7 (X532.1/2/7)		
	9: F-DI 8 (X532.3/4/8)		
	10: F-DI 9 (X532.5/6/9)		
	255: Static deselected		
Index:	[0] = Drive group 1		
	[1] = Drive group 2		
	[2] = Drive group 3		
	[3] = Drive group 4		
Note:	If value $=0$ :		
	No terminal assigned, safety function always selected.		
	If value $=255$ :		
	No terminal assigned, safety function always deselected.		
	F-DI: Failsafe Digital Input		
	SLS: Safely-Limited Speed		

### 2.2 List of parameters

p10027	SI Motion SLS limit bit 0 input terminal (processor 1) / SI SLS lim0F-DI P1		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the limit value bit 0 of the "SLS" function.		
Value:	0: Static selected		
	1: F-DI 0		
	2: F-DI 1		
	3: F-DI 2		
	255: Static deselected		
Note:	If value $=0$ :		
	No terminal assigned, selection bit remains statically at "0".		
	If value $=255$ :		
	No terminal assigned, selection bit remains statically at "1".		
	F-DI: Failsafe Digital Input		
	SLS: Safely-Limited Speed		


p10027[0...3]	SI TM54F SLS limit bit 0 input terminal / SI SL		
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the limit value bit 0 of the "SLS" function (operating mode "control interface").		
Value:	0: Static selected		
	1: F-DI 0 (X521.2/3/6)		
	F-DI 1 (X521.4/5/7)		
	F-DI 2 (X522.1/2/7)		
	F-DI 3 (X522.3/4/8)		
	F-DI 4 (X522.5/6/9)		
	F-DI 5 (X531.2/3/6)		
	F-DI 6 (X531.4/5/7)		
	F-DI 7 (X532.1/2/7)		
	F-DI 8 (X532.3/4/8)		
	F-DI 9 (X532.5/6/9)		
	255: Static deselected		
Index:	[0] = Drive group 1		
	[1] = Drive group 2		
	[2] = Drive group 3		
	[3] = Drive group 4		
Note:	If value $=0$ :		
	No terminal assigned, selection bit remains statically at "0".		
	If value $=255$ :		
	No terminal assigned, selection bit remains statically at "1".		
	F-DI: Failsafe Digital Input		
	SLS: Safely-Limited Speed		


p10028	SI Motion SLS limit bit 1 input terminal (processor 1) / SI SLS lim1F-DI P1		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the limit value bit 1 of the "SLS" function.		
Value:	0 : Static selected		
	1: F-DI 0		
	2: F-DI 1		
	3: F-DI 2		
	255: Static deselected		
Note:	If value $=0$ :		
	No terminal assigned, selection bit remains statically at "0".		
	If value $=255$ :		
	No terminal assigned, selection bit remains statically at "1".		
	F-DI: Failsafe Digital Input		
	SLS: Safely-Limited Speed		


p10028[0...3]	SI TM54F SLS limit bit 1 input terminal / SI SLS lim 1 F-DI		
TM54F_MA,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the limit value bit 1 of the "SLS" function (operating mode "control interface").		
Value:	0: Static selected		
	1: F-DI 0 (X521.2/3/6)		
	: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	6: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	8: F-DI 7 (X532.1/2/7)		
	9: F-DI 8 (X532.3/4/8)		
	10: F-DI 9 (X532.5/6/9)		
	255: Static deselected		
Index:	[0] = Drive group 1		
	[1] = Drive group 2		
	[2] = Drive group 3		
	[3] $=$ Drive group 4		
Note:	If value $=0$ :		
	No terminal assigned, selection bit remains statically at "0".		
	If value $=255$ :		
	No terminal assigned, selection bit remains statically at "1".		
	F-DI: Failsafe Digital Input		
	SLS: Safely-Limited Speed		

### 2.2 List of parameters

p10030	SI Motion SDI positive input terminal (processor 1) / SI SDI pos F-DI P1		
SERVO_AC,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the "SDI positive" function.		
Value:	0 : Static selected		
	1: F-DI 0		
	2: F-DI 1		
	3: F-DI 2		
	255: Static deselected		
Note:	If value $=0$ :		
	No terminal assigned, safety function always selected.		
	If value $=255$ :		
	No terminal assigned, safety function always deselected.		
	F-DI: Failsafe Digital Input		
	SDI: Safe Direction (safe motion direction)		



p10031	SI Motion SDI negative input terminal (processor 1) / SI SDI neg F-DI P1		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_I_AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the "SDI negative" function.		
Value:	0: Static selected		
	1: F-DI 0		
	2: F-DI 1		
	3: F-DI 2		
	255: Static deselected		
Note:	If value $=0$ :		
	No terminal assigned, safety function always selected.		
	If value $=255$ :		
	No terminal assigned, safety function always deselected.		
	F-DI: Failsafe Digital Input		
	SDI: Safe Direction (safe motion direction)		


p10031[0...3]	SI TM54F SDI negative input terminal / SI SDI neg F-DI		
TM54F_MA,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the "SDI negative" function (operating mode "control interface").		
Value:	0: Static selected		
	1: F-DI 0 (X521.2/3/6)		
	2: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	6: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	8: F-DI 7 (X532.1/2/7)		
	9: F-DI 8 (X532.3/4/8)		
	10: F-DI 9 (X532.5/6/9)		
	255: Static deselected		
Index:	[ 0 ] = Drive group 1		
	[1] = Drive group 2		
	[2] $=$ Drive group 3		
	[3] = Drive group 4		
Note:	If value $=0$ :		
	No terminal assigned, safety function always selected.		
	If value $=255$ :		
	No terminal assigned, safety function always deselected.		
	F-DI: Failsafe Digital Input		
	SDI: Safe Direction (safe motion direction)		

### 2.2 List of parameters

p10032	SI Motion SLP select input terminal (processor 1) / SI SLS sel F-DI P1		
SERVO_AC,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
SERVO_IAC, VECTOR I AC	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the "SLP" function.		
Value:	0 : Static selected		
	1: F-DI 0		
	2: F-DI 1		
	3: F-DI 2		
	255: Static deselected		
Dependency:	Refer to: p10132		
Note:	If value $=0$ :		
	No terminal assigned, safety	selected.	
	If value $=255$ :		
	No terminal assigned, safety	deselected.	
	F-DI: Failsafe Digital Input		
	SLP: Safely-Limited Position		


p10032[0...3]	SI TM54F SLP input terminal / SI SLP F-DI		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0


Description: Value:	Sets the failsafe digital input (F-DI) for the "SLP" function (operating mode "control interface").
	0: Static selected
	1: F-DI 0 (X521.2/3/6)
	2: F-DI 1 (X521.4/5/7)
	3: F-DI 2 (X522.1/2/7)
	4: F-DI 3 (X522.3/4/8)
	5: F-DI 4 (X522.5/6/9)
	6: F-DI 5 (X531.2/3/6)
	7: F-DI 6 (X531.4/5/7)
	8: F-DI 7 (X532.1/2/7)
	9: F-DI 8 (X532.3/4/8)
	10: F-DI 9 (X532.5/6/9)
	255: Static deselected
Index:	[0] = Drive group 1
	[1] = Drive group 2
	[2] = Drive group 3
	[3] = Drive group 4
Note:	If value $=0$ :
	No terminal assigned, safety function always selected.
	If value = 255:
	No terminal assigned, safety function always deselected.
	F-DI: Failsafe Digital Input
	SLP: Safely-Limited Position


p10033	SI Motion SLP position range input terminal (processor 1) / SI SLP pos F-DI P1		
SERVO_AC,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the selection of the position range for "SLP".		
Value:	0: Static selected		
	1: F-DI 0		
	2: F-DI 1		
	3: F-DI 2		
	255: Static deselected		
Note:	If value $=0$ :		
	No terminal assigned, selectio	tatically at "0".	
	If value $=255$ :		
	No terminal assigned, selection	tatically at "1".	
	F-DI: Failsafe Digital Input		
	SLP: Safely-Limited Position		


p10033[0...3]	SI TM54F SLP position range input terminal / SI SLP pos F-DI		
TM54F_MA,   TM54F_SL	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the selection of the position range for "SLP" (operating mode "control interface").		
Value:	0: Static selected		
	1: F-DI 0 (X521.2/3/6)		
	2: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	6: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	8: F-DI 7 (X532.1/2/7)		
	9: F-DI 8 (X532.3/4/8)		
	10: F-DI 9 (X532.5/6/9)		
	255: Static deselected		
Index:	[0] = Drive group 1		
	[1] = Drive group 2		
	[2] = Drive group 3		
	[3] = Drive group 4		
Note:	If value $=0$ :		
	No terminal assigned, selection bit remains statically at "0".		
	If value $=255$ :		
	No terminal assigned, selection bit remains statically at "1".		
	F-DI: Failsafe Digital Input		
	SLP: Safely-Limited Position		

### 2.2 List of parameters


p10037[0...3] SI TM54F agreement input terminal / SI agreement F-DI

TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 4
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0

Description: Sets the failsafe digital input (F-DI) for the "agreement" function (operating mode "function interface").
Value: 0 : Static selected
F-DI 0 (X521.2/3/6)
F-DI 1 (X521.4/5/7)
F-DI 2 (X522.1/2/7)
F-DI 3 (X522.3/4/8)
F-DI 4 (X522.5/6/9)
F-DI 5 (X531.2/3/6)
F-DI 6 (X531.4/5/7)
F-DI 7 (X532.1/2/7)
F-DI 8 (X532.3/4/8)
F-DI 9 (X532.5/6/9)
255: Static deselected

Index:
[0] = Drive group 1
[1] = Drive group 2
[2] = Drive group 3
[3] = Drive group 4
Note:
If value $=0$ :
No terminal assigned, no static agreement.
If value $=255:$
No terminal assigned, static agreement.
F-DI: Failsafe Digital Input

p10038[0...3]	SI TM54F Emergency Stop input terminal / SI E-Stop F-DI		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 4
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0


Description:	Sets the failsafe digital input (F-DI) for the "Emergency Stop" function (operating mode "function interface").
The behavior of this input signal is set in p10021.	


Value:	$0:$	Static selected
	$1:$	F-DI $0($ X521.2/3/6)
$2:$	F-DI $1($ X521.4/5/7)	
	$3:$	F-DI $2($ X522.1/2/7)
	$4:$	F-DI $3($ X522.3/4/8)
	$5:$	F-DI $4($ X522.5/6/9)
	$6:$	F-DI $5($ X531.2/3/6)
	$7:$	F-DI $6($ X531.4/5/7)
	$8:$	F-DI 7 (X532.1/2/7)
	$9:$	F-DI 8 (X532.3/4/8)
	$10:$	F-DI 9 (X532.5/6/9)
	$255:$	Static deselected


Index:	$[0]=$ Drive group 1
	$[1]=$ Drive group 2
	$[2]=$ Drive group 3
	$[3]=$ Drive group 4
Dependency: $\quad$	Refer to: p10008, p10021
Note:	Parameter being prepared. For this firmware version, the function interface is not supported.
	If value = 0:
	No terminal assigned, "Emergency Stop" statically selected.
	If value = 255:
	No terminal assigned, no "Emergency Stop" statically deselected.
	F-DI: Failsafe Digital Input


p10039	SI Motion Safe State signal selection (processor 1) / SI Safe State P1		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2901,2906
SERVO_I_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	00000001 bin
Description:	Selects the individual signals that should be logically combined to create "Safe State".		
Bit field:	Bit Signal name	1 signal	0 signal
	00	Power_removed	Selected
	01	SS1_active	Selected
	02	SS2_active	Selected
	03	SOS_active	Selected
	04	SLS_active	Selected

### 2.2 List of parameters

p10039[0...3]	SI TM54F Safe State signal selection / SI Safe State Sel				
TM54F_MA,   TM54F_SL	Can be changed: C2(95)		Calculated: - Access level: 3		
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2901, 2906	
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	00000001 bin	
Description:	Sets the signals for the drive group specific signal "Safe State".				
Index:	[0] = Drive group 1				
	[1] = Drive group 2				
	[2] = Drive group 3				
	[3] = Drive group 4				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Power_removed	Selected	Not selected	-
	01	SS1_active	Selected	Not selected	-
	02	SS2_active	Selected	Not selected	-
	03	SOS_active	Selected	Not selected	-
	04	SLS_active	Selected	Not selected	-
	05	SDI_pos_active	Selected	Not selected	-
	06	SDI_neg_active	Selected	Not selected	-
	07	SLP_active	Selected	Not selected	-


p10040	SI Motion F-DI input mode (processor 1) / SI F-DI mode P1				
SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC	Can	e changed: C2(95)	Calculated: -	Access level: 3	
	Data	type: Unsigned32	Dyn. index: -	Func. diagram: -	
	P-Gr	up: Safety Integrated	Unit group: -	Unit selection: -	
	Not	or motor type: -	Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000 bin	
Description:	Sets the input mode for the safety digital inputs (F-DI).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		F-DI 1 (X130.2)	NO contact	NC contact	2893
		F-DI 2 (X130.5)	NO contact	NC contact	2893
		F-DI 3 (X131.2)	NO contact	NC contact	2893

Note: Only an NC contact can be connected for the safety digital inputs not listed.

p10040	SI TM54F F-DI input mode / SI F-DI inp_mode				
TM54F_MA, TM54F_SL	Can be changed: $\mathrm{C} 2(95)$		Calculated: - Access level: 3		
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Sets the input mode for the safety digital inputs (F-DI).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	F-DI 0, DI 1+(X521.3)	NO contact	NC contact	2893
	01	F-DI 1, DI 3+ (X521.5)	NO contact	NC contact	2893
	02	F-DI 2, DI 5+ (X522.2)	NO contact	NC contact	2893
	03	F-DI 3, DI 7+ (X522.4)	NO contact	NC contact	2893
	04	F-DI 4, DI 9+ (X522.6)	NO contact	NC contact	2893
	05	F-DI 5, DI 11+ (X531.3)	NO contact	NC contact	2894
	06	F-DI 6, DI 13+ (X531.5)	NO contact	NC contact	2894
	07	F-DI 7, DI 15+(X532.2)	NO contact	NC contact	2894
	08	F-DI 8, DI 17+(X532.4)	NO contact	NC contact	2894
	09	F-DI 9, DI 19+(X532.6)	NO contact	NC contact	2894
Note:		an NC contact can be con	safety digital inputs		


p10041	SI TM54F F-DI enable for test / SI F-Dl enab test				
TM54F_MA, TM54F_SL	Can be changed: C2(95)		Calculated: - Acces		
	Data type: Unsigned32		Dyn. index: - Func.		
	P-Group: Safety Integrated		Unit group: - Unit s		
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Enable signal for the integration of F-DI in the test (forced checking procedure) of the sensor power supply.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		F-DI 0, power supply L1+	Test active	No test	-
		F-DI 1, power supply L1+	Test active	No test	-
		F-DI 2, power supply L1+	Test active	No test	-
		F-DI 3, power supply L1+	Test active	No test	-
		F-DI 4, power supply L1+	Test active	No test	-
		F-DI 5, power supply L2+	Test active	No test	-
		F-DI 6, power supply L2+	Test active	No test	-
		F-DI 7, power supply L2+	Test active	No test	-
		F-DI 8, power supply L2+	Test active	No test	-
		F-DI 9, power supply L2+	Test active	No test	-
Note:	F-DI: Failsafe Digital Input				
p10042[0...5]	SI Motion F-DO signal sources (processor 1) / SI Mtn F-DOs_srcP1				
SERVO_AC,	Can be changed: C 2 (95)		Calculated: -	Access level: 3	
VECTOR_AC,	Data type: Integer16		Dyn. index: -	Func. diagram: 2877	
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling:	Expert list: 1	
	Min		Max	Factory setting	
	0		15	0	
Description:	Sets the signal sources for F-DO 0 (X131.5).				
	The 6 signal sources in p10042[0...5] are AND'ed and the result is output at F-DO 0.				
Value:	0 : No function				
	1: STO active				
	2: SS1 active				
	3: SS2 active				
	4: SOS active				
	5: SLS active				
	6:	SSM feedback signal active			
		Safe state			
	7:	SOS selected			
	8:	Internal event			
	$9:$ 10	Active SLS stage bit 0			
	11:	Active SLS stage bit 1			
	12:	SDI positive active			
		SDI negative active			
	14:	SLP active			
	15: Active SLP area				
Index:	[0] = AND logic operation input 1				
	[1] = AND logic operation input 2				
	[2] = AND logic operation input 3				
	[3] = AND logic operation input 4				
	[4] = AND logic operation input 5				
	[5] = AND logic operation input 6				
Note:	F-DO	: Failsafe Digital Output			

### 2.2 List of parameters

p10042[0...5]	SI TM54F F-DO 0 signal sources / SI F-DO 0 S_src			
TM54F_MA, TM54F_SL	Can be changed: $\mathrm{C} 2(95)$		Calculated: -	Access level: 3
	Data type: Integer16		Dyn. index: -	Func. diagram: 2902, 2907
	P-Group: Safety Integrated		Unit group: -	Unit selection: -
	Not for motor type: -		Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		783	0
Description:	Sets the signal sources for F-DO 0 .			
	The 6 signal sources in p10042[0...5] are AND'ed and the result is output at F-DO 0 .			
Value:		0 : No function		
		1: Drive group 1 STO ac		
	2: Drive group 1 SS1 active			
	3: Drive group 1 SS2 active			
	4: Drive group 1 SOS active			
	5: Drive group 1 SLS active			
	6: Drive group 1 SSM feedback signal active			
	7: Drive group 1 safe state			
	8: Drive group 1 SOS selected			
	9: Drive group 1 internal event			
	10: Drive group 1 active SLS stage bit 0			
	11: Drive group 1 active SLS stage bit 1			
	12: Drive group 1 SDI positive active			
	13: Drive group 1 SDI negative active			
	14: Drive group 1 SLP active			
	15: Drive group 1 active SLP area			
	257: Drive group 2 STO active			
	258: Drive group 2 SS1 active			
	259: Drive group 2 SS2 active			
	260: Drive group 2 SOS active			
	261: Drive group 2 SLS active			
	262: Drive group 2 SSM feedback signal active			
	263: Drive group 2 safe state			
	264: Drive group 2 SOS selected			
	265: Drive group 2 internal event			
	266: Drive group 2 active SLS stage bit 0			
	267: Drive group 2 active SLS stage bit 1			
	268: Drive group 2 SDI positive active			
	269: Drive group 2 SDI negative active			
	270: Drive group 2 SLP active			
	271: Drive group 2 active SLP area			
	513: Drive group 3 STO active			
	514: Drive group 3 SS1 active			
	515: Drive group 3 SS2 active			
	516: Drive group 3 SOS active			
	517: Drive group 3 SLS active			
	518: Drive group 3 SSM feedback signal active			
	519: Drive group 3 safe state			
	520: Drive group 3 SOS selected			
	521: Drive group 3 internal event			
	522: Drive group 3 active SLS stage bit 0			
	523: Drive group 3 active SLS stage bit 1			
	524: Drive group 3 SDI positive active			
	525: Drive group 3 SDI negative active			
	526:527:Drive group 3 SLP activedroup 3 active SLP area			



### 2.2 List of parameters

	513:	Drive group 3 STO active
	514:	Drive group 3 SS1 active
	515:	Drive group 3 SS2 active
	516:	Drive group 3 SOS active
	517:	Drive group 3 SLS active
	518:	Drive group 3 SSM feedback signal active
	519:	Drive group 3 safe state
	520:	Drive group 3 SOS selected
	521:	Drive group 3 internal event
	522:	Drive group 3 active SLS stage bit 0
	523:	Drive group 3 active SLS stage bit 1
	524:	Drive group 3 SDI positive active
	525:	Drive group 3 SDI negative active
	526:	Drive group 3 SLP active
	527:	Drive group 3 active SLP area
	769:	Drive group 4 STO active
	770:	Drive group 4 SS1 active
	771:	Drive group 4 SS2 active
	772:	Drive group 4 SOS active
	773:	Drive group 4 SLS active
	774:	Drive group 4 SSM feedback signal active
	775:	Drive group 4 safe state
	776:	Drive group 4 SOS selected
	777:	Drive group 4 internal event
	778:	Drive group 4 active SLS stage bit 0
	779:	Drive group 4 active SLS stage bit 1
	780:	Drive group 4 SDI positive active
	781:	Drive group 4 SDI negative active
	782:	Drive group 4 SLP active
	783:	Drive group 4 active SLP area
Index:	[0] =	ND logic operation input 1
	[1] =	ND logic operation input 2
	[2] =	ND logic operation input 3
	[3] =	ND logic operation input 4
	[4] =	ND logic operation input 5
	[5] =	ND logic operation input 6
Note:	F-DO	Failsafe Digital Output

p10044[0...5] SI TM54F F-DO 2 signal sources / SI F-DO 2 S_src

TM54F_MA, Can be changed: C2(95)
TM54F_SL Data type: Integer16
P-Group: Safety Integrated
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
783

Access level: 3
Func. diagram: 2902, 2907
Unit selection: -
Expert list: 1
Factory setting
0

Description: Sets the signal sources for F-DO 2.
The 6 signal sources in p10044[0...5] are AND'ed and the result is output at F-DO 2.

## Value:

$0:$	No function
1:	Drive group 1 STO active
$2:$	Drive group 1 SS1 active
$3:$	Drive group 1 SS2 active
4:	Drive group 1 SOS active
$5:$	Drive group 1 SLS active
$6:$	Drive group 1 SSM feedback signal active
$7:$	Drive group 1 safe state
8:	Drive group 1 SOS selected
$9:$	Drive group 1 internal event
10:	Drive group 1 active SLS stage bit 0
11:	Drive group 1 active SLS stage bit 1
12:	Drive group 1 SDI positive active
13:	Drive group 1 SDI negative active
14:	Drive group 1 SLP active
$15:$	Drive group 1 active SLP area



### 2.2 List of parameters

## Value:

No function
Drive group 1 STO active
Drive group 1 SS1 active
Drive group 1 SS2 active
Drive group 1 SOS active
Drive group 1 SLS active
Drive group 1 SSM feedback signal active
Drive group 1 safe state
Drive group 1 SOS selected
Drive group 1 internal event
Drive group 1 active SLS stage bit 0
Drive group 1 active SLS stage bit 1
Drive group 1 SDI positive active
Drive group 1 SDI negative active
Drive group 1 SLP active
Drive group 1 active SLP area
Drive group 2 STO active
258: Drive group 2 SS1 active
259: Drive group 2 SS2 active
260: Drive group 2 SOS active
261: Drive group 2 SLS active
262: Drive group 2 SSM feedback signal active
263: Drive group 2 safe state
264: Drive group 2 SOS selected
265: Drive group 2 internal event
266: Drive group 2 active SLS stage bit 0
267: Drive group 2 active SLS stage bit 1
268: Drive group 2 SDI positive active
269: Drive group 2 SDI negative active
270: Drive group 2 SLP active
271: Drive group 2 active SLP area
513: Drive group 3 STO active
514: Drive group 3 SS1 active
515: Drive group 3 SS2 active
516: Drive group 3 SOS active
517: Drive group 3 SLS active
518: Drive group 3 SSM feedback signal active
519: Drive group 3 safe state
520: Drive group 3 SOS selected
521: Drive group 3 internal event
522: Drive group 3 active SLS stage bit 0
523: Drive group 3 active SLS stage bit 1
524: Drive group 3 SDI positive active
525: Drive group 3 SDI negative active
526: Drive group 3 SLP active
527: Drive group 3 active SLP area
769: Drive group 4 STO active
770: Drive group 4 SS1 active
771: Drive group 4 SS2 active
772: Drive group 4 SOS active
773: Drive group 4 SLS active
774: Drive group 4 SSM feedback signal active
775: Drive group 4 safe state
776: Drive group 4 SOS selected
777: Drive group 4 internal event
778: Drive group 4 active SLS stage bit 0
779: Drive group 4 active SLS stage bit 1
780: Drive group 4 SDI positive active
781: Drive group 4 SDI negative active
782: Drive group 4 SLP active
783: Drive group 4 active SLP area


### 2.2 List of parameters

p10047[0...3]	SI TM54F F-DO test stop mode / SI F-DO test mode		
TM54F_MA,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	3	2
Description:	Sets the test stop mode for the particular safety digital output (F-DO)		
	Index 0: F-DO 0		
	Index 1: F-DO 1		
	Index 2: F-DO 2		
	Index 3: F-DO 3		
Value:	1: Test mode 1 evaluation of int. diagnostic signal (passive load)		
	2: $\quad$ Test mode 2 read back F-DO in DI (relay circuit)		
	3: Test mode 3 read back F-DO in DI (actuator with feed		
Note:	If value $=1$ :		
	When this test mode is being used, and excessive resistance of the load between DO+ and DO- can lead to problems during the test stop. It is therefore important to make sure that the load resistance at an individual F-DO does not exceed 10 kOhm.		


p10048	SI TM54F F-DI F-DO test stop configuration / SI teststop config		
TM54F_MA	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group:	Unit selection: -
	Not for motor type: -	Maxing: -	Expert list: 1
Min	1	Factory setting	
Description:	0	Sets the configuration for the test stop of the F-DI and F-DO of the 54F Terminal Module (TM54F).	
	For p10048 =1:		
	If the automatic test stop is activated, then the test stop can still be started using binector input p10007.		

Value: $\quad 0: \quad$ Manual test stop via BICO p10007
1: Automatic test stop
Note: $\quad$ The automatic test stop is started after power up, partial power up or a warm restart.

r10049	SI Motion F-DI monitoring status (processor 1) / SI F-DI status P1			
SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the monitoring status of the failsafe digital inputs (F-DI).			
	The F-Dls that are being used by the Safety Integrated Functions are displayed.			
	If the module used has fewer than 3 F-DIs, "Freely available" is displayed for the F-Dls which are not in use.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 F-DI 0	Safety monitored	Freely available	-
	01 F-DI 1	Safety monitored	Freely available	-
	02 F-DI 2	Safety monitored	Freely available	-
Dependency:	p10006 / p10106			
	p10009 / p10109			
	p10022 / p10122			
	p10023 / p10123			
	p10024 / p10124			
	p10025 / p10125			

```
p10026 / p10126
p10027 / p10127
p10028 / p10128
p10030 / p10130
p10031 / p10131
p10032 / p10132
p10033 / p10133
p10036 / p10136
p10050 / p10150
Refer to: r10149
```

p10050	SI Motion PROFIsafe F-DI transfer (processor 1) / SI Ps F-DI tran P1				
SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C 2 (95)		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000 bin	
Description:	Setting for the transfer and evaluation of failsafe digital inputs (F-DI) via PROFIsafe.				
	The safe state of the selected F-DIs is transferred to the F-control via PROFIsafe. The F-DIs are monitored for discrepancies. Discrepancy faults can be acknowledged via PROFIsafe.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		F-DI 0 processor 1	Transfer	No transfer	-
		F-DI 1 processor 1	Transfer	No transfer	-
		F-DI 2 processor 1	Transfer	No transfer	-
Dependency:	Refe	to: p10150			
Note:	F-DI	Failsafe Digital Input			


r10051.0... 2	CO/BO: SI Motion digital inputs status (processor 1) / SI DI status P1			
SERVO_AC, VECTOR_AC, SERVO_IAC, VECTOR_I_AC	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Display and BICO output for the single-channel debounced status of digital inputs DI 16, DI 18 and DI 20.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 F-DI 0 processor 1	High	Low	-
	01 F-DI 1 processor 1	High	Low	-
	02 F-DI 2 processor 1	High	Low	-

Dependency: Refer to: p9501, p9601, p10017, p10040, p10050, r10151
Note: If a safety function is assigned to an input (e.g. via p10022), then the following applies:

- logical "0": Safety function is selected
- logical "1": Safety function is de-selected

The relationship between the logic level and the external voltage level at the input depends on the parameterization (see p10040) of the input as NC contact or NO contact, and is aligned to the use of a safety function: With 24 V at the input, NC contacts have a logical "1" level, for 0 V at the input, a logical "0" level.
This means that an NC/NC contact parameterization of 0 V at both inputs of the F-DI selects the safety function, for 24 V at both inputs, de-selects the safety function.
With 24 V at the input, NO contacts have a logical " 0 " level, for 0 V at the input, a logical "1" level.
This means that for an NC/NO contact parameterization, the level $0 \mathrm{~V} / 24 \mathrm{~V}$ selects the safety function, the level 24 $\mathrm{V} / 0 \mathrm{~V}$ de-selects the safety function.

F-DI: Failsafe Digital Input
The state of parameter r10151 is delayed by one monitoring clock cycle in relation to r 10051 .
The parameter is only updated in the following cases:

- if the Safety Extended Functions are enabled by means of activation via F-DI.
- if transfer of the F-DIs via PROFIsafe is enabled (see p9501).

In this case only the F-Dls transferred for PROFIsafe are displayed and updated (see p10050/p10150). All F-Dls which have not been transferred have a static zero value.

r10051.0... 9	CO/BO: SI TM54F digital inputs status / SI DI status				
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$	Can be changed: -		Calculated: - Acces		
	Data type: Unsigned32		Dyn. index: - Fu		
	P-Group: Safety Integrated		Unit group: - Unit se		
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and BICO output for the single-channel, logical, and debounced status of the safety digital inputs F-DI 0 ... 9 at Terminal Module 54F (TM54F).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	F-DI 0	Logical 1	Logical 0	2893
	01	F-DI 1	Logical 1	Logical 0	2893
	02	F-DI 2	Logical 1	Logical 0	2893
	03	F-DI 3	Logical 1	Logical 0	2893
	04	F-DI 4	Logical 1	Logical 0	2893
	05	F-DI 5	Logical 1	Logical 0	2894
	06	F-DI 6	Logical 1	Logical 0	2894
	07	F-DI 7	Logical 1	Logical 0	2894
	08	F-DI 8	Logical 1	Logical 0	2894
	09	F-DI 9	Logical 1	Logical 0	2894
Dependency:	Refer to: p10017, p10040				
Note:	If a	afety function is assigne	g. via p10022), th	pplies:	

The relationship between the logic level and the external voltage level at the input depends on the parameterization (see p10040) of the input as NC contact or NO contact, and is aligned to the use of a safety function:
With 24 V at the input, NC contacts have a logical "1" level, for 0 V at the input, a logical "0" level.
This means that an NC/NC contact parameterization of 0 V at both inputs of the F-DI selects the safety function, for 24 V at both inputs, de-selects the safety function.
With 24 V at the input, NO contacts have a logical " 0 " level, for 0 V at the input, a logical " 1 " level.
This means that for an NC/NO contact parameterization, the level $0 \mathrm{~V} / 24 \mathrm{~V}$ selects the safety function, the level 24 $\mathrm{V} / 0 \mathrm{~V}$ de-selects the safety function.
F-DI: Failsafe Digital Input

r10052.0	CO/BO: SI Motion digital outputs status (processor 1) / SI DO status P1			
SERVO_AC,	Can be changed: -	Calculated: -	Access level: 3	
VECTOR_AC,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Display and BICO output for the status of digital output DO 16+ (X131.5) from processor 1.			
Bit field:	Bit Signal name	1 signal	0 signal	
	00 DO 0	High	Low	2895

Note: $\quad$ F-DO: Failsafe Digital Output

r10052.0... 3	CO/BO: SI TM54F digital outputs status / SI DO status			
TM54F_MA,   TM54F_SL	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Safety Integrated	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Display and BICO output for the status of the digital outputs at Terminal Module 54F (TM54F).   TM54F_MA (master): display of DO-   TM54F_SL (slave): display of DO+			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DO 0	High	Low	2895
	01 DO 1	High	Low	2895
	02 DO 2	High	Low	2895
	03 DO 3	High	Low	2895
Note:	F-DO: Failsafe Digital Output			
r10053.0... 3	CO/BO: SI TM54F digital inputs 20 ... 23 status / SI DI 20... 23 stat			
TM54F_SL	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Safety Integrated	Unit group: -	Unit se	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-		
Description:	Displays the status of the digital inputs at the Terminal Module 54F (TM54F).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 20	High	Low	2895
	01 DI 21	High	Low	2895
	02 DI 22	High	Low	2895
	03 DI 23	High	Low	2895
r10054	SI TM54F failsafe events active / SI failsafe act			
TM54F_MA,   TM54F_SL	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
		Max	Factory setting	
	-	-	-	
Description:	Displays the events that lead to the transfer of failsafe signals to all drives assigned to the TM54F. If the second channel of the TM54F transmits failsafe signals, then these are synchronized to the other channel. In this particular case, p10054 of the other TM54F channel should be evaluated.			
	Possibilities of resolving the situation:			
	- error during test stop: correctly perform the test stop.			
	- internal software error: no possibility of resolving this problem, POWER ON.			
	- internal synchronization problem: no possibility of resolving this problem, POWER ON.			
	- internal status error: no possibility of resolving this problem, POWER ON.			
	- parameterizing error: evaluate fault F35004 or F35006. Resolve parameterizing error. POWER ON. After the TM54F firmware has been updated, a POWER ON may be required.			
	- all other causes: remove the cause of the error and carry out a safe acknowledgment (p10006).			

### 2.2 List of parameters

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Commissioning mode active (p0010 = 95)	Yes	No	2891
	01	Checksum error of the safety parameters	Yes	No	-
	02	Synchronization problem within TM54F	Yes	No	-
	03	Internal software error	Yes	No	-
	04	Overvoltage in the TM54F	Yes	No	-
	05	Undervoltage in the TM54F	Yes	No	-
	06	Error at test stop	Yes	No	-
	07	Error on data cross-check within TM54F	Yes	No	-
	08	Overtemperature in the TM54F	Yes	No	-
	09	Internal state error	Yes	No	-
	10	Param error	Yes	No	-
	31	Failsafe events active on another channel	Yes	No	-


r10055	SI TM54F communication status drive-specific / Sl comm_stat drv			
TM54F_MA, TM54F_SL	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated	Unit group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the communication status of the individual drives with the Terminal Module 54F (TM54F).			
	For $\mathrm{r} 10055=0$, the following applies:			
	All drives assigned in p10010 communicate with the TM54F.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Communication between drive 1 and TM54F	Not configured	Configured	-
	01 Communication between drive 2 and TM54F	Not configured	Configured	-
	02 Communication between drive 3 and TM54F	Not configured	Configured	-
	03 Communication between drive 4 and TM54F	Not configured	Configured	-
	04 Communication between drive 5 and TM54F	Not configured	Configured	-
	05 Communication between drive 6 and TM54F	Not configured	Configured	-

r10056.0
TM54F MA

Description: Bit field:

CO/BO: SI TM54F status / SI stat
Can be changed: -
Calculated: -
Dyn. index: -
Unit group: -
Scaling: -
Max
-
Display and BICO output for the status of the Terminal Module 54F (TM54F).

## Bit Signal name

1 signal
Active

00 Test stop status

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

## 0 signal

FP

p10061	SI TM54F password input / Sl password inp		
TM54F_MA,	Can be changed: C2(95), U, T	Calculated: -	Access level: 3
TM54F_SL	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2891
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Enters the Safety Integrated password for the Terminal Module 54F (TM54F). This password is required to change the safety-relevant parameters.		
p10062	SI TM54F password new / SI password new		
TM54F_MA,	Can be changed: C 2 (95)	Calculated: -	Access level: 3
TM54F_SL	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2891
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Enters the new Safety Integrated password for the Terminal Module 54F (TM54F).		
Dependency:	A change made to the Safety Integrated password must be acknowledged in the following parameter:		
p10063	SI TM54F password acknowledgment / SI ackn password		
TM54F_MA,	Can be changed: C 2 (95)	Calculated: -	Access level: 3
TM54F_SL	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2891
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Acknowledgment of the new Safety Integrated password for the Terminal Module 54F (TM54F).		
Dependency:	Refer to: p10062		
Note:	The new password entered into p10062 must be re-entered in order to acknowledge. $\mathrm{p} 10062=\mathrm{p} 10063=0$ is automatically set after the new Safety Integrated password has been successfully acknowledged.		
p10070	SI TM54F module identifier / SI module ID		
TM54F_MA	Can be changed: C 2 (95), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	0
Description:	CRC via Node Identifier of the TM54F		

### 2.2 List of parameters



p10101	SI Motion delay time for test stop at DO (processor 2) / SI t_delay DO P2		
SERVO_AC,	Can be changed: C 2 (95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram:
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	4.00 [ms]	2000.00 [ms]	500.00 [ms]
Description:	Within this time, for a forced checking procedure of the digital output, the signal must have been detected via the corresponding readback input (p10047).		
Dependency:	Refer to: p10003, p10007, p10041, p10046		
Note:	The delay time must be set to a value greater than the debounce time (p10017).		
	Regardless of p10001, the forced checking procedure will pause for at least two safety monitoring clock cycles between each stage of the test.		
	The test stop is only performed if the safety output is being used (p10142).		


p10102	SI Motion F-DI changeover discrepancy time (processor 2) / SI Mtn F-DI t P2		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2893, 2894
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.00 [ms]	2000.00 [ms]	500.00 [ms]
Description:	Sets the discrepancy time for digital inputs.		
Dependency:	Refer to: p10002		
Note:	F-DI: Failsafe Digital Input		



### 2.2 List of parameters

p10117	SI Motion digital inputs debounce time (processor 2) / SI DI t_debounceP2		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	100.00 [ms]	1.00 [ms]
Description:	Sets the debounce time for digital inputs.		
	The debounce time acts on the following digital inputs:		
	- Failsafe digital inputs (F-DI).		
	- Single-channel digital input 22 (DI 22, read back input for the forced checking procedure).		
	The debounce time is accepted rounded off to whole milliseconds.		
Dependency:	Refer to: p10017		
Note:	Example:		
	Debounce time $=1 \mathrm{~ms}$ : Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed.		
	Debounce time $=3 \mathrm{~ms}$ : Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.		


p10122	SI Motion STO input terminal (processor 2) / SI STO F-DI P2		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
SERVO_IAC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0


Description:	Sets the failsafe digital input (F-DI) for the "STO" function.
Value:	$0: \quad$ Static selected
	$1: \quad$ F-DI 0
	$2: \quad$ F-DI 1
	$3: \quad$ F-DI 2
	$255: \quad$ Static deselected
Dependency:	Refer to: p10022
Note:	If value $=0:$
	No terminal assigned, safety function always selected.
	If value $=255:$

No terminal assigned, safety function always deselected.
F-DI: Failsafe Digital Input
STO: Safe Torque Off

p10123	SI Motion SS1 input terminal (processor 2) / SI SS1 F-DI P2		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
SERVO_IAC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0

Description: Sets the failsafe digital input (F-DI) for the "SS1" function.

Value:	$0:$	Static selected
	$1:$	F-DI 0
	$2:$	F-DI 1
	$3:$	F-DI 2
	$255: \quad$ Static deselected	
Dependency:	Refer to: p 10023	


Note:	If value $=0$ :   No terminal assigned, safety function always selected.   If value $=255$ :   No terminal assigned, safety function always deselected.   F-DI: Failsafe Digital Input   SS1: Safe Stop 1	
p10124	SI Motion SS2 input terminal (processor 2) / SI SS2 F-DI P2	
SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95) Calculated: -   Data type: Integer16 Dyn. index: -   P-Group: Safety Integrated Unit group: -   Not for motor type: - Scaling: -   Min Max   0 255	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   0
Description: Value:	Sets the failsafe digital input (F-DI) for the "SS2" function.   0: $\quad$ Static selected   1: F-DI 0   2: F-DI 1   3: F-DI 2   255: Static deselected	
Note:	If value $=0$ :   No terminal assigned, safety function always selected.   If value $=255$ :   No terminal assigned, safety function always deselected.   F-DI: Failsafe Digital Input   SS2: Safe Stop 2	
p10125	SI Motion SOS input terminal (processor 2) / SI SOS F-DI P2	
SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95) Calculated: -   Data type: Integer16 Dyn. index: -   P-Group: Safety Integrated Unit group: -   Not for motor type: - Scaling: -   Min Max   0 255	Access level: 3   Func. diagram: -   Unit selection: -   Expert list: 1   Factory setting   0
Description: Value:	Sets the failsafe digital input (F-DI) for the "SOS" function.   0 : $\quad$ Static selected   1: F-DI 0   2: F-DI 1   3: F-DI 2   255: Static deselected	
Note:	If value $=0$ :   No terminal assigned, safety function always selected.   If value $=255$ :   No terminal assigned, safety function always deselected.   F-DI: Failsafe Digital Input   SOS: Safe Operating Stop	

### 2.2 List of parameters

p10126	SI Motion SLS input terminal (processor 2) / SI SLS F-DI P2		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the "SLS" function.		
Value:	0: Static selected		
	1: F-DI 0		
	2: F-DI 1		
	3: F-DI 2		
	255: Static deselected		
Dependency:	Refer to: p10026		
Note:	If value $=0$ :		
	No terminal assigned, safety	selected.	
	If value $=255$ :		
	No terminal assigned, safety	deselected.	
	F-DI: Failsafe Digital Input		
	SLS: Safely-Limited Speed		


p10127	SI Motion SLS limit bit 0 input terminal (processor 2) / SI SLS lim0F-DI P2		
SERVO_AC,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the limit value bit 0 of the "SLS" function.		
Value:	0: Static selected		
	1: F-DI 0		
	2: F-DI 1		
	3: F-DI 2		
	255: Static deselected		
Note:	If value $=0$ :		
	No terminal assigned, selection bit remains statically at "0".		
	If value $=255$ :		
	No terminal assigned, selection bit remains statically at "1".		
	F-DI: Failsafe Digital Input		
	SLS: Safely-Limited Speed		


p10128	SI Motion SLS limit bit 1 input terminal (processor 2) / SI SLS lim1F-DI P2		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram:
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the failsafe digital input (F-DI) for the limit value bit 1 of the "SLS" function.		
Value:			
	Static selectedF-DI 0		
	1: $\begin{array}{ll}\text { 2: } & \text { F-DI } 0 \\ \text { 3: }\end{array}$		
	F-DI 2		
	255: Static deselected		



### 2.2 List of parameters




### 2.2 List of parameters

	13: $\quad$ SDI negative active
	14: $\quad$ SLP active
	15: Active SLP area
	Index:
	$[0]=$ AND logic operation input 1
	$[1]=$ AND logic operation input 2
	$[2]=$ AND logic operation input 3
	$[3]=$ AND logic operation input 4
	$[4]=$ AND logic operation input 5
	$[5]=$ AND logic operation input 6
	F-DO: Failsafe Digital Output



p10147	SI Motion F-DO test stop mode (processor 2) / SI F-DO testmodeP2		
SERVO_AC,	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	3	2
Description:	Sets the test stop mode for the safety digital output (F-DO)		
Value:	1: Test mode 1 evaluation of int. diagnostic signal (passive load)		
	2: Test mode 2 read back F-DO in DI (relay circuit)		
	3: Test mode 3 read back F-DO in DI (actuator with feedback signal)		
Dependency:	Refer to: p10001, p10003, p10007, p10046		


r10149	SI Motion F-DI monitoring status (processor 2) / SI F-DI status P2				
SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the monitoring status of the failsafe digital inputs (F-DI).				
	The F-DIs that are being used by the Safety Integrated Functions are displayed.				
	If the module used has fewer than 3 F -Dls, "Freely available" is displayed for the F-Dls which are not in use.				
Bit field:		Signal name	1 signal	0 signal	FP
		F-DI 0	Safety monitored	Freely available	-
		F-DI 1	Safety monitored	Freely available	-
		F-DI 2	Safety monitored	Freely available	-
Dependency:	p10006 / p10106				
	p10022 / p10122				
	p10023 / p10123				
	p10024 / p10124				
	p10025 / p10125				


	p10026 / p10126				
	p10027 / p10127				
	p10028 / p10128				
	p10030 / p10130				
	p10031 / p10131				
	p10036 / p10136				
	p10050 / p10150				
	Refer to: r10049				
p10150	SI Motion PROFIsafe F-DI transfer (processor 2) / SI Ps F-DI tran P2				
SERVO_AC,   VECTOR_AC,   SERVO_I_AC,   VECTOR_I_AC	Can be changed: C2(95)		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	0000 bin	
Description:	Setting for the transfer and evaluation of failsafe digital inputs (F-DI) via PROFIsafe.				
	The safe state of the selected F-DIs is transferred to the F-control via PROFIsafe. The F-DIs are monitored for discrepancies. Discrepancy faults can be acknowledged via PROFIsafe.				
Bit field:		Signal name	1 signal	0 signal	FP
		F-DI 0 processor 2	Transfer	No transfer	-
		F-DI 1 processor 2	Transfer	No transfer	-
		F-DI 2 processor 2	Transfer	No transfer	-
Dependency:	Refer to: p10050				
Note:	F-DI: Failsafe Digital Input				
r10151.0... 2	CO/BO: SI Motion digital inputs status (processor 2) / SI Dl status P2				
$\begin{aligned} & \text { SERVO_AC, } \\ & \text { VECTOR_AC, } \\ & \text { SERVO_I_AC, } \\ & \text { VECTOR_I_AC } \end{aligned}$	Can be changed: -   Data type: Unsigned32   P-Group: Safety Integrated		Calculated: -	Access level: 3	
			Dyn. index: -	Func. diagram: -	
			Unit group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Display and BICO output for the single-channel debounced status of digital inputs DI 17, DI 19 and DI 21.				
Bit field:		Signal name	1 signal	0 signal	FP
		F-DI 0 processor 2	High	Low	-
		F-DI 1 processor 2	High	Low	-
		F-DI 2 processor 2	High	Low	-
Dependency:	Refer to: p9501, p9601, p10117, p10140, p10150				
Note:	F-DI: Failsafe Digital Input				
	If a safety function is assigned to an input (e.g. via p10122), then the following applies:				
	- logical "0": Safety function is selected				
	- logical "1": Safety function is de-selected				
	The relationship between the logic level and the external voltage level at the input depends on the parameterization (see p10140) of the input as NC contact or NO contact, and is aligned to the use of a safety function:				
	With 24 V at the input, NC contacts have a logical "1" level, for 0 V at the input, a logical "0" level.				
	This means that an NC/NC contact parameterization of 0 V at both inputs of the F-DI selects the safety function, for 24 V at both inputs, de-selects the safety function.				
	With 24 V at the input, NO contacts have a logical "0" level, for 0 V at the input, a logical "1" level.				
	This means that for an NC/NO contact parameterization, the level $0 \mathrm{~V} / 24 \mathrm{~V}$ selects the safety function, the level 24 V/O V de-selects the safety function.				
	The state of parameter r10151 is delayed by one monitoring clock cycle in relation to r10051.				

### 2.2 List of parameters

The parameter is only updated in the following cases:

- if the Safety Extended Functions are enabled by means of activation via F-DI.
- if transfer of the F-Dls via PROFIsafe is enabled (see p9501).

In this case only the F-Dls transferred for PROFIsafe are displayed and updated (see p10050/p10150). All F-Dls which have not been transferred have a static zero value.


p10202[0...1]	SI Motion SBT brake selection / SBT brake select		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	0	2	0

Description: Selects the brakes to be tested.

## Value:

0 : Inhibit
1: Test motor holding brake
2: Test external brake
Index: $\quad[0]=$ Brake 1
[1] = Brake 2
Dependency: Refer to: p10203, p10230, p10235
Refer to: A01785
Note: It is not possible to test two motor holding brakes. An appropriate message is output for an incorrect parameterization.
The brake to be tested is selected using p10230[2] or p10235.2.

p10203	SI Motion SBT control selection / SBT control select		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
SERVO_AC,	Data type: Integer16	Dyn. index:	Func. diagram: 2837
VECTOR_AC,	P-Group: Safety Integrated	Unit group:	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Selects the control for the safe brake test.		
Value:	0 : $\quad$ SBT via SCC (p10235)   1: SBT via BICO (p10230)   2: $\quad$ SBT for test stop selection (p9705/p10250.8)		
Dependency:	Refer to: p9705, p10230, p10235, p10250		
Note:	SCC: Safety Control Channel		
	For a value $=2$, the following applies:		
	Brake 1 with sequence 1 ( $\mathrm{p} 10210[0], \mathrm{p} 10211[0], \mathrm{p} 10212[0], \mathrm{p} 10218$ ) is tested. Brake 1 must be configured as motor holding brake ( $\mathrm{p} 10202[0]=1$ ).		


p10204	SI Motion SBT motor type / SBT motor type		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: -
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	1	0

Description: Selects the motor type for the safe brake test

Value:	$0:$	Rotating
	$1:$	Linear

Dependency: Refer to: F01787

Note: $\quad$ For safety functions that are not enabled (p9501 = 0), the following applies: - p10204 is automatically set the same as r0108.12 when the system boots. When the safe brake test is enabled (10201.0 = 1), the following applies: - p10204 is checked when the system boots to see that it matches r0108.12.

p10208[0...1]	SI Motion SBT test torque ramp time / SBT M_test t_ramp		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
VECTOR_AC, SERVO_I_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	20 [ms]	10000 [ms]	1000 [ms]
Description:	Sets the time, during which the test torque is ramped up against the closed brake. The test torque is then ramped down after the safe brake test.		
Index:	$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Note:	The set time is rounded inter	er multiple of th	

### 2.2 List of parameters

p10208[0...1]	SI Motion SBT test force ramp time / SBT F_test t_ramp		
SERVO (Lin),	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	20 [ms]	10000 [ms]	1000 [ms]
Description:	Sets the time, during which the test force is ramped up against the closed brake. The test force is then ramped down after the safe brake test.		
Index:	$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock cycle.		
p10209[0...1]	SI Motion SBT brake holding torque / SBT brake M_stop		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: C2(95)   Data type: FloatingPoint32   P-Group: Safety Integrated   Not for motor type: -   Min   1.00 [ Nm ]	Calculated: -   Dyn. index: -   Unit group: -   Scaling: -   Max   60000.00 [ Nm ]	Access level: 3   Func. diagram: 2836   Unit selection: -   Expert list: 1   Factory setting   $10.00[\mathrm{Nm}]$
Description: Index:	$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Dependency:	The holding torque of an exter Conversion factor:   - motor type = rotary and axi   - otherwise: p9522 / p9521   Further, the efficiency of the   Refer to: p10210, p10220	ld be converted $9522 \text { / (p9521 x }$   em should be ta	
Note:	The test torque effective for the brake test can be set for each sequence using a factor (p10210, p10220).		
p10209[0...1]	SI Motion SBT brake holding force / SBT brake F_stop		
SERVO (Lin),	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.00 [ N ]	100000.00 [ N$]$	10.00 [ N$]$
Description: Index:	$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Dependency:	Refer to: p10210, p10220		
Note:	The effective test force can be set for each sequence using a factor (p10210, p10220).		


p10210[0...1]	SI Motion SBT test torque factor sequence 1/SBT M_test fact $\mathbf{1}$		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Scaling: -	Expert list: 1	
VECTOR_I_AC	Not for motor type: -	Max	Factory setting
	Min	1.00	1.00

Description: Sets the factor for the test torque of sequence 1 for the safe brake test. The factor is referred to the holding torque of the brake ( p 10209 ).
Index:
[0] = Brake 1
[1] = Brake 2
Dependency: Refer to: p10209, p10230, p10235
Note: $\quad$ The test sequence is selected using p10230[4] or p10235.4.

p10210[0...1]	SI Motion SBT test force factor sequence 1 / SBT F_test fact 1		
SERVO (Lin),	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
SERVO_I_AC (Lin)	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.30	1.00	1.00

Description: Sets the factor for the test force of sequence 1 for the safe brake test. The factor is referred to the holding force of the brake ( p 10209 ).
Index:
[0] = Brake 1
[1] = Brake 2
Dependency: Refer to: p10209, p10230, p10235
Note: $\quad$ The test sequence is selected using p10230[4] or p10235.4.
p10211[0...1] SI Motion SBT test duration sequence 1 / SBT t_test seq 1

SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
VECTOR_AC,	P-Group: Safety Integrated	Unit group:	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	$20[\mathrm{~ms}]$	$10000[\mathrm{~ms}]$	$1000[\mathrm{~ms}]$

Description: Sets the test duration for sequence 1 for the safe brake test. The test torque is available for this time at the closed brake.
Index:
[0] = Brake 1
[1] = Brake 2
Dependency: Refer to: p10230, p10235
Note: $\quad$ The test sequence is selected using p10230[4] or p10235.4.
The set time is rounded internally to an integer multiple of the monitoring clock cycle.

p10211[0...1]	SI Motion SBT test duration sequence 1 / SBT t_test seq 1		
SERVO (Lin),	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
SERVO_I_AC (Lin)	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$20[\mathrm{~ms}]$	$10000[\mathrm{~ms}]$	
Description:	Sets the test duration for sequence 1 for the safe brake test.		
	The test force is available for this time at the closed brake.		

### 2.2 List of parameters

Index:	$[0]=$ Brake 1
	$[1]=$ Brake 2
Dependency:	Refer to: p10230, p10235
Note:	The test sequence is selected using p10230[4] or p10235.4.
	The set time is rounded internally to an integer multiple of the monitoring clock cycle.

p10212[0...1] SI Motion SBT position tolerance sequence 1 / SBT pos_tol seq 1

SERVO AC
VECTOR AC,
SERVO_I_AC,
VECTOR_I_AC
Data type: FloatingPoin
Calculated: -

P-Group: Safety Integrated
Not for motor type: -
Min
0.001 [mm]

Dyn. index: -
Unit group: -
Scaling: -
Max
360.000 [mm]

Access level: 3
Func. diagram: 2836
Unit selection: -
Expert list: 1
Factory setting

Sets the tolerated position deviation for sequence 1 for the safe brake test.
Description
[0] = Brake 1
[1] = Brake 2
Dependency: Refer to: p10230, p10235
Note: $\quad$ The test sequence is selected using p10230[4] or p10235.4.

p10212[0...1]	SI Motion SBT position tolerance sequence 1 / SBT pos_tol seq 1		
SERVO (Safety rot),	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
SERVO_AC (Safety	P-Group: Safety Integrated	Unit group: -	Unit selection: -
rot), VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Safety rot),	Max	Factory setting	
SERVO_IAC (Safety	Min	$360.000\left[{ }^{\circ}\right]$	$1.000\left[{ }^{\circ}\right]$
rot), VECTOR_IAC	$0.001\left[{ }^{\circ}\right]$		

Description: Sets the tolerated position deviation for sequence 1 for the safe brake test.

Index:	$[0]=$ Brake 1
	$[1]=$ Brake 2

Dependency: Refer to: p10230, p10235
Note: $\quad$ The test sequence is selected using p10230[4] or p10235.4.

p10218	SI Motion SBT test torque sign / SBT M_test sign		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: Integer16	Dyn. index: -	Func. diagram: 2837
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_IAC,	Not for motor type: -	Max	Expert list: 1
VECTOR_I_AC	Min	1	Factory setting
	0	0	
Description:	Sets the sign for the test torque for the safe brake test.		
	This parameter is only valid for "SBT for test stop selection" (p10203 = 2).		
Value:	$0: \quad$ Positive		
Dependency:	$1: \quad$ Negative		
	Refer to: p10203		


p10218	SI Motion SBT test force sign / SBT F_test sign		
SERVO (Lin),   SERVO_AC (Lin),   SERVO_I_AC (Lin)	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2837
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the sign for the test force for the safe brake test.   This parameter is only valid for "SBT for test stop selection" (p10203 = 2).		
Value:	0 : Positive		
	1: Negative		
Dependency:	Refer to: p10203		
p10220[0...1]	SI Motion SBT test torque factor sequence 2 / SBT M_test fact 2		
SERVO, VECTOR, SERVO_AC, VECTOR_AC, SERVO_I_AC, VECTOR_I_AC	Can be changed: $\mathrm{C} 2(95)$   Data type: FloatingPoint32   P-Group: Safety Integrated   Not for motor type: -	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: 2836
		Unit group: -	Unit selection: -
		Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.30	1.00	1.00
Description:	Sets the factor for the test torque of sequence 2 for the safe brake test.		
	The factor is referred to the holding torque of the brake ( p 10209 ).		
Index:	$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Dependency:	Refer to: p10209, p10230, p10235		
Note:	The test sequence is selected using p10230[4] or p10235.4.		


p10220[0..1]	SI Motion SBT test force factor sequence 2 / SBT F_test fact 2		
SERVO (Lin),	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
SERVO_I_AC (Lin)	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.30	1.00	1.00
Description:	Sets the factor for the test force of sequence 2 for the safe brake test.		
	The factor is referred to the holding force of the brake (p10209).		
Index:	[0] = Brake 1		
Dependency:	Refer to: p10209, p10230, p10235		
Note:	The test sequence is selected using p10230[4] or p10235.4.		


p10221[0...1]	SI Motion SBT test duration sequence 2 / SBT t_test seq 2		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
SERVO I AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	20 [ms]	10000 [ms]	1000 [ms]
Description:	Sets the test duration for sequence 2 for the safe brake test. The test torque is available for this time at the closed brake.		
Index:	$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Dependency:	Refer to: p10230, p10235		

### 2.2 List of parameters

Note: $\quad$ The test sequence is selected using p10230[4] or p10235.4.

p10221[0...1]	SI Motion SBT test duration sequence 2 / SBT t_test seq 2		
SERVO (Lin),	Can be changed: C 2 (95)	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
SERVO_I_AC (Lin)	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	20 [ms]	10000 [ms]	1000 [ms]
Description:	Sets the test duration for sequence 2 for the safe brake test.		
	The test force is available for this time at the closed brake.		
Index:	$\text { [0] = Brake } 1$		
Dependency:	Refer to: p10230, p10235		
Note:	The test sequence is selected using p10230[4] or p10235.4.		
	The set time is rounded inter	multiple of the	


p10222[0...1]	SI Motion SBT position tolerance sequence 2 / SBT pos_tol seq 2		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	$0.001[\mathrm{~mm}]$	$360.000[\mathrm{~mm}]$	$1.000[\mathrm{~mm}]$

Description: Sets the tolerated position deviation for sequence 2 for the safe brake test.

Index:	$[0]=$ Brake 1
	$[1]=$ Brake 2

Dependency: Refer to: p10230, p10235
Note: $\quad$ The test sequence is selected using p10230[4] or p10235.4.

p10222[0...1]	SI Motion SBT position tolerance sequence 2 / SBT pos_tol seq 2		
SERVO (Safety rot),	Can be changed: C2(95)	Calculated: -	Access level: 3
VECTOR (Safety rot),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
SERVO_AC (Safety	P-Group: Safety Integrated	Unit group: -	Unit selection: -
rot), VECTOR_AC	Not for motor type: -	Scaling: -	Expert list: 1
(Safety rot),	Max	Factory setting	
SERVO_I_AC (Safety Min $360.000\left[{ }^{\circ}\right]$			
rot), VECTOR_I_AC    (Safety rot) $0.001\left[{ }^{\circ}\right]$			

Description: Sets the tolerated position deviation for sequence 2 for the safe brake test.

Index:	$[0]=$ Brake 1
	$[1]=$ Brake 2

Dependency: Refer to: p10230, p10235
Note: $\quad$ The test sequence is selected using p10230[4] or p10235.4.

p10230[0...5]	BI: SI Motion SBT control word / SBT STW		
SERVO, VECTOR,	Can be changed: C2(95)	Calculated: -	Access level: 3
SERVO_AC,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2837
VECTOR_AC,	P-Group: Safety Integrated	Unit group: -	Unit selection: -
SERVO_I_AC,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_I_AC	Min	Max	Factory setting
	-	-	0

Description: Sets the signal sources for the control word of the safe brake test
This parameter is only valid for "SBT via BICO" (p10203 = 1).

Index:	[0] = Select brake test   [1] = Start brake test   [2] = Select brake   [3] = Select test torque sign   [4] = Select test sequence   [5] = External brake status	
Note:	For BI: p10230[0]:   $0 / 1$ signal: select brake test.   0 signal: inactive.   For BI: p10230[1]:   0/1 signal: start brake test.   For BI: p10230[2]:   1 signal: select brake 2.   0 signal: select brake 1 .   For BI: p10230[3]:   1 signal: select negative test torque.   0 signal: select positive test torque.   For BI: p10230[4]:   1 signal: select test sequence 2 .   0 signal: select test sequence 1 .   For BI: p10230[5]:   1 signal: external brake closed.   0 signal: external brake open.	
p10230[0...5]   SERVO (Lin),   SERVO_AC (Lin),   SERVO_I_AC (Lin)	BI: SI Motion SBT control word / SBT STW	Access level: 3   Func. diagram: 2837   Unit selection: -   Expert list: 1   Factory setting   0
Description:   Index:	Sets the signal sources for the control word of the safe brake test This parameter is only valid for "SBT via BICO" (p10203 = 1).   [0] = Select brake test   [1] = Start brake test   [2] $=$ Select brake   [3] = Select test force sign   [4] = Select test sequence   [5] = External brake status	
Note:	For BI: p10230[0]:   $0 / 1$ signal: select brake test.   0 signal: inactive.   For BI: p10230[1]:   $0 / 1$ signal: start brake test.   For BI: p10230[2]:   1 signal: select brake 2.   0 signal: select brake 1.   For BI: p10230[3]:   1 signal: select negative test force.   0 signal: select positive test force.   For BI: p10230[4]:   1 signal: select test sequence 2.   0 signal: select test sequence 1 .   For BI: p10230[5]:   1 signal: external brake closed.   0 signal: external brake open.	




$\mathbf{r 1 0 2 4 0}$
SERVO, VECTOR,
SERVO_AC,
VECTOR_AC,
SERVO_IAC,
VECTOR_I_AC


SI Motion SBT test torque diagnostics / SBT M_test diag		
Can be changed: -	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
P-Group: Safety Integrated	Unit group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
- [ Nm ]	- [ Nm ]	- [ Nm ]
Displays the effective maximum test torque on the motor side for a safe brake test.		
The test torque for an external brake should be converted to the load side.		
Conversion factor:		
- motor type = rotary and axis type = linear: (p9521 x p9520) / p9522		
- otherwise: p9521 / p9522		
Further, the efficiency of the mechanical system should be taken into account.		
Refer to: p10210, p10220		
The value remains displayed	the next test s	


r10240	SI Motion SBT test force diagnostics / SBT F_test diag		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [N]	- [N]	- [N]
Description:	Displays the maximum test force for a safe brake test.		
Dependency:	Refer to: p10210, p10220		
Note:	The value remains displayed until the start of the next test sequence.		


r10241	SI Motion SBT load torque diagnostics / SBT M_load diag		
SERVO, VECTOR,	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO I AC, } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ Nm ]	- [ Nm ]	- [ Nm ]
Description:	Displays the load torque for a safe brake test.		
	When initializing the brake test, this load torque is available at the drive.		
Note:	The value remains displayed until the brake test is deselected.		


r10241	SI Motion SBT load force diagnostics / SBT F_load diag		
SERVO (Lin),	Can be changed: -	Calculated: -	Access level: 3
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
SERVO_I_AC (Lin)	P-Group: Safety Integrated	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{N}]$	$-[\mathrm{N}]$	
Description:	Displays the load force for a safe brake test.		
	When initializing the brake test, this load force is available at the drive.		
Note:	The value remains displayed until the brake test is deselected.		



p60000	PROFIdrive reference speed reference frequency / PD n_ref f_ref		
SERVO, SERVO_AC,	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
SERVO_I_AC, ENC	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	6.00 [rpm]	210000.00 [rpm]	3000.00 [rpm]
Description:	Sets the reference quantity for speed and frequency.		
	All speeds or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	Refer to: p2000		
Note:	Parameter p60000 is an image of parameter p2000 in conformance with PROFIdrive. A change always effects both parameters.		


p60000	Reference velocity reference frequency / v_ref f_ref		
SERVO (Lin),	Can be changed: $T$	Calculated: CALC_MOD_ALL	Access level: 2
SERVO_AC (Lin),	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.60 [ $\mathrm{m} / \mathrm{min}$ ]	700.00 [ $\mathrm{m} / \mathrm{min}$ ]	120.00 [ $\mathrm{m} / \mathrm{min}$ ]
Description:	Sets the reference quantity for velocity and frequency.		
	All velocities or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
	The following applies: Reference frequency (in Hz ) = reference velocity (in ( $\mathrm{m} / \mathrm{min}$ ) / 60)		
Dependency:	Refer to: p2000		
Note:	Parameter p60000 is an image of parameter p2000 in conformance with PROFIdrive.		
	A change always effects both parameters.		


p60000	PROFIdrive reference speed reference frequency / PD n_ref f_ref		
VECTOR,   VECTOR_AC,   VECTOR_I_AC	Can be changed: $T$	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	6.00 [rpm]	210000.00 [rpm]	3000.00 [rpm]
Description:	Sets the reference quantity for speed and frequency.		
	All speeds or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).		
	The following applies: Reference frequency (in Hz ) = reference speed (in ((rpm)/60) $\times$ pole pair number)		
Dependency:	Refer to: p2000		
Note:	Parameter p60000 is an image of parameter p2000 in conformance with PROFIdrive. A change always effects both parameters.		


p60000	PROFIdrive reference velocity reference frequency / PD v_ref f_ref		
ENC (Lin_enc)	Can be changed: $T$	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Unit group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.60 [ $\mathrm{m} / \mathrm{min}$ ]	600.00 [ $\mathrm{m} / \mathrm{min}$ ]	120.00 [ $\mathrm{m} / \mathrm{min}$ ]
Description:	Sets the reference quantity for velocity and frequency.		
	All velocities or frequencies specified as relative value are referred to this reference quantity. The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).		
	The following applies: Reference frequency (in Hz ) = reference velocity (in ( $\mathrm{m} / \mathrm{min}$ )/60)		
Dependency:	Refer to: p2000		
Note:	Parameter p60000 is an image of parameter p2000 in conformance with PROFIdrive.		


p60022	PROFIsafe telegram selection / Ps telegram_sel		
SERVO, VECTOR,	Can be changed: $\mathrm{C} 2(95)$, T	Calculated: -	Access level: 3
HLA, SERVO_AC,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { VECTOR_AC, } \\ & \text { SERVO I AC, } \end{aligned}$	P-Group: Safety Integrated	Unit group: -	Unit selection: -
VECTOR_I_AC	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	903	0
Description:	Sets the telegram number for PROFIsafe.		
Value:	0: No PROFIsafe telegram selected		
	30: PROFIsafe standard telegram 30, PZD-1/1		
	31: PROFIsafe standard telegram 31, PZD-2/2		
	901: PROFIsafe SIEMENS telegram 901, PZD-3/5		
	902: PROFIsafe SIEMENS telegram 902, PZD-3/6		
	903: PROFIsafe SIEMENS telegram 903, PZD-3/5		
	Refer to: p9611, p9811   For p9601.3 = p9801.3 = 1 (PROFIsafe enabled), the following variants exist when parameterizing PROFIsafe		
Note:			
	- p9611 = p9811 = 998 and p60022 $=0$		
	- p9611 = p9811 = 998 and p60022 = 30		
	- p9611 = p9811 = 30 and p60022 $=30$		

## p60122

SERVO, VECTOR,
HLA, SERVO_AC,
VECTOR_AC,
SERVO_I_AC,
VECTOR_I_AC

IF1 PROFIdrive SIC/SCC telegram selection / IF1 SIC/SCC telegr
Can be changed: $T$

Data type: Unsigned16
P-Group: Communications
Not for motor type: -
Min
700999

Access level: 3
Func. diagram: 2423
Unit selection: -
Expert list: 1
Factory setting
999

Description: Sets the telegram for the Safety Information Channel (SIC) / Safety Control Channel (SCC). The SIC/SCC telegram p60122 is attached directly to the PZD telegram p0922/p2079.
Value:
700: Supplementary telegram 700, PZD-0/3
701: Supplementary telegram 701, PZD-2/5
999: No telegram
Dependency: For p8864 equal to 999, then p60122 is locked.
Note: $\quad$ The clearance to the PZD telegram can be increased using p2070/p2071.
After changing p0922/p2079 or p2070/p2071, then p60122 must be set again.
The telegram interconnections can only be changed if p60122 and p0922 are both set to 999.

r61000[0...239]	PROFINET Name of Station / PN Name of Station		
CU_S_AC_PN,	Can be changed: -	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: 2410
CU_S150_PN,	Unit group: -	Unit selection: -	
CU_S120_DP (PN	P-Group: -	Scaling: -	Expert list: 1
CBE20),	Not for motor type: -	Max	Factory setting
CU_S150_DP (PN	Min	-	
CBE20)	-		
Description:	Displays PROFINET Name of Station.		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		


r61001[0...3]	PROFINET IP of Station / PN IP of Station		
CU_S_AC_PN,	Can be changed: -	Calculated: -	Access level: 3
CU_S120_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: 2410
CU_S150_PN,	Unit group: -	Unit selection: -	
CU_S120_DP (PN	P-Group: -	Scaling: -	Expert list: 1
CBE20),	Not for motor type: -	Max	Factory setting
CU_S150_DP (PN	Min	-	-

Description: Displays PROFINET IP of Station.

### 2.3 Parameters for data sets

### 2.3.1 Parameters for command data sets (CDS)

Note<br>References: SINAMICS S120 Function Manual Drive Functions Chapter "Data sets"

The following list contains the parameters that are dependent on the command data sets.

Product: SINAMICS S120/S150, Version: 5103400, Language: eng, Type: CDS	
p0641[0...n]	Cl : Current limit scaling signal source / I_lim scal s_src
p0700[0...n]	Macro Binector Input (BI) / Macro BI
p0820[0...n]	BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0
p0821[0...n]	BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1
p0822[0...n]	BI: Drive Data Set selection DDS bit 2 / DDS select., bit 2
p0823[0...n]	BI: Drive Data Set selection DDS bit 3 / DDS select., bit 3
p0824[0...n]	BI: Drive Data Set selection DDS bit 4 / DDS select., bit 4
p0828[0...n]	BI: Motor changeover feedback signal / Mot_chng fdbk sig
p0840[0...n]	BI: ON / OFF (OFF1) / ON / OFF (OFF1)
p0844[0...n]	BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1
p0845[0...n]	BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2
p0848[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2
p0852[0...n]	BI: Enable operation/inhibit operation / Enable operation
p0854[0...n]	BI: Control by PLC/no control by PLC / Master ctrl by PLC
p0855[0...n]	BI: Unconditionally release holding brake / Uncond open brake
p0856[0...n]	BI: Enable speed controller / n_ctrl enable
p0856[0...n]	BI: Enable velocity controller / v_ctrl enable
p0858[0...n]	BI: Unconditionally close holding brake / Uncond close brake
p1000[0...n]	Macro Connector Inputs (Cl) for speed setpoints / Macro CI n_set
p1000[0...n]	Macro Connector Inputs (Cl) for velocity setpoints / Macro Cl v_set
p1020[0...n]	BI: Fixed velocity setpoint selection Bit $0 / \mathrm{v}$ _set_fixed Bit 0
p1020[0...n]	BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0
p1021[0...n]	BI: Fixed velocity setpoint selection Bit $1 /$ v_set_fixed Bit 1
p1021[0...n]	BI: Fixed speed setpoint selection Bit $1 / \mathrm{n}$ _set_fixed Bit 1
p1022[0...n]	BI: Fixed velocity setpoint selection Bit $2 /$ v_set_fixed Bit 2
p1022[0...n]	BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2
p1023[0...n]	BI: Fixed velocity setpoint selection Bit $3 /$ v_set_fixed Bit 3
p1023[0...n]	BI: Fixed speed setpoint selection Bit 3 / n_set_fixed Bit 3
p1035[0...n]	BI : Motorized potentiometer setpoint raise / Mop raise
p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower
p1039[0...n]	BI: Motorized potentiometer inversion / MotP inv
p1041[0...n]	BI: Motorized potentiometer manual/automatic / Mop manual/auto
p1042[0...n]	CI: Motorized potentiometer automatic setpoint / Mop auto setpoint
p1043[0...n]	BI: Motorized potentiometer accept setting value / MotP acc set val
p1044[0...n]	Cl : Motorized potentiometer setting value / Mop set val
p1051[0...n]	CI: Velocity limit RFG positive direction / v_limit RFG pos
p1051[0...n]	Cl : Speed limit RFG positive direction of rotation / n_limit RFG pos
p1052[0...n]	CI: Velocity limit RFG negative direction / v_limit RFG neg
p1052[0...n]	CI : Speed limit RFG negative direction of rotation / $n$ _limit RFG neg
p1055[0...n]	BI: Jog bit 0 / Jog bit 0


p1056[0...n]	BI: Jog bit 1 / Jog bit 1
p1070[0...n]	Cl : Main setpoint / Main setpoint
p1071[0...n]	CI: Main setpoint scaling / Main setp scal
p1075[0...n]	CI: Supplementary setp / Suppl setp
p1076[0...n]	Cl : Supplementary setpoint scaling / Suppl setp scal
p1085[0...n]	CI : Velocity limit positive direction / v_limit pos
p1085[0...n]	CI: Speed limit in positive direction of rotation / n_limit pos
p1088[0...n]	Cl : Velocity limit negative direction / n_limit neg
p1088[0...n]	Cl : Speed limit in negative direction of rotation / n_limit neg
p1098[0...n]	Cl : Skip velocity scaling / v_skip scal
p1098[0...n]	CI: Skip speed scaling / n_skip scal
p1106[0...n]	Cl : Minimum velocity signal source / v_min s_src
p1106[0...n]	Cl : Minimum speed signal source / n_min s_src
p1110[0...n]	BI: Inhibit negative direction / Inhib neg dir
p1111[0...n]	BI: Inhibit positive direction / Inhib pos dir
p1113[0...n]	BI: Setpoint inversion / Setp inv
p1122[0...n]	BI: Bypass ramp-function generator / Bypass RFG
p1138[0...n]	CI: Ramp-function generator ramp-up time scaling / RFG t_RU scal
p1139[0...n]	CI: Ramp-function generator ramp-down time scaling / RFG t_RD scal
p1140[0...n]	BI: Enable ramp-function generator/inhibit ramp-function generator / Enable RFG
p1141[0...n]	BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG
p1142[0...n]	BI: Enable setpoint/inhibit setpoint / Setpoint enable
p1143[0...n]	BI: Ramp-function generator, accept setting value / RFG accept set v
p1144[0...n]	Cl : Ramp-function generator setting value / RFG setting value
p1155[0...n]	Cl : Speed controller speed setpoint $1 / n _c t r l ~ n _s e t ~ 1 ~$
p1155[0...n]	CI: Velocity controller velocity setpoint $1 / \mathrm{v}$ _ctrl v_set 1
p1160[0...n]	CI : Speed controller speed setpoint $2 / \mathrm{n}$ _ctrl n _set 2
p1160[0...n]	CI : Velocity controller velocity setpoint 2 / v_ctrl v_set 2
p1201[0...n]	Cl : Position offset incremental/absolute valid / x_off valid
p1201[0...n]	BI: Flying restart enable signal source / Fly_res enab S_src
p1230[0...n]	BI: Armature short-circuit / DC braking activation / ASC/DCBRK act
p1235[0...n]	BI: External armature short-circuit contactor feedback signal / ASC ext feedback
p1330[0...n]	CI: U/f control independent voltage setpoint / Uf U_set independ.
p1356[0...n]	Cl : U/f control angular setpoint / Uf ang setpoint
p1430[0...n]	CI: Velocity precontrol / v_prectrl
p1430[0...n]	CI: Speed precontrol / n_prectrl
p1437[0...n]	Cl : Speed controller reference model I component input / n_ctrRefMod I_comp
p1440[0...n]	CI: Speed controller speed actual value input / n_ctrl n_act
p1455[0...n]	CI : Speed controller P gain adaptation signal / n_ctr adapt_sig Kp
p1455[0...n]	Cl : Velocity controller P gain adaptation signal / v_ctr adapt_sig Kp
p1466[0...n]	CI : Speed controller P-gain scaling / n_ctrl Kp scal
p1466[0...n]	CI : Velocity controller P gain scaling / v_ctrl Kp scal
p1475[0...n]	Cl : Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB
p1476[0...n]	BI: Velocity controller hold integrator / v_ctrl integ stop
p1476[0...n]	BI: Speed controller hold integrator / n_ctrl integ stop
p1477[0...n]	BI: Velocity controller set integrator value / v_ctrl integ set
p1477[0...n]	BI : Speed controller set integrator value / n_ctrl integ set
p1478[0...n]	CI : Velocity controller integrator value / v_ctr integ_setVal
p1478[0...n]	Cl : Speed controller integrator setting value / n_ctr integ_setVal
p1479[0...n]	Cl : Speed controller integrator setting value scaling / n_ctrl I_val scal
p1486[0...n]	CI: Droop compensation torque / Droop M_comp
p1492[0...n]	BI: Droop feedback enable / Droop enable
p1495[0...n]	CI: Acceleration precontrol / a_prectrl
p1497[0...n]	CI: Moment of inertia scaling signal source / M_inert scal s_src
p1497[0...n]	CI: Mass scaling signal source / Mass scal s_src

### 2.3 Parameters for data sets

p1500[0...n]	Macro Connector Inputs (CI) for torque setpoints / Macro CI M_set
p1500[0...n]	Macro Connector Inputs (Cl) for force setpoints / Macro CI F_set
p1501[0...n]	BI: Change over between closed-loop speed/torque control / Changeov n/M_ctrl
p1501[0...n]	BI: Change over velocity/force control / Changeov n/F_ctrl
p1502[0...n]	BI: Freeze moment of inertia estimator / J_estim freeze
p1503[0...n]	Cl : Torque setpoint / M_set
p1511[0...n]	Cl : Force setpoint / F_set
p1511[0...n]	Cl : Supplementary torque 1 / M_suppl 1
p1511[0...n]	CI: Supplementary force 1 / F_suppl 1
p1512[0...n]	Cl : Force setpoint scaling / F_set scal
p1512[0...n]	CI: Supplementary torque 1 scaling / M_suppl 1 scal
p1512[0...n]	CI: Supplementary force 1 scaling / F_suppl 1 scal
p1513[0...n]	Cl : Supplementary torque 2 / M_suppl 2
p1513[0...n]	CI: Supplementary force 2 / F_suppl 2
p1522[0...n]	Cl : Force limit upper/motoring / F_max upper/mot
p1522[0...n]	CI : Torque limit upper/motoring / M_max upper/mot
p1522[0...n]	Cl : Torque limit upper / M_max upper
p1523[0...n]	CI : Force limit lower/regenerative / F_max lower/regen
p1523[0...n]	Cl : Torque limit lower/regenerative / M_max lower/regen
p1523[0...n]	CI : Torque limit lower / M_max lower
p1528[0...n]	CI: Force limit upper/motoring scaling / F_max up/mot scal
p1528[0...n]	CI : Torque limit upper/motoring scaling / M_max up/mot scal
p1528[0...n]	CI : Torque limit upper scaling / M_max upper scal
p1529[0...n]	CI : Force limit lower/regenerative scaling / F_max lo/reg scal
p1529[0...n]	CI : Torque limit lower/regenerative scaling / M_max low/gen scal
p1529[0...n]	CI : Torque limit lower scaling / M_max lower scal
p1540[0...n]	CI : Torque limit speed controller upper scaling / M_max n-ctr upScal
p1541[0...n]	CI : Torque limiting speed controller lower scaling / M_max nctr lowScal
p1542[0...n]	Cl : Travel to fixed stop torque reduction / TfS M_red
p1542[0...n]	CI: Travel to fixed stop force reduction / TfS F_red
p1545[0...n]	BI: Activates travel to a fixed stop / TfS activation
p1550[0...n]	BI: Transfer actual torque as torque offset / Accept act torque
p1550[0...n]	BI: Transfer actual force as force offset / Accept act force
p1551[0...n]	BI: Torque limit variable/fixed signal source / M_lim var/fixS_src
p1551[0...n]	BI: Force limit variable/fixed signal source / F_lim var/fixS_src
p1552[0...n]	CI : Torque limit upper scaling without offset / M_max up w/o offs
p1552[0...n]	CI : Force limit upper scaling without offset / F_max up w/o offs
p1554[0...n]	CI: Torque limit lower scaling without offset / M_max low w/o offs
p1554[0...n]	Cl : Force limit lower scaling without offset / F_max low w/o offs
p1555[0...n]	CI: Power limit / P_max
p1569[0...n]	Cl : Supplementary torque 3 / M_suppl 3
p1569[0...n]	CI: Supplementary force 3 / F_suppl 3
p1571[0...n]	CI: Supplementary flux setpoint / Suppl flux setp
p1640[0...n]	CI: Excitation current actual value signal source / I_exc_ActVal S_src
p2103[0...n]	BI : 1st acknowledge faults / 1st acknowledge
p2104[0...n]	BI: 2nd acknowledge faults / 2nd acknowledge
p2105[0...n]	BI: 3rd acknowledge faults / 3rd acknowledge
p2106[0...n]	BI: External fault 1 / External fault 1
p2107[0...n]	BI: External fault 2 / External fault 2
p2108[0...n]	BI: External fault 3 / External fault 3
p2112[0...n]	BI: External alarm 1 / External alarm 1
p2116[0...n]	BI: External alarm 2 / External alarm 2
p2117[0...n]	BI: External alarm 3 / External alarm 3
p2144[0...n]	BI: Motor stall monitoring enable (negated) / Mot stall enab neg
p2148[0...n]	BI: RFG active / RFG active


p2151[0...n]	CI: Speed setpoint for messages/signals / n_set for msg
p2151[0...n]	Cl : Velocity setpoint for messages/signals / v_set for msg
p2154[0...n]	Cl : Speed setpoint $2 / \mathrm{n}$ _set 2
p2154[0...n]	CI: Velocity setpoint $2 / \mathrm{v}$ _set 2
p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable
p2220[0...n]	BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0
p2221[0...n]	BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1
p2222[0...n]	BI: Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2
p2223[0...n]	BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3
p2235[0...n]	$\mathrm{BI}:$ Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise
p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower
p2253[0...n]	Cl : Technology controller setpoint 1 / Tec_ctrl setp 1
p2254[0...n]	CI: Technology controller setpoint 2 / Tec_ctrl setp 2
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val
p2286[0...n]	BI: Hold technology controller integrator / Tec_ctr integ hold
p2289[0...n]	CI: Technology controller precontrol signal / Tec_ctr prectr_sig
p2296[0...n]	Cl : Technology controller output scaling / Tec_ctrl outp scal
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src
p2298[0...n]	Cl : Technology controller minimum limit signal source / Tec_ctrl min_I s_s
p2299[0...n]	CI: Technology controller limit offset / Tech_ctrl lim offs
p2550[0...n]	BI: LR enable 2 / Enable 2
p3111[0...n]	BI: External fault 3 enable / Ext fault 3 enab
p3112[0...n]	BI: External fault 3 enable negated/Ext flt 3 enab neg
p3240[0...n]	CI : 12 t input value signal source / I2t in_value s_src
p3749[0...n]	CI: APC velocity actual value external input / APC v_act ext inp
p3750[0...n]	CI : APC acceleration sensor input / APC accel input
p3802[0...n]	BI: Sync-line-drive enable / Sync enable
p3848[0...n]	CI: Friction characteristic speed actual value signal source / Frict n_act s_src

### 2.3.2 Parameters for drive data sets (DDS)

## Note

## References: SINAMICS S120 Function Manual Drive Functions Chapter "Data sets"

The following list contains the parameters that are dependent on the drive data sets.

Product: SINAMICS S120/S150, Version: 5103400, Language: eng, Type: DDS	
p0186[0...n]	Motor Data Sets (MDS) number / MDS number
p0187[0...n]	Encoder 1 encoder data set number / Enc 1 EDS number
p0188[0...n]	Encoder 2 encoder data set number / Enc 2 EDS number
p0189[0...n]	Encoder 3 encoder data set number / Enc 3 EDS number
p0340[0...n]	Automatic parameter calculation / Auto par calc
p0340[0...n]	Automatic calculation motor/control parameters / Calc auto par
p0345[0...n]	Required damping controlled axis / Damped ctrl axis
p0350[0...n]	Damping uncontrolled axis / Damp unctrl axis
p0351[0...n]	Piston position natural frequency minimum / Piston pos fn min
p0352[0...n]	Axis natural frequency A side / Axis fn A
$p 0353[0 \ldots n]$	Axis natural frequency center / Axis fn center
$p 0354[0 \ldots n]$	Axis natural frequency B side / Axis fn B
$p 0572[0 \ldots n]$	Activate/deactivate inhibit list / Inh_list act/deact
$p 0578[0 \ldots n]$	Calculate technology-dependent parameters / Calc tec par
$p 0640[0 \ldots n]$	Current limit / Current limit

p0642[0...n] Encoderless operation current reduction / Encoderl op I_red
p0644[0...n] Current limit excitation induction motor / Imax excit ASM
p1001[0...n] CO: Fixed velocity setpoint $1 / \mathrm{v}$ _set_fix 1
p1001[0...n] CO: Fixed speed setpoint $1 / n _$set_fixed 1
p1002[0...n] CO: Fixed velocity setpoint $2 /$ v_set_fix 2
p1002[0...n] CO: Fixed speed setpoint $2 / n$ n_set_fixed 2
p1003[0...n] CO: Fixed velocity setpoint $3 / v _$set_fix 3
p1003[0...n] CO: Fixed speed setpoint $3 / n _$set_fixed 3
p1004[0...n] CO: Fixed velocity setpoint $4 / \mathrm{v}$ _set_fix 4
p1004[0...n] CO: Fixed speed setpoint $4 / n _$set_fixed 4
p1005[0...n] CO: Fixed velocity setpoint $5 / \mathrm{v}$ _set_fix 5
p1005[0...n] CO: Fixed speed setpoint $5 /$ n_set_fixed 5
p1006[0...n] CO: Fixed velocity setpoint $6 / v_{-}$set_fix 6
p1006[0...n] CO: Fixed speed setpoint $6 / n _$set_fixed 6
p1007[0...n] CO: Fixed velocity setpoint $7 /$ v_set_fix 7
p1007[0...n] CO: Fixed speed setpoint $7 / n _$set_fixed 7
p1008[0...n] CO: Fixed velocity setpoint $8 /$ v_set_fix 8
p1008[0...n] CO: Fixed speed setpoint $8 / n _$set_fixed 8
p1009[0...n] CO: Fixed velocity setpoint $9 /$ v_set_fix 9
p1009[0...n] CO: Fixed speed setpoint $9 / n _$set_fixed 9
p1010[0...n] CO: Fixed velocity setpoint $10 / \mathrm{v}$ _set_fix 10
p1010[0...n] CO: Fixed speed setpoint $10 / n _$set_fixed 10
p1011[0...n] CO: Fixed velocity setpoint $11 /$ v_set_fix 11
p1011[0...n] CO: Fixed speed setpoint 11 / n_set_fixed 11
p1012[0...n] CO: Fixed velocity setpoint $12 /$ v_set_fix 12
p1012[0...n] CO: Fixed speed setpoint $12 / n _$set_fixed 12
p1013[0...n] CO: Fixed velocity setpoint 13 / v_set_fix 13
p1013[0...n] CO: Fixed speed setpoint $13 / n _$set_fixed 13
p1014[0...n] CO: Fixed velocity setpoint 14 / v_set_fix 14
p1014[0...n] CO: Fixed speed setpoint $14 / n _$set_fixed 14
p1015[0...n] CO: Fixed velocity setpoint $15 /$ v_set_fix 15
p1015[0...n] CO: Fixed speed setpoint 15 / n_set_fixed 15
p1030[0...n] Motorized potentiometer configuration / Mop configuration
p1037[0...n] Motorized potentiometer maximum velocity / MotP n_max
p1037[0...n] Motorized potentiometer maximum speed / MotP n_max
p1038[0...n] Motorized potentiometer minimum velocity / MotP n_min
p1038[0...n] Motorized potentiometer minimum speed / MotP n_min
p1040[0...n] Motorized potentiometer starting value / Mop start value
p1047[0...n] Motorized potentiometer ramp-up time / Mop ramp-up time
p1048[0...n] Motorized potentiometer ramp-down time / Mop ramp-down time
p1058[0...n] Jog 1 velocity setpoint / Jog 1 v_set
p1058[0...n] Jog 1 speed setpoint / Jog 1 n_set
p1059[0...n] Jog 2 velocity setpoint / Jog 2 v_set
p1059[0...n] Jog 2 speed setpoint / Jog 2 n_set
p1063[0...n] Setpoint channel velocity limit / Setp_chan v_lim
p1063[0...n] Setpoint channel speed limit / Setp_chan n_lim
p1080[0...n] Minimum velocity / v_min
p1080[0...n] Minimum speed / n_min
p1082[0...n] Maximum velocity / v_max
p1082[0...n] Maximum speed / n_max
r1082[0...n] Encoder emulation maximum speed / Enc_emul n_max
p1083[0...n] CO: Velocity limit positive direction / v_limit pos
p1083[0...n] CO: Speed limit in positive direction of rotation / n_limit pos
p1086[0...n] CO: Velocity limit negative direction / v_limit neg
p1086[0...n] CO: Speed limit in negative direction of rotation / n_limit neg

```
p1091[0...n] Skip velocity 1/v_skip 1
p1091[0...n] Skip speed 1/n_skip 1
p1092[0...n] Skip velocity 2 / v_skip 2
p1092[0...n] Skip speed 2 / n_skip 2
p1093[0...n] Skip velocity 3 / v_skip 3
p1093[0...n] Skip speed 3 / n_skip 3
p1094[0...n] Skip velocity 4 / v_skip 4
p1094[0...n] Skip speed 4 / n_skip 4
p1101[0...n] Skip velocity bandwidth / v_skip bandwidth
p1101[0...n] Skip speed bandwidth / n_skip bandwidth
p1120[0...n] Ramp-function generator ramp-up time / RFG ramp-up time
p1121[0...n] Ramp-function generator ramp-down time / RFG ramp-down time
p1130[0\ldotsn] Ramp-function generator initial rounding-off time / RFG t_start_round
p1131[0...n] Ramp-function generator final rounding-off time / RFG t_end_delay
p1134[0...n] Ramp-function generator rounding-off type / RFG round-off type
p1135[0...n] OFF3 ramp-down time / OFF3 t_RD
p1136[0...n] OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd
p1137[0...n] OFF3 final rounding-off time / RFG OFF3 t_end_del
p1145[0..n] Ramp-function generator tracking intensity. / RFG track intens
p1148[0...n] Ramp-function gen. tolerance for ramp-up and ramp-down active / RFG tol HL/RL act
p1151[0...n] Ramp-function generator configuration / RFG config
p1189[0...n] Speed setpoint configuration / n_ctrl config
p1189[0...n] Velocity setpoint configuration / v_ctrl config
p1192[0...n] DSC encoder selection / DSC enc selection
p1193[0..n] DSC encoder adaptation factor / DSC encodAdaptFact
p1200[0...n] Flying restart operating mode / FlyRest op_mode
p1202[0...n] Flying restart search current / FlyRest I_srch
p1203[0...n] Flying restart search rate factor / FlyRst v_Srch Fact
p1226[0...n] Standstill detection velocity threshold / v_standst v_thresh
p1226[0\ldotsn] Threshold for zero speed detection / n_standst n_thresh
p1240[0...n] Vdc controller or Vdc monitoring configuration / Vdc ctrl config
p1243[0...n] Vdc_max controller dynamic factor / Vdc_max dyn_factor
p1244[0...n] DC link voltage threshold upper / Vdc upper thresh
p1245[0...n] Vdc_min controller switch-in level (kinetic buffering)/ Vdc_min on_level
p1247[0...n] Vdc_min controller dynamic factor (kinetic buffering) / Vdc_min dyn_factor
p1248[0...n] DC link voltage threshold lower / Vdc lower thresh
p1249[0...n] Vdc_max controller speed threshold / Vdc_max n_thresh
p1250[0...n] Vdc controller proportional gain / Vdc_ctrl Kp
p1251[0...n] Vdc controller integral time / Vdc_ctrl Tn
p1252[0...n] Vdc controller rate time / Vdc_ctrl t_rate
p1255[0...n] Vdc_min controller time threshold / Vdc_min t_thresh
p1256[0...n] Vdc_min controller response (kinetic buffering) / Vdc_min response
p1257[0...n] Vdc_min controller speed threshold / Vdc_min n_thresh
p1262[0...n] Bypass dead time / Bypass t_dead
p1270[0...n] Flying restart configuration / Fly restart config
p1271[0...n] Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir
p1280[0...n] Vdc controller or Vdc monitoring configuration (U/f) / Vdc_ctr config U/f
p1281[0...n] Vdc controller configuration / Vdc ctrl config
p1283[0..n] Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor
p1284[0...n] Vdc_max controller time threshold (U/f) / Vdc_max t_thresh
p1285[0...n] Vdc_min controller switch-in level (kinetic buffering) (U/f) / Vdc_min on_level
p1287[0...n] Vdc_min controller dynamic factor (kinetic buffering) (U/f) / Vdc_min dyn_factor
p1288[0..n] Vdc_max controller feedback coupling factor ramp-fct. gen. (U/f) / Vdc_max factor RFG
p1289[0...n] Vdc_max controller speed threshold (U/f) / Vdc_max n_thresh
p1290[0...n] Vdc controller proportional gain (U/f) / Vdc_ctrl Kp
```


### 2.3 Parameters for data sets

p1291[0...n]	Vdc controller integral time (U/f) / Vdc_ctrl Tn
p1292[0...n]	Vdc controller rate time (U/f) / Vdc_ctrl t_rate
p1293[0...n]	Vdc min controller output limit (U/f) / Vdc_min outp_lim
p1295[0...n]	Vdc_min controller time threshold (U/f) / Vdc_min t_thresh
p1296[0...n]	Vdc_min controller response (kinetic buffering) (U/f) / Vdc_min response
p1297[0...n]	Vdc_min controller speed threshold (U/f) / Vdc_min n_thresh
p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode
p1302[0...n]	U/f control configuration / U/f config
p1310[0...n]	Starting current (voltage boost) permanent / I_start (Ua) perm
p1311[0...n]	Starting current (voltage boost) when accelerating / I_start accel
p1312[0...n]	Starting current (voltage boost) when starting / I_start start
p1317[0...n]	U/f control activation / Uf act
p1318[0...n]	U/f control ramp-up/ramp-down time / Uf t_rmp-up_rmp-dn
p1319[0...n]	U/f control voltage at zero frequency / Uf U at $f=0 \mathrm{~Hz}$
p1320[0...n]	U/f control programmable characteristic frequency 1 / Uf char f1
p1321[0...n]	U/f control programmable characteristic voltage 1 / Uf char U1
p1322[0...n]	U/f control programmable characteristic frequency 2 / Uf char f2
p1323[0...n]	U/f control programmable characteristic voltage 2 / Uf char U2
p1324[0...n]	U/f control programmable characteristic frequency 3 / Uf char f3
p1325[0...n]	U/f control programmable characteristic voltage 3 / Uf char U3
p1326[0...n]	U/f control characteristic frequency / Uf char f
p1326[0...n]	U/f control programmable characteristic frequency 4 / Uf char f4
p1327[0...n]	U/f control characteristic voltage / Uf char U
p1327[0...n]	U/f control programmable characteristic voltage 4 / Uf char U4
p1331[0...n]	Voltage limiting / U_lim
p1333[0...n]	U/f control FCC starting frequency / U/f FCC f_start
p1334[0...n]	U/f control slip compensation starting frequency / Slip comp start
p1335[0...n]	Slip compensation scaling / Slip comp scal
p1336[0...n]	Slip compensation limit value / Slip comp lim val
p1338[0...n]	U/f mode resonance damping gain / Uf Res_damp gain
p1339[0...n]	U/f mode resonance damping filter time constant / Uf Res_damp T
p1340[0...n]	I_max frequency controller proportional gain / I_max_ctrl Kp
p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn
p1345[0...n]	DC braking proportional gain / DCBRK Kp
p1345[0...n]	I_max voltage controller proportional gain / __max_U_ctrl Kp
p1346[0...n]	DC braking integral time / DCBRK Tn
p1346[0...n]	I_max voltage controller integral time / I_max_U_ctrl Tn
p1349[0...n]	U/f mode resonance damping maximum frequency / Uf res_damp f_max
p1350[0...n]	U/f control soft start / U/f soft start
p1351[0...n]	CO: Motor holding brake starting frequency / Brake f_start
p1358[0...n]	Angular difference symmetrizing actual angle / Sym act angle
p1381[0...n]	U/f control modulation limit reduction / U/f mod_lim reduce
p1400[0...n]	Closed-loop control configuration / Ctrl config
p1400[0...n]	Speed control configuration / n_ctrl config
p1400[0...n]	Velocity control configuration / v_ctrl config
p1401[0...n]	Flux control configuration / Flux ctrl config
p1402[0...n]	Closed-loop current control and motor model configuration / I_ctrl config
p1404[0...n]	Encoderless operation changeover speed / Encoderl op n_chg
p1404[0...n]	Encoderless operation changeover velocity / Encoderl op v_chg
p1409[0...n]	Speed control extended configuration / n_ctrl ext config
p1409[0...n]	Velocity control extended configuration / v_ctrl ext config
p1412[0...n]	TM41 increm. encoder emulation, speed setpoint filter deadtime / n_set dead time
p1413[0...n]	Velocity actual value filter activation / v_act_filt act
p1413[0...n]	Speed actual value filter activation / n_act_filt act
p1414[0...n]	Velocity setpoint filter activation / v_set_filt act

p1414[0...n]
p1414[0...n]
p1415[0...n]
p1415[0...n]
p1416[0...n]
p1416[0...n]
p1417[0...n]
p1417[0...n]
p1417[0...n]
p1418[0...n]
p1418[0...n]
p1418[0...n]
p1419[0...n]
p1419[0...n]
p1420[0...n]
p1420[0...n]
p1421[0...n]
p1421[0...n]
p1422[0...n
p1422[0....
p1423[0...n]
p1423[0...n]
p1424[0...n]
p1424[0...
p1425[0...
p1425[0...n]
p1426[0...n
p1426[0...
p1427[0...
p1428[0....
p1428[0...
p1429[0...n]
p1429[0....
p1433[0...
p1433[0...
p1434[0...
p1434[0...
p1435[0...
p1435[0...n
p1441[0...n]
p1441[0...n]
p1442[0...
p1446[0...
p1446[0....
p1447[0...
p1447[0...
p1448[0....
p1448[0...n]
p1449[0...n]
p1449[0...
p1450[0...
p1450[0...
p1451[0...
p1451[0...
p1451[0...n]

Speed setpoint filter activation / n_set_filt act
TM41 incr. encoder emulation speed setpoint filter activation / n_set_filt act
Velocity setpoint filter 1 type / v_setp_filt 1 type
Speed setpoint filter 1 type / n_set_filt 1 type
Velocity setpoint filter 1 time constant / v_set_filt 1 T
Speed setpoint filter 1 time constant / n_set_filt 1 T
Velocity setpoint filter 1 denominator natural frequency / v_set_filt1 fn_den
Speed setpoint filter 1 denominator natural frequency / n_set_filt1 fn_den
TM41 Speed setpoint filter 1 denominator natural frequency / n_set_filt1 fn_den
Velocity setpoint filter 1 denominator damping / v_set_filt 1 D_den
Speed setpoint filter 1 denominator damping / n_set_filt 1 D_den
TM41 Speed setpoint filter 1 denominator damping / n_set_filt 1 D_den
Velocity setpoint filter 1 numerator natural frequency / v_set_filt1 fn_num
Speed setpoint filter 1 numerator natural frequency / n_set_filt1 fn_num
Velocity setpoint filter 1 numerator damping / v_set_filt 1 D_num
Speed setpoint filter 1 numerator damping / n_set_filt 1 D_num
Velocity setpoint filter 2 type / v_setp_filt 2 type
Speed setpoint filter 2 type / n_set_filt 2 type
Velocity setpoint filter 2 time constant / v_set_filt 2 T
Speed setpoint filter 2 time constant / n_set_filt 2 T
Velocity setpoint filter 2 denominator natural frequency / v_set_filt2 fn_den
Speed setpoint filter 2 denominator natural frequency / n_set_filt2 fn_den
Velocity setpoint filter 2 denominator damping / v_set_filt 2 D_den
Speed setpoint filter 2 denominator damping / n_set_filt 2 D_den
Velocity setpoint filter 2 numerator natural frequency / v_set_filt2 fn_num
Speed setpoint filter 2 numerator natural frequency / n_set_filt2 fn_num
Velocity setpoint filter 2 numerator damping / v_set_filt 2 D_num
Speed setpoint filter 2 numerator damping / n_set_filt 2 D_num
DSC symmetrizing time constant additive T_SYMM_ADD / DSC T_SYMM_ADD
Velocity precontrol symmetrizing dead time / n_prectrSym t_dead
Speed precontrol symmetrizing dead time / n_prectrSym t_dead
Speed precontrol symmetrizing time constant / n_prectr sym T
Velocity precontrol symmetrizing time constant / n_prectr sym T
Velocity controller reference model natural frequency / v_ctrl RefMod fn
Speed controller reference model natural frequency / n_ctrl RefMod fn
Velocity controller reference model damping / v_ctrl RefMod D
Speed controller reference model damping / n_ctrl RefMod D
Speed controller reference model dead time / n_ctrRefMod t_dead
Velocity controller reference model dead time / v_ctrRefMod t_dead
Actual velocity smoothing time / v_act t_smooth
Actual speed smoothing time / n_act T_smooth
Speed controller speed actual value smoothing time / n_ctr n_act T_smth
Velocity actual value filter type / v_act_filt type
Speed actual value filter type / n_act_filt type
Velocity actual value filter denominator natural frequency / v_act_filt fn_den
Speed actual value filter denominator natural frequency / n_act_filt fn_den
Velocity actual value filter denominator damping / v_act_filt D_den
Speed actual value filter denominator damping / n_act_filt D_den
Velocity actual value filter numerator natural frequency / v_act_filt fn_num
Speed actual value filter numerator natural frequency / n_act_filt fn_num
Velocity actual value filter numerator damping / v_act_filt D_num
Speed actual value filter numerator damping / n_act_filt D_num
Speed actual value smoothing time sensorless / n_act t_sm SL
Velocity actual value smoothing time sensorless / v_act t_sm SL
Motor model speed actual value smoothing time sensorless / Mot_mod n_act t_sm

### 2.3 Parameters for data sets

```
p1452[0...n] Speed controller speed actual value smoothing time (sensorless) / n_C n_act T_s SL
p1456[0\ldots..n] Speed controller P gain adaptation lower starting point / n_ctrl AdaptKpLow
p1456[0...n] Velocity controller P gain adaptation lower starting point / v_ctrl AdaptKpLow
p1457[0...n] Speed controller P gain adaptation upper starting point / n_ctrl AdaptKp up
p1457[0...n] Velocity controller P gain adaptation upper starting point / v_ctrl AdaptKp up
p1458[0...n] Adaptation factor lower / Adapt_factor lower
p1459[0...n] Adaptation factor upper / Adapt_factor upper
p1460[0..n] Velocity controller P gain A / v_ctrl Kp A
p1460[0...n] Speed controller P gain adaptation speed lower / n_ctrl Kp n lower
p1460[0...n] Velocity controller P gain adaptation velocity lower / v_ctrl Kp n lower
p1461[0...n] Velocity controller P gain / v_ctr Kp
p1461[0\ldotsn] Speed controller Kp adaptation speed upper scaling / n_ctr Kp n up scal
p1461[0\ldotsn] Velocity controller Kp adaptation velocity upper scaling / v_ctr Kp n up scal
p1462[0..n] Velocity controller P gain B / v_ctrl Kp B
p1462[0..n] Speed controller integral time adaptation speed lower / n_ctrl Tn n lower
p1462[0...n] Velocity contr. integral act. time adaptation velocity lower / v_ctrl Tn n lower
p1463[0...n] Velocity controller integral time / v_ctr Tn
p1463[0\ldotsn] Speed controller Tn adaptation speed upper scaling / n_ctr Tn n up scal
p1463[0...n] Velocity controller Tn adaptation velocity upper scaling / v_ctr Tn n up scal
p1464[0..n] Velocity controller D component smoothing time constant / v_ctr D comp T
p1464[0...n] Speed controller adaptation speed lower / n_ctrl n lower
p1464[0...n] Velocity controller adaptation velocity lower / v_ctrl n lower
p1465[0...n] Velocity controller derivative-action time A / v_ctrl Tv A
p1465[0...n] Speed controller adaptation speed upper / n_ctrl n upper
p1465[0...n] Velocity controller adaptation velocity upper / v_ctrl n upper
p1466[0..n] Velocity controller derivative-action time / v_ctrl Tv
p1467[0...n] Velocity controller derivative-action time B / v_ctrl Tv B
p1470[0...n] Speed controller encoderless operation P-gain / n_ctrl SL Kp
p1470[0..n] Velocity controller encoderless operation P-gain / v_ctrl SLVC Kp
p1472[0...n] Speed controller encoderless operation integral time / n_ctrl SL Tn
p1472[0...n] Velocity controller encoderless operation integral time / v_ctrl SLVC Tn
p1475[0...n] Velocity controller loop gain / v_ctrl loop_gain
p1487[0...n] Droop compensation torque scaling / Droop M_comp scal
p1488[0...n] Droop input source / Droop input source
p1489[0...n] Droop feedback scaling / Droop scal
p1494[0...n] Velocity controller integrator feedback time constant / v_ctr integ_fdbk T
p1494[0...n] Speed controller integrator feedback time constant / n_ctr integ_fdbk T
p1495[0...n] Integrator feedback velocity threshold / Integ_fdbk v_thr
p1496[0...n] Acceleration precontrol scaling / a_prectrl sca
p1498[0...n] Load mass / Load mass
p1498[0...n] Load moment of inertia / Load M_inertia
p1499[0..n] Accelerating for torque control scaling / a for M_ctrl scal
p1514[0...n] Supplementary torque 2 scaling / M_suppl 2 scal
p1517[0...n] Accelerating torque smoothing time constant / M_accel T_smooth
p1517[0...n] Acceleration force smoothing time constant / F_accel T_smooth
p1520[0...n] CO: Force limit upper/motoring / F_max upper/mot
p1520[0\ldotsn] CO: Torque limit upper/motoring / M_max upper/mot
p1520[0..n] CO: Torque limit upper / M_max upper
p1521[0..n] CO: Force limit lower/regenerative / F_max lower/regen
p1521[0...n] CO: Torque limit lower/regenerative / M_max lower/regen
p1521[0\ldots..n] CO: Torque limit lower / M_max lower
p1524[0...n] CO: Force limit upper/motoring scaling / F_max up/mot scal
p1524[0\ldots..n] CO: Torque limit upper/motoring scaling / M_max up/mot scal
p1524[0...n] CO: Torque limit upper scaling / M_max upper scal
p1525[0...n] CO: Force limit lower/regenerative scaling / F_max lo/reg scal
```

p1525[0...n]	CO: Torque limit lower/regenerative scaling / M_max low/gen scal
p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal
p1530[0...n]	Power limit motoring / P_max mot
p1531[0...n]	Power limit regenerative / P_max gen
p1532[0...n]	CO: Force offset, force limit / F_max offset
p1532[0...n]	CO: Torque limit offset / M_max offset
p1552[0...n]	Stiction velocity threshold / Stiction v_thresh
p1553[0...n]	Stall limit scaling / Stall limit scal
p1554[0...n]	Stiction shutdown rate action / Stict shutdown
p1555[0...n]	Stiction force velocity positive / Stiction F v pos
p1556[0...n]	Stiction force velocity negative / Stiction F v neg
p1556[0...n]	Power limit scaling / P_max scal
p1560[0...n]	Moment of inertia estimator accelerating force threshold value / J_est F thresh
p1560[0...n]	Moment of inertia estimator accelerating torque threshold value / J_est M thresh
p1561[0...n]	Inertia estimator change time high inertia mass / J_est t_change M
p1561[0...n]	Moment of inertia estimator change time moment of inertia / J_est t_change J
p1562[0...n]	Moment of inertia estimator change time load / J_est t load
p1563[0...n]	CO: Moment of inertia estimator load force positive direction / J_est F pos
p1563[0...n]	CO: Mom. of inertia estimator load torque direction of rotation pos. / J_est M pos
p1564[0...n]	CO: Moment of inertia estimator load force negative direction / J_est F neg
p1564[0...n]	CO: Mom. of inertia estimator load torque direction of rotation neg. / J_est M neg
r1566[0...n]	Flux reduction torque factor transition value / Flux red M trans
p1567[0...n]	Magnetization rate time scaling / Mag Tv scale
p1570[0...n]	Stiction voltage pulse positive / Stiction U pos
p1571[0...n]	Stiction voltage pulse negative / Stiction U neg
p1572[0...n]	Supplementary flux setpoint / Suppl flux setp
p1573[0...n]	Flux threshold value magnetizing / Flux thresh magnet
p1574[0...n]	Voltage reserve dynamic / U_reserve dyn
p1575[0...n]	Voltage target value limit / U_tgt val lim
p1576[0...n]	Flux boost adaptation speed, lower / Flux boost n lower
p1577[0...n]	Flux boost adaptation speed upper / Flux boost n upper
p1578[0...n]	Flux reduction flux decrease smoothing time / Flux red dec t_sm
p1579[0...n]	Flux reduction flux build-up smoothing time / Flux red up t_sm
p1580[0...n]	Efficiency optimization / Efficiency opt.
p1581[0...n]	Flux reduction factor / Flux red factor
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth
p1584[0...n]	Field weakening operation flux setpoint smoothing time / Field weak T_smth
p1585[0...n]	Flux actual value smoothing time / Flux actVal T_smth
p1586[0...n]	Field weakening characteristic scaling / Field weak scal
p1590[0...n]	Flux controller P gain / Flux controller Kp
p1592[0...n]	Flux controller integral time / Flux controller Tn
p1594[0...n]	Field-weakening controller P gain / Field_ctrl Kp
p1595[0...n]	Field weakening controller additional setpoint / Field_ctr add_setp
p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn
p1599[0...n]	Flux controller excitation current difference / Flux ctr I_exc_dif
p1600[0...n]	P flux controller P gain / P flux ctrl Kp
p1601[0...n]	Current injection ramp time / I_inject t_ramp
p1603[0...n]	Field-generating current maximum / Id max
p1604[0...n]	Pulse technique current limit / Pulse current lim
p1605[0...n]	Pulse technique pattern configuration / Puls pattrn config
p1607[0...n]	Pulse technique excitation / Pulse excitation
p1609[0...n]	I/f operation current setpoint / I/f op I_setp
p1610[0...n]	Torque setpoint static (sensorless) / M_set static
p1611[0...n]	Additional acceleration torque (sensorless) / M_suppl_accel
p1612[0...n]	Current setpoint open-loop control, encoderless / I_setCtrEncoderl

### 2.3 Parameters for data sets

p1612[0...n] Current setpoint magnetizing open-loop controlled / Id_set ctrl
p1616[0...n] Current setpoint smoothing time / I_set T_smooth
p1619[0...n] Setpoint/actual value tracking threshold / SetAct track thrsh
p1620[0...n] Stator current minimum / I_stator min
p1621[0...n] Changeover speed inner cos phi $=1 / \mathrm{n}$ _chngov cos phi=1
p1622[0...n] Field-generating current setpoint smoothing time constant / Id_setp T_smth
p1625[0...n] Excitation current setpoint calibration / I_exc_setp cal
p1628[0...n] Current model controller dynamic factor / I_mod_ctr dyn_fact
p1629[0...n] Current model controller P gain / I_mod_ctrl Kp
p1630[0...n] Current model controller integral time / I_mod_ctrl Tn
p1642[0...n] Minimum excitation current / Min I_exc
p1643[0...n] Minimum excitation current closed-loop control gain factor / I_exc_min Kp
p1653[0...n] Current setpoint torque-generating smoothing time minimum / Isq_s T_smth min
p1654[0...n] Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW
p1656[0...n] Manipulated variable filter velocity controller activation / Filt v_ctrl act
p1656[0...n] Activates current setpoint filter / I_setp_filt act
p1656[0...n] Current setpoint/Speed actual value filter activation / I_setp_filt act
p1657[0...n] Manipulated variable filter 1 velocity controller type / Filt 1 v_ctrl type
p1657[0...n] Current setpoint filter 1 type / I_set_filt 1 type
p1658[0...n] Manip. var. filter 1 velocity controller denom. natural freq. / Filt1 v_ctr fn_den
p1658[0...n] Current setpoint filter 1 denominator natural frequency / I_set_filt1 fn_den
p1659[0...n] Manip. variable filter 1 velocity controller denominator damping / Filt 1 v_ctr D_den
p1659[0...n] Current setpoint filter 1 denominator damping / I_set_filt 1 D_den
p1660[0...n] Manip. var. filter 1 velocity controller numerator natural freq. / Filt1 v_ctr fn_num
p1660[0...n] Current setpoint filter 1 numerator natural frequency / I_set_filt1 fn_num
p1661[0...n] Manip. variable filter 1 velocity controller numerator damping / Filt 1 v_ctr D_num
p1661[0...n] Current setpoint filter 1 numerator damping / I_set_filt 1 D_num
p1662[0...n] Manipulated variable filter 2 velocity controller type / Filt 2 v _ctrl type
p1662[0...n] Current setpoint filter 2 type / I_set_filt 2 type
p1663[0...n] Manip. var. filter 2 velocity controller denom. natural freq. / Filt2 v_ctr fn_den
p1663[0...n] Current setpoint filter 2 denominator natural frequency / I_set_filt2 fn_den
p1664[0...n] Manip. variable filter 2 velocity controller denominator damping / Filt 2 v _ctr D _den
p1664[0...n] Current setpoint filter 2 denominator damping / I_set_filt 2 D_den
p1665[0...n] Manip. var. filter 2 velocity controller numerator natural freq. / Filt2 v _ctr fn_num
p1665[0...n] Current setpoint filter 2 numerator natural frequency / I_set_filt2 fn_num
p1666[0...n] Manip. variable filter 2 velocity controller numerator damping / Filt 2 v_ctr D_num
p1666[0...n] Current setpoint filter 2 numerator damping / I_set_filt 2 D_num
p1667[0...n] Manipulated variable filter 3 velocity controller type / Filt 3 v_ctrl type
p1667[0...n] Current setpoint filter 3 type / I_set_filt 3 type
p1668[0...n] Manip. var. filter 3 velocity controller denom. natural freq. / Filt3 v_ctr fn_den
p1668[0...n] Current setpoint filter 3 denominator natural frequency / I_set_filt3 fn_den
p1669[0...n] Manip. variable filter 3 velocity controller denominator damping / Filt 3 v_ctr D_den
p1669[0...n] Current setpoint filter 3 denominator damping / I_set_filt 3 D_den
p1670[0...n] Manip. var. filter 3 velocity controller numerator natural freq. / Filt3 v_ctr fn_num
p1670[0...n] Current setpoint filter 3 numerator natural frequency / I_set_filt3 fn_num
p1671[0...n] Manip. variable filter 3 velocity controller numerator damping / Filt 3 v_ctr D_num
p1671[0...n] Current setpoint filter 3 numerator damping / I_set_filt 3 D_num
p1672[0...n] Manipulated variable filter 4 velocity controller type / Filt 4 v _ctrl type
p1672[0...n] Current setpoint filter 4 type / I_set_filt 4 type
p1673[0...n] Manip. var. filter 4 velocity controller denom. natural freq. / Filt4 v_ctr fn_den
p1673[0...n] Current setpoint filter 4 denominator natural frequency / I_set_filt4 fn_den
p1674[0...n] Manip. variable filter 4 velocity controller denominator damping / Filt 4 v_ctr $D_{-}$den
p1674[0...n] Current setpoint filter 4 denominator damping / I_set_filt 4 D_den
p1675[0...n] Manip. var. filter 4 velocity controller numerator natural freq. / Filt4 v_ctr fn_num
p1675[0...n] Current setpoint filter 4 numerator natural frequency / I_set_filt4 fn_den
p1676[0...n]
p1676[0...n]
p1677[0...n]
p1678[0...n]
p1679[0...n]
p1680[0...n]
p1681[0...
p1700[0...
p1701[0...
p1702[0...n]
p1703[0...n]
p1704[0...n]
p1705[0...n]
p1715[0...n]
p1715[0...n]
p1716[0...n]
p1717[0...n]
p1717[0...n]
p1718[0...n
p1719[0....
p1720[0...n]
p1720[0...n]
p1721[0...n]
p1722[0...n]
p1722[0...
p1724[0...n]
p1725[0...n]
p1726[0...n]
p1726[0...n]
p1727[0...n]
p1727[0...n]
p1730[0...n]
p1731[0...n]
p1734[0...n]
p1735[0...n]
p1740[0....
p1744[0...n]
p1745[0...n]
p1747[0...n]
p1748[0...n]
p1749[0...
p1750[0...
p1752[0...
p1752[0...n]
p1753[0...n]
p1754[0...n
p1755[0...n
p1755[0...n]
p1757[0...n]
p1758[0...n]
p1759[0...n]
p1760[0...n]
p1761[0...
p1764[0...n]
p1766[0...n]

Manip. variable filter 4 velocity controller numerator damping / Filt 4 v_ctr D_num
Current setpoint filter 4 numerator damping / I_set_filt 4 D_num
Speed actual value filter 5 type / n_act_filt 5 type
Speed actual value filter 5 denominator natural frequency / n_act_filt5 fn_den
Speed actual value filter 5 denominator damping / n_act_filt 5 D_den
Speed actual value filter 5 numerator natural frequency / n_act_filt5 fn_num
Speed actual value filter 5 numerator damping / n_act_filt 5 D_num
Force controller loop gain / F_ctrl loop_gain
Current controller reference model dead time / I_ctrRefMod t_dead
Isd current controller precontrol scaling / Isd_ctr_prectrScal
Isq current controller precontrol scaling / Isq_ctr_prectrScal
Isq current controller precontrol EMF scaling / Isq_ctrl EMF scal
Flux setpoint/actual value tracking threshold / Flux track thresh
Force controller P gain / F_ctrl Kp
Current controller P gain / I_ctrl Kp
Force controller P gain weakening / F_ctrl Kp red
Force controller integral time / F_ctrl Tr
Current controller integral-action time / I_ctrl Tn
Force controller D component smoothing time constant / F_ctrl D comp T
Force controller derivative-action time / F_ctrl t_deriv
Force controller precontrol factor / F_ctr prectr fact
Current controller d axis p gain / ld_ctrl Kp
Precontrol filter activation / Prectrl_filt act
Precontrol filter type / Prectrl_filt type
Current controller d axis integral time / I_ctrl d-axis Tn
Precontrol filter denominator natural frequency / Prectr_filt fn_den
Precontrol filter denominator damping / Prectrl_filt D_den
Precontrol filter numerator natural frequency / Prectr_filt fn_num
Quadrature arm decoupling scaling / Transv_decpl scal
Precontrol filter numerator damping / Prectrl_filt D_num
Quadrature arm decoupling at voltage limit scaling / TrnsvDecpIVmaxScal Isd controller integral component shutdown threshold / Isd ctrl Tn shutd Isd controller combination current time component / Isd ctr I_combi T1 Isq current controller precontrol eddy current compensation drop / Isq ctr prctr drop Isq current controller prectrl eddy current comp time constant / Isq_ctr_prectr T
Gain resonance damping for encoderless closed-loop control / Gain res_damp
Motor model speed threshold stall detection / MotMod n_thr stall
Motor model error threshold stall detection / MotMod ThreshStall
Motor model pulse technique transition speed / MotMod puls tech n
Motor model lower changeover speed n_set -> n_act / MotMod low n_chng
Motor model upper changeover speed / increase changeover speed / Up/incr n_chngov
Motor model configuration / MotMod config
Motor model changeover speed operation with encoder / MotMod n_chgov enc
Motor model with encoder changeover velocity / MotMod enc v chgov
Motor model changeover speed hysteresis operation with encoder / MotMod n chgovHysE Flux angle difference smoothing time / Angle diff T_smth
Motor model changeover speed encoderless operation / MotMod n_chgSnsorl
Motor model changeover velocity encoderless operation / MotMod v_chgSnsorl
Motor model w/o enc. op./cl.-loop controlled stab. controller Kp / MotMod w/o enc Kp
Motor model changeover delay time closed/open-loop control / MotMod t cl_op Motor model changeover delay time open/closed-loop control / MotMod top cl Motor model with encoder speed adaptation Kp / MotMod wE n_ada Kp Motor model with encoder speed adaptation Tn / MotMod wE n_ada Tn Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp Motor model voltage model calculation enable / U_mod calc enab

### 2.3 Parameters for data sets

p1767[0...n] p1769[0...n] p1774[0...n] p1775[0...n] p1780[0...n] p1780[0...n] p1784[0...n] p1785[0...n] p1786[0...n] r1787[0...n] p1795[0...n] p1795[0...n] r1797[0...n p1798[0... p1799[0... p1800[0...n] p1800[0...n] p1801[0...n] p1802[0.... p1802[0... p1803[0... p1803[0...n] p1804[0...n] p1804[0...n] p1805[0...n] p1806[0...n] p1811[0...n] p1814[0...n] p1820[0...n] p1820[0...n] p1821[0...n] p1821[0...n] p1830[0...n p1831[0...n] p1833[0.... p1834[0.... p1835[0... p1836[0...n]
p1837[0...
p1838[0...n] p1839[0.... p1840[0... p1840[0.... p1841[0...n]
p1842[0....
p1843[0...
p1844[0....
p1845[0...
p1845[0...
p1846[0....
p1846[0.... p1847[0...n] p1848[0... p1850[0... p1851[0...n]

Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn
Motor model changeover delay time closed-loop control / MotMod tcl_ctrl
Motor model offset voltage compensation alpha / MotMod offs comp A
Motor model offset voltage compensation beta / MotMod offs comp B
Motor model adaptation configuration / MotMod adapt conf
Motor/converter model adaptation configuration / MotMod adapt conf
Motor model feedback scaling / MotMod fdbk scal
Motor model Lh adaptation Kp / MotMod Lh Kp
Motor model Lh adaptation integral time / MotMod Lh Tn
Motor model Lh adaptation corrective value / MotMod Lh corr Motor model kT adaptation smoothing time / MotMod kT T_smth
Motor model kT adaptation integral time / MotMod kT Tn
Motor model kT adaptation corrective value / MotMod kT corr
Motor model pulse technique speed adaptation Kp / MotMod PulsTech Kp
Motor model pulse technique speed adaptation Tn / MotMod PulsTech Tn Manipulated variable filter activation / ManVarFilt act Pulse frequency setpoint / Pulse freq setp
Manipulated variable filter type / ManVarFilt type
Manipulated variable filter denominator natural frequency / ManVarFilt fn_den Modulator mode / Modulator mode

Manipulated variable filter denominator damping / ManVar_ filt D_den
Maximum modulation depth / Modulat depth max
Manipulated variable filter numerator natural freq. / ManVarFilt fn_num
Filter time constant smoothed modulation index / T_filt mod_idx sm
Manipulated variable filter numerator damping / ManVarFilt D_num
Filter time constant Vdc correction / T_filt Vdc_corr
Pulse frequency wobbulation amplitude / Puls wobb ampl
Vdc filter dead band for modulation switchover / Vdc filt dead band Invert output voltage / U_output inv
Reverse the output phase sequence / Outp_ph_seq rev
Direction / Direction
Direction of rotation / Dir of rot
Factor plane adaptation positive / Fact pl_adap pos
Factor plane adaptation negative / Fact pl adap neg
Transition point compensation Q1 positive zero range / Trans pt Q1 pos
Transition point compensation U1 positive zero range / Trans pt U1 pos
Transition point compensation rounding 1 positive zero range / Trans pt rnd 1 pos
Transition point compensation Q1 negative zero range / Trans pt Q1 neg
Transition point compensation U1 negative zero range / Trans pt U1 neg
Transition point compensation rounding 1 negative zero range / Trans pt rnd 1 neg
Transition point compensation Q2 positive / Trans pt Q2 pos
Transition point compensation U2 positive / Trans pt U2 pos
Actual value correction configuration / ActVal_corr conf
Transition point compensation rounding 2 positive / Trans pt rnd 2 pos
Transition point compensation Q2 negative / Trans pt Q2 neg
Transition point compensation U2 negative / Trans pt U2 neg
Transition point compensation rounding 2 negative / Trans pt rnd 2 neg Transition point compensation Q3 positive saturation / TransPt Q3 pos sat Actual value correction evaluation factor Lsig / ActVal_cor ev Lsig Transition point compensation U3 positive saturation / TransPt U3 pos sat Actual value correction damping factor / ActV corr D factor Transition point compensation Q3 negative saturation / TransPt Q3 neg sat Transition point compensation U3 negative saturation / TransPt U3 neg sat Control voltage limiting positive / U_ctrl lim pos Control voltage limiting negative / U_ctrl limit neg
p1952[0...n] Voltage emulation error final value / U_error final val
p1953[0...n] Voltage emulation error current offset / U_error I_offset
p1954[0...n] Voltage emulation error semiconductor voltage / U_error U_semi
p1959[0...n] Data identification moving configuration / Dat_id mov config
p1998[0...n] PolID circle center point / PoIID circ center
p2140[0...n] Hysteresis speed 2 / n_hysteresis 2
p2140[0...n] Hysteresis velocity $2 / \mathrm{v}$ _hysteresis 2
p2141[0...n] Speed threshold $1 / n$ thresh val 1
p2141[0...n] Velocity threshold value $1 /$ v_thresh val 1
p2142[0...n] Hysteresis speed 1 / n_hysteresis 1
p2149[0...n] Monitoring configuration / Monit config
p2150[0...n] Hysteresis speed 3 /n_hysteresis 3
p2150[0...n] Hysteresis velocity $3 / \mathrm{v}$ _hysteresis 3
p2153[0...n] Velocity actual value filter time constant / v_act_filt T
p2153[0...n] Speed actual value filter time constant / n_act_filt T
p2155[0...n] Speed threshold $2 /$ n_thresh val 2
p2155[0...n] Velocity threshold value $2 /$ v_thresh val 2
p2156[0...n] On delay comparison value reached / t_on cmpr val rchd
p2161[0...n] Speed threshold $3 /$ n_thresh val 3
p2161[0...n] Velocity threshold value $3 / \mathrm{v}$ _thresh val 3
p2162[0...n] Hysteresis speed n_act > n_max / Hyst n_act>n_max
p2162[0...n] Hysteresis velocity v_act > v_max / Hyst v_act>v_max
p2163[0...n] Velocity threshold value $4 /$ v_thresh val 4
p2163[0...n] Speed threshold 4 / n_thresh val 4
p2164[0...n] Hysteresis velocity 4 / v_hysteresis 4
p2164[0...n] Hysteresis speed $4 / \mathrm{n}$ _hysteresis 4
p2166[0...n] Off delay v_act = v_set / t_del_off n_i=n_so
p2166[0...n] Off delay n_act = n_set / t_del_off n_i=n_so
p2167[0...n] Switch-on delay n_act = n_set / t_on n_act=n_set
p2167[0...n] On delay v_act = v_set / t_on n_act=n_set
p2174[0...n] Torque threshold value $1 / \mathrm{M}$ _thresh val 1
p2174[0...n] Force threshold value 1 / F_thresh val 1
p2175[0...n] Motor blocked velocity threshold / Mot lock v_thresh
p2175[0...n] Motor blocked speed threshold / Mot lock n_thresh
p2177[0...n] Motor blocked delay time / Mot lock t_del
p2178[0...n] Motor stalled delay time / Mot stall t_del
p2181[0...n] Load monitoring response / Load monit resp
p2182[0...n] Load monitoring velocity threshold 1 / v_thresh 1
p2182[0...n] Load monitoring speed threshold value $1 / n$ nthresh 1
p2183[0...n] Load monitoring velocity threshold 2 / v_thresh 2
p2183[0...n] Load monitoring speed threshold value $2 / n+t h r e s h ~ 2 ~$
p2184[0...n] Load monitoring velocity threshold $3 /$ v_thresh 3
p2184[0...n] Load monitoring speed threshold value 3 / n_thresh 3
p2185[0...n] Load monitoring force threshold 1 upper / F_thresh 1 upper
p2185[0...n] Load monitoring torque threshold 1 upper / M_thresh 1 upper
p2186[0...n] Load monitoring force threshold 1 lower / F_thresh 1 lower
p2186[0...n] Load monitoring torque threshold 1 lower / M_thresh 1 lower
p2187[0...n] Load monitoring force threshold 2 upper / F_thresh 2 upper
p2187[0...n] Load monitoring torque threshold 2 upper / M_thresh 2 upper
p2188[0...n] Load monitoring force threshold 2 lower / F_thresh 2 lower
p2188[0...n] Load monitoring torque threshold 2 lower / M_thresh 2 lower
p2189[0...n] Load monitoring force threshold 3 upper / F_thresh 3 upper
p2189[0...n] Load monitoring torque threshold 3 upper / M_thresh 3 upper
p2190[0...n] Load monitoring force threshold 3 lower / F_thresh 3 lower
p2190[0...n] Load monitoring torque threshold 3 lower / M_thresh 3 lower

### 2.3 Parameters for data sets

p2192[0...n] Load monitoring delay time / Load monit t_del
p2194[0...n] Torque threshold value 2 / M_thresh val 2
p2194[0...n] Force threshold value 2 / F_thresh val 2
p2195[0...n] Torque utilization switch-off delay / M_util t_off
p2195[0...n] Force utilization switch-off delay / F_util t_off
p2196[0...n] Torque utilization scaling / M_util scal
p2201[0...n] CO: Technology controller fixed value 1 / Tec_ctrl fix val1
p2202[0...n] CO: Technology controller fixed value 2 / Tec_ctr fix val 2
p2203[0...n] CO: Technology controller fixed value 3 / Tec_ctr fix val 3
p2204[0...n] CO: Technology controller fixed value 4 / Tec_ctr fix val 4
p2205[0...n] CO: Technology controller fixed value 5 / Tec_ctr fix val 5
p2206[0...n] CO: Technology controller fixed value $6 /$ Tec_ctr fix val 6
p2207[0...n] CO: Technology controller fixed value 7 / Tec_ctr fix val 7
p2208[0...n] CO: Technology controller fixed value $8 /$ Tec_ctr fix val 8
p2209[0...n] CO: Technology controller fixed value $9 /$ Tec_ctr fix val 9
p2210[0...n] CO: Technology controller fixed value 10 / Tec_ctr fix val 10
p2211[0...n] CO: Technology controller fixed value 11 / Tec_ctr fix val 11
p2212[0...n] CO: Technology controller fixed value 12 / Tec_ctr fix val 12
p2213[0...n] CO: Technology controller fixed value 13 / Tec_ctr fix val 13
p2214[0...n] CO: Technology controller fixed value 14 / Tec_ctr fix val 14
p2215[0...n] CO: Technology controller fixed value 15 / Tec_ctr fix val 15
p2216[0...n] Technology controller fixed value selection method / Tec_ctr FixVal sel
p2230[0...n] Technology controller motorized potentiometer configuration / Tec_ctr mop config
p2237[0...n] Technology controller motorized potentiometer maximum value / Tec_ctrl mop max
p2238[0...n] Technology controller motorized potentiometer minimum value / Tec_ctrl mop min
p2240[0...n] Technology controller motorized potentiometer starting value / Tec_ctrl mop start
p2247[0...n] Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up
p2248[0...n] Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown
p2502[0...n] LR encoder assignment / Encoder assignment
p2503[0...n] LR length unit LU per $10 \mathrm{~mm} / \mathrm{LU}$ per 10 mm
p2504[0...n] LR motor/load motor distance / Mot/load motor dis
p2504[0...n] LR motor/load motor revolutions / Mot/load motor rev
p2505[0...n] LR motor/load load revolutions / Mot/load load rev
p2506[0...n] LR length unit LU per load path / LU per load path
p2506[0...n] LR length unit LU per load revolution / LU per load rev
p2519[0...n] LR position actual value preprocessing config. DDS changeover / s_act config DDS
p2533[0...n] LR position setpoint filter time constant / s_set_filt T
p2534[0...n] LR velocity precontrol factor / v_prectrl fact
p2534[0...n] LR speed precontrol factor / n_prectrl fact
p2535[0...n] LR velocity precontrol symmetrizing filter dead time / v_prectrFlt t_dead
p2535[0...n] LR speed precontrol symmetrizing filter dead time / n_prectrFIt t_dead
p2536[0...n] LR velocity precontrol symmetrizing filter PT1 / v_prectrl filt PT1
p2536[0...n] LR speed precontrol symmetrizing filter PT1 / n_prectrl filt PT1
p2538[0...n] LR proportional gain / Kp
p2539[0...n] LR integral time / Tn
p2546[0...n] LR dynamic following error monitoring tolerance / s_delta_monit tol
p2567[0...n] LR force precontrol mass / F_prectrl mass
p2567[0...n] LR torque precontrol moment of inertia / M_prectr M_inertia
p2634[0...n] EPOS fixed stop maximum following error / Following err max
p2720[0...n] Load gear configuration / Load gear config
p2721[0...n] Load gear rotary absolute encoder revolutions virtual / Abs rot rev
p2722[0...n] Load gear position tracking tolerance window / Pos track tol
r2723[0...n] CO: Load gear absolute value / Load gear abs_val
r2724[0...n] CO: Load gear position difference / Load gear pos diff
p2900[0...n] CO: Fixed value 1 [\%] / Fixed value 1 [\%]

```
p2901[0...n]
CO: Fixed value 2 [\%] / Fixed value 2 [\%]
p2930[0...n]
p2930[0...n]
p3201[0...n]
p3202[0...n]
p3203[0...n]
p3204[0...n]
p3205[0...n]
p3206[0...n]
p3207[0...n
p3208[0...n]
p3209[0...
p3233[0...n] Torque actual value filter time constant / M_act_filt T
p3236[0...n] Speed threshold value 7 /n_thresh val 7
Hysteresis speed 7 / n_hysteresis 7
p3238[0...n] OFF delay n_act_motor model = n_act external / t_del n_a = n_ext
p3241[0...n] Permissible I2t continuous value / Perm I2t cont val
p3242[0...n] I2t maximum duration / I2t max_dur
p3243[0...n] I2t alarm threshold / I2t alarm thresh
p3315[0...n
p3316[0...n]
p3320[0...n]
p3321[0...n]
p3322[0...
p3323[0...
p3324[0...
p3325[0...n]
p3326[0...
p3327[0...n]
p3328[0....
p3329[0...
p3370[0...n]
p3371[0...n]
p3372[0...n]
p3373[0...
p3702[0...
p3704[0...
p3705[0...n]
p3706[0...
p3707[0...n]
p3708[0...n
p3708[0...
p3709[0...
p3709[0...n
p3711[0...n]
p3712[0...n
p3713[0...
p3714[0...
p3721[0....
p3722[0...n]
p3723[0...n]
p3724[0...
p3726[0...
p3727[0...n]
APC filter 2.2 denominator damping / APC Filt 2.2 D_den
p3728[0...n] APC filter 2.2 numerator natural frequency / APC Filt2.2 fn_num
```


### 2.3 Parameters for data sets

p3729[0...n]	APC filter 2.2 numerator damping / APC Filt 2.2 D_num
p3731[0...n]	APC filter 3.1 denominator natural frequency / APC Filt3.1 fn_den
p3732[0...n]	APC filter 3.1 denominator damping / APC Filt 3.1 D_den
p3733[0...n]	APC filter 3.1 numerator natural frequency / APC Filt3.1 fn_num
p3734[0...n]	APC filter 3.1 numerator damping / APC Filt 3.1 D_num
p3736[0...n]	APC filter 3.2 denominator natural frequency / APC Filt3.2 fn_den
p3737[0...n]	APC filter 3.2 denominator damping / APC Filt 3.2 D_den
p3738[0...n]	APC filter 3.2 numerator natural frequency / APC Filt3.2 fn_num
p3739[0...n]	APC filter 3.2 numerator damping / APC Filt 3.2 D_num
p3740[0...n]	APC torque setpoint filter 1 denominator natural frequency / APC M flt 1 fn _den
p3741[0...n]	APC torque setpoint filter 1 denominator damping / APC M filt 1 D_den
p3742[0...n]	APC torque setpoint filter 1 numerator natural frequency / APC M flt 1 fn_num
p3743[0...n]	APC torque setpoint filter 1 numerator damping / APC M flt 1 D_num
p3744[0...n]	APC torque setpoint filter 2 denominator natural frequency / APC M flt 2 fn_den
p3745[0...n]	APC torque setpoint filter 2 denominator damping / APC M filt 2 D_den
p3746[0...n]	APC torque setpoint filter 2 numerator natural frequency / APC M flt 2 fn_num
p3747[0...n]	APC torque setpoint filter 2 numerator damping / APC M filt 2 D_num
p3748[0...n]	APC velocity input scaling / APC v_input scale
p3751[0...n]	AVS/APC acceleration sensor high pass time constant / APC accel DT1 T
p3752[0...n]	AVS controller preassignment natural oscillation frequency / AVS ctr_preassn fn
p3753[0...n]	APC torque setpoint preassignment natural oscillation frequency / APC M_filt def fn
p3754[0...n]	APC torque setpoint filter preassignment gain / APC M_filt def V
p3755[0...n]	AVS/APC motor mass factor / APC mot_mass fact
p3755[0...n]	AVS/APC motor moment of inertia factor / APC M_inert factor
p3760[0...n]	APC load velocity controller 1 P gain / APC v_load ctr1 Kp
p3760[0...n]	APC load speed controller 1 P gain / APC n_load ctr1 Kp
p3761[0...n]	AVS/APC load velocity controller 1 rate time / APC v_load ctr1 Tv
p3761[0...n]	AVS/APC load speed controller 1 rate time / APC n_load ctr1 Tv
p3765[0...n]	APC load velocity controller 2 P gain / APC v_load ctr2 Kp
p3765[0...n]	APC load speed controller 2 P gain / APC n_load ctr2 Kp
p3766[0...n]	APC load velocity controller 2 rate time / APC v_load ctr2 Tv
p3766[0...n]	APC load speed controller 2 rate time / APC n_load ctr2 Tv
p3767[0...n]	APC differential position high pass time constant / APC s_Dif DT1 T
p3768[0...n]	APC differential position gain factor / APC s_dif Kp
p3774[0...n]	APC differential speed gain factor / APC n_dif Kp
p3778[0...n]	APC velocity limit / APC v_limit
p3778[0...n]	APC speed limit / APC n_limit
p3779[0...n]	APC velocity limit monitoring time / APC v_limit t
p3779[0...n]	APC speed limit monitoring time / APC n_limit t
p3800[0...n]	Sync-line-drive activation / Sync act
p3801[0...n]	Sync-line-drive drive object number / Sync DO_no
p3806[0...n]	Sync-line-drive frequency difference threshold value / Sync f_diff thresh
p3809[0...n]	Sync-line-drive phase setpoint / Sync phase setp
p3811[0...n]	Sync-line-drive frequency limiting / Sync f_lim
p3813[0..n]	Sync-line-drive phase synchronism threshold value / Sync Ph_sync thrsh
p3815[0...n]	Sync-line-drive voltage difference threshold value / Sync U_diff thresh
p3820[0...n]	Friction characteristic value n0 / Friction n0
p3820[0...n]	Friction characteristic value v0 / Friction v0
p3821[0...n]	Friction characteristic value $\mathrm{n} 1 /$ Friction n 1
p3821[0...n]	Friction characteristic value v1/ Friction v1
p3822[0...n]	Friction characteristic value $\mathrm{n} 2 /$ Friction n 2
p3822[0...n]	Friction characteristic value v2 / Friction v2
p3823[0...n]	Friction characteristic value n3/Friction n3
p3823[0...n]	Friction characteristic value v3/ Friction v3
p3824[0...n]	Friction characteristic value n4/Friction n4


p3824[0...n]	Friction characteristic value v4/Friction v4
p3825[0...n]	Friction characteristic value n5 / Friction n5
p3825[0...n]	Friction characteristic value v5 / Friction v5
p3826[0...n]	Friction characteristic value n6/Friction n6
p3826[0...n]	Friction characteristic value v6 / Friction v6
p3827[0...n]	Friction characteristic value n7 / Friction n7
p3827[0...n]	Friction characteristic value v7 / Friction v7
p3828[0...n]	Friction characteristic value n8 / Friction n8
p3828[0...n]	Friction characteristic value v8/Friction v8
p3829[0...n]	Friction characteristic value n 9 / Friction n9
p3829[0...n]	Friction characteristic value v9 / Friction v9
p3830[0...n]	Friction characteristic value M0 / Friction M0
p3830[0...n]	Friction characteristic value F0 / Friction F0
p3831[0...n]	Friction characteristic value M1/ Friction M1
p3831[0...n]	Friction characteristic value F1 / Friction F1
p3832[0...n]	Friction characteristic value M2 / Friction M2
p3832[0...n]	Friction characteristic value F2 / Friction F2
p3833[0...n]	Friction characteristic value M3 / Friction M3
p3833[0...n]	Friction characteristic value F3 / Friction F3
p3834[0...n]	Friction characteristic value M4 / Friction M4
p3834[0...n]	Friction characteristic value F4 / Friction F4
p3835[0...n]	Friction characteristic value M5 / Friction M5
p3835[0...n]	Friction characteristic value F5 / Friction F5
p3836[0...n]	Friction characteristic value M6 / Friction M6
p3836[0...n]	Friction characteristic value F6 / Friction F6
p3837[0...n]	Friction characteristic value M7 / Friction M7
p3837[0...n]	Friction characteristic value F7 / Friction F7
p3838[0...n]	Friction characteristic value M8 / Friction M8
p3838[0...n]	Friction characteristic value F8 / Friction F8
p3839[0...n]	Friction characteristic value M9 / Friction M9
p3839[0...n]	Friction characteristic value F9 / Friction F9
p3843[0...n]	Friction characteristic frictional torque diff. smoothing time / Frict M_diff t_sm
p3844[0...n]	Friction characteristic number changeover point upper / FricNo chng_pt up
p3846[0...n]	Friction characteristic record ramp-up/ramp-down time / Frict rec t_RU/RD
p3847[0...n]	Friction characteristic record warm-up time / Frict rec t_warm
r3925[0...n]	Identification final display / Ident final_disp
r3927[0...n]	Motor data identification induction motor data determined / MotID ASM dat det
r3928[0...n]	Motor data identification synchronous motor data determined / Motld PMSM dat det
p3940[0...n]	Motor/controller data calculation / Mot/ctrl_data calc
r3998[0...n]	First drive commissioning / First drv_comm
p5200[0...n]	Current setpoint filter 5 ... 10 activation / I_setp_filt act
p5201[0...n]	Current setpoint filter 5 type / I_set_filt 5 type
p5202[0...n]	Current setpoint filter 5 denominator natural frequency / I_set_filt5 fn_den
p5203[0...n]	Current setpoint filter 5 denominator damping / I_set_filt 5 D_den
p5204[0...n]	Current setpoint filter 5 numerator natural frequency / I_set_filt5 fn_num
p5205[0...n]	Current setpoint filter 5 numerator damping / I_set_filt 5 D_num
p5206[0...n]	Current setpoint filter 6 type / I_set_filt 6 type
p5207[0...n]	Current setpoint filter 6 denominator natural frequency / I_set_filt6 fn_den
p5208[0...n]	Current setpoint filter 6 denominator damping / I_set_filt 6 D_den
p5209[0...n]	Current setpoint filter 6 numerator natural frequency / I_set_filt6 fn_num
p5210[0...n]	Current setpoint filter 6 numerator damping / I_set_filt 6 D_num
p5211[0...n]	Current setpoint filter 7 type / I_set_filt 7 type
p5212[0...n]	Current setpoint filter 7 denominator natural frequency / I_set_filt7 fn_den
p5213[0...n]	Current setpoint filter 7 denominator damping / I_set_filt 7 D_den
p5214[0...n]	Current setpoint filter 7 numerator natural frequency / I_set_filt7 fn_num

### 2.3 Parameters for data sets

p5215[0...n] Current setpoint filter 7 numerator damping / I_set_filt 7 D_num
p5216[0...n] Current setpoint filter 8 type / I_set_filt 8 type
p5217[0...n] Current setpoint filter 8 denominator natural frequency / I_set_filt8 fn_den
p5218[0...n] Current setpoint filter 8 denominator damping / I_set_filt 8 D_den
p5219[0...n] Current setpoint filter 8 numerator natural frequency / I_set_filt8 fn_num
p5220[0...n] Current setpoint filter 8 numerator damping / I_set_filt 8 D_num
p5221[0...n] Current setpoint filter 9 type / I_set_filt 9 type
p5222[0...n] Current setpoint filter 9 denominator natural frequency / I_set_filt9 fn_den
p5223[0...n] Current setpoint filter 9 denominator damping / I_set_filt 9 D_den
p5224[0...n] Current setpoint filter 9 numerator natural frequency / I_set_filt9 fn_num
p5225[0...n] Current setpoint filter 9 numerator damping / I_set_filt 9 D_num
p5226[0...n] Current setpoint filter 10 type / I_set_filt 10 type
p5227[0...n] Current setpoint filter 10 denominator natural frequency / I_set_filt1 fn_den
p5228[0...n] Current setpoint filter 10 denominator damping / I_set_filt10 D_den
p5229[0...n] Current setpoint filter 10 numerator natural frequency / I_set_filt 10 fn
p5230[0...n] Current setpoint filter 10 numerator damping / I_set_filt10 D_num
p5250[0...n] Compensation configuration / Comp config
p5256[0...n] Cogging torque compensation direction reversal hysteresis / Cog_M_comp hyst
p5265[0...n] Periodic position error compensation amplitude 1 / Pos err comp ampl1
p5266[0...n] Periodic position error compensation angle 1 / Pos err comp ang 1
p5267[0...n] Periodic position error compensation amplitude 2 / Pos err comp ampl2
p5268[0...n] Periodic position error compensation angle 2 / Pos err comp ang 2
p5271[0...n] Online / One Button Tuning configuration / Ot OBT config
p5272[0...n] Online tuning dynamic factor / Ot dyn_factor
p5273[0...n] Online tuning dynamic factor load / Ot dyn_factor load
p5275[0...n] Online / One Button Tuning dynamic response time constant / Ot dyn T
r5276[0...n] Online / One Button Tuning maximum Kv factor estimated / Ot Kv estimated
r5277[0...n] Online/One Button Tuning precontrol symmetrizing time estimated / Ot FFW estim
p5280[0...n] Current setpoint filter adaptation configuration / Filt adapt config
p5281[0...n] Current setpoint filter adaptation assignment / Filt adapt assign
p5282[0...n] Current setpoint filter adaptation limit frequency lower / Filt adapt f lower
p5283[0...n] Current setpoint filter adaptation limit frequency upper / Filt adapt f upper
p5284[0...n] Current setpoint filter adaptation activation threshold / Filt adapt thresh
r5285[0...n] Current setpoint filter adaptation actual frequency / Filt adapt act f
p5300[0...n] Autotuning selection / Autotuning select
p5301[0...n] One Button Tuning configuration / OBT config
p5302[0...n] Online tuning configuration / Ot config
r5306[0...n] Autotuning status / Autotuning stat
p5307[0...n] Activate One Button Tuning test signal / Act OBT test sig
p5308[0...n] One Button Tuning test signal distance limiting / OBT test sig lim
p5309[0...n] One Button Tuning test signal duration / OBT test sig dur
p5310[0...n] Moment of inertia precontrol configuration / J_est config
r5311[0...n] Moment of inertia precontrol status word / J_prectrl ZSW
p5312[0...n] Moment of inertia precontrol linear positive / J_est lin pos
p5313[0...n] Moment of inertia precontrol constant positive / J_est const pos
p5314[0...n] Moment of inertia precontrol linear negative / J_est lin neg
p5315[0...n] Moment of inertia precontrol constant negative / J_est const neg
p5316[0...n] Inertia precontrol change time inertia / J_precontrl t_ch J
p5316[0...n] Moment of inertia precontrol change time moment of inertia / J_precontrl t_ch J
p5322[0...n] Moment of inertia determination configuration / J_determine config
p5323[0...n] Moment of inertia determination lower frequency limit / J_determ f_lim low
p5324[0...n] Moment of inertia determination upper frequency limit / J_determ f_lim up
p6277[0...n] Reverse field excitation speed setpoint rotat field inversion / RFE n_set revers
p6278[0...n] Reverse field excit speed setp rotat field inversion hysteresis / n_inverse IE Hyst
p6700[0...n] Voltage model angle smoothing / U_mod ang smooth

p7035[0...n]	Par_circuit circulating current control operating mode / I_cct_ctrl mode
p7036[0..n. $]$	Par_circuit circulating current control proportional gain / Circ_I Kp
p7037[0..n]	Par_circuit circulating current control integral time / I_circ Tn
p7038[0...n]	Par_circuit circulating current control limit / I_circ limit

### 2.3.3 Parameters for encoder data sets (EDS)

## Note

## References: SINAMICS S120 Function Manual Drive Functions Chapter "Data sets"

The following list contains the parameters that are dependent on the encoder data sets.

Product: SINAMICS S120/S150, Version: 5103400, Language: eng, Type: EDS	
p0141[0...n]	Encoder interface (Sensor Module) component number / Enc_interf comp_no
p0142[0...n]	Encoder component number / Encoder comp_no
p0144[0...n]	Sensor Module detection via LED / SM detection LED
p0145[0...n]	Activate/deactivate encoder interface / Enc_intf act/deact
r0146[0...n]	Encoder interface active/inactive / Enc_intf act/inact
r0147[0...n]	Sensor Module EEPROM data version / SM EEPROM version
r0148[0...n]	Sensor Module firmware version / SM FW version
p0400[0...n]	Encoder type selection / Enc_typ sel
p0402[0...n]	Gearbox type selection / Gearbox type sel
p0404[0...n]	Encoder configuration effective / Enc_config eff
p0405[0...n]	Square-wave encoder track A/B / Sq-wave enc A/B
p0407[0...n]	Linear encoder grid division / Enc grid div
p0408[0...n]	Rotary encoder pulse number / Rot enc pulse No.
p0410[0...n]	Encoder inversion actual value / Enc inv act value
p0411[0...n]	Measuring gear configuration / Meas gear config
p0412[0...n]	Measuring gear absolute encoder rotary revolutions virtual / Abs rot rev
p0413[0..n]	Measuring gear position tracking tolerance window / Pos track window
p0414[0...n]	Redundant coarse position value relevant bits (identified) / Relevant bits
p0415[0...n]	Gx_XIST1 Coarse position safe most significant bit (identified) / Gx_XIST1 safe MSB
p0416[0...n]	Non safety-relevant meas. steps position value POS1 (detected) / nsrPos1
p0417[0...n]	Encoder safety comparison algorithm (detected) / Safety comp_algo
p0418[0...n]	Fine resolution Gx_XIST1 (in bits) / Enc fine Gx_XIST1
p0419[0...n]	Fine resolution absolute value Gx_XIST2 (in bits) / Enc fine Gx_XIST2
p0420[0...n]	Encoder connection / Enc_connection
p0421[0...n]	Absolute encoder rotary multiturn resolution / Enc abs multiturn
p0422[0...n]	Absolute encoder linear measuring step resolution / Enc abs meas step
p0423[0...n]	Absolute encoder rotary singleturn resolution / Enc abs singleturn
p0424[0...n]	Encoder linear zero mark distance / Enc lin ZM_dist
p0425[0...n]	Encoder rotary zero mark distance / Enc rot dist ZM
p0426[0...n]	Encoder zero mark differential distance / Enc ZM Dif_dist
p0427[0...n]	Encoder SSI baud rate / Enc SSI baud rate
p0428[0...n]	Encoder SSI monoflop time / Enc SSI t_monoflop
p0429[0...n]	Encoder SSI configuration / Enc SSI config
p0430[0...n]	Sensor Module configuration / SM config
p0431[0...n]	Angular commutation offset / Ang_com offset
p0432[0...n]	Gearbox factor encoder revolutions / Grbx_fact enc_rev
p0433[0...n]	Gearbox factor motor/load revolutions / Grbx_fact mot_rev
p0434[0...n]	Encoder SSI error bit / Enc SSI error bit
p0435[0...n]	Encoder SSI alarm bit / Enc SSI alarm bit

### 2.3 Parameters for data sets

p0436[0...n] Encoder SSI parity bit / Enc SSI parity bit
p0437[0...n] Sensor Module configuration extended / SM config ext
p0438[0...n] Squarewave encoder filter time / Enc t_filt
p0439[0...n] Encoder ramp-up time / Enc ramp-up time
p0440[0...n] Copy encoder serial number / Copy enc ser_no
p0441[0...n] Encoder commissioning serial number part 1 / Enc comm ser_no 1
p0442[0...n] Encoder commissioning serial number part 2 / Enc comm ser_no 2
p0443[0...n] Encoder commissioning serial number part 3 / Enc comm ser_no 3
p0444[0...n] Encoder commissioning serial number part 4 / Enc comm ser_no 4
p0445[0...n] Encoder commissioning serial number part 5 / Enc comm ser_no 5
p0446[0...n] Encoder SSI number of bits before the absolute value / Enc SSI bit before
p0447[0...n] Encoder SSI number of bits absolute value / Enc SSI bit val
p0448[0...n] Encoder SSI number of bits after the absolute value / Enc SSI bit after
p0449[0...n] Encoder SSI number of bits filler bits / Enc SSI fill bits
p0453[0...n] Pulse encoder evaluation zero speed measuring time / Enc_ev n_0 t_meas
p0454[0...n] Sensor Module configuration extended Part 2 / SM config ext 2
p0476[0...n] Piston zero point calibration value / Piston 0 pt calib
p0493[0...n] Zero mark selection input terminal / ZM_sel inp_term
p0494[0...n] Equivalent zero mark input terminal / ZM_equiv inp_term
p2507[0...n] LR absolute encoder adjustment status / Abs_enc_adj stat
p2525[0...n] CO: LR encoder adjustment offset / Enc_adj offset
p2733[0...n] CO: LR encoder adjustment DDS / Enc_adjust DDS
p4600[0...n] Motor temperature sensor 1 sensor type / Temp_sens 1 type
p4601[0...n] Motor temperature sensor 2 sensor type / Temp_sens 2 type
p4602[0...n] Motor temperature sensor 3 sensor type / Temp_sens 3 type
p4603[0...n] Motor temperature sensor 4 sensor type / Temp_sens 4 type
p4630[0...n] Absolute encoder linear measuring step factor / Abs_enc meas fact
p4631[0...n] Cylinder distance per encoder revolution / x_cyl per rev
p4643[0...n] DRIVE-CLiQ encoder repeat telegram / DQ enc repeat
p4649[0...n] Encoder function reserve amplitude limit incremental signals / Enc fct amp inc
p4662[0...n] Encoder characteristic type / Enc char_type
p4663[0...n] Encoder characteristic K0 / Enc char K0
p4664[0...n] Encoder characteristic K1 / Enc char K1
p4665[0...n] Encoder characteristic K2 / Enc char K2
p4666[0...n] Encoder characteristic K3 / Enc char K3
p4670[0...n] Analog sensor configuration / Ana_sens config
p4671[0...n] Analog sensor input / Ana_sens inp
p4672[0...n] Analog sensor channel A voltage at actual value zero / Ana_sens A U at 0
p4673[0...n] Analog sensor channel A voltage per encoder period / Ana_sens A U/per
p4674[0...n] Analog sensor channel B voltage at actual value zero / Ana_sens B U at 0
p4675[0...n] Analog sensor channel B voltage per encoder period / Ana_sens B U/per
p4676[0...n] Analog sensor range limit threshold / Ana_sens lim thr
p4677[0...n] Analog sensor LVDT configuration / Ana_sens LVDT conf
p4678[0...n] Analog sensor LVDT ratio / An_sens LVDT ratio
p4679[0...n] Analog sensor LVDT phase / An_sens LVDT ph
p4680[0...n] Zero mark monitoring tolerance permissible / ZM_monit tol perm
p4681[0...n] Zero mark monitoring tolerance window limit 1 positive / ZM tol lim 1 pos
p4682[0...n] Zero mark monitoring tolerance window limit 1 negative / ZM tol lim 1 neg
p4683[0...n] Zero mark monitoring tolerance window alarm threshold positive / ZM tol A_thr pos
p4684[0...n] Zero mark monitoring tolerance window alarm threshold negative / ZM tol A_thr neg
p4685[0...n] Speed actual value mean value generation / n_act mean val
p4686[0...n] Zero mark minimum length / ZM min length

### 2.3.4 Parameters for motor data sets (MDS)

## Note <br> References: SINAMICS S120 Function Manual Drive Functions <br> Chapter "Data sets"

The following list contains the parameters that are dependent on the motor data sets.

Product: SINAMICS S120/S150, Version: 5103400, Language: eng, Type: MDS	
p0131[0...n]	Motor component number / Mot comp_no
p0133[0...n]	Motor configuration / Motor config
p0300[0...n]	Motor type selection / Mot type sel
p0301[0...n]	Motor code number selection / Mot code No. sel
r0302[0...n]	Motor code number of motor with DRIVE-CLiQ / Mot code mot w/ DQ
r0303[0...n]	Motor with DRIVE-CLiQ status word / Motor w DQ ZSW
p0304[0...n]	Rated motor voltage / Mot U_rated
p0305[0...n]	Rated motor current / Mot I_rated
p0306[0...n]	Number of motors connected in parallel / Motor qty
p0307[0...n]	Rated motor power / Mot P_rated
p0308[0...n]	Rated motor power factor / Mot cos phi rated
p0309[0...n]	Rated motor efficiency / Mot eta_rated
p0310[0...n]	Cylinder piston diameter / Cyl piston diam
p0310[0...n]	Rated motor frequency / Mot f_rated
p0311[0...n]	Cylinder piston rod diameter A side / Cyl PistRodDiam A
p0311[0...n]	Rated motor speed / Mot n_rated
p0311[0...n]	Rated motor velocity / Mot v_rated
p0312[0...n]	Cylinder piston rod diameter B side / Cyl rod diam B
p0312[0...n]	Rated motor torque / Mot M_rated
p0312[0...n]	Rated motor force / Mot F_rated
p0313[0...n]	Cylinder piston stroke / Cyl pist stroke
r0313[0...n]	Motor pole pair number, actual (or calculated) / Mot PolePairNo act
p0314[0...n]	Cylinder dead volume A side / Cyl_dead vol A
p0314[0...n]	Motor pole pair number / Mot pole pair No.
p0315[0...n]	Cylinder dead volume B side / Cyl_dead vol B
p0315[0...n]	Motor pole pair width / MotPolePair width
p0316[0...n]	Motor torque constant / Mot kT
p0316[0...n]	Motor force constant / Mot kT
p0317[0...n]	Motor voltage constant / Mot kE
p0318[0...n]	Motor stall current / Mot I_standstill
p0319[0...n]	Motor stall torque / Mot M_standstill
p0319[0...n]	Motor stall force / Mot F_standstill
p0320[0...n]	Motor rated magnetizing current/short-circuit current / Mot I_mag_rated
p0322[0...n]	Maximum motor speed / Mot n_max
p0322[0...n]	Motor maximum velocity / Mot v_max
p0323[0...n]	Maximum motor current / Mot I_max
p0324[0...n]	Winding maximum speed / Winding $n _m a x$
p0324[0...n]	Winding maximum velocity / Winding v_max
p0325[0...n]	Motor pole position identification current 1st phase / Mot PoIID I 1st Ph
p0326[0...n]	Motor stall torque correction factor / Mot M_stall_corr
p0326[0...n]	Motor stall force correction factor / Mot F_stall_corr
p0327[0...n]	Optimum motor load angle / Mot phi_load opt
p0328[0...n]	Motor reluctance torque constant / Mot kT_reluctance
p0328[0...n]	Motor reluctance force constant / Mot kT_reluctance
p0329[0...n]	Motor pole position identification current / Mot PollD current
r0330[0...n]	Rated motor slip / Mot slip_rated

### 2.3 Parameters for data sets

r0331[0...n] Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act
r0332[0...n] Rated motor power factor / Mot cos phi rated
r0333[0...n] Rated motor torque / Mot M_rated
r0334[0...n] Actual motor-torque constant / Mot kT act
r0334[0...n] Actual motor force constant / Mot kT act
p0335[0...n] Motor cooling type / Mot cool type
r0336[0...n] Actual rated motor frequency / Mot f_rated act
r0337[0...n] Rated motor EMF / Mot EMF_rated
p0338[0...n] Motor limit current / Mot I_limit
r0339[0...n] Rated motor voltage / Mot U_rated
p0341[0...n] Cylinder weight / Cyl weight
p0341[0...n] Motor moment of inertia / Mot M_inert
p0341[0...n] Motor weight / Mot weight
p0342[0...n] Ratio between the total and motor moment of inertia / Mot MomInert Ratio
p0343[0...n] Valve/cylinder configuration / Valve/cyl config
p0343[0...n] Rated motor current identified / Mot I_rated ident
p0344[0...n] Cylinder mounting position A side / Cyl mount pos A
p0344[0...n] Motor weight (for the thermal motor model) / Mot weight th mod
r0345[0...n] Nominal motor starting time / Mot t_start_rated
p0346[0...n] Line length A side / Line length $A$
p0346[0...n] Motor excitation build-up time / Mot t_excitation
p0347[0...n] Line length $B$ side / Line length $B$
p0347[0...n] Motor de-excitation time / Mot t_de-excitat
p0348[0...n] Internal line diameter / Line_inner diam
p0348[0...n] Speed at the start of field weakening Vdc $=600 \mathrm{~V} / \mathrm{n} _$strt field weak
p0348[0...n] Velocity at the start of field weakening Vdc $=600 \mathrm{~V} / \mathrm{v}$ _strt field weak
p0350[0...n] Motor stator resistance cold / Mot R_stator cold
p0352[0...n] Cable resistance / R_cable
p0353[0...n] Motor series inductance / Mot L_series
p0354[0...n] Motor rotor resistance cold / damping resistance d axis / Mot R_r cold/R_D d
p0355[0...n] Motor damping resistance q axis / Mot R_damp q
p0356[0...n] Motor stator leakage inductance / Mot L_stator leak.
p0357[0...n] Motor stator inductance d axis / Mot L_stator d
p0358[0...n] Motor rotor leakage inductance / damping inductance d axis / Mot L_r leak / LDd
p0359[0...n] Motor damping inductance q axis / Mot L_damp q
p0360[0...n] Motor magnetizing inductance/magn. inductance d axis saturated / Mot Lh/Lh d sat
p0361[0...n] Motor magnetizing inductance q axis saturated/Mot L_magn q sat
p0362[0...n] Motor saturation characteristic flux 1 / Mot saturat.flux 1
p0363[0...n] Motor saturation characteristic flux 2 / Mot saturat.flux 2
p0364[0...n] Motor saturation characteristic flux 3 / Mot saturat.flux 3
p0365[0...n] Motor saturation characteristic flux 4 / Mot saturat.flux 4
p0366[0...n] Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1
p0367[0...n] Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2
p0368[0...n] Motor saturation characteristic I_mag 3 / Mot sat. I_mag 3
p0369[0...n] Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4
r0370[0...n] Motor stator resistance cold / Mot R_stator cold
r0372[0...n] Total power unit cable resistance / PU cable R tot
r0373[0...n] Motor rated stator resistance / Mot R_stator rated
r0374[0...n] Motor rotor resistance cold / damping resistance d axis / Mot R_r cold/R_D d
r0375[0...n] Motor damping resistance q axis / Mot R_damp q
r0376[0...n] Rated motor rotor resistance / Mot rated R_rotor
r0377[0...n] Motor leakage inductance total / Mot L_leak total
r0378[0...n] Motor stator inductance d axis / Mot L_stator d
r0380[0...n] Motor damping inductance d axis / Mot L_damp d
r0381[0...n] Motor damping inductance q axis / Mot L_damp q

r0382[0...n]	Motor magnetizing inductance transformed / Lh d axis saturated / Mot L_m tr/Lhd sat
r0383[0...n]	Motor magnetizing inductance q axis saturated / Mot L_magn q sat
r0384[0...n]	Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd
r0385[0...n]	Motor damping time constant q axis / Mot L_damping q
r0386[0...n]	Motor stator leakage time constant / Mot T_stator leak
r0387[0...n]	Motor stator leakage time constant q axis / Mot T_Sleak /T_Sq
p0388[0...n]	Motor stall torque correction factor for p1402.6 = $1 /$ Mot M_stallCorrNew
p0389[0...n]	Excitation rated no-load current / Exc I_noload_rated
p0390[0...n]	Rated excitation current / Exc I_rated
p0391[0...n]	Current controller adaptation starting point Kp / I_adapt pt Kp
p0392[0...n]	Current controller adaptation starting point Kp adapted / I_adapt pt Kp adap
p0393[0...n]	Current controller adaptation p gain adaptation / I_adapt Kp adapt
p0393[0...n]	Current controller adaptation P gain scaling / I_adapt Kp scal
r0395[0...n]	Actual stator resistance / R_stator act
r0396[0...n]	Actual rotor resistance / R_rotor act
p0397[0...n]	Angle magnetic decoupling maximum angle / Magn decpl max_ang
p0398[0...n]	Angle magn decoupling (cross saturation) coeff 1 / Magn decoupl C1
p0399[0...n]	Angle magn decoupling (cross saturation) coeff 3 / Magn decoupl C3
p0530[0...n]	Bearing version selection / Bearing vers sel
p0531[0...n]	Bearing code number selection / Bearing codeNo sel
p0532[0...n]	Bearing maximum speed / Bearing n_max
p0532[0...n]	Bearing maximum velocity / Bearing v_max
p0541[0...n]	Load gearbox code number / Load grbx CodeNo
p0542[0...n]	Load gearbox maximum speed / Load grbx n_max
p0543[0...n]	Load gearbox maximum torque / Load grbx M_max
p0544[0...n]	Load gearbox overall ratio numerator / Load grbx ratio N
p0545[0...n]	Load gearbox overall ratio denominator / Load grbx ratio D
p0546[0...n]	Load gearbox direction of rotation inversion / Load grbx dir inv
p0547[0...n]	Load gearbox moment of inertia / Load gbx M_inertia
p0550[0...n]	Brake version / Brake version
p0551[0...n]	Brake code number / Brake code no.
p0552[0...n]	Maximum brake speed / Brake n_max
p0553[0...n]	Brake holding torque / Brake M_hold
p0554[0...n]	Brake moment of inertia / Brake M_inertia
p0600[0...n]	Motor temperature sensor for monitoring / Mot temp_sensor
p0601[0...n]	Motor temperature sensor type / Mot_temp_sens type
p0604[0...n]	Mot_temp_mod 2: sensor alarm threshold / Mod 2: sens A_thr
p0605[0...n]	Mot_temp_mod 1/2 sensor threshold and temperature value / Mod $1 / 2$ sens thr_T
p0606[0...n]	Mot_temp_mod 2: sensor timer / Mod 2:sens timer
p0607[0...n]	Temperature sensor fault timer / Sensor fault time
p0610[0...n]	Motor overtemperature response / Mot temp response
p0611[0...n]	I2t motor model thermal time constant / I2t mot_mod T
p0612[0...n]	Mot_temp_mod activation / Mot_temp_mod act
p0613[0..n]	Mot_temp_mod 1/3 ambient temperature / Mod 1/3 amb_temp
p0614[0...n]	Thermal resistance adaptation reduction factor / Therm R_adapt red
p0615[0...n]	Mot_temp_mod 1 (I2t) fault threshold / I2t F thresh
p0616[0...n]	Motor overtemperature alarm threshold 1 / Mot temp alarm 1
p0617[0...n]	Stator thermally relevant iron component / Stat therm iron
p0618[0...n]	Stator thermally relevant copper component / Stat therm copper
p0619[0...n]	Rotor thermally relevant weight / Rotor therm weight
p0620[0...n]	Thermal adaptation, stator and rotor resistance / Mot therm_adapt R
p0621[0...n]	Identification stator resistance after restart / Rst_ident Restart
p0622[0...n]	Motor excitation time for Rs_ident after switching on again / t_excit Rs_id
p0624[0...n]	Motor temperature offset PT100 / Mot T_offset PT100
p0625[0...n]	Motor ambient temperature during commissioning / Mot T_ambient

### 2.3 Parameters for data sets

p0626[0...n] Motor overtemperature, stator core / Mot T_over core
p0627[0...n] Motor overtemperature, stator winding / Mot T_over stator
p0628[0...n] Motor overtemperature rotor / Mot T_over rotor
p0629[0...n] Stator resistance reference / R_stator ref
r0630[0...n] Mot_temp_mod ambient temperature / Mod T_ambient
r0631[0...n] Mot_temp_mod stator iron temperature / Mod T_stator
r0632[0...n] Mot_temp_mod stator winding temperature / Mod T_winding
r0633[0...n] Mot_temp_mod rotor temperature / Mod rotor temp
p0634[0...n] Q flux flux constant unsaturated / PSIQ KPSI UNSAT
p0635[0...n] Q flux quadrature axis current constant unsaturated / PSIQ KIQ UNSAT
p0636[0...n] Q flux direct axis current constant unsaturated / PSIQ KID UNSAT
p0637[0...n] Q flux flux gradient saturated / PSIQ Grad SAT
p0643[0...n] Overvoltage protection for synchronous motors / Overvolt_protect
p0645[0...n] Motor kT characteristic kT1 / Mot kT char kT1
p0646[0...n] Motor kT characteristic kT3 / Mot kT char kT3
p0647[0...n] Motor kT characteristic kT5 / Mot kT char kT5
p0648[0...n] Motor kT characteristic kT7 / Mot kT char kT7
p0650[0...n] Actual motor operating hours / Mot t_oper act
p0651[0...n] Motor operating hours maintenance interval / Mot t_op maint
p0652[0...n] Motor stator resistance scaling / Mot R_stator scal
p0653[0...n] Motor stator leakage inductance scaling / Mot L_S_leak scal
p0655[0...n] Motor magnetizing inductance d axis saturated scaling / Mot L_m d sat scal
p0656[0...n] Motor magnetizing inductance q axis saturated scaling / Mot L_m q sat scal
p0657[0...n] Motor damping inductance d axis scaling / Mot L_damp d scal
p0658[0...n] Motor damping inductance q axis scaling / Mot L_damp q scal
p0659[0...n] Motor damping resistance d axis scaling / Mot R_damp d scal
p0660[0...n] Motor damping resistance q axis scaling / Mot R_damp q scal
p0690[0...n] Brushless excitation rated current / BLE I_rated
p0691[0...n] Reverse field excitation correction factor / RFE correction
p0692[0...n] Reverse field excitation iron resistance / RFE iron resist
p0693[0...n] Brushless excitation inductance d-axis saturated / BLE L_d sat
p0694[0...n] Reverse field excitation leakage inductance / RFE L_leak
p0696[0...n] Brushless excitation ratio / BLE ratio
p0697[0...n] Brushless excitation number of pole pairs / BLE PolePairNo
p0698[0...n] Brushless excitation, excitation resistance / BLE exc_resist
p0699[0...n] Excitation configuration / Exc config
p0826[0...n] Motor changeover motor number / Mot_chng mot No.
p0827[0...n] Motor changeover status word bit number / Mot_chg ZSW bitNo.
p1231[0...n] Armature short-circuit / DC braking configuration / ASC/DCBRK config
p1232[0...n] DC braking braking current / DCBRK I_brake
p1233[0...n] DC braking time / DCBRK time
p1234[0...n] Speed at the start of DC braking / DCBRK n_start
p1234[0...n] DC braking starting velocity / DCBRK v_start
p1236[0...n] Ext. armature short-cct. contactor feedback signal monit. time / ASC ext t_monit
p1237[0...n] External armature short-circuit delay time when opening / ASC ext t_wait
p1710[0...n] Current controller adaptation in-line axis starting point Kp/Id_adapt pt Kp
p1711[0...n] Current ctrl adaptation in-line axis starting point Kp adapted/Id_adap pt Kp adap
p1712[0...n] Current controller adaptation in-line axis p gain adaptation / Id_adapt Kp adapt
p1909[0...n] Motor data identification control word / MotID STW
p1958[0...n] Rotating measurement ramp-up/ramp-down time / Rot meas t_r up/dn
p1958[0...n] Moving measurement ramp-up/ramp-down time / Mov meas t_r up/dn
p1959[0...n] Rotating measurement configuration / Rot meas config
p1959[0...n] Moving measurement configuration / Mov meas config
p1980[0...n] PollD technique / PolID technique
p1981[0...n] PollD distance max / PolID distance max

p1982[0...n]	PollD selection / PollD selection
p1991[0...n]	Motor changeover angular commutation correction / Ang_com corr
p1993[0...n]	PolID motion-based current / PollD I mot_bas
p1994[0...n]	PollD motion-based rise time / PollD T mot_bas
p1995[0...n]	Polld motion-based gain / PollD kp mot_bas
p1996[0...n]	PolID motion-based integral time / PolID Tn mot_bas
p1997[0...n]	PollD motion-based smoothing time / PolID t_sm mot_bas
p1999[0...n]	Ang. commutation offset calibr. and PollD scaling / Com_ang_offs scal
p3011[0...n]	MotID current control adaptation lower starting point identified / I_adapt low ident
p3012[0...n]	MotID current control adaptation upper starting point identified / I_adapt up ident
p3013[0...n]	Motld current controller adaptation P gain identified / __adapt Kp ident
p3049[0...n]	Motld Speed at start of field weakening identified / ident
p3049[0...n]	Motld Speed at start of field weakening identified / v_Fieldweak ident
p3050[0...n]	Motorld stator resistance identified / R_stator ident
p3054[0...n]	Motld rotor resistance identified / R_rotor ident
p3056[0...n]	Motld stator leakage inductance identified / L_stator leak
p3058[0...n]	Motld rotor leakage inductance identified / L_rotor leak
p3060[0...n]	Motld magnetizing inductance identified / Motld Lh ident
p3090[0...n]	PollD elasticity-based configuration / PolID el config
p3091[0...n]	Polld elasticity-based ramp time / Polld el t_ramp
p3092[0...n]	PollD elasticity-based wait time / Polld el t_wait
p3093[0...n]	PollD elasticity-based measurement number / PolID el meas
p3094[0...n]	PolID elasticity-based deflection expected / PolID el defl exp
p3095[0...n]	PolID elasticity-based deflection permissible / PollD el defl exp
p3096[0...n]	Polld elasticity-based current / PollD el curr
p4610[0...n]	Motor temperature sensor 1 sensor type MDS / Temp sens1 typ MDS
p4611[0...n]	Motor temperature sensor 2 sensor type MDS / Temp sens2 typ MDS
p4612[0...n]	Motor temperature sensor 3 sensor type MDS / Temp sens3 typ MDS
p4613[0...n]	Motor temperature sensor 4 sensor type MDS / Temp sens4 typ MDS
p5350[0...n]	Mot_temp_mod 1/3 boost factor at standstill / Standst boost_fact
p5390[0...n]	Mot_temp_mod 1/3 alarm threshold / A thresh
p5391[0...n]	Mot_temp_mod 1/3 fault threshold / F thresh
r5398[0...n]	Mot_temp_mod 1/3 alarm threshold image p5390 / A thr image p5390
r5399[0...n]	Mot_temp_mod 1/3 fault threshold image p5391 / F thr image p5391

### 2.3.5 Parameters for power unit data sets (PDS)

Note<br>References: SINAMICS S120 Function Manual Drive Functions Chapter "Data sets"

The following list contains the parameters that are dependent on the power unit data sets.

Product: SINAMICS S120/S150, Version: 5103400, Language: eng, Type: PDS	
p0121[0...n]	Power unit component number / PU comp_no
p0124[0...n]	Power unit detection via LED / PU detection LED
p0125[0...n]	Activate/deactivate power unit components / PU_comp act/deact
r0126[0...n]	Power unit components active/inactive / PU comp act/inact
r0127[0...n]	Power unit EEPROM data version / PU EEPROM version
r0128[0...n]	Power unit firmware version / PU FW version
r0200[0...n]	Power unit code number actual / PU code no. act
p0201[0...n]	Power unit code number / PU code no
r0203[0...n]	Actual power unit type / PU actual type
r0204[0...n]	Power unit hardware properties / PU HW property
p0205[0...n]	Valve rated voltage / Valve Un
p0206[0...n]	Valve transition point flow rate / Valve trans flow
p0207[0...n]	Valve transition point voltage / Valve trans U
p0208[0...n]	Valve rated flow rate / Valve Vn
p0209[0...n]	Valve rated pressure drop / Valve Pn
p0211[0...n]	Valve, flow rate ratio A to B side / Flowrate_ratio A/B
p0216[0...n]	Valve natural frequency / Valve fn
p0217[0...n]	Valve damping / Valve D
p0218[0...n]	Cylinder safety configuration / Cyl safety config
p0222[0...n]	Valve precontrol pressure / Valve p_prectrl
p0230[0...n]	Manipulated variable inhibit time / Manip var t_inhib
p0231[0...n]	Power enable inhibit time / Pow_enab t_inhib
p0232[0...n]	Valve monitoring time / Valve t_monit
p0240[0...n]	Pressure sensor A reference value at $10 \mathrm{~V} /$ Sensor A ref 10 V
p0241[0...n]	Pressure sensor A offset correction / Sensor A offs
p0242[0...n]	Pressure sensor B reference value at $10 \mathrm{~V} /$ Sensor B ref 10 V
p0243[0...n]	Pressure sensor B offset correction / Sensor B offs
p0244[0...n]	Pressure sensor P reference value at $10 \mathrm{~V} /$ Sensor P ref 10V
p0245[0...n]	Pressure sensor P offset correction / Sensor P offs_corr
p0251[0...n]	Power unit heat sink fan operating hours counter / PU fan t_oper
p0254[0...n]	Operating hours counter power unit fan inside the converter / PU inner fan t_op
r0277[0...n]	Power unit heat sink fan wear counter / PU fan wear_count
p0895[0...n]	BI: Activate/deactivate power unit components / PU_comp act/deact
p1832[0...n]	Valve offset / Valve offset
p3469[0...n]	Latch delay time correction, zero crossover detection / t_latch corr PLL
p3901[0...n]	Power unit EEPROM Vdc offset calibration / PU EEPROM Vdc offs
p7001[0...n]	Par_circuit power units enable / PU enable
r7002[0...n]	CO: Par_circuit status power units / Status PU
r7020[0...n]	CO: Par_circuit deviation current in phase U / Phase U curr dev
r7021[0...n]	CO: Par_circuit deviation current in phase V / Phase V curr dev
r7022[0...n]	CO: Par_circuit deviation current in phase W / Phase W curr dev
r7030[0...n]	CO: Par_circuit DC link voltage deviation / Vdc deviation
p7040[0...n]	Par_circuit correction valve lockout time phase U / Comp t_lockout U
p7042[0...n]	Par_circuit correction valve lockout time phase V / Comp t_lockout V
p7044[0...n]	Par_circuit correction valve lockout time phase W / Comp t_lockout W
r7050[0...n]	Par_circuit circulating current phase U / Circ_I_phase U


r7051[0...n]	Par_circuit circulating current phase V / Circ_I_phase V
r7052[0...n]	Par_circuit circulating current phase W / Circ_I_phase W
r7199[0...n]	Par_circuit power unit temperatures capacitor air discharge / PU temp capacitor
r7200[0...n]	Par_circuit power unit overload I2t / PU overload I2t
r7201[0...n]	CO: Par_circuit power unit temperatures max. inverter / PU temp max inv
r7202[0...n]	Par_circuit power unit temperatures max. depletion layer / PU TempMaxDepLayer
r7203[0...n]	CO: Par_circuit power unit temperatures max. rectifier / PU temp max rect
r7204[0...n]	CO: Par_circuit power unit temperatures air intake / PU temp air intake
r7205[0...n]	Par_circuit power unit temperatures electronics / PU temp electr
r7206[0...n]	Par_circuit power unit temperatures inverter 1 / PU temp inv 1
r7207[0...n]	Par_circuit power unit temperatures inverter 2 / PU temp inv 2
r7208[0...n]	Par_circuit power unit temperatures inverter 3 / PU temp inv 3
r7209[0...n]	Par_circuit power unit temperatures inverter 4 / PU temp inv 4
r7210[0...n]	Par_circuit power unit temperatures inverter 5 / PU temp inv 5
r7211[0...n]	Par_circuit power unit temperatures inverter 6 / PU temp inv 6
r7212[0...n]	Par_circuit power unit temperatures inverter 1 / PU temp rect 1
r7213[0...n]	Par_circuit power unit temperatures inverter 2 / PU temp rect 2
r7214[0...n]	Par_circuit power unit temperatures depletion layer 1 / PU temp DepLayer 1
r7215[0...n]	Par_circuit power unit temperatures depletion layer 2 / PU temp DepLayer 2
r7216[0...n]	Par_circuit power unit temperatures depletion layer 3 / PU temp DepLayer 3
r7217[0...n]	Par_circuit power unit temperatures depletion layer 4 / PU temp DepLayer 4
r7218[0...n]	Par_circuit power unit temperatures depletion layer 5 / PU temp DepLayer 5
r7219[0...n]	Par_circuit power unit temperatures depletion layer 6 / PU temp DepLayer 6
r7220[0...n]	CO: Par_circuit drive output current maximum / Drv I_outp max
r7220[0...n]	Infeed par_circuit absolute current value motoring permissible / INF I_abs mot perm
r7221[0...n]	Infeed par_circuit absolute current regenerating permissible / INF I_absRegenPerm
r7222[0...n]	CO: Par_circuit absolute current actual value / I_act abs val
r7223[0...n]	CO: Par_circuit phase current actual value phase U / I_phase U act val
r7224[0...n]	CO: Par_circuit phase current actual value phase V / I_phase V act val
r7225[0...n]	CO: Par_circuit phase current actual value phase W / I_phase W act val
r7226[0...n]	CO: Par_circuit phase current actual value phase U offset / I_phase U offset
r7227[0...n]	CO: Par_circuit phase current actual value phase V offset / I_phase V offset
r7228[0...n]	CO: Par_circuit phase current actual value phase W offset / I_phase W offset
r7229[0...n]	CO: Par_circuit phase current actual value sum U, V, W / I_phase sum UVW
r7230[0...n]	CO: Par_circuit DC link voltage actual value / Vdc_act
r7231[0...n]	CO: Par_circuit phase voltage actual value phase U / U_phase U act val
r7232[0...n]	CO: Par_circuit phase voltage actual value phase V / U_phase V act val
r7233[0...n]	CO: Par_circuit phase voltage actual value phase W / U_phase W act val
r7240[0...n]	Par_circuit gating unit status word 1 / Gating unit ZSW1
p7786[0...n]	Service report / Service report
p9671[0...n]	SI module identifier Hydraulic Module / Module ID HM
p9671[0...n]	SI module identifier Motor Module / Module ID MM

### 2.4 Parameters for write protection and know-how protection

## Note

References: SINAMICS S120 Function Manual Drive Functions
Chapter "Write protection and know-how protection"

### 2.4.1 Parameters with "WRITE_NO_LOCK"

The following list contains the parameters with the "WRITE_NO_LOCK" attribute. These parameters are not affected by the write protection.

Product: SINAMICS S120/S150, Version: 5103400, Language: eng, Type: WRITE_NO_LOCK	
p0003	BOP access level / BOP acc_level
p0009	Device commissioning parameter filter / Dev comm par_filt
p0124[0...n]	Main component detection using LED / M_comp detect LED
p0124[0...n]	Power unit detection via LED / PU detection LED
p0144[0...n]	Sensor Module detection via LED / SM detection LED
p0144[0...n]	Voltage Sensing Module detection via LED / VSM detection LED
p0154[0...n]	Voltage Sensing Module 2 detection via LED / VSM2 detection LED
p0154	Terminal Module detection via LED / TM detection LED
p0154	DRIVE-CLiQ Hub Module detection via LED / Hub detection LED
p0972	Drive unit reset / Drv_unit reset
p0976	Reset and load all parameters / Reset load all par
p0977	Save all parameters / Save all par
p1903	BI: Data identification control / Data ident ctrl
p2035	Fieldbus interface USS PIV drive object number / Fieldbus USS DO_no
p2102	BI: Acknowledge all faults / Ackn all faults
p2111	Alarm counter / Alarm counter
p3100	RTC time stamp mode / RTC t_stamp mode
p3101[0...1]	Setting UTC time / Set UTC time
p3103	UTC synchronization process / UTC sync_process
p3950	Service parameter / Serv par
p3981	Acknowledge drive object faults / Ackn DO faults
p3985	Master control mode selection / PcCtrl mode select
p4700[0...1]	Trace control / Trace control
p4701	Measuring function control / Meas fct ctrl
p4703[0...1]	Trace options / Trace options
p4707	Measurement function configuration / Meas fct config
p4710[0...1]	Trace trigger condition / Trace Trig_cond
p4711[0...5]	Trace trigger signal / Trace trig_signal
p4712[0...1]	Trace trigger threshold / Trace trig_thresh
p4713[0...1]	Trace tolerance band trigger threshold 1 / Trace trig thr 1
p4714[0...1]	Trace tolerance band trigger threshold 2 / Trace trig thr 2
p4715[0...1]	Trace bit mask trigger, bit mask / Trace trig mask
p4716[0...1]	Trace bit mask trigger trigger condition / Trace Trig_cond
p4717	Measuring function number of averaging operations / Meas fct avg qty
p4718	Measuring function number of stabilizing periods / MeasFct StabPerQty
p4720[0...1]	Trace recording cycle / Trace record_cyc
p4721[0...1]	Trace recording time / Trace record_time
p4722[0...1]	Trace trigger delay / Trace trig_delay
p4723[0...1]	Trace time slice cycle / Trace cycle
p4724[0...1]	Trace average in the time range / Trace average

p4730[0...5] Trace record signal 0 / Trace record sig 0
p4731[0...5] Trace record signal 1 / Trace record sig 1
p4732[0...5] Trace record signal 2 / Trace record sig 2
p4733[0...5] Trace record signal 3 / Trace record sig 3
p4734[0...5] Trace record signal 4 / Trace record sig 4
p4735[0...5] Trace record signal 5 / Trace record sig 5
p4736[0...5] Trace record signal 6 / Trace record sig 6
p4737[0...5] Trace record signal 7 / Trace record sig 7
p4780[0...1] Trace physical address signal 0 / Trace PhyAddr Sig0
p4781[0...1] Trace physical address signal 1 / Trace PhyAddr Sig1
p4782[0...1] Trace physical address signal 2 / Trace PhyAddr Sig2
p4783[0...1] Trace physical address signal 3 / Trace PhyAddr Sig3
p4784[0...1] Trace physical address signal 4 / Trace PhyAddr Sig4
p4785[0...1] Trace physical address signal 5 / Trace PhyAddr Sig5
p4786[0...1] Trace physical address signal 6 / Trace PhyAddr Sig6
p4787[0...1] Trace physical address signal 7 / Trace PhyAddr Sig7
p4789[0...1] Trace physical address trigger signal / Trace PhyAddr Trig
p4795 Trace memory bank changeover / Trace mem changeov
p4800 Function generator control / FG control
p4810 Function generator mode / FG operating mode
p4812 Function generator physical address / FG phys address
p4813 Function generator physical address reference value / FG phys addr ref
p4815[0...2] Function generator drive number / FG drive number
p4816 Function generator output signal integer number scaling / FG outp integ scal
p4819 BI: Function generator control / FG control
p4820 Function generator signal shape / FG signal shape
p4821 Function generator period / FG period duration
p4822 Function generator pulse width / FG pulse width
p4823 Function generator bandwidth / FG bandwidth
p4824 Function generator amplitude / FG amplitude
p4825 Function generator 2nd amplitude / FG 2nd amplitude
p4826 Function generator offset / FG offset
p4827 Function generator ramp-up time to offset / FG ramp-up offset
p4828 Function generator lower limit / FG lower limit
p4829 Function generator upper limit / FG upper limit
p4830 Function generator time slice cycle / FG time slice
p4831 Function generator amplitude scaling / FG amplitude scal
p4832[0...2] Function generator amplitude scaling / FG amplitude scal
p4833[0...2] Function generator offset scaling / FG offset scal
p4835[0...4] Function generator free measurement function scaling / FG fr MeasFct scal
p4840[0...1] MTrace cycle number setting / Cycle number
p7761 Write protection / Write protection
p7770 NVRAM action / NVRAM action
p8550 AOP LOCAL/REMOTE / AOP LOCAL/REMOTE
p8806[0...53] Identification and Maintenance 1 / I\&M 1
p8807[0...15] Identification and Maintenance 2 / I\&M 2
p8808[0...53] Identification and Maintenance 3 / I\&M 3
p9210 Flashing component number / Flash comp_no.
p9211 Flash function / Flash fct.
p9484 BICO interconnections search signal source / BICO S_src srch

### 2.4.2 Parameters with "KHP_WRITE_NO_LOCK"

The following list contains the parameters with the "KHP_WRITE_NO_LOCK" attribute. These parameters are not affected by the know-how protection.

$\begin{aligned} & \text { Product: } \\ & \text { p0003 } \end{aligned}$	BOP access level / BOP acc_level
p0009	Device commissioning parameter filter / Dev comm par_filt
p0124[0...n]	Main component detection using LED / M_comp detect LED
p0124[0...n]	Power unit detection via LED / PU detection LED
p0144[0...n]	Sensor Module detection via LED / SM detection LED
p0144[0...n]	Voltage Sensing Module detection via LED / VSM detection LED
p0154[0...n]	Voltage Sensing Module 2 detection via LED / VSM2 detection LED
p0154	Terminal Module detection via LED / TM detection LED
p0154	DRIVE-CLiQ Hub Module detection via LED / Hub detection LED
p0972	Drive unit reset / Drv_unit reset
p0976	Reset and load all parameters / Reset load all par
p0977	Save all parameters / Save all par
p2035	Fieldbus interface USS PIV drive object number / Fieldbus USS DO_no
p2040	COMM INT monitoring time / COMM INT t_monit
p2040	Fieldbus interface monitoring time / Fieldbus t_monit
p2102	BI: Acknowledge all faults / Ackn all faults
p2111	Alarm counter / Alarm counter
p3100	RTC time stamp mode / RTC t_stamp mode
p3101[0...1]	Setting UTC time / Set UTC time
p3103	UTC synchronization process / UTC sync_process
p3105[0...3]	NTP server IP address / NTP IP addr
p3106	NTP time zone / Time zone
p3950	Service parameter / Serv par
p3981	Acknowledge drive object faults / Ackn DO faults
p3985	Master control mode selection / PcCtrl mode select
p7761	Write protection / Write protection
p7770	NVRAM action / NVRAM action
p8550	AOP LOCAL/REMOTE / AOP LOCAL/REMOTE
p8806[0...53]	Identification and Maintenance $1 / \mathrm{I}$ / M 1
p8807[0...15]	Identification and Maintenance 2 / I\&M 2
p8808[0...53]	Identification and Maintenance 3 / I\&M 3
p8835	CBE20 firmware selection / CBE20 FW sel
p8839[0...1]	PZD interface hardware assignment / PZD IF HW assign
p8840	COMM BOARD monitoring time / CB t_monit
p9210	Flashing component number / Flash comp_no.
p9211	Flash function / Flash fct.
p9484	BICO interconnections search signal source / BICO S_src srch

### 2.4.3 Parameters with "KHP_ACTIVE_READ"

The following list contains the parameters with the "KHP_ACTIVE_READ" attribute.
These parameters can also be read with activated know-how protection.

p0015	Macro drive unit / Macro drv unit
p0015	Macro drive object / Macro DO
p0100	IEC/NEMA Standards / IEC/NEMA Standards
p0101[0...n]	Drive object numbers / DO numbers
p0103[0...n]	Application-specific view / Appl_spec view
p0105	Activate/deactivate drive object / DO act/deact
p0107[0...n]	Drive object type / DO type
p0108[0...n]	Drive objects function module / DO fct_mod
p0120	Number of valve data sets (PDS) / PDS count
p0120	Number of Power unit Data Sets (PDS) / PDS count
p0121[0...n]	Power unit component number / PU comp_no
p0125[0...n]	Activate/deactivate power unit components / PU_comp act/deact
p0130	Number of Motor Data Sets (MDS) / MDS count
p0131[0...n]	Motor component number / Mot comp_no
p0140	Number of Encoder Data Sets (EDS) / EDS count
p0140	Number of VSM data sets / VSM count
p0141[0...n]	Encoder interface (Sensor Module) component number / Enc_interf comp_no
p0141[0...n]	VSM component number / VSM comp_no
p0142[0...n]	Encoder component number / Encoder comp_no
p0145[0...n]	Activate/deactivate encoder interface / Enc_intf act/deact
p0145[0...n]	Voltage Sensing Module activate/deactivate / VSM act/deact
p0150	Number of VSM data sets / VSM dat_sets qty.
p0150	VSM2 data sets selection / VSM2 dat_sets qty
p0151[0...n]	Voltage Sensing Module component number / VSM comp_no
p0151[0...n]	Voltage Sensing Module 2 component number / VSM2 comp_no
p0151	Terminal Module component number / TM comp_no
p0151[0...1]	DRIVE-CLiQ Hub Module component number / Hub comp_no
p0161	Valve component number / Valve comp_no
p0161	HF Damping Module component number / HF Damp comp_no
p0161	Option board component number / Opt board comp_no
p0162	HF Choke Module component number / HF Choke comp_no
p0162	CU-LINK slave component number / CU-LINK comp_no
p0170	Number of Command Data Sets (CDS) / CDS count
p0171[0...n]	Drive objects function module 1 / DO fct_mod 1
p0172[0...n]	Drive objects function module 2 / DO fct_mod 2
p0173[0...n]	Drive objects function module 3 / DO fct_mod 3
p0180	Number of Drive Data Sets (DDS) / DDS count
p0199[0...24]	Drive object name / DO name
p0300[0...n]	Motor type selection / Mot type sel
p0304[0...n]	Rated motor voltage / Mot U_rated
p0305[0...n]	Rated motor current / Mot I_rated
p0349	System of units motor equivalent circuit diagram data / Unit_sys mot ESB
p0400[0...n]	Encoder type selection / Enc_typ sel
p0505	Selecting the system of units / Unit sys select
p0595	Technological unit selection / Tech unit select
p0806	BI: Inhibit master control / PcCtrl inhibit
p0864	BI: System pressure available / p_sys available
p0864	BI: Infeed operation / INF operation
p0870	BI: Close main contactor / Close main cont
p0915[0...29]	TM15 PROFIdrive PZD setpoint assignment / TM15 PD PZD setp

p0915[0...35] TM17 PROFIdrive PZD setpoint assignment / TM17 PD PZD setp
p0916[0...29] TM15 PROFIdrive PZD actual value assignment / TM15 PD PZD actVal
p0916[0...35] TM17 PROFIdrive PZD actual value assignment / TM17 PD PZD actVal
p0922 IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr
p0978[0...n] List of drive objects / List of the DO
p1080[0...n] Minimum velocity / v_min
p1080[0...n] Minimum speed / n_min
p1082[0...n] Maximum velocity / v_max
p1082[0...n] Maximum speed / n_max
p1520[0...n] CO: Force limit upper/motoring / F_max upper/mot
p1520[0...n] CO: Torque limit upper/motoring / M_max upper/mot
p1520[0...n] CO: Torque limit upper / M_max upper
p1532[0...n] CO: Force offset, force limit / F_max offset
p1532[0...n] CO: Torque limit offset / M_max offset
p1544
p1544
Travel to fixed stop evaluation torque reduction / TfS M_red eval
p2000 Reference velocity / v_ref
p2000 Reference speed reference frequency / n_ref f_ref
p2000 Reference velocity reference frequency / v_ref f_ref
p2000 Reference frequency / f_ref
p2001 Reference voltage / Reference voltage
p2002 Reference pressure / p_ref
p2002 Reference current / I_ref
p2003 Reference force / F_ref
p2003 Reference torque / M_ref
p2003 Reference force / Reference force
p2005 Reference angle / Reference angle
p2006 Reference temperature / Ref temp
p2007 Reference acceleration / a_ref
p2030 Field bus interface protocol selection / Field bus protocol
p2038 IF1 PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode
p2079 IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext
p4956[0...n] TEC DO-specific activation / TEC DO act
p5043[0...6] Spindle speed limits / $n$ _limits
p7763 KHP OEM exception list number of indices for p7764 / KHP OEM qty p7764
p7764[0...n] KHP OEM exception list / KHP OEM excep list
p7852 Number of indices for r7853 / Qty indices r7853
p8836 SINAMICS link node address / Node address
p8864 IF1 PROFIdrive first supplementary telegram selection / IF1 Pd 1. sup_tel
p8865 IF1 PROFIdrive second supplementary telegram selection / IF1 Pd 2. sup_tel
p8870[0...15] SINAMICS Link PZD receive word / PZD recv word
p8870[0...31] SINAMICS Link PZD receive word / PZD recv word
p8871[0...15] SINAMICS Link PZD send word / PZD send word
p8871[0...31] SINAMICS Link PZD send word / PZD send word
p8872[0...15] SINAMICS Link PZD receive address / PZD recv adr.
p8872[0...31] SINAMICS Link PZD receive address / PZD recv adr.
p9500 SI Motion monitoring clock cycle (Control Unit) / SI Mtn clock CU
p9601 SI enable functions integrated in the drive (Control Unit) / SI enable fct CU
p9810 SI PROFIsafe address (Motor Module) / SI Ps address MM
p9902 Target topology number of indices / TargetTopo indices
2.4 Parameters for write protection and know-how protection

## Function diagrams

## Content

3.1 Table of contents ..... 2007
3.2 Explanations on the function diagrams ..... 2021
3.3 CU310-2 input/output terminals ..... 2026
3.4 CU320-2 input/output terminals ..... 2036
3.5 CX32-2 input/output terminals ..... 2044
3.6 Control Unit communication ..... 2049
3.7 S120M input/output terminals ..... 2056
3.8 PROFlenergy ..... 2058
3.9 PROFIdrive ..... 2061
3.10 Internal control/status words ..... 2123
3.11 Sequence control ..... 2136
3.12 Brake control ..... 2139
3.13 Safety Integrated Basic Functions ..... 2144
3.14 Safety Integrated Extended Functions ..... 2152
3.15 Safety Integrated Advanced Functions ..... 2172
3.16 Safety Integrated TM54F ..... 2176
3.17 Safety Integrated PROFIsafe ..... 2189
3.18 Setpoint channel ..... 2192
3.19 Setpoint channel not activated ..... 2204
3.20 Basic positioner (EPOS) ..... 2206
3.21 Position control ..... 2222
3.22 Encoder evaluation ..... 2227
3.23 Hydraulic drive ..... 2239
3.24 Servo control ..... 2249
3.25 Vector control ..... 2275
3.26 Technology functions ..... 2312
3.27 Technology controller ..... 2322
3.28 Line droop control (r0108.12 = 1) ..... 2329
3.29 Line transformer (r0108.4 = 1) ..... 2334
3.30 Dynamic grid support (r0108.7 = 1) ..... 2344
3.31 Signals and monitoring functions ..... 2349
3.32 Diagnostics ..... 2362
3.33 Data sets ..... 2371
3.34 Basic Infeed ..... 2377
3.35 Smart Infeed ..... 2385
3.36 Active Infeed ..... 2395
3.37 Terminal Board 30 (TB30) ..... 2410
3.38 Communication Board CAN10 (CBC10) ..... 2416
3.39 Terminal Module 15 (TM15) ..... 2423
3.40 Terminal Module 17 High Feature (TM17 High Feature) ..... 2429
3.41 Terminal Module 31 (TM31) ..... 2431
3.42 Terminal Module 120 (TM120) ..... 2442
3.43 Terminal Module 150 (TM150) ..... 2445
3.44 Terminal Module 41 (TM41) ..... 2449
3.45 Auxiliaries ..... 2464
3.46 Voltage Sensing Module (VSM) ..... 2468
3.47 Basic Operator Panel 20 (BOP20) ..... 2471
3.48 External Braking Module ..... 2473

### 3.1 Table of contents

3.2 Explanations on the function diagrams ..... 2021
1020 - Explanation of the symbols (part 1) ..... 2022
1021 - Explanation of the symbols (part 2) ..... 2023
1022 - Explanation of the symbols (part 3) ..... 2024
1030 - Handling BICO technology ..... 2025
3.3 CU310-2 input/output terminals ..... 2026
2019 - Overview ..... 2027
2020 - Digital inputs, electrically isolated (DI 0 ... DI 3, DI 22) ..... 2028
2021 - Digital inputs, electrically isolated (DI 16 ... DI 21) ..... 2029
2030 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) ..... 2030
2031 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) ..... 2031
2032 - Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13) ..... 2032
2033 - Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15) ..... 2033
2038 - Digital output (DO 16) ..... 2034
2040 - Analog input (AI 0) ..... 2035
3.4 CU320-2 input/output terminals ..... 2036
2119 - Overview ..... 2037
2120 - Digital inputs, electrically isolated (DI $0 \ldots$ DI 3, DI 16, DI 17) ..... 2038
2121 - Digital inputs, electrically isolated (DI $4 \ldots$ DI 7, DI 20, DI 21) ..... 2039
2130 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) ..... 2040
2131 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) ..... 2041
2132 - Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13) ..... 2042
2133 - Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15) ..... 2043
3.5 CX32-2 input/output terminals ..... 2044
2179 - Overview ..... 2045
2180 - Digital inputs, electrically isolated (DI 0 ... DI 3, DI 16, DI 17) ..... 2046
2190 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) ..... 2047
2191 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) ..... 2048
3.6 Control Unit communication ..... 2049
2194 - CU_CX32/CU_LINK ..... 2050
2195 - CU_LINK/CU internal ..... 2051
2197 - SINAMICS Link overview (r0108.31 = 1, p8835 = 3) ..... 2052
2198 - SINAMICS Link configuration (r0108.31 = 1, p8835 = 3) ..... 2053
2199 - SINAMICS Link receive data (r0108.31 = 1, p8835 = 3) ..... 2054
2200 - SINAMICS Link send data (r0108.31 = 1, p8835 = 3) ..... 2055
3.7 S120M input/output terminals ..... 2056
2201 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1) ..... 2057
3.8 PROFlenergy ..... 2058
2381 - Control commands / interrogation commands ..... 2059
2382 - States ..... 2060
3.9 PROFIdrive ..... 2061
2401 - Overview ..... 2064
2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics ..... 2065
2415 - Standard telegrams and process data 1 ..... 2066
2416 - Standard telegrams and process data 2 ..... 2067
2419 - Manufacturer-specific telegrams and process data 1 ..... 2068
2420 - Manufacturer-specific telegrams and process data 2 ..... 2069
2421 - Manufacturer-specific telegrams and process data 3 ..... 2070
2422 - Manufacturer-specific telegrams and process data 4 ..... 2071
2423 - Manufacturer-specific/free telegrams and process data ..... 2072
2425 - STW1_BM control word, metal industry interconnection ..... 2073
2426 - STW2_BM control word, metal industry interconnection ..... 2074
2427 - E_STW1_BM control word, infeed metal industry interconnection ..... 2075
2428 - ZSW1_BM status word, metal industry interconnection ..... 2076
2429 - ZSW2_BM status word, metal industry interconnection ..... 2077
2430 - E_ZSW1_BM status word, infeed metal industry interconnection ..... 2078
2433 - STW2_ENC control word, ENCODER interconnection ..... 2079
2434 - ZSW2_ENC status word, ENCODER interconnection ..... 2080
2439 - PZD receive signals interconnection, profile-specific ..... 2081
2440 - PZD receive signals interconnection, manufacturer-specific ..... 2082
2441 - STW1 control word interconnection (p2038 = 2) ..... 2083
2442 - STW1 control word interconnection (p2038 = 0) ..... 2084
2443 - STW1 control word interconnection (p2038 = 1) ..... 2085
2444 - STW2 control word interconnection (p2038 = 0) ..... 2086
2445 - STW2 control word interconnection (p2038 = 1) ..... 2087
2447 - E_STW1 control word infeed interconnection ..... 2088
2449 - PZD send signals interconnection, profile-specific ..... 2089
2450 - PZD send signals interconnection, manufacturer-specific ..... 2090
2451 - ZSW1 status word interconnection (p2038 = 2) ..... 2091
2452 - ZSW1 status word interconnection $(\mathrm{p} 2038=0)$ ..... 2092
2453 - ZSW1 status word interconnection (p2038 = 1) ..... 2093
2454 - ZSW2 status word interconnection (p2038 = 0) ..... 2094
2455 - ZSW2 status word interconnection (p2038 = 1) ..... 2095
2456 - MELDW status word interconnection ..... 2096
2457 - E_ZSW1 status word infeed interconnection ..... 2097
2462 - POS_STW positioning control word interconnection (r0108.4 = 1) ..... 2098
2463 - POS_STW1 positioning control word 1 interconnection (r0108.4 = 1) ..... 2099
2464 - POS_STW2 positioning control word 2 interconnection (r0108.4 = 1) ..... 2100
2466 - POS_ZSW1 positioning status word 1 interconnection (r0108.4 = 1) ..... 2101
2467 - POS_ZSW2 positioning status word 2 interconnection (r0108.4 = 1) ..... 2102
2468 - IF1 receive telegram, free interconnection via BICO (p0922 = 999) ..... 2103
2470 - IF1 send telegram, free interconnection via BICO (p0922 = 999) ..... 2104
2472 - IF1 status words, free interconnection ..... 2105
2475 - STW1 control word 1 interconnection (r0108.4 = 1) ..... 2106
2476 - SATZANW block selection interconnection (r0108.4 = 1) ..... 2107
2479 - ZSW1 status word 1 interconnection (r0108.4 = 1) ..... 2108
2480 - MDI_MOD-MDI mode interconnection (r0108.4 = 1) ..... 2109
2481 - IF1 receive telegram, free interconnection via BICO ( $0092=999$ ) ..... 2110
2483 - IF1 send telegram, free interconnection via BICO (p0922 = 999) ..... 2111
2485 - IF2 receive telegram, free interconnection ..... 2112
2487 - IF2 send telegram, free interconnection ..... 2113
2489 - IF2 status words, free interconnection ..... 2114
2491 - IF2 receive telegram, free interconnection ..... 2115
2493 - IF2 send telegram, free interconnection ..... 2116
2495 - CU_STW1 control word 1, Control Unit interconnection ..... 2117
2496 - CU_ZSW1 status word 1, Control Unit interconnection ..... 2118
2497 - A_DIGITAL interconnection ..... 2119
2498 - E_DIGITAL interconnection ..... 2120
2499 - A_DIGITAL_1 interconnection ..... 2121
2500 - E_DIGITAL_1 interconnection ..... 2122
3.10 Internal control/status words ..... 2123
2501 - Control word, sequence control ..... 2124
2503 - Status word, sequence control ..... 2125
2505 - Control word, setpoint channel ..... 2126
2520 - Control word, speed controller ..... 2127
2522 - Status word, speed controller ..... 2128
2526 - Status word, closed-loop control ..... 2129
2530 - Status word, closed-loop current control ..... 2130
2534 - Status word, monitoring functions 1 ..... 2131
2536 - Status word, monitoring functions 2 ..... 2132
2537 - Status word, monitoring functions 3 ..... 2133
2546 - Control word, faults/alarms ..... 2134
2548 - Status word, faults/alarms 1 and 2 ..... 2135
3.11 Sequence control ..... 2136
2610 - Sequencer ..... 2137
2634 - Missing enable signals, line contactor control, logic operation ..... 2138
3.12 Brake control ..... 2139
2701 - Basic brake control (r0108.14 = 0) ..... 2140
2704 - Extended brake control, zero-speed detection (r0108.14 = 1) ..... 2141
2707 - Extended brake control, open/close brake (r0108.14 = 1) ..... 2142
2711 - Extended brake control, signal outputs (r0108.14 = 1) ..... 2143
3.13 Safety Integrated Basic Functions ..... 2144
2800 - Parameter manager ..... 2145
2802 - Monitoring functions and faults/alarms ..... 2146
2804 - SI status CU, MM, CU + MM, group STO ..... 2147
2806 - S_STW1/2 Safety control word 1/2, S_ZSW1/2 Safety status word 1/2 ..... 2148
2810 - STO (Safe Torque Off), SS1 (Safe Stop 1) ..... 2149
2811 - STO (Safe Torque Off), safe pulse suppression ..... 2150
2814 - SBC (Safe Brake Control), SBA (Safe Brake Adapter) ..... 2151
3.14 Safety Integrated Extended Functions ..... 2152
2818 - Parameter manager ..... 2153
2819 - SS1, SS2, SOS, internal STOP B, C, D, F ..... 2154
2820 - SLS (Safely-Limited Speed) ..... 2155
2821 - Safe referencing ..... 2156
2823 - SSM (Safe Speed Monitor) ..... 2157
2824 - SDI (Safe Direction) ..... 2158
2825 - SAM (Safe Acceleration Monitor), SBR (Safe Brake Ramp) ..... 2159
2836 - SBT (Safe Brake Test) ..... 2160
2837 - Select active control word ..... 2161
2838 - SLA (Safely-Limited Acceleration) ..... 2162
2840 - SI Motion drive-integrated control signals/status signals ..... 2163
2842 - S_STW1 Safety control word 1, S_ZSW1 Safety status word 1 ..... 2164
2843 - S_STW2 Safety control word 2, S_ZSW2 Safety status word 2 ..... 2165
2858 - Control via PROFIsafe (p9601.2 = p9601.3 = 1) ..... 2166
2870 - CU310-2 (F-DI 0 ... F-DI 2) ..... 2167
2873 - CU310-2 fail-safe digital output (F-DO 0) ..... 2168
2875 - CU310-2 control interface ..... 2169
2876 - CU310-2 safe state selection ..... 2170
2877 - CU310-2 assignment (F-DO 0) ..... 2171
3.15 Safety Integrated Advanced Functions ..... 2172
2822 - SLP (Safely-Limited Position) ..... 2173
2826 - SCA (Safe Cam) ..... 2174
2844 - S_ZSW_CAM1 safety status word Safe Cam 1 ..... 2175
3.16 Safety Integrated TM54F ..... 2176
2890 - Overview ..... 2177
2891 - Parameter manager ..... 2178
2892 - Configuration, F-DI/F-DO test ..... 2179
2893 - Fail-safe digital inputs (F-DI 0 ... F-DI 4) ..... 2180
2894 - Fail-safe digital inputs (F-DI 5 ... F-DI 9) ..... 2181
2895 - Fail-safe digital outputs (F-DO 0 ... F-DO 3), digital inputs (DI 20 ... DI 23) ..... 2182
2900 - Basic Functions control interface (p9601.2/3 = 0 \& p9601.6 = 1) ..... 2183
2901 - Basic Functions safe state selection ..... 2184
2902 - Basic Functions assignment (F-DO 0 ... F-DO 3) ..... 2185
2905 - Extended Functions control interface (p9601.2 = 1 \& p9601.3 = 0) ..... 2186
2906 - Extended Functions safe state selection ..... 2187
2907 - Extended Functions assignment (F-DO 0 ... F-DO 3) ..... 2188
3.17 Safety Integrated PROFIsafe ..... 2189
2915 - Standard telegrams ..... 2190
2917 - Manufacturer-specific telegrams ..... 2191
3.18 Setpoint channel ..... 2192
3001 - Overview ..... 2193
3010 - Fixed speed setpoints ..... 2194
3020 - Motorized potentiometer ..... 2195
3030 - Main/supplementary setpoint, setpoint scaling, jogging ..... 2196
3040 - Direction limitation and direction reversal ..... 2197
3050 - Skip frequency bands and speed limitations ..... 2198
3060 - Basic ramp-function generator ..... 2199
3070 - Extended ramp-function generator ..... 2200
3080 - Ramp-function generator selection, status word, tracking ..... 2201
3082 - Extended Stop and Retract (ESR, r0108.9 = 1) ..... 2202
3090 - Dynamic Servo Control (DSC) linear and DSC spline (r0108.6 = 1) ..... 2203
3.19 Setpoint channel not activated ..... 2204
3095 - Generation of the speed limits (r0108.8 = 0) ..... 2205
3.20 Basic positioner (EPOS) ..... 2206
3610 - Jog mode (r0108.4 = 1) ..... 2207
3612 - Referencing/reference point approach mode (r0108.4 = 1) (p2597 = 0 signal) ..... 2208
3614 - Flying referencing mode (r0108.4 = 1) (p2597 = 1 signal) ..... 2209
3615 - Traversing block mode, external block change (r0108.4 = 1) ..... 2210
3616 - Traversing block mode (r0108.4 = 1) ..... 2211
3617 - Travel to fixed stop (r0108.4 = 1) ..... 2212
3618 - Direct setpoint input/MDI mode, dynamic values (r0108.4 = 1) ..... 2213
3620 - Direct setpoint input/MDI mode (r0108.4 = 1) ..... 2214
3625 - Mode control (r0108.4 = 1) ..... 2215
3630 - Traversing range limits (r0108.4 = 1) ..... 2216
3635 - Interpolator (r0108.4 = 1) ..... 2217
3640 - Control word, block selection/MDI selection (r0108.4 = 1) ..... 2218
3645 - Status word 1 (r0108.3 = 1, r0108.4 = 1) ..... 2219
3646 - Status word 2 (r0108.3 = 1, r0108.4 = 1) ..... 2220
3650 - Status word, active traversing block/MDI active (r0108.4 = 1) ..... 2221
3.21 Position control ..... 2222
4010 - Position actual value preprocessing (r0108.3 = 1) ..... 2223
4015 - Position controller (r0108.3 = 1) ..... 2224
4020 - Standstill monitoring / positioning monitoring (r0108.3 = 1) ..... 2225
4025 - Dynamic following error monitoring, cam controllers (r0108.3 = 1) ..... 2226
3.22 Encoder evaluation ..... 2227
4700 - Servo control, overview ..... 2228
4702 - Vector control, overview ..... 2229
4704 - Position and temperature sensing, encoders 1 ... 3 ..... 2230
4710 - Speed actual value and pole position sensing, encoder 1 ..... 2231
4711 - Speed actual value sensing, encoders 2 , 3 (r0108.7 = 1, APC activated) ..... 2232
4715 - Actual speed value and pole position sensing, encoder 1, n_act_filter 5 ..... 2233
4720 - Encoder interface, receive signals, encoders 1 ... 3 ..... 2234
4730 - Encoder interface, send signals, encoders 1 ... 3 ..... 2235
4735 - Reference mark search with external zero mark, encoders 1 ... 3 ..... 2236
4740 - Measuring probe evaluation, measured value memory, encoders 1 ... 3 ..... 2237
4750 - Absolute value for incremental encoder ..... 2238
3.23 Hydraulic drive ..... 2239
4965 - Velocity controller ..... 2240
4966 - Transition point compensation ..... 2241
4970 - Force controller ..... 2242
4975 - Valve characteristic, surface adaptation ..... 2243
4977 - Static friction compensation using a force controller (p1400.2 = 1) ..... 2244
4978 - Static friction compensation with voltage pulse / voltage ramp ..... 2245
4985 - Sequencer ..... 2246
4990 - P24 management with shutoff valve ..... 2247
4991 - P24 management without shutoff valve ..... 2248
3.24 Servo control ..... 2249
5019 - Speed control and U/f control, overview ..... 2250
5020 - Speed setpoint filter and speed precontrol ..... 2251
5030 - Reference model/precontrol balancing/speed limitation ..... 2252
5035 - Moment of inertia estimator (r0108.10 = 1) ..... 2253
5040 - Speed controller with encoder ..... 2254
5042 - Speed controller, torque/speed precontrol with encoder (p1402.4 = 1) ..... 2255
5045 - Online tuning with activated moment of inertia estimator (r0108.10 = 1) ..... 2256
5050 - Speed controller adaptation (Kp_n/Tn_n adaptation) ..... 2257
5060 - Torque setpoint, control mode changeover ..... 2258
5210 - Speed controller without encoder ..... 2259
5300 - U/f control for diagnostics ..... 2260
5301 - Variable signaling function ..... 2261
5490 - Speed control configuration ..... 2262

### 3.1 Table of contents

5609 - Generation of the torque limits, overview ..... 2263
5610 - Torque limiting/reduction, interpolator ..... 2264
5620 - Motoring/generating torque limit ..... 2265
5630 - Upper/lower torque limit ..... 2266
5640 - Mode changeover, power/current limiting ..... 2267
5650 - Vdc_max controller and Vdc_min controller ..... 2268
5700 - Current control, overview ..... 2269
5710 - Current setpoint filter 1 ... 4 ..... 2270
5711 - Current setpoint filter 5 ... 10 (r0108.21 = 1) ..... 2271
5714 - Iq and Id controllers ..... 2272
5722 - Field current/flux input, flux reduction, flux controller ..... 2273
5730 - Interface to the Motor Module (gating signals, current actual values) ..... 2274
3.25 Vector control ..... 2275
6020 - Speed control and generation of the torque limits, overview ..... 2277
6030 - Speed setpoint, droop ..... 2278
6031 - Pre-control balancing, reference/acceleration model ..... 2279
6035 - Moment of inertia estimator (r0108.10 = 1) ..... 2280
6040 - Speed controller with/without encoder ..... 2281
6050 - Speed controller adaptation (Kp_n/Tn_n adaptation) ..... 2282
6060 - Torque setpoint ..... 2283
6220 - Vdc_max controller and Vdc_min controller ..... 2284
6300 - U/f control, overview ..... 2285
6301 - U/f characteristic and voltage boost ..... 2286
6310 - Resonance damping and slip compensation ..... 2287
6320 - Vdc_max controller and Vdc_min controller (U/f) ..... 2288
6490 - Speed control configuration ..... 2289
6491 - Flux control configuration ..... 2290
6495 - Excitation (SESM, p0300 = 5) ..... 2291
6630 - Upper/lower torque limit ..... 2292
6640 - Current/power/torque limits ..... 2293
6700 - Current control, overview ..... 2294
6710 - Current setpoint filter ..... 2295
6714 - Iq and Id controllers ..... 2296
6721 - Id setpoint (PMSM, p0300 = 2) ..... 2297
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1) ..... 2298
6723 - Field weakening controller, flux controller (ASM, p0300 = 1) ..... 2299
6724 - Field weakening controller (PMSM, p0300 = 2) ..... 2300
6725 - Flux setpoint, field weakening controller (SESM, p0300 = 5) ..... 2301
6726 - Field weakening controller, flux controller (SESM, p0300 = 5) ..... 2302
6727 - Current model, excitation current monitoring, control cos phi (SESM, p0300 = 5) ..... 2303
6730 - Interface to the Motor Module (ASM, p0300 = 1) ..... 2304
6731 - Interface to the Motor Module (PMSM, p0300 = 2) ..... 2305
6732 - Interface to the Motor Module (SESM, p0300 = 5) ..... 2306
6733 - Motor model selection (SESM and p1300 $=20, \mathrm{p} 0300=5$ ) ..... 2307
6790 - Flux setpoint (RESM, p0300 = 6) ..... 2308
6791 - Id setpoint (RESM, p0300 = 6) ..... 2309
6792 - Interface to the Motor Module (RESM, p0300 = 6) ..... 2310
6799 - Display signals ..... 2311
3.26 Technology functions ..... 2312
7008 - kT estimator ..... 2313
7010 - Friction characteristic ..... 2314
7012 - Advanced Positioning Control (APC, r0108.7 = 1) ..... 2315
7013 - APC differential position gain (APC, r0108.7 = 1) ..... 2316
7014 - External armature short circuit (EASC, p0300 $=2 x x$ or $4 x x$ ) ..... 2317
7016 - Internal armature short circuit (IASC, p0300 $=2 x x$ or $4 x x$ ) ..... 2318
7017 - DC braking (p0300 = 1xx) ..... 2319
7020 - Synchronization ..... 2320
7033 - Essential service mode (ESM) ..... 2321
3.27 Technology controller ..... 2322
7950 - Fixed values, binary selection (r0108.16 = 1 and p2216 = 2) ..... 2323
7951 - Fixed values, direct selection (r0108.16 = 1 and p2216 = 1) ..... 2324
7954 - Motorized potentiometer (r0108.16 = 1) ..... 2325
7958 - Closed-loop control (r0108.16 = 1) ..... 2326
$7959-\mathrm{Kp} / \mathrm{Tn}$ adaption $(\mathrm{r} 0108.16=1)$ ..... 2327
7960 - DC link voltage controller (r0108.16 = 1) ..... 2328
3.28 Line droop control ( $\mathrm{r} 0108.12=1$ ) ..... 2329
7982 - Line droop, voltage correction control ..... 2330
7983 - Direct component control, harmonics control ..... 2331
7984 - Modulation depth control ..... 2332
7986 - Sequence control, overcurrent ..... 2333

### 3.1 Table of contents

3.29 Line transformer (r0108.4 = 1) ..... 2334
7987 - Direct component control, negative sequence system controller ..... 2335
7988 - Island grid black start sequence control ..... 2336
7989 - Island grid synchronization, sequence control ..... 2337
7995 - Island grid synchronization, voltage threshold ..... 2338
7990 - Transformer model (p5480 = 1) ..... 2339
7991 - Line filter monitoring ..... 2340
7992 - PLL2 (phase locked loop 2) ..... 2341
7993 - Transformer magnetization, voltage threshold ..... 2342
7994 - Transformer magnetization, sequence control ..... 2343
3.30 Dynamic grid support (r0108.7 = 1) ..... 2344
7996 - Characteristic ..... 2345
7997 - Current limits (p5501 = 1) ..... 2346
7998 - Sequence control ..... 2347
7999 - Grid monitoring anti-islanding ..... 2348
3.31 Signals and monitoring functions ..... 2349
8005 - Overview ..... 2350
8010 - Speed signals 1 ..... 2351
8011 - Speed signals 2 ..... 2352
8012 - Torque signals, motor blocked/stalled ..... 2353
8013 - Load monitoring (r0108.17 = 1) ..... 2354
8016 - Thermal monitoring, motor, motor temperature status word faults/alarms ..... 2355
8017 - Motor temperature model 1 (I2t) ..... 2356
8018 - Motor temperature model 2 ..... 2357
8019 - Motor temperature model 3 ..... 2358
8020 - Separately excited synchronous motor (SESM, p0300 = 5) ..... 2359
8021 - Thermal monitoring, power unit ..... 2360
8022 - Freely parameterized I2t monitoring (SESM) ..... 2361
3.32 Diagnostics ..... 2362
8050 - Overview ..... 2363
8060 - Fault buffer ..... 2364
8065 - Alarm buffer ..... 2365
8070 - Faults/alarms trigger word (r2129) ..... 2366
8075 - Faults/alarms configuration ..... 2367
8134 - Measuring sockets (T0, T1, T2) ..... 2368
8144 - Recorder overview (r0108.5 = 1) ..... 2369
8145 - Recorder sequence control (r0108.5 = 1) ..... 2370
3.33 Data sets ..... 2371
8560 - Command data sets (CDS) ..... 2372
8565 - Drive data sets (DDS) ..... 2373
8570 - Encoder data sets (EDS) ..... 2374
8575 - Motor data sets (MDS) ..... 2375
8580 - Power unit data sets (PDS) ..... 2376
3.34 Basic Infeed ..... 2377
8710 - Overview ..... 2378
8720 - Control word, sequence control infeed ..... 2379
8726 - Status word, sequence control infeed ..... 2380
8732 - Sequencer ..... 2381
8738 - Missing enables, line contactor control ..... 2382
8750 - Interface to the Basic Infeed power unit (control signals, actual values) ..... 2383
8760 - Signals and monitoring functions (p3400.0 = 0) ..... 2384
3.35 Smart Infeed ..... 2385
8810 - Overview ..... 2386
8820 - Control word, sequence control infeed ..... 2387
8826 - Status word, sequence control infeed ..... 2388
8828 - Status word, infeed ..... 2389
8832 - Sequencer ..... 2390
8838 - Missing enable signals, line contactor control ..... 2391
8850 - Interface to the Smart Infeed (control signals, actual values) ..... 2392
8860 - Signals and monitoring functions, line supply voltage monitoring ..... 2393
8864 - Signals and monitoring functions, line frequency and Vdc monitoring ..... 2394
3.36 Active Infeed ..... 2395
8910 - Overview ..... 2396
8920 - Control word, sequence control infeed ..... 2397
8926 - Status word, sequence control infeed ..... 2398
8928 - Status word, infeed ..... 2399
8932 - Sequencer ..... 2400
8938 - Missing enable signals, line contactor control ..... 2401
8940 - Controller modulation depth reserve/controller DC link voltage (p3400.0 = 0) ..... 2402
8945 - Reactive current/apparent current limits (r0108.3 = 1) ..... 2403
8946 - Current precontrol/current controller/gating unit (p3400.0 = 0) ..... 2404
8948 - Master/slave (r0108.19 = 1) ..... 2405
8950 - Interface to the Active Infeed, control signals, actual values (p3400.0 = 0) ..... 2406
8951 - Cos phi display (r0108.10 = 1) ..... 2407
8960 - Signals and monitoring functions, line voltage monitoring (p3400.0 = 0) ..... 2408
8964 - Signals and monitoring functions, line frequency/Vdc monit. (p3400.0 = 0) ..... 2409
3.37 Terminal Board 30 (TB30) ..... 2410
9099 - Overview ..... 2411
9100 - Digital inputs, electrically isolated (DI 0 ... DI 3) ..... 2412
9102 - Digital outputs, electrically isolated (DO 0 ... DO 3) ..... 2413
9104 - Analog inputs (AI $0 \ldots$ Al 1) ..... 2414
9106 - Analog outputs (AO 0 ... AO 1) ..... 2415
3.38 Communication Board CAN10 (CBC10) ..... 2416
9204 - Receive telegram, free PDO mapping (p8744 = 2) ..... 2417
9206 - Receive telegram, Predefined Connection Set (p8744 = 1) ..... 2418
9208 - Send telegram, free PDO mapping (p8744 = 2) ..... 2419
9210 - Send telegram, Predefined Connection Set (p8744 = 1) ..... 2420
9220 - Control word, CANopen ..... 2421
9226 - Status word, CANopen ..... 2422
3.39 Terminal Module 15 (TM15) ..... 2423
9389 - Overview TM15 (SIMOTION) ..... 2424
9399 - Overview TM15DI_DO (SINAMICS) ..... 2425
9400 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 7) ..... 2426
9401 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 15) ..... 2427
9402 - Digital inputs/outputs, bidirectional (DI/DO 16 ... DI/DO 23) ..... 2428
3.40 Terminal Module 17 High Feature (TM17 High Feature) ..... 2429
9419 - Overview ..... 2430
3.41 Terminal Module 31 (TM31) ..... 2431
9549 - Overview ..... 2432
9550 - Digital inputs, electrically isolated (DI 0 ... DI 3) ..... 2433
9552 - Digital inputs, electrically isolated (DI $4 \ldots$ DI 7) ..... 2434
9556 - Digital relay outputs, electrically isolated (DO 0 ... DO 1) ..... 2435
9560 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) ..... 2436
9562 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) ..... 2437
9566 - Analog input 0 (Al 0) ..... 2438
9568 - Analog input 1 (AI 1) ..... 2439
9572 - Analog outputs (AO 0 ... AO 1) ..... 2440
9576 - Temperature evaluation ..... 2441
3.42 Terminal Module 120 (TM120) ..... 2442
9605 - Temperature evaluation channels 0 and 1 ..... 2443
9606 - Temperature evaluation channels 2 and 3 ..... 2444
3.43 Terminal Module 150 (TM150) ..... 2445
9625 - Temperature evaluation structure (channels 0 ... 11) ..... 2446
9626 - Temperature evaluation 1x2, 3, 4-wire (channels 0 ... 5) ..... 2447
9627 - Temperature evaluation $2 \times 2$ wire (channels 0 ... 11) ..... 2448
3.44 Terminal Module 41 (TM41) ..... 2449
9659 - Overview ..... 2450
9660 - Digital inputs, electrically isolated (DI 0 ... DI 3) ..... 2451
9661 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1) ..... 2452
9662 - Digital inputs/outputs, bidirectional (DI/DO 2 ... DI/DO 3) ..... 2453
9663 - Analog input 0 (Al 0) ..... 2454
9674 - Incremental encoder emulation ( $\mathrm{p} 4400=0$ ) ..... 2455
9676 - Incremental encoder emulation (p4400 = 1) ..... 2456
9677 - STW1 control word interconnection ( $\mathrm{p} 0922=3$ ) ..... 2457
9678 - Control word, sequence control ( $\mathrm{p} 4400=0$ ) ..... 2458
9679 - STW2 control word interconnection (p0922 = 3) ..... 2459
9680 - Status word, sequence control ..... 2460
9681 - ZSW1 status word interconnection (p0922 = 3) ..... 2461
9682 - Sequencer ( $\mathrm{p} 4400=0$ ) ..... 2462
9683 - ZSW2 status word interconnection (p0922 = 3) ..... 2463
3.45 Auxiliaries ..... 2464
9794 - Cooling unit, control and feedback signals (r0108.28 = 1) ..... 2465
9795 - Cooling unit, sequence control (r0108.28 = 1) ..... 2466
9814 - Chassis power units, 3 AC line connection and contactor status display ..... 2467
3.46 Voltage Sensing Module (VSM) ..... 2468
9880 - Analog inputs (AI 0 ... AI 3) ..... 2469
9886 - Temperature evaluation ..... 2470

## 3 Function diagrams

3.1 Table of contents
3.47 Basic Operator Panel 20 (BOP20) ..... 2471
9912 - Control word interconnection ..... 2472
3.48 External Braking Module ..... 2473
9951 - Sequencer (r0108.26 = 1) ..... 2474

### 3.2 Explanations on the function diagrams

Function diagrams
1020 - Explanation of the symbols (part 1) ..... 2022
1021 - Explanation of the symbols (part 2) ..... 2023
1022 - Explanation of the symbols (part 3) ..... 2024
1030 - Handling BICO technology ..... 2025


## Cross references between diagrams



The function diagrams are sub－divided

［aаaа．1］．．．［аааа．8］ orientation．
aaaa $=$ Signal goes to target diagra Text＝Unique signal dernation cccc $=$ Signal comes from source diagram ccc ＝Signal comes from signal path d

To＂function diagram name＂［aaaa．b］＝for binectors．
Symbol Meaning
Original parameter of sign



## Handling BICO technology

| Binector: | Binectors are binary signals that can be freely interconnected ( $\mathrm{BO}=\mathrm{Binector}$ Output). <br> They represent a bit of a "BO:" display parameter (e.g. bit 15 from ro723). |
| :--- | :--- | :--- |
| Connector: | Connectors are bit fields or numerical values that can be freely interconnected (e.g. "analog signals", like percentage variables, speeds or torques). <br> Connectors are also "CO:" display parameters ( $C O=$ Connector Output). |

## Parameterization:

At the signal destination, the required binector or connector is selected using appropriate parameters:
"BI:" parameter for binectors ( $\mathrm{BI}=$ Binector Input)
or
"Cl:" parameter for connectors ( $\mathrm{Cl}=$ Connector Input)

## Example:

The main setpoint for the speed controller (CI: p1070) should be received from the output of the motorized potentiometer (CO: r1050) and the "jog" command (BI: p1055) from digital input DI 0 (BO: r0722.0, X122.1 terminal) on the CU320.


## Parameterizing steps:

(1) $\mathrm{p} 1055[0]=722.0$

Terminal X122.1 acts as "Jog bit 0"
(2) $\mathrm{p} 1070[0]=1050$ The output of the motorized potentiometer acts as main setpoint for the speed controller.

1	2	3	4	5	6	7	8
DO: All objects					fp_1030_51_eng.vsd	Function diagram	- 1030-
Explanations on the function diagrams - Handling BICO technology					10.05.11 V05.01.01	SINAMICS	

## $3.3 \quad$ CU310-2 input/output terminals

## Function diagrams

2019 - Overview ..... 2027
2020 - Digital inputs, electrically isolated (DI $0 \ldots$... 3 , DI 22) ..... 2028
2021 - Digital inputs, electrically isolated (DI 16 ... DI 21) ..... 2029
2030 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) ..... 2030
2031 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) ..... 2031
2032 - Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13) ..... 2032
2033 - Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15) ..... 2033
2038 - Digital output (DO 16) ..... 2034
2040 - Analog input (AI 0) ..... 2035



$$
\frac{\cdots}{r 0723.11}-01-0
$$


[2031]
2 digital inputs/outputs, bidirectional
2 digital inputs/outputs, bidirectional







sueı6е!р ио!џип„ \&



sueı6е!р ио!џип„ \&


## $3.4 \quad$ CU320-2 input/output terminals

## Function diagrams

2119 - Overview ..... 2037
2120 - Digital inputs, electrically isolated (DI 0 ... DI 3, DI 16, DI 17) ..... 2038
2121 - Digital inputs, electrically isolated (DI $4 \ldots$ DI 7, DI 20, DI 21) ..... 2039
2130 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) ..... 2040
2131 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) ..... 2041
2132 - Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13) ..... 2042
2133 - Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15) ..... 2043








### 3.5 CX32-2 input/output terminals

## Function diagrams

2179 - Overview ..... 2045
2180 - Digital inputs, electrically isolated (DI $0 \ldots$ DI 3, DI 16, DI 17) ..... 2046
2190 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) ..... 2047
2191 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) ..... 2048





### 3.6 Control Unit communication

## Function diagrams

2194 - CU_CX32/CU_LINK ..... 2050
2195 - CU_LINK/CU internal ..... 2051
2197 - SINAMICS Link overview (r0108.31 = 1, p8835 = 3) ..... 2052
2198 - SINAMICS Link configuration (r0108.31 = 1, p8835 = 3) ..... 2053
2199 - SINAMICS Link receive data ( $\mathrm{r} 0108.31=1, \mathrm{p} 8835=3$ ) ..... 2054
2200 - SINAMICS Link send data (r0108.31 = 1, p8835 = 3) ..... 2055






<1> A send word can only be assigned once.
<1> A send word can only be assigned once.
<2> All changes become effective with p8842 $=1$. Afterwards, p8842 $=0$ is automatically set.
A change can also be activated via warm restart, project download or POWER ON.
<3> The number of process data n (PZD) depends on the drive object.


### 3.7 S120M input/output terminals

## Function diagrams

2201 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1)


sueィ6е!р ио!џวип」 $\varepsilon$

## $3.8 \quad$ PROFlenergy

## Function diagrams

2381 - Control commands / interrogation commands 2059
2382 - States 2060



PROFlenergy States
PROFlenergy POWER OFF

S2: Ready for switching on SWA. $00=1$, ZSWA. $11=$ Main contactor is OPEN Wait for power up or jog





1 = Inhibit PROFlenergy $1=$ Inhibit
p5611.0

Start_Pause
 "PROFlenerg Energy-saving mode active"

## $3.9 \quad$ PROFIdrive

## Function diagrams

2401 - Overview ..... 2064
2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics ..... 2065
2415 - Standard telegrams and process data 1 ..... 2066
2416 - Standard telegrams and process data 2 ..... 2067
2419 - Manufacturer-specific telegrams and process data 1 ..... 2068
2420 - Manufacturer-specific telegrams and process data 2 ..... 2069
2421 - Manufacturer-specific telegrams and process data 3 ..... 2070
2422 - Manufacturer-specific telegrams and process data 4 ..... 2071
2423 - Manufacturer-specific/free telegrams and process data ..... 2072
2425 - STW1_BM control word, metal industry interconnection ..... 2073
2426 - STW2_BM control word, metal industry interconnection ..... 2074
2427 - E_STW1_BM control word, infeed metal industry interconnection ..... 2075
2428 - ZSW1_BM status word, metal industry interconnection ..... 2076
2429 - ZSW2_BM status word, metal industry interconnection ..... 2077
2430 - E_ZSW1_BM status word, infeed metal industry interconnection ..... 2078
2433 - STW2_ENC control word, ENCODER interconnection ..... 2079
2434 - ZSW2_ENC status word, ENCODER interconnection ..... 2080
2439 - PZD receive signals interconnection, profile-specific ..... 2081
2440 - PZD receive signals interconnection, manufacturer-specific ..... 2082
2441 - STW1 control word interconnection (p2038 = 2) ..... 2083
2442 - STW1 control word interconnection (p2038 = 0) ..... 2084
2443 - STW1 control word interconnection (p2038 = 1) ..... 2085
2444 - STW2 control word interconnection (p2038 = 0) ..... 2086
2445 - STW2 control word interconnection (p2038 = 1) ..... 2087
2447 - E_STW1 control word infeed interconnection ..... 2088
2449 - PZD send signals interconnection, profile-specific ..... 2089
2450 - PZD send signals interconnection, manufacturer-specific ..... 2090
2451 - ZSW1 status word interconnection (p2038 = 2) ..... 2091

2452 - ZSW1 status word interconnection (p2038 = 0)	2092
2453 - ZSW1 status word interconnection (p2038 = 1)	2093
2454 - ZSW2 status word interconnection (p2038 = 0)	2094
2455 - ZSW2 status word interconnection (p2038 = 1)	2095
2456 - MELDW status word interconnection	2096
2457 - E_ZSW1 status word infeed interconnection	2097
2462 - POS_STW positioning control word interconnection (r0108.4 = 1)	2098
2463 - POS_STW1 positioning control word 1 interconnection (r0108.4 = 1)	2099
2464 - POS_STW2 positioning control word 2 interconnection (r0108.4 = 1)	2100
2466 - POS_ZSW1 positioning status word 1 interconnection (r0108.4 = 1)	2101
2467 - POS_ZSW2 positioning status word 2 interconnection (r0108.4 = 1)	2102
2468 - IF1 receive telegram, free interconnection via BICO (p0922 = 999)	2103
2470 - IF1 send telegram, free interconnection via BICO (p0922 = 999)	2104
2472 - IF1 status words, free interconnection	2105
2475 - STW1 control word 1 interconnection (r0108.4 = 1)	2106
2476 - SATZANW block selection interconnection (r0108.4 = 1)	2107
2479 - ZSW1 status word 1 interconnection (r0108.4 = 1)	2108
2480 - MDI_MOD-MDI mode interconnection (r0108.4 = 1)	2109
2481 - IF1 receive telegram, free interconnection via BICO (p0922 = 999)	2110
2483 - IF1 send telegram, free interconnection via BICO (p0922 = 999)	2111
2485 - IF2 receive telegram, free interconnection	2112
2487 - IF2 send telegram, free interconnection	2113
2489 - IF2 status words, free interconnection	2114
2491 - IF2 receive telegram, free interconnection	2115
2493 - IF2 send telegram, free interconnection	2116
2495 - CU_STW1 control word 1, Control Unit interconnection	2117
2496 - CU_ZSW1 status word 1, Control Unit interconnection	2118
2497 - A_DIGITAL interconnection	2119
2498 - E_DIGITAL interconnection	2120

2500 - E_DIGITAL_1 interconnection ..... 2122






<1> Depending on the drive object, only specific telegrams can be used
<2> If p0922 = 999 is changed to another value, the telegram is automatically assigned as specified in [2415] - [2423]
If p0922 $\neq 999$ is changed to p0922 $=999$, the "old" telegram assignment is maintained as specified in [2415] - [2423].
<3> Only for SINAMICS S120/S150
<4> The maximum number of PZD words depends on the drive object type
$<5>$ Only if the "DSC with Spline" function module is active (r0108.6 = 1)
<6> Only if the "Spindle diagnostics" function module is active ( $\mathrm{r} 0108.11=1$ ).
$<7>$ Only for SINAMICS S120. $\quad \square=$ Position encoder signal


<1> Depending on the drive object, only specific telegrams can be used.
<2> If p0922 = 999 is changed to another value, the telegram is automatically assigned as specified in [2415] - [2423].
If p0922 $\neq 999$ is changed to p0922 = 999, the "old" telegram assignment is maintained as specified in [2415] - [2423].
$<3>$ The maximum number of PZD words depends on the drive object type.




## Signal targets for E_STW1_BM

Signal	Meaning		Interconnection parameters	[Function diagram] internal control word			[Function diagram] signal target			Inverted	
			A_INF	B_INF < 7 >	S_INF <5>	A_INF	B_INF <7>	S_INF <5>			
STW1.0	$\Sigma=$ ON (close precharging/line contactor, pulses can be enabled)   $0=$ OFF1 (reduce Vdc along a ramp, suppress pulse and open precharging/line contactor)			p0840[0] $=$ r2090.0	[8920.3]	[8720.3]	[8820.3]	[8932]	[8732]	[8832]	-
STW1.1	1 = No OFF2 (enable is possible)   $0=$ OFF2 (immediate pulse suppression and power-on inhibit)		$\mathrm{p} 0844[0]=\mathrm{r} 2090.1$	[8920.3]	[8720.3]	[8820.3]	[8932]	[8732]	[8832]	-	
STW1.2	Reserved		-	-	-	-	-	-	-	-	
STW1.3	1 = Enable operation (pulses can be enabled)   $0=$ Inhibit operation (suppress pulses)	<3>	p0852[0] $=$ r2090.3	[8920.3]	-	[8820.3]	[8932]	-	[8832]	-	
STW1.4	Reserved		-	-	-	-	-	-	-	-	
STW1.5	1 = Infeed, inhibit motoring	<4>	p3532 $=$ r2090.5	[8920.3]	-	-	[8920]	-	-	-	
STW1.6	1 = Infeed, inhibit regenerative operation	<3>	p3533 $=$ r2090.6	[8920.3]	-	[8820.3]	[8920]	-	[8820]	-	
STW1.7	$\Sigma=$ Acknowledge faults		$\mathrm{p} 2103[0]=\mathrm{r} 2090.7$	[2546.3]			[8060]			-	
STW1.8	Reserved	<6>	<6>	-	-	-	-	-	-	-	
STW1.9	Reserved	<6>	<6>	-	-	-	-	-	-	-	
STW1.10	1 = Control by PLC	<2>	p0854[0] $=$ r2090.10	[8920.3]	[8720.3]	[8820.3]	[8920]	[8720]	[8820]	-	
STW1.11	Reserved	<6>	<6>	-	-	-	-	-	-	-	
STW1.12	Reserved	<6>	<6>	-	-	-	-	-	-	-	
STW1.13	Reserved	<6>	<6>	-	-	-	-	-	-	-	
STW1.14	Reserved	<6>	<6>	-	-	-	-	-	-	-	
STW1.15	Controller-sign-of-life Toggle bit		p2080[15] $=$ r2090.15	-	-	-	-	-	-	-	






$\underset{\oplus}{+}$	Signal targets for STW2_ENC						<1>
	Signal	Meaning		Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted
$\begin{aligned} & N \\ & \underset{N}{N} \\ & 1 \\ & 0 \\ & \sum_{N}^{N} \end{aligned}$	STW1.0	Reserved		-	-	-	-
	STW1.1	Reserved		-	-	-	-
	STW1.2	Reserved		-	-	-	-
	STW1.3	Reserved		-	-	-	-
	STW1.4	Reserved		-	-	-	-
	STW1.5	Reserved		-	-	-	-
Z	STW1.6	Reserved		-	-	-	-
	STW1.7	$\Sigma=$ Acknowledge faults		p2103[0] = r2090.7	[2546.1]	[8060]	-
	STW1.8	Reserved		-	-	-	-
	STW1.9	Reserved		-	-	-	-
	STW1.10	1 = Control by PLC	<2>	p0854[0] $=$ r2090.10	[2501.3]	[2501]	-
	STW1.11	Reserved		-	-	-	-
	STW1.12	Master-sign-of-life, bit 0		p2045 $=$ r2050	-	[2410]	
	STW1.13	Master-sign-of-life, bit 1					
	STW1.14	Master-sign-of-life, bit 2					
	STW1.15	Master-sign-of-life, bit 3					




	Signal receivers for PZD receive signals			<1>		<2>	
	Signal	Meaning	PROFIdrive Signal No.	Interconnection parameter	Function diagram	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Scaling
	STW1	Control word 1	1	(bitwise)	$\begin{gathered} {[2442],[2443]<3>} \\ {[2475]<3>} \end{gathered}$	U16	-
	STW2	Control word 2	3	(bitwise)	$\begin{aligned} & \hline[2444] \\ & {[2445]} \end{aligned}$	U16	-
	NSOLL_A	Speed setpoint A (16-bit)	5	$\begin{aligned} & \hline \text { p1070 } \\ & \text { p1155 } \end{aligned}$	$\begin{aligned} & \hline[3030.2] \\ & {[3080.4]<3>} \end{aligned}$	116	4000 hex $\hat{=}$ p2000
	NSOLL_B	Speed setpoint B (32-bit)	7	$\begin{gathered} \hline \text { p1070 } \\ \text { p1155 } \\ \text { p1430 <3> } \end{gathered}$	$[3030.2]$ $[3080.4]$ $[3090.8]<3>$	132	40000000 hex $\hat{=} \mathrm{p} 2000$
<3>	G1_STW	Encoder 1 control word	9	p0480[0]	[4720]	U16	-
<3>	G2_STW	Encoder 2 control word	13	p0480[1]	[4720]	U16	-
<3>	G3_STW	Encoder 3 control word	17	p0480[2]	[4720]	U16	-
	A_DIGITAL	Digital output (16-bit)	22	(bitwise)	[2497]	U16	-
<3>	XERR	Position deviation	25	p1190	[3090.5]	132	-
<3>	KPC	Position controller gain factor	26	p1191	[3090.5]	132	-
	SATZANW	Pos block selection	32	(bitwise)	[2476]	U16	-
	MDI_TARPOS	MDI position	34	p2642	[3618]	132	1 hex $\hat{=} 1$ LU
	MDI_VELOCITY	MDI velocity	35	p2643	[3618]	132	1 hex $\widehat{\wedge} 1000 \mathrm{LU} / \mathrm{min}$
	MDI_ACC	MDI acceleration override	36	p2644	[3618]	116	4000 hex $\hat{=100 \%}$
	MDI_DEC	MDI deceleration override	37	p2645	[3618]	116	4000 hex $\hat{=100 \%}$
	MDI_MOD	MDI mode	38	(bitwise)	[2480]	U16	-
<4>	STW2_ENC	Control word 2 ENCODER	80	(bitwise)	[2433]	U16	-

<1> When selecting a standard telegram or a manufacturer-specific telegram via p0922, these interconnection
parameters of the command data set CDSO are automatically set.
<2> Data type according to to the PROFIdrive profile:
I16 = Integer16, I32 = Integer32, U16 = Unsigned16, U32 = Unsigned32.
<3> Only for SINAMICS S120
<4> Only for ENCODER


Signal receivers for PZD receive signals	

<1> When selecting a standard telegram or a manufacturer-specific telegram via p0922 these interconnection parameters of the command data set CDSO are automatically set.
<2> Data type according to to the PROFIdrive profile:
$16=\operatorname{Integer} 16$, I32 $=$ Integer32, U16 Unsigned16, U32 = Unsigned32.
<3> Only for S120
<4> Only for S120/S150



Signal targets for STW1 in Interface Mode SINAMICS (p2038 = 0)						<1>
Signal	Meaning		Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted
STW1.0	$\begin{aligned} & \bar{\Sigma}=\text { ON (pulses can be enabled) } \\ & 0=\text { OFF1 (braking with ramp-function generato } \end{aligned}$	pulse suppression \& ready for switching on)	p0840[0] $=$ r2090.0	[2501.3]	[2610]	-
STW1.1	1 = No OFF2 (enable is possible)   $0=$ OFF2 (immediate pulse suppression and s	g on inhibited)	p0844[0] = r2090.1	[2501.3]	[2610]	-
STW1.2	1 = No OFF3 (enable possible)   $0=$ OFF3 (braking with the OFF3 ramp p1135,	pulse suppression and switching on inhibited)	p0848[0] $=$ r2090.2	[2501.3]	[2610]	-
STW1.3	1 = Enable operation (pulses can be enabled)   $0=$ Inhibit operation (suppress pulses)		p0852[0] $=$ r2090.3	[2501.3]	[2610]	-
STW1.4	1 = Operating condition (the ramp-function ge $0=$ Inhibit ramp-function generator (set the ram	or can be enabled) ction generator output to zero)	$\mathrm{p} 1140[0]=\mathrm{r} 2090.4$	[2501.3]	[3060] [3070] [3080]	-
STW1.5	1 = Continue ramp-function generator   $0=$ Freeze ramp-function generator (freeze the	-function generator output)	$\mathrm{p} 1141[0]=\mathrm{r} 2090.5$	[2501.3]	[3060] [3070]	-
STW1.6	1 = Enable setpoint   $0=$ Inhibit setpoint (set the ramp-function gene	input to zero)	p1142[0] $=$ r2090.6	[2501.3]	[3060] [3070] [3080]	-
STW1.7	$\Sigma=1$. Acknowledge faults		p2103[0] = r2090.7	[2546.1]	[8060]	-
STW1.8	Reserved		-	-	-	-
STW1.9	Reserved		-	-	-	-
STW1.10	1 = Control by PLC	<2>	p0854[0] $=$ r2090.10	[2501.3]	[2501]	-
STW1.11	1 = Setpoint inversion	<3>	p1113[0] $=$ r2090.11	[2505.3]	[3040]	-
STW1.12	Reserved		-	-	-	-
STW1.13	1 = Motorized potentiometer setpoint raise	<3>	p1035[0] $=$ r2090.13	[2505.3]	[3020]	-
STW1.14	1 = Motorized potentiometer setpoint lower	<3>	p1036[0] $=$ r2090.14	[2505.3]	[3020]	-
STW1.15	Reserved		-	-	-	-

<1> Used in telegrams 1, 2, 3, 4, 5, 6, 352 (telegram 5 and 6 only for S120).
<2> STW1.10 must be set to ensure that the drive object accepts the process data (PZD).

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_2442_54_eng.vsd	Function diagram	- 2442 -
PROFldrive - STW1 control word interconnection (p2038 = 0)					03.12.15 V05.01.01	S120/S150/G130/G150	




<1> Used in telegrams 102, 103, 105, 106, 116, 118, 125, 126, 136, 138, 139.
<2> For a 1 signal, the integral component of the speed controller is cleared and the integrator is inhibited.

1	2	3	4	5	6	7	8
DO: SERVO					fp_2445_55_eng.vsd	Function diagram	- 2445 -
PROFIdrive - STW2 control word interconnection (p2038 = 1)					17.07.13 V05.01.01	SINAMICS S120/S150	

## Signal targets for E_STW1

Signal	Meaning	Interconnection parameters	[Function diagram] internal control word			[Function diagram] signal target			Inverted
			A_INF	B_INF <6>	S_INF <5>	A_INF	B_INF <6>	S_INF <5>	
STW1.0	$\boldsymbol{S}=\mathbf{O N}$ (close precharging/line contactor, pulses can be enabled)   $0=$ OFF1 (reduce Vdc along a ramp, suppress pulse and open precharging/line contactor)	p0840[0] $=$ r2090.0	[8920.3]	[8720.3]	[8820.3]	[8932]	[8732]	[8832]	-
STW1.1	1 = No OFF2 (enable is possible)   $0=$ OFF2 (immediate pulse suppression and switching on inhibited)	p0844[0] = 2090.1	[8920.3]	[8720.3]	[8820.3]	[8932]	[8732]	[8832]	-
STW1.2	Reserved		-	-	-	-	-	-	-
STW1.3	1 = Enable operation (pulses can be enabled)   $0=$ Inhibit operation (suppress pulses)	p0852[0] $=$ r2090.3	[8920.3]	-	[8820.3]	[8932]	-	[8832]	-
STW1.4	Reserved	-	-	-	-	-	-	-	-
STW1.5	1 = Infeed, inhibit motoring operation <4>	p3532 $=$ r2090.5	[8920.3]	-	-	[8920]	-	-	-
STW1.6	1 = Infeed, inhibit regenerative operation <3>	p3533 $=$ r2090.6	[8920.3]	-	[8820.3]	[8920]	-	[8820]	-
STW1.7	$\Sigma=$ Acknowledge faults	$\mathrm{p} 2103[0]=\mathrm{r} 2090.7$	[2546.3]			[8060]			-
STW1.8	Reserved	-	-	-	-	-	-	-	-
STW1.9	Reserved	-	-	-	-	-	-	-	-
STW1.10	1 = Control by PLC <2>	p0854[0] $=$ r2090.10	[8920.3]	[8720.3]	[8820.3]	[8920]	[8720]	[8820]	-
STW1.11	Reserved	-	-	-	-	-	-	-	-
STW1.12	Reserved	-	-	-	-	-	-	-	-
STW1.13	Reserved	-	-	-	-	-	-	-	-
STW1.14	Reserved	-	-	-	-	-	-	-	-
STW1.15	Reserved	-	-	-	-	-	-	-	-

<1> Used in telegram 370.
<1> Used in telegram 370 .
<2> STW1.10 must be set to ensure that the drive object accepts the process data (PZD).
<2> STW1.10 must be set to
<3> Only for A_INF, S_INF.
<5> B_INF and S_INF only for S120.
<4> Only for A_INF.
<6> Only for S120 and G150
<7> Not for G130.

1	2	3	4	5	6	7	8
DO: A_INF, B_INF, S_INF					fp_2447_54_eng.vsd	Function diagram	- 2447 -
PROFIdrive - E_STW1 control word infeed interconnection					27.06.13 V05.01.01	S120/S150/G130/G150	



Send words $1 \ldots 16$ p2051[0...15] WORD 2053[0...15] WORD p2061[0...14] DWORD r2063[0...14] DWORD


Telegram
assignment 2415] ... [2423]

PROFIdrive send telegram

Header
Drive object 1
Drive object 2
$:$
$\cdot$
Drive object n
$\cdot$
Drive object m
Trailer



PROFIBUS
<1> Data type according to the PROFIdrive profile:
$116=$ Integer16, I32 = Integer32, U16 = Unsigned16, U32 = Unsigned32
<2> Only for SINAMICS S120.
<3> Only for ENCODER.

1	2	3	4	5	6	7	8
DO: A_INF, B_INF, ENC, S_INF, SERVO, VECTOR					fp_2449_54_eng.vsd	Function diagram	- 2449 -
PROFIdrive - PZD send signals interconnection, profile-specific					27.06.13 V05.01.01	S120/S150/G130/G150	



<1> Data type according to the PROFIdrive profile:
I16 = Integer16, I32 = Integer32, U16 = Unsigned16, U32 = Unsigned32
<2> Only for SINAMICS S120.




$\begin{aligned} & \omega \\ & \stackrel{\omega}{\omega} \end{aligned}$	Signal sources for ZSW1 in Interface Mode SIMODRIVE 611 universal (p2038 = 1)					<1>
	Signal	Meaning	Interconnection parameters	[Function diagram] Internal status word	[Function diagram] Signal source	Inverted
$\begin{aligned} & \text { N } \\ & \text { E } \\ & \text { N } \\ & 1 \\ & N \\ & \sum^{N} \end{aligned}$	ZSW1.0	1 = Ready for switching on	p2080[0] = r0899.0	[2503.7]	[2610]	-
	ZSW1.1	1 = Ready for operation	p2080[1] $=$ r0899.1	[2503.7]	[2610]	-
	ZSW1.2	1 = Operation enabled	p2080[2] $=$ r0899.2	[2503.7]	[2610]	-
	ZSW1.3	1 = Fault present	p2080[3] $=$ r2139.3	[2548.7]	[8060]	-
	zSW1.4	1 = No coast down active	p2080[4] $=$ r0899.4	[2503.7]	[2610]	-
	ZSW1.5	1 = No quick stop active	p2080[5] = r0899.5	[2503.7]	[2610]	-
	ZSW1.6	1 = Switching on inhibited active	p2080[6] $=$ r0899.6	[2503.7]	[2610]	-
	ZSW1.7	1 = Alarm present	p2080[7] = r2139.7	[2548.7]	[8065]	-
	ZSW1.8	1 = Speed setpoint - actual value deviation within tolerance t_off	p2080[8] $=$ r2197.7	[2534.7]	[8010]	-
	ZSW1.9	1 = Control requested <2>	p2080[9] = r0899.9	[2503.7]	[2503]	-
	ZSW1.10	$1=\mathrm{f}$ or n comparison value reached/exceeded	p2080[10] $=$ r2199.1	[2536.7]	[8010]	-
	ZSW1.11	1 = Alarm class bit 0	p2080[11] $=$ r2139.11	[2548.7]	-	-
	ZSW1.12	1 = Alarm class bit 1	p2080[12] $=$ r2139.12	[2548.7]	-	-
	ZSW1.13	Reserved	-	-	-	-
	ZSW1.14	1 = Closed-loop torque control active	p2080[14] = r1407.2	[2522.7]	[2522]	-
	ZSW1.15	Reserved	-	-	-	-

<1> Used in telegrams 102, 103, 105, 106, 116, 118, 125, 126, 136, 138, 139 <2> The drive object is ready to accept data.

1	2	3	4	5	6	7	8
DO: SERVO					fp_2453_01_eng.vsd	Function diagram	- 2453 -
PROFldrive - ZSW1 status word interconnection (p2038 = 1)					12.07.13 V05.01.01	SINAMICS S120	





Signal sources for E_ZSW1 \lll $\mathbf{l}^{\text {c }}$											
Signal	Meaning		Interconnection parameters	[Function diagram] signal source			[Function diagram] internal status word			Inverted	
			A_INF	B_INF <4>	S_INF <3>	A_INF	B_INF <4>	S_INF <3>			
ZSW1.0	1 = Ready for switching on			p2080[0] $=$ r0899.0	[8932]	[8732]	[8832]	[8926.7]	[8726.7]	[8826.7]	-
ZSW1.1	1 = Ready for operation		p2080[1] $=$ r0899.1	[8932]	[8732]	[8832]	[8926.7]	[8726.7]	[8826.7]	-	
ZSW1.2	1 = Operation enabled		p2080[2] $=$ r0899.2	[8932]	[8732]	[8832]	[8926.7]	[8726.7]	[8826.7]	-	
ZSW1.3	1 = Fault present		$\mathrm{p} 2080[3]=\mathrm{r} 2139.3$	[8060]			[2548.7]			-	
ZSW1.4	1 = No OFF2 effective		p2080[4] $=$ r0899.4	[8932]	[8732]	[8832]	[8926.7]	[8726.7]	[8826.7]	-	
ZSW1.5	Reserved		-	-	-	-	-	-	-	-	
ZSW1.6	1 = Switching on inhibited		p2080[6] $=$ r0899.6	[8932]	[8732]	[8832]	[8926.7]	[8726.7]	[8826.7]	-	
ZSW1.7	1 = Alarm present		p2080[7] $=$ r2139.7	[8065]			[2548.7]			-	
zSW1.8	Reserved		-	-	-	-	-	-	-	-	
ZSW1.9	1 = PLC requests control	<2>	p2080[9] $=$ r0899.9	[8926]	[8726]	[8826]	[8926.7]	[8726.7]	[8826.7]	-	
ZSW1.10	Reserved		-	-	-	-	-	-	-	-	
ZSW1.11	1 = Precharging completed		p2080[11] $=$ r0899.11	[8950]	[8750]	[8850]	[8926.7]	[8726.7]	[8826.7]	-	
ZSW1.12	1 = Line contactor closed		p2080[12] $=$ r0899.12	[8938]	[8738]	[8838]	[8926.7]	[8726.7]	[8826.7]	-	
ZSW1.13	Reserved		-	-	-	-	-	-	-	-	
ZSW1.14	Reserved		-	-	-	-	-	-	-	-	
ZSW1.15	Reserved		-	-	-	-	-	-	-	-	

<1> Used in telegram 370.
<2> The drive object is ready to accept data.
<3> Only for S120.
<3> Only for S120.
<4> Only for S120 and G150.
<5> Not for G130.

1	3	4	5	6	7	8
DO: A_INF, B_INF, S_INF				fp_2457_54_eng.vsd	Function diagram	2457 -
PROFldrive - E_ZSW1 status word infeed interconnection				19.06.15 V05.01.01	S120/S150/G130/G150	



	Signal targets for POS_STW1 (positioning mode, r0108.4 = 1)					<1>
	Signal	Meaning	Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted
N	POS_STW1.0	Traversing block selection, bit 0	p2625 $=$ r2091.0	-	-	-
	POS_STW1.1	Traversing block selection, bit 1	p2626 = r2091.1	-	-	-
	POS_STW1.2	Traversing block selection, bit 2	$\mathrm{p} 2627=\mathrm{r} 2091.2$	-	-	-
	POS_STW1.3	Traversing block selection, bit 3	$\mathrm{p} 2628=\mathrm{r} 2091.3$	-	-	-
	POS_STW1.4	Traversing block selection, bit 4	p2629 = r2091.4	-	-	-
	POS_STW1.5	Traversing block selection, bit 5	$\mathrm{p} 2630=\mathrm{r} 2091.5$	-	-	-
	POS_STW1.6	Reserved	-	-	-	-
	POS_STW1.7	Reserved	-	-	-	-
	POS_STW1.8	$1=$ Absolute positioning is selected.   $0=$ Relative positioning is selected.	$\mathrm{p} 2648=\mathrm{r} 2091.8$	-	-	-
	POS_STW1.9	1 = Absolute positioning/MDI direction selection, positive.   2 = Absolute positioning/MDI direction selection, negative.   3 = Absolute positioning through the shortest distance.   $0=$ Absolute positioning through the shortest distance.	p2651 = r2091.9	-	-	-
	POS_STW1.10		p2652 $=$ r2091.10	-	-	-
	POS_STW1.11	Reserved	-	-	-	-
	POS_STW1.12	1 = Continuous transfer   $0=$ Activate MDI block change with $\boldsymbol{J}$ of a traversing task (STW1.6)	p2649 = r2091.12	-	-	-
	POS_STW1.13	Reserved	-	-	-	-
	POS_STW1.14	1 = Signal setting-up selected   $0=$ Signal positioning selected.	p2653 = r2091.14	-	-	-
	POS_STW1.15	1 = MDI selection	p2647 $=$ r2091.15	-	-	-

<1> Used in telegram 111.

Signal targets for POS_STW2 (positioning mode, r0108.4 = 1)					<1>
Signal	Meaning	Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted
POS_STW2.0	1 = Tracking mode active	$\mathrm{p} 2655[0]=\mathrm{r} 2092.0$	-	[3635]	-
POS_STW2.1	1 Set reference point	p2596 $=$ r2092.1	-	[3612]	-
POS_STW2.2	1 = Reference cam active	p2612 $=$ r2092.2	-	[3612]	-
POS_STW2.3	Reserved	-	-	-	-
POS_STW2.4	Reserved	-	-	-	-
POS_STW2.5	1 = Jogging, incremental active   $0=$ Jogging, velocity active	p2591 $=$ r2092.5	-	[3610]	-
POS_STW2.6	Reserved	-	-	-	-
POS_STW2.7	Reserved	-	-	-	-
POS_STW2.8	1 = Referencing type selection for flying referencing   $0=$ Referencing type selection for search for reference	p2597 $=$ r2092.8	-	-	-
POS_STW2.9	1 = Start the search for reference in the negative direction   $0=$ Start the search for reference in the positive direction.	p2604 $=$ r2092.9	-	-	-
POS_STW2.10	1 = Measuring probe 2 is activated   $0=$ Measuring probe 1 is activated	p2510[0] $=$ r2092.10	-	-	-
POS_STW2.11	1 = Falling edge of the measuring probe   $0=$ Rising edge of the measuring probe	$\mathrm{p} 2511[0]=\mathrm{r} 2092.11$	-	-	-
POS_STW2.12	Reserved	-	-	-	-
POS_STW2.13	Reserved	-	-	-	-
POS_STW2.14	1 = Software limit switch activation	p2582 $=$ r2092.14	-	-	-
POS_STW2.15	1 = STOP cam active	p 2568 = 2092.15	-	-	-




＜5＞Using the connector－bits converters，the bits can be extracted from two of the PZD（STW1）（due to bit 10 ＂control requested＂）
＜5＞Using the connector－binector converters，the bits can be extracted from two of the PZD receive words 5 to 32 and used as binectors．
＜6＞Every PZD word can be assigned a word or a double word．Only one of the 2 interconnection parameters r2050 or r 2060 can have a value $\neq 0$ for a PZD word．
＜7＞When interconnecting a connector output multiple times all the connector inputs must have either Integer or FloatingPoint data type




[^11]

$\omega$	Signal targets for SATZANW (positioning mode, r0108.4 = 1)								<1>	PROFIdrive sampling time	
	Signal	Meaning			Interconnection parameters	[Function diagram] internal control word	[Function signal targ	diagram]	Inverted		
	SATZANW. 0	1 = Traversing block selection, bit 0			p2625 = r2091.0	-	[36		-		
	SATZANW. 1	1 = Traversing block selection, bit 1			p2626 = r2091.1	-	[36		-		
	SATZANW. 2	1 = Traversing block selection, bit 2			p 2627 = r 2091.2	-	[36		-		
	SATZANW. 3	1 = Traversing block selection, bit 3			p2628 = r2091.3	-	[36		-		
	SATZANW. 4	1 = Traversing block selection, bit 4			p2629 = r2091.4	-	[36		-		
	SATZANW. 5	1 = Traversing block selection, bit 5			$\mathrm{p} 2630=\mathrm{r} 2091.5$	-	[36		-		
	SATZANW. 6	Reserved			-	-			-		
	SATZANW. 7	Reserved			-	-			-		
	SATZANW. 8	Reserved			-	-	-		-		
	SATZANW. 9	Reserved			-	-	-		-		
	SATZANW. 10	Reserved			-	-			-		
	SATZANW. 11	Reserved			-	-	-		-		
	SATZANW. 12	Reserved			-	-			-		
	SATZANW. 13	Reserved			-	-	-		-		
	SATZANW. 14	Reserved			-	-	-		-		
	SATZANW. 15	$\begin{aligned} & 1=\text { Activate MDI } \\ & 0=\text { De-activate MDI } \end{aligned}$			p2647 $=$ r2091.15	-	[36		-		
<1> Used in telegrams 7, 9, 110.											
	1	2	3	4	5	6		7			8
	DO: SERVO, VECTOR					fp_2476_55_eng.vsd		Function diagram			- 2476 -
	PROFIdrive - SATZANW block selection interconnection (r0108.4 = 1)					26.07.13 V	05.01.01	SINA	IICS S	0/S150	



$\omega$	Signal targets for MDI_MOD (positioning mode, r0108.4 = 1)								<1>   Inverted
	Signal	Meaning				Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	
	MDI_MOD. 0	$1=$ Absolute positioning is selected.   $0=$ Relative positioning is selected.				p2648 $=$ r2094.0	-	-	-
1	MDI_MOD. 1	$0=$ Absolute positioning through the shortestdistance.	$1=\begin{gathered}\text { Absolute } \\ \text { positioning in the }\end{gathered}$ positive direction.	$2=\begin{aligned} & \text { Absolute } \\ & \text { positioning in the }\end{aligned}$ negative direction		p2651 $=$ r2094.1	-	-	-
	MDI_MOD. 2					p2652 $=$ r 2094.2	-	-	-
	MDI_MOD. 3	Reserved				-	-	-	-
	MDI_MOD. 4	Reserved				-	-	-	-
	MDI_MOD. 5	Reserved				-	-	-	-
	MDI_MOD. 6	Reserved				-	-	-	-
	MDI_MOD. 7	Reserved				-	-	-	-
	MDI_MOD. 8	Reserved				-	-	-	-
	MDI_MOD. 9	Reserved				-	-	-	-
	MDI_MOD. 10	Reserved				-	-	-	-
	MDI_MOD. 11	Reserved				-	-	-	-
	MDI_MOD. 12	Reserved				-	-	-	-
	MDI_MOD. 13	Reserved				-	-	-	-
	MDI_MOD. 14	Reserved				-	-	-	-
	MDI_MOD. 15	Reserved				-	-	-	-

<1> Used in telegram 9.




PROFIBUS
<1> Not for G130/G150: TM15DI_DO, TM120 Usable infeeds:
G130: none, G1 0: B_INF, S120: x_INF, S150: A_INF
<2>
The reference variables p200x apply for the ongoing interconnection ( $100 \%->$ p200x),
The following applies for temperature values: $100^{\circ} \mathrm{C}$-> $100 \%=4000$ hex; $0^{\circ} \mathrm{C}->0 \%$.
<4> Using the binector/connector converters at [2472], bits of 5 send words can be interconnected with any binectors

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO: A_INF, B_INF, CU_G, CU_S, R_INF, S_INF, TB30, TM15DI_DO, TM31, TM120, TM150 | fp_2483_54_eng.vsd | Function diagram |  |  |  |  |  |
| PROFIdrive - IF1 send telegram, free interconnection via BICO (p0922 = 999) | - 2483 - |  |  |  |  |  |  |

PROFIdrive - IF1 send telegram, free interconnection via BICO (p0922 = 999)












### 3.10 Internal control/status words

Function diagrams
2501 - Control word, sequence control ..... 2124
2503 - Status word, sequence control ..... 2125
2505 - Control word, setpoint channel ..... 2126
2520 - Control word, speed controller ..... 2127
2522 - Status word, speed controller ..... 2128
2526 - Status word, closed-loop control ..... 2129
2530 - Status word, closed-loop current control ..... 2130
2534 - Status word, monitoring functions 1 ..... 2131
2536 - Status word, monitoring functions 2 ..... 2132
2537 - Status word, monitoring functions 3 ..... 2133
2546 - Control word, faults/alarms ..... 2134
2548 - Status word, faults/alarms 1 and 2 ..... 2135








	Bit No．	Status word，monitoring functions 1		$-r$	
	0	Reserved		r2197．1	
From speed signals 1 ［8010．8］$\longrightarrow$	1	1 ＝ n ＿act $\mid$＜$=$ speed threshold value $\mathbf{2}$（p2155）	＜1＞		
From speed signals 1 ［8010．8］$\longrightarrow$	2	1 ＝ $\mathbf{n}_{\text {＿act }} \mid>$ speed threshold value 2 （p2155）	＜1＞	r2197．2	
From speed signals 2 ［8011．8］$\longrightarrow$	3	$1=$ n＿act $>=0$		r2197．3	
	4	Reserved			
	5	Reserved			
From speed signals 1 ［8010．4］$\longrightarrow$	6	1 ＝n＿act＞n＿max		r2197．6	
From speed signals 2 ［8011．8］$\longrightarrow$	7	1 ＝Speed setpoint－actual value deviation within tolerance t＿off		r2197．7	
	8	Reserved			
	9	Reserved			
	10	Reserved			
	11	Reserved			
	12	Reserved			
	13	1 ＝｜n＿act $\mid>n _$max（F07901）			
	14	Reserved		r2197．13	
	15	Reserved			
actual value r2169［8010．2］．					
2 3		4 年 5	6	7	8
TOR			fp＿2534＿54＿eng．vsd	Function diagram	2534
us words－Status word，monitoring	func	ons 1	09．11．16 V05．01．01	S120／S150／G150／G150	






### 3.11 Sequence control

## Function diagrams

2610 - Sequencer

2634 - Missing enable signals, line contactor control, logic operation 2138



### 3.12 <br> Brake control

## Function diagrams

2701 - Basic brake control (r0108.14 = 0) ..... 2140
2704 - Extended brake control, zero-speed detection (r0108.14 = 1) ..... 2141
2707 - Extended brake control, open/close brake (r0108.14 = 1) ..... 2142
2711 - Extended brake control, signal outputs (r0108.14 = 1) ..... 2143

<1> Motor holding brake configuration (p1215) $0=$ No motor holding brake being used.
$1=$ Motor holding brake acc. to sequence control.
$2=$ Motor holding brake always released.
$3=$ Motor holding brake like sequence control, connection via BICO
<2> Priority assignment (high -> low): p1215, p0858, p0855, p0856, sequence control. $<3>$ If $\mathrm{p} 1215=0,2->\mathrm{t}=0 \mathrm{~ms}$
<4> Only if Safety Integrated is active (Double Motor Module: X22, Chassis: X41).

<7> r0046.21 $=0$, as long as r0046.0 $=1$ (OFF1 enable missing or power-on inhibit).
The signal generation is shown simplified.
<8> The internal signal includes signals that lead to OFF1 or OFF3 (e.g. BICO or fault response).
<9> If the brake is permanently applied or released (p0855, p0858 or p1215), the drive does not wait while the brake is released or applied. $<10>$ Only for SINAMICS S120.

Note: Braking signal diagnostic evaluation (p1278) only applies for SBC (Safe Brake Control) (controls the Safe Brake Relay). <10>
Note: With VECTOR with activated "parallel circuit" Function Module (r0108.15 = 1), the holding brake may only be connected to a power unit (p7015).

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_2701_54_eng.vsd	Function diagram	- 2701 -
Brake control - Basic brake control (r0108.14 = 0)					14.03.16 V05.01.01	S120/S150/G130/	

<1> Shutdown threshold of the standstill detection. In this case (e.g. when using a brake), another criterion than the
speed actual value can be selected to clear the pulses. Otherwise, we recommend to keep the factory setting
<2> For p1276 $=300.000 \mathrm{~s}$, the timer is deactivated, i.e. the timer output is always 0 . Note: When operating a
motor with a brake which must not be applied while the motor is rotating, the monitoring time of both timers must be set to 300 s .
<3> For operation without brake, p1224[0...3] must be 0 (factory setting) in order to avoid undesirable interaction
with the sequence control
<4> The internal signal comprises signals that lead to OFF1 or OFF3 (e.g. BICO or fault response).
<5> Only for SINAMICS S120.

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_2704_54_eng.vsd	Function diagram	- 2704 -
Brake control - Extended brake control, zero-speed detection (r0108.14 = 1)					27.06.13 V05.01.01	S120/S150/G130/G150	




### 3.13 Safety Integrated Basic Functions

## Function diagrams

2800 - Parameter manager ..... 2145
2802 - Monitoring functions and faults/alarms ..... 2146
2804 - SI status CU, MM, CU + MM, group STO ..... 2147
2806 - S_STW1/2 Safety control word 1/2, S_ZSW1/2 Safety status word 1/2 ..... 2148
2810 - STO (Safe Torque Off), SS1 (Safe Stop 1) ..... 2149
2811 - STO (Safe Torque Off), safe pulse suppression ..... 2150
2814 - SBC (Safe Brake Control), SBA (Safe Brake Adapter) ..... 2151







### 3.14 Safety Integrated Extended Functions

## Function diagrams

2818 - Parameter manager ..... 2153
2819 - SS1, SS2, SOS, internal STOP B, C, D, F ..... 2154
2820 - SLS (Safely-Limited Speed) ..... 2155
2821 - Safe referencing ..... 2156
2823 - SSM (Safe Speed Monitor) ..... 2157
2824 - SDI (Safe Direction) ..... 2158
2825 - SAM (Safe Acceleration Monitor), SBR (Safe Brake Ramp) ..... 2159
2836 - SBT (Safe Brake Test) ..... 2160
2837 - Select active control word ..... 2161
2838 - SLA (Safely-Limited Acceleration) ..... 2162
2840 - SI Motion drive-integrated control signals/status signals ..... 2163
2842 - S_STW1 Safety control word 1, S_ZSW1 Safety status word 1 ..... 2164
2843 - S_STW2 Safety control word 2, S_ZSW2 Safety status word 2 ..... 2165
2858 - Control via PROFIsafe (p9601.2 = p9601.3 = 1) ..... 2166
2870 - CU310-2 (F-DI 0 ... F-DI 2) ..... 2167
2873 - CU310-2 fail-safe digital output (F-DO 0) ..... 2168
2875 - CU310-2 control interface ..... 2169
2876 - CU310-2 safe state selection ..... 2170
2877 - CU310-2 assignment (F-DO 0) ..... 2171



List Manual, 07/2018, 6SL3097-5AP00-0BP0





<3> Drive via PROFIsafe [2858].
<3> Drive via PROFIsafe [2858].
<4> Drive via onboard interface for CU310-2 [2875].
<5> Drive viaTM54F [2905]

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_2824_54_eng.vsd	Function diagram	- 2824 -
SI Extended Functions - SDI (Safe Direction)					02.06.14 V05.01.01	S120/S150/G130/G150	


3.14 Safety Integrated Extended Functions




<1> Only at drive of the Extended Functions via PROFIsafe
<2> Only at drive of the Extended Functions via onboard interface for CU310-2
<2> Only at drive of the Extended Functions via onboard
$<3>$ Only at drive of the Extended Functions via TM54F.
<4> S_ZSW1.11 or S_ZSW2.29 depending on the telegram number selected in p9611/p9811 when actuating the Extended Functions via PROFIsafe.

1	2	3	4
DO: SERVO, VECTOR			

SI Extended Functions - SI Motion drive-integrated control signals/status signal


S_STW2 Safety control word 2				
[2858.2] $\longrightarrow$	Meaning			$\xrightarrow[{[2858.3}]]{\text { S_STW2 }}$
	1 = De-select STO			
	1 = De-select SS1			
	1 = De-select SS2			
	1 = De-select SOS			
	1 = De-select SLS			
	Reserved			
	1 = De-select SLP			
	1/0 = Acknowledgm			
	1 = De-select SLA			
	1 = Select SLS bit 0			
	1 = Select SLS bit 1			
	Reserved			
	1 = De-select SDI po	tive		
	1 = De-select SDI ne	ative		
	Reserved			
	SLP position area	0 = SLP1	1 = SLP2	
	Reserved			
	1 = De-select SCA			
	Select gearbox stag	bit 0		
	Select gearbox stag	bit 1		
	Select gearbox stag	bit 2		
	Gearbox stage swit	over		
	1 = De-select SS2E			
	Reserved			








### 3.15 Safety Integrated Advanced Functions

## Function diagrams

2822 - SLP (Safely-Limited Position) 2173
2826 - SCA (Safe Cam) 2174

$2844-$ S_ZSW_CAM1 safety status word Safe Cam 1	2175



[^12]


### 3.16 Safety Integrated TM54F

## Function diagrams

2890 - Overview ..... 2177
2891 - Parameter manager ..... 2178
2892 - Configuration, F-DI/F-DO test ..... 2179
2893 - Fail-safe digital inputs (F-DI 0 ... F-DI 4) ..... 2180
2894 - Fail-safe digital inputs (F-DI $5 \ldots$ F-DI 9) ..... 2181
2895 - Fail-safe digital outputs (F-DO $0 \ldots$ F-DO 3), digital inputs (DI $20 \ldots$ DI 23) ..... 2182
2900 - Basic Functions control interface (p9601.2/3 = 0 \& p9601.6 = 1) ..... 2183
2901 - Basic Functions safe state selection ..... 2184
2902 - Basic Functions assignment (F-DO 0 ... F-DO 3) ..... 2185
2905 - Extended Functions control interface (p9601.2 = 1 \& p9601.3 = 0) ..... 2186
2906 - Extended Functions safe state selection ..... 2187
2907 - Extended Functions assignment (F-DO 0 ... F-DO 3) ..... 2188













### 3.17 Safety Integrated PROFIsafe

## Function diagrams

2915 - Standard telegrams ..... 2190
2917 - Manufacturer-specific telegrams ..... 2191



### 3.18 Setpoint channel

## Function diagrams

3001 - Overview ..... 2193
3010 - Fixed speed setpoints ..... 2194
3020 - Motorized potentiometer ..... 2195
3030 - Main/supplementary setpoint, setpoint scaling, jogging ..... 2196
3040 - Direction limitation and direction reversal ..... 2197
3050 - Skip frequency bands and speed limitations ..... 2198
3060 - Basic ramp-function generator ..... 2199
3070 - Extended ramp-function generator ..... 2200
3080 - Ramp-function generator selection, status word, tracking ..... 2201
3082 - Extended Stop and Retract (ESR, r0108.9 = 1) ..... 2202
3090 - Dynamic Servo Control (DSC) linear and DSC spline (r0108.6 = 1) ..... 2203




<2> Only active in LOCAL mode (r0807.0 = 1) [2501.2].
$\begin{array}{ll}\text { <2> } \\ \text { <3> } & \text { Only for SINAMICS G130/G150/S150 and SINAMICS } S 120 ~ A C ~ D r i v e ~(C U 310-2 ~ w i t h ~ P M 240-2) . ~\end{array}$

<101> To view the pre-assignment of the sampling times in p0115, refer to p0112

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR, VECTOR3P, VECTORGL, VECTORM2C, VECTORMV, VECTORSL					fp_3040_51_eng.vsd	Function diagram	3040 -
Setpoint channel - Direction limitation and direction reversal					08.09.17 V05.01.01	SINAMICS	


<1> A skip speed of "0" deactivates the skip frequency band
<2> n_max_Mot: Value is appropriately pre-assigned after quick commissioning (p0010=1).
<2> n_max_Mot: Value is appropriately pre-assigned after quick commissioning (p0010 $=1$ ).
<3> Only for SERVO and activated "Extended stop and retract" function module (r0108.9 $=1$ ).
$<4>$ When the limit is being reduced the OFF3 ramp-down time (p1135) is effective.
<5> For VECTORGL the following interconnection allows tracking corresponding to line frequency: CI: p1098[C] = r6310.
<6> BO: r1099.0 may be used for DDS changeover

$n_{\text {_limit neg }}^{\text {p1086[ }}$ [rpm]
<100> For SERVO, the following applies: Only if the function module "Extended setpoint channel" is activated $(r 0108.8=1)$. For r0108.8 $=0,[3095]$ applies for the generation of the speed limits. <101> To view the pre-assignment of the sampling times in p0115, refer to p0112.

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR, VECTOR3P, VECTORGL, VECTORM2C, VECTORMV, VECTORSL					fp_3050_51_eng.vsd	Function diagram	- 3050 -
Setpoint channel - Skip frequency bands and speed limitations					16.10.13 V05.01.01	SINAMICS	







[^13]
### 3.19 Setpoint channel not activated

## Function diagrams

3095 - Generation of the speed limits $(r 0108.8=0)$
<1> With OFF1/OFF3, the deceleration ramp of the basic ramp-function generator is active (p1135 or p1121).
<100> Applies only if the function module "extended setpoint channel" (r0108.8 = 0) is not active. For r0108.8 = 1, [3050] applies instead of [3095].

1	2	3	4	5	6	7	8
DO: SERVO					fp_3095_01_eng.vsd	Function diagram	- 3095 -
Setpoint channel not activated - Generation of the speed limits (r0108.8 = 0)					01.08.13 V05.01.01	SINAMICS S120	

### 3.20 Basic positioner (EPOS)

## Function diagrams

3610 - Jog mode (r0108.4 = 1) ..... 2207
3612 - Referencing/reference point approach mode (r0108.4 = 1) (p2597 = 0 signal) ..... 2208
3614 - Flying referencing mode (r0108.4 = 1) (p2597 = 1 signal) ..... 2209
3615 - Traversing block mode, external block change (r0108.4 = 1) ..... 2210
3616 - Traversing block mode (r0108.4 = 1) ..... 2211
3617 - Travel to fixed stop (r0108.4 = 1) ..... 2212
3618 - Direct setpoint input/MDI mode, dynamic values (r0108.4 = 1) ..... 2213
3620 - Direct setpoint input/MDI mode (r0108.4 = 1) ..... 2214
3625 - Mode control (r0108.4 = 1) ..... 2215
3630 - Traversing range limits (r0108.4 = 1) ..... 2216
3635 - Interpolator ( $\mathrm{r} 0108.4=1$ ) ..... 2217
3640 - Control word, block selection/MDI selection (r0108.4 = 1) ..... 2218
3645 - Status word 1 (r0108.3 = 1, r0108.4 = 1) ..... 2219
3646 - Status word $2(\mathrm{r} 0108.3=1, \mathrm{r} 0108.4=1)$ ..... 2220
3650 - Status word, active traversing block/MDI active (r0108.4 = 1) ..... 2221


<1> When "reference point approach" is selected (active referencing p2597 $=0$ signal), this function diagram is of no significance $=>$ refer to [3612]
diagram is of no significance $=>$ refer to [3612].
Active traversing is not directly associated with the "flying referencing" mode (passive
referencing, p2597 = 1 signal).
The mode can be superimposed on the "jog" [3610], "traversing blocks" [3614] and "direct setpoint input/MDI" [3618] modes!

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_3614_55_eng.vsd	Function diagram	3614 -
EPOS - Flying referencing mode (r0108.4 = 1) (p2597 = 1 signal)					11.09.17 V05.01.01	SINAMICS S120/S150	




MDI s_set
$\sum^{\mathrm{p} 2642}(\mathrm{p} 2690) \longrightarrow[$ [3620.1]
Pos fixed value $-2147483648 \ldots 2147483647$ [LU]
p2690 (0) p2690










### 3.21 Position control

## Function diagrams

4010 - Position actual value preprocessing (r0108.3 = 1) 2223
4015 - Position controller (r0108.3 = 1) 2224
4020 - Standstill monitoring / positioning monitoring (r0108.3 = 1) 2225
4025 - Dynamic following error monitoring, cam controllers (r0108.3 = 1) 2226





### 3.22 Encoder evaluation

## Function diagrams

4700 - Servo control, overview ..... 2228
4702 - Vector control, overview ..... 2229
4704 - Position and temperature sensing, encoders 1 ... 3 ..... 2230
4710 - Speed actual value and pole position sensing, encoder 1 ..... 2231
4711 - Speed actual value sensing, encoders 2,3 (r0108.7 = 1, APC activated) ..... 2232
4715 - Actual speed value and pole position sensing, encoder 1, n_act_filter 5 ..... 2233
4720 - Encoder interface, receive signals, encoders 1 ... 3 ..... 2234
4730 - Encoder interface, send signals, encoders 1 ... 3 ..... 2235
4735 - Reference mark search with external zero mark, encoders 1 ... 3 ..... 2236
4740 - Measuring probe evaluation, measured value memory, encoders 1 ... 3 ..... 2237
4750 - Absolute value for incremental encoder ..... 2238












### 3.23 Hydraulic drive

Function diagrams
4965 - Velocity controller ..... 2240
4966 - Transition point compensation ..... 2241
4970 - Force controller ..... 2242
4975 - Valve characteristic, surface adaptation ..... 2243
4977 - Static friction compensation using a force controller (p1400.2 = 1) ..... 2244
4978 - Static friction compensation with voltage pulse / voltage ramp ..... 2245
4985 - Sequencer ..... 2246
4990 - P24 management with shutoff valve ..... 2247
4991 - P24 management without shutoff valve ..... 2248










### 3.24 Servo control

## Function diagrams

5019 - Speed control and U/f control, overview ..... 2250
5020 - Speed setpoint filter and speed precontrol ..... 2251
5030 - Reference model/precontrol balancing/speed limitation ..... 2252
5035 - Moment of inertia estimator ( $\mathrm{r} 0108.10=1$ ) ..... 2253
5040 - Speed controller with encoder ..... 2254
5042 - Speed controller, torque/speed precontrol with encoder (p1402.4 = 1) ..... 2255
5045 - Online tuning with activated moment of inertia estimator (r0108.10 = 1) ..... 2256
5050 - Speed controller adaptation (Kp_n/Tn_n adaptation) ..... 2257
5060 - Torque setpoint, control mode changeover ..... 2258
5210 - Speed controller without encoder ..... 2259
5300 - U/f control for diagnostics ..... 2260
5301 - Variable signaling function ..... 2261
5490 - Speed control configuration ..... 2262
5609 - Generation of the torque limits, overview ..... 2263
5610 - Torque limiting/reduction, interpolator ..... 2264
5620 - Motoring/generating torque limit ..... 2265
5630 - Upper/lower torque limit ..... 2266
5640 - Mode changeover, power/current limiting ..... 2267
5650 - Vdc_max controller and Vdc_min controller ..... 2268
5700 - Current control, overview ..... 2269
5710 - Current setpoint filter 1 ... 4 ..... 2270
5711 - Current setpoint filter 5 ... 10 (r0108.21 = 1) ..... 2271
5714 - Iq and Id controllers ..... 2272
5722 - Field current/flux input, flux reduction, flux controller ..... 2273
5730 - Interface to the Motor Module (gating signals, current actual values) ..... 2274



<1> On p1400.22 = 1 and r1407.26 $=1$, the current values are saved in p1498, p1563 and p1564 for RAM to ROM.
<2> If p1497 is connected to a source not equal to 1 , the switch always remains set to 0

1	2	3	4	5	6	7	8
DO: SERVO					fp_5035_01_eng.vsd	Function diagram	- 5035 -
Servo control - Moment of inertia estimator (r0108.10 = 1)					23.02.15 V05.01.01	SINAMICS S120	




0d90-00d甘G-L60ع7S9 ‘8LOZILO ‘ŁEnuew łS! ๆ 99ZZ
OSIS/OZIS SOIWVNIS

1	2	3	4	5	6	7	8
DO: SERVO					fp_5050_01_eng.vsd	Function diagram	- 5050 -
Servo control - Speed controller adaptation (Kp_n/Tn_n adaptation)					10.04.12 V05.01.01	SINAMICS S120	








<1> For p1400.4 $=0$ the torque limits for the positive and negative torque direction (upwards and downwards) are compatible with MASTERDRIVES and MICROMASTER 4 "Normal case": If neither dynamic limits nor offsets are required, the upper torque limit is entered via p1520 and the lower via p1521 (as a negative value).
<2> Danger: Negative values at (A) or positive values at (B) represent a minimum torque for the other torque direction and can cause the motor to accelerate uncontrollably
<3> The limiter ensure that the limits do not mutually "overtake" one another. With (A) < (B) , Fault F07090 is initiated
<4> For the manufacturer-specific PROFIdrive telegrams 102 ... 106, r1543 is switched in here [5610.4]
$<5>$ The following applies to $\mathbf{p} 0543 \neq 0$ : The minimum value from p1520 and p0543 is used for further calculation.
<6> The following applies to p0543 $\neq 0$ : The minimum value from p1521 and negated p0543 is used for further calculation.

1	2	3	4	5	6	7	8
DO: SERVO					fp_5630_01_eng.vsd	Function diagram	- 5630 -
Servo control - Upper/lower torque limit					09.09.15 V05.01.01	SINAMICS S120	


1	2	3	4	5	6	7	8
DO: SERVO					fp_5640_01_eng.vsd	Function diagram	- 5640 -
Servo control - Mode changeover, power/current limiting					10.04.12 V05.01.01	SINAMICS S120	








[^14]

### 3.25 Vector control

## Function diagrams

6020 - Speed control and generation of the torque limits, overview	2277
6030 - Speed setpoint, droop	2278
6031 - Pre-control balancing, reference/acceleration model	2279
6035 - Moment of inertia estimator (r0108.10 = 1)	2280
6040 - Speed controller with/without encoder	2281
6050 - Speed controller adaptation (Kp_n/Tn_n adaptation)	2282
6060 - Torque setpoint	2283
6220 - Vdc_max controller and Vdc_min controller	2284
6300 - U/f control, overview	2285
6301 - U/f characteristic and voltage boost	2286
6310 - Resonance damping and slip compensation	2287
6320 - Vdc_max controller and Vdc_min controller (U/f)	2288
6490 - Speed control configuration	2289
6491 - Flux control configuration	2290
6495 - Excitation (SESM, p0300 = 5)	2291
6630 - Upper/lower torque limit	2292
6640 - Current/power/torque limits	2293
6700 - Current control, overview	2294
6710 - Current setpoint filter	2295
6714 - Iq and Id controllers	2296
6721 - Id setpoint (PMSM, p0300 = 2)	2297
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1)	2298
6723 - Field weakening controller, flux controller (ASM, p0300 = 1)	2299
6724 - Field weakening controller (PMSM, p0300 = 2)	2300
6725 - Flux setpoint, field weakening controller (SESM, p0300 = 5)	2301
6726 - Field weakening controller, flux controller (SESM, p0300 = 5)	2302
6727 - Current model, excitation current monitoring, control cos phi (SESM, p0300 = 5)	2303
6730 - Interface to the Motor Module (ASM, p0300 = 1)	2304

6731 - Interface to the Motor Module (PMSM, p0300 = 2) ..... 2305
6732 - Interface to the Motor Module (SESM, p0300 = 5) ..... 2306
6733 - Motor model selection (SESM and p1300 $=20$, p0300 $=5$ ) ..... 2307
6790 - Flux setpoint (RESM, p0300 = 6) ..... 2308
6791 - Id setpoint (RESM, p0300 = 6) ..... 2309
6792 - Interface to the Motor Module (RESM, p0300 = 6) ..... 2310
6799 - Display signals ..... 2311
0d90-00dVG-L60ع7S9 ‘8LOZ/L0 ‘'enuew lS! 7 SINAMICS S120/S150






[^15]
List Manual, 07/2018, 6SL3097-5AP00-0BP0


OGIS/OZIS SOIW甘NIS





<1> Only for VECTOR3P.

1	2	3	4	5	6	7	8
DO: VECTOR, VECTOR3P, VECTORGL, VECTORM2C, VECTORMV, VECTORSL					fp_6490_51_eng.vsd	Function diagram	- 6490 -
Vector control - Speed control configuration					06.10.17 V05.01.01	SINAMICS	

[^16]
<3> Only for VECTORGL
<4> Only for VECTOR3P, VECTORM2C, VECTORMV
<7> Not for VECTORGL.
<5> Only for VECTORSL: Meaning "Excitation initiation of the brief line interruption sequence".
Min / Max / Factory setting: $0.1 / 60.0 / 1.0$ [s] <6> Not for VECTOR.

1	2	3	4	5	6	7	8
DO: VECTOR, VECTOR3P, VECTORDM, VECTORGL, VECTORM2C, VECTORMV, VECTORSL					fp_6495_51_eng.vsd	Function diagram	- 6495 -
Vector control - Excitation (SESM, p0300 = 5)					26.09.16 V05.01.01	SINAMICS	

[^17]
$<1>$ Intervention by the Vdc controller.
$<2>$ Intervention when the speed limit is exceeded $+3 \% n_{\text {rate }}$
<<
$<3>$ p1 $1556=0$ switches the evaluation of the connector input p15
<4> Only for SINAMICS S120/S150.
<5> Ony for PMSM.
PMSM: Permanent-magnet synchronous motor


[^18]






[^19]


[^20]0dg0-00dVG-L60ع7S9 ‘8LOZ/LO ‘£Enuew $\ddagger$ S! 7 ZOEZ OSIS/OZIS SOIW甘NIS







[^21]


[^22]


### 3.26 Technology functions

## Function diagrams

7008 - kT estimator ..... 2313
7010 - Friction characteristic ..... 2314
7012 - Advanced Positioning Control (APC, r0108.7 = 1) ..... 2315
7013 - APC differential position gain (APC, r0108.7 = 1) ..... 2316
7014 - External armature short circuit (EASC, p0300 = 2 xx or 4 xx ) ..... 2317
7016 - Internal armature short circuit (IASC, p0300 = 2xx or $4 x x$ ) ..... 2318
7017 - DC braking (p0300 = 1xx) ..... 2319
7020 - Synchronization ..... 2320
7033 - Essential service mode (ESM) ..... 2321


PMSM: Permanent-magnet synchronous motor

1	2	3	4	5	6	7	8
DO: SERVO					fp_7008_01_eng.vsd	Function diagram	- 7008 -
Technology functions - kT estimator					10.08.16 V05.01.01	SINAMICS S120	








### 3.27 Technology controller

## Function diagrams

7950 - Fixed values, binary selection (r0108.16 = 1 and p2216 $=2$ )	2323
7951 - Fixed values, direct selection (r0108.16 = 1 and p2216 = 1)	2324
7954 - Motorized potentiometer (r0108.16 = 1)	2325
7958 - Closed-loop control (r0108.16 = 1)	2326
$7959-\mathrm{Kp} / \mathrm{Tn}$ adaption (r0108.16 = 1)	2327
7960 - DC link voltage controller (r0108.16 = 1)	2328



$0=$ The setpoint for the motorized potentiometer is not saved and after ON is entered using p2240. $1=$ The setpoint for the motorized potentiometer is saved after OFF and after ON is entered using r2231
nitial rounding-off active
$0=$ Without intial rounding
$1=$ With initial rounding. The ramp-up/down time set is exceeded accordingly.
$0=$ Non-volatile data save not activated.
$1=$ The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for p2230.0 = 1).
The ramp-function generator is always active
$0=$ Ramp-up encoder inactive with pulse disable.
1 = The ramp-up encoder is calculated independently of the pulse enable.

<1> For p2230.0 $=0$, this setpoint is entered after ON.
<2> If initial rounding-off is active (p2230.2 = 1), the selected ramp-up/down times If initial rounding-off is actly.
<101> The pre-assignment of the sampling time in p0115[6] is $4000.00 \mu \mathrm{~s}$.

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR, VECTOR3P, VECTORM2C, VECTORMV					fp_7954_51_eng.vsd	Function diagram	- 7954 -
Technology controller - Motorized potentiometer (r0108.16 = 1)					07.01.15 V05.01.01	SINAMICS	


<101> The pre-assignment of the sampling time in p0115[6] is $4000.00 \mu \mathrm{~s}$.

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_7959_54_eng.vsd	Function diagram	- 7959 -
Technology controller - Kp/Tn adaptation (r0108.16 = 1)					19.02.18 V05.01.01	S120/S150/G130/G150	



### 3.28 Line droop control (r0108.12 = 1)

## Function diagrams

7982 - Line droop, voltage correction control 2330
7983 - Direct component control, harmonics control 2331
7984 - Modulation depth control 2332
7986 - Sequence control, overcurrent 2333


1	2	3	4	5	6	7	8
DO: A_INF, R_INF					fp_7983_01_eng.vsd	Function diagram	- 7983-
Line droop control (r0108.12 = 1) - Direct component control, harmonics control					28.12.17 V05.01.01	SINAMICS S120	




## $3.29 \quad$ Line transformer (r0108.4 = 1)

## Function diagrams

7987 - Direct component control, negative sequence system controller ..... 2335
7988 - Island grid black start sequence control ..... 2336
7989 - Island grid synchronization, sequence control ..... 2337
7995 - Island grid synchronization, voltage threshold ..... 2338
7990 - Transformer model (p5480 = 1) ..... 2339
7991 - Line filter monitoring ..... 2340
7992 - PLL2 (phase locked loop 2) ..... 2341
7993 - Transformer magnetization, voltage threshold ..... 2342
7994 - Transformer magnetization, sequence control ..... 2343







1	2	3	4	5	6	7	8
DO: A_INF, R_INF					fp_7992_01_eng.vsd	Function diagram	7992 -
Line transformer (r0108.4 = 1) - PLL 2 (Phase-Locked Loop 2)					28.04.15 V05.01.01	SINAMICS S120	




### 3.30 <br> Dynamic grid support (r0108.7 = 1)

## Function diagrams

7996 - Characteristic ..... 2345
7997 - Current limits (p5501 = 1) ..... 2346
7998 - Sequence control ..... 2347
7999 - Grid monitoring anti-islanding ..... 2348





### 3.31 Signals and monitoring functions

Function diagrams
8005 - Overview ..... 2350
8010 - Speed signals 1 ..... 2351
8011 - Speed signals 2 ..... 2352
8012 - Torque signals, motor blocked/stalled ..... 2353
8013 - Load monitoring (r0108.17 = 1) ..... 2354
8016 - Thermal monitoring, motor, motor temperature status word faults/alarms ..... 2355
8017 - Motor temperature model 1 (I2t) ..... 2356
8018 - Motor temperature model 2 ..... 2357
8019 - Motor temperature model 3 ..... 2358
8020 - Separately excited synchronous motor (SESM, p0300 = 5) ..... 2359
8021 - Thermal monitoring, power unit ..... 2360
8022 - Freely parameterized I2t monitoring (SESM) ..... 2361











2360 List Manual, 07/2018, 6SL3097-5AP00-0BP0


### 3.32 Diagnostics

## Function diagrams

8050 - Overview ..... 2363
8060 - Fault buffer ..... 2364
8065 - Alarm buffer ..... 2365
8070 - Faults/alarms trigger word (r2129) ..... 2366
8075 - Faults/alarms configuration ..... 2367
8134 - Measuring sockets (T0, T1, T2) ..... 2368
8144 - Recorder overview (r0108.5 = 1) ..... 2369
8145 - Recorder sequence control (r0108.5 = 1) ..... 2370



[8070] Faults/alarms trigger word

[8075] Faults/alarms configuration

[8134] Measuring sockets (T0, T1, T2)




Changing the fault response $<1>$


Changing the message type (fault <==> alarm) <1>


Changing the acknowledge mode $<1>$

<1> The fault response, acknowledge mode and message type for all faults and alarms are set to meaningful default values in the factory setting Changes that may be required are only possible in specific value ranges specified by SIEMENS.
When the message type is changed, the supplementary information is tranferred from fault value r0949 to alarm value r2124 and vice versa.

1	2	3	4	5	6	7	8
DO: All objects					fp_8075_51_eng.vsd	Function diagram	- 8075-
Diagnostics - Faults/alarms configuration					22.01.14 V05.01.01	SINAMICS	





### 3.33 Data sets

## Function diagrams

8560 - Command data sets (CDS)	2372
8565 - Drive data sets (DDS)	2373
8570 - Encoder data sets (EDS)	2374
8575 - Motor data sets (MDS)	2375
8580 - Power unit data sets (PDS)	2376







## $3.34 \quad$ Basic Infeed

Function diagrams
8710 - Overview ..... 2378
8720 - Control word, sequence control infeed ..... 2379
8726 - Status word, sequence control infeed ..... 2380
8732 - Sequencer ..... 2381
8738 - Missing enables, line contactor control ..... 2382
8750 - Interface to the Basic Infeed power unit (control signals, actual values) ..... 2383
8760 - Signals and monitoring functions (p3400.0 = 0) ..... 2384

<1> STW1.10 must be set to ensure that the drive object accepts the process data (PZD)
<2> PROFIBUS interconnection:
For the manufacturer-specific PROFIBUS telegram, the upper
input is connected to PROFIBUS signal E_STW1 [2447].
Only applies for CDSO.
$<3>$ Is pre-defined via the PC if the master control is retrieved. <4> Only for S120 and G150.

1	2	3	4	5	6	7	8
DO: B_INF					fp_8720_54_eng.vsd	Function diagram	- 8720-
Basic Infeed - Control word, sequence control, infeed					25.10.12 V05.01.01	S120/S150/G130/G150	

[^23]





### 3.35 Smart Infeed

Function diagrams
8810 - Overview ..... 2386
8820 - Control word, sequence control infeed ..... 2387
8826 - Status word, sequence control infeed ..... 2388
8828 - Status word, infeed ..... 2389
8832 - Sequencer ..... 2390
8838 - Missing enable signals, line contactor control ..... 2391
8850 - Interface to the Smart Infeed (control signals, actual values) ..... 2392
8860 - Signals and monitoring functions, line supply voltage monitoring ..... 2393
8864 - Signals and monitoring functions, line frequency and Vdc monitoring ..... 2394


[^24]




A06301 "Line supply overvoltage"



### 3.36 Active Infeed

## Function diagrams

8910 - Overview ..... 2396
8920 - Control word, sequence control infeed ..... 2397
8926 - Status word, sequence control infeed ..... 2398
8928 - Status word, infeed ..... 2399
8932 - Sequencer ..... 2400
8938 - Missing enable signals, line contactor control ..... 2401
8940 - Controller modulation depth reserve/controller DC link voltage (p3400.0 = 0) ..... 2402
8945 - Reactive current/apparent current limits (r0108.3 = 1) ..... 2403
8946 - Current precontrol/current controller/gating unit (p3400.0 = 0) ..... 2404
8948 - Master/slave (r0108.19 = 1) ..... 2405
8950 - Interface to the Active Infeed, control signals, actual values (p3400.0 = 0) ..... 2406
8951 - Cos phi display (r0108.10 = 1) ..... 2407
8960 - Signals and monitoring functions, line voltage monitoring (p3400.0 = 0) ..... 2408
8964 - Signals and monitoring functions, line frequency $/ V d c$ monit. $(p 3400.0=0)$ ..... 2409



[^25]


[^26]










### 3.37 Terminal Board 30 (TB30)

## Function diagrams

9099 - Overview ..... 2411
9100 - Digital inputs, electrically isolated (DI $0 \ldots$ DI 3) ..... 2412
9102 - Digital outputs, electrically isolated (DO 0 ... DO 3) ..... 2413
9104 - Analog inputs (AI $0 \ldots \mathrm{Al}$ 1) ..... 2414
9106 - Analog outputs (AO 0 ... AO 1) ..... 2415






## $3.38 \quad$ Communication Board CAN10 (CBC10)

## Function diagrams

9204 - Receive telegram, free PDO mapping $(\mathrm{p} 8744=2)$	2417
9206 - Receive telegram, Predefined Connection Set $(\mathrm{p} 8744=1)$	2418
9208 - Send telegram, free PDO mapping $(\mathrm{p} 8744=2)$	2419
9210 - Send telegram, Predefined Connection Set $(\mathrm{p} 8744=1)$	2420
9220 - Control word, CANopen	2421
9226 - Status word, CANopen	2422

<1> To use automatic BICO interconnection (p8790 = 1), one of the receive words $1-4$ must be used as control word 1 (STW1).
<2> Telegram: up to 4 words or 64 bits.
The sum of the various objects must not exceed 16 words.
RPDO: Receive Process Data Object
$<3>$ When interconnecting a connector output multiple times all the connector inputs must have either Integer or FloatingPoint data type. COB-ID: CAN Communication Object Identifier

1	2	3	4	5	6	7	8
DO: A INFM2C, SERVO, VECTOR, VECTOR3P, VECTORGL, VECTORMV, VECTORSL					fp_9204_51_eng.vsd	Function diagram	9204 -
Communication Board CAN10 (CBC10) - Receive telegram, free PDO mapping (p8744 = 2)					05.07.13 V05.01.01	SINAMICS	








## $3.39 \quad$ Terminal Module 15 (TM15)

Function diagrams
9389 - Overview TM15 (SIMOTION) ..... 2424
9399 - Overview TM15DI_DO (SINAMICS) ..... 2425
9400 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 7) ..... 2426
9401 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 15) ..... 2427
9402 - Digital inputs/outputs, bidirectional (DI/DO 16 ... DI/DO 23) ..... 2428






### 3.40 <br> Terminal Module 17 High Feature (TM17 High Feature)

## Function diagrams



### 3.41 Terminal Module 31 (TM31)

## Function diagrams

9549 - Overview	2432
9550 - Digital inputs, electrically isolated (DI 0 ... DI 3)	2433
9552 - Digital inputs, electrically isolated (DI $4 \ldots$ DI 7)	2434
9556 - Digital relay outputs, electrically isolated (DO 0 ... DO 1)	2435
9560 - Digital inputs/outputs, bidirectional (DI/DO $8 \ldots$ DI/DO 9)	2436
9562 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11)	2437
9566 - Analog input (AI 0)	2438
9568 - Analog input 1 (AI 1)	2439
9572 - Analog outputs (AO 0 ... AO 1)	2440
9576 - Temperature evaluation	2441










＜1＞p4100
$=0$ ：Evaluation disabled
$=1:$ PTC
$=2 \cdot$ KTY
$=2:$ KTY
$=6:$ PT100
＝6：PT1000
＜2＞An alarm A35920 in the temperature evaluation of the TM31 is signaled to the next（downstream）vector control via the special temperature value $-300^{\circ} \mathrm{C}$ ．
$<3>$ As a result of the wire breakage monitoring the maximum temperature that can be measured is limited to approximate $188.6^{\circ} \mathrm{C}$ ．

＜4＞PTC：A value $>250^{\circ} \mathrm{C}$ de－activates the alarm or fault．
KTY／PT1000：A value $>188.6^{\circ} \mathrm{C}$ de－activates the alarm or fault．
KTY／PT1000：A value $>188.6^{\circ} \mathrm{C}$ de－activates the alarm or fault．
p4103 $=0 \hat{=}$ delay time $=0 \mathrm{~s}$ ．
PTC：
KTY／PT1000：p4103 $=0 \hat{=}$ Output from temperature timer even off（ 0 ）

1	2	3	4	5	6	7	8
DO：TM31					fp＿9576＿51＿eng．vsd	Function diagram	9576－
Terminal Module 31 （TM31）－Temperature evaluation					10．05．16 V05．01．01	SINAMICS	

## $3.42 \quad$ Terminal Module 120 (TM120)

## Function diagrams

9605 - Temperature evaluation channels 0 and 1
9606 - Temperature evaluation channels 2 and 3



## $3.43 \quad$ Terminal Module 150 (TM150)

## Function diagrams

9625 - Temperature evaluation structure (channels $0 \ldots 11$ ) 2446
9626 - Temperature evaluation 1x2, 3, 4-wire (channels $0 \ldots 5$ ) 2447
9627 - Temperature evaluation $2 x 2$ wire (channels 0 ... 11) 2448


1x2 wire

$2 \times 2$ wire


3 wire


4 wire

$4,5,6$
<2> Connect measuring cables.
<3> Carefully read the safety notes included in the parameter description for p4111!

1	2	3	4	5	6	7	8
DO: TM150					fp_9625_51_eng.vsd	Function diagram	9625 -
Terminal Module 150 (TM150) - Temperature evaluation structure (channels $0 \ldots$ 11)					04.12.12 V05.01.01	SINAMICS	



<1> For p4102[0...23] = $251^{\circ} \mathrm{C}$ the evaluation of the appropriate threshold is deactivated.
<2> p4100[0...11]
$=0$ : Evaluation deactivated
1: PTC thermistor (with monitoring for short-circuit)
2: KTY84 (with monitoring for wire break and short-circuit)
$=$ 4: Bimetal NC contact (no monitoring)
$=5:$ PT100 (with monitoring for wire break and short-circuit)
$=6$ : PT1000 (with monitoring for wire break and shortcircuit)
<3> For p4103 $=0$ s and sensor type "KTY84", "PT100", "PT1000" ( $p 4100[0 \ldots 11]=2,5,6$ ) the following applies

- The relevant fault can only be triggered via the fault threshold (the timer output is always logical 0 ).

For p4103 $=0$ s and sensor type "PTC thermistor", "Bimetal NC contact" ( $\mathrm{p} 4100[0 \ldots 11]=1,4$ ) the following applies:

- The corresponding alarm and fault are output simultaneously (delay time $=0 \mathrm{~s}$ )

1	2	3	4	5	6	7	8
DO: TM150					fp_9627_51_eng.vsd	Function diagram	- 9627-
Terminal Module 150 (TM150) - Temperature evaluation $2 \times 2$ wire (channels $0 \ldots 11$ )					25.04.16 V05.01.01	SINAMICS	

## $3.44 \quad$ Terminal Module 41 (TM41)

## Function diagrams

9659 - Overview ..... 2450
9660 - Digital inputs, electrically isolated (DI $0 \ldots$ DI 3) ..... 2451
9661 - Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1) ..... 2452
9662 - Digital inputs/outputs, bidirectional (DI/DO 2 ... DI/DO 3) ..... 2453
9663 - Analog input 0 (AI 0) ..... 2454
9674 - Incremental encoder emulation (p4400 = 0) ..... 2455
9676 - Incremental encoder emulation (p4400 = 1) ..... 2456
9677 - STW1 control word interconnection (p0922 = 3) ..... 2457
9678 - Control word, sequence control (p4400 = 0) ..... 2458
9679 - STW2 control word interconnection (p0922 = 3) ..... 2459
9680 - Status word, sequence control ..... 2460
9681 - ZSW1 status word interconnection (p0922 = 3) ..... 2461
9682 - Sequencer $(p 4400=0)$ ..... 2462
9683 - ZSW2 status word interconnection (p0922 = 3) ..... 2463








## Signal targets for STW1 Standard telegram 3 (p0922 = 3)

Signal	Meaning	Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted
STW1.0	$\begin{array}{\|l\|} \hline \boldsymbol{\Sigma}=\text { ON (pulses can be enabled) } \\ \mathbf{0}=\text { OFF1 (braking with ramp-function generator, then pulse cancellation, ready for switching on) } \end{array}$	p0840 $=$ r2090.0	[9678.3]	[9682]	-
STW1.1	1 = No OFF2 (enable is possible)   $0=$ OFF2 (immediate pulse cancellation and power-on inhibit)	p0844 = r2090.1	[9678.3]	[9682]	-
STW1.2	1 = No OFF3 (enable possible)   $0=$ OFF3 (braking with the OFF3 ramp p1135, then pulse cancellation and power-on inhibit)	p0848 $=$ r2090.2	[9678.3]	[9682]	-
STW1.3	1 = Enable operation (pulses can be enabled)   $0=$ Inhibit operation (cancel pulses)	p0852 $=$ r2090.3	[9678.3]	[9682]	-
STW1.4	1 = Operating condition (the ramp-function generator can be enabled)   $0=$ Inhibit ramp-function generator (set the ramp-function generator output to zero)	p1140 $=$ r2090.4	[9678.3]	[9682]	-
STW1.5	1 = Enable the ramp-function generator   $0=$ Stop the ramp-function generator (freeze the ramp-function generator output)	p1141 $=$ r2090.5	[9678.3]	[9682]	-
STW1.6	1 = Enable setpoint   $0=$ Inhibit setpoint (set the ramp-function generator input to zero)	p1142 $=$ r2090.6	[9678.3]	[9682]	-
STW1.7	$\Sigma=$ Acknowledge faults	$\mathrm{p} 2103[0]=\mathrm{r} 2090.7$	[2546.1]	[8060]	-
STW1.8	Reserved	-	-	-	-
STW1.9	Reserved	-	-	-	-
STW1.10	1 = Control by PLC < $<$	p0854[0] $=$ r2090.10	[9678.3]	-	-
STW1.11	Reserved	-	-	-	-
STW1.12	Reserved	-	-	-	-
STW1.13	1 = Enable zero marks <2>	$\mathrm{p} 1035=\mathrm{p} 2090.13$	[9678.3]	-	-
STW1.14	Reserved	-	-	-	-
STW1.15	Reserved	-	-	-	-

<1> The drive object is ready for transfer.
<2> Without function on the TM41. The zero mark can only be switched via p4401.

1	2	3	4	5	6	7	8
DO: TM41					fp_9677_51_eng.vsd	Function diagram	9677-
Terminal Module 41 (TM41) - STW1 control word interconnection (p0922 = 3)					16.06.10 V05.01.01	SINAMICS	



$\begin{aligned} & \stackrel{\omega}{\omega} \\ & \underset{\omega}{\omega} \end{aligned}$	Signal targets for STW2 Standard telegram 3 (p0922 = 3) <1>						
	Signal	Meaning		Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted
$\bigcirc$	STW2.0	Drive data set selection DDS, bit 0	<1>	p0820[0] $=$ r2093.0	-	-	-
	STW2.1	Drive data set selection DDS, bit 1	<1>	$\mathrm{p} 0821[0]=\mathrm{r} 2093.1$	-	-	-
$\sum$	STW2. 2	Drive data set selection DDS, bit 2	<1>	p0822[0] = r2093.2	-	-	-
$\bigcirc$	STW2.3	Drive data set selection DDS, bit 3	<1>	p0823[0] = r2093.3	-	-	-
$\sum$	STW2.4	Drive data set selection DDS, bit 4	<1>	p0824[0] $=$ r2093.4	-	-	-
	STW2.5	Reserved		-	-	-	-
	STW2.6	Reserved		-	-	-	-
	STW2.7	Reserved		-	-	-	-
$\begin{aligned} & 0 \\ & N \\ & N \\ & 11 \\ & \omega \end{aligned}$	STW2.8	Reserved		-	-	-	-
	STW2.9	Reserved		-	-	-	-
	STW2. 10	Reserved		-	-	-	-
	STW2.11	Reserved		-	-	-	-
	STW2.12	Master sign-of-life, bit 0					
	STW2.13	Master sign-of-life, bit 1					
	STW2.14	Master sign-of-life, bit 2					
	STW2.15	Master sign-of-life, bit 3					

<1> Not for TM41.

1	2	3	4	5	6	7	8
DO: TM41					fp_9679_51_eng.vsd	Function diagram	- 9679 -
Terminal Module 41 (TM41) - STW2 control word interconnection (p0922 = 3)					05.09.11 V05.01.01	SINAMICS	





$\begin{aligned} & \omega \\ & \omega \\ & \underset{\sim}{0} \end{aligned}$	Signal sources for ZSW2 Standard telegram 3 (p0922 = 3)						
	Signal	Meaning		Interconnection parameters	[Function diagram] Internal status word	[Function diagram] Signal source	Inverted
	ZSW2.0	1 = DDS present Bit 0	<2>	p2081[0] - r0051.0	-	-	-
	ZSW2.1	1 = DDS present Bit 1	<2>	p2081[1] - r0051.1	-	-	-
	ZSW2.2	1 = DDS present Bit 2	<2>	p2081[2] - r0051.2	-	-	-
	ZSW2.3	1 = DDS present Bit 3	<2>	p2081[3] - r0051.3	-	-	-
	ZSW2.4	1 = DDS present Bit 4	<2>	p2081[4] - r0051.4	-	-	-
	ZSW2.5	1 = Alarm class bit 0		p2081[5] = r2139.11	-	-	-
	ZSW2.6	$1=$ Alarm class bit 1		p2081[6] = r2139.12	-	-	-
	ZSW2.7	Reserved		-	-	-	-
	ZSW2.8	Reserved		-	-	-	-
	ZSW2.9	Reserved		-	-	-	-
	ZSW2.10	Reserved		-	-	-	-
	ZSW2.11	Reserved		-	-	-	-
	ZSW2.12	Slave sign-of-life bit 0		Implicitly interconnected	-	-	-
	ZSW2.13	Slave sign-of-life bit 1					
	ZSW2.14	Slave sign-of-life bit 2					
	zSW2.15	Slave sign-of-life bit 3					

<1> These signals are automatically interconnected for clock-cycle synchronous operation. <2> Not for TM41.

1	2	3	4	5	6	7	8
DO: TM41					fp_9683_51_eng.vsd	Function diagram	- 9683 -
Terminal Module 41 (TM41) - ZSW2 status word interconnection (p0922 = 3)					18.10.11 V05.01.01	SINAMICS	

### 3.45 Auxiliaries

## Function diagrams

9794 - Cooling unit, control and feedback signals (r0108.28 = 1) 2465
9795 - Cooling unit, sequence control (r0108.28 = 1) 2466
9814 - Chassis power units, 3 AC line connection and contactor status display 2467




## $3.46 \quad$ Voltage Sensing Module (VSM)

## Function diagrams

9880 - Analog inputs (AI $0 \ldots$ AI 3) 2469
9886 - Temperature evaluation 2470



## $3.47 \quad$ Basic Operator Panel 20 (BOP20)

## Function diagrams

9912 - Control word interconnection


### 3.48 External Braking Module

## Function diagrams

9951 - Sequencer (r0108.26 = 1)


## Faults and alarms

## Content

4.1 Overview of faults and alarms ..... 2476
4.2 List of faults and alarms ..... 2489

### 4.1 Overview of faults and alarms

### 4.1.1 General information

## Display of faults/alarms (messages)

In the case of a fault, the drive signals the corresponding fault(s) and/or alarm(s).
For example, the following methods for displaying faults and alarms are available:

- Display via the fault and alarm buffer with PROFIBUS/PROFINET.
- Online via the commissioning software
- Display and operating unit (e.g. BOP, AOP)


## Differences between faults and alarms

The differences between faults and alarms are as follows:
Table 4-1 Differences between faults and alarms

Type	$\quad$ Description
Faults	What happens when a fault occurs?   - The appropriate fault reaction is initiated   - Status signal ZSW1.3 is set.   - The fault is entered into the fault buffer.   How are faults eliminated?   - Remove the original cause of the fault.   - Acknowledge the fault.
Alarms	What happens when an alarm occurs?   - Status signal ZSW1.7 is set.   - The alarm is entered into the alarm buffer.
How are alarms eliminated?	
- Alarms acknowledge themselves.	
If the cause of the alarm is no longer present, they automatically reset	
themselves.	

## Fault reactions

## Note

The following table lists all fault reactions and their meanings used for the entire SINAMICS drive family.

The following fault reactions are defined:
Table 4-2 Fault reactions

List	PROFIdrive	Reaction	Description
NONE	-	None	No reaction when a fault occurs,   Note   When the "Basic positioner" function module is activated (r0108.4 = 1), the following applies:   When a fault occurs with fault reaction "NONE", an active traversing task is interrupted and the system switches to tracking mode until the fault has been rectified and acknowledged.
OFF1	ON/ OFF	Brake along the ramp-function generator down ramp followed by pulse inhibit	Closed-loop speed control (p1300 = 20, 21)   - n_set $=0$ is input immediately to brake the drive along the rampfunction generator ramp down (p1121).   - When zero speed is detected, the motor holding brake (if parameterized) is closed ( p 1215 ). The pulses are suppressed when the brake application time ( p 1217 ) expires.   Zero speed is detected if the actual speed drops below the threshold ( $p 1226$ ) or if the monitoring time ( $p 1227$ ) started when the speed setpoint <= speed threshold ( p 1226 ) has expired.   Torque control (p1300 = 23)   - The following applies for torque control:   Reaction as for OFF2.   - When the system switches to torque control with p1501, the following applies:   No separate braking reaction.   If the actual speed value drops below the speed threshold (p1226) or the timer stage ( p 1227 ) has expired, the motor holding brake (if one is being used) is closed. The pulses are suppressed when the brake application time (p1217) expires.
OFF1 DELAYED	-	As for OFF1, however delayed	Faults with this fault response only become effective after the delay time in p3136 has expired.   The remaining time up to OFF1 is displayed in r3137.
OFF2	$\begin{aligned} & \hline \text { COAST } \\ & \text { STOP } \end{aligned}$	Internal/external pulse inhibit	Closed-loop speed and torque control   - Instantaneous pulse suppression, the drive "coasts" to a standstill.   - The motor holding brake (if one is being used) is closed immediately.   - Switching on inhibited is activated.

Table 4-2 Fault reactions, continued

List	PROFIdrive	Reaction	Description
OFF3	QUICK STOP	Braking along the OFF3 down ramp followed by pulse inhibit	Closed-loop speed control (p1300 = 20, 21)   - n _set $=0$ is input immediately to brake the drive along the OFF3 ramp down (p1135).   - When zero speed is detected, the motor holding brake (if parameterized) is closed. The pulses are suppressed when the closing time of the holding brake (p1217) expires.   Zero speed is detected if the actual speed drops below the threshold ( $p 1226$ ) or if the monitoring time ( $p 1227$ ) started when the speed setpoint <= speed threshold (p1226) has expired.   - Switching on inhibited is activated.   Torque control (p1300 = 23)   - Changeover to speed-controlled operation and other reactions as described for speed-controlled operation.
STOP2	-	n_set $=0$	- $\mathrm{n} _$set $=0$ is input immediately to brake the drive along the OFF3 ramp down (p1135).   - The drive remains in closed-loop speed control.
IASC/ DCBRK	-	-	- For synchronous motors, the following applies:   If a fault occurs with this fault reaction, an internal armature shortcircuit is triggered.   The conditions for p1231 = 4 must be observed.   - For induction motors, the following applies:   If a fault occurs with this fault reaction, DC braking is triggered.   DC braking must have been commissioned (p1232, p1233, p1234).
ENCODER	-	Internal/external pulse inhibit (p0491)	The fault reaction ENCODER is applied as a function of the setting in p0491.   Factory setting:   p0491 = 0 --> Encoder fault causes OFF2   Notice   When changing p0491, it is imperative that the information in the description of this parameter is carefully observed.

## Acknowledging faults

The list of faults and alarms specifies how to acknowledge each fault after the cause has been remedied

Table 4-3 Acknowledging faults

Acknowledgment	Description
POWER ON	The fault is acknowledged using POWER ON (switch drive unit off and on again).   Note   If this action has not removed the fault cause, the fault is displayed again immediately after power up.
IMMEDIATELY	Faults can be acknowledged on one drive object (Points 1 to 3 ) or on all drive objects (Point 4) as follows:   1 Set acknowledgment by parameter: $\text { p3981 = } 0 \text {--> } 1$   2 Acknowledging via binector inputs:   p2103   BI: 1 Acknowledge faults   p2104 BI: 2 Acknowledge faults   p2105 BI: 3 Acknowledge faults   3 Acknowledging using a PROFIDRIVE control signal:   STW1.7 = 0 --> 1 (edge)   4 Acknowledge all faults   p2102   BI: Acknowledge all faults   All of the faults on all of the drive objects of the drive system can be acknowledged using this binector input.   Note   - These faults can also be acknowledged by a POWER ON.   - If the cause of the fault has not been removed, the fault will continue to be displayed after acknowledgment.   - Safety Integrated faults The "Safe Torque Off" (STO) function must be deselected before these faults are acknowledged.
PULSE INHIBIT	The fault can only be acknowledged when the pulses are inhibited (r0899.11 = 0).   The same options are available for acknowledging as described under acknowledge IMMEDIATELY.

### 4.1.2 Explanation of the list of faults and alarms

The data in the following example have been chosen at random. The information listed below is the maximum amount of information that a description can contain. Some of the information is optional.

The "List of faults and alarms" (Page 2489) has the following layout:

## Start of example

Axxxxx (F, N)	Fault location (optional): Name	
Message value:	Component number: \%1, fault cause: \%2	
Message class:	Text of the message class (number according to PROFIdrive)	
Drive object:	List of objects.	
Component:	Control Unit (CU)	
Reaction:	NONE	
Acknowledgement:	NONE	
Cause:	Description of possible causes.	
	Fault value (r0949, interpret format): or alarm value (r2124, interpret format): (optional)	
	Information about fault or alarm values (optional).	
Remedy:	Description of possible remedies.	
Response to F:	A_INFEED: OFF2 (OFF1, NONE)	
	SERVO: NONE (OFF1, OFF2, OFF3)	
	VECTOR: NONE (OFF1, OFF2, OFF3)	
Acknowl. upon F:	IMMEDIATELY (POWER ON)	
Response upon N:	NONE	
Acknowl. upon N:	NONE	

End of example

Axxxxx	Alarm xxxxx
Axxxxx (F,N)	Alarm xxxxx (message type can be changed to $F$ or $N$ )
Fxxxxx	Fault xxxxx
Fxxxxx (A, N)	Fault xxxxx (report type can be changed to A or $N$ )
Nxxxxx	No message
Nxxxxx (A)	No message (message type can be changed to A)
Cxxxxx	Safety message (separate message buffer)

A message comprises a letter followed by the relevant number.
The meaning of the letters is as follows:

- A means "Alarm"
- F means "Fault"
- N means "No message" or "Internal message"
- C means "Safety message"

The optional brackets indicate whether the type specified for this message can be changed and which message types can be adjusted via parameters (p2118, p2119).

Information on reaction and acknowledgment is specified independently for a message with an adjustable message type (e.g. reaction to F, acknowledgment for F).

## Note

You can change the default properties of a fault or alarm by setting parameters.
The "List of faults and alarms" (Page 2489) supplies information referred to the properties of a message set as default. If the properties of a specific message are changed, the corresponding information may have to be modified in this list.

## Fault location (optional): Name

The fault location (optional), the name of the fault or alarm and the message number are all used to identify the message (e.g. with the commissioning software).

## Message value:

The information provided under the message value informs you about the composition of the fault/alarm value.

## Example:

Message value: Component number: \%1, fault cause: \%2
This message value contains information about the component number and cause of the fault. The entries \%1 and \%2 are placeholders, which are filled appropriately in online operation (e.g. with the commissioning software).

## Message class:

For each message, specifies the associated message class with the following structure:
Text of the message class (number according to PROFIdrive)
The message classes are transferred at different interfaces to higher-level control systems and their associated display and operating units.

The message classes that are available are shown in Table "Message classes and coding of various diagnostic interfaces (Page 2482)". In addition to the text of the message class and their number according to PROFIdrive - as well as a brief help text regarding the cause and remedy - they also include information about the various diagnostic interfaces:

- PN (hex)

Specifies the "Channel error type" of the PROFINET channel diagnostics.
When activating the channel diagnostics, using the GSDML file, the texts listed in the table can be displayed.

- DS1 (dec)

Specifies the bit number in date set DS1 of the diagnostic alarm for SIMATIC S7.
When the diagnostic alarms are activated, the texts listed in the table can be displayed.

- DP (dec)

Specifies the "Error type" of the channel-related diagnostics for PROFIBUS.
When the channel diagnostics are activated, the texts listed in the standard and the GSD file can be displayed.

- ET 200 (dec)

Specifies the "Error type" of the channel-related diagnostics for the SIMATIC ET 200pro FC-2 device.

When the channel diagnostics are activated, the texts listed in the standard and the GSD file of the ET 200pro can be displayed.

- NAMUR (r3113.x)

Specifies the bit number in parameter r3113.
For the interfaces DP, ET 200, NAMUR, in some instances, the message classes are combined.

Table 4-4 Message classes and coding of various diagnostic interfaces

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	$\begin{gathered} \text { PN } \\ \text { (hex) } \end{gathered}$	$\begin{gathered} \text { DS1 } \\ \text { (dec) } \end{gathered}$	$\begin{gathered} \text { DP } \\ \text { (dec) } \end{gathered}$	$\begin{gathered} \text { ET } 200 \\ \text { (dec) } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { NAMUR } \\ \text { (r3113.x) } \end{array}$
Hardware/software errors (1)   A hardware or software malfunction was detected. Carry out a POWER ON for the relevant component. If it occurs again, contact the hotline.	9000	0	16	9	0
Line fault (2)   A line supply fault has occurred (phase failure, voltage level ...). Check the line supply and fuses. Check the supply voltage. Check the wiring.	9001	1	17	24	1
Supply voltage fault (3)   An electronics supply voltage fault ( $48 \mathrm{~V}, 24 \mathrm{~V}, 5 \mathrm{~V}$...) was detected. Check the wiring. Check the voltage level.	9002	2	$\begin{aligned} & 2^{1} \\ & 3^{2} \end{aligned}$	$\begin{aligned} & 2^{1} \\ & 3^{2} \end{aligned}$	15
DC-link overvoltage (4)   The DC-link voltage has assumed an inadmissibly high value. Check the dimensioning of the system (line supply, reactor, voltages). Check the infeed settings.	9003	3	18	24	2
Power electronics fault (5)   An impermissible operating state of the power electronics was detected (overcurrent, overtemperature, IGBT failure ...). Check compliance with the permissible load cycles. Check the ambient temperatures (fan).	9004	4	19	24	3
Overtemperature of the electronic component (6)   The temperature in the component has exceeded the highest permissible limit. Check the ambient temperature / control cabinet ventilation.	9005	5	20	5	4
Ground fault / inter-phase short-circuit detected (7)   A ground fault / inter-phase short-circuit was detected in the power cables or in the motor windings. Check the power cables (connection). Check the motor.	9006	6	21	20	5
Motor overload (8)   The motor was operated outside the permissible limits (temperature, current, torque ...). Check the load cycles and set limits. Check the ambient temperature / motor cooling.	9007	7	22	24	6

Table 4-4 Message classes and coding of various diagnostic interfaces, continued

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	$\begin{gathered} \text { PN } \\ \text { (hex) } \end{gathered}$	$\begin{gathered} \text { DS1 } \\ \text { (dec) } \end{gathered}$	$\begin{gathered} \text { DP } \\ \text { (dec) } \end{gathered}$	ET 200   (dec)	NAMUR (r3113.x)
Communication to the higher-level controller faulted (9)   The communication to the higher-level controller (internal coupling, PROFIBUS, PROFINET ...) is faulted or interrupted. Check the state of the higher-level controller. Check the communication connection/-wiring. Check the bus configuration/cycles.	9008	8	23	19	7
Safety monitoring channel has detected an error (10) A safe operation monitoring function has detected an error.	9009	9	24	25	8
Actual position/speed value incorrect or not available (11)   An illegal signal state was detected while evaluating the encoder signals (track signals, zero marks, absolute values ...). Check the encoder / state of the encoder signals. Observe the maximum permissible frequencies.	900A	10	25	29	9
Internal (DRIVE-CLiQ) communication faulted (12)   The internal communication between the SINAMICS components is faulted or interrupted. Check the DRIVE-CLiQ wiring. Ensure an EMCcompliant installation. Observe the maximum permissible quantity structures / cycles.	900B	11	26	31	10
Infeed fault (13)   The infeed is faulty or has failed. Check the infeed and its environment (line supply, filters, reactors, fuses ...). Check the infeed control.	900C	12	27	24	11
Braking controller / Braking Module faulted (14)   The internal or external Braking Module is faulted or overloaded (temperature). Check the connection/state of the Braking Module. Comply with the permissible number of braking operations and their duration.	900D	13	28	24	15
Line filter fault (15)   The line filter monitoring has detected an excessively high temperature or another impermissible state. Check the temperature / temperature monitoring. Check the configuration to ensure that it is permissible (filter type, infeed, thresholds).	900E	14	17	24	15
External measured value / signal state outside of the permissible range (16)   A measured value / signal state read in via the input area (digital/analog/temperature) has assumed an impermissible value/state. Identify and check the relevant signal. Check the set thresholds.	900F	15	29	26	15
Application / technological function faulty (17)   The application / technological function has exceeded a (set) limit (position, velocity, torque ...). Identify and check the relevant limit. Check the setpoint specification of the higher-level controller.	9010	16	30	9	15

Table 4-4 Message classes and coding of various diagnostic interfaces, continued

Text of the message class (number according to PROFIdrive)   Cause and remedy.	Diagnostics interface				
	PN   (hex)	DS1   (dec)	DP   (dec)	ET 200   (dec)	NAMUR   (r3113.x)
Error in the parameterization/configuration/commissioning   procedure (18)	9011	17	31	16	15
An error was identified in the parameterization or in a commissioning   procedure, or the parameterization does not match the actual device   configuration. Determine the precise cause of the fault using the   commissioning tool. Adapt the parameterization or device   configuration.					
General drive fault (19)   Group fault. Determine the precise cause of the fault using the   commissioning tool.	9012	18	9	9	15
Auxiliary unit fault (20)   The monitoring of an auxiliary unit (incoming transformer, cooling   unit ...) has detected an illegal state. Determine the exact cause of the   fault and check the relevant device.	9013	19	29	26	15

1. Undervoltage condition of the electronics power supply
2. Overvoltage condition of the electronics power supply

## Drive object:

Each message (fault/alarm) specifies the drive object in which it can be found.
A message can belong to either one, several, or all drive objects.

## Component

Type of hardware component that has triggered the fault or alarm.
With "Component: None" it is not possible to assign the message to a hardware component.

## Propagation

In the case of faults that are, for example, triggered by the Control Unit or a Terminal Module, central functions of the drive are also often affected. Using propagation, faults that are triggered by one drive object are therefore passed on to other drive objects.

There are the following types of propagation:

- BICO

The fault is passed on to all active drive objects with closed-loop control functions (infeed, drive) to which there is a BICO interconnection.

- DRIVE

The fault is passed on to all active drive objects with closed-loop control functions.

- GLOBAL

The fault is passed on to all active drive objects.

- LOCAL

The response of this type of propagation is dependent on parameter p3116.
With binector input p3116 $=0$ (factory setting) the following applies:
The fault is passed on to the first active drive object with closed-loop control functions.
With binector input p3116 = 1-signal, the following applies:
The fault is not passed on.

## Reaction: Default fault reaction (adjustable fault reaction)

Specifies the default reaction in the event of a fault.
The optional parentheses indicate whether the default fault reactions can be changed and which fault reactions can be adjusted via parameters (p2100, p2101).

## Note

See Table "Fault reactions" (Page 2477)

## Acknowledgment: Default acknowledgment (adjustable acknowledgment)

Specifies the default method of acknowledging faults after the cause has been eliminated.
The optional parentheses indicate whether the default acknowledgment can be changed and which acknowledgment can be adjusted via parameters (p2126, p2127).

## Note

See Table "Acknowledging faults" (Page 2479)

## Cause:

Describes the possible causes of the fault or alarm. A fault or alarm value can also be specified (optional).

Fault value (r0949, format):
The fault value is entered in the fault buffer in r0949[0..63] and specifies additional, more precise information about a fault.

Alarm value (r2124, format):
The alarm value specifies additional, more precise information about an alarm.
The alarm value is entered in the alarm buffer in r2124[0..7] and specifies additional, more precise information about an alarm.

## Remedy:

Describes the methods available for eliminating the cause of the active fault or alarm.

## WARNING

On a case for case basis, service and maintenance personnel are responsible for choosing a suitable method for eliminating the cause of faults.

### 4.1.3 $\quad$ Number ranges of faults and alarms

## Note

The following number ranges represent an overview of all faults and alarms used in the SINAMICS drive family.

The faults and alarms for the product described in this List Manual are described in detail in "List of faults and alarms" (Page 2489).

Faults and alarms are organized into the following number ranges:
Table 4-5 Number ranges of faults and alarms

of	To	Area
1000	3999	Control Unit
4000	4999	Reserved
5000	5999	Power section
6000	6899	Infeed
6900	6999	Braking Module
7000	7999	Drive
8000	8999	Option Board
9000	12999	Reserved
13000	13020	Licensing
13021	13099	Reserved
13100	13102	Know-how protection
13103	19999	Reserved
20000	29999	OEM
30000	30999	DRIVE-CLiQ component power unit
31000	31999	DRIVE-CLiQ component encoder 1
32000	32999	DRIVE-CLiQ component encoder 2   Note   Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.
33000	33999	DRIVE-CLiQ component encoder 3   Note   Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.
34000	34999	Voltage Sensing Module (VSM)
35000	35199	Terminal Module 54F (TM54F)
35200	35999	Terminal Module 31 (TM31)
36000	36999	DRIVE-CLiQ Hub Module
37000	37999	HF Damping Module

Table 4-5 Number ranges of faults and alarms, continued

of	To	Area
40000	40999	Controller Extension 32 (CX32)
41000	48999	Reserved
49000	49999	SINAMICS GM/SM/GL
50000	50499	Communication Board (COMM BOARD)
50500	59999	OEM Siemens
60000	65535	SINAMICS DC MASTER (closed-loop DC current control)

### 4.2 List of faults and alarms

Product: SINAMICS S120/S150, Version: 5103400, Language: eng
Objects: A INF, B INF, CU I, CU I D410, CU LINK, CU NX CX, CU S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU S120 PN, CU S150 DP CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F MA, TM54F SL, VECTOR, VECTOR AC, VECTOR I AC

## F01000

## Message value:

## Message class:

Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Internal software error

Module: \%1, line: \%2
Hardware/software error (1)
All objects
Control Unit (CU) Propagation: GLOBAL
OFF2
POWER ON
An internal software error has occurred.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.

	- carry out a POWER ON (switch-off/switch-on) for all components.   - if required, check the data on the non-volatile memory (e.g. memory card).   - upgrade firmware to later version.   - contact Technical Support.   - replace the Control Unit.
F01001	FloatingPoint exception
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An exception occurred during an operation with the FloatingPoint data type.
	The error may be caused by the basic system or a technology function (e.g. FBLOCKS, DCC, TEC).
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
	Note:
	Refer to r9999 for further information about this fault.
	r9999[0]: Fault number.
	r9999[1]: Program counter at the time when the exception occurred.
	r9999[2]: Cause of the FloatingPoint exception.
	Bit $0=1$ : Operation invalid
	Bit $1=1$ : Division by zero
	Bit $2=1$ : Overflow
	Bit 3 = 1: Underflow
	Bit 4-1: Inaccurate result
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- check configuration and signals of the blocks in FBLOCKS.
	- check configuration and signals of DCC charts.
	- check configuration and signals of TEC charts.
	- upgrade firmware to later version.
	- contact Technical Support.


F01002	Internal software error	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	All objects	
Component:	Control Unit (CU) Propagation:	GLOBAL
Reaction:	OFF2	
Acknowledge:	IMMEDIATELY	
Cause:	An internal software error has occurred.	
	Fault value (r0949, interpret hexadecimal):	
	Only for internal Siemens troubleshooting.	
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.	
	- upgrade firmware to later version.	


F01003	Acknowledgment delay when accessing the memory	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	All objects	
Component:	Control Unit (CU) Propagation:	GLOBAL
Reaction:	OFF2	
Acknowledge:	IMMEDIATELY	
Cause:	A memory area was accessed that does not return a "READY".	
	Fault value (r0949, interpret hexadecimal):	
	Only for internal Siemens troubleshooting.	
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.	


N01004 (F, A)	Internal software error	
Message value:	\%1	
Message class:	Hardware/software error (1)	Propagation:
Drive object:	All objects	
Component:	Control Unit (CU)	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	An internal software error has occurred.	
	Fault value (r0949, hexadecimal):	
	Only for internal Siemens troubleshooting.	
Remedy:	- read out diagnostics parameter (r9999).	
	- contact Technical Support.	
Reaction upon F:	See also: r9999 (Software error internal supplementary diagnostics)	
Acknowl. upon F:	POWER ON	
Reaction upon A:	NONE	
Acknowl. upon A:	NONE	


F01005	Firmware download for DRIVE-CLiQ component unsuccessful
Message value:	Component number: \%1, fault cause: \%2
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	It was not possible to download the firmware to a DRIVE-CLiQ component.
	Fault value (r0949, interpret hexadecimal):
	yyxxxx hex: $\mathrm{yy}=$ component number, $\mathrm{xxxx}=$ fault cause
	xxxx $=000 \mathrm{~B}$ hex $=11 \mathrm{dec}$ :
	DRIVE-CLiQ component has detected a checksum error.
	xxxx $=000 \mathrm{~F}$ hex $=15 \mathrm{dec}$ :
	The selected DRIVE-CLiQ component did not accept the contents of the firmware file. xxxx $=0012$ hex $=18$ dec:
	Firmware version is too old and is not accepted by the component. xxxx $=0013$ hex $=19 \mathrm{dec}$ :
	Firmware version is not suitable for the hardware release of the component. xxxx $=0065$ hex $=101$ dec:
	After several communication attempts, no response from the DRIVE-CLiQ component.
	xxxx $=008 \mathrm{~B}$ hex $=139 \mathrm{dec}$ :
	Initially, a new boot loader is loaded (must be repeated after POWER ON).
	xxxx $=008 \mathrm{C}$ hex $=140 \mathrm{dec}$ :
	Firmware file for the DRIVE-CLiQ component not available on the memory card.
	xxxx $=008 \mathrm{D}$ hex $=141 \mathrm{dec}$ :
	An inconsistent length of the firmware file was signaled. The firmware download may have been caused by a loss of connection to the firmware file. This can occur during a project download/reset in the case of a SINAMICS Integrated Control Unit, for example.
	xxxx $=008 \mathrm{~F}$ hex $=143 \mathrm{dec}$ :
	Component has not changed to the mode for firmware download. It was not possible to delete the existing firmware. xxxx $=0090$ hex $=144$ dec:
	When checking the firmware that was downloaded (checksum), the component detected a fault. It is possible that the file on the memory card is defective.
	xxxx $=0091$ hex = 145 dec :
	Checking the loaded firmware (checksum) was not completed by the component in the appropriate time. xxxx $=009 \mathrm{C}$ hex $=156 \mathrm{dec}$ :
	Component with the specified component number is not available (p7828).
	xxxx = Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	- check the selected component number (p7828).
	- check the DRIVE-CLiQ wiring.
	- save suitable firmware file for download in the directory "/siemens/sinamics/code/sac/".
	- use a component with a suitable hardware version
	- after POWER ON has been carried out again for the DRIVE-CLiQ component, download firmware again. Depending on p7826, the firmware will be automatically downloaded.


A01006	Firmware update for DRIVE-CLiQ component required
Message value:	Component number: \%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The firmware of a DRIVE-CLiQ component must be updated as there is no suitable firmware or firmware version in   the component for operation with the Control Unit.
	Alarm value (r2124, interpret decimal):
	Component number of the DRIVE-CLiQ component.
	Update the firmware using the commissioning tool:   Remedy:
	The firmware version of all of the components on the "Version overview" page can be read in the Project Navigator   under "Configuration" of the associated drive unit and an appropriate firmware update can be carried out.
	Firmware update via parameter:   - take the component number from the alarm value and enter into p7828.   - start the firmware download with p p7829 $=1$.

## A01007

Message value:
POWER ON for DRIVE-CLiQ component required
Message class:
Drive object:
Component number: \%1

Component:	All objects		Propagation:
Reaction:	None		

Acknowledge: NONE
Cause: A DRIVE-CLiQ component must be switched on again (POWER ON) (e.g. due to a firmware update).
Alarm value (r2124, interpret decimal):
Component number of the DRIVE-CLiQ component.
Note:
For a component number $=1$, a POWER ON of the Control Unit is required.
Remedy: - Switch off the power supply of the specified DRIVE-CLiQ component and switch it on again.

- For SINUMERIK, auto commissioning is prevented. In this case, a POWER ON is required for all components and the auto commissioning must be restarted.

A01009 (N)	CU: Control module overtemperature
Message value:	-
Message class:	Overtemperature of the electronic components (6)
Drive object:	All objects
Component:	Control Unit (CU) $\quad$ Propagation: $\quad$ GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r0037[0]) of the control module (Control Unit) has exceeded the specified limit value.
Remedy:	- check the air intake for the Control Unit.
	- check the Control Unit fan.
	Note:
	The alarm is automatically withdrawn once the limit value has been fallen below.
Reaction upon N:	NONE
Acknowl. upon N:	NONE


F01010	Drive type unknown
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An unknown drive type was found.
	Fault value (r0949, interpret decimal):
	Drive object number (refer to p0101, p0107).
Remedy:	- replace Power Module.
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
F01011 (N)	Download interrupted
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The project download was interrupted.
	Fault value (r0949, interpret decimal):
	1: The user prematurely interrupted the project download.
	2: The communication cable was interrupted (e.g. cable breakage, cable withdrawn).
	3: The project download was prematurely exited by the commissioning tool.
	100: Different versions between the firmware version and project files which were loaded by loading into the file system "Download from memory card".
	Note:
	The response to an interrupted download is the state "first commissioning".
Remedy:	- check the communication cable.
	- download the project again.
	- boot from previously saved files (switch-off/switch-on or p0976).
	- when loading into the file system (download from memory card), use the matching version.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F01012 (N)	Project conversion error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	When converting the project of an older firmware version, an error occurred.
	Fault value (r0949, interpret decimal):
	Parameter number of the parameter causing the error.
	For fault value $=600$, the following applies:
	The temperature evaluation is no longer assigned to the power unit but to the encoder evaluation.
	Notice:
	Monitoring of the motor temperature is no longer ensured.

### 4.2 List of faults and alarms

Remedy:	Check the parameter indicated in the fault value and correctly adjust it accordingly.
	For fault value $=600$ :
	Parameter p0600 must be set to the values 1, 2 or 3 in accordance with the assignment of the internal encoder evaluation to the encoder interface.
	Value 1 means: The internal encoder evaluation is assigned to the encoder interface 1 via p0187.
	Value 2 means: The internal encoder evaluation is assigned to the encoder interface 2 via p0188.
	Value 3 means: The internal encoder evaluation is assigned to the encoder interface 3 via p0189.
	- if necessary, the internal encoder evaluation must be assigned to an encoder interface via parameters p0187, p0188 or p0189 accordingly.
	- if necessary, upgrade the firmware to a later version.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A01013	CU: Fan operating time reached or exceeded
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum operating time of the fan in the Control Unit has either been reached or exceeded.
	Alarm value (r2124, interpret decimal):
	0 : The maximum fan operating time is 500 hours.
	1: The maximum fan operating time has been exceeded (50000 hours).
Remedy:	Replace the fan in the Control Unit and reset the operating hours counter to 0 (p3961 = 0).
F01015	Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.


A01016 (F)	Firmware changed
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one firmware file in the directory was illegally changed on the non-volatile memory (memory card/device memory) with respect to the version when shipped from the factory.
	Alarm value (r2124, interpret decimal):
	0 : Checksum of one file is incorrect.
	1: File missing.
	2: File too many.
	3: Incorrect firmware version.
	4: Incorrect checksum of the back-up file.
Remedy:	For the non-volatile memory for the firmware (memory card/device memory), restore the delivery condition.
	Note:
	The file involved can be read out using parameter r9925.
	The status of the firmware check is displayed using r9926.
	See also: r9925 (Firmware file incorrect), r9926 (Firmware check status)
Reaction upon F:	OFF2
Acknowl. upon F:	POWER ON
A01017	Component lists changed
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or /ADDON/SINAMICS/DATA has been illegally changed with respect to that supplied from the factory. No changes are permitted in this directory.
	Alarm value (r2124, interpret decimal):
	zyx dec: $\mathrm{x}=$ Problem, $\mathrm{y}=$ Directory, $\mathrm{z}=$ File name
	$x=1$ : File does not exist.
	$x=2$ : Firmware version of the file does not match the software version.
	$x=3$ : File checksum is incorrect.
	$y=0$ : Directory /SIEMENS/SINAMICS/DATA/
	$y=1$ : Directory /ADDON/SINAMICS/DATA/
	$z=0$ : File MOTARM.ACX
	$z=1$ File MOTSRM.ACX
	$z=2$ File MOTSLM.ACX
	z = 3: File ENCDATA.ACX
	$z=4$ File FILTDATA.ACX
	$z=5:$ File BRKDATA.ACX
	$z=6:$ File DAT_BEAR.ACX
	$z=7$ File CFG_BEAR.ACX
	$z=8$ : File ENC_GEAR.ACX
	z = 9: File CFG_BRK.ACX
	$z=10$ File THERMMOTMOD.ACX
	$z=11$ : File MAPPING.ACX
	$z=12:$ File LOADGEAR.ACX
	$z=13$ : File MOTRSM.ACX
Remedy:	For the file on the memory card involved, restore the status originally supplied from the factory.


A01020	Writing to RAM disk unsuccessful
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A write access to the internal RAM disk was unsuccessful.
Remedy:	Adapt the file size for the system logbook to the internal RAM disk (p9930).   See also: p9930 (System logbook activation)
F01023	Software timeout (internal)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An internal software timeout has occurred.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.   - upgrade firmware to later version.   - contact Technical Support.
F01030	Sign-of-life failure for master control
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
	Vector: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
	Hla: OFF3 (NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	For active PC master control, no sign-of-life was received within the monitoring time.
	The master control was returned to the active BICO interconnection.
Remedy:	Set the monitoring time higher at the PC or, if required, completely disable the monitoring function.
	The monitoring time is set as follows using the commissioning tool:
	<Drive> -> Commissioning -> Control panel -> Button "Fetch master control" -> A window is displayed to set the monitoring time in milliseconds.
	Notice:
	The monitoring time should be set as short as possible. A long monitoring time means a late response when the communication fails!


F01031	Sign-of-life failure for OFF in REMOTE
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
	Vector: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
	Hla: OFF3 (NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	With the "OFF in REMOTE" mode active, no sign-of-life was received within 3 seconds.   Remedy:
	- check the data cable connection at the serial interface for the Control Unit (CU) and operator panel.
	- check the data cable between the Control Unit and operator panel.


A01032 (F)	ACX: all parameters must be saved
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameters of an individual drive object were saved ( $\mathrm{p} 0971=1$ ), although there is still no backup of all drive system parameters.
	The saved object-specific parameters are not loaded the next time that the system powers up.
	For the system to successfully power up, all of the parameters must have been completely backed up.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0971 (Save drive object parameters)
Remedy:	Save all parameters (p0977 = 1 or "copy RAM to ROM").
	See also: p0977 (Save all parameters)
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


F01033	Units changeover: Reference parameter value invalid
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing over the units to the referred representation type, it is not permissible for any of the required reference parameters to be equal to 0.0
	Fault value (r0949, parameter):
	Reference parameter whose value is 0.0 .
	See also: p0349 (System of units motor equivalent circuit diagram data), p0505 (Selecting the system of units), p0595 (Technological unit selection)
Remedy:	Set the value of the reference parameter to a number different than 0.0.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004


F01034	Units changeover: Calculation parameter values after reference value change unsuccessful
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The change of a reference parameter meant that for an involved parameter the selected value was not able to be recalculated in the per unit representation. The change was rejected and the original parameter value restored.
	Fault value (r0949, parameter):
	Parameter whose value was not able to be re-calculated.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	- Select the value of the reference parameter such that the parameter involved can be calculated in the per unit representation.
	- Technology unit selection (p0595) before changing the reference parameter p0596, set p0595 $=1$.


A01035 (F)	ACX: Parameter back-up file corrupted
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the Control Unit is booted, no complete data set was found from the parameter back-up files. The last time that the parameterization was saved, it was not completely carried out.
	It is possible that the backup was interrupted by switching off or withdrawing the memory card.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	aa $=01$ hex:
	Power up was realized without data backup. The drive is in the factory setting.
	aa $=02$ hex:
	The last available backup data record was loaded. The parameterization must be checked. It is recommended that the parameterization is downloaded again.
	dd, cc, bb:
	Only for internal Siemens troubleshooting.
	See also: p0971 (Save drive object parameters), p0977 (Save all parameters)
Remedy:	- download the project again using the commissioning tool.
	- save all parameters (p0977 = 1 or "copy RAM to ROM").
	See also: p0977 (Save all parameters)
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


F01036 (A)	ACX: Parameter back-up file missing
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	Infeed: NONE (OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When downloading the device parameterization, a parameter back-up file PSxxxyyy.ACX associated with a drive object cannot be found.
	Fault value (r0949, interpret hexadecimal):
	Byte 1: yyy in the file name PSxxxyyy.ACX
	yyy = 000 --> consistency back-up file
	yyy = 001 ... 062 --> drive object number
	yyy = 099 --> PROFIBUS parameter back-up file
	Byte 2, 3, 4:
	Only for internal Siemens troubleshooting.
Remedy:	If you have saved your project data using the commissioning tool, carry-out a new download for your project.
	Save using the function "Copy RAM to ROM" or with p0977 = 1.
	This means that the parameter files are again completely written into the non-volatile memory.
	Note:
	If the project data have not been backed up, then a new first commissioning is required.
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F01038 (A)	ACX: Loading the parameter back-up file unsuccessful
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	Infeed: NONE (OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when downloading PSxxxyyy.ACX or PTxxxyyy.ACX files from the non-volatile memory.
	Fault value (r0949, interpret hexadecimal):
	Byte 1: yyy in the file name PSxxxyyy.ACX
	yyy = 000 --> consistency back-up file
	yyy = 001 ... 062 --> drive object number
	yyy = 099 --> PROFIBUS parameter back-up file
	Byte 2:
	255: Incorrect drive object type.
	254: Topology comparison unsuccessful -> drive object type was not able to be identified.
	Reasons could be:
	- incorrect component type in the actual topology
	- Component does not exist in the actual topology.
	- Component not active.
	Additional values:
	Only for internal Siemens troubleshooting.
	Byte 4, 3:
	Only for internal Siemens troubleshooting.

### 4.2 List of faults and alarms

Remedy:	- if you have saved the project data using the commissioning tool, download the project again. Save using the
function "Copy RAM to ROM" or with p0977 = 1. This means that the parameter files are again completely written to	
the non-volatile memory.	
- replace the memory card or Control Unit.	
For byte $2=255$ :	
- correct the drive object type (see p0107).	
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F01039 (A)	ACX: Writing to the parameter back-up file was unsuccessful
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	Infeed: NONE (OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Writing to at least one parameter back-up file PSxxxyyy.*** in the non-volatile memory was unsuccessful.
	- in the directory /USER/SINAMICS/DATA/ at least one parameter back-up file PSxxxyyy.*** has the "read only" file attribute and cannot be overwritten.
	- there is not sufficient free memory space available.
	- the non-volatile memory is defective and cannot be written to.
	Fault value (r0949, interpret hexadecimal):
	dcba hex
	a = yyy in the file names PSxxxyyy.***
	a = 000 --> consistency back-up file
	$a=001 \ldots 062$--> drive object number
	a = 070 --> FEPROM.BIN
	$\mathrm{a}=080-\mathrm{-}$ - DEL4BOOT.TXT
	$a=099$--> PROFIBUS parameter back-up file
	$b=x x x$ in the file names PSxxxyyy.***
	$b=000-->$ data save started with p0977 = 1 or p0971 = 1
	$b=010-->$ data save started with p0977 = 10
	$b=011$--> data save started with p0977 = 11
	$b=012$--> data save started with p0977 = 12
	d, c:
	Only for internal Siemens troubleshooting.
Remedy:	- check the file attribute of the files (PSxxxyyy.***, CAxxxyyy.***, CCxxxyyy.***) and, if required, change from "read only" to "writeable".
	- check the free memory space in the non-volatile memory. Approx. 80 kbyte of free memory space is required for every drive object in the system.
	- replace the memory card or Control Unit.
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F01040	Save parameter settings and carry out a POWER ON
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A parameter was changed in the drive system which means that it is necessary to save the parameters and re-boot.
Remedy:	- save parameters (p0971, p0977).
	- carry out a POWER ON (switch-off/switch-on) for all components.
	Then:
	- upload the drive unit (commissioning tool).
F01040	Save parameter settings and carry out a POWER ON
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A parameter was changed in the drive system which means that it is necessary to save the parameters and re-boot.
	Examples:
	- p1810.2 (wobulation of the pulse frequency) and p1802 (edge modulation)
	- p1750.5 (cl.-loop control mode RESM and PMSM up to $\mathrm{f}=0 \mathrm{~Hz}$ with HF signal injection)
Remedy:	- save parameters (p0971, p0977).
	- carry out a POWER ON for all components (switch on the Control Unit with or after the power units).
	Then:
	- upload the drive unit (commissioning tool).
	Note:
	When changing p1750.5 or p1810.2 for edge modulation, a warm restart is sufficient (p0009 = 30, p0976 = 3).
	PMSM: permanent-magnet synchronous motor
	RESM: reluctance synchronous motor (synchronous reluctance motor)
F01041	Parameter save necessary
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Defective or missing files were detected on the memory card when booting.
	Fault value (r0949, interpret decimal):
	1: Source file cannot be opened.
	2: Source file cannot be read.
	3: Target directory cannot be set up.
	4. Target file cannot be set up/opened.
	5. Target file cannot be written to.
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	- save the parameters.
	- download the project again to the drive unit.
	- update the firmware
	- if required, replace the Control Unit and/or memory card card.

F01042
Message value:
Message class:
Drive object:
Component:
Reaction:

Acknowledge:
Cause:

## Parameter error during project download

Parameter: \%1, Index: \%2, fault cause: \%3
Error in the parameterization / configuration / commissioning procedure (18)
All objects
None
Propagation: LOCAL
Infeed: NONE (OFF1, OFF2)
Servo: OFF2 (NONE, OFF1, OFF3)
Vector: OFF2 (NONE, OFF1, OFF3)
Ha: OFF2 (NONE, OFF1, OFF3)

## IMMEDIATELY

An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter value). It is possible that the parameter limits are dependent on other parameters.
The detailed cause of the fault can be determined using the fault value.
Fault value (r0949, interpret hexadecimal):
ccbbaaaa hex
aaaa $=$ Parameter
$\mathrm{bb}=$ Index
cc = fault cause
0: Parameter number illegal.
1: Parameter value cannot be changed.
2: Lower or upper value limit exceeded.
3: Sub-index incorrect.
4: No array, no sub-index.
5: Data type incorrect.
6: Setting not permitted (only resetting).
7: Descriptive element cannot be changed.
9: Descriptive data not available.
11: No master control.
15: No text array available.
17: Task cannot be executed due to operating state.
20: Illegal value.
21: Response too long.
22: Parameter address illegal.
23: Format illegal.
24: Number of values not consistent.
25: Drive object does not exist.
101: Presently deactivated.
104: Illegal value.
107: Write access not permitted when controller enabled.
108: Unit unknown.
109: Write access only in the commissioning state, encoder (p0010 = 4).
110: Write access only in the commissioning state, motor (p0010 = 3).
111: Write access only in the commissioning state, power unit (p0010 = 2).
112: Write access only in the quick commissioning mode ( $\mathrm{p} 0010=1$ ).
113: Write access only in the ready mode ( $\mathrm{p} 0010=0$ ).
114: Write access only in the commissioning state, parameter reset ( $\mathrm{p} 0010=30$ ).
115: Write access only in the Safety Integrated commissioning state ( $\mathrm{p} 0010=95$ ).
116: Write access only in the commissioning state, technological application/units (p0010 = 5).
117: Write access only in the commissioning state (p0010 not equal to 0).
118: Write access only in the commissioning state, download ( $p 0010=29$ ).
119: Parameter may not be written in download.
120: Write access only in the commissioning state, drive basic configuration (device: p0009 = 3).
121: Write access only in the commissioning state, define drive type (device: p0009 = 2).
122: Write access only in the commissioning state, data set basic configuration (device: p0009 = 4).
123: Write access only in the commissioning state, device configuration (device: p0009 = 1).

124: Write access only in the commissioning state, device download (device: p0009 = 29).
125: Write access only in the commissioning state, device parameter reset (device: p0009 = 30).
126: Write access only in the commissioning state, device ready (device: p0009 = 0).
127: Write access only in the commissioning state, device (device: p0009 not equal to 0 ).
129: Parameter may not be written in download.
130: Transfer of the master control is inhibited via binector input p0806.
131: Required BICO interconnection not possible because BICO output does not supply floating value
132: Free BICO interconnection inhibited via p0922.
133: Access method not defined.
200: Below the valid values.
201: Above the valid values.
202: Cannot be accessed from the Basic Operator Panel (BOP).
203: Cannot be read from the Basic Operator Panel (BOP).
204: Write access not permitted.
Remedy: - correct the parameterization in the commissioning tool and download the project again. - enter the correct value in the specified parameter.

- identify the parameter that restricts the limits of the specified parameter.


## F01043

Message value:

## Message class:

Drive object:
Component:
Reaction:

## Acknowledge:

Cause:

## Fatal error at project download

Fault cause: \%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
None Propagation: LOCAL

Infeed: NONE (OFF1, OFF2)
Servo: NONE (OFF1, OFF2, OFF3)
Vector: NONE (OFF1, OFF2, OFF3)
Hla: NONE (OFF1, OFF2, OFF3)
IMMEDIATELY
A fatal error was detected when downloading a project using the commissioning tool.
Fault value (r0949, interpret decimal):
1: Device status cannot be changed to Device Download (drive object ON?).
2: Incorrect drive object number.
3: A drive object that has already been deleted is deleted again.
4: Deleting of a drive object that has already been registered for generation.
5: Deleting a drive object that does not exist.
6: Generating an undeleted drive object that already existed.
7: Regenerating a drive object already registered for generation.
8: Maximum number of drive objects that can be generated exceeded.
9: Error while generating a device drive object.
10: Error while generating target topology parameters (p9902 and p9903).
11: Error while generating a drive object (global component).
12: Error while generating a drive object (drive component).
13: Unknown drive object type.
14: Drive status cannot be changed to "ready for operation" (r0947 and r0949).
15: Drive status cannot be changed to drive download.
16: Device status cannot be changed to "ready for operation".
17: It is not possible to download the topology. The component wiring should be checked, taking into account the various messages/signals.
18: A new download is only possible if the factory settings are restored for the drive unit.
19: The slot for the option module has been configured several times (e.g. CAN and COMM BOARD)
20: The configuration is inconsistent (e.g. CAN for Control Unit, however no CAN configured for drive objects A_INF, SERVO or VECTOR).
21: Error when accepting the download parameters.
22: Software-internal download error.
23: download not possible when know-how protection is activated.
24: download not possible during a partial power up after inserting a component.
25: The configuration is inconsistent. Know-how protection is either not activated or only partially.
Additional values:
Only for internal Siemens troubleshooting.

- use the current version of the commissioning tool.
- modify the offline project and carry out a new download (e.g. compare the number of drive objects, motor, encoder,
power unit in the offline project and at the drive).
- change the drive state (is a drive rotating or is there a message/signal?).
- carefully note any other active messages/signals and remove their cause (e.g. correct any incorrectly set
parameters).
- automatically calculate the control parameters (p0340). Then set p0010 $=0$.
- boot from previously saved files (switch-off/switch-on or p0976).
- before a new download, restore the factory setting if the know-how protection was not activated on all drive objects.

F01044	CU: Descriptive data error	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	All objects	
Component:	Control Unit (CU)	
Reaction:	OFF2	
Acknowledge:	POWER ON	
Cause:	An error was detected when loading the descriptive data saved in the non-volatile memory.	
Remedy:	Replace the memory card or Control Unit.	

## A01045 CU: Configuring data invalid

## Message value: \%1

Message class: Hardware/software error (1)
Drive object: All objects
Component: Control Unit (CU) Propagation: GLOBAL
Reaction: NONE
Acknowledge: NONE

Cause: An error was detected when evaluating the parameter files PSxxxyyy.ACX, PTxxxyyy.ACX, CAxxxyyy.ACX, or CCxxxyyy.ACX saved in the non-volatile memory. Because of this, under certain circumstances, several of the saved parameter values were not able to be accepted. Also see r9406 up to r9408.
Alarm value (r2124, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: - check the parameters displayed in r9406 up to r9408, and correct these if required.

- Restore the factory setting using ( $p 0976=1$ ) and re-load the project into the drive unit.

Then save the parameterization in STARTER using the function "Copy RAM to ROM" or with p0977 = 1. This overwrites the incorrect parameter files in the non-volatile memory - and the alarm is withdrawn.
See also: r9406 (PS file parameter number parameter not transferred), r9407 (PS file parameter index parameter not transferred), r9408 (PS file fault code parameter not transferred)

## A01049

Message value:
CU: It is not possible to write to file

Message class:
Drive object:
Hardware/software error (1)

Component:
All objects

Reaction:
Acknowledge:
Control Unit (CU) Propagation: LOCAL

Cause: It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted.
Alarm value (r2124, interpret decimal):
Drive object number.
Remedy: Check whether the "write protected" attribute has been set for the files in the non-volatile memory under .../USER/SINAMICS/DATA/...
When required, remove write protection and save again (e.g. set p0977 to 1).

F01050	Memory card and device incompatible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU)
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)
	Hla: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The memory card and the device type do not match (e.g. a memory card for SINAMICS S is inserted in SINAMICS
	G).
Remedy:	- insert the matching memory card.
	- use the matching Control Unit or power unit.


F01055	CU: Internal error (SYNO of port and application not identical)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	All applications that operate with slaves at one port must be derived from the same SYNO clock cycle.
	The first application whose registration (log-on) connects a slave to a port defines the SYNO clock cycle that will be used as basis for the port.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.
F01056	CU: Internal error (clock cycle of parameter group already assigned differently)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested parameter group (IREG, NREG, ...) is already being used in a different clock cycle.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.
F01057	CU: Internal error (different DRIVE-CLiQ type for the slave)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested DRIVE-CLiQ type (hps_ps, hps_enc, ...) has been specified differently for the same slave component.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.


F01058	CU: Internal error (slave missing in topology)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested slave component does not exist in the topology.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.
F01059	CU: Internal error (port does not exist)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The port object assigned according to the topology of the requested slave component does not exist.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.
F01060	CU: Internal error (parameter group not available)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested parameter group (IREG, NREG, ...) is not offered by this slave type.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.


F01061	CU: Internal error (application not known)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An application that is not registered with TSM has attempted to register with registerSlaves().
	The cause can be an unsuccessful TSM registration or an incorrect registration sequence. It is always necessary to log in to the TSM before registerSlaves() can be used.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.
F01063	CU: Internal error (PDM)
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.


A01064 (F)	CU: Internal error (CRC)	
Message value:	-	
Message class:	Hardware/software error (1)	
Drive object:	All objects	
Component:	Control Unit (CU)	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	A checksum error (CRC error) has occurred in the Control Unit program memory	
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.	
	- upgrade firmware to later version.	
	- contact Technical Support.	
Reaction upon F:	Infeed: NONE (OFF1, OFF2)	
	Servo: NONE (OFF1, OFF2, OFF3, STOP2)	
	Vector: NONE (OFF1, OFF2, OFF3, STOP2)	
	Ha: NONE (OFF1, OFF2, OFF3, STOP2)	
Acknowl. upon F:	IMMEDIATELY (POWER ON)	


F01068	CU: Data memory memory overflow
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The utilization for a data memory area is too large.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : High-speed data memory 1 overloaded
	Bit $1=1$ : High-speed data memory 2 overloaded
	Bit $2=1$ : High-speed data memory 3 overloaded
	Bit $3=1$ : High-speed data memory 4 overloaded
Remedy:	- deactivate the function module.
	- deactivate drive object.
	- remove the drive object from the target topology.


A01069	Parameter backup and device incompatible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter backup on the memory card and the drive unit do not match.
	The module boots with the factory settings.
	Example:
	Devices A and B. are not compatible and a memory card with the parameter backup for device A is inserted in device B.
Remedy:	- insert a memory card with compatible parameter backup and carry out a POWER ON.
	- insert a memory card without parameter backup and carry out a POWER ON.
	- save the parameters ( $\mathrm{p} 0977=1$ ).
F01070	Project/firmware is being downloaded to the memory card
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An upgrade (project/firmware download) was initiated on the memory card.
	While this fault is present, the corresponding update takes place with plausibility and consistency checks. After this, depending on the command option, a new boot (reset) for the Control Unit is initiated.
	Caution:
	During the upgrade and while this fault is present, it is not permissible to switch off the Control Unit.
	If the operation is interrupted, this can destroy the file system on the memory card. The memory card will then no longer work properly and must be repaired.
Remedy:	Not necessary.
	The fault is automatically withdrawn after the upgrade has been completed.

### 4.2 List of faults and alarms

F01072	Memory card restored from the backup copy
Message value:	-
Message class:	General drive fault (19)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The Control Unit was switched-off while writing to the memory card. This is why the visible partition became defective.
	After switching on, the data from the non-visible partition (backup copy) were written to the visible partition.
Remedy:	Check that the firmware and parameterization is up-to-date.
A01073 (N)	POWER ON required for backup copy on memory card
Message value:	-
Message class:	General drive fault (19)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter assignment on the visible partition of the memory card has changed.
	In order that the backup copy on the memory card is updated on the non-visible partition, it is necessary to carry out a POWER ON or hardware reset ( p 0972 ) of the Control Unit.
	Note:
	It is possible that a new POWER ON is requested via this alarm (e.g. after saving with p0971 = 1).
Remedy:	- carry out a POWER ON (switch-off/switch-on) for the Control Unit.
	- carry out a hardware reset (RESET button, p0972).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F01082	Parameter error when powering up from data backup
Message value:	Parameter: \%1, Index: \%2, fault cause: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)
	Hla: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Parameterizing errors have been detected (e.g. incorrect parameter value). It is possible that the parameter limits are dependent on other parameters.
	The detailed cause of the fault can be determined using the fault value.
	Fault value (r0949, interpret hexadecimal): ccbbaaaa hex
	aaaa $=$ Parameter
	$\mathrm{bb}=$ Index
	cc = fault cause
	0 : Parameter number illegal.
	1: Parameter value cannot be changed.
	2: Lower or upper value limit exceeded.
	3: Sub-index incorrect.
	4: No array, no sub-index.
	5: Data type incorrect.
	6: Setting not permitted (only resetting).
	7: Descriptive element cannot be changed.

9: Descriptive data not available.
11: No master control.
15: No text array available.
17: Task cannot be executed due to operating state.
20: Illegal value.
21: Response too long.
22: Parameter address illegal.
23: Format illegal.
24: Number of values not consistent.
25: Drive object does not exist.
101: Presently deactivated.
104: Illegal value.
107: Write access not permitted when controller enabled.
108: Unit unknown.
109: Write access only in the commissioning state, encoder (p0010 = 4).
110: Write access only in the commissioning state, motor (p0010 = 3).
111: Write access only in the commissioning state, power unit (p0010 = 2).
112: Write access only in the quick commissioning mode ( $\mathrm{p} 0010=1$ ).
113: Write access only in the ready mode (p0010 = 0).
114: Write access only in the commissioning state, parameter reset ( $\mathrm{p} 0010=30$ ).
115: Write access only in the Safety Integrated commissioning state ( $\mathrm{p} 0010=95$ ).
116: Write access only in the commissioning state, technological application/units (p0010 = 5).
117: Write access only in the commissioning state ( p 0010 not equal to 0 ).
118: Write access only in the commissioning state, download ( $p 0010=29$ ).
119: Parameter may not be written in download.
120: Write access only in the commissioning state, drive basic configuration (device: p0009 = 3).
121: Write access only in the commissioning state, define drive type (device: p0009 = 2).
122: Write access only in the commissioning state, data set basic configuration (device: p0009 = 4).
123: Write access only in the commissioning state, device configuration (device: p0009 = 1).
124: Write access only in the commissioning state, device download (device: p0009 = 29).
125: Write access only in the commissioning state, device parameter reset (device: p0009 = 30).
126: Write access only in the commissioning state, device ready (device: p0009 = 0).
127: Write access only in the commissioning state, device (device: p0009 not equal to 0).
129: Parameter may not be written in download.
130: Transfer of the master control is inhibited via binector input p0806.
131: Required BICO interconnection not possible because BICO output does not supply floating value
132: Free BICO interconnection inhibited via p0922.
133: Access method not defined.
200: Below the valid values.
201: Above the valid values.
202: Cannot be accessed from the Basic Operator Panel (BOP).
203: Cannot be read from the Basic Operator Panel (BOP).
204: Write access not permitted.
Remedy: - correct the parameterization in the commissioning tool and download the project again.

- enter the correct value in the specified parameter.
- identify the parameter that restricts the limits of the specified parameter.

A01097 (N)	NTP server cannot be accessed
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected NTP server (p3105[0...3]) cannot be accessed. Time synchronization cannot be performed.
	Note:
	NTP: Network Time Protocol
	See also: p3105 (NTP server IP address)
Remedy:	Correctly set the IP address of the NTP server, and check the connection to the NTP server.
	See also: p3105 (NTP server IP address)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A01099 (N)	UTC synchronization tolerance violated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The tolerance (p3109) set for UTC synchronization was violated.
	Note:
	UTC: Universal Time Coordinates
	See also: p3109 (UTC synchronization tolerance)
Remedy:	Select the synchronization intervals shorter so that the deviation between the time of day master and drive system lies within the tolerance.
	Note:
	The deviation when synchronizing is shown in r3107.
	See also: r3107 (UTC synchronization time out of tolerance)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A01100	CU: Memory card withdrawn
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory card (non-volatile memory) was withdrawn during operation.
	Notice:
	It is not permissible for the memory card to be withdrawn or inserted under voltage.
Remedy:	- switch off the drive system.
	- re-insert the memory card that was withdrawn - this card must match the drive system.
	- switch on the drive system again.


F01105 (A)	CU: Insufficient memory
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF1
Acknowledge:	POWER ON
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, Technology Extensions, blocks, etc).   Fault value (r0949, interpret decimal):   Only for internal Siemens troubleshooting.
Remedy:	- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, Technology Extensions, blocks, etc).   - use an additional Control Unit.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01106	CU: Insufficient memory
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	There is not sufficient free memory space available.
Remedy:	Not necessary.
F01107	CU: Save to memory card unsuccessful
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A data save in the non-volatile memory was not able to be successfully carried out.   - non-volatile memory is defective.   - insufficient space in the non-volatile memory.   Fault value (r0949, interpret decimal):   Only for internal Siemens troubleshooting.
Remedy:	- try to save again.   - replace the memory card or Control Unit.
F01110	CU: More than one SINAMICS G on one Control Unit
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	More than one SINAMICS G type power unit is being operated from the Control Unit.
	Fault value (r0949, interpret decimal):
	Number of the second drive with a SINAMICS G type power unit.
Remedy:	Only one SINAMICS G drive type is permitted.


F01111	CU: Mixed operation of drive units illegal
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Illegal operation of various drive units on one Control Unit:
	- SINAMICS S together with SINAMICS G
	- SINAMICS S together with SINAMICS S Value or Combi
	Fault value (r0949, interpret decimal):
	Number of the first drive object with a different power unit type.
Remedy:	Only power units of one particular drive type may be operated with one Control Unit.
F01112	CU: Power unit not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The connected power unit cannot be used together with this Control Unit.
	Fault value (r0949, interpret decimal):
	1: Power unit is not supported (e.g. PM240).
	2: DC/AC power unit connected to CU310 not permissible.
	3: Power unit (S120M) not permitted for vector control.
Remedy:	Replace the power unit that is not permissible by a component that is permissible.
F01120 (A)	Terminal initialization has failed
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error occurred while the terminal functions were being initialized.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
	- replace the Control Unit.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01122 (A)	Frequency at the measuring probe input too high
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, CU_I, CU_IID410, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_IAC
Component:	None Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY


Cause:	The frequency of the pulses at the measuring probe input is too high.
	Fault value (r0949, interpret decimal):
	1: DI/DO 9 (X122.8)
	2: DI/DO 10 (X122.10)
	4: DI/DO 11 (X122.11)
	8: DI/DO 13 (X132.8)
	16: DI/DO 14 (X132.10)
	32: DI/DO 15 (X132.11)
	64: DI/DO 8 (X122.7)
	128: DI/DO 12 (X132.7)
Remedy:	Reduce the frequency of the pulses at the measuring probe input.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F01122 (A)	Frequency at the measuring probe input too high
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	CU_NX_CX, SERVO_AC, VECTOR_AC
Component:	None Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The frequency of the pulses at the measuring probe input is too high.
	Fault value (r0949, interpret decimal):
	1: DI/DO 9 (X122.8)
	2: DI/DO 10 (X122.10)
	4: DI/DO 11 (X122.11)
	64: DI/DO 8 (X122.7)
Remedy:	Reduce the frequency of the pulses at the measuring probe input.
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F01123	Power unit does not support digital inputs/outputs
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO
Component:	Power Module Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Power unit does not support the activated "digital inputs/outputs" function module
Remedy:	Deactivate the function module.
F01150	CU: Number of instances of a drive object type exceeded
Message value:	Drive object type: \%1, number permitted: \%2, actual number: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The maximum permissible number of instances of a drive object type was exceeded.
	Drive object type:
	Drive object type (p0107), for which the maximum permissible number of instances was exceeded.
	Number permitted:
	Max. permissible number of instances for this drive object type.
	Actual number:
	Current number of instances for this drive object type.

### 4.2 List of faults and alarms

Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
ddccbbaa hex: $\mathrm{aa}=$ drive object type, $\mathrm{bb}=$ number limited, $\mathrm{cc}=$ actual number, $\mathrm{dd}=$ no significance
Remedy:

- switch off the unit.
- suitably restrict the number of instances of a drive object type by reducing the number of inserted components.
- re-commission the unit.

F01151	CU: Number of drive objects of a category exceeded
Message value:	Drive object category: \%1, number permitted: \%2, actual number: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The maximum permissible number of drive objects of a category was exceeded.
	Drive object category:
	Drive object category, for which the maximum permissible number of drive objects was exceeded.
	Number permitted:
	Max. permissible number for this drive object category.
	Actual number:
	Actual number for this drive object category.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124): ddccbbaa hex: $\mathrm{aa}=$ drive object category, $\mathrm{bb}=$ number limited, $\mathrm{cc}=$ actual number, $\mathrm{dd}=$ no significance
Remedy:	- switch off the unit.
	- suitably restrict the number of drive objects of the specified category by reducing the number of inserted components.
	- re-commission the unit.


F01152	CU: Invalid constellation of drive object types
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects   Component: None   Reaction: NONE   Acknowledge: POWER ON   Cause: It is not possible to simultaneously operate drive object types SERVO, VECTOR and HLA.    A maximum of 2 of these drive object types can be operated on a Control Unit.   Remedy: - switch off the unit.    - restrict the use of drive object types SERVO, VECTOR, HLA to a maximum of 2.    - re-commission the unit.	


F01200	CU: Time slice management internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object: All objects   Component: Control Unit (CU)   Reaction: OFF2   Acknowledge: IMMEDIATELY (POWER ON)   Cause: A time slice management error has occurred.    It is possible that the sampling times have been inadmissibly set.    Fault value (r0949, interpret hexadecimal):    $998:$    Too many time slices occupied by technology functions (e.g. DCC).    $999:$    Too many time slices occupied by the basic system. Too many different sampling times may have been set.	


	Additional values:
Only for internal Siemens troubleshooting.	
Remedy:	- check the sampling time setting (p0112, p0115, p4099, p9500, p9511).
	- contact Technical Support.


F01205	CU: Time slice overflow	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	All objects	Propagation:
Component:	Control Unit (CU)	
Reaction:	OFF2	
Acknowledge:	POWER ON	
Cause:	Insufficient processing time is available for the existing topology.	
	Fault value (r0949, interpret hexadecimal):	
	Only for internal Siemens troubleshooting.	
Remedy:	- reduce the number of drives.	
	- increase the sampling times.	


F01221	CU: Basic clock cycle too low
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The closed-loop control / monitoring cannot maintain the envisaged clock cycle.
	The runtime of the closed-loop control/monitoring is too long for the particular clock cycle or the computing time remaining in the system is not sufficient for the closed-loop control/monitoring.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	Increase the basic clock cycle of DRIVE-CLiQ communication.
	See also: p0112 (Sampling times pre-setting p0115)


F01222	CU: Basic clock cycle too low (computing time for communication not available)
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC,
	VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A time slice has not been defined that fulfills the requirements.
	The port cannot be correctly operated as the alternating cyclic clock cycle cannot be maintained.
	Fault value (ro949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Cemedy:	Contact Technical Support.


A01223
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

CU: Sampling time inconsistent
\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
None $\quad$ Propagation:

None
NONE
NONE
When changing a sampling time ( $\mathrm{p} 0115[0]$, p 0799 or p 4099 ), inconsistency between the clock cycles has been identified.
Alarm value (r2124, interpret decimal):
1: Value lower than minimum value.
2: Value higher than maximum value.
3: Value not a multiple of $1.25 \mu \mathrm{~s}$.
4: Value does not match isochronous PROFIBUS operation.
5: Value not a multiple of $125 \mu \mathrm{~s}$.
6: Value not a multiple of $250 \mu \mathrm{~s}$.
7: Value not a multiple of $375 \mu \mathrm{~s}$.
8: Value not a multiple of $400 \mu \mathrm{~s}$.
10: Special restriction of the drive object violated.
20: On a SERVO with a sampling time of $62.5 \mu \mathrm{~s}$, more than two drive objects or one drive object of a type other than SERVO have been detected on the same DRIVE-CLiQ line (a maximum of two SERVO type drive objects are permitted).
21: Value can be a multiple of the current controller sampling time of a servo or vector drive in the system (e.g. for TB30, the values of all of the indices should be taken into account).
30: Value less than $31.25 \mu \mathrm{~s}$.
31: Value less than $62.5 \mu \mathrm{~s}$ ( $31.25 \mu \mathrm{~s}$ is not supported for SMC10, SMC30, SMI10 and Double Motor Modules).
32: Value less than $125 \mu \mathrm{~s}$.
33: Value less than $250 \mu \mathrm{~s}$.
40: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $125 \mu \mathrm{~s}$. Further, none of the nodes has a sampling time of less than $125 \mu \mathrm{~s}$.
41: A chassis unit was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than $250 \mu \mathrm{~s}$.
42: An Active Line Module was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than $125 \mu \mathrm{~s}$.
43: A Voltage Sensing Module (VSM) was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is not equal to the current controller sampling time of the drive object of the VSM.
44: The highest common denominator of the sampling times of all of the components connected to the DRIVE-CLiQ line is not the same for all components of this drive object (e.g. there are components on different DRIVE-CLiQ lines on which different highest common denominators are generated).
45: A chassis parallel unit was identified on the DRIVE-CLiQ line as a node. Further, the highest common
denominator of the sampling times of all of the nodes connected to the line is less than $162.5 \mu \mathrm{~s}$ or $187.5 \mu \mathrm{~s}$ (for a 2 x or $3 x$ parallel connection).
46: A node has been identified on the DRIVE-CLiQ line whose sampling time is not a multiple of the lowest sampling time on this line.
52: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $31.25 \mu \mathrm{~s}$.
54: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $62.5 \mu \mathrm{~s}$.
56: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $125 \mu \mathrm{~s}$.
58: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $250 \mu \mathrm{~s}$.
99: Inconsistency of cross drive objects detected.
116: Recommended clock cycle in r0116[0...1].

	General note:
	The topology rules should be noted when connecting up DRIVE-CLiQ (refer to the appropriate product documentation).
	The parameters of the sampling times can also be changed with automatic calculations.
	Example for highest common denominator: $125 \mathrm{~s}, 125 \mu \mathrm{~s}, 62.5 \mu \mathrm{~s}$--> $62.5 \mu \mathrm{~s}$
Remedy:	- check the DRIVE-CLiQ cables.
	- set a valid sampling time.
	See also: p0115, p0799, p4099
A01224	CU: Pulse frequency inconsistent
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When changing the minimum pulse frequency (p0113) inconsistency between the pulse frequencies was identified.
	Alarm value (r2124, interpret decimal):
	1: Value lower than minimum value.
	2: Value higher than maximum value.
	3: Resulting sampling time is not a multiple of $1.25 \mu \mathrm{~s}$.
	4: Value does not match isochronous PROFIBUS operation.
	10: Special restriction of the drive object violated.
	99: Inconsistency of cross drive objects detected.
	116: Recommended clock cycle in r0116[0...1].
Remedy:	Set a valid pulse frequency.
	See also: p0113 (Minimum pulse frequency, selection)
F01250	CU: CU-EEPROM incorrect read-only data
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE (OFF2)
Acknowledge:	POWER ON
Cause:	Error when reading the read-only data of the EEPROM in the Control Unit.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- replace the Control Unit.

## A01251

Message value: CU: CU-EEPROM incorrect read-write data \%1
Message class: Hardware/software error (1)
Drive object: All objects
Component: Control Unit (CU) Propagation: GLOBAL

Reaction: NONE

Acknowledge: NONE
Cause: Error when reading the read-write data of the EEPROM in the Control Unit.
Alarm value (r2124, interpret decimal)
Only for internal Siemens troubleshooting.

### 4.2 List of faults and alarms

Remedy: $\quad$ For alarm value 2124 < 256, the following applies:

- carry out a POWER ON (switch-off/switch-on).
- replace the Control Unit.

For alarm value r2124 >= 256, the following applies:

- for the drive object with this alarm, clear the fault memory (p0952 = 0).
- as an alternative, clear the fault memory of all drive objects (p2147 = 1).
- replace the Control Unit.

F01255	CU: Option Board EEPROM read-only data error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None
Reaction:	NONE (OFF2)
Acknowledge:	POWER ON
Cause:	Error when reading the read-only data of the EEPROM in the Option Board.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- replace the Control Unit.


A01256	CU: Option Board EEPROM read-write data error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when reading the read-write data of the EEPROM in the Option Board.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- replace the Control Unit.
F01260	Software not released
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	Infeed: OFF1
	Servo: OFF3
	Vector: OFF3
	Hla: OFF3
Acknowledge:	POWER ON
Cause:	The runtime software (RT-SW) has not been released.
Remedy:	Only for internal Siemens troubleshooting.


F01275	Hardware description error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	Infeed: OFF2
	Servo: OFF3
	Vector: OFF3
	Hla: OFF3
Acknowledge:	POWER ON
Cause:	An error has occurred while accessing the hardware description file on the CompactFlash card.
	Directory and file name: ADDON/SINAMICS/DATA/HW_DESC/014/DESC0000.ACX
	Fault value (r0949, interpret decimal):
	22: File not found.
	24: File read access error.
	26: Format error.
	28: Version error.
	30: Internal error ACX reader.
	40: Contents error.
	45: Hardware description not consistent.
	60: Inconsistency: Number of Power Stack Adapters (PSA).
	61: Inconsistency: Number of Sensor Module Cabinets (SMC).
	62: Inconsistency: Number of Voltage Sensing Modules (VSM).
	63: Inconsistency: Number of Terminal Modules (TM).
	64: Inconsistency: Number of Terminal Boards (TB).
Remedy:	Only for internal Siemens troubleshooting.
A01276	Hardware description not fully compatible
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The hardware description file contains more data than the firmware requires.
Remedy:	Not necessary.
A01302	Error in the component trace
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred in the component trace.
	The message appears in the following cases:
	- upload trace data (p7792 = 1).
	- change factory setting (p7790, p7791) for missing property "component trace" (r0193.1 = 0).


	Alarm value (r2124, interpret decimal):
	1: The DRIVE-CLiQ component does not support the component trace (r0193.1 = 0).
	101: Data from trace 1 cannot be read.
	102: Data from trace 2 cannot be read.
	103: Data from trace 3 cannot be read.
	104: Data from trace 4 cannot be read.
	105: Data from trace 5 cannot be read.
Remedy:	For alarm value = 1:
	Upgrade the firmware of the DRIVE-CLiQ component involved.
F01303	Component does not support the required function
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A function requested by the Control Unit is not supported by a DRIVE-CLiQ component.
	Fault value (r0949, interpret decimal):
	1: The component does not support the deactivation.
	101: The Motor Module does not support an internal armature short-circuit.
	102: The Motor Module does not support the deactivation.
	201: The Sensor Module does not support actual value inversion (p0410.0 = 1) when using a Hall sensor (p0404.6 = 1) for the commutation.
	202: The Sensor Module does not support parking/unparking.
	203: The Sensor Module does not support the deactivation.
	204: The firmware of this Terminal Module 15 (TM15) does not support the application TM15DI/DO.
	205: The Sensor Module does not support the selected temperature evaluation (r0458, r0459).
	206: The firmware of this Terminal Modules TM41/TM31/TM15 refers to an old firmware version. It is urgently necessary to upgrade the firmware to ensure disturbance-free operation.
	207: The power unit with this hardware version does not support operation with device supply voltages of less than 380 V .
	208: The Sensor Module does not support de-selection of commutation with zero mark (via p0430.23).
	211: The Sensor Module does not support single-track encoders (r0459.10).
	212: The Sensor Module does not support LVDT sensors (p4677.0).
	213: The Sensor Module does not support the characteristic type (p4662).
	214: The power unit does not support the temperature evaluation via PT1000 (r0193).
	215: The Terminal Module does not support the temperature evaluation via PT1000
	216: The Voltage Sensing Module (VSM) does not support operation with a PT1000 temperature sensor.
Remedy:	Upgrade the firmware of the DRIVE-CLiQ component involved.
	For fault value $=205,214,215$ :
	- check parameter p0600 and p0601 and if required, adapt.
	For fault value = 207:
	- replace the power unit or if required set the device supply voltage higher ( p 0210 ).
	For fault value = 208:
	- check parameter p0430.23 and reset if necessary.
	For fault value $=216$ :
	- check the setting of the sensor type (p3665).
	- use a Voltage Sensing module that supports operation with PT1000 (MLFB ...-xxx1).


A01304 (F)	Firmware version of DRIVE-CLiQ component is not up-to-date
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The non-volatile memory has a more recent firmware version than the one in the connected DRIVE-CLiQ component.
	Alarm value (r2124, interpret decimal):
	Component number of the DRIVE-CLiQ component involved.
Remedy:	Update the firmware (p7828, p7829-or commissioning tool).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
F01305	Topology: Component number missing
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The component number from the topology was not parameterized (p0121 (for power unit, refer to p0107), p0131 (for servo/vector drives, refer to p0107), p0141, p0151, p0161).
	Fault value (r0949, interpret decimal):
	Data set number.
	Note:
	The fault also occurs if encoders have been configured ( p 0187 to p 0189 ) but no component numbers exist for them. In this case, the fault value includes the drive data set number plus 100 * encoder number (e.g. $3 x x$, if a component number was not entered in p0141 for encoder 3 (p0189)).
	See also: p0121, p0131, p0141, p0142, p0151, p0161, p0186, p0187, p0188, p0189
Remedy:	- enter missing component number.
	- if required, remove the component and restart commissioning.
	See also: p0121, p0131, p0141, p0142, p0151, p0161, p0186, p0187, p0188, p0189
A01306	Firmware of the DRIVE-CLiQ component being updated
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Firmware update is active for at least one DRIVE-CLiQ component.
	Alarm value (r2124, interpret decimal):
	Component number of the DRIVE-CLiQ component.
Remedy:	Not necessary.
	This alarm is automatically withdrawn after the firmware update has been completed.


A01314	Topology: Component must not be present
Message value:	\%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For a component, "deactivate and not present" is set but this component is still in the topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	aa = component number
	$\mathrm{bb}=$ component class of the component
	cc = connection number
	Note:
	Component class and connection number are described in F01375.
Remedy:	- remove the corresponding component.
	- change the setting "deactivate and not present".
	Note:
	Under "Topology --> Topology view", the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
	See also: p0105, p0125, p0145, p0155, p0165


A01317 (N)	Deactivated component again present
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	If a component of the target topology for an active drive object is inserted and the associated parameter of the component is set to "deactivate" (p0125, p0145, p0155, p0165).
	Note:
	This is the only message that is displayed for a deactivated component.
Remedy:	The alarm is automatically withdrawn for the following actions:
	- activate the components involved ( $\mathrm{p} 0125=1, \mathrm{p} 0145=1, \mathrm{p} 0155=1, \mathrm{p} 0165=1$ ).
	- again withdraw the component involved.
	See also: p0125 (Activate/deactivate power unit components), p0145, p0155, p0165 (Activate/deactivate filter module)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A01318	BICO: Deactivated interconnections present
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	This alarm is used in the following cases:
	- if an inactive/non-operational drive object is active again/ready for operation
	- if there are items in the list of BI/CI parameters (r9498[0...29], r9499[0...29])
	- if the BICO interconnections saved in the list of BI/CI parameters (r9498[0...29], r9499[0...29]) have actually been changed


Remedy:	Reset alarm:
	- set p9496 to 1 or 2
or	
	- deactivate the drive object again.
A01319	Inserted component not initialized
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120,
	TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC,
Component:	VECTOR_I_AC
Reaction:	None
Acknowledge:	NONE
Cause:	NONE
	Initialization is required for at least one inserted component.
Remedy:	This is only possible if the pulses are inhibited for all the drive objects.

A01320 Topology: Drive object number does not exist in configuration
Message value: \%1

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects
Component: None Propagation: LOCAL
Cause: A drive object number is missing in p0978

Alarm value (r2124, interpret decimal):
Index of p0101 under which the missing drive object number can be determined.
Remedy: $\quad$ Set p0009 to 1 and change p0978:

Rules:

- p0978 must include all of the drive object numbers (p0101).
- it is not permissible for a drive object number to be repeated.
- by entering a 0 , the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0 , all values must be 0 .
- dummy drive object numbers (255) are only permitted in the first partial list.

A01321	Topology: Drive object number does not exist in configuration
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	p0978 contains a drive object number that does not exist.
	Alarm value (r2124, interpret decimal):
	Index of p0978 under which the drive object number can be determined.
	Set p0009 to 1 and change p0978:
	Rules:
	- p0978 must include all of the drive object numbers (p0101).
	- it is not permissible for a drive object number to be repeated.
	- by entering a 0, the drive objects with PZD are separated from those without PZD.
	- only 2 partial lists are permitted. After the second 0, all values must be 0.
	- dummy drive object numbers (255) are only permitted in the first partial list.


A01322	Topology: Drive object number present twice in configuration
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A drive object number is present more than once in p0978.
	Alarm value (r2124, interpret decimal):
	Index of p0978 under which the involved drive object number is located.
Remedy:	Set parameter p0009 = 1 and change p0978:
	Rules:
	- p0978 must include all of the drive object numbers (p0101).
	- it is not permissible for a drive object number to be repeated.
	- by entering a 0 , the drive objects with PZD are separated from those without PZD.   - only 2 partial lists are permitted. After the second 0 , all values must be 0 .
	- dummy drive object numbers (255) are only permitted in the first partial list.


A01323	Topology: More than two partial lists created
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Partial lists are available more than twice in p0978. After the second 0 , all must be 0 . Alarm value (r2124, interpret decimal):   Index of p0978 under which the illegal value is located.
Remedy:	Set p0009 to 1 and change p0978:
	Rules:
	- p0978 must include all of the drive object numbers (p0101).
	- it is not permissible for a drive object number to be repeated.
	- by entering a 0 , the drive objects with PZD are separated from those without PZD.   - only 2 partial lists are permitted. After the second 0 , all values must be 0 .
	- dummy drive object numbers (255) are only permitted in the first partial list.


A01324	Topology: Dummy drive object number incorrectly created
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	In p0978, dummy drive object numbers (255) are only permitted in the first partial list Alarm value (r2124, interpret decimal):   Index of p0978 under which the illegal value is located.
Remedy:	Set p0009 to 1 and change p0978:
	Rules:
	- p0978 must include all of the drive object numbers (p0101).
	- it is not permissible for a drive object number to be repeated.
	- by entering a 0 , the drive objects with PZD are separated from those without PZD.   - only 2 partial lists are permitted. After the second 0 , all values must be 0 .
	- dummy drive object numbers (255) are only permitted in the first partial list.


F01325	Topology: Component number not present in target topology
Message value:	Component number: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None $\quad$ Propagation: $\quad$ LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The component configured in a parameter (e.g. p0121, p0131, etc.) is not present in the target topology.
	Fault value (r0949, interpret decimal):      Configured component number that is not present in target topology.   Remedy:$\quad$Establish topology and DO configuration consistency.

A01330
Message value:
Message class:

## Topology: Quick commissioning not possible

Fault cause: \%1, supplementary information: \%2, preliminary component number: \%3
Message class
Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Component:
Reaction:
Acknowledge:
All objects
None Propagation: LOCAL

NONE
NONE
Cause: Unable to carry out a quick commissioning. The existing actual topology does not fulfill the requirements. Alarm value (r2124, interpret hexadecimal):
ccccbbaa hex: $\operatorname{cccc}=$ preliminary component number, $\mathrm{bb}=$ supplementary information, $\mathrm{aa}=$ fault cause aa $=01$ hex $=1 \mathrm{dec}$ :
On one component illegal connections were detected.

- $\mathrm{bb}=01$ hex $=1$ dec: For a Motor Module, more than one motor with DRIVE-CLiQ was detected.
- bb = 02 hex = 2 dec: For a motor with DRIVE-CLiQ, the DRIVE-CLiQ cable is not connected to a Motor Module aa $=02$ hex $=2$ dec:
The topology contains too many components of a particular type.
- $b b=01$ hex $=1$ dec: There is more than one master Control Unit.
- $\mathrm{bb}=02$ hex $=2 \mathrm{dec}$ : There is more than 1 infeed ( 8 for a parallel circuit configuration).
- bb = 03 hex $=3$ dec: There are more than 10 Motor Modules (8 for a parallel circuit configuration).
$-\mathrm{bb}=04$ hex $=4 \mathrm{dec}$ : There are more than 9 encoders.
- bb $=05$ hex $=5 \mathrm{dec}$ : There are more than 8 Terminal Modules
- bb $=07$ hex $=7$ dec: Unknown component type
$-\mathrm{bb}=08$ hex $=8 \mathrm{dec}$ : There are more than 6 drive slaves.
- bb = 09 hex $=9$ dec: Connection of a drive slave not permitted
$-\mathrm{bb}=0 \mathrm{a}$ hex $=10 \mathrm{dec}$ : There is no drive master.
$-\mathrm{bb}=0 \mathrm{~b}$ hex $=11 \mathrm{dec}$ : There is more than one motor with DRIVE-CLiQ for a parallel circuit.
$-\mathrm{bb}=0 \mathrm{c}$ hex $=12 \mathrm{dec}$ : Different power units are being used in a parallel connection.
- cccc: Not used.
aa $=03 \mathrm{hex}=3 \mathrm{dec}$ :
More than 16 components are connected at a DRIVE-CLiQ socket of the Control Unit.
$-\mathrm{bb}=0,1,2$, 3 means e.g. detected at the DRIVE-CLiQ socket X100, X101, X102, X103.
- cccc: Not used.
aa $=04$ hex $=4$ dec:
The number of components connected one after the other is greater than 125.
- bb: Not used.
- cccc = preliminary component number of the first component and component that resulted in the fault.
aa $=05$ hex $=5 \mathrm{dec}$ :
The component is not permissible for SERVO.
- bb $=01$ hex $=1$ dec: SINAMICS G available.
- bb $=02$ hex $=2$ dec: Chassis available.
- cccc = preliminary component number of the first component and component that resulted in the fault.
aa $=06$ hex $=6$ dec:
On one component illegal EEPROM data was detected. These must be corrected before the system continues to boot.
- $b b=01$ hex $=1$ dec: The Article No. [MLFB] of the power unit that was replaced includes a space retainer. The space retainer (*) must be replaced by a correct character.
- cccc = preliminary component number of the component with illegal EEPROM data.
aa $=07$ hex $=7 \mathrm{dec}$ :
The actual topology contains an illegal combination of components.
$-\mathrm{bb}=01$ hex $=1 \mathrm{dec}$ : Active Line Module (ALM) and Basic Line Module (BLM).
- bb $=02$ hex $=2$ dec: Active Line Module (ALM) and Smart Line Module (SLM).
$-\mathrm{bb}=03$ hex $=3 \mathrm{dec}$ : SIMOTION control (e.g. SIMOTION D445) and SINUMERIK component (e.g. NX15).
$-\mathrm{bb}=04$ hex $=4 \mathrm{dec}$ : SINUMERIK control (e.g. SINUMERIK 730.net) and SIMOTION component (e.g. CX32).
- cccc: Not used.
aa $=08$ hex $=8 \mathrm{dec}$ :
The motor is not completely connected.
- bb: Not used.
- cccc: Not used.

Note:
Connection type and connection number are described in F01375.
See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology)
Remedy: - adapt the output topology to the permissible requirements.

- commission the device using the commissioning tool.
- for motors with DRIVE-CLiQ, connect the power and DRIVE-CLiQ cable to the same Motor Module (Single Motor Module: DRIVE-CLiQ at X202, Double Motor Module: DRIVE-CLiQ from motor 1 (X1) to X202, from motor 2 (X2) to X203).
For aa $=06$ hex $=6$ dec and $b b=01$ hex $=1 \mathrm{dec}$ :
Correct the Article No. when commissioning using the commissioning tool.
See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology)

A01331	Topology: At least one component not assigned to a drive object
Message value:	Component number: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one component is not assigned to a drive object.   - when commissioning, a component was not able to be automatically assigned to a drive object.   - the parameters for the data sets are not correctly set.   Alarm value (r2124, interpret decimal):   Component number of the unassigned component.
Remedy:	This component is assigned to a drive object.
	Check the parameters for the data sets.
	Examples:
	- power unit (p0121).
	- motor (p0131, p0186).
	- encoder interface (p0140, p0141, p0187 ... p0189).
	- encoder (p0140, p0142, p0187 ... p0189).
	- Terminal Module (p0151).
	- option board (p0161).


F01340	Topology: Too many components on one line
Message value:	Component number or connection number: \%1, fault cause: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	For the selected communications clock cycle, too many DRIVE-CLiQ components are connected to one line of the Control Unit.
	Fault value (r0949, interpret hexadecimal):
	xyy hex: $\mathrm{x}=$ fault cause, $\mathrm{yy}=$ component number or connection number.
	1yy:
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all read transfers.
	2 yy :
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all write transfers.
	$3 y y:$
	Cyclic communication is fully utilized.
	$4 y y$ :
	The DRIVE-CLiQ cycle starts before the earliest end of the application. An additional dead time must be added to the control. Sign-of-life errors can be expected.
	The conditions of operation with a current controller sampling time of $31.25 \mu \mathrm{~s}$ have not been maintained.
	$5 y y$ :
	Internal buffer overflow for net data of a DRIVE-CLiQ connection.
	$6 y y$ :
	Internal buffer overflow for receive data of a DRIVE-CLiQ connection.
	7 yy :
	Internal buffer overflow for send data of a DRIVE-CLiQ connection.
	8yy:
	The component clock cycles cannot be combined with one another
	900:
	The lowest common multiple of the clock cycles in the system is too high to be determined.
	901:
	The lowest common multiple of the clock cycles in the system cannot be generated with the hardware.
Remedy:	- check the DRIVE-CLiQ wiring.
	- reduce the number of components on the DRIVE-CLiQ line involved and distribute these to other DRIVE-CLiQ sockets of the Control Unit. This means that communication is uniformly distributed over several lines.
	For fault value $=1 \mathrm{yy}-4 \mathrm{yy}$ in addition:
	- increase the sampling times (p0112, p0115, p4099). If necessary, for DCC or FBLOCKS, change the assignment of the run-time group ( p 21000 , p 20000 ) so that the sampling time ( $\mathrm{r} 21001, \mathrm{r} 20001$ ) is increased.
	- if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS).
	- establish the conditions for operation with a current controller sampling time of $31.25 \mu \mathrm{~s}$ (at the DRIVE-CLiQ line, only operate Motor Modules and Sensor Modules with this sampling time and only use a permitted Sensor Module (e.g. SMC20, this means a 3 at the last position of the Article No.)).
	- For an NX, the corresponding Sensor Module for a possibly existing second measuring system should be connected to a free DRIVE-CLiQ socket of the NX.
	For fault value $=8 \mathrm{yy}$ in addition:
	- check the clock cycles settings (p0112, p0115, p4099). Clock cycles on a DRIVE-CLiQ line must be perfect integer multiples of one another. As clock cycle on a line, all clock cycles of all drive objects in the previously mentioned parameters apply, which have components on the line involved.
	For fault value = 9yy in addition:
	- check the clock cycles settings (p0112, p0115, p4099). The lower the numerical value difference between two clock cycles, the higher the lowest common multiple. This behavior has a significantly stronger influence, the higher the numerical values of the clock cycles.


F01341	Topology: Maximum number of DRIVE-CLiQ components exceeded
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Too many DRIVE-CLiQ components were defined in the actual topology.
	Note:
	Pulse enable is withdrawn and prevented.
Remedy:	- check the DRIVE-CLiQ wiring.
	- reduce the number components on the DRIVE-CLiQ line involved in order to maintain the maximum quantity structure.
F01354	Topology: Actual topology indicates an illegal component
Message value:	Fault cause: \%1, component number: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The actual topology indicates at least one illegal component.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: y = component number, $\mathrm{xx}=$ cause.
	$x \mathrm{x}=1$ : Component at this Control Unit not permissible.
	$\mathrm{xx}=2$ : Component in combination with another component not permissible.
	Note:
	Pulse enable is prevented.
Remedy:	Remove the illegal components and restart the system.
F01355	Topology: Actual topology changed
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The device target topology (p0099) does not correspond to the device actual topology (r0098).
	The fault only occurs if the topology was commissioned using the automatic internal device mechanism and not using the commissioning tool.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: r0098 (Actual device topology), p0099 (Device target topology)
Remedy:	One of the following counter-measures can be selected if no faults have occurred in the topology detection itself:
	If commissioning is still not completed:
	- carry out a self-commissioning routine (starting from p0009 = 1).
	In general:
	Set p0099 = r0098, set p0009 $=0$; for existing Motor Modules, this results in servo drives being automatically generated (p0107).
	Generating servo drives: Set p0097 to 1, set p0009 to 0.
	Generating vector drives: Set p0097 to 2, set p0009 to 0 .
	Generating vector drives with parallel circuit: Set p0097 to 12, set p0009 to 0 .
	In order to set configurations in p0108, before setting p0009 to 0 , it is possible to first set p0009 to 2 and modify p0108. The index corresponds to the drive object (p0107).

If commissioning has already been completed:

- re-establish the original connections and re-connect power to the Control Unit.
- restore the factory setting for the complete equipment (all of the drives) and allow automatic self-commissioning again.
- change the device parameterization to match the connections (this is only possible using the commissioning tool). Notice:
Topology changes that result in this fault being generated cannot be accepted by the automatic function in the device, but must be transferred using the commissioning tool and parameter download. The automatic function in the device only allows constant topology to be used. Otherwise, when the topology is changed, all of the previous parameter settings are lost and replaced by the factory setting.
See also: r0098 (Actual device topology)

F01356	Topology: There is a defective DRIVE-CLiQ component
Message value:	Fault cause: \%1, Component number: \%2, Connection number: \%3
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The actual topology indicates at least one defective DRIVE-CLiQ component.
	Fault value (r0949, interpret hexadecimal):
	zzyyxx hex:
	$z z=$ connection number of the component at which the defective component is connected
	$y \mathrm{y}=$ component number of the component at which the defective component is connected
	$x \mathrm{x}=$ fault cause
	$x x=1$ : Component at this Control Unit not permissible.
	$x x=2$ : component with communication defect.
	Note:
	Pulse enable is withdrawn and prevented.
Remedy:	Replace the defective component and restart the system.
F01357	Topology: Two Control Units identified on the DRIVE-CLiQ line
Message value:	component number: \%1, connection number: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	In the actual topology, 2 Control Units are connected with one another through DRIVE-CLiQ.
	As standard, this is not permitted.
	This is only permitted if the Technology Extension OALINK has already been installed on the two Control Units and has been commissioned online.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex:
	yy = connection number of the Control Unit at which the second Control Unit is connected
	$\mathrm{xx}=$ component number of the Control Unit at which the second Control Unit is connected
	Note:
	Pulse enable is withdrawn and prevented.
Remedy:	In general:
	- remove the connection to the second Control Unit and restart.
	- for the S120M component DRIVE-CLiQ extension, interchange the hybrid cable (IN/OUT).
	When using OALINK:
	- remove the DRIVE-CLiQ connection and restart the systems.
	- install OALINK on both Control Units and activate.
	- Check the configuration of the DRIVE-CLiQ sockets in OALINK.


A01358	Topology: Line termination not available
Message value:	CU connection number: \%1, component number: \%2, connection number: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one line with distributed drives is not terminated. The last participant on the line must be terminated with a line termination connector.
	This therefore ensures the degree of protection of the distributed drives.
	Alarm value (r2124, interpret hexadecimal):
	zzyyxx hex:
	$\mathrm{zz}=$ connection number of the distributed drive with missing termination connector
	y $\mathrm{y}=$ component number
	xx = CU connection number
Remedy:	Install the line terminating connector for the last distributed drive.
F01359	Topology: DRIVE-CLiQ performance not sufficient
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ performance is not sufficient at one line in order to identify an inserted component.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- Distribute components across several DRIVE-CLiQ lines.
	Note:
	For this topology, do not withdraw and insert components in operation.
F01360	Topology: Actual topology not permissible
Message value:	Fault cause: \%1, preliminary component number: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The detected actual topology is not permissible.
	Fault value (r0949, interpret hexadecimal): ccccbbaa hex:
	$\mathrm{cccc}=$ preliminary component number, $\mathrm{bb}=$ no significance, $\mathrm{aa}=$ fault cause
	$\mathrm{aa}=01 \mathrm{hex}=1 \mathrm{dec}: \quad$
	Too many components were detected at the Control Unit. A maximum of 199 components is permissible. aa $=02$ hex $=2$ dec:
	The component type of a component is not known. aa $=03 \mathrm{hex}=3 \mathrm{dec}$ :
	It is illegal to combine ALM and BLM.
	$\mathrm{aa}=04 \mathrm{hex}=4 \mathrm{dec}:$
	It is illegal to combine ALM and SLM.
	aa $=05 \mathrm{hex}=5 \mathrm{dec}$ :
	It is illegal to combine BLM and SLM.
	$\mathrm{aa}=06 \mathrm{hex}=6 \mathrm{dec}$ :
	A CX32 was not directly connected to a permitted Control Unit.


	aa $=07 \mathrm{hex}=7 \mathrm{dec}$ :
	An NX10 or NX15 was not directly connected to a permitted Control Unit. aa $=08$ hex $=8 \mathrm{dec}$ :
	A component was connected to a Control Unit that is not permitted for this purpose. aa $=09$ hex $=9$ dec:
	A component was connected to a Control Unit with out-of-date firmware. aa $=0 \mathrm{~A}$ hex $=10 \mathrm{dec}$ :
	Too many components of a particular type detected.
	$\mathrm{aa}=0 \mathrm{~B}$ hex $=11 \mathrm{dec}$ :
	Too many components of a particular type detected on a single line.
	Note:
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	For fault cause $=1$ :
	Change the configuration. Connect less than 199 components to the Control Unit.
	For fault cause $=2$ :
	Remove the component with unknown component type.
	For fault cause $=3,4,5$ :
	Establish a valid combination.
	For fault cause $=6,7$ :
	Connect the expansion module directly to a permitted Control Unit.
	For fault cause = 8:
	Remove component or use a permissible component.
	For fault cause = 9:
	Upgrade the firmware of the Control Unit to a later version.
	For fault cause = 10, 11:
	Reduce the number of components.
A01361	Topology: Actual topology contains SINUMERIK and SIMOTION components
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The detected actual topology contains SINUMERIK and SIMOTION components.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
	Alarm value (r2124, interpret hexadecimal):   ddccbbaa hex: $\mathrm{cc}=$ fault cause, $\mathrm{bb}=$ component class of the actual topology, $a \mathrm{a}=$ component number of the component
	$\mathrm{cc}=01 \mathrm{hex}=1 \mathrm{dec}:$
	An NX10 or NX15 was connected to a SIMOTION control.
	cc $=02$ hex $=2 \mathrm{dec}$ :
	A CX32 was connected to a SINUMERIK control.
Remedy:	For alarm value $=1$ :
	Replace all NX10 or NX15 by a CX32.
	For alarm value $=2$ :
	Replace all CX32 by an NX10 or NX15.


A01362	Topology: Topology rule(s) broken
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one topology rule for the SINAMICS S120 Combi has been broken.
	In the event of a fault, the ramping up of the drive system is aborted and closed-loop drive control is not enabled. Alarm value (r2124, interpret decimal):
	The alarm value indicates which rule has been violated.
	1: The S120 Combi may only be wired via DRIVE-CLiQ socket X200 to X100 on the NCU.
	2: Only one Single Motor Module (SMM) or one Double Motor Module (DMM) may be connected via X200 to the DRIVE-CLiQ socket X101 on the NCU.
	3: Only one Terminal Module 54F (TM54F) or one DRIVE-CLiQ Hub Module (Hub) may be connected via X500 to the DRIVE-CLiQ socket X102 on the NCU.
	4: Only Sensor Modules may be connected to DRIVE-CLiQ sockets X201 up to X203 (3-axis) or X204 (4-axis) on the S120 Combi.
	5: Only one Sensor Module, type SMC20 or SME20 may be connected to DRIVE-CLiQ socket X205 (X204 is not available for 3 -axis).
	6: If a Single Motor Module is being used as the first expansion axis, only one more Single Motor Module may be connected (via X200 to X201 on the first Single Motor Module).
	7: Only Sensor Modules may be connected to the corresponding DRIVE-CLiQ socket X202 on any Single Motor Modules which may be present.
	8: For a second Single Motor Module or for a Double Motor Module, it is not permissible to connect anything at X201.
	9: If a Double Motor Module is used as an expansion axis, only Sensor Modules may be connected to X202 and X203.
	10: If a Terminal Module 54F (TM54F) is configured, only one DRIVE-CLiQ Hub Module (DMC20, DME20) may be connected to X501 of the TM54F module via DRIVE-CLiQ socket X500.
	11: On the DRIVE-CLiQ Hub Module, only Sensor Modules Cabinet (SMC) and Sensor Modules External (SME) may be connected to X501 through X505.
	12: Only certain Motor Modules may be used for expansion axes.
	13: For an S120 Combi with 3 axes, nothing must be connected at the DRIVE-CLiQ Hub Module at X503.
Remedy:	Evaluate the alarm value and ensure compliance with the corresponding topology rule(s).

F01375 Topology: Connection duplicated between two components
Message value: Component: \%1, \%2, connection: \%3
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects
Component: None Propagation: LOCAL
Reaction:
Acknowledge:
NONE
IMMEDIATELY
Cause:
When checking the actual topology, a ring-type connection was detected.
The fault value describes a component contained in the ring.
Fault value (r0949, interpret hexadecimal):
ccbbaaaa hex:
cc = connection number (\%3)
bb = component class (\% 2)
aaaa $=$ preliminary component number (\%1)
Component class:
0: Component unknown.
1: Control Unit
2: Motor Module
3: Line Module
4: Sensor Module
5: Voltage Sensing Module

```
6: Terminal Module
7: DRIVE-CLiQ Hub Module
8: Controller Extension
9: Filter Module
10: Hydraulic Module.
49: DRIVE-CLiQ component
50: Option slot
60: Encoder
70: DRIVE-CLiQ motor
71: Hydraulic cylinder
72: Hydraulic valve
80: Motor
Connection number:
0: Port 0, 1: Port 1, 2: Port 2, 3: Port 3, 4: Port 4, 5: Port 5
10: X100, 11: X101, 12: X102, 13: X103, 14: X104, 15: X105
20: X200, 21: X201, 22: X202, 23: X203
50: X500, 51: X501, 52: X502, 53: X503, 54: X504, 55: X505
Remedy: Output the fault value and remove the specified connection.
Note:
Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
```

F01380	Topology: Actual topology EEPROM defective
Message value:	Preliminary component number: \%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	When detecting the actual topology, a component with a defective EEPROM was detected.                     Fault value (r0949, interpret hexadecimal):   bbbbaaaa hex:   bbbb = reserved   aaaa = preliminary component number of the defective components   Output the fault value and remove the defected component.

A01381 Topology: power unit incorrectly inserted

Message value: Component: \%1, to \%2, \%3, connection: \%4
Message class: Error in the parameterization / configuration / commissioning procedure (18)

Drive object:	CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM54F_MA, TM54F_SL
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a power unit in the actual topology that has been incorrectly inserted. Alarm value (r2124, interpret hexadecimal):   ddccbbaa hex:   $d d=$ connection number (\%4)   cc = component number (\%3)   bb = component class (\% 2)   aa = component number of the incorrectly inserted component (\% 1)

The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

### 4.2 List of faults and alarms

Remedy: $\quad$ Adapting topologies: $\quad$ - insert the components involved at the right connection (correct the actual topology). $\quad$ - adapt the project/parameterizing in the commissioning tool (correct the target topology). $\quad$ - automatically remove the topology error (p9904).

A01381	Topology: Line Module incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Line Module in the actual topology that has been incorrectly inserted with respect to the target technology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	dd = connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the incorrectly inserted component (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
	Component class and connection number are described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	- automatically remove the topology error (p9904).
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

## A01381

Message value:
Message class: Drive object:
Component: Reaction:

## Acknowledge:

Cause:

Topology: Motor Module incorrectly inserted
Component: \%1, to \%2, \%3, connection: \%4
Error in the parameterization / configuration / commissioning procedure (18)
SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: LOCAL
NONE
NONE
The topology comparison has detected a Motor Module in the actual topology that has been incorrectly inserted with respect to the target technology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
$\mathrm{dd}=$ connection number (\%4)
$\mathrm{cc}=$ component number (\%3)
bb = component class (\% 2)
aa = component number of the incorrectly inserted component (\% 1)
Note:
The component is described in dd, cc and bb, where the component involved is incorrectly inserted. Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: $\quad$ Adapting topologies: $\quad$ - insert the components involved at the right connection (correct the actual topology). $\quad$ - adapt the project/parameterizing in the commissioning tool (correct the target topology). $\quad$ - automatically remove the topology error (p9904).

A01382	Topology: Sensor Module incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Sensor Module in the actual topology that has been incorrectly inserted with respect to the target technology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the incorrectly inserted component (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
	Component class and connection number are described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	- automatically remove the topology error (p9904).
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).


A01383	Topology: Terminal Module incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Terminal Module in the actual topology that has been incorrectly inserted with respect to the target technology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	aa = component number of the incorrectly inserted component (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
	Component class and connection number are described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

### 4.2 List of faults and alarms

Remedy: $\quad$ Adapting topologies: $\quad$ - insert the components involved at the right connection (correct the actual topology). $\quad$ - adapt the project/parameterizing in the commissioning tool (correct the target topology). $\quad$ - automatically remove the topology error (p9904). $\quad$ Note: $\quad$| Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability |
| :--- |
| (e.g. setpoint/actual value comparison). |

A01384	Topology: DRIVE-CLiQ Hub Module incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ Hub Module in the actual topology that has been incorrectly inserted with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	aa = component number of the incorrectly inserted component (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
	Component class and connection number are described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	- automatically remove the topology error (p9904).
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).


A01385	Topology: Controller Extension incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a controller extension 32 (CX32) in the actual topology that has been incorrectly inserted with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	aa = component number of the incorrectly inserted component (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
	Component class and connection number are described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

Remedy: $\quad$ Adapting topologies: $\quad$ - insert the components involved at the right connection (correct the actual topology). $\quad$ - adapt the project/parameterizing in the commissioning tool (correct the target topology). $\quad$ - automatically remove the topology error (p9904).

A01386	Topology: DRIVE-CLiQ component incorrectly inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ component in the actual topology that has been incorrectly inserted with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the incorrectly inserted component (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
	Component class and connection number are described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	- automatically remove the topology error (p9904).
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

## A01389

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## Topology: Motor with DRIVE-CLiQ incorrectly inserted

Component: \%1, to \%2, \%3, connection: \%4
Error in the parameterization / configuration / commissioning procedure (18)
All objects
None Propagation: LOCAL
NONE
NONE
The topology comparison has detected a motor with DRIVE-CLiQ in the actual topology that has been incorrectly inserted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
$\mathrm{dd}=$ connection number (\%4)
$\mathrm{cc}=$ component number (\%3)
$\mathrm{bb}=$ component class (\% 2)
aa = component number of the incorrectly inserted component (\% 1)
Note:
The component is described in dd, cc and bb, where the component involved is incorrectly inserted. Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

### 4.2 List of faults and alarms

Remedy: $\quad$ Adapting topologies: $\quad$ - insert the components involved at the right connection (correct the actual topology). $\quad$ - adapt the project/parameterizing in the commissioning tool (correct the target topology). $\quad$ - automatically remove the topology error (p9904).

A01416	Topology: Component additionally inserted
Message value:	\%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has found a component in the actual topology which is not specified in the target topology. Alarm value (r2124, interpret hexadecimal):   ddccbbaa hex:   dd = component class (\% 2)   cc = connection number (\%4)   $\mathrm{bb}=$ component class of the additional component (\%1)   $\mathrm{aa}=$ component number (\%3)   Note:   The component class of the additional component is contained in bb.   The component is described in dd, cc and aa, where the additional component is inserted.   Component class and connection number are described in F01375.
Remedy:	Adapting topologies:   - remove the additional component (correct the actual topology).   - adapt the project/parameterizing in the commissioning tool (correct the target topology).   Note:   Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).


A01420	Topology: Component different
Message value:	Component: \%1, target: \%2, actual: \%3, difference: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected differences in the actual topology and target topologies in the electronic rating plate.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex: $\mathrm{aa}=$ component number (\%1), $\mathrm{bb}=$ component class of the target topology (\%2), cc = component class of the actual topology (\%3), dd = difference (\%4)
	$\mathrm{dd}=01 \mathrm{hex}=1 \mathrm{dec}$ :
	Different component type.
	dd = 02 hex = 2 dec:
	Different article number.
	$\mathrm{dd}=03 \mathrm{hex}=3 \mathrm{dec}$ :
	Different manufacturer.
	$\mathrm{dd}=04$ hex $=4 \mathrm{dec}$ :
	For a multi-component slave, the incorrect subcomponent (index) is connected (e.g. Double Motor Module X201 instead of X 200 ) - or only a part of a multi-component slave is set to "deactivate and not available".
	dd $=05$ hex $=5 \mathrm{dec}$ :
	NX10 or NX15 used instead of CX32.

```
dd = 06 hex = 6 dec:
NX10 or NX15 used instead of CX32.
dd = 07 hex = 7 dec:
Different number of connections.
Note:
The component class is described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting topologies:
- connect the expected component (correct the actual topology).
- adapt the project/parameterizing in the commissioning tool (correct the target topology).
Topology comparison - if required, adapt the comparison level:
- parameterize the topology comparison of all components (p9906).
- parameterize the topology comparison of one components (p9907, p9908).
Note:
Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability
(e.g. setpoint/actual value comparison).
```

A01425	Topology: Serial number different
Message value:	Component: \%1, \%2, differences: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected differences in the actual and target topologies in relation to one component. The serial number is different.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ reserved
	$\mathrm{cc}=$ number of differences (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number (\%1)
	Note:
	The component class is described in F01375.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies:
	- change over the actual topology to match the target topology.
	- load the target topology that matches the actual topology (commissioning tool).
	For byte cc:
	$\mathrm{cc}=1$--> can be acknowledged using p9904 or p9905.
	cc > 1 --> can be acknowledged using p9905 and can be deactivated using p9906 or p9907/p9908.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
	See also: p9904 (Topology comparison acknowledge differences), p9905 (Device specialization), p9906 (Topology comparison all components comparison level), p9907 (Topology comparison component number), p9908 (Topology comparison of a component comparison level)


A01428	Topology: Incorrect connection used
Message value:	Component: \%1, \%2, connection (actual): \%3, connection (target): \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected differences in the actual and target topologies in relation to one component.
	For a component, another connection was used.
	The different connections of a component are described in the alarm value.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	dd = connection number of the target topology (\%4)
	cc = connection number of the actual topology (\%3)



### 4.2 List of faults and alarms

Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A01481 (N)	Topology: Motor Module not connected
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Motor Module that is missing in the actual topology with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A01482	Topology: Sensor Module not connected
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Sensor Module that is missing in the actual topology with respect to the
target topology.	
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	dd = connection number (\%4)
	cc = component number (\%3)
	bb = component class (\% 2)
	aa = component number of the component that has not been inserted (\% 1)

### 4.2 List of faults and alarms

Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).


A01484	Topology: DRIVE-CLiQ Hub Module not connected
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ Hub Module missing in the actual topology with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

## A01485

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Topology: Controller Extension not connected
Component: \%1, to \%2, \%3, connection: \%4
Error in the parameterization / configuration / commissioning procedure (18)
All objects
None Propagation: LOCAL
NONE
NONE
The topology comparison has detected a Control Extension (CX32) missing in the actual topology with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
$\mathrm{dd}=$ connection number (\%4)
$\mathrm{cc}=$ component number (\%3)
bb = component class (\% 2)
$\mathrm{aa}=$ component number of the component that has not been inserted $(\% 1)$

	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
A01486	Topology: DRIVE-CLiQ component not connected
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ component missing in the actual topology with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).


A01487	Topology: Option slot component not inserted
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected an option slot component missing in the actual topology with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal): ddccbbaa hex:
	dd = connection number (\%4)
	$\mathrm{cc}=$ component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	$\mathrm{aa}=$ component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd , cc and bb , where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).


A01489	Topology: motor with DRIVE-CLiQ not connected
Message value:	Component: \%1, to \%2, \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a motor with DRIVE-CLiQ missing in the actual topology with respect to the
	target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	dd = connection number (\%4)
	cc = component number (\%3)
	bb = component class (\% 2)
	aa = component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.


Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterizing in the commissioning tool (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning tool where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).


A01507 (F, N)	BICO: Interconnections to inactive objects present
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	There are BICO interconnections to an inactive/inoperable drive object.
	The BI/CI parameters involved are listed in r9498.
	The associated BO/CO parameters are listed in r9499.
	The list of the BICO interconnections to other drive objects is displayed in r9491 and r9492 of the deactivated drive
	object.
	Note:
	r9498 and r9499 are only written to, if p9495 is not set to 0.
	Alarm value (r2124, interpret decimal):
	Number of BICO interconnections found to inactive drive objects.
Remedy:	- set all open BICO interconnections centrally to the factory setting with p9495 = 2.
	- make the non-operational drive object active/operational again (re-insert or activate components).
Reaction upon F:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)	
Reaction upon N:	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)    Acknowl. upon N: IMMEDIATELY    NONE

A01508
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## Remedy:

## BICO: Interconnections to inactive objects exceeded

Error in the parameterization / configuration / commissioning procedure (18) All objects
None Propagation: BICO

NONE
NONE
The maximum number of BICO interconnections (signal sinks) when deactivating a drive object was exceeded. When deactivating a drive object, all BICO interconnections (signal sinks) are listed in the following parameters: - r9498[0...29]: List of the BI/CI parameters involved.

- r9499[0...29]: List of the associated BO/CO parameters.

Not necessary.
This alarm is automatically withdrawn as soon as no BICO interconnection is entered in r9498[29] and r9499[29] (value = 0).
Notice:
When re-activating the drive object, all BICO interconnections should be checked and if required, re-established.

F01510	BICO: Signal source is not float type
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested connector output does not have the correct data type. This interconnection is not established.
	Fault value (r0949, interpret decimal):
	Parameter number to which an interconnection should be made (connector output).
Remedy:	Interconnect this connector input with a connector output having a float data type.
F01511 (A)	BICO: Interconnection with different scalings
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested BICO interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values.
	- the BICO output has different normalized units than the BICO input.
	- message only for interconnections within a drive object.
	Example:
	The BICO output has, as normalized unit, voltage and the BICO input has current.
	This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input.
	p2002: contains the reference value for current
	p2001: contains the reference value for voltage
	Fault value (r0949, interpret decimal):
	Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F01512	BICO: No scaling available
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	Infeed: OFF2 (OFF1)
	Servo: OFF2
	Vector: OFF2
	Hla: OFF2
Acknowledge:	POWER ON
Cause:	An attempt was made to determine a conversion factor for a scaling that does not exist.
	Fault value (r0949, interpret decimal):
	Unit (e.g. corresponding to SPEED) for which an attempt was made to determine a factor.
Remedy:	Apply scaling or check the transfer value.


F01513 (N, A)	BICO: Interconnection cross DO with different scalings
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested BICO interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values.
	An interconnection is made between different drive objects and the BICO output has different normalized units than the BICO input or the normalized units are the same but the reference values are different.
	Example 1:
	BICO output with voltage normalized unit, BICO input with current normalized unit, BICO output and BICO input lie in different drive objects. This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input.
	p2002: contains the reference value for current
	p2001: contains the reference value for voltage
	Example 2:
	BICO output with voltage normalized unit in drive object 1 (DO1), BICO input with voltage normalized unit in drive object 2 (DO2). The reference values for voltage (p2001) of the two drive objects have different values. This means that the factor p2001(DO1)/p2001(DO2) is calculated between the BICO output and the BICO input.
	p2001: contains the reference value for voltage, drive objects 1, 2
	Fault value (r0949, interpret decimal):
	Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A :	NONE
A01514 (F)	BICO: Error when writing during a reconnect
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	During a reconnect operation (e.g. while booting or downloading - but can also occur in normal operation) a parameter was not able to be written to.
	Example:
	When writing to BICO input with double word format (DWORD), in the second index, the memory areas overlap (e.g. p8861). The parameter is then reset to the factory setting.
	Alarm value (r2124, interpret decimal):
	Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
F01515 (A)	BICO: Writing to parameter not permitted as the master control is active
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing the number of CDS or when copying from CDS, the master control is active.

### 4.2 List of faults and alarms

Remedy:	If required, return the master control and repeat the operation.
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A01590 (F)	Drive: Motor maintenance interval expired
Message value:	Fault cause: \%1 bin
Message class:	General drive fault (19)
Drive object: All objects   Component: Motor   Reaction: NONE   Acknowledge: NONE   Cause: The selected service/maintenance interval for this motor was reached.    Alarm value (r2124, interpret decimal):    Motor data set number.    See also: p0650 (Actual motor operating hours), p0651 (Motor operating hours maintenance interval)   Remedy: carry out service/maintenance and reset the service/maintenance interval (p0651).   Reaction upon F: NONE   Acknowl. upon F: IMMEDIATELY$l$	


F01600	SI P1 (CU): STOP A initiated
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on the Control Unit (CU) has detected a fault and initiated a STOP A

- forced checking procedure (test stop) of the safety switch-off signal path of the Control Unit unsuccessful.
- subsequent response to fault F01611 (defect in a monitoring channel).

Fault value (r0949, interpret decimal):
0 : Stop request from monitoring channel 2.
1005:

- STO active, although STO not selected and there is no internal STOP A active.
- For a Power Module with "STO via terminals at the Power Module" (STO_A/STO_B), these terminals are active (DIP switch to "ON"). However, the "STO via terminals at the Power Module" function has not been enabled (p9601.7 = p9801.7 = 0).
1010: STO inactive although STO is selected or an internal STOP A is present.
1015: Feedback signal of STO for Motor Modules connected in parallel are different.
9999: Subsequent response to fault F01611.
Remedy: - select Safe Torque Off and de-select again.
- replace the Motor Module involved.

For fault value $=1005$ :

- deactivate terminals STO_A/STO_B on the Power Module (set both DIP-switches to "OFF") or enable the "STO via terminals at the Power Module" function.

For fault value = 9999:

- carry out diagnostics for fault F01611.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill

F01600	SI P1 (CU): STOP A initiated
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on the Control Unit (CU) has detected a fault and initiated a STOP A (STO via the safety switch-off signal path of the Control Unit).
	- forced checking procedure (test stop) of the safety switch-off signal path of the Control Unit unsuccessful.   - subsequent response to fault F01611 (defect in a monitoring channel).
	Fault value (r0949, interpret decimal):
	0 : Stop request from monitoring channel 2.
	1005: STO active although STO not selected and there is no internal STOP A present.
	1010: STO inactive although STO is selected or an internal STOP A is present.
	9999: Subsequent response to fault F01611.
Remedy:	- select Safe Torque Off and de-select again.
	- replace Hydraulic Module involved.
	For fault value = 9999:
	- carry out diagnostics for fault F01611.
	Note:
	CU: Control Unit
	SI: Safety Integrated
	STO: Safe Torque Off / SH: Safe standstill
F01611 (A)	SI P1 (CU): Defect in a monitoring channel
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 has detected a fault in the data cross-check between the two monitoring channels and has initiated a STOP F.
	As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.
	Fault value (r0949, interpret decimal):
	0 : Stop request from another monitoring channel.
	1 ... 999:
	Number of the cross-compared data that resulted in this fault. This number is also displayed in r9795.
	1: SI monitoring clock cycle (r9780, r9880).
	2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.
	4: SI transition period STOP F to STOP A (p9658, p9858).
	5: SI enable Safe Brake Control (p9602, p9802).
	6: SI Motion enable, safety-relevant functions (p9501, internal value).
	7: SI delay time of STO for Safe Stop 1 (p9652, p9852).
	8: SI PROFIsafe address (p9610, p9810).
	9: SI debounce time for STO/SBC/SS1 (p9651, p9851).
	10: SI delay time for initiating STO for ESR (p9697, p9897).
	11: SI Safe Brake Adapter mode, BICO interconnection (p9621, p9821).
	12: SI Safe Brake Adapter relay ON time (p9622[0], p9822[0]).
	13: SI Safe Brake Adapter relay OFF time (p9622[1], p9822[1]).
	14: SI PROFIsafe telegram selection ( $\mathrm{p} 9611, \mathrm{p} 9811$ ).
	15: SI PROFIsafe bus failure response (p9612, p9812).

1000: Watchdog timer has expired.
Within the time of approx. $5 \times \mathrm{p} 9650$, alternatively, the following was defined:

- the signal at terminal EP of the Motor Module continually changed with time intervals less than or equal to the discrepancy time (p9650/p9850).
- via PROFIsafe/TM54F, STO (also as subsequent response) was continually selected and deselected with time intervals less than or equal to the discrepancy time (p9650/p9850).
- safe pulse cancellation (r9723.9-also as subsequent response) was continually selected and deselected with time intervals less than or equal to the discrepancy time (p9650/p9850).
1001, 1002: Initialization error, change timer / check timer.
1900: CRC error in the SAFETY sector.
1901: CRC error in the ITCM sector.
1902: Overloading in the ITCM sector has occurred in operation.
1903: Internal parameterizing error for CRC calculation.
1950: Module temperature outside the permissible temperature range.
1951: Module temperature not plausible.
2000: Status of the STO selection for both monitoring channels different.
2001: Feedback signal of STO shutdown for both monitoring channels different. This value can also subsequently occur as a result of other faults.
2002: Status of the delay timer SS1 for both monitoring channels different (status of the timer in p9650/p9850).
2003: Status of the STO terminal for both monitoring channels different.
2004: Status of the STO selection for Motor Modules connected in parallel different.
2005: Feedback signal of the safe pulse suppression on the Control Unit and Motor Modules connected in parallel different.
6000 ... 6999:
Error in the PROFIsafe control.
For these fault values, the failsafe control signals (Failsafe Values) are transferred to the safety functions. If "STOP B after failure of the PROFIsafe communication" (p9612) is parameterized, the transfer of the Failsafe Values is delayed.
6000: A fatal PROFIsafe communication error has occurred.
6064 ... 6071: error when evaluating the F parameter. The values of the transferred F parameters do not match the expected values in the PROFIsafe driver.
6064: Destination address and PROFIsafe address are different (F_Dest_Add).
6065: Destination address not valid (F_Dest_Add).
6066: Source address not valid (F_Source_Add).
6067: Watchdog time not valid (F_WD_Time).
6068: Incorrect SIL level (F_SIL).
6069: Incorrect F-CRC length (F_CRC_Length).
6070: Incorrect F parameter version (F_Par_Version).
6071: CRC error for the F parameters (CRC1). The transferred CRC value of the F parameters does not match the value calculated in the PROFIsafe driver.
6072: F parameterization is inconsistent.
6165: A communications error was identified when receiving the PROFIsafe telegram. The fault may also occur if an inconsistent or out-of-date PROFIsafe telegram has been received after switching the Control Unit off and on or after plugging in the PROFIBUS/PROFINET cable.
6166: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
Remedy: $\quad$ For fault value $=1 \ldots 5$ and $7 \ldots 99$ :
- check the cross data comparison that resulted in a STOP F.
- carry out a POWER ON (switch-off/switch-on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value $=6$ :

- carry out a POWER ON (switch-off/switch-on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value $=1000$ :

- check the EP terminal at the Motor Module (contact problems).
- PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller.
- check the wiring of the failsafe inputs at the TM54F (contact problems).
- check the discrepancy time, and if required, increase the value (p9650/p9850).

For fault value $=1001,1002$ :

- carry out a POWER ON (switch-off/switch-on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value = 1900, 1901, 1902:

- carry out a POWER ON (switch-off/switch-on) for all components.
- upgrade the Control Unit software.
- replace Control Unit.

For fault value $=2000,2001,2002,2003,2004,2005$ :

- check the discrepancy time, and if required, increase the value (p9650/p9850, p9652/p9852).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
- check the causes of the STO selection in r9772. When the SMM functions are active (p9501 = 1), STO can also be selected using these functions.
- replace the Motor Module involved.
- diagnose the other active faults and resolve the causes.

Note:
This fault can be acknowledged after removing the cause of the error and after correct selection/deselection of STO. For fault value $=6000$ :

- carry out a POWER ON (switch-off/switch-on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the two monitoring channels and, if required, carry out a diagnostics routine for the faults identified.
- increase the monitoring cycle clock settings (p9500, p9511).
- upgrade firmware to later version.
- contact Technical Support.
- replace the Control Unit.

For fault value $=6064$ :

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810). For fault value $=6065$ :
- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave. It is not permissible for the destination address to be either 0 or FFFF!
For fault value $=6066$ :
- check the setting of the value in the F parameter F_Source_Add at the PROFIsafe slave. It is not permissible for the source address to be either 0 or FFFF!
For fault value = 6067:
- check the setting of the value in the F parameter F_WD_Time at the PROFIsafe slave. It is not permissible for the watch time to be 0 !
For fault value $=6068$ :
- check the setting of the value in the F parameter F_SIL at the PROFIsafe slave. The SIL level must correspond to SIL2!
For fault value $=6069$ :
- check the setting of the value in the F parameter F_CRC_Length at the PROFIsafe slave. The setting of the CRC2 length is 2-byte CRC in the V1 mode and 3-byte CRC in the V2 mode!
For fault value $=6070$ :
- check the setting of the value in the F parameter F_Par_Version at the PROFIsafe slave. The value for the F parameter version is 0 in the V1 mode and 1 in the V2 mode!
For fault value $=6071$ :
- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and, if required, update.


### 4.2 List of faults and alarms

	For fault value $=6072$ :
	- check the settings of the values for the F parameters and, if required, correct.
	The following combinations are permissible for F parameters $\mathrm{F}_{-} \mathrm{CRC}$ _Length and $\mathrm{F}_{\text {_ Par_Version: }}$
	F_CRC_Length $=2$-byte CRC and F_Par_Version $=0$
	F_CRC_Length $=3$-byte CRC and F_Par_Version $=1$
	For fault value $=6165$ :
	- if the fault occurs after powering up the Control Unit or after plugging in the PROFIBUS/PROFINET cable, acknowledge the fault.
	- check the configuration and communication at the PROFIsafe slave.
	- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
	- check whether there is a DRIVE-CLiQ communication error between the two monitoring channels and, if required, carry out a diagnostics routine for the faults identified.
	- check whether all F parameters of the drive match the F parameters of the F host.
	For fault value $=6166$ :
	- check the configuration and communication at the PROFIsafe slave.
	- check the setting of the value for $F$ parameter $F_{-}$WD_Time on the PROFIsafe slave and increase if necessary.   - evaluate diagnostic information in the $F$ host.
	- check PROFIsafe connection.
	- check whether all F parameters of the drive match the F parameters of the F host.
	Note:
	CU: Control Unit
	EP: Enable Pulses (pulse enable)
	ESR: Extended Stop and Retract
	MM: Motor Module
	SGE: Safety-relevant input
	SI: Safety Integrated
	SMM: Safe Motion Monitoring
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
	STO: Safe Torque Off / SH: Safe standstill
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F01611 (A)	SI P1 (CU): Defect in a monitoring channel
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 has detected a fault in the data cross-check between the two monitoring channels and has initiated a STOP F.
	As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.
	Fault value (r0949, interpret decimal):
	0 : Stop request from another monitoring channel.
	1 ... 999:
	Number of the cross-compared data that resulted in this fault. This number is also displayed in r9795.
	1: SI monitoring clock cycle (r9780, r9880).
	2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.   3: SI SGE changeover discrepancy time (p9650, p9850).
	4: SI transition period STOP F to STOP A (p9658, p9858).
	6: SI Motion enable, safety-relevant functions (p9501, internal value).
	7: SI delay time of STO for Safe Stop 1 (p9652, p9852).
	8: SI PROFIsafe address (p9610, p9810).
	9: SI debounce time for STO/SBC/SS1 (p9651, p9851).
	10: SI delay time for initiating STO for ESR (p9697, p9897).

11: SI HLA shutoff valve feedback signal contact configuration (p9626, p9826).
12: SI HLA shutoff valve wait time switch-on (p9625[0], p9825[0]).
13: SI HLA shutoff valve wait time switch-off (p9625[1], p9825[1]).
14: SI PROFIsafe telegram selection ( $\mathrm{p} 9611, \mathrm{p} 9811$ ).
15: SI PROFIsafe bus failure response (p9612, p9812).
1000: Watchdog timer has expired.
Within the time of approx. $5 \times \mathrm{p9650}$, alternatively, the following was defined:

- the signal at terminal STO of the Hydraulic Module continually changed with time intervals less than or equal to the discrepancy time (p9650/p9850).
- via PROFIsafe/TM54F, STO (also as subsequent response) was continually selected and deselected with time intervals less than or equal to the discrepancy time (p9650/p9850).
1001, 1002: Initialization error, change timer / check timer.
1900: CRC error in the SAFETY sector.
1901: CRC error in the ITCM sector.
1902: Overloading in the ITCM sector has occurred in operation.
1903: Internal parameterizing error for CRC calculation.
1950: Module temperature outside the permissible temperature range.
1951: Module temperature not plausible.
2000: Status of the STO selection for both monitoring channels different.
2001: Feedback signal of STO shutdown for both monitoring channels different. This value can also subsequently occur as a result of other faults.

2002: Status of the delay timer SS1 for both monitoring channels different (status of the timer in p9650/p9850).
2003: Status of the STO terminal for both monitoring channels different.
6000 ... 6999:
Error in the PROFIsafe control.
For these fault values, the failsafe control signals (Failsafe Values) are transferred to the safety functions. If "STOP B after failure of the PROFIsafe communication" (p9612) is parameterized, the transfer of the Failsafe Values is delayed.
6000: A fatal PROFIsafe communication error has occurred.
6064 ... 6071: error when evaluating the F parameter. The values of the transferred $F$ parameters do not match the expected values in the PROFIsafe driver.
6064: Destination address and PROFIsafe address are different (F_Dest_Add).
6065: Destination address not valid (F_Dest_Add).
6066: Source address not valid (F_Source_Add).
6067: Watchdog time not valid (F_WD_Time).
6068: Incorrect SIL level (F_SIL).
6069: Incorrect F-CRC length (F_CRC_Length).
6070: Incorrect F parameter version (F_Par_Version).
6071: CRC error for the $F$ parameters (CRC1). The transferred CRC value of the $F$ parameters does not match the value calculated in the PROFIsafe driver.
6072: F parameterization is inconsistent.
6165: A communications error was identified when receiving the PROFIsafe telegram. The fault may also occur if an inconsistent or out-of-date PROFIsafe telegram has been received after switching the Control Unit off and on or after plugging in the PROFIBUS/PROFINET cable.
6166: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
Remedy: $\quad$ For fault value $=1 \ldots 5$ and $7 \ldots 99$ :

- check the cross data comparison that resulted in a STOP F.
- carry out a POWER ON (switch-off/switch-on) for all components.
- upgrade the Hydraulic Module software.
- upgrade the Control Unit software.

For fault value $=6$ :

- carry out a POWER ON (switch-off/switch-on) for all components.
- upgrade the Hydraulic Module software.
- upgrade the Control Unit software.

For fault value $=1000$ :

- check the STO terminal at the Hydraulic Module (contact problems).
- PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller.
- check the wiring of the failsafe inputs at the TM54F (contact problems).
- check the discrepancy time, and if required, increase the value (p9650/p9850).

For fault value $=1001,1002$ :

- carry out a POWER ON (switch-off/switch-on) for all components.
- upgrade the Hydraulic Module software.
- upgrade the Control Unit software.

For fault value $=1900,1901,1902$ :

- carry out a POWER ON (switch-off/switch-on) for all components.
- upgrade the Control Unit software.
- replace Control Unit.

For fault value $=2000,2001,2002,2003$ :

- check the discrepancy time, and if required, increase the value (p9650/p9850, p9652/p9852).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
- check the causes of the STO selection in r9772. When the SMM functions are active (p9501 = 1), STO can also be selected using these functions.
- replace Hydraulic Module involved.
- diagnose the other active faults and resolve the causes.

Note:
This fault can be acknowledged after removing the cause of the error and after correct selection/deselection of STO. For fault value $=6000$ :

- carry out a POWER ON (switch-off/switch-on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the two monitoring channels and, if required, carry out a diagnostics routine for the faults identified.
- increase the monitoring cycle clock settings (p9500, p9511).
- upgrade firmware to later version.
- contact Technical Support.
- replace the Control Unit.

For fault value $=6064$ :

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the hydraulic module (p9810).

For fault value $=6065$ :

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave. It is not permissible for the destination address to be either 0 or FFFF!
For fault value $=6066$ :
- check the setting of the value in the F parameter F_Source_Add at the PROFIsafe slave. It is not permissible for the source address to be either 0 or FFFF!
For fault value $=6067$ :
- check the setting of the value in the F parameter F_WD_Time at the PROFIsafe slave. It is not permissible for the watch time to be 0 !
For fault value $=6068$ :
- check the setting of the value in the F parameter F_SIL at the PROFIsafe slave. The SIL level must correspond to SIL2!
For fault value $=6069$ :
- check the setting of the value in the F parameter F_CRC_Length at the PROFIsafe slave. The setting of the CRC2 length is 2-byte CRC in the V1 mode and 3-byte CRC in the V2 mode!
For fault value $=6070$ :
- check the setting of the value in the F parameter F_Par_Version at the PROFIsafe slave. The value for the F parameter version is 0 in the V1 mode and 1 in the $\overline{\mathrm{V}} 2$ mode!
For fault value $=6071$ :
- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and, if required, update.

	For fault value $=6072$ :
	- check the settings of the values for the F parameters and, if required, correct.
	The following combinations are permissible for $F$ parameters F_CRC_Length and F_Par_Version:
	F_CRC_Length $=2$-byte CRC and F_Par_Version $=0$
	F_CRC_Length $=3$-byte CRC and F_Par_Version $=1$
	For fault value $=6165$ :
	- if the fault occurs after powering up the Control Unit or after plugging in the PROFIBUS/PROFINET cable, acknowledge the fault.
	- check the configuration and communication at the PROFIsafe slave.
	- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
	- check whether there is a DRIVE-CLiQ communication error between the two monitoring channels and, if required, carry out a diagnostics routine for the faults identified.
	- check whether all F parameters of the drive match the F parameters of the F host.
	For fault value $=6166$ :
	- check the configuration and communication at the PROFIsafe slave.
	- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
	- evaluate diagnostic information in the F host.
	- check PROFIsafe connection.
	- check whether all F parameters of the drive match the F parameters of the F host.
	Note:
	CU: Control Unit
	EP: Enable Pulses (pulse enable)
	ESR: Extended Stop and Retract
	MM: Motor Module
	SGE: Safety-relevant input
	SI: Safety Integrated
	SMM: Safe Motion Monitoring
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
	STO: Safe Torque Off / SH: Safe standstill
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01612	SI P1 (CU): STO inputs for power units connected in parallel different
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on the Control Unit (CU) has identified different states of the AND'ed STO inputs for power units connected in parallel and has initiated a STOP F.
	As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.
	Fault value (r0949, interpret binary):
	Binary image of the digital inputs of the Control Unit that are used as signal source for the function "Safe Torque Off".
Remedy:	- check the tolerance time SGE changeover and if required, increase the value (p9650).
	- check the wiring of the safety-relevant inputs (SGE) (contact problems).
	Note:
	CU: Control Unit
	SGE: Safety-relevant input
	SI: Safety Integrated
	STO: Safe Torque Off / SH: Safe standstill


N01620 (F, A)	SI P1 (CU): Safe Torque Off active
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Torque Off" (STO) function of the basic functions has been selected on the Control Unit (CU) using the input terminal and is active.
	Note:
	- this message does not result in a safety stop response.
	- this message is not output when STO is selected using the Extended Functions.
Remedy:	Not necessary.
	Note:
	CU: Control Unit
	SI: Safety Integrated
	STO: Safe Torque Off / SH: Safe standstill
Reaction upon F:	OFF2
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon A:	NONE
Acknowl. upon A:	NONE
N01621 (F, A)	SI P1 (CU): Safe Stop 1 active
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Stop 1" (SS1) function has been selected on the Control Unit (CU) and is active.
	Note:
	This message does not result in a safety stop response.
Remedy:	Not necessary.
	Note:
	CU: Control Unit
	SI: Safety Integrated
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
Reaction upon F:	NONE (OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F01625	SI P1 (CU): Sign-of-life error in safety data
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on the Control Unit (CU) has detected an error in the sign-of-life of the safety data between the two monitoring channels and has initiated a STOP A.
	- there is either a DRIVE-CLiQ communication error or communication has failed.
	- a time slice overflow of the safety software has occurred.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.

### 4.2 List of faults and alarms



### 4.2 List of faults and alarms

Remedy: $\quad$ - check parameter p1278 (for SBC, only p1278 = 0 is permissible). $\quad$ - for a parallel connection, check the setting of the power unit data set to control the holding brake (p7015). $\quad$ - select Safe Torque Off and de-select again.

A01631 (F, N)	SI P1 (CU): motor holding brake/SBC configuration not practical
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_AC AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	A configuration of motor holding brake and SBC was detected that is not practical.
	The following configurations can result in this message:
	- "No motor holding brake available" (p1215 = 0) and "SBC" enabled (p9602 = 1).
	- "Motor holding brake just like the sequence control, connection via BICO" (p1215 = 3) and "SBC" enabled (p9602 =
	1).
	Note:
	SBC: Safe Brake Control
Remedy:	Check the parameterization of the motor holding brake and SBC and correct.
	See also: p1215 (Motor holding brake configuration), p9602 (SI enable Safe Brake Control (Control Unit)), p9802 (SI
	enable Safe Brake Control (Motor Module))
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F01632 SI P1 (CU): shutoff valve control/feedback signal error
Message value: \%1
Message class: Safety monitoring channel has identified an error (10)
Drive object: HLA
Component: None Propagation: GLOBAL
Reaction:
Acknowledge:
OFF2
IMMEDIATELY (POWER ON)
Cause: The drive-integrated "Safety Integrated" function on the Control Unit (monitoring channel 1) has detected a fault for
the control/feedback signal of the shutoff valve and initiated a STOP A.
Possible causes:
- shutoff valve either not connected or not correctly connected (X272).
- feedback signal of the shutoff valve either not connected or not correctly connected (X281/X282).
- feedback signal of the shutoff valve incorrectly set (p9626/p9826).
- shutoff valve defective.
- Hydraulic Module defective.

	Fault value (r0949, interpret decimal): 10, 11:
	Fault in the "Open shutoff valve" operation.
	20:
	Fault in the "Shutoff valve open" state.
	30, 31:
	Fault in the "Close shutoff valve" operation.
	40:
	Fault in the "Shutoff valve closed" state.
	50, 80:
	Fault in the control/feedback signal of the cutoff valve or communication error between the Control Unit and the Hydraulic Module.
Remedy:	- check the shutoff valve connection (X272).
	- check the feedback signals of the shutoff valve (X281, X282).
	- check the configuration of the feedback signals of the shutoff valve (p9626/p9826).
	- check for EMC-compliant control cabinet design and cable routing (e.g. use shielded cables and connect the shield).
	- if necessary, replace the shutoff valve.
	- if necessary, replace the Hydraulic Module.
	See also: p9626 (SI HLA shutoff valve feedback signal contact configuration (CU)), p9826 (SI HLA shutoff valve feedback signal contact configuration (MM))
$\overline{\mathrm{F} 01640 \text { ( }}$, A)	SI P1 (CU): component replacement identified and acknowledgment/save required
Message value:	Fault cause: \%1
Message class:	General drive fault (19)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	"Safety Integrated" has identified that a component has been replaced.
	It is no longer possible to operate the particular drive without fault.
	When safety functions are active, after a component has been replaced it is necessary to carry out a partial acceptance test.
	Fault value (r0949, interpret binary):
	Bit $0=1$ :
	It has been identified that the Control Unit has been replaced.
	Bit $1=1$ :
	It has been identified that the Motor Module/Hydraulic Module has been replaced.
	Bit $2=1$ :
	It has been identified that the Power Module has been replaced.
	Bit 3 = 1:
	It has been identified that the Sensor Module channel 1 has been replaced.
	Bit $4=1$ :
	It has been identified that the Sensor Module channel 2 has been replaced.
	Bit $5=1$ :
	It has been identified that the sensor channel 1 has been replaced.
	Bit $6=1$ :
	It has been identified that sensor channel 2 has been replaced.
Remedy:	- acknowledge component replacement (p9702 = 29).
	- save all parameters (p0977 = 1 or p0971 = 1 or "copy RAM to ROM").
	- acknowledge fault (e.g. binector input p2103).
	Note:
	In addition to the fault, diagnostics bits r9776.2 and r9776.3 are set.
	See also: p9702 (SI Acknowledge component replacement), r9776 (SI diagnostics)


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01641 (N, A)	SI P1 (CU): component replacement identified and save required
Message value:	Fault cause: \%1
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	"Safety Integrated" has identified that a component has been replaced.
	No additional fault response is initiated, therefore operation of the particular drive is not restricted.
	When safety functions are active, after a component has been replaced it is necessary to carry out a partial acceptance test.
	Fault value (r0949, interpret binary):
	Bit $0=1$ :
	It has been identified that the Control Unit has been replaced.
	Bit $1=1$ :
	It has been identified that the Motor Module/Hydraulic Module has been replaced.
	Bit $2=1$ :
	It has been identified that the Power Module has been replaced.
	Bit 3 = 1:
	It has been identified that the Sensor Module channel 1 has been replaced.
	Bit $4=1$ :
	It has been identified that the Sensor Module channel 2 has been replaced.
	Bit 5 = 1:
	It has been identified that the sensor channel 1 has been replaced.
	Bit $6=1$ :
	It has been identified that sensor channel 2 has been replaced.
Remedy:	- save all parameters (p0977 = 1 or p0971 = 1 or "copy RAM to ROM").
	- acknowledge fault (e.g. binector input p2103).
	See also: r9776 (SI diagnostics)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F01641 (N, A) SI P1 (CU): component replacement identified and save required
Message value: Fault cause: \%1
Message class: $\quad$ General drive fault (19)
Drive object: TM54F_MA
Component: Control Unit (CU)
Reaction:
Acknowledge:
NONE
IMMEDIATELY
Cause:
The "Safety Integrated" function integrated in the drive has identified that a Terminal Module 54F (TM54F) has been replaced.
Remedy: - save all parameters (p0977 = 1 or p0971 = 1 or "copy RAM to ROM").

- acknowledge fault (e.g. binector input p2103).

See also: r9776 (SI diagnostics)
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F01649	SI P1 (CU): Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal error in the Safety Integrated software on the Control Unit has occurred.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- re-commission the "Safety Integrated" function and carry out a POWER ON.
	- upgrade the firmware of the Control Unit to a later version.
	- contact Technical Support.
	- replace the Control Unit.
	Note:
	CU: Control Unit
	SI: Safety Integrated
F01650	SI P1 (CU): Acceptance test required
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on monitoring channel 1 requires an acceptance test.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, interpret decimal):
	130: Safety parameters for monitoring channel 2 not available.
	Note:
	This fault value is always output when Safety Integrated is commissioned for the first time.
	- as a result of the changed current controller sampling time (p0115[0]), the clock cycle time for the Safety Integrated
	Basic Functions (r9780) was adapted.
	- at least one checksum-checked piece of data is defective.
	- safety parameters set offline and loaded into the Control Unit.
	2000: Reference and actual checksum on monitoring channel 1 are not identical (commissioning mode).
	- reference checksum on monitoring channel 1 incorrectly entered (p9799 not equal to r9798).
	- when de-activating the safety functions, p9501 or p9503 were not deleted.
	2001: Reference and actual checksum on monitoring channel 2 are not identical (commissioning mode).
	- reference checksum on monitoring channel 2 incorrectly entered (p9899 not equal to r9898).
	- when de-activating the safety functions, p9501 or p9503 are not deleted.
	2002: Enable of safety-related functions between the two monitoring channels differ (p9601 not equal to p9801).
	2004: An acceptance test is required because a project with enabled safety-functions has been downloaded.
	2005: The Safety logbook has identified that a functional safety checksum has changed. An acceptance test is required.

2020: Error when saving the safety parameters for the monitoring channel 2.
3003: Acceptance test is required as a hardware-related safety parameter has been changed.
3005: The Safety logbook has identified that a hardware-related safety checksum has changed. An acceptance test is required.
9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.

Remedy:
For fault value $=130$ :

- carry out safety commissioning routine.

For fault value $=1000$ :

- check the Safety Integrated Basic Functions (r9780) and adapt the reference checksum (p9799).
- again carry out safety commissioning routine.
- replace the memory card or Control Unit.
- Using STARTER, activate the safety parameters for the drive involved (change settings, copy parameters, activate settings).
For fault value $=2000$ :
- check the safety parameters on monitoring channel 1 and adapt the reference checksum (p9799).

For fault value $=2001$ :

- check the safety parameters on monitoring channel 2 and adapt the reference checksum (p9899).

For fault value = 2002:

- check the enable the safety-related functions on both monitoring channels (p9601 = p9801).

For fault value $=2003,2004,2005$ :

- carry out an acceptance test and generate an acceptance report.

The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
SINAMICS S120 Function Manual Safety Integrated
Note:
The fault with fault value 2005 can only be acknowledged when the "STO" function is de-selected.
For fault value $=2010$ :

- check the enable the safety-related brake control on both monitoring channels (p9602 = p9802).

For fault value = 2020:

- again carry out safety commissioning routine.
- replace the memory card or Control Unit.

For fault value $=3003$ :

- carry out the function checks for the modified hardware and generate an acceptance report.

The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:

## SINAMICS S120 Function Manual Safety Integrated

For fault value $=3005$ :

- carry out the function checks for the modified hardware and generate an acceptance report.

The fault with fault value 3005 can only be acknowledged when the "STO" function is de-selected.
For fault value = 9999:

- carry out diagnostics for the other safety-related fault that is present.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated
STO: Safe Torque Off
See also: p9799 (SI reference checksum SI parameters (Control Unit)), p9899 (SI reference checksum SI parameters (Motor Module))

F01650	SI P1 (CU): Acceptance test required
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on monitoring channel 1 requires an acceptance test.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, interpret decimal):
	130: Safety parameters for monitoring channel 2 not available.
	Note:
	This fault value is always output when Safety Integrated is commissioned for the first time.
	1000: Reference and actual checksum on monitoring channel 1 are not identical (booting).
	- as a result of the changed current controller sampling time ( $\mathrm{p} 0115[0]$ ), the clock cycle time for the Safety Integrated Basic Functions (r9780) was adapted.
	- at least one checksum-checked piece of data is defective.
	- safety parameters set offline and loaded into the Control Unit.
	2000: Reference and actual checksum on monitoring channel 1 are not identical (commissioning mode).
	- reference checksum on monitoring channel 1 incorrectly entered (p9799 not equal to r9798).
	- when de-activating the safety functions, p9501 or p9503 were not deleted.
	2001: Reference and actual checksum on monitoring channel 2 are not identical (commissioning mode).
	- reference checksum on monitoring channel 2 incorrectly entered (p9899 not equal to r9898).
	- when de-activating the safety functions, p9501 or p9503 are not deleted.
	2002: Enable of safety-related functions between the two monitoring channels differ (p9601 not equal to p9801).
	2004: An acceptance test is required because a project with enabled safety-functions has been downloaded.
	2005: The Safety logbook has identified that a functional safety checksum has changed. An acceptance test is required.
	2020: Error when saving the safety parameters for the monitoring channel 2.
	3003: Acceptance test is required as a hardware-related safety parameter has been changed.
	3005: The Safety logbook has identified that a hardware-related safety checksum has changed. An acceptance test is required.
	9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
Remedy:	For fault value $=130$ :
	- carry out safety commissioning routine.
	For fault value $=1000$ :
	- check the Safety Integrated Basic Functions (r9780) and adapt the reference checksum (p9799).
	- again carry out safety commissioning routine.
	- replace the memory card or Control Unit.
	- Using STARTER, activate the safety parameters for the drive involved (change settings, copy parameters, activate settings).
	For fault value $=2000$ :
	- check the safety parameters on monitoring channel 1 and adapt the reference checksum (p9799).
	For fault value $=2001$ :
	- check the safety parameters on monitoring channel 2 and adapt the reference checksum (p9899).
	For fault value $=2002$ :
	- check the enable the safety-related functions on both monitoring channels ( $\mathrm{p} 9601=\mathrm{p} 9801$ ) .

### 4.2 List of faults and alarms

For fault value $=2003,2004,2005$ :

- carry out an acceptance test and generate an acceptance report.

The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
SINAMICS S120 Function Manual Safety Integrated
The fault with fault value 2005 can only be acknowledged when the "STO" function is de-selected.
For fault value $=2020$ :

- again carry out safety commissioning routine.
- replace the memory card or Control Unit.

For fault value $=3003$ :

- carry out the function checks for the modified hardware and generate an acceptance report.

The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
SINAMICS S120 Function Manual Safety Integrated
For fault value $=3005$ :

- carry out the function checks for the modified hardware and generate an acceptance report.

The fault with fault value 3005 can only be acknowledged when the "STO" function is de-selected.
For fault value = 9999:

- carry out diagnostics for the other safety-related fault that is present.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated
STO: Safe Torque Off
See also: p9799 (SI reference checksum SI parameters (Control Unit)), p9899 (SI reference checksum SI parameters (Motor Module))

F01651	SI P1 (CU): Synchronization safety time slices unsuccessful
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The "Safety Integrated" function requires a synchronization of the safety time slices between the two monitoring
	channels and between the Control Unit and the higher-level control. This synchronization routine was unsuccessful.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret decimal):
	121:
	- with SINUMERIK Safety Integrated enabled, a drive-side warm restart was performed on the CU/NX.
	- with SINUMERIK Safety Integrated enabled, the function "restore factory setting" was selected on a drive object of
	the CU and a drive-side warm restart was initiated.
	150:
	- fault in the synchronization to the PROFIBUS master.
	All other values:
	- only for internal Siemens troubleshooting.
	See also: p9510 (SI Motion isochronous PROFIBUS master)


Remedy:	For fault value $=121$ :   - carry out a common POWER ON/warm restart for the higher-level control and SINAMICS.   For fault value $=150$ :   - check the setting of p9510 (SI Motion isochronous PROFIBUS master) and if required, correct.   General:   - carry out a POWER ON (switch-off/switch-on) for all components.   - upgrade the Motor Module/Hydraulic Module software.   - upgrade the Control Unit software.   - upgrade the software of the higher-level control.   Note:   CU: Control Unit   SI: Safety Integrated
F01652	SI P1 (CU): Illegal monitoring clock cycle
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	One of the Safety Integrated monitoring clock cycles is not permissible.
	- the monitoring clock cycle integrated in the drive cannot be maintained due to the communication conditions required in the system.
	- the monitoring clock cycle for safe motion monitoring functions is not permissible (p9500).
	- the actual value sensing clock cycle for safe motion monitoring functions is not permissible (p9511).
	- the sampling time for the current controller (p0112, p0115[0]) cannot be supported.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret decimal):
	For motion monitoring functions that are not enabled (p9601.2 $=$ p9801.2 $=0$, p9501 $=0$ ), the following applies: - Minimum setting for the monitoring clock cycle (in $\mu \mathrm{s}$ ).
	For motion monitoring functions that are enabled ( $\mathrm{p} 9601.2=\mathrm{p} 9801.2=1$ and/or p9501>0), the following applies: 100:
	- no matching monitoring clock cycle was able to be found.
	- an illegal actual value sensing clock cycle was set for S120M (p9511).
	101:
	- the monitoring clock cycle is not an integer multiple of the actual value sensing clock cycle.
	- SINAMICS S120M: the monitoring clock cycle (p9500) is not an integer multiple of 2 ms .
	102:
	- An error has occurred when transferring the actual value sensing clock cycle to the Motor Module.
	103:
	- An error has occurred when transferring the actual value sensing clock cycle to the Sensor Module.
	104, 105:
	- four times the current controller sampling time ( $\mathrm{p} 0115[0]$ ) is greater than 1 ms when operating with a nonisochronous PROFIBUS.
	- four times the current controller sampling time ( $\mathrm{p} 0115[0]$ ) is greater than the DP clock cycle when operating with an isochronous PROFIBUS.
	- the DP clock cycle is not an integer multiple of the sampling time of the current controller ( $\mathrm{p} 0115[0]$ ).
	106:
	- the monitoring clock cycle does not match the monitoring clock cycle of the TM54F.
	107:
	- the actual value sensing clock cycle (p9511) is less than four times the current controller sampling time (p0115[0]).
	- the actual value sensing clock cycle (p9511) is not an integer multiple of the sampling time of the current controller (p0115[0]).
	108:
	- the parameterized actual value sensing clock cycle cannot be set on this component

109:

- if the motion monitoring functions have been parameterized as encoderless (p9506), the actual value sensing clock cycle (p9511) and the current controller clock cycle (p0115[0]) must be identical.
- SINAMICS S110: if the motion monitoring functions have been parameterized as encoderless (p9506), the actual value sensing clock cycle p9511 must be $=250 \mu$ s.
110:
- the actual value sensing clock cycle (p9511) for safety with encoder (p9506 = 0) is less than 2 ms for this Control Unit (e.g. CU305).
111:
- the monitoring clock cycle is not an integer multiple of the sampling time of the current controller ( $\mathrm{p} 0115[0]$ ).

112:

- An actual value sensing clock cycle p9511 = 0 on a drive object of a Double Motor Module is not permissible in the existing configuration.
200, 201:
- S120M: the monitoring clock cycle cannot be maintained as a result of the conditions required in the system.

202:

- the current controller sampling time is set to zero (p0115[0]).

Remedy: $\quad$ For enabled SI monitoring integrated in the drive (p9601/p9801>0):

- upgrade the firmware of the Control Unit to a later version.

For enabled motion monitoring function (p9501>0):

- correct the monitoring clock cycle (p9500) and carry out POWER ON.

For fault value $=100$ :

- for S120M, set the actual value sensing clock cycle to p9511 $=0$.

For fault value $=101$ :

- actual value sensing clock cycle corresponds to position control clock cycle/DP clock cycle (factory setting).
- for motion monitoring functions integrated in the drive (p9601/p9801bit $2=1$ ) the actual value sensing clock cycle can be directly parameterized in p9511/p9311.
- SINAMICS S120M: set the monitoring clock cycle (p9500) to an integer multiple of 2 ms .

For fault value = 104, 105:

- set a separate actual value sensing clock cycle in p9511.
- restrict operation to a maximum of two vector drives. For the standard setting in p0112, p0115, the current controller sampling time is automatically reduced to $250 \mu \mathrm{~s}$. If the standard values were changed, then the current controller sampling time ( p 0112 , p0115) should be appropriately set.
- increase the DP clock cycle for operation with an isochronous PROFIBUS so that there is a multiple clock cycle ratio of at least $4: 1$ between the DP clock cycle and the current controller sampling time. A clock cycle ratio of at least 8:1 is recommended.
- With firmware version 2.5, please ensure that parameter p9510 is set to 1 in the drive (clock cycle synchronous operation).
For fault value $=106$ :
- set the parameters for the monitoring clock cycles the same (p10000 and p9500/p9300).

For fault value =107:

- set an actual value sensing clock cycle that matches the current controller clock cycle (p9511 >= 4 * p0115[0], 8 * p0115[0]) is recommended.
Note:
An actual value sensing clock cycle (p9511) that is set too low, can sporadically mean that safety messages C01711/C30711 are output with message value 1020 or 1021.
For fault value =108:
- set a suitable actual value sensing clock cycle in p9511.
- if the DP clock cycle is used as the actual value sensing clock cycle for operation with isochronous PROFIBUS ( $\mathrm{p} 9511=0$ ), then a suitable DP clock cycle must be configured. This must be set to less than 8 ms . If this is not possible, then p9511 must be set to the required actual value sensing clock cycle ( $<8 \mathrm{~ms}$ ).
- For SIMOTION D410-2, a suitable multiple of the DP clock cycle (e.g. 1, 2, 3, 4, 5, 6, 8, 10) must be parameterized. Otherwise, the clock cycle must be set to less than 8 ms .
For fault value $=109$ :
- set the actual value sensing clock cycle in p9511 to the same value as the current controller clock cycle ( $\mathrm{p} 0115[0]$ ).
- SINAMICS S110: set the actual value sensing clock cycle to p9511 $=250 \mu \mathrm{~s}$.

For fault value $=110$ :

- set the actual value sensing clock cycle in p9511 to 2 ms or higher.

For fault value = 111:

- set the monitoring clock cycle in p9500 as an integer multiple of the sampling time of the current controller (p0115[0]).
For fault value $=112$ :
- set the actual value sensing clock cycle p9511 to the required value (not equal to zero).

For fault value = 200, 201:

- increase the current controller sampling time (p0115[0]).
- if required, reduce the number of components connected to the corresponding DRIVE-CLiQ line, or distribute the components across several DRIVE-CLiQ sockets.
For fault value = 202:
- set the current controller sampling time to a sensible value (p0115[0]).

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

F01652
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## SI P1 (CU): Illegal monitoring clock cycle

\%1
Error in the parameterization / configuration / commissioning procedure (18) HLA
None Propagation: GLOBAL

OFF2
IMMEDIATELY (POWER ON)
One of the Safety Integrated monitoring clock cycles is not permissible.

- the monitoring clock cycle integrated in the drive cannot be maintained due to the communication conditions required in the system.
- the monitoring clock cycle for safe motion monitoring functions is not permissible (p9500).
- the actual value sensing clock cycle for safe motion monitoring functions is not permissible (p9511).
- the sampling time for the current controller (p0112, p0115[0]) cannot be supported.

Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
For motion monitoring functions that are not enabled (p9601.2 $=$ p9801.2 $=0$, p9501 $=0$ ), the following applies:

- Minimum setting for the monitoring clock cycle (in $\mu \mathrm{s}$ ).

For motion monitoring functions that are enabled (p9601.2 = p9801.2 = 1 and/or p9501 > 0), the following applies: 100:

- no matching monitoring clock cycle was able to be found.
- an illegal actual value sensing clock cycle was set for S120M (p9511).

101:

- the monitoring clock cycle is not an integer multiple of the actual value sensing clock cycle.

102:

- An error has occurred when transferring the actual value sensing clock cycle to the Hydraulic Module.

103:

- An error has occurred when transferring the actual value sensing clock cycle to the Sensor Module.

104, 105:

- four times the current controller sampling time ( $\mathrm{p} 0115[0]$ ) is greater than 1 ms when operating with a nonisochronous PROFIBUS.
- four times the current controller sampling time ( $\mathrm{p} 0115[0]$ ) is greater than the DP clock cycle when operating with an isochronous PROFIBUS.
- the DP clock cycle is not an integer multiple of the sampling time of the current controller ( $\mathrm{p} 0115[0]$ ).

106:

- the monitoring clock cycle does not match the monitoring clock cycle of the TM54F.

107:

- the actual value sensing clock cycle (p9511) is less than four times the current controller sampling time ( $\mathrm{p} 0115[0]$ ).
- the actual value sensing clock cycle (p9511) is not an integer multiple of the sampling time of the current controller (p0115[0]).
108:
- the parameterized actual value sensing clock cycle cannot be set on this component

111:

- the monitoring clock cycle is not an integer multiple of the sampling time of the current controller (p0115[0]).

112:

- an actual value sensing clock cycle p9511 $=0$ is not permissible in this configuration.

202:

- the current controller sampling time is set to zero ( $\mathrm{p} 0115[0]$ ).

Remedy: $\quad$ For enabled SI monitoring integrated in the drive (p9601/p9801 > 0):

- upgrade the firmware of the Control Unit to a later version.

For enabled motion monitoring function (p9501 > 0):

- correct the monitoring clock cycle (p9500) and carry out POWER ON.

For fault value $=100$ :

- for S120M, set the actual value sensing clock cycle to p9511 $=0$.

For fault value $=101$ :

- actual value sensing clock cycle corresponds to position control clock cycle/DP clock cycle (factory setting).
- for motion monitoring functions integrated in the drive (p9601/p9801bit $2=1$ ) the actual value sensing clock cycle can be directly parameterized in p9511/p9311.
For fault value $=104,105$ :
- set a separate actual value sensing clock cycle in p9511.
- restrict operation to a maximum of two vector drives. For the standard setting in p0112, p0115, the current controller sampling time is automatically reduced to $250 \mu \mathrm{~s}$. If the standard values were changed, then the current controller sampling time ( $\mathrm{p} 0112, \mathrm{p} 0115$ ) should be appropriately set.
- increase the DP clock cycle for operation with an isochronous PROFIBUS so that there is a multiple clock cycle ratio of at least $4: 1$ between the DP clock cycle and the current controller sampling time. A clock cycle ratio of at least 8:1 is recommended.
- With firmware version 2.5 , please ensure that parameter p9510 is set to 1 in the drive (clock cycle synchronous operation).
For fault value $=106$ :
- set the parameters for the monitoring clock cycles the same (p10000 and p9500/p9300).

For fault value = 107:

- set an actual value sensing clock cycle that matches the current controller clock cycle (p9511 >= 4 * p0115[0], 8 * p0115[0]) is recommended.
Note:
An actual value sensing clock cycle (p9511) that is set too low, can sporadically mean that safety messages C01711/C30711 are output with message value 1020 or 1021.
For fault value $=108$ :
- set a suitable actual value sensing clock cycle in p9511.
- if the DP clock cycle is used as the actual value sensing clock cycle for operation with isochronous PROFIBUS ( $\mathrm{p} 9511=0$ ), then a suitable DP clock cycle must be configured. This must be set to less than 8 ms . If this is not possible, then p9511 must be set to the required actual value sensing clock cycle ( $<8 \mathrm{~ms}$ ).
- For SIMOTION D410-2, a suitable multiple of the DP clock cycle (e.g. 1, 2, 3, 4, 5, 6, 8, 10) must be parameterized. Otherwise, the clock cycle must be set to less than 8 ms .
For fault value = 111:
- set the monitoring clock cycle in p9500 as an integer multiple of the sampling time of the current controller (p0115[0]).
For fault value $=112$ :
- set the actual value sensing clock cycle p9511 to the required value (not equal to zero).

For fault value $=202$ :

- set the current controller sampling time to a sensible value ( $\mathrm{p} 0115[0]$ ).

Note:
CU: Control Unit
SI: Safety Integrated

F01653	SI P1 (CU): PROFIBUS/PROFINET configuration error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	There is a PROFIBUS/PROFINET configuration error for using Safety Integrated monitoring functions with a higherlevel control (SINUMERIK or F-PLC).
	Note:
	For safety functions that have been enabled, this fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret decimal):
	200: A safety slot for receive data from the control has not been configured.
	210, 220: The configured safety slot for the receive data from the control has an unknown format.
	230: The configured safety slot for the receive data from the F-PLC has the incorrect length.
	231: The configured safety slot for the receive data from the F-PLC has the incorrect length.
	240: The configured safety slot for the receive data from the SINUMERIK has the incorrect length.
	250: A PROFIsafe slot is configured in the higher-level F control, however PROFIsafe is not enabled in the drive. 300: A safety slot for the send data to the control has not been configured.
	310, 320: The configured safety slot for the send data to the control has an unknown format.
	330: The configured safety slot for the send data to the F-PLC has the incorrect length.
	331: The configured safety slot for the send data to the F-PLC has the incorrect length.
	340: The configured safety slot for the send data to the SINUMERIK has the incorrect length.
	400: The telegram number in the F-PLC does not match the parameterization in the drive.
Remedy:	The following generally applies:
	- check and, if necessary, correct the PROFIBUS/PROFINET configuration of the safety slot on the master side.   - upgrade the Control Unit software.
	For fault value $=250$ :
	- remove the PROFIsafe configuring in the higher-level F control or enable PROFIsafe in the drive.
	For fault value $=231,331$ :
	- in the drive, parameterize the appropriate PROFIsafe telegram (p9611/p9811) to be set on the F-PLC and to be set in p60022.
	- Configure the PROFIsafe telegram matching the parameterization (p9611/p9811) in the F-PLC.
A01654 (F, N)	SI P1 (CU): Deviating PROFIsafe configuration
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration of a PROFIsafe telegram in the higher-level control (F-PLC) does not match the parameterization in the drive.
	Note:
	This message does not result in a safety stop response.
	Alarm value (r2124, interpret decimal):
	1:
	A PROFIsafe telegram is configured in the higher-level control, however PROFIsafe is not enabled in the drive (p9601.3).
	2 :
	PROFIsafe is parameterized in the drive; however, a PROFIsafe telegram has not been configured in the higher-level control.

### 4.2 List of faults and alarms



F01656	SI CU: Parameter monitoring channel 2 error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When accessing the Safety Integrated parameters for monitoring channel 2 in the non-volatile memory, an error has
	occurred.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, interpret decimal):
	129:
	- safety parameters for monitoring channel 2 corrupted.
	- drive with enabled safety functions was possibly copied offline using the commissioning tool and the project
	downloaded.
	131: Internal Motor Module/Hydraulic Module software error.
	132: Communication errors when uploading or downloading the safety parameters for monitoring channel 2.


Remedy:	- re-commission the safety functions.
	- upgrade the Control Unit software.
	- upgrade the Motor Module/Hydraulic Module software.
	- replace the memory card or Control Unit.
	For fault value = 129:
	- activate the safety commissioning mode (p0010 = 95).
	- adapt the PROFIsafe address (p9610).
	- start the copy function for SI parameters (p9700 = D0 hex).
	- acknowledge data change (p9701 = DC hex).
	- exit the safety commissioning mode ( $\mathrm{p} 0010=0$ ).
	- save all parameters (p0977 = 1 or "copy RAM to ROM").
	- carry out a POWER ON (switch-off/switch-on) for all components.
	For fault value = 132:
	- check the electrical cabinet design and cable routing for EMC compliance
	Note:
	CU: Control Unit
	SI: Safety Integrated

## F01657

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## SI P1 (CU): PROFIsafe telegram number invalid

 -Error in the parameterization / configuration / commissioning procedure (18) HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

## None

Propagation:
GLOBAL
OFF2
POWER ON
The PROFIsafe telegram number set in p9611 is not valid.
When PROFIsafe is enabled ( $\mathrm{p} 9601.3=1$ ), then a telegram number greater than zero must be entered in p9611. Note:
This fault does not result in a safety stop response.
See also: p9611 (SI PROFIsafe telegram selection (Control Unit)), p60022 (PROFIsafe telegram selection)
Remedy: $\quad$ Check the telegram number setting (p9611).

## F01658 SI P1 (CU): PROFIsafe telegram number differ

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Error in the parameterization / configuration / commissioning procedure (18)
HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL

Cause:
IMMEDIATELY (POWER ON)
The PROFIsafe telegram number is set differently in p9611 and p60022.
For p9611 not equal to 998, the following applies:
The telegram number must be identically set in both parameters.
The following applies for p9611 = 998:
As a result of the compatibility to firmware versions <4.5, then only the values 0 and 30 are permitted in p60022.
Note:
This fault does not result in a safety stop response.
See also: p9611 (SI PROFIsafe telegram selection (Control Unit)), p60022 (PROFIsafe telegram selection)
Remedy: Match the telegram number in both parameters so that they are the same (p9611, p60022).

## F01659

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## SI P1 (CU): Write request for parameter rejected

\%1
Error in the parameterization / configuration / commissioning procedure (18)
A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL
OFF2
IMMEDIATELY (POWER ON)
The write request for one or several Safety Integrated parameters on the Control Unit (CU) was rejected. Note:
This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
1: The Safety Integrated password is not set.
2: A reset of the drive parameters was selected. However, the Safety Integrated parameters were not reset, as Safety Integrated is presently enabled.
3: The interconnected STO input is in the simulation mode.
10: An attempt was made to enable the STO function although this cannot be supported.
11: An attempt was made to enable the SBC function although this cannot be supported.
12: An attempt was made to enable the SBC function although this cannot be supported for a parallel circuit configuration (r9871.14).
13: An attempt was made to enable the SS1 function although this cannot be supported.
14: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version of the PROFIsafe driver used on both monitoring channels is different.
15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported.
16: An attempt was made to enable the STO function although this cannot be supported when the internal voltage protection ( p 1231 ) is enabled.
17: An attempt was made to enable the PROFIsafe function although this cannot be supported for a parallel circuit configuration.
18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported.
19: An attempt was made to enable the SBA (Safe Brake Adapter), although this cannot be supported.
20: An attempt was made to enable the motion monitoring functions integrated in the drive and the STO function, both controlled via F-DI.
21: An attempt was made to enable the motion monitoring functions integrated in the drive for a parallel connection, although these cannot be supported.
22: An attempt was made to enable the Safety Integrated functions although these cannot be supported by the connected Power Module.
23: For ESR, an attempt was made to enable the delay of STO, although this cannot be supported.
24: An attempt was made to enable the SBC function, although no power unit data set is set for the brake control (p7015 = 99).
25: An attempt was made to parameterize a PROFIsafe telegram although this cannot be supported.
26: With the selected signal source for STO/SS1, an attempt was made to activate the simulation mode.
27: An attempt was made to activate the Basic Functions by controlling via TM54F although this cannot be supported.
28: An attempt was made to enable the "STO via terminals at the Power Module" function although this cannot be supported
29: An attempt was made to parameterize the STOP B as stop response for PROFIsafe failure, although this cannot be supported.
9612: An attempt was made to parameterize STOP B as stop response for PROFIsafe failure, although PROFIsafe is not enabled.
See also: p0970, p3900, p9612, r9771, r9871

## Remedy:

For fault value $=1$ :

- set the Safety Integrated password (p9761).

For fault value $=2$ :

- inhibit Safety Integrated (p9501, p9601) or reset safety parameters (p0970 = 5), then reset the drive parameters again.
For fault value $=3$ :
- end the simulation mode for the digital input (p0795).

For fault value $=10,11,12,13,14,15,17,18,19,21,22,23,27$ :

- check whether there are faults in the safety function alignment between the two monitoring channels (F01655, F30655) and if required, carry out diagnostics for the faults involved.
- use a Motor Module that supports the required function.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value $=16$ :

- inhibit the internal voltage protection (p1231).

For fault value $=20$

- correct the enable setting (p9601).

For fault value $=22$ :

- use a Power Module that supports the Safety Integrated functions.

For fault value $=24$

- set the power unit data set for the holding brake (p7015).

For fault value $=25$ :

- use a Power Module that supports the PROFIsafe telegram selection.
- correct the telegram number setting (p9611).

For fault value $=26$ :

- deactivate the simulation mode for the set signal source for STO/SS1 (p9620) (p0795).

For fault value $=28$ :

- use the power unit with the feature "STO via terminals at the Power Module".

For fault value $=29$ :

- use a Motor Module that supports the required function.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- if required, parameterize the stop response for PROFIsafe failure to STOP A $(p 9612=p 9812=0)$.

For fault value $=33$ :

- deselect drive integrated motion monitoring without selection (p9601.5, p9801.5) and select safety functions that are supported (see p9771/p9871).
- use a Motor Module that supports the required function.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value = 9612:

- establish communications with PROFIsafe (p9601).
- parameterize STOP A as the stop response for PROFIsafe failure ( $\mathrm{p} 9612=0$ ).

Note:
CU: Control Unit
ESR: Extended Stop and Retract
F-DI: Failsafe Digital Input
SBA: Safe Brake Adapter
SBC: Safe Brake Control
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill
See also: p9501, p9601, p9612, p9620, p9761

F01659	SI P1 (CU): Write request for parameter rejected
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The write request for one or several Safety Integrated parameters on the Control Unit (CU) was rejected.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	1: The Safety Integrated password is not set.
	2: A reset of the drive parameters was selected. However, the Safety Integrated parameters were not reset, as Safety Integrated is presently enabled.
	3: The interconnected STO input is in the simulation mode.
	10: An attempt was made to enable the STO function although this cannot be supported.
	13: An attempt was made to enable the SS1 function although this cannot be supported.
	14: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version of the PROFIsafe driver used on both monitoring channels is different.
	15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported.
	16: An attempt was made to enable the STO function although this cannot be supported when the internal voltage protection ( $p 1231$ ) is enabled.
	18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported.   23: For ESR, an attempt was made to enable the delay of STO, although this cannot be supported.
	25: An attempt was made to parameterize a PROFIsafe telegram although this cannot be supported.
	26: With the selected signal source for STO/SS1, an attempt was made to activate the simulation mode.
	27: An attempt was made to activate the Basic Functions by controlling via TM54F although this cannot be supported.
	29: An attempt was made to parameterize the fault response for PROFIsafe failure to STOP B although this cannot be supported.
	See also: p0970, p3900, p9612, r9771, r9871
Remedy:	For fault value $=1$ :
	- set the Safety Integrated password (p9761).
	For fault value $=2$ :
	- inhibit Safety Integrated (p9501, p9601) or reset safety parameters ( $\mathrm{p} 0970=5$ ), then reset the drive parameters again.
	For fault value $=3$ :
	- end the simulation mode for the digital input (p0795).
	For fault value $=10,11,12,13,14,15,17,18,19,21,22,23$ :
	- check whether there are faults in the safety function alignment between the two monitoring channels (F01655, F30655) and if required, carry out diagnostics for the faults involved.
	- use a Hydraulic Module that supports the required function.
	- upgrade the Hydraulic Module software.
	- upgrade the Control Unit software.
	For fault value $=16$ :
	- inhibit the internal voltage protection (p1231).
	For fault value $=25$ :
	- correct the telegram number setting (p9611).
	For fault value $=26$ :
	- deactivate the simulation mode for the set signal source for STO/SS1 (p9620) (p0795).
	For fault value $=29$ :
	- check whether p9612 and p9812 are set; if required, correct the settings.
	- use a Hydraulic Module that supports the required function.
	- upgrade the Hydraulic Module software.
	- upgrade the Control Unit software.



### 4.2 List of faults and alarms

Remedy: $\quad$ - use a Motor Module/Hydraulic Module that supports the safety-related functions. $\quad$ - upgrade the Motor Module/Hydraulic Module software. $\quad$ Note: $\quad$ CU: Control Unit $\quad$ SI: Safety Integrated

F01661	SI P1 (CU): Simulation of the safety inputs active
Message value:	Fault cause: \%1 bin
Message class:	General drive fault (19)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation:
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The simulation of the digital inputs of the Control Unit (p0795) is active.
	It is not permissible that safety inputs are simulated.
	Fault value (r0949, interpret binary):
	The displayed bits indicate which digital inputs must not be simulated.
Remedy:	- deactivate the simulation of the digital inputs of the Control Unit for the safety inputs (p0795).
	- acknowledge fault.

## F01663

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Remedy:

## SI P1 (CU): Copying the SI parameters rejected

Error in the parameterization / configuration / commissioning procedure (18)
HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None
Propagation: DRIVE
OFF2
IMMEDIATELY (POWER ON)
In p9700, the value 87 or 208 is saved or was entered offline.
This is the reason that when booting, an attempt is made to copy Safety Integrated parameters from monitoring channel 1 to monitoring channel 2 . However, no safety-relevant function has been selected in monitoring channel 1 (p9501 = 0, p9601 = 0). Copying was rejected for safety reasons.
As a consequence, inconsistent parameterization can occur in both monitoring channels, which in turn results in additional error messages.
Especially for inconsistent enabling of the safety functions on both monitoring channels (p9601 = 0, p9801 <> 0), fault F30625 is output.
Note:
This fault does not result in a safety stop response.
SI: Safety Integrated
See also: p9700 (SI Motion copy function)

- set p9700 to 0
- check p9501 and p9601 and if required, correct.
- restart the copying function by entering the corresponding value into p9700.

Alternatively, using the STARTER commissioning tool, perform the following steps in the online mode:

- call the "Safety Integrated" screen form (the field "Select safety functions" is at "No Safety Integrated").
- click on "Change settings".
- click on "Activate settings" (as a consequence, Safety Integrated is inhibited on both monitoring channels).
- save all parameters (p0977 = 1 or "copy RAM to ROM").
- carry out a POWER ON (switch-off/switch-on) for all components.

F01664	SI P1 (CU): No automatic firmware update
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: DRIVE
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	During booting, the system detected that the "Firmware update automatic" function (p7826=1) was not activated. This function must be activated for automatic firmware updates/downgrades to prevent impermissible version combinations when safety functions are enabled.   Note:   This fault does not result in a safety stop response.   See also: p7826 (Firmware update automatic)
Remedy:	When safety functions are enabled (p9501 <> 0 and/or p9601 <> 0):   1. Activate the "Firmware update automatic" function (p7826 = 1).   2. Backup the parameters ( $00977=1$ ) and carry out a POWER ON.   When deactivating the safety functions ( $\mathrm{p} 9501=0, \mathrm{p} 9601=0$ ), the fault can be acknowledged after exiting the safety commissioning mode.
F01665	SI P1 (CU): System is defective
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A system defect was detected before the last boot or in the actual one. The system might have been rebooted (reset).
	Fault value (r0949, interpret hexadecimal):
	200000 hex, 400000 hex, 8000yy hex (yy any):
	- fault in the actual booting/operation.
	800004 hex:
	- parameters p9500/p9300 are, under certain circumstances, not the same. In addition, Safety message C01711/C30711 is displayed.
	Additional values:
	- defect before the last time that the system booted.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- upgrade firmware to later version.
	- contact Technical Support.
	For fault value $=200000$ hex, 400000 hex, 8000yy hex (yy any):
	- ensure that the Control Unit is connected to the Power Module.
	For fault value $=800004$ hex:
	- check that parameters p9500/p9300 are the same.
	Note:
	PM: Power Module
	STO: Safe Torque Off


A01666 (F)	SI Motion P1 (CU): Steady-state (static) 1 signal at the F-DI for safe acknowledgment
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A logical 1 signal is present at the F-DI configured in p10006 for more than 10 seconds.
	If, at the F-DI no acknowledgment was performed for safe acknowledgment, then a steady-state logical and 0 signal must be present. This avoids unintentional safety-relevant acknowledgment (or the "Internal Event Acknowledge" signal) if a wire breaks or one of the two digital inputs bounces.
Remedy:	Set the failsafe digital input (F-DI) to a logical 0 signal (p10006).
	Note:
	F-DI: Failsafe Digital Input
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
A01669 (F, N)	SI Motion: Unfavorable combination of motor and power unit
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The combination of motor and power unit used is not suitable for using safe motion monitoring functions without an encoder.
	The ratio between the power unit rated current (r0207[0]) and rated motor current (p0305) is greater than 5 .
	Alarm value (r2124, interpret decimal):
	Number of the motor data set, which caused the fault.
	Notice:
	If this alarm is not observed, then message C01711 or C30711 - with the value 1041 ... 1044 - can sporadically occur.
Remedy:	Use a suitable power unit with a lower power rating or a motor with a higher power rating.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F01670	SI Motion: Invalid parameterization Sensor Module
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameterization of a Sensor Module used for Safety Integrated is not permissible.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret decimal):
	1: No encoder was parameterized for Safety Integrated.
	2: An encoder was parameterized for Safety Integrated that does not have an A/B track (sine/cosine).
	3: The encoder data set selected for Safety Integrated is still not valid.
	4: A communication error with the encoder has occurred.
	5: Number of relevant bits in the encoder coarse position invalid.
	6: DRIVE-CLiQ encoder configuration invalid.

7: Non-safety relevant component of the encoder coarse position for the linear DRIVE-CLiQ encoder not valid.
8: Parameterized Safety comparison algorithm not supported.
9: Relationship between the grid division and measuring step for linear DRIVE-CLiQ encoder is not binary.
10: For an encoder used for Safety Integrated, not all of the Drive Data Sets (DDS) are assigned to the same Encoder Data Set (EDS) (p0187 ... p0189).
11: The zero point setting of a linear DRIVE-CLiQ encoder used in Safety Integrated is not zero.
12: The second encoder is not parameterized (p9526 = 1 is not permissible).
13: Hydraulic Module: A second encoder has not been parameterized and a DRIVE-CLiQ encoder is not being used.
14: SCSE encoder is used in conjunction with an HTL/TTL encoder, another SCSE encoder or in a 1-encoder system.
Remedy:
For fault value = 1,2 :

- use and parameterize an encoder that Safety Integrated supports (encoder with track A/B sine-wave, p0404.4 = 1).

For fault value $=3$ :

- check whether the drive or drive commissioning function is active and if required, exit this ( $p 0009=p 00010=0$ ), save the parameters $(p 0971=1)$ and carry out a POWER ON
For fault value $=4$ :
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Sensor Module involved and if required, carry out a diagnostics routine for the faults identified.
For fault value $=5$ :
- p9525 = 0 (not permissible). Check the encoder parameterization on the Sensor Modules involved.

For fault value $=6$ :

- check p9515.0 (for DRIVE-CLiQ encoders, the following applies: p9515.0 = 1). Check the encoder parameterization on the Sensor Modules involved.
For fault value $=7$ :
- p12033 for an encoder used for Safety Integrated is not equal to 1 . Use a linear DRIVE-CLiQ encoder and parameterize for p12033 = 1 .
For fault value $=8$ :
- check p9541. Use and parameterize an encoder that implements an algorithm supported by Safety Integrated.

For fault value $=9$ :

- check p9514 and p9522. Use an encoder and parameterize, where the ratio between p9514 and p9522 is binary.

For fault value $=10$ :

- align the EDS assignment of all of the encoders used for Safety Integrated (p0187 ... p0189).

For fault value = 11:

- use and parameterize a linear DRIVE-CLiQ encoder, where the zero point setting is equal to 0 .

For fault value $=12$ :

- parameterize an encoder for the second channel (p9526>1).

For fault value =13:

- parameterize a second encoder or use a DRIVE-CLiQ encoder.

For fault value $=14$ :

- use a DRIVE-CLiQ encoder for channel 1 in conjunction with an SCSE encoder for channel 2.

Note:
SCSE: Single Channel Safety Encoder (single-channel encoder)
SI: Safety Integrated

F01671	SI Motion: Parameterization encoder error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameterization of the encoder used by Safety Integrated is different to the parameterization of the standard encoder.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	Parameter number of the non-corresponding safety parameter.
Remedy:	Align the encoder parameterization between the safety encoder and the standard encoder.
	Note:
	SI: Safety Integrated
F01672	SI P1 (CU): Motor Module software/hardware incompatible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The existing Motor Module software does not support safe motion monitoring or is not compatible to the software on the Control Unit or there is a communications error between the Control Unit and Motor Module.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret decimal):
	1:
	The existing Motor Module software does not support the safe motion monitoring function.
	2, 3, 6, 8:
	There is a communications error between the Control Unit and Motor Module.
	4, 5, 7 :
	The existing Motor Module software is not compatible to the software on the Control Unit.
	9, 10, 11, 12:
	The existing Motor Module software does not support the safe encoderless motion monitoring function.
	13:
	At least one Motor Module in parallel operation does not support the safe motion monitoring function.
Remedy:	- check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved.
	For fault value $=1$ :
	- use a Motor Module that supports safe motion monitoring.
	For fault value $=2,3,6,8$ :
	- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
	For fault value $=4,5,7,9,13$ :
	- upgrade the Motor Module software.
	Note:
	SI: Safety Integrated


F01672	SI P1 (CU): Motor Module software/hardware incompatible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The existing Hydraulic Module software does not support safe motion monitoring or is not compatible to the software on the Control Unit or there is a communications error between the Control Unit and Hydraulic Module. Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret decimal):
	1 :
	The existing Hydraulic Module software does not support the safe motion monitoring function.
	2, 3, 6, 8:
	There is a communications error between the Control Unit and Hydraulic Module.
	4, 5, 7:
	The existing Hydraulic Module software is not compatible to the software on the Control Unit.
Remedy:	- check whether there are faults in the safety function alignment between the Control Unit and the Hydraulic Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved.
	For fault value $=1$ :
	- use a Hydraulic Module that supports safe motion monitoring.
	For fault value $=2,3,6,8$ :
	- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Hydraulic Module involved and, if required, carry out a diagnostics routine for the faults identified.
	For fault value $=4,5,7$ :
	- upgrade the Hydraulic Module software.
	Note:
	SI: Safety Integrated
	HM: Hydraulic Module.
F01673	SI Motion: Sensor Module software/hardware incompatible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The existing Sensor Module software and/or hardware does not support the safe motion monitoring function with the higher-level control.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- upgrade the Sensor Module software.
	- use a Sensor Module that supports the safe motion monitoring function.
	Note:
	SI: Safety Integrated


F01674	SI Motion P1 (CU): Safety function not supported by PROFIsafe telegram
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The monitoring function enabled in p9501 and p9601 is not supported by the currently set PROFIsafe telegram (p9611).
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret bitwise binary):
	Bit $18=1$ :
	SS2E via PROFlsafe is not supported (p9501.18).
	Bit $24=1$ :
	Transfer SLS (SG) limit value via PROFIsafe not supported (p9501.24).
	Bit $25=1$ :
	Transfer safe position (SP) via PROFIsafe is not supported (p9501.25).
	Bit $26=1$ :
	Gearbox stage switchover via PROFIsafe is not supported (p9501.26).
	Bit $28=1$ :
	SCA via PROFIsafe is not supported (p9501.28).
Remedy:	- Deselect the monitoring function involved (p9501, p9601).
	- set the matching PROFIsafe telegram (p9611).
	Note:
	SCA: Safe Cam
	SI: Safety Integrated
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	SP: Safe Position
	SS2E: Safe Stop 2 external (Safe Stop 2 with external stop, external STOP D)
F01675	SI Motion P1: settings in the PROFIBUS/PROFINET controller not permissible
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the "Safe synchronous position via PROFIsafe" function, an incorrect configuration setting was identified. Note:
	This fault results in a STOP A that can be acknowledged in the following way.
	- select STO and then de-select again.
	- internal event acknowledge (if the "Extended message acknowledgment" is active, p9507.0 = 1).
	Fault value (r0949, decimal interpretation):
	1:
	"Synchronous safe position via PROFIsafe" is enabled (p9501.29=1) and is not set according to the rule Tdp $=2 \times n$ xp9500 ( $n=1,2,3, \ldots$ ).
	2:
	"Synchronous safe position via PROFIsafe" is enabled (p9501.29 = 1) and isochronous operation is not set.
	Note:
	STO: Safe Torque Off
Remedy:	For fault value = 1:
	- set Tdp and monitoring clock cycle p9500 according to the rule Tdp $=2 \times n \times p 9500 .(\mathrm{n}=1,2,3, \ldots)$
	For fault value $=2$ :
	- set "Isochronous mode" on the PROFIBUS/PROFINET controller.


F01679	SI CU: Safety parameter settings and topology changed, warm restart/POWER ON required
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (OFF1, OFF3)
Acknowledge:	POWER ON
Cause:	Safety parameters have been changed; these will only take effect following a warm restart or POWER ON (see alarm A01693).
	A partial power up (boot) with modified configuration was then performed.
Remedy:	- carry out a warm restart (p0009 = 30, p0976 = 2, 3).
	- carry out a POWER ON (switch-off/switch-on) for all components.
F01680	SI Motion P1 (CU): Checksum error safety monitoring functions
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The actual checksum calculated by the drive and entered in r9728 via the safety-relevant parameters does not match the reference checksum saved in p9729 at the last machine acceptance.
	Safety-relevant parameters have been changed or a fault is present.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, interpret decimal):
	0 : Checksum error for SI parameters for motion monitoring.
	1: Checksum error for SI parameters for actual values.
	2: Checksum error for SI parameters for component assignment.
Remedy:	- check the safety-relevant parameters and if required, correct.
	- execute the function "Copy RAM to ROM".
	- perform a POWER ON if safety parameters requiring a POWER ON have been modified.
	- carry out an acceptance test.

## F01681

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## SI Motion P1 (CU): Incorrect parameter value

Parameter: \%1, supplementary information: \%2
Error in the parameterization / configuration / commissioning procedure (18)
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL
OFF2
IMMEDIATELY (POWER ON)
The parameter cannot be parameterized with this value.
Note:
This message does not result in a safety stop response.
Fault value (r0949, interpret decimal):
yyyyxxxx dec: yyyy = supplementary information, $x x x x=$ parameter
yyyy $=0$ :
No additional information available.
xxxx $=9500$ and yyyy $=1$ :
Parameter p9500 is not equal to p9300 or not an integer multiple of the sampling time of the current controller (p0115[0]).
$x x x x=9500$ and yyyy $=16$ :
"Synchronous safe position via PROFIsafe" is enabled on several axes (p9501.29 = 1), and the monitoring clock cycle p9500 is set differently for these axes.
It is possible that the maximum permissible number of axes for the "Synchronous safe position via PROFIsafe" has been exceeded.
xxxx = 9501:
It is not permissible to enable the function " n < nx hysteresis and filtering" (p9501.16) in conjunction with the function "Extended functions without selection" (p9601.5).
$x x x x=9501$ and yyyy = 8:
Referencing via SCC (p9501.27 = 1) is enabled without enabling an absolute motion monitoring function (p9501.1 or p9501.2).
$x x x x=9501$ and $y y y y=10$ :
Referencing via SCC $(\mathrm{p} 9501.27=1)$ and EPOS $(\mathrm{r} 0108.4=1)$ are simultaneously enabled.
$x x x x=9501$ and yyyy = 14:
"Synchronous safe position via PROFIsafe" is enabled (p9501.29 = 1), without enabling "Safe position via PROFIsafe" (p9501.25).
xxxx = 9501 and yyyy = 17:
"Synchronous safe position via PROFIsafe" is enabled (p9501.29 = 1) and "Safety without encoder" is enabled (p9506).
$x x x x=9501$ and $y y y y=19$ :
SLA (p9501.20 = 1) is enabled with encoderless actual value sensing (p9506 equal to 1 or 3 ).
$x x x x=9501$ and yyyy $=20$ :
SLA (p9501.20 = 1) is enabled with a 2-encoder system (p9526 not equal to 1 ).
xxxx = 9505:
When SLP is active ( $\mathrm{p} 9501.1=1$ ), the modulo function is activated and this is not permitted (p9505 not equal to 0 ). $x x x x=9506$ and yyyy $=1$ :
Parameter p9506 is not equal to p9306.
$x x x x=9511$ and yyyy $=1$ :
Parameter p9511 is not equal to p9311.
$x x x x=9511$ and $y y y y=2$ :
On a Double Motor Module, between the drive objects, no different values in p9511 and p0115[0] is permitted.
xxxx = 9319:
The fine resolution of the encoder for the second channel is too high.
$x x x x=9522$ :
The gear stage was set too high.
$x x x x=9534$ or 9535 :
The limit values of SLP have been set too high (absolute values).
xxxx = 9544:
For linear axes, the maximum value is limited to 1 mm .
$x x x x=9547$ :
The hysteresis tolerance is not permissible.
xxxx = 9573:
"Referencing via Safety Control Channel" was requested ( $p 9573=263$ ), without enabling the function "Referencing via SCC" (p9501.27 = 0).
xxxx = 9578:
SLA is enabled ( $p 9501.20=1$ ). Acceleration limit is too low ( $p 9578$ ). Acceleration resolution is no longer sufficient ( r 9790 ). The minimum limit is the $3 x$ acceleration resolution.
xxxx = 9585:
For Safety without encoder and synchronous motor, p9585 must be set to 4 .
$x x x x=9601$ and yyyy $=1$ :
If motion monitoring functions integrated in the drive (p9601.2 = 1) and extended functions without selection (p9601.5 $=1$ ) are enabled, then PROFIsafe ( $\mathrm{p} 9601.3=1$ ) or onboard F-DI ( $\mathrm{p} 9601.4=1$ ) is not possible.
xxxx $=9601$ and yyyy $=2$ :
Extended functions without selection ( $\mathrm{p} 9601.5=1$ ) are enabled without enabling motion monitoring functions integrated in the drive (p9601.2).
$x x x x=9601$ and yyyy $=3$ :
Onboard F-DI are enabled without enabling motion monitoring functions integrated in the drive (p9601.2).

```
xxxx = 9601 and yyyy = 4:
Onboard F-DI are enabled. Then, it is not permissible to simultaneously set PROFIsafe and F-DI via PROFIsafe
(p9501.30).
xxxx = 9601 and yyyy = 5:
Transfer of the SLS limit value via PROFIsafe (p9501.24) has been enabled, without enabling PROFIsafe.
xxxx = 9601 and yyyy = 6:
Transfer of the safe position via PROFIsafe (p9501.25) has been enabled, without enabling PROFIsafe.
xxxx = 9601 and yyyy = 7:
Safe switchover of the gearbox stages (p9501.26) has been enabled without enabling PROFIsafe.
xxxx = 9601 and yyyy = 11
SS2E (p9501.18 = 1) is enabled without PROFIsafe being enabled.
xxxx = 9601 and yyyy = 12:
SCA (p9501.28 = 1) is enabled without enabling PROFIsafe.
xxxx = 9601 and yyyy = 18:
SLA (p9501.20 = 1) is enabled without enabling PROFIsafe.
Remedy: Correct parameter (if required, also on another monitoring channel, p9801).
If xxxx = 9500 and yyyy=1:
- set p9500 "SI Motion monitoring clock cycle" as an integer multiple of p0115[0] "Current controller sampling time".
- align parameters }9300\mathrm{ and 9500, backup parameters (p0971 = 1) and carry out a POWER ON.
For xxxx = 9500 and yyyy = 16:
Inhibit "Synchronous safe position via PROFIsafe" function (p9501.29 = 0), or set monitoring clock cycle p9500 on all
axes the same when the function is enabled.
If }\textrm{xxxx}=9501
- correct parameters p9501.16 and p9301.16, or deselect the extended functions without selection (p9601.5).
If xxxx = 9501 and yyyy = 8:
Inhibit referencing via SCC (p9501.27) or enable an absolute motion monitoring function (p9501.1 or p9501.2).
If xxxx = 9501 and yyyy = 10:
Inhibit referencing via SCC (p9501.27) or EPOS (r0108.4).
For xxxx = 9501 and yyyy = 11:
Inhibit SS2E (p9501.18) - or enable PROFIsafe.
For xxxx = 9501 and yyyy = 12:
Inhibit SCA (p9501.28) - or enable PROFIsafe.
For xxxx = 9501 and yyyy = 14:
Inhibit "Synchronous safe position via PROFIsafe" function (p9501.29 = 0), or enable "Safe position via PROFIsafe"
(p9501.25).
For xxxx = 9501 and yyyy = 17:
Inhibit "Synchronous safe position via PROFIsafe" function (p9501.29 = 0), or set "Safety with encoder" (p9506).
For xxxx = 9501 and yyyy = 19:
Inhibit SLA (p9501.20) or activate actual value sensing with encoder (p9506 equal to 0 or 2).
For xxxx = 9501 and yyyy = 20:
Inhibit SLA (p9501.20) or activate a 1-encoder system (p9526 equal to 1).
If }\textrm{xxxx}=9505
Correct parameter p9501.1 or p9505.
If xxxx = 9507:
Set synchronous or induction motor according to p0300.
If xxxx = 9506:
Align parameters p9306 and p9506, back up the parameters (p0971 = 1) and carry out a POWER ON.
If }\textrm{xxxx}=9511\mathrm{ :
Align parameters p9311 and p9511, back up the parameters (p0971 = 1) and carry out a POWER ON.
If xxxx = 9517:
Parameter p9516.0 should also be checked.
For xxxx = 9319:
For the SCSE encoder, parameter p9319 must not be set higher than 11.
If }\textrm{xxxx}=9522
Correct the corresponding parameter.
```


### 4.2 List of faults and alarms

If $x x x x=9534$ or 9535 :
Reduce the limit values (absolute values) of SLP.
If $x x x x=9544$ :
Correct parameter (for linear axes, the maximum value is limited to 1 mm ).
If $\mathrm{xxxx}=9547$ :
With hysteresis/filtering enabled (p9501.16 = 1), the following applies:

- set parameters p9546 and p9547 according to the following rule: p9547 <= $0.75 \times$ p9546
- if the actual value synchronization is enabled ( $\mathrm{p} 9501.3=1$ ), then this rule must be complied with: $\mathrm{p} 9547>=\mathrm{p} 9549$

For xxxx = 9578:

- observe the information in r9790.

If $\mathrm{xxxx}=9585$ :
Correct parameter (if required, also on the second monitoring channel, p9385).
If $x x x x=9601$ :
yyyy $=1$ :
Only enable motion monitoring functions integrated in the drive (p9601.2 = 1) and extended functions without selection ( $p 9601.5=1$ ), or only enable PROFIsafe ( $p 9601.3=1$ ) or only onboard F-DI (p9601.4 = 1).
yyyy =2, 3 :
Enable motion monitoring functions integrated in the drive (p9601.2 = 1).
yyyy = 4:
If onboard F-DI are enabled, then it is not permissible to simultaneously set PROFIsafe and F-DI via PROFIsafe (p9501.30), deselect PROFIsafe functionality or onboard F-DI.
yyyy $=5$ :
To transfer the SLS limit values via PROFIsafe (p9501.24 = 1), also enable PROFIsafe (p9601.3 =1) and motion monitoring functions integrated in the drive (p9601.2 = 1).
yyyy = 6:
For the safe position via PROFIsafe (p9501.25 = 1), also enable PROFIsafe (p9601.3 =1) and motion monitoring functions integrated in the drive ( $p 9601.2=1$ ).
yyyy = 7:
For safe switchover of gearbox stages (p9501.26 = 1) also enable PROFIsafe (p9601.3 =1) and motion monitoring functions integrated in the drive ( $\mathrm{p} 9601.2=1$ ).
yyyy = 18:
For Safely-Limited Acceleration (p9501.20 = 1), also enable PROFIsafe (p9601.3 = 1) and the motion monitoring functions integrated in the drive (p9601.2 = 1).
Note:
SCA: Safe Cam
SCSE: Single Channel Safety Encoder (single-channel encoder)
SS2E: Safe Stop 2 external (Safe Stop 2 with external stop, external STOP D)
SLA: Safely-Limited Acceleration

## F01681

Message value:

## SI Motion P1 (CU): Incorrect parameter value

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: HLA
Component: None Propagation: GLOBAL
Reaction:
OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: $\quad$ The parameter cannot be parameterized with this value.
Note:
This message does not result in a safety stop response.
Fault value (r0949, interpret decimal):
yyyyxxxx dec: yyyy = supplementary information, $x x x x=$ parameter
yyyy $=0$ :
No additional information available.
$x x x x=9500$ and yyyy $=1$ :
Parameter p9500 is not equal to p9300 or not an integer multiple of the sampling time of the current controller (p0115[0]).
$x x x x=9500$ and yyyy $=16$ :
"Synchronous safe position via PROFIsafe" is enabled on several axes (p9501.29 = 1), and the monitoring clock cycle p9500 is set differently for these axes.
It is possible that the maximum permissible number of axes for the "Synchronous safe position via PROFIsafe" has been exceeded.
xxxx = 9501:
It is not permissible to enable the function " n < nx hysteresis and filtering" ( p 9501.16 ) in conjunction with the function "Extended functions without selection" (p9601.5).
$x x x x=9501$ and yyyy $=8$ :
Referencing via SCC (p9501.27 = 1) is enabled without enabling absolutes motion monitoring functions (p9501.1 or p9501.2).
$x x x x=9501$ and $y y y y=10$ :
Referencing via SCC (p9501.27 = 1) and EPOS (r0108.4 = 1) are simultaneously enabled.
$x x x x=9501$ and $y y y y=11$ :
Safe function SS2E (p9501.18 = 1) is enabled without enabling PROFIsafe.
$x x x x=9501$ and $y y y y=12$ :
SCA (p9501.28 = 1) is enabled without enabling PROFIsafe.
$x x x x=9501$ and $y y y y=14$ :
"Synchronous safe position via PROFIsafe" is enabled (p9501.29 = 1), without enabling "Safe position via PROFIsafe" (p9501.25).
xxxx = 9501 and yyyy = 17:
"Synchronous safe position via PROFIsafe" is enabled (p9501.29 = 1) and "Safety without encoder" is enabled (p9506).
$x x x x=9501$ and $y y y y=19$ :
SLA ( $p 9501.20=1$ ) is enabled with encoderless actual value sensing (p9506 equal to 1 or 3 ).
$x x x x=9501$ and $y y y y=20$ :
SLA (p9501.20 = 1) is enabled with a 2-encoder system (p9526 not equal to 1 ).
$x x x x=9511$ and yyyy $=1$ :
Parameter p9511 is not equal to p9311.
$x x x x=9511$ and $y y y y=2$ :
Between the drive objects no different values in p9511 and p0115[0] are permitted.
xxxx = 9522:
The gear stage was set too high.
xxxx = 9534 or 9535 :
The limit values of SLP have been set too high (absolute values).
xxxx = 9544:
For linear axes, the maximum value is limited to 1 mm .
xxxx = 9547:
Parameter p9547 has been set too low.
xxxx = 9573:
"Referencing via Safety Control Channel" was requested ( $p 9573=263$ ), without enabling the function "Referencing via SCC" (p9501.27 = 0).
xxxx = 9578:
SLA is enabled ( $\mathrm{p} 9501.20=1$ ). Acceleration limit is too low ( p 9578 ). Acceleration resolution is no longer sufficient (r9790) (the minimum limit is $3 x$ of the acceleration resolution).
$x x x x=9601$ and yyyy $=1$ :
If motion monitoring functions integrated in the drive (p9601.2 = 1) and extended functions without selection (p9601.5 $=1$ ) are activated, then PROFIsafe (p9601.3 = 1) is not possible.
$x x x x=9601$ and yyyy $=2$ :
Extended functions without selection (p9601.5 =1) are enabled without enabling motion monitoring functions integrated in the drive (p9601.2).
$x x x x=9601$ and yyyy $=5$ :
Transfer of the SLS limit value via PROFIsafe (p9501.24) has been enabled, without enabling PROFIsafe.
xxxx $=9601$ and yyyy $=6$ :
Transfer of the safe position via PROFIsafe (p9501.25) has been enabled, without enabling PROFIsafe.
$x x x x=9601$ and yyyy $=7$ :
Safe switchover of the gearbox stages (p9501.26) has been enabled without enabling PROFIsafe.
$x x x x=9601$ and yyyy = 18:
SLA (p9501.20 = 1) is enabled without enabling PROFIsafe.
Remedy: Correct parameter (if required, also on another monitoring channel, p9801).
If $x x x x=9500$ and yyyy $=1$ :

- set p9500 "SI Motion monitoring clock cycle" as an integer multiple of p0115[0] "Current controller sampling time".
- align parameters 9300 and 9500 , backup parameters ( $p 0971=1$ ) and carry out a POWER ON.

For $x x x x=9500$ and yyyy = 16:
Inhibit "Synchronous safe position via PROFIsafe" function (p9501.29 = 0), or set monitoring clock cycle p9500 on all axes the same when the function is enabled.
If $x x x x=9501$ :

- correct parameters p9501.16 and p9301.16, or deselect the extended functions without selection (p9601.5).

If $x x x x=9501$ and $y y y y=8$ :
Inhibit referencing via SCC (p9501.27) or enable an absolute motion monitoring function (p9501.1 or p9501.2).
If $x x x x=9501$ and yyyy $=10$ :
Inhibit referencing via SCC (p9501.27) or EPOS (r0108.4).
For $x x x x=9501$ and yyyy = 11:
Inhibit SS2E (p9501.18) - or enable PROFIsafe.
For $x x x x=9501$ and yyyy = 12:
Inhibit SCA (p9501.28) - or enable PROFIsafe.
For $x x x x=9501$ and yyyy $=14$ :
Inhibit "Synchronous safe position via PROFIsafe" function (p9501.29 = 0), or enable "Safe position via PROFIsafe" (p9501.25).
For $x x x x=9501$ and yyyy = 17:
Inhibit "Synchronous safe position via PROFIsafe" function (p9501.29 = 0), or set "Safety with encoder" (p9506).
For $x x x x=9501$ and yyyy = 19:
Inhibit SLA (p9501.20) or activate actual value sensing with encoder (p9506 equal to 0 or 2 ).
For $x x x x=9501$ and yyyy $=20$ :
Inhibit SLA (p9501.20) or activate a 1-encoder system (p9526 equal to 5).
If $\mathrm{xxxx}=9511$ :
Align parameters p9311 and p9511, back up the parameters (p0971 = 1) and carry out a POWER ON.
If $\mathrm{xxxx}=9517$ :
Parameter p9516.0 should also be checked.
If $\mathrm{xxxx}=9522$ :
Correct the corresponding parameter.
If $\mathrm{xxxx}=9534$ or 9535 :
Reduce the limit values (absolute values) of SLP.
If $\mathrm{xxxx}=9544$ :
Correct parameter (for linear axes, the maximum value is limited to 1 mm ).
If $\mathrm{xxxx}=9547$ :
With hysteresis/filtering enabled (p9501.16 = 1), the following applies:

- set parameters p9546/p9346 and p9547/p9347 according to the following rule: p9546 >= $2 \times$ p9547; p9346 >= $2 \times$ p9347
- if the actual value synchronization is enabled (p9501.3 = 1), then this rule must be complied with: p9549 <= p9547; p9349 <= p9347
For $x x x x=9578$ :
- observe the information in r9790.

If $\mathrm{xxxx}=9601$ :
yyyy = 1:
Only enable motion monitoring functions integrated in the drive (p9601.2 = 1) and extended functions without selection (p9601.5 = 1) - or only PROFIsafe (p9601.3 = 1).
yyyy $=2$ :
Enable motion monitoring functions integrated in the drive (p9601.2 = 1).
yyyy $=5$ :
To transfer the SLS limit values via PROFIsafe (p9501.24 = 1), also enable PROFIsafe (p9601.3 =1) and motion monitoring functions integrated in the drive (p9601.2 = 1).
yyyy $=6$ :
For the safe position via PROFIsafe (p9501.25 = 1), also enable PROFIsafe (p9601.3 =1) and motion monitoring functions integrated in the drive (p9601.2 = 1).
yyyy = 7:
For safe switchover of gearbox stages ( $\mathrm{p} 9501.26=1$ ) also enable PROFIsafe ( $\mathrm{p} 9601.3=1$ ) and motion monitoring functions integrated in the drive (p9601.2 = 1).
yyyy = 18:
For Safely-Limited Acceleration (p9501.20 = 1), also enable PROFIsafe (p9601.3 = 1) and the motion monitoring functions integrated in the drive (p9601.2 = 1).

## F01682

Message value:
Message class:
Drive object:
Component: Reaction:

## Acknowledge:

Cause:

## SI Motion P1 (CU): Monitoring function not supported

 \%1Error in the parameterization / configuration / commissioning procedure (18) SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC None Propagation: GLOBAL OFF2 IMMEDIATELY (POWER ON)
The monitoring function enabled in p9501, p9601, p9801, p9307 or p9507 is not supported in this firmware version. Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
1: Monitoring function SLP not supported (p9501.1).
2: Monitoring function SCA not supported (p9501.7 and p9501.8 ... 15 and p9503).
3: Monitoring function SLS override not supported (p9501.5).
4: Monitoring function external ESR activation not supported (p9501.4).
5: Monitoring function F-DI in PROFIsafe not supported (p9501.30).
6: Enable actual value synchronization not supported (p9501.3).
9: Monitoring function not supported by the firmware or enable bit not used.
10: Monitoring functions only supported for a SERVO drive object.
11: Encoderless monitoring functions (p9506.1) only supported for motion monitoring integrated in the drive (p9601.2).
12: Monitoring functions for ncSI are not supported for CU305.
14: Monitoring function SLA and ncSI not supported.
20: Motion monitoring functions integrated in the drive are only supported in conjunction with PROFIsafe (p9501, p9601.1 ... 2 and p9801.1 ... 2).
21: Enable a safe motion monitoring function (in p9501), not supported for enabled basic functions via PROFIsafe (p9601.2 = 0, p9601.3 = 1).
22: Encoderless monitoring functions in "chassis" format not supported.
23: CU240 does not support monitoring functions requiring an encoder.
24: Monitoring function SDI not supported (p9501.17).
25: Drive-integrated motion monitoring functions not supported (p9501, p9601.2).
26: Hysteresis and filtering for SSM monitoring function without an encoder not supported (p9501.16).
27: This hardware does not support onboard F-DI and F-DO.
28: Encoderless monitoring functions are not supported for synchronous motors (p9507.2).
29: SINAMICS S120M: Safety Extended Functions without encoder not supported.
31: This hardware does not support transfer SLS (SG) limit value via PROFIsafe (p9301/p9501.24).
33: Safety functions without selection not supported (p9601.5, p9801.5).
34: This module does not support safe position via PROFIsafe.
36: Function "SS1E" not supported.
37: Safe actual value sensing with HTL/TTL encoder (SMC30) not supported.
38: It is not permissible to simultaneously enable the safety functions (p9601) and the essential service mode (ESM, Essential Service Mode, p3880).
39: This module or software version of the CU/MM does not support safe gearbox stage switchover (p9501.26).

40: SIMOTION D410-2: Motion monitoring functions integrated in the drive or PROFIsafe control not supported. 41: SIMOTION D410-2: Safety functions not supported for the "Chassis" format.
42: Motion monitoring functions SLP and SP not supported for D4x5-2 and CX32-2 (p9501.1/25).
43: Motion monitoring functions SLP and SP as well as PROFIsafe telegrams 31/901/902 not supported for D410-2 (p9501.1/24/25/30, p9611).
44: This module/this software version does not support referencing via the Safety Control Channel (p9501.27).
45: Deactivating SOS/SLS during an external STOP A is not supported (p9501.23).
46: This firmware version does not support control of the basis functions via TM54F and the simultaneous enable of the extended functions or ncSI or PROFIsafe.
50: Shortening the switchover times for SOS (p9569/p9369, p9567/p9367) is not supported.
51: Safe actual value sensing with SCSE is not supported for dbSi (motion monitoring functions integrated in the drive, p9601.2 = 1).
52: "SBR with encoder" function is not supported (p9506 = 2).
53: SS2E function not supported (p9501.18).
54: SCA function not supported (p9501.28).
55: Encoderless monitoring functions are not supported for reluctance motors.
57: "Synchronous transfer safe position via PROFIsafe" function not supported (p9501.29).
58: "Safety limited acceleration" function (SLA) not supported (p9501.20).
9586: The set value of p9586/p9386 is greater than the supported maximum value.
9588: The set value of $\mathrm{p} 9588 / \mathrm{p} 9388$ is greater than the supported maximum value.
9589: The set value of p9589/p9389 is greater than the supported maximum value.
9612: An attempt was made to parameterize STOP B as stop response for PROFIsafe failure, although PROFIsafe is not enabled.
See also: p9612 (SI PROFIsafe failure response (Control Unit))
Remedy: - deselect the monitoring function involved (p9501, p9503, p9506, p9601, p9801, p9307, p9507).

- reduce the set value (p9586, p9588, p9589).
- increase the set value (p9578).

For fault value $=9612$ :

- establish communications with PROFIsafe (p9601).
- parameterize STOP A as the stop response for PROFIsafe failure (p9612 = 0).

Note:
ESR: Extended Stop and Retract
SBR: Safe Brake Ramp (safe brake ramp monitoring)
SCA: Safe Cam / SN: Safe software cam
SCSE: Single Channel Safety Encoder (single-channel encoder)
SDI: Safe Direction (safe motion direction)
SLA: Safely-Limited Acceleration
SI: Safety Integrated
SLP: Safely-Limited Position / SE: Safe software limit switches
SLS: Safely-Limited Speed / SG: Safely reduced speed
SOS: Safe Operating Stop / SBH: Safe operating stop
SP: Safe Position
SPL: Safe programmable logic
SS1E: Safe Stop 1 External (Safe Stop 1 with external stop)
SS2E: Safe Stop 2 external (Safe Stop 2 with external stop, external STOP D)
See also: p9501, p9503, p9601, p9612, r9771

F01682	SI Motion P1 (CU): Monitoring function not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The monitoring function enabled in p9501, p9601 or p9801 is not supported in this firmware version.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret decimal):
	2: Monitoring function SCA not supported (p9501.7 and p9501.8 ... 15 and p9503).
	3: Monitoring function SLS override not supported (p9501.5).
	6: Enable actual value synchronization not supported (p9501.3).
	9: Monitoring function not supported by the firmware or enable bit not used.
	13: SINUMERIK Safety Integrated with SPL on a Hydraulic Module is not supported.
	14: Monitoring function SLA and ncSI not supported.
	20: Motion monitoring functions integrated in the drive are only supported in conjunction with PROFIsafe (p9501, p9601.1 ... 2 and p9801.1 ... 2).
	21: Enable a safe motion monitoring function (in p9501), not supported for enabled basic functions via PROFIsafe (p9601.2 = 0, p9601.3 = 1).
	45: Deactivating SOS/SLS during an external STOP A is not supported (p9501.23).
	46: This firmware version does not support control of the basis functions via TM54F and the simultaneous enable of the extended functions or ncSI.
	50: Switchover times for SOS (p9569/p9369, p9567/p9367) are not supported.
	53: SS2E function not supported (p9501.18).
	54: SCA function not supported (p9501.28).
	57: "Synchronous transfer safe position" function not supported (p9501.29).
	58: "Safety limited acceleration" function (SLA) not supported (p9501.20).
	9612: The setting p9612/p9812 $=1$ is not supported for control via TM54F.
	See also: p9612 (SI PROFIsafe failure response (Control Unit))
Remedy:	- deselect the monitoring function involved (p9501, p9601, p9801).
	For fault value $=9612$ :
	- set parameter p9612/p9812 $=0$.
	Note:
	ESR: Extended Stop and Retract
	SCA: Safe Cam / SN: Safe software cam
	SI: Safety Integrated
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	SOS: Safe Operating Stop / SBH: Safe operating stop
	SPL: Safe programmable logic
	SS2E: Safety Stop 2 external (external STOP D)
	See also: p9501, p9503, p9601, p9612, r9771
F01683	SI Motion P1 (CU): SOS/SLS enable missing
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The safety-relevant basic function "SOS/SLS" is not enabled in p9501 although other safety-relevant monitoring functions are enabled.
	Note:
	This fault does not result in a safety stop response.

### 4.2 List of faults and alarms

Remedy: | Enable the function "SOS/SLS" (p9501.0) and carry out a POWER ON. |
| :--- |
| Note: |
| SI: Safety Integrated |
| SLS: Safely-Limited Speed / SG: Safely reduced speed |
| SOS: Safe Operating Stop / SBH: Safe operating stop |
| See also: p9501 (SI Motion enable safety functions (Control Unit)) |

F01684	SI Motion P1 (CU): Safely-Limited Position limit values interchanged
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the function "Safely-Limited Position" (SLP), a lower value is in p9534 than in p9535.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	1: Limit values SLP1 interchanged.
	2: Limit values SLP2 interchanged.
	See also: p9534, p9535
Remedy:	- correct the lower and upper limit values (p9535, p9534).
	- carry out a POWER ON (switch-off/switch-on).
	Note:
	SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches


F01685	SI Motion P1 (CU): Safely-Limited Speed limit value too high
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The limit value for the function "Safely-Limited Speed" (SLS) is greater than the speed that corresponds to an
	encoder limit frequency of 500 kHz.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	Maximum permissible speed.
Remedy:	Correct the limit values for SLS and carry out a POWER ON.
	Note:
	SI: Safety Integrated
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	See also: p9531 (SI Motion SLS (SG) limit values (Control Unit))


F01686	SI Motion: Illegal parameterization cam position
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For dbSI:
	- at least one enabled "Safe cam" (SCA) is parameterized in p9536 or p9537 too close to the tolerance range around the modulo position: the minus position value of a cam must be greater than the lower modulo limit + cam tolerance (p9540) + position tolerance (p9542); the plus position value of a cam must be less than the modulo limit - cam tolerance (p9540) - position tolerance (p9542). For a parameterized modulo position (p9505>0), the lower modulo limit $=0$, the upper modulo limit $=$ p9505.
	- the cam length of cam $\mathrm{x}=\mathrm{p} 9536[\mathrm{x}]$-p9537[x] is less than the cam tolerance + the position tolerance ( $=$ p9540 + p9542).
	This also means that cams of the minus position value must be less than the plus position value.
	For ncsi:
	At least one enabled "Safety Cam" (SCA) is parameterized in p9536 or p9537 too close to the tolerance range around the modulo position.
	The following conditions must be complied with to assign cams to a cam track:
	- the cam length of cam $\mathrm{x}=\mathrm{p} 9536[\mathrm{x}]$-p9537[x] must be greater or equal to the cam tolerance + the position tolerance ( $=\mathrm{p} 9540+\mathrm{p} 9542$ ). This also means that for cams on a cam track, the minus position value must be less than the plus position value.
	- the distance between 2 cams x and y (minus position value[y] - plus position value[x] = p9537[y] - p9536[x]) on a cam track must be greater than or equal to the cam tolerance + position tolerance ( $=\mathrm{p} 9540+\mathrm{p} 9542$ ).
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	Number of the "Safe Cam" with an illegal position.
	See also: p9501 (SI Motion enable safety functions (Control Unit))
Remedy:	Correct the cam position and carry out a POWER ON.
	Note:
	SCA: Safe Cam / SN: Safe software cam
	SI: Safety Integrated
	See also: p9536, p9537
F01687	SI Motion: Illegal parameterization modulo value SCA (SN)
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameterized modulo value for the "Safe Cam" (SCA) function is not a multiple of 360000 mDegrees .
	Note:
	This fault does not result in a safety stop response.
Remedy:	Correct the modulo value for SCA and carry out a POWER ON.
	Note:
	SCA: Safe Cam / SN: Safe software cam
	SI: Safety Integrated
	See also: p9505 (SI Motion SP modulo value (Control Unit))


F01688	SI Motion CU: Actual value synchronization not permissible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	- it is not permissible to enable actual value synchronization for a 1-encoder system.
	- it is not permissible to simultaneously enable actual value synchronization and a monitoring function with absolute reference (SCA/SLP).
	- it is not permissible to simultaneously enable actual value synchronization and safe position via PROFIsafe.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
Remedy:	- Either select the "actual value synchronization" function or parameterize a 2-encoder system.
	- either deselect the function "actual value synchronization" or the monitoring functions with absolute reference (SCA/SLP) and carry out a POWER ON.
	- either deselect the "actual value synchronization" function or do not enable "Safe position via PROFlsafe".
	Note:
	SCA: Safe Cam / SN: Safe software cam
	SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches
	SP: Safe Position
	See also: p9501 (SI Motion enable safety functions (Control Unit)), p9526 (SI Motion encoder assignment second channel)
C01689	SI Motion: Axis re-configured
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The axis configuration was changed (e.g. changeover between linear axis and rotary axis).
	Parameter p0108.13 is internally set to the correct value.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	Number of the parameter that initiated the change.
	See also: p9502 (SI Motion axis type (Control Unit))
Remedy:	The following should be carried out after the changeover:
	- exit the safety commissioning mode (p0010).
	- save all parameters (p0977 = 1 or "copy RAM to ROM").
	- carry out a POWER ON.
	Once the Control Unit has been switched on, safety message F01680 or F30680 indicates that the checksums in r9398[0] and r9728[0] have changed in the drive. The following must, therefore, be carried out:
	- activate safety commissioning mode again.
	- complete safety commissioning of the drive.
	- exit the safety commissioning mode (p0010).
	- save all parameters (p0977 = 1 or "copy RAM to ROM").
	- carry out a POWER ON.
	Note:
	For the commissioning tool, the units are only consistently displayed after a project upload.


F01690	SI Motion: Data save problem for the NVRAM
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	There is not sufficient memory space in the NVRAM on the drive to save parameters r9781 and r9782 (safety logbook).
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	0 : There is no physical NVRAM available in the drive.
	1: There is no longer any free memory space in the NVRAM.
Remedy:	For fault value $=0$ :
	- use a Control Unit NVRAM.
	For fault value = 1:
	- de-select functions that are not required and that take up memory space in the NVRAM.
	- contact Technical Support.
	Note:
	NVRAM: Non-Volatile Random Access Memory (non-volatile read and write memory)
A01691 (F)	SI Motion: Ti and To unsuitable for DP cycle
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configured times for PROFIBUS communication are not permitted and the DP cycle is used as the actual value acquisition cycle for the safe movement monitoring functions.   Isochronous PROFIBUS:
	The sum of Ti and To is too high for the selected DP cycle. The DP cycle should be at least 1 current controller cycle greater than the sum of Ti and To.
	No isochronous PROFIBUS:
	The DP clock cycle must be at least 4 x the current controller clock cycle.
	Notice:
	If this alarm is not observed, then message C01711 or C30711 - with the value 1020 ... 1021 - can sporadically occur.
Remedy:	Configure Ti and To low so that they are suitable for the DP cycle or increase the DP cycle time.
	Alternative when SI monitoring integrated in the drive is enabled (p9601/p9801 > 0):
	Use the actual value acquisition cycle p9511/p9311 and, in turn, set independently from DP cycle. The actual values sensing clock cycle must be at least $4 x$ the current controller clock cycle. A clock cycle ratio of at least $8: 1$ is recommended.
	See also: p9511 (SI Motion actual value sensing cycle clock (Control Unit))
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


F01692	SI Motion P1 (CU): Parameter value not permitted for encoderless
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameter cannot be set to this value if encoderless motion monitoring functions have been selected in p9506. Note:   This fault does not result in a safety stop response.   Fault value (r0949, interpret decimal):   Parameter number with the incorrect value.   See also: p9501 (SI Motion enable safety functions (Control Unit))
Remedy:	- correct the parameter specified in the fault value.   - if necessary, de-select encoderless motion monitoring functions (p9506). See also: p9501 (SI Motion enable safety functions (Control Unit))
A01693 (F)	SI P1 (CU): Safety parameter setting changed, warm restart/POWER ON required
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Safety parameters have been changed; these will only take effect following a warm restart or POWER ON.   Alarm value ( r 2124 , interpret decimal):   Parameter number of the safety parameter which has changed, necessitating a warm restart or POWER ON.
Remedy:	- carry out a warm restart (p0009 $=30, \mathrm{p} 0976=2,3$ ).
	- carry out a POWER ON (switch-off/switch-on) for all components.
	Note:
	Before performing an acceptance test, a POWER ON must be carried out for all components.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	POWER ON
F01694 (A)	SI Motion CU: Firmware version Motor Module/Hydraulic Module older Control Unit
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The firmware version of the Motor Module/Hydraulic Module is older than the version of the Control Unit. It is possible that safety functions are not available (r9771/r9871).
	Note:
	This message does not result in a safety stop response.
	This message can also occur, if after an automatic firmware update, a POWER ON was not carried out (Alarm A01007).
Remedy:	Upgrade the firmware of the Motor Module/Hydraulic Module to a later version.
	See also: r9390 (SI Motion version safety motion monitoring (Motor Module)), r9590 (SI Motion version safety motion monitoring (Control Unit))


Reaction upon A:   Acknowl. upon $A$ :	NONE NONE
A01695 (F)	SI Motion: Sensor Module was replaced
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Sensor Module, which is used for safe motion monitoring functions, was replaced. The hardware replacement must be acknowledged. An acceptance test must be subsequently performed.   Note:   This message does not result in a safety stop response.
Remedy:	Carry out the following steps using the STARTER commissioning tool:   - press the "Acknowledge hardware replacement" button in the safety screen form.   - execute the function "Copy RAM to ROM".   - carry out a POWER ON (switch-off/switch-on) for all components.   As an alternative, carry out the following steps in the expert list of the commissioning tool:   - start the copy function for the node identifier on the drive (p9700 = 1D hex).   - acknowledge the hardware CRC on the drive (p9701 = EC hex).   - save all parameters (p0977 = 1).   - carry out a POWER ON (switch-off/switch-on) for all components.   Then carry out an acceptance test (refer to the Safety Integrated Function Manual).   For SINUMERIK, the following applies:   HMI supports the replacement of components with Safety functions (operating area "Diagnostics" --> Softkey "Alarm list" --> Softkey "Confirm SI HW" etc.).   The precise procedure is given in the following document:   SINUMERIK Function Manual Safety Integrated   See also: p9700 (SI Motion copy function), p9701 (Acknowledge SI motion data change)
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A01696 (F)	SI Motion: Test stop for the motion monitoring functions selected when booting
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The forced checking procedure (test stop) for the safe motion monitoring functions is already selected when booting, which is not permissible.   This is the reason that the test is only carried out again after first selecting the forced checking procedure.   Note:   This message does not result in a safety stop response.   See also: p9705 (SI Motion: Test stop signal source)
Remedy:	De-select the forced checking procedure for the safe motion monitoring functions and then select again. Notice:   It is not permissible to use TM54F inputs to select the test stop.   Note:   The signal source to select the forced checking procedure is set via binector input p9705.   SI: Safety Integrated
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


A01697 (F)	SI Motion: Test stop for motion monitoring functions required
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time set in p9559 for the forced checking procedure (test stop) for the safe motion monitoring functions exceeded. A new forced checking procedure is required.
	After the next time the forced checking procedure is selected, the message is withdrawn and the monitoring reset.
	Note:
	- this message does not result in a safety stop response.
	- As the switch-off signal paths are not automatically checked during booting, an alarm is always issued once is complete.
	- the test must be performed within a defined, maximum time interval (p9559, maximum of 9000 hours) in o comply with the requirements as laid down in the standards for timely fault detection and the conditions to cald the failure rates of safety functions (PFH value). Operation beyond this maximum time period is permissible be ensured that the forced checking procedure is performed before persons enter the hazardous area and depending on the safety functions correctly functioning.
	See also: p9559 (SI Motion forced checking procedure timer (Control Unit)), r9765 (SI Motion forced check procedure remaining time (Control Unit))
Remedy:	Carry out the forced checking procedure of the safety motion monitoring functions.
	The signal source to select the forced checking procedure is set via binector input p9705.
	Notice:
	It is not permissible to use TM54F inputs to select the forced checking procedure.
	Note:
	SI: Safety Integrated
	See also: p9705 (SI Motion: Test stop signal source)
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A01698 (F)	SI P1 (CU): Commissioning mode active
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The commissioning of the "Safety Integrated" function is selected.
	This message is withdrawn after the safety functions have been commissioned.
	Note:
	- this message does not result in a safety stop response.
	- in the safety commissioning mode, the "STO" function is internally selected.
	See also: p0010
Remedy:	Not necessary.
	Note:
	CU: Control Unit
	SI: Safety Integrated
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl upon F:	IMMEDIATELY (POWER ON)


A01699 (F)	SI P1 (CU): Test stop for STO required
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time set in p9659 for the forced checking procedure (test stop) for the "STO" function has been exceeded. A new forced checking procedure is required.
	After the next time the "STO" function is de-selected, the message is withdrawn and the monitoring time is reset. Note:
	- this message does not result in a safety stop response.
	- the test must be performed within a defined, maximum time interval (p9659) in order to comply with the requirements as laid down in the standards for timely fault detection and the conditions to calculate the failure rates of safety functions (PFH value). Operation beyond this maximum time period is permissible if it can be ensured that the forced checking procedure is performed before persons enter the hazardous area and who are depending on the safety functions correctly functioning.
	See also: p9659 (SI forced checking procedure timer), r9660 (SI forced checking procedure remaining time)
Remedy:	Select STO and then de-select again.
	Note:
	CU: Control Unit
	SI: Safety Integrated
	STO: Safe Torque Off / SH: Safe standstill
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
C01700	SI Motion P1 (CU): STOP A initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP A (STO via the safety switch-off signal path of the Control Unit).
	Possible causes:
	- stop request from the second monitoring channel.
	- STO not active after a parameterized time (p9557) after test stop selection.
	- subsequent response to the message C01706 "SI Motion CU: SAM/SBR limit exceeded".
	- subsequent response to the message C01714 "SI Motion CU: Safely-Limited Speed exceeded".
	- subsequent response to the message C01701 "SI Motion CU: STOP B initiated".
	- subsequent response to the message C01715 "SI Motion CU: Safely-Limited Position exceeded".
	- subsequent response to the message C01716 "SI Motion CU: tolerance for safe motion direction exceeded".
Remedy:	- remove the cause of the fault on the second monitoring channel.
	- carry out a diagnostics routine for message C01706.
	- carry out a diagnostics routine for message C01714.
	- carry out a diagnostics routine for message C01701.
	- carry out a diagnostics routine for message C01715.
	- carry out a diagnostics routine for message C01716.
	- check the value in p9557 (where available), increase the value if necessary, and carry out a POWER ON
	- check the switch-off signal path of the Control Unit (check DRIVE-CLiQ communication if it has been implemented)
	- replace the Motor Module, Power Module or Hydraulic Module.
	- replace Control Unit.

This message can be acknowledged without a POWER ON as follows (safe acknowledgment):

- Terminal Module 54F (TM54F).
- onboard F-DI (only CU310-2).
- PROFIsafe.
- machine control panel.

Note:
SAM: Safe Acceleration Monitor (safe acceleration monitoring)
SBR: Safe Brake Ramp (safe brake ramp monitoring)
SI: Safety Integrated

## $\overline{\mathrm{C} 01701}$

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## SI Motion P1 (CU): STOP B initiated

Safety monitoring channel has identified an error (10)
HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

None Propagation: GLOBAL		

NONE (OFF3)
IMMEDIATELY (POWER ON)
The drive is stopped via a STOP B (braking along the OFF3 deceleration ramp).
As a result of this fault, after the time parameterized in p9556 has expired, or the speed threshold parameterized in p9560 has been undershot, message C01700 "STOP A initiated" is output.
Possible causes:

- stop request from the second monitoring channel.
- subsequent response to the message C01714 "SI Motion CU: Safely-Limited Speed exceeded".
- subsequent response to the message C01711 "SI Motion CU: Defect in a monitoring channel".
- subsequent response to the message C01707 "SI Motion CU: tolerance for safe operating stop exceeded".
- subsequent response to the message C01715 "SI Motion CU: Safely-Limited Position exceeded".
- subsequent response to the message C01716 "SI Motion CU: tolerance for safe motion direction exceeded".

Remedy: - remove the cause of the fault on the second monitoring channel.

- carry out a diagnostics routine for message C01714.
- carry out a diagnostics routine for message C01711.
- carry out a diagnostics routine for message C01707.
- carry out a diagnostics routine for message C01715.
- carry out a diagnostics routine for message C01716.

This message can be acknowledged without a POWER ON as follows (safe acknowledgment):

- Terminal Module 54F (TM54F).
- onboard F-DI (only CU310-2).
- PROFIsafe.
- machine control panel.

Note:
SI: Safety Integrated

## C01706

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:

## SI Motion P1 (CU): SAM/SBR limit exceeded

Cause:
Safety monitoring channel has identified an error (10)
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL
NONE
IMMEDIATELY (POWER ON)
Motion monitoring functions with encoder $(\mathrm{p} 9506=0)$ or encoderless with set acceleration monitoring (SAM, p9506 = 3):

- after initiating STOP B (SS1) or STOP C (SS2), the speed has exceeded the selected tolerance.

Motion monitoring functions encoderless with set brake ramp monitoring (SBR p9506 = 1):

- after initiating STOP B (SS1) or SLS changeover to the lower speed level, the speed has exceeded the selected tolerance.
The drive is shut down by the message C01700 "SI Motion: STOP A initiated".

Remedy:	Check the braking behavior and, if necessary, adapt the parameterization of the parameter settings of the "SAM" or the "SBR" function.   This message can be acknowledged without a POWER ON as follows (safe acknowledgment):   - Terminal Module 54F (TM54F).   - onboard F-DI (only CU310-2).   - PROFIsafe.   - machine control panel.   Note:   SAM: Safe Acceleration Monitor (safe acceleration monitoring)   SBR: Safe Brake Ramp (safe ramp monitoring)   SI: Safety Integrated   See also: p9548, p9581, p9582, p9583
C01706	SI Motion P1 (CU): SAM/SBR limit exceeded
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Motion monitoring functions with encoder (p9506 = 0):   - after initiating STOP B (SS1) or STOP C (SS2), the speed has exceeded the selected tolerance.   The drive is shut down by the message C01700 "SI Motion: STOP A initiated".
Remedy:	Check the braking behavior and, if necessary, adapt the parameterization of the parameter settings of the "SAM" or the "SBR" function.   This message can be acknowledged without a POWER ON as follows (safe acknowledgment):   - Terminal Module 54F (TM54F).   - onboard F-DI (only CU310-2).   - PROFIsafe.   - machine control panel.   Note:   SAM: Safe Acceleration Monitor (safe acceleration monitoring)   SBR: Safe Brake Ramp (safe ramp monitoring)   SI: Safety Integrated   See also: p9548, p9581, p9582, p9583
C01707	SI Motion P1 (CU): Tolerance for safe operating stop exceeded
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The actual position has distanced itself further from the target position than the standstill tolerance. The drive is shut down by the message C01701 "SI Motion: STOP B initiated".
Remedy:	- check whether safety faults are present and if required carry out the appropriate diagnostic routines for the particular faults.   - check whether the standstill tolerance matches the accuracy and control dynamic performance of the axis.   - carry out a POWER ON.   This message can be acknowledged without a POWER ON as follows (safe acknowledgment):   - Terminal Module 54F (TM54F).   - onboard F-DI (only CU310-2).   - PROFIsafe.   - machine control panel.

### 4.2 List of faults and alarms

Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop
See also: p9530 (SI Motion standstill tolerance (Control Unit))

C01708	SI Motion P1 (CU): STOP C initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	STOP2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP C (braking along the OFF3 deceleration ramp).
	"Safe Operating Stop" (SOS) is activated after the parameterized time has expired.
	Possible causes:
	- stop request from the higher-level control.
	- subsequent response to the message C01714 "SI Motion CU: Safely-Limited Speed exceeded".
	- subsequent response to the message C01715 "SI Motion CU: Safely-Limited Position exceeded".
	- subsequent response to the message C01716 "SI Motion CU: tolerance for safe motion direction exceeded".
	See also: p9552 (SI Motion transition time STOP C to SOS (SBH) (Control Unit))
Remedy:	- remove the cause of the fault at the control.
	- carry out a diagnostics routine for message C01714/C01715/C01716.
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment):
	- Terminal Module 54F (TM54F).
	- onboard F-DI (only CU310-2).
	- PROFIsafe.
	- machine control panel.
	Note:
	SI: Safety Integrated
	SOS: Safe Operating Stop / SBH: Safe operating stop
C01709	SI Motion P1 (CU): STOP D initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP D (braking along the path).
	"Safe Operating Stop" (SOS) is activated after the parameterized time has expired.
	Possible causes:
	- stop request from the higher-level control.
	- subsequent response to the message C01714 "SI Motion CU: Safely-Limited Speed exceeded".
	- subsequent response to the message C01715 "SI Motion CU: Safely-Limited Position exceeded".
	- subsequent response to the message C01716 "SI Motion CU: tolerance for safe motion direction exceeded".
	See also: p9553 (SI Motion transition time STOP D to SOS (SBH) (Control Unit))
Remedy:	- remove the cause of the fault at the control.
	- carry out a diagnostics routine for message C01714/C01715/C01716.
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment): - Terminal Module 54F (TM54F).
	- onboard F-DI (only CU310-2).
	- PROFIsafe.
	- machine control panel.


	Note:   SI: Safety Integrated   SOS: Safe Operating Stop / SBH: Safe operating stop
C01710	SI Motion P1 (CU): STOP E initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP E (retraction motion).   "Safe Operating Stop" (SOS) is activated after the parameterized time has expired.   Possible causes:   - stop request from the higher-level control.   - subsequent response to the message C01714 "SI Motion CU: Safely-Limited Speed exceeded".   - subsequent response to the message C01715 "SI Motion CU: Safely-Limited Position exceeded".   - subsequent response to the message C01716 "SI Motion CU: tolerance for safe motion direction exceeded".   See also: p9554 (SI Motion transition time STOP E to SOS (SBH) (Control Unit))
Remedy:	- remove the cause of the fault at the control.   - carry out a diagnostics routine for message C01714/C01715/C01716.   This message can be acknowledged without a POWER ON as follows (safe acknowledgment):   - Terminal Module 54F (TM54F).   - onboard F-DI (only CU310-2).   - PROFIsafe.   - machine control panel.   Note:   SI: Safety Integrated   SOS: Safe Operating Stop / SBH: Safe operating stop
C01711	SI Motion P1 (CU): Defect in a monitoring channel
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When cross-comparing the two monitoring channels, the drive detected a difference between the input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.   If at least one monitoring function is active, then after the parameterized timer has expired, the message C 01701 " SI Motion: STOP B initiated" is output.   The message value that resulted in a STOP F is displayed in r9725.   If the drive is operated together with a SINUMERIK, the message values are described in message 27001 of SINUMERIK, with the exception of the following message values, which can only occur in SINAMICS:   1007: communication error with the PLC (sign-of-life).   1008: communication error with the PLC (CRC).   The following described message values involve the data cross-check between the two monitoring channels (safety functions integrated in the drive).   The message values may also occur in the following cases if the cause that is explicitly mentioned does not apply:   - cycle times not uniformly parameterized (p9500/p9300 and p9511/p9311)   - differently parameterized axis types (p9502/p9302).   - excessively fast cycle times (p9500/p9300, p9511/p9311).   - For message values $3,44 \ldots 57,232$ and 1-encoder system, differently set encoder parameters.   - For message values $3,44 \ldots 57,232$ and 2 -encoder system, encoder parameters that have not been correctly set.   - incorrect synchronization.

Message value (r9749, interpret decimal):
0 to 999: Number of the cross-compared data that resulted in this fault.
Message values that are not subsequently listed are only for internal Siemens troubleshooting.
0 : Stop request from the other monitoring channel.
1: Status image of monitoring functions SOS, SLS, SAM/SBR, SDI, SLA or SLP (result list 1) (r9710[0], r9710[1]).
2: Status image of monitoring function SCA or $n<n x$ (result list 2) (r9711[0], r9711[1]).
3: The position actual value differential (r9713[0/1]) between the two monitoring channels is greater than the tolerance in p9542/p9342. When actual value synchronization is enabled (p9501.3/p9301.3), the velocity differential (based on the position actual value) is greater than the tolerance in p9549/p9349.
4: Error when synchronizing the data cross-check between the two channels.
5: Function enable signals (p9501/p9301) Safety monitoring clock cycle too small (p9500/p9300).
6: Limit value for SLS1 (p9531[0]/p9331[0])
7: Limit value for SLS2 (p9531[1]/p9331[1])
8: Limit value for SLS3 (p9531[2]/p9331[2])
9: Limit value for SLS4 (p9531[3]/p9331[3])
10: Standstill tol. (p9530/p9330)
11: Upper limit value for SLP1 (p9534[0]/p9334[0]).
12: Lower limit value for SLP1 (p9535[0]/p9335[0]).
13: Upper limit value for SLP2 (p9534[1]/p9334[1]).
14: Lower limit value for SLP2 (p9535[1]/p9335[1]).
15: Upper limit value for SCA, cam 1 plus position (p9536[0]/p9336[0]+p9540/p9340)
16: Lower limit value for SCA, cam 1 plus position (p9536[0]/p9336[0])
17: Upper limit value for SCA, cam 1 minus position (p9537[0]/p9337[0]+p9540/p9340)
18: Lower limit for SCA, cam 1 minus position (p9537[0]/p9337[0])
19...30: limit value SCA, cams 2 to 4. Refer above fault values 15 to 18 for cam 1

31: Position tolerance (p9542/p9342) or (p9549/p9349) when actual value synchronization is enabled
(p9501.3/p9301.3)
32: Position tolerance for safe referencing (p9544/p9344).
33: Time, velocity changeover (p9551/p9351)
35: Delay time, STOP A (p9556/p9356)
36: Checking time, STO (p9557/p9357)
37: Trans. time, STOP C to SOS (p9552/p9352)
38: Trans. time STOP D to SOS (p9553/p9353)
39: Trans. time, STOP E to SOS (p9554/p9354)
40: Stop response for SLS (p9561/p9361)
41: Stop response for SLP1 (p9562[0]/p9362[0])
42: Shutdown speed, STO (p9560/p9360)
43: Memory test, stop response (STOP A).
44 ... 57: General
Possible cause 1 (during commissioning or parameter modification)
The tolerance value for the monitoring function is not the same on the two monitoring channels.
Possible cause 2 (during active operation)
The limit values are based on the actual value (r9713[0/1]). If the safe actual values on the two monitoring channels do not match, the limit values, which have been set at a defined interval, will also be different (i.e. corresponding to message value 3). This can be ascertained by checking the safe actual positions.
Permissible deviation between the two monitoring channels: p9542/p9342.
44: Position actual value (r9713[0/1]) + limit value SLS1 (p9531[0]/p9331[0]) * safety monitoring clock cycle (p9500/p9300).
45: Position actual value (r9713[0/1]) - limit value SLS1 (p9531[0]/p9331[0]) * safety monitoring clock cycle (p9500/p9300).
46: Position actual value (r9713[0/1]) + limit value SLS2 (p9531[1]/p9331[1]) * safety monitoring clock cycle (p9500/p9300).
47: Position actual value (r9713[0/1]) - limit value SLS2 (p9531[1]/p9331[1]) * safety monitoring clock cycle (p9500/p9300).
48: Position actual value (r9713[0/1]) + limit value SLS3 (p9531[2]/p9331[2]) * safety monitoring clock cycle (p9500/p9300).

49: Position actual value (r9713[0/1]) - limit value SLS3 (p9531[2]/p9331[2]) * safety monitoring clock cycle (p9500/p9300).
50: Position actual value (r9713[0/1]) + limit value SLS4 (p9531[3]/p9331[3]) * safety monitoring clock cycle (p9500/p9300).
51: Position actual value (r9713[0/1]) - limit value SLS4 (p9531[3]/p9331[3]) * safety monitoring clock cycle (p9500/p9300).
52: Standstill position + tolerance (p9530/9330)
53: Standstill position - tolerance (p9530/9330)
54: Position actual value (r9713[0/1]) + limit value nx (p9546/p9346) * safety monitoring clock cycle (p9500/p9300) + tolerance (p9542/p9342).
55: Position actual value (r9713[0/1]) + limit value $n x$ (p9546/p9346) * safety monitoring clock cycle (p9500/p9300).
56: Position actual value (r9713[0/1]) - limit value $n x$ (p9546/p9346) * safety monitoring clock cycle (p9500/p9300).
57: Position actual value (r9713[0/1]) - limit value $n x$ (p9546/p9346) * safety monitoring clock cycle (p9500/p9300) tolerance (p9542/p9342).
58: Actual stop request.
75: Velocity limit $n x$ ( $p 9546, p 9346$ ).
When the function " $n<n x$ : hysteresis and filtering" ( $p 9501.16=1$ ) is enabled, this message value is also output for a different hysteresis tolerance (p9547/p9347).
76: Stop response for SLS1 (p9563[0]/p9363[0])
77: Stop response for SLS2 (p9563[1]/p9363[1])
78: Stop response for SLS3 (p9563[2]/p9363[2])
79: Stop response for SLS4 (p9563[3]/p9363[3])
80: Modulo value for SP for rotary axes (p9505/p9305).
81: Velocity tolerance for SAM (p9548/p9348)
82: SGEs for SLS correction factor.
83: Acceptance test timer (p9558/p9358)
84: Trans. time STOP F (p9555/p9355)
85: Trans. time bus failure ( $\mathrm{p} 9580 / \mathrm{p} 9380$ )
86: ID 1-encoder system (p9526/p9326).
87: Encoder assignment, second channel (p9526/p9326)
88: SCA (SN) enable (p9503/p9303).
89: Encoder limit freq.
90: Upper limit value for SCA, cam 5 plus position (p9536[4]/p9336[4]+p9540/p9340).
91: Lower limit value for SCA, cam 5 plus position (p9536[4]/p9336[4]).
92: Upper limit value for SCA, cam 5 minus position (p9537[4]/p9337[4]+p9540/p9340).
93: Lower limit for SCA, cam 5 minus position (p9537[4]/p9337[4]).
94...224: limit value SCA, cams 6 to 30. See above, fault values 90 to 93 for cam 5 .
225...229: Status screens of the monitoring function SCA (result lists 3...7).

230: Filter time constant for $n<n x$.
231: Hysteresis tolerance for $n<n x$.
232: Smoothed velocity actual value.
233: Limit value $n x$ / safety monitoring clock cycle + hysteresis tolerance.
234: Limit value $n x$ / Safety monitoring clock cycle.
235: -Limit value $n x$ / Safety monitoring clock cycle.
236: -Limit value $n x$ / safety monitoring clock cycle - hysteresis tolerance.
237: SGA n < nx.
238: speed limit value for SAM (p9568/p9368 or p9346/p9346).
239: Acceleration for SBR (p9581/p9381 and p9583/p9383).
240: Inverse value of acceleration for SBR (p9581/p9381 and p9583/p9383).
241: Deceleration time for SBR (p9582/p9382).
242: Encoderless safety (p9506/p9306).
243: Function configuration (p9507/p9307).
244: Encoderless actual value sensing filter time (p9587/p9387).
245: Encoderless actual value sensing minimum current (p9588/p9388).
246: Voltage tolerance acceleration (p9589/p9389).
247: SDI tolerance (p9564/p9364).

248: SDI positive upper limit (7FFFFFFF hex).
249: Position actual value (r9713[0/1]) - SDI tolerance (p9564/p9364).
250: Position actual value (r9713[0/1]) + SDI tolerance (p9564/p9364).
251: SDI negative lower limit (80000001 hex).
252: SDI stop response (p9566/p9366).
253: SDI delay time (p9565/p9365).
254: Setting the evaluation delay for actual value sensing after pulse enable (p9586/p9386).
255: Setting, behavior during pulse suppression (p9509/p9309).
256: Status image of monitoring functions SOS, SLS, SLP, test stop, SBR, SDI (result list 1 ext) (r9710).
257: Safety functions for motion monitoring functions without selection (p9512/p9312) different.
258: Fault tolerance, actual value sensing encoderless (p9585/p9385).
259: Scaling factor for safe position via PROFIsafe (p9574/p9374) or PROFIsafe telegram (p9611/p9811) different.
260: Modulo value including scaling (p9505/p9305 and p9574/p9374) for SP with 16 bit.
261: Scaling factor for acceleration for SBR different.
262: Scaling factor for the inverse value of the acceleration for SBR different.
263: Stop response for SLP2 (p9562[1]/p9362[1])
264: Position tolerance including scaling (p9542/p9342 and p9574/p9374) for SP with 16 bit.
265: Status image of all change functions (results list 1) (r9710).
266: The switchover speed to SOS differs (p9567/p9367).
267: The transition time to SOS after standstill differs (p9569/p9369).
268: SLP delay time differs (p9577/p9377).
269: Factor to increase the position tolerance when switching over the gearbox stage (p9543/9343).
270: Screen form for SGE image: all functions, which are not supported/enabled for the actual parameterization (p9501/p9301, p9601/p9801 and p9506/p9306)..
271: Screen form for SGE image: Deselect all bits for the "Safe gearbox switchover" function.
272: activation of the increased position tolerance for the "Safe gearbox switchover" function different (p9568/p9368 or p9346/p9346 or "0").
273: speed limit value for flattening the ramp for SAM/SBR different.
274: SGA SCA, cams 1 to 15.
275: SGA SCA, cams 16 to 30.
276: Limit value for SLA1 (p9578/p9378).
277: Stop response for SLA1 (p9579/p9379).
278: Upper limit value for SLA1
279: Lower limit value for SLA1
1000: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs.
1001: Initialization error of watchdog timer.
1002:
User agreement after the timer has expired different.
The user agreement is not consistent. After a time of 4 s has expired, the status of the user agreement is different in both monitoring channels.
1003:
Reference tolerance exceeded.
When the user agreement is set, the difference between the new reference point that has been determined after the system boots (absolute encoder) or reference point approach (distance-coded or incremental measuring system) and the safe actual position (saved value + traversing distance) is greater than the reference tolerance (p9544). In this case, the user agreement is withdrawn.
1004:
Plausibility error for user agreement.

1. If the user agreement has already been set, then the setting is initiated again. In this case, the user agreement is withdrawn.
2. The user agreement was set, although the axis has still not been referenced.

1005:

- for safe motion monitoring functions without encoder: pulses already suppressed for test stop selection.
- for safe motion monitoring functions with encoder: STO already active for test stop selection.

1011: Acceptance test status between the monitoring channels differ.
1012: Plausibility violation of the actual value from the encoder.

1014: fault when synchronizing the SGA for the "Safe cam" function
1015: Gearbox switchover (bit 27 in PROFIsafe telegram) takes longer than 2 min .
1020: Cyc. communication failure between the monit. channels.
1021: Cyc. communication failure between the monit. channel and Sensor Module.
1022: Sign-of-life error for DRIVE-CLiQ encoders monitoring channel 1.
1023: Error in the effectiveness test in the DRIVE-CLiQ encoder
1024: Sign-of-life error for HTL/TTL encoders.
1032: Sign-of-life error for DRIVE-CLiQ encoders monitoring channel 2.
1033: Error checking offset between POS1 and POS2 for DRIVE-CLiQ encoder monitoring channel 1.
1034: Error checking offset between POS1 and POS2 for DRIVE-CLiQ encoder monitoring channel 2.
1035: offset between POS1 and POS2 for DRIVE-CLiQ encoder on one of the monitoring channels has changed since the last commissioning.
1039: Overflow when calculating the position.
1041: Current absolute value too low (encoderless)
1042: Current/voltage plausibility error
1043: Too many acceleration phases
1044: Actual current values plausibility error.
5000 ... 5140:
PROFIsafe message values.
For these message values, the failsafe control signals (Failsafe Values) are transferred to the safety functions. $5000,5014,5023,5024,5030 \ldots 5032,5042,5043,5052,5053,5068,5072,5073,5082 \ldots 5087,5090,5091,5122$ ... 5125, 5132 ... 5135, 5140:
An internal software error has occurred (only for internal Siemens troubleshooting).
5012: Error when initializing the PROFIsafe driver.
5013: The result of the initialization is different for the two controllers.
5022: Error when evaluating the F parameters. The values of the transferred $F$ parameters do not match the expected values in the PROFIsafe driver.

5025: The result of the F parameterization is different for the two controllers.
5026: CRC error for the F parameters. The transferred CRC value of the F parameters does not match the value calculated in the PST.
5065: A communications error was identified when receiving the PROFIsafe telegram.
5066: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
6000 ... 6166:
PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
For these message values, the failsafe control signals (Failsafe Values) are transferred to the safety functions. If "Stop B after failure of the PROFISafe communication" (p9612) is parameterized, the transfer of the Failsafe Values is delayed.
The significance of the individual message values is described in safety fault F01611.
7000: Difference of the safe position is greater than the parameterized tolerance (p9542/p9342).
7001: Scaling value for the safe position in the 16 bit notation, too low (p9574/p9374).
7002: Cycle counter for transferring the safe position is different in both monitoring channels.
7003: error when providing the data for the "Synchronous safe position via PROFIsafe" function.
7004: PROFIsafe clock cycle not correctly synchronized to the DP clock cycle.
See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion diagnostics STOP F)

The following generally applies:
The monitoring clock cycles in both channels and the axis types should be checked for equality and the same setting applied if necessary. If the error continues to be identified, increasing the monitoring clock cycles may resolve it. For message value $=0$ :

- no error was identified in this monitoring channel. Note the error message of the other monitoring channel (for MM: C30711).
For message value $=3$ :
Commissioning phase:
- check the encoder parameters, and if required, correct (p9516/p9316, p9517/p9317, p9518/p9318, p9520/p9320, p9521/p9321, p9522/p9322, p9526/p9326).
In operation:
- check the mechanical design and the encoder signals.
- if closed-loop control with edge modulation is parameterized ( $\mathrm{p} 1802[\mathrm{x}]=9$ ): parameterize edge modulation for actual value sensing without encoder (p9507.5 = p9307.5 = 1).
For message value $=4$ :
The monitoring clock cycles in both channels should be checked for equality and if required, set the same. In combination with message value 5 from the other monitoring channel (with MM: C30711), the monitoring clock cycle settings must be increased.
For message value = $11 \ldots 14$ :
- the limit values in p9534/p9334 or p9535/p9335 are not equal or have been set too high. Correct the values.

For message value $=15 \ldots 30$ and $90 \ldots 229$ :

- the cam positions for function SCA in p9536/p9336, p9537/p9337 or the cam tolerance p9540/p9340 are not equal. Correct the values. Increase the cam tolerance p9540/p9340.
For message value $=232$ :
- increase the hysteresis tolerance (p9547/p9347). Possibly set the filtering higher (p9545/p9345).

For message value $=274,275$ :

- increase the cam tolerance p9540/p9340 and/or the position tolerance p9542/p9342.

For message value $=1$... 999:

- if the message value is listed under cause: Check the cross-checked parameters to which the message value refers.
- copy the safety parameters.
- carry out a POWER ON (switch-off/switch-on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- correction of the encoder evaluation. The actual values differ as a result of mechanical faults (V belts, travel to a mechanical endstop, wear and window setting that is too narrow, encoder fault, ...).
Note:
For SINAMICS firmware version >=4.7, the KDV list is increased when setting p9567 > 0 . For a non-compatible version of SINUMERIK this can lead to an error for the data cross-check (is indicated with message value >=237). If necessary, p9567 must be set $=0$, or the firmware version of SINUMERIK upgraded.
For message value $=1000$ :
- investigate the signal associated with the safety-relevant input (contact problems).

For message value $=1001$ :

- carry out a POWER ON (switch-off/switch-on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For message value $=1002$ :

- perform safe acknowledgment, set the user agreement in both monitoring channels simultaneously (within 4 s ). For message value = 1003:
- check the mechanical system of the axis. It is possible that the axis was shifted when switched-off, and the last saved actual position no longer corresponds with the new actual position after the system has been powered up again.
- increase the tolerance for the actual value comparison when referencing (p9544).

Then check the actual values, perform a POWER ON and set the user agreement again.

For message value $=1004$ :
For 1., the following applies: Perform safe acknowledgment. Set the user agreement again.
For 2., the following applies: Perform safe acknowledgment. Only set the user agreement again if the axis has been referenced.
For message value $=1005$ :

- for safe motion monitoring functions without encoder: check the conditions for pulse enable.
- for safe motion monitoring functions with encoder: check the conditions for STO deselection.

Note:
For a Power Module, the test stop should always be performed for pulse enable (independent of whether with encoder or without encoder).
For message value $=1007$ :

- check the PLC for the correct operating state (run state, basic program).

For message value $=1008$ :

- check whether incorrect or overlapping address ranges have been set in SINUMERIK machine data MD10393.

For message value = 1011

- for diagnostics, refer to parameter (r9571).

For message value $=1012$ :

- upgrade the Sensor Module firmware to a more recent version.
- for 1-encoder systems, the following applies: check the encoder parameters for equality (p9515/p9315, p9519/p9319, p9523/p9323, p9524/p9324, p9525/p9325, p9529/p9329).
- for a 1-encoder system and 2-encoder system the following applies: in order to correctly copy the encoder parameters from p04xx, p9700 must be set to 46 and p9701 must be set to 172 .
- for DQI encoders the following applies: If required, upgrade the firmware version of the Control Unit to a more recent version, which is released for DQI encoders.
- check the electrical cabinet design and cable routing for EMC compliance
- carry out a POWER ON (switch-off/switch-on) for all components or a warm restart (p0009 = 30, p0976 = 2, 3).
- replace the hardware.

For message value = 1014:

- check the encoder actual values. If required, increase the position tolerance (p9542) and/or cam tolerance (p9540). For message value $=1020,1021,1024$ :
- check the communication link.
- if required, increase the monitoring cycle clock settings (p9500, p9511).
- carry out a POWER ON (switch-off/switch-on) for all components or a warm restart (p0009 = 30, p0976 = 2, 3).
- replace the hardware.

For message value $=1033$, 1034:

- if required, upgrade the firmware version of the Control Unit to a more recent version, which is released for DQI encoders.
For message value $=1035$, if one of the safety encoders was replaced:
- confirm the hardware replacement (p9700 = 29, p9701 = 236 or p9702 = 29).
- save all parameters (p0977 = 1 or p0971 = 1 or "copy RAM to ROM").
- acknowledge fault (e.g. binector input p2103).

For message value $=1039$ :

- check the conversion factors such as spindle pitch or gearbox ratios.

For message value $=1041$ :

- check whether the motor has sufficient current (>r9785[0]).
- reduce the minimum current (p9588).
- for synchronous motors increase the absolute value of p9783.
- check whether the function "Closed-loop controlled operation with HF signal injection" is activated (p1750.5 = 1) and
if required, deactivate.

For message value $=1042$ :

- increase the ramp-function generator ramp-up/down time (p1120/p1121).
- check that the current/speed control is set correctly (torque-generating/field-generating current and actual speed value may not fluctuate).
- reduce the dynamic response of the setpoint value.
- check the absolute current and voltage values, and set the control behavior so that this is greater than $3 \%$ of the rated converter data in operation or in the case of a fault.
- increase the minimum current (p9588/p9388).

For message value $=1043$ :

- increase the voltage tolerance (p9589).
- increase the ramp-function generator ramp-up/down time (p1120/p1121).
- check that the current/speed control is set correctly (torque-generating/field-generating current and actual speed value may not fluctuate).
- reduce the dynamic response of the setpoint value.

For message value $=5000,5014,5023,5024,5030,5031,5032,5042,5043,5052,5053,5068,5072,5073,5082 \ldots$ 5087, 5090, 5091, $5122 \ldots 5125,5132 \ldots 5135,5140$ :

- carry out a POWER ON (switch-off/switch-on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- upgrade firmware to later version.
- contact Technical Support.
- replace the Control Unit.

For message value $=5012$ :

- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810). It is not permissible for the PROFIsafe address to be 0 or FFFF!
For message value $=5013$, 5025:
- carry out a POWER ON (switch-off/switch-on) for all components.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810).
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
For message value $=5022$ :
- check the setting of the values of the F parameters at the PROFIsafe slave (F_SIL, F_CRC_Length, F_Par_Version, F_Source_Add, F_Dest_add, F_WD_Time).
For message value $=5026$ :
- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and update.
For message value $=5065$ :
- check the configuration and communication at the PROFIsafe slave (cons. No. / CRC).
- check the setting of the value for $F$ parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
For message value $=5066$ :
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary. - evaluate diagnostic information in the $F$ host.
- check PROFIsafe connection.

For message value $=6000 \ldots$ 6999:
Refer to the description of the message values in safety fault F01611.
For message value $=7000$ :

- increase the position tolerance (p9542/p9342).
- determine the actual position of CU (r9713[0] and the second channel r9713[1], and check the difference for plausibility.
- reduce the difference of the actual position from CU (r9713[0] and the second channel r9713[1] for a 2-encoder system.
For message value $=7001$ :
- increase the scaling value for the safe position in the 16 bit notation (p9574/p9374).
- if required, reduce the traversing range.

For message value $=7002$ :

- carry out a POWER ON (switch-off/switch-on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
This message can be acknowledged without a POWER ON as follows (safe acknowledgment):
- Terminal Module 54F (TM54F).
- onboard F-DI (only CU310-2).
- PROFIsafe.
- machine control panel.

For message value $=7003,7004$ :

- if required, adapt the settings for the times for Tdp, Ti and To - or increase the monitoring clock cycle p9500 (rule Tdp $=2 \times n \times p 9500, n=1,2,3, \ldots)$.
See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))

C01711
Message value:
Message class:
Drive object:
Component: Reaction:

## Acknowledge:

Cause:

## SI Motion P1 (CU): Defect in a monitoring channel

 \%1Safety monitoring channel has identified an error (10)

## HLA

None Propagation: GLOBAL
NONE
IMMEDIATELY (POWER ON)
When cross-comparing the two monitoring channels, the drive detected a difference between the input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
If at least one monitoring function is active, then after the parameterized timer has expired, the message C01701 "SI Motion: STOP B initiated" is output.
The message value that resulted in a STOP F is displayed in r9725.
If the drive is operated together with a SINUMERIK, the message values are described in message 27001 of SINUMERIK, with the exception of the following message values, which can only occur in SINAMICS:
1007: communication error with the PLC (sign-of-life)
1008: communication error with the PLC (CRC)
The following described message values involve the data cross-check between the two monitoring channels (safety functions integrated in the drive).
The message values may also occur in the following cases if the cause that is explicitly mentioned does not apply:

- cycle times not uniformly parameterized (p9500/p9300 and p9511/p9311)
- excessively fast cycle times (p9500/p9300, p9511/p9311).
- For message values $3,44 \ldots 57,232$ and 1-encoder system, differently set encoder parameters.
- For message values $3,44 \ldots 57,232$ and 2-encoder system, encoder parameters that have not been correctly set.
- incorrect synchronization.

Message value (r9749, interpret decimal):
0 to 999: Number of the cross-compared data that resulted in this fault.
Message values that are not subsequently listed are only for internal Siemens troubleshooting.
0 : Stop request from the other monitoring channel.
1: Status image of monitoring functions SOS, SLS, SAM/SBR, SDI or SLP (result list 1) (r9710[0], r9710[1]).
2: Status image of monitoring function SCA or $n<n x$ (result list 2) (r9711[0], r9711[1]).
3: The position actual value differential (r9713[0/1]) between the two monitoring channels is greater than the tolerance in p9542/p9342. When actual value synchronization is enabled (p9501.3/p9301.3), the velocity differential (based on the position actual value) is greater than the tolerance in p9549/p9349.
4: Error when synchronizing the data cross-check between the two channels.
5: Function enable signals (p9501/p9301) Safety monitoring clock cycle too small (p9500/p9300).
6: Limit value for SLS1 (p9531[0]/p9331[0])
7: Limit value for SLS2 (p9531[1]/p9331[1])
8: Limit value for SLS3 (p9531[2]/p9331[2])
9: Limit value for SLS4 (p9531[3]/p9331[3])
10: Standstill tol. (p9530/p9330)
11: Upper limit value for SLP1 (p9534[0]/p9334[0]).

12: Lower limit value for SLP1 (p9535[0]/p9335[0]).
13: Upper limit value for SLP2 (p9534[1]/p9334[1]).
14: Lower limit value for SLP2 (p9535[1]/p9335[1]).
31: Position tolerance (p9542/p9342) or (p9549/p9349) when actual value synchronization is enabled (p9501.3/p9301.3)
32: Position tolerance for safe referencing (p9544/p9344).
33: Time, velocity changeover (p9551/p9351)
35: Delay time, STOP A (p9556/p9356)
36: Checking time, STO (p9557/p9357)
37: Trans. time, STOP C to SOS (p9552/p9352)
38: Trans. time STOP D to SOS (p9553/p9353)
39: Trans. time, STOP E to SOS (p9554/p9354)
40: Stop response for SLS (p9561/p9361)
41: Stop response for SLP1 (p9562[0]/p9362[0])
42: Shutdown speed, STO (p9560/p9360)
43: Memory test, stop response (STOP A).
44 ... 57: General
Possible cause 1 (during commissioning or parameter modification)
The tolerance value for the monitoring function is not the same on the two monitoring channels.
Possible cause 2 (during active operation)
The limit values are based on the actual value (r9713[0/1]). If the safe actual values on the two monitoring channels do not match, the limit values, which have been set at a defined interval, will also be different (i.e. corresponding to message value 3). This can be ascertained by checking the safe actual positions.
Permissible deviation between the two monitoring channels: p9542/p9342.
44: Position actual value (r9713[0/1]) + limit value SLS1 (p9531[0]/p9331[0]) * safety monitoring clock cycle (p9500/p9300).
45: Position actual value (r9713[0/1]) - limit value SLS1 (p9531[0]/p9331[0]) * safety monitoring clock cycle (p9500/p9300).
46: Position actual value (r9713[0/1]) + limit value SLS2 (p9531[1]/p9331[1]) * safety monitoring clock cycle (p9500/p9300).
47: Position actual value (r9713[0/1]) - limit value SLS2 (p9531[1]/p9331[1]) * safety monitoring clock cycle (p9500/p9300).
48: Position actual value (r9713[0/1]) + limit value SLS3 (p9531[2]/p9331[2]) * safety monitoring clock cycle (p9500/p9300).
49: Position actual value (r9713[0/1]) - limit value SLS3 (p9531[2]/p9331[2]) * safety monitoring clock cycle (p9500/p9300).
50: Position actual value (r9713[0/1]) + limit value SLS4 (p9531[3]/p9331[3]) * safety monitoring clock cycle (p9500/p9300).
51: Position actual value (r9713[0/1]) - limit value SLS4 (p9531[3]/p9331[3]) * safety monitoring clock cycle (p9500/p9300).
52: Standstill position + tolerance (p9530/9330)
53: Standstill position - tolerance (p9530/9330)
54: Position actual value (r9713[0/1]) + limit value nx (p9546/p9346) * safety monitoring clock cycle (p9500/p9300) + tolerance (p9542/p9342).
55: Position actual value (r9713[0/1]) + limit value nx (p9546/p9346) * safety monitoring clock cycle (p9500/p9300).
56: Position actual value (r9713[0/1]) - limit value nx (p9546/p9346) * safety monitoring clock cycle (p9500/p9300).
57: Position actual value (r9713[0/1]) - limit value nx (p9546/p9346) * safety monitoring clock cycle (p9500/p9300) tolerance (p9542/p9342).
58: Actual stop request.
75: Velocity limit nx (p9546, p9346).
When the function " n < nx: hysteresis and filtering" (p9501.16 = 1) is enabled, this message value is also output for a different hysteresis tolerance (p9547/p9347).
76: Stop response for SLS1 (p9563[0]/p9363[0])
77: Stop response for SLS2 (p9563[1]/p9363[1])
78: Stop response for SLS3 (p9563[2]/p9363[2])
79: Stop response for SLS4 (p9563[3]/p9363[3])
81: Velocity tolerance for SAM (p9548/p9348)

82: SGEs for SLS correction factor.
83: Acceptance test timer (p9558/p9358)
84: Trans. time STOP F (p9555/p9355)
85: Trans. time bus failure (p9580/p9380)
86: ID 1-encoder system (p9526/p9326).
87: Encoder assignment, second channel (p9526/p9326)
89: Encoder limit freq.
230: Filter time constant for $\mathrm{n}<\mathrm{nx}$.
231: Hysteresis tolerance for $\mathrm{n}<\mathrm{nx}$.
232: Smoothed velocity actual value.
233: Limit value nx / safety monitoring clock cycle + hysteresis tolerance.
234: Limit value $n x$ / Safety monitoring clock cycle.
235: -Limit value $\mathrm{nx} /$ Safety monitoring clock cycle.
236: -Limit value nx / safety monitoring clock cycle - hysteresis tolerance.
237: SGA n <nx.
238: Speed limit value for SAM (p9568/p9368).
243: Function configuration (p9507/p9307).
246: Voltage tolerance acceleration (p9589/p9389).
247: SDI tolerance (p9564/p9364).
248: SDI positive upper limit (7FFFFFFF hex).
249: Position actual value (r9713[0/1]) - SDI tolerance (p9564/p9364).
250: Position actual value (r9713[0/1]) + SDI tolerance (p9564/p9364).
251: SDI negative lower limit (80000001 hex).
252: SDI stop response (p9566/p9366).
253: SDI delay time (p9565/p9365).
256: Status image of monitoring functions SOS, SLS, SLP, test stop, SBR, SDI (result list 1 ext) (r9710).
257: Safety functions for motion monitoring functions without selection (p9512/p9312) different.
259: Scaling factor for safe position via PROFIsafe (p9574/p9374) or PROFIsafe telegram (p9611/p9811) different.
260: Modulo value including scaling (p9505/p9305 and p9574/p9374) for SP with 16 bit.
263: Stop response for SLP2 (p9562[1]/p9362[1])
264: Position tolerance including scaling (p9542/p9342 and p9574/p9374) for SP with 16 bit.
265: Status image of all change functions (results list 1) (r9710).
266: The switchover speed to SOS differs (p9567/p9367).
267: The transition time to SOS after standstill differs (p9569/p9369).
268: SLP delay time differs (p9577/p9377).
269: Factor to increase the position tolerance when switching over the gearbox stage (p9543/9343).
270: Screen form for SGE image: all functions, which are not supported/enabled for the actual parameterization (p9501/p9301, p9601/p9801 and p9506/p9306)..
271: Screen form for SGE image: Deselect all bits for the "Safe gearbox switchover" function
272: Activation of the increased position tolerance for the "Safe gearbox switchover" function different
276: Limit value for SLA1 (p9578/p9378).
277: Stop response for SLA1 (p9579/p9379).
278: Upper limit value for SLA1
279: Lower limit value for SLA1
1000: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs.
1001: Initialization error of watchdog timer.
1002:
User agreement after the timer has expired different.
The user agreement is not consistent. After a time of 4 s has expired, the status of the user agreement is different in both monitoring channels.
1003:
Reference tolerance exceeded.
When the user agreement is set, the difference between the new reference point that has been determined after the system boots (absolute encoder) or reference point approach (distance-coded or incremental measuring system) and the safe actual position (saved value + traversing distance) is greater than the reference tolerance (p9544). In this case, the user agreement is withdrawn.

1004:
Plausibility error for user agreement.

1. If the user agreement has already been set, then the setting is initiated again. In this case, the user agreement is withdrawn.
2. The user agreement was set, although the axis has still not been referenced.

1005: STO already active for test stop selection.
1011: Acceptance test status between the monitoring channels differ.
1012: Plausibility violation of the actual value from the encoder.
1014: fault when synchronizing the SGA for the "Safe cam" function
1015: Gearbox switchover (bit 27 in PROFIsafe telegram) takes longer than 2 min.
1020: Cyc. communication failure between the monit. channels.
1021: Cyc. communication failure between the monit. channel and Sensor Module.
1022: Sign-of-life error for DRIVE-CLiQ encoders monitoring channel 1.
1023: Error in the effectiveness test in the DRIVE-CLiQ encoder
1024: Sign-of-life error for HTL/TTL encoders.
1032: Sign-of-life error for DRIVE-CLiQ encoders monitoring channel 2.
1033: Error checking offset between POS1 and POS2 for DRIVE-CLiQ encoder monitoring channel 1.
1034: Error checking offset between POS1 and POS2 for DRIVE-CLiQ encoder monitoring channel 2.
1039: Overflow when calculating the position.
5000 ... 5140:
PROFIsafe message values.
For these message values, the failsafe control signals (Failsafe Values) are transferred to the safety functions. $5000,5014,5023,5024,5030 \ldots 5032,5042,5043,5052,5053,5068,5072,5073,5082 \ldots 5087,5090,5091,5122$ ... 5125, 5132 ... 5135, 5140: an internal software error has occurred (only for internal Siemens fault diagnostics).
5012: Error when initializing the PROFIsafe driver.
5013: The result of the initialization is different for the two controllers.
5022: Error when evaluating the $F$ parameters. The values of the transferred $F$ parameters do not match the expected values in the PROFIsafe driver.
5025: The result of the $F$ parameterization is different for the two controllers.
5026: CRC error for the F parameters. The transferred CRC value of the F parameters does not match the value calculated in the PST.
5065: A communications error was identified when receiving the PROFIsafe telegram.
5066: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
6000 ... 6166:
PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
For these message values, the failsafe control signals (Failsafe Values) are transferred to the safety functions. If "Stop B after failure of the PROFISafe communication" (9612) is parameterized, the transfer of the Failsafe Values is delayed.
The significance of the individual message values is described in safety fault F01611.
7000: Difference of the safe position is greater than the parameterized tolerance (p9542/p9342).
7001: Scaling value for the safe position in the 16 bit notation, too low (p9574/p9374).
7002: Cycle counter for transferring the safe position is different in both monitoring channels.
7003: error when providing the data for the "Synchronous safe position via PROFIsafe" function.
7004: PROFIsafe clock cycle not correctly synchronized to the DP clock cycle.
See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion diagnostics STOP F)

## Remedy: The following generally applies:

The monitoring clock cycles in both channels and the axis types should be checked for equality and the same setting applied if necessary. If the error continues to be identified, increasing the monitoring clock cycles may resolve it. For message value $=0$

- no error was identified in this monitoring channel. Note the error message of the other monitoring channel (for HM: C30711).

For message value = 3 :
Commissioning phase:

- check the encoder parameters, and if required, correct (p9516/p9316, p9517/p9317, p9518/p9318, p9520/p9320, p9521/p9321, p9522/p9322, p9526/p9326).
In operation:
- check the mechanical design and the encoder signals.

For message value $=4$ :
The monitoring clock cycles in both channels should be checked for equality and if required, set the same. In combination with message value 5 from the other monitoring channel (with HM: C30711), the monitoring clock cycle settings must be increased.
For message value = 11 ... 14:

- the limit values in p9534/p9334 or p9535/p9335 are not equal or have been set too high. Correct the values.

For message value $=232$ :

- increase the hysteresis tolerance (p9547/p9347). Possibly set the filtering higher (p9545/p9345).

For message value = 1 ... 999:

- if the message value is listed under cause: Check the cross-checked parameters to which the message value refers.
- copy the safety parameters.
- carry out a POWER ON (switch-off/switch-on) for all components.
- upgrade the Hydraulic Module software.
- upgrade the Control Unit software.
- correction of the encoder evaluation. The actual values differ as a result of mechanical faults (V belts, travel to a mechanical endstop, wear and window setting that is too narrow, encoder fault, ...).
Note:
For SINAMICS firmware version >= 4.7, the KDV list is increased when setting p9567 > 0 . For a non-compatible version of SINUMERIK this can lead to an error for the data cross-check (is indicated with message value >=237). If necessary, p9567 must be set $=0$, or the firmware version of SINUMERIK upgraded.
For message value $=1000$ :
- investigate the signal associated with the safety-relevant input (contact problems).

For message value $=1001$

- carry out a POWER ON (switch-off/switch-on) for all components.
- upgrade the Hydraulic Module software.
- upgrade the Control Unit software.

For message value $=1002$ :

- perform safe acknowledgment, set the user agreement in both monitoring channels simultaneously (within 4 s ). For message value $=1003$ :
- check the mechanical system of the axis. It is possible that the axis was shifted when switched-off, and the last saved actual position no longer corresponds with the new actual position after the system has been powered up again.
- increase the tolerance for the actual value comparison when referencing (p9544).

Then check the actual values, perform a POWER ON and set the user agreement again.
For message value = 1004:
For 1., the following applies: Perform safe acknowledgment. Set the user agreement again.
For 2., the following applies: Perform safe acknowledgment. Only set the user agreement again if the axis has been referenced.

For message value $=1005$ : deselect checking the conditions for STO.
For message value $=1007$ :

- check the PLC for the correct operating state (run state, basic program).

For message value $=1008$ :

- check whether incorrect or overlapping address ranges have been set in SINUMERIK machine data MD10393.

For message value $=1011$ :

- for diagnostics, refer to parameter (r9571).

For message value $=1012$ :

- upgrade the Sensor Module firmware to a more recent version.
- for 1-encoder systems, the following applies: check the encoder parameters for equality (p9515/p9315, p9519/p9319, p9523/p9323, p9524/p9324, p9525/p9325, p9529/p9329).
- for a 1-encoder system and 2-encoder system the following applies: in order to correctly copy the encoder parameters from p04xx, p9700 must be set to 46 and p9701 must be set to 172.
- for DQI encoders the following applies: If required, upgrade the firmware version of the Control Unit to a more recent version, which is released for DQI encoders.
- check the electrical cabinet design and cable routing for EMC compliance
- carry out a POWER ON (switch-off/switch-on) for all components or a warm restart (p0009 = 30, p0976 = 2, 3).
- replace the hardware.

For message value = 1014:

- check the encoder actual values. If required, increase the position tolerance (p9542) and/or cam tolerance (p9540).

For message value $=1020,1021,1024$ :

- check the communication link.
- if required, increase the monitoring cycle clock settings (p9500, p9511).
- carry out a POWER ON (switch-off/switch-on) for all components or a warm restart (p0009 = 30, p0976 = 2, 3).
- replace the hardware.

For message value $=1033$ :

- if required, upgrade the firmware version of the Control Unit to a more recent version, which is released for DQI encoders.
For message value = 1039:
- check the conversion factors such as spindle pitch or gearbox ratios.

For message value = 1041

- check whether the motor has sufficient current (>r9785[0]).
- reduce the minimum current (p9588).
- for synchronous motors increase the absolute value of p9783.
- check whether the function "Closed-loop controlled operation with HF signal injection" is activated (p1750.5 = 1) and if required, deactivate.
For message value $=1042$ :
- increase the ramp-function generator ramp-up/down time (p1120/p1121).
- check that the current/speed control is set correctly (torque-generating/field-generating current and actual speed value may not fluctuate).
- reduce the dynamic response of the setpoint value.
- check the absolute current and voltage values, and set the control behavior so that this is greater than $3 \%$ of the rated converter data in operation or in the case of a fault.
- increase the minimum current (p9588/p9388).

For message value $=1043$ :

- increase the voltage tolerance (p9589).
- increase the ramp-function generator ramp-up/down time (p1120/p1121).
- check that the current/speed control is set correctly (torque-generating/field-generating current and actual speed value may not fluctuate).
- reduce the dynamic response of the setpoint value.

For message value $=5000,5014,5023,5024,5030,5031,5032,5042,5043,5052,5053,5068,5072,5073,5082 \ldots$ 5087, 5090, 5091, 5122 ... 5125, 5132 ... 5135, 5140:

- carry out a POWER ON (switch-off/switch-on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Hydraulic Module involved and, if required, carry out a diagnostics routine for the faults identified.
- upgrade firmware to later version.
- contact Technical Support.
- replace the Control Unit.

For message value $=5012$ :

- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the hydraulic module (p9810). It is not permissible for the PROFIsafe address to be 0 or FFFF!

For message value $=5013,5025$ :

- carry out a POWER ON (switch-off/switch-on) for all components.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the hydraulic module (p9810).
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Hydraulic Module involved and, if required, carry out a diagnostics routine for the faults identified.
For message value $=5022$ :
- check the setting of the values of the F parameters at the PROFIsafe slave (F_SIL, F_CRC_Length, F_Par_Version, F_Source_Add, F_Dest_add, F_WD_Time).
For message value $=5026$ :
- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and update.
For message value $=5065$
- check the configuration and communication at the PROFIsafe slave (cons. No. / CRC).
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Hydraulic Module involved and, if required, carry out a diagnostics routine for the faults identified.
For message value $=5066$ :
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- evaluate diagnostic information in the $F$ host.
- check PROFIsafe connection.

For message value $=6000 \ldots 699$ :
Refer to the description of the message values in safety fault F01611.
For message value $=7000$

- increase the position tolerance (p9542/p9342).
- determine the actual position of CU (r9713[0] and the second channel r9713[1], and check the difference for plausibility.
- reduce the difference of the actual position from CU (r9713[0] and the second channel r9713[1] for a 2-encoder system.

For message value $=7001$ :

- increase the scaling value for the safe position in the 16 bit notation (p9574/p9374).
- if required, reduce the traversing range.

For message value $=7002$

- carry out a POWER ON (switch-off/switch-on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Hydraulic Module involved and, if required, carry out a diagnostics routine for the faults identified.
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel

For message value $=7003,7004$ :

- if required, adapt the settings for the times for $\mathrm{Tdp}, \mathrm{Ti}$ and To - or increase the monitoring clock cycle p9500 (rule Tdp $=2 \times n \times p 9500, n=1,2,3, \ldots)$.
See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))


## C01712

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## SI Motion P1 (CU): Defect in F-IO processing

 \%1Safety monitoring channel has identified an error (10)
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Control Unit (CU) Propagation: GLOBAL
NONE
IMMEDIATELY (POWER ON)
When cross checking and comparing the two monitoring channels, the drive detected a difference between parameters or results of the F-IO processing and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
The safety message C01711 with message value 0 is also displayed due to initiation of STOP F.
If at least one monitoring function is active, the safety message C01701 "SI Motion: STOP B initiated" is output after the parameterized timer has expired.

Message value (r9749, interpret decimal):
Number of the cross-compared data that resulted in this message.
1: SI discrepancy monitoring time inputs (p10002, p10102).
2: SI acknowledgment internal event input terminal (p10006, p10106).
3: SI STO input terminal (p10022, p10122).
4: SI SS1 input terminal (p10023, p10123).
5: SI SS2 input terminal (p10024, p10124).
6: SI SOS input terminal (p10025, p10125).
7: SI SLS input terminal (p10026, p10126).
8: SI SLS_Limit(1) input terminal (p10027, p10127).
9: SI SLS_Limit(2) input terminal (p10028, p10128).
10: SI Safe State signal selection (p10039, p10139).
11 SI F-DI input mode (p10040, p10140).
12: SI F-DO 0 signal sources (p10042, p10142).
13: Different states for static inactive signal sources (p10006, p10022 ... p10031).
14: SI discrepancy monitoring time outputs (p10002, p10102).
15: SI acknowledgment internal event (p10006, p10106).
16: SI test sensor feedback signal test mode selected for test stop (p10046, p10146, p10047, p10147).
17: SI delay time for test stop at DOs (p10001).
18 ... 25: SI test sensor feedback signal (p10046, p10146, p10047, p10147). Expected state of internal readback signal, generated from the selected test stop mode.
$26 \ldots 33$ : SI test sensor feedback signal (p10046, p10146, p10047, p10147). Expected state of external readback signal, generated from the selected test stop mode.
34 ... 41: SI test sensor feedback signal (p10046, p10146, p10047, p10147). Expected state of second internal readback signal, generated from the selected test stop mode.
42: Internal data for processing the second internal readback signal, generated from the selected test stop mode (p10047, p10147).
43: Internal data for processing the internal readback signal, generated from the selected test stop mode (p10047, p10147).
44: Internal data for processing the external readback signal, generated from the selected test stop mode (p10047, p10147).
45: Internal data for initialization state of test stop mode, dependent upon test stop parameters.
46: SI digital inputs debounce time (p10017, p10117)
47: Selection F-DI for PROFIsafe (p10050, p10150)
48: Screen form of the F-DIs used (p10006, p10022 ... p10031).
49: SI SDI positive input terminal (p10030, p10130).
50: SI SDI negative input terminal (p10031, p10131).
51: SI SLP input terminal (p10032, p10132).
52: SI SLP select input terminal (p10033, p10133).
53: Internal data for retraction logic (p10009, p100109).
54: SI F-DI for retraction SLP (p10009, p100109).
Remedy: - check parameterization in the parameters involved and correct if required.

- ensure equality by copying the SI data to the second channel and then carry out an acceptance test.
- check monitoring clock cycle in p9500 and p9300 for equality.

This message can be acknowledged without a POWER ON as follows (safe acknowledgment):

- onboard F-DI (only CU310-2).
- PROFIsafe.
- machine control panel.

See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))

C01714	SI Motion P1 (CU): Safely-Limited Speed exceeded
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive has moved faster than that specified by the velocity limit value (p9531). The drive is stopped as a result of the configured stop response (p9563).
	Message value (r9749, interpret decimal):
	100: SLS1 exceeded.
	200: SLS2 exceeded.
	300: SLS3 exceeded.
	400: SLS4 exceeded.
	1000: Encoder limit frequency exceeded.
Remedy:	- check the traversing/motion program in the control.
	- check limits for SLS and if required adapt accordingly (p9531).
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment):
	- Terminal Module 54F (TM54F).
	- onboard F-DI (only CU310-2).
	- PROFIsafe.
	- machine control panel.
	Note:
	SI: Safety Integrated
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	See also: p9531, p9563
C01715	SI Motion P1 (CU): Safely-Limited Position exceeded
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The axis has moved past a parameterized position that is monitored by the "SLP" function.
	Message value (r9749, interpret decimal):
	10: SLP1 violated.
	20: SLP2 violated.
Remedy:	- check the traversing/motion program in the control.
	- check the limits for "SLP" function and if required, adapt (p9534, p9535).
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment):
	Prerequisite:
	- deselect "SLP" function and retract the axis into the permitted position range.
	Carry out a safe acknowledgment using one of the following options:
	- Terminal Module 54F (TM54F).
	- onboard F-DI (only CU310-2).
	- PROFIsafe.
	- machine control panel.
	Note:
	SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches
	See also: p9534, p9535


$\overline{C 01716}$	SI Motion P1 (CU): Tolerance for safe motion direction exceeded
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The tolerance for the "safe motion direction" function was exceeded. The drive is stopped as a result of the configured stop response (p9566).   Message value (r9749, interpret decimal):   0 : Tolerance for the "safe motion direction positive" function exceeded.   1: Tolerance for the "safe motion direction negative" function exceeded.
Remedy:	- check the traversing/motion program in the control.   - check the tolerance for "SDI" function and if required, adapt (p9564).   This message can be acknowledged without a POWER ON as follows (safe acknowledgment):   Prerequisite:   - deselect the "SDI" function and if required select again.   Carry out a safe acknowledgment using one of the following options:   - Terminal Module 54F (TM54F).   - onboard F-DI (only CU310-2).   - PROFIsafe.   - machine control panel.   Note:   SDI: Safe Direction (safe motion direction)   SI: Safety Integrated   See also: p9564, p9565, p9566
$\overline{C 01717}$	SI Motion P1 (CU): SLA limit exceeded
Message value:	
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The acceleration limit for the "Safely-Limited Acceleration" function was exceeded. The drive is stopped as a result of the configured stop response (p9579).
Remedy:	- check the traversing/motion program in the control.   - check the acceleration limit for the "SLA" function and if required, adapt (p9578).   - carry out a safe acknowledgment.   Note:   SI: Safety Integrated   SLA: Safely-Limited Acceleration   See also: p9578 (SI Motion SLA acceleration limit (CU)), p9579 (SI Motion SLA stop response (Control Unit))


C01730	SI Motion P1 (CU): Reference block for dynamic Safely-Limited Speed invalid
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The reference block transferred via PROFIsafe is negative.
	A reference block is used to generate a referred velocity limit value based on the reference quantity "Velocity limit value SLS1" (p9531[0]).
	The drive is stopped as a result of the configured stop response (p9563[0]).
	Message value (r9749, interpret decimal): requested, invalid reference block.
Remedy:	In the PROFIsafe telegram, input data S_SLS_LIMIT_IST must be corrected.
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment): - PROFIsafe.
	Note:
	SI: Safety Integrated
	SLS: Safely-Limited Speed / SG: Safely reduced speed
C01745	SI Motion P1 (CU): Checking braking torque for the brake test
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	POWER ON (IMMEDIATELY)
Cause:	The scaling of the brake torque for the brake test can be changed using parameter p2003.
	An acceptance test must be carried out again for the braking test. This determines whether the braking test is still carried out with the correct braking torque.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- repeat the acceptance test for the safe brake test if the brake test is used.
	See also: p2003
C01750	SI Motion P1 (CU): Hardware fault safety-relevant encoder
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The encoder that is used for the safety-relevant motion monitoring functions signals a hardware fault.
	Message value (r9749, interpret decimal):
	Encoder status word 1, encoder status word 2 that resulted in the message.
Remedy:	- check the encoder connection.
	- replace encoder.
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment):
	- Terminal Module 54F (TM54F).
	- onboard F-DI (only CU310-2).
	- PROFIsafe.
	- machine control panel.
	Note regarding encoder replacement for a third-party motor:
	The serial number of the encoder must be copied in order to acknowledge this safety message.
	This can be realized using $\mathrm{p} 0440=1$ or $\mathrm{p} 1990=1$.



## C01752

## SI Motion P1 (CU): reference position invalid

## Message value:

## Message class:

 \%1Drive object:
Safety monitoring channel has identified an error (10)

## Component:

 HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_ACReaction:
Acknowledge: None Propagation: GLOBAL NONE

Cause: The transferred reference position is invalid. Message value (r9749, interpret decimal):
1: It is not possible to directly transfer the reference position (p9573=89).
2: It is not possible to transfer the reference position into the motion.
Remedy: - unpark axis/encoder.

- acknowledge encoder fault
- deactivate gearbox stage switchover.
- when referencing via the Safety Control Channel (SCC), enable the function "Referencing via SCC" (p9501.27/9301.27).
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe

$\overline{C 01770}$	SI Motion P1 (CU): Discrepancy error of the failsafe inputs/outputs
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The failsafe digital inputs/digital outputs (F-DI/F-DO) show a different state longer than that parameterized in p10002/p10102 - or too many switching operations took place within a monitoring cycle p10002.
	Fault value (r0949, interpret bitwise binary):
	yyyyxxxx bin
	xxxx: Discrepancy error for failsafe digital inputs (F-DI).
	Bit 0: Discrepancy error for F-DI 0
	Bit 1: Discrepancy error for F-DI 1

Remedy:

- check the wiring of the F-DI (contact problems).
- if the wiring is correct, and there is no interrupted cable or similar, then a check must be made as to whether the
switching frequency at FDI is too high, and should be reduced (switching pulses must have a longer time between
them). After each edge at an FDI, as a minimum, the discrepancy time should elapse before switching again.
Note:
This message can be acknowledged via F-DI or PROFIsafe (safe acknowledgment).
Discrepancy errors of an F-DI can only be acknowledged if safe acknowledgment was carried out once after the
cause of the error was resolved (p10006, acknowledgment via PROFIsafe, extended message acknowledgment). As
long as safety acknowledgment was not carried out, the corresponding F-DI stays in the safe state internally.
When the "Extended message acknowledgment" function (p9507.0) is active, the following applies:
If the F-DI assigned for STO or SS1 is in a failsafe state due to a discrepancy error, then when deselecting via this F-
DI, safe acknowledgment can no longer be executed.
Sets the discrepancy time for fast switching operations at the F-DIs:
For fast switching operations at the failsafe digital inputs (F-DI), it may be necessary to adapt the discrepancy time to
the switching frequency:
- the period of a cyclic switching pulse must be less than half of the discrepancy time (if necessary, round down)
- the time between two switching pulses should be longer than the discrepancy time (if necessary, round up)
- the discrepancy time must be at least p9500. (it must always be rounded-down or rounded-up to an integer multiple
of the SI sampling time p9500.)
If a debounce time has been parameterized (p10017>0), then the shortest possible discrepancy time is directly

Example:
For an SI sampling time of 12 ms and a switching frequency of $110 \mathrm{~ms}(\mathrm{p} 10017=0)$, as a maximum, the discrepancy time can be set as follows: p10002 <= 110/2 ms - $12 \mathrm{~ms}=43 \mathrm{~ms}-->$ rounded off, p10002 <= 36 ms is obtained. As the discrepancy time is accepted rounded off to a integer SI sampling time, the result must be rounded off to an integer SI sampling time if the result is not a multiple integer of the SI sampling time. Basic constraint when setting the discrepancy time: Discrepancy time of the F-Dls must always be longer than the longest SI sampling time of all drives that use Safety Integrated with TM54F (p9780/p9500). F-DI: Failsafe Digital Input F-DO: Failsafe Digital Output

Note:
F-DI: Failsafe Digital Input
F-DO: Failsafe Digital Output

## A01772

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

SI Motion P1 (CU): Test stop for failsafe digital outputs running

Safety monitoring channel has identified an error (10) SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Control Unit (CU) Propagation: GLOBAL
NONE
NONE
The forced checking procedure (test stop) for the failsafe digital inputs is currently in progress.

Remedy: The alarm is automatically withdraw after successfully ending or canceling (when a fault condition occurs) the test stop.
Note:
F-DO: Failsafe Digital Output

F01773	SI Motion P1 (CU): Test stop failsafe digital output error
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault has occurred on processor 1 during the forced checking procedure (test stop) of the failsafe digital output.
	Fault value (r0949, interpret hexadecimal):
	RRRVWXYZ hex:
	R: Reserved.
	V: Actual state of the DO channel concerned (see $X$ ) on processor 1 (corresponds to the states read back from the hardware, bit $0=$ DO 0, bit $1=$ DO 1, etc.).
	W: Required state of the DO channel concerned (see $X$, bit $0=D O 0$, bit $1=\mathrm{DO} 1$, etc.).
	X: DO channels involved, which indicate an error (bit $0=\mathrm{DO} 0$, bit $1=\mathrm{DO} 1$, etc.).
	Y : Reason for the test stop fault.
	Z : State of the test stop in which the fault has occurred.
	Y: Reason for the test stop fault
	$Y=1$ Processor 2 in incorrect test stop state (internal fault).
	$\mathrm{Y}=2$ : Expected states of the DOs were not fulfilled (CU305: readback via DI 22 / CU240 readback DI 5).
	$\mathrm{Y}=3$ : Incorrect timer state on processor 1 (internal fault)
	$Y=4$ : Expected states of the diag DOs were not fulfilled (CU305: internal readback on processor 2).
	$Y=5$ : Expected states of the second diag DOs were not fulfilled (CU305: internal readback on processor 1).
	X and V indicate the DI or Diag-DO state dependent upon the reason for the fault (2, 4 or 5).
	In the event of multiple test stop faults, the first one that occurred is shown.
	Z: Test stop state and associated test actions
	$Z=0 \ldots 3$ : Synchronization phase of test stop between processor 1 and processor 2 no switching operations
	$Z=4:$ DO + OFF and DO - OFF
	$Z=5$ : Check to see if states are as expected
	$Z=6: D O+O N$ and DO-ON
	$Z=7$ : Check to see if states are as expected
	$Z=8: D O+O F F$ and DO-ON
	$Z=9$ : Check to see if states are as expected
	$Z=10: D O+O N$ and DO-OFF
	$Z=11$ : Check to see if states are as expected
	$Z=12: D O+O F F$ and DO-OFF
	$Z=13:$ Check to see if states are as expected
	$Z=14:$ End of test stop
	Diag expected states in table format:
	Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
	5: 0/-/-/1
	7: 0/--/0
	9: 0/--/0
	11: 1/-/-/1
	13: 0/-/-/1


	Second diag expected states in table format:
	Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
	5: -/--/1
	7: ---/0
	9: ---/1
	11: --/-/0
	13: -/--/1
	DI expected states in table format:
	Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
	5: -/1/1/-
	7: -/0/0/-
	9: -/0/1/-
	11: -/0/1/-
	13: -/1/1/-
	Example:
	Fault F01773 (P1) is signaled with fault value $=0001 _0127$ and fault F30773 (P2) is signaled with fault value 0000_0127.
	This means that in state $7(Z=7)$ the state of the external readback signal was not set correctly $(Y=2)$ after DO-0 ( X $=1$ ) was switched to ON/ON.
	Fault value 0001_0127 indicates that 0 was expected ( $\mathrm{W}=0$ ) and $1(\mathrm{~V}=1)$ was read back from the hardware.
	Fault value 0000_0127 on the processor 2 indicates that the states were as expected.
	In the case of fault F30773, W and V are always identical; a value of 0 always means that 0 was expected at the readback input but was not present on processor 1 .
Remedy:	Check the wiring of the failsafe digital output (F-DO) and restart the test stop.
	Note:
	- the fault is withdrawn if the test stop is successfully completed.
	- in the event of multiple test stop faults, the first one that occurred is shown. Once the test stop has been restarted the next queued test stop fault will be signaled (if there is one).
	F-DO: Failsafe Digital Output
A01774	SI Motion P1 (CU): Test stop for failsafe digital outputs required
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time set in p10003 for the forced checking procedure (test stop) for the failsafe digital outputs has been exceeded. A new forced checking procedure is required.
	After the next time the forced checking procedure is selected, the message is withdrawn and the monitoring time is reset.
	Note:
	- this message does not result in a safety stop response.
	- the test must be performed within a defined, maximum time interval ( p 10003 , maximum of 8760 hours) in order to comply with the requirements as laid down in the standards for timely fault detection and the conditions to calculate the failure rates of safety functions (PFH value). Operation beyond this maximum time period is permissible if it can be ensured that the forced checking procedure is performed before persons enter the hazardous area and who are depending on the safety functions correctly functioning.
	See also: p10003
Remedy:	Carry out the forced checking procedure for the digital outputs.
	The signal source to select the forced checking procedure is set via binector input p10007.
	Note:
	F-DO: Failsafe Digital Output
	See also: p10007


A01780	SBT When selected, the brake is closed
Message value:	Following brakes are closed: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When selecting the brake test or starting the brake test, not all of the brakes were open.
	Alarm value (r2124, interpret binary):
	Bit $0=1$ :
	The internal brake is closed.
	Bit $1=1$ :
	The external brake is closed (p10230.5, p10235.5, p10202).
	Note:
	The alarm is also issued, if a brake has not been configured in p10202.
	SBT: Safe Brake Test
	See also: p10202 (SI Motion SBT brake selection), p10230 (SI Motion SBT control word), p10235 (SI Safety Control Channel control word S_STW3B)
Remedy:	Open all brakes and reselect the brake test (p10230.0, p10235.0).
A01781	SBT brake opening time exceeded
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum time (11 s) to open the brake during the brake test was exceeded.
	Possible causes:
	- during the brake test the drive went into a fault condition, and therefore the brake was closed by the drive.   - for an external brake, the feedback signal "Brake closed" was signaled too long (p10230.5, p10235).
	Alarm value (r2124, interpret binary):
	Bit $0=1$ :
	Internal brake was not able to be opened.
	Bit $1=1$ :
	External brake was not able to be opened.
	Note:
	SBT: Safe Brake Test
Remedy:	- carry out a safe acknowledgment.
	- restart the brake test (p10230.1, p10235.1).
	See also: p10230 (SI Motion SBT control word), p10235 (SI Safety Control Channel control word S_STW3B)
A01782	SBT brake test incorrect control
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE

Cause:
The brake test was canceled as a result of incorrect control.
Alarm value (r2124, evaluate binary):
Alarm value 0:
The brake test was canceled as a result of a fault (brake opening time or brake closing time exceeded).
Bit 0:
The safe brake test was canceled by resetting the brake test selection.
Bit 1:
The safe brake test was canceled by resetting the brake test start.
Bit 2:
The brake, which was selected at the start of the brake test, has not been configured in p10202.
When starting the brake test, as a result of the test top selection, brake 1 is not configured as internal brake.
There is a brake test configuration error. In this case, alarm A01785 is also output.
Note:
SBT: Safe Brake Test
Seme also: p10202 (SI Motion SBT brake selection)
Remedy

A01783
Message value:
Message class:
Drive object:
Component: Reaction:

## Acknowledge:

Cause:

## SBT brake closing time exceeded

Fault cause: \%1 bin
Safety monitoring channel has identified an error (10)
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL
NONE
NONE
The maximum time ( 11 s ) to close the brake during the brake test was exceeded.
Alarm value (r2124, interpret binary):
Bit $0=1$ :
Internal brake was not able to be closed.
Bit 1 = 1:
External brake was not able to be closed.
Note:
SBT: Safe Brake Test
Remedy: - When using an external brake, check that the feedback signal "brake closed" is correctly interconnected with the control word of the brake test (p10230.5, p10235.5).

- When using an internal brake with external feedback signal, check whether the feedback signal is correctly interconnected with the extended brake control.
- carry out a safe acknowledgment.
- restart the brake test (p10230.1, p10235.1).


## A01784

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## SBT brake test canceled with fault

Fault cause: \%1
Safety monitoring channel has identified an error (10)
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL
NONE
NONE
The safe brake test was canceled as a result of a fault.
Alarm value (r2124, interpret binary)
Bit $17=1$ : fault in the brake test sequence (cause, see bits $0 \ldots 10$ ).
Bit $18=1$ : the internal brake is closed. It must be open when the external brake is tested (p10202).
Bit 19 = 1: the external brake is closed. It must be open when the internal brake is tested ( p 10202 ).
Bit $20=1$ : not all brakes are open ( p 10202 )
Bit 21 = 1: axis position during the brake test not valid due to parking axis.

Bit $22=1$ : internal software error.
Bit 23 = 1: the permissible position range of the axis was violated with the brake closed (p10212/p10222).
Bit 24 = 1: the tested internal brake was opened while the brake test was active.
Bit 25 = 1: the tested external brake was opened while the brake test was active.
Bit $26=1$ : during the active brake test, the test torque left its tolerance bandwidth (20 \%).
Cause for alarm value bit 17:
Bit $0=1$ : operation when selecting the brake test not enabled (r0899.2 = 0).
Bit $1=1$ : external fault occurred (e.g. the brake test that has already started is canceled by the user).
Bit $2=1$ : when selecting the brake test a brake is closed.
Bit $3=1$ : when determining the load torque a brake is closed.
Bit 4 = 1: a fault with a stop response has occurred (e.g. OFF1, OFF2 or OFF3) - or pulse enable was withdrawn (e.g.
STO selected or operation no longer enabled).
Bit $5=1$ : when selecting the brake test the axis speed setpoint is too high.
Bit $6=1$ : the actual speed (r0063) of the axis is too high (e.g. brake does not hold during the brake test).
Bit $7=1$ : incorrect speed controller mode (e.g. encoderless speed control or U/f operation).
Bit $8=1$ : closed-loop control not enabled or function generator active.
Bit $9=1$ : control does not switch over to the brake test (e.g. because PI speed control has not been parameterized).
Bit $10=1$ : torque limit reached (r1407.7, r1408.8).
Note:
SBT: Safe Brake Test
Remedy: - remove the fault cause.

- carry out a safe acknowledgment.
- if required, restart the brake test.

For bit $17=1$ with bit $6=1$ or bit $23=1$ :
If the brake closing time of the motor holding brake ( p 1217 ) has been set too low, then at the start of the brake test, the brake is closed too late. The brake closing time should be adapted (p1217).

A01785	SBT brake test configuration error
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when parameterizing the brake test.
	In this configuration, the brake test cannot be started or cannot be started without error.
	Alarm value (r2124, interpret decimal):
	1:
	No motion monitoring functions have been enabled.
	2:
	Two internal brakes were configured (p10202).
	4:
	No internal brakes were configured (p10202).
	8:
	The brake test is configured for an internal brake, however the safety brake control is not enabled (p9602/p9802). (Note: from V5.1, SBT is permitted for the internal brake without SBC.)
	16:
	The safe brake test and Safety without encoder are simultaneously enabled (p9306/p9506). This is not permissible. 32:
	The Safe Brake Test and vector U/f control is enabled. The safe brake test is not possible in this control mode.
	Note:
	SBT: Safe Brake Test
Remedy:	Check parameterization of the brake test.


F01786	SCC signal source changed
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The signal source in p10235 or p10250 was changed.
	The new signal source is effective immediately.
	Note:
	SCC: Safety Control Channel
	See also: p10235 (SI Safety Control Channel control word S_STW3B), p10250 (SI Safety Control Channel control word S_STW1B)
Remedy:	Acknowledge fault.
F01787	SBT motor type different
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The motor type set for the safe brake test (p10204) does not match the motor type set via the function module (r0108.12).
Remedy:	Adapt the motor type set for the safe brake test.
	Note:
	All of the parameters for the brake test, whose unit depends on the motor type, should be checked.
	See also: p10204 (SI Motion SBT motor type), p10209
A01788	SI: Automatic test stop waits for STO deselection via motion monitoring functions
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic test stop (forced checking procedure) was not able to be carried out after powering up.
	Possible causes:
	- the STO function is selected via safe motion monitoring functions.
	- a safety message is present, that resulted in a STO.
	Note:
	STO: Safe Torque Off
Remedy:	- deselect STO via safe motion monitoring functions.
	- remove the cause of the safety messages and acknowledge the messages.
	Note:
	The automatic test stop is performed after removing the cause.


A01789	SI: Automatic test stop and brake test when test stop is selected not permitted
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameterization of the automatic test stop (p9507.6/p9307.6) and the brake test when a test stop is selected (p10203 = 2) are not permissible.
	The test stop is not automatically carried out when the powering up.
Remedy:	- correct the parameter assignment.
	- set p10203 not equal to 2 or deactivate the automatic test stop.
	Note:
	A warm restart or POWER ON is required to carry out the automatic test stop.
A01794 (N)	SI Motion: check modulo value for safe position via PROFIsafe
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When parameterizing the modulo value for safe position via PROFIsafe (p9505) the position actual value can jump when the range that can be represented overflows.
	Range that can be represented:
	- 32-bit value: +/- 2048 revolutions
	- 16-bit value: +/- 2048 revolutions (depending on p9574)
Remedy:	Correct the parameter assignment.
	Set p9505 to $2^{\wedge} \mathrm{n}$ revolutions - and to complete revolutions (i.e. a multiple of $360^{\circ}$ ).
	Note:
	This alarm can be hidden for the case that the possible position actual value jump can be tolerated for the particular application, or does not represent a problem; for example because the parameterized modulo range fits "almost as integer number" in the range of $+/-2048$ revolutions that can be represented.
	To re-parameterize the alarm to "NO REPORT", it is not permissible that the alarm is present. As a consequence, the following sequence is required for the re-parameterization:
	- correct p9505 to "2^n".
	- re-parameterize the alarm using p2118 and p2119.
	- set p9505 back to the required value.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

Remedy: - check missing enable signals, which prevent the drive control from being commissioned (r0046).

## A01795

Message value:

## Message class:

Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## SI Motion P1 (CU): Wait time after exiting the safe pulse cancellation expired

- 

Safety monitoring channel has identified an error (10)
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Control Unit (CU) Propagation: GLOBAL
NONE
NONE
After exiting safe pulse cancellation, within the wait time of 5 seconds, encoderless actual value sensing was not able to be activated for the extended functions without selection.
A change is again made into the "safe pulse cancellation" state.

- evaluate possible fault messages of the encoderless actual value sensing and remove.

A01796 (F, N)	SI P1 (CU): Wait for communication
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive waits for communication to be established to execute the safety-relevant motion monitoring functions. Note:   STO is active in this state.   Alarm value (r2124, interpret decimal):   1: Wait for communication to be established to SINUMERIK.   2: Wait for communication to be established to TM54F.   3: Wait for communication to be established to PROFIsafe F-Host.
Remedy:	If, after a longer period of time, the message is not automatically withdrawn, the following checks have to be made as appropriate:   For communication with SINUMERIK, the following applies:   - check any other PROFIBUS messages/signals present and remove their cause.   - check that assignment of the axes on the higher-level control to the drives in the drive unit is correct.   - check enable signal of the safety-relevant motion monitoring functions for the corresponding axis on the higher-level control and if required, set it.   For communication with TM54F, the following applies:   - check any other messages/signals present for DRIVE-CLiQ communication with the TM54F and remove their cause.   - check the setting of p10010. All the drive objects controlled by the TM54F must be listed.   For communication with PROFIsafe F-Host, the following applies:   - check any other PROFIsafe communication messages/signals present and evaluate them.   - check the operating state of the F-Host.   - check the communication connection to the F Host.   - check the communication connection to the Motor Module/Hydraulic Module. It must be ensured that when the Control Unit powers up, the Motor Module/Hydraulic Module is connected and at the latest is also switched-on with the Control Unit. Otherwise, if the Motor Module/Hydraulic Module is subsequently inserted or switched on, a POWER ON must be performed at the Control Unit.   Note:   STO: Safe Torque Off   See also: p9601, p9801, p10010
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
C01797	SI Motion P1 (CU): Axis not safely referenced
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The standstill position saved before switching off does not match the actual position determined at switch-on. Message value (r9749, interpret decimal):   1: Axis not safely referenced.   2: User agreement missing.
Remedy:	If safe automatic referencing is not possible the user must issue a user agreement for the new position using the softkey. This mean that this position is then designated as safety-relevant.   Note:   SI: Safety Integrated


C01798	SI Motion P1 (CU): Test stop for motion monitoring functions running
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The forced checking procedure (test stop) for the safe motion monitoring functions is currently in progress.
Remedy:	Not necessary.
	The message is automatically withdrawn when the test stop has been completed.
	Note:
	SI: Safety Integrated
C01799	SI Motion P1 (CU): Acceptance test mode active
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The acceptance test mode is active.
	This means the following:
	- the setpoint velocity limiting is deactivated (r9733).
	- the standard limit switches are deactivated during the acceptance test for function SLP (SE) (for EPOS internal, otherwise via r10234).
	- for safety functions with SINUMERIK, the following applies: The POWER ON signals of the safety-relevant motion monitoring functions can be acknowledged during the acceptance test using the acknowledgment functions of the higher-level control.
Remedy:	Not necessary.
	The message is withdrawn when exiting the acceptance test mode.
	Note:
	SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches
F01800	DRIVE-CLiQ: Hardware/configuration error
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A DRIVE-CLiQ connection fault has occurred.
	Fault value (r0949, interpret decimal): $100 \text {... 107: }$
	Communication via DRIVE-CLiQ socket X100 ... X107 has not been switched to cyclic operation. The cause may be an incorrect structure or a configuration that results in an impossible bus timing.   10:
	Loss of the DRIVE-CLiQ connection. The cause may be, for example, that the DRIVE-CLiQ cable was withdrawn from the Control Unit or as a result of a short-circuit for motors with DRIVE-CLiQ. This fault can only be acknowledged in cyclic communication.


	11:
	Repeated faults when detecting the connection. This fault can only be acknowledged in cyclic communication. 12:
	A connection was detected but the node ID exchange mechanism does not function. The reason is probably that the component is defective. This fault can only be acknowledged in cyclic communication.
Remedy:	For fault value = $100 \ldots 107$ :
	- ensure that the DRIVE-CLiQ components have the same firmware versions.
	- avoid longer topologies for short current controller sampling times.
	For fault value = 10:
	- check the DRIVE-CLiQ cables at the Control Unit.
	- remove any short-circuit for motors with DRIVE-CLiQ.
	- carry out a POWER ON.
	For fault value = 11:
	- check the electrical cabinet design and cable routing for EMC compliance
	For fault value $=12$ :
	- replace the component involved.
A01839	DRIVE-CLiQ diagnostics: cable fault to the component
Message value:	Component number: \%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The fault counter (r9936[0...199]) to monitor the DRIVE-CLiQ connections/cables has been incremented.
	Alarm value (r2124, interpret decimal):
	Component number.
	Note:
	The component number specifies the component whose feeder cable from the direction of the Control Unit is faulted.
	The alarm automatically disappears after 5 seconds, assuming that no other data transfer error has occurred.
	See also: r9936 (DRIVE-CLiQ diagnostic error counter connection)
Remedy:	- check the corresponding DRIVE-CLiQ cables.
	- check the electrical cabinet design and cable routing for EMC compliance
A01840	SMI: Component found without motor data
Message value:	Component number: \%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	An SMI/DQI without motor data has been found (e.g. SMI installed as replacement part).
	Alarm value (r2124, interpret decimal):
	Component number from target topology.
Remedy:	1. Download the SMI/DQI data (motor/encoder data) from the data backup again (p4690, p4691).
	2. Carry out a POWER ON (switch-off/switch-on) for this component.
	Note:
	DQI: DRIVE-CLiQ Sensor Integrated
	SMI: SINAMICS Sensor Module Integrated
	See also: p4690 (SMI spare part component number), p4691 (SMI spare part save/download data)


A01900 (F)	PB/PN: Configuration telegram error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A controller attempts to establish a connection using an incorrect configuring telegram.
	Alarm value (r2124, interpret decimal):
	1:
	Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence are defined in p0978.
	2 :
	Too many PZD data words for output or input to a drive object. The number of possible PZD items in a drive object is determined by the number of indices in r2050/p2051.
	3:
	Uneven number of bytes for input or output.
	4:
	Setting data for synchronization not accepted. For more information, see A01902.
	211:
	Unknown parameterizing block.
	223:
	Clock synchronization for the PZD interface set in $\mathrm{p} 8815[0]$ is not permissible.
	More than one PZD interface is operated in clock synchronism.
	253:
	PN Shared Device: lllegal mixed configuration of PROFIsafe and PZD.
	254:
	PN Shared Device: Illegal double assignment of a slot/subslot.
	255:
	PN: Configured drive object and existing drive object do not match.
	256:
	PN: configured telegram cannot be set.
	500:
	Illegal PROFIsafe configuration for the interface set in p8815[1].
	More than one PZD interface is operated with PROFIsafe.
	501:
	PROFIsafe parameter error (e.g. F_dest).
	502:
	PROFIsafe telegram does not match.
	503:
	PROFIsafe connection is rejected as long as there is no isochronous connection (p8969).
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	Check the bus configuration on the master and the slave sides.
	For alarm value $=1,2$ :
	- check the list of the drive objects with process data exchange (p0978).
	Note:
	With $\mathrm{p} 0978[\mathrm{x}]=0$, all of the following drive objects in the list are excluded from the process data exchange.
	For alarm value $=2$ :
	- check the number of data words for output and input to a drive object.
	For alarm value $=211$ :
	- Ensure offline version <= online version.



A01903 (F)	COMM INT: Receive configuration data invalid
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive unit did not accept the receive configuration data.
	Alarm value (r2124, interpret decimal):
	Return value of the receive configuration data check.
	1: Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence are defined in p0978.
	2: Too many PZD data words for output or input to a drive object. The number of possible PZD items in a drive object is determined by the number of indices in r2050/p2051.
	3: Uneven number of bytes for input or output.
	4: Setting data for synchronization not accepted. For more information, see A01902.
	5: Cyclic operation not active.
	501: PROFIsafe parameter error (e.g. F_dest).
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	Check the receive configuration data.
	For alarm value $=1,2$ :
	Check the list of the drive objects with process data exchange ( p 0978 ). With $\mathrm{p} 0978[\mathrm{x}]=0$, all of the following drive objects in the list are excluded from the process data exchange.
	For alarm value $=2$ :
	Check the number of data words for output and input to a drive object.
	For alarm value $=501$ :
	Check the set PROFIsafe address (p9610).
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F01910 (N, A)	Fieldbus: setpoint timeout
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM150, TM15DI_DO, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
	Vector: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
	Hla: OFF3 (NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The reception of setpoints from the fieldbus interface (onboard, PROFIBUS/PROFINET/USS) has been interrupted. - bus connection interrupted.
	- controller switched off.
	- controller set into the STOP state.
	See also: p2040, p2047 (PROFIBUS additional monitoring time)
Remedy:	Restore the bus connection and set the controller to RUN.
	Note regarding PROFIBUS slave redundancy:
	For operation on a Y link, it must be ensured that "DP alarm mode = DPV1" is set in the slave parameterization.


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01911 (N, A)	PB/PN: clock cycle synchronous operation clock cycle failure
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF1
	Servo: OFF1 (OFF3)
	Vector: OFF1 (OFF3)
	Hla: OFF1 (OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The global control telegram to synchronize the clock cycles has failed - in cyclic operation - for several DP clock cycles or has violated the time grid specified in the parameterizing telegram over several consecutive DP clock cycles (refer to the bus cycle time, Tdp and Tpllw).
Remedy:	- check the physical bus configuration (cable, connector, terminating resistor, shielding, etc.).
	- check whether communication was briefly or permanently interrupted.
	- check the bus and controller for utilization level (e.g. bus cycle time Tdp was set too short).
	PB: PROFIBUS
	PN: PROFINET
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F01912 (N, A)	PB/PN: clock cycle synchronous operation sign-of-life failure
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	Infeed: OFF1
	Servo: OFF1 (OFF3)
	Vector: OFF1 (OFF3)
	Hla: OFF1 (OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The maximum permissible number of errors in the controller sign-of-life (clock synchronous operation) has been exceeded in cyclic operation.
Remedy:	- physically check the bus (cables, connectors, terminating resistor, shielding, etc.).
	- correct the interconnection of the controller sign-of-life (p2045).
	- check whether the controller correctly sends the sign-of-life (e.g. create a trace with STW2.12 ... STW2.15 and trigger signal ZSW1.3).
	- check the permissible telegram failure rate (p0925).
	- check the bus and controller for utilization level (e.g. bus cycle time Tdp was set too short).
	Note:
	PB: PROFIBUS
	PN: PROFINET
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F01913 (N, A)	COMM INT: Monitoring time sign-of-life expired
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Ha: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time for the sign-of-life counter has expired.
	The connection between the drive and the higher-level control (SIMOTION, SINUMERIK) has been interrupted for the following reasons:
	- the control was reset.
	- the data transfer to the control was interrupted.
Remedy:	- wait until the control has re-booted.
	- restore data transfer to the control.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F01914 (N, A)	COMM INT: Monitoring time configuration expired
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time for the configuration has expired.
	Fault value (r0949, interpret decimal):
	0 : The transfer time of the send configuration data has been exceeded.
	1: The transfer time of the receive configuration data has been exceeded.
Remedy:	- acknowledge faults that are present.
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F01915 (N, A)	PB/PN: clock cycle synchronous operation sign-of-life failure drive object 1
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Group display for problems with the sign-of-life of the master (isochronous operation) on the drive object 1 (Control Unit).
	For central measurements, synchronism with the central master is lost.
Remedy:	Note:
	PB: PROFIBUS
	PN: PROFINET
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A01920 (F)	PROFIBUS: Interruption cyclic connection
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to the PROFIBUS master is interrupted.
Remedy:	Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode.
	Note:
	If there is no communication to a higher-level control system, then p 2030 should be set $=0$ to suppress this message.
	See also: p2030 (Field bus interface protocol selection)
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY
A01921 (F)	PROFIBUS: Receive setpoints after To
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Output data of PROFIBUS master (setpoints) received at the incorrect instant in time within the PROFIBUS clock cycle.
Remedy:	- check bus configuration.
	- check parameters for clock cycle synchronization (ensure To > Tdx).
	Note:
	To: Time of setpoint acceptance
	Tdx: Data exchange time
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY


A01925 (F)	Modbus TCP: connection interrupted
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S12O_PN, CU_S150_DP, CU_S150_PN
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Ethernet connection to the Modbus controller is interrupted.
Remedy:	- establish an Ethernet connection.
	-activate the Modbus controller.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY

## A01930

Message value: $\%$
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects
Component:
Reaction:
Acknowledge:
Cause: The current controller sampling time of all drives must be set the same for the clock cycle synchronous operation. Alarm value (r2124, interpret decimal): Number of the drive object with different current controller sampling time.
Remedy: Set current controller sampling time to identical values (p0115[0]).
Note:
PB: PROFIBUS
PN: PROFINET
See also: p0115

A01931	PB/PN: speed controller sampling time clock cycle synch. not equal
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The speed controller sampling time of all drives must be set the same for the clock cycle synchronous operation.
	Alarm value (r2124, interpret decimal):
	Number of the drive object with the different speed controller sampling time.
Remedy:	Set the speed controller sampling times to identical values (p0115[1]).
	Note:
	PB: PROFIBUS
	PN: PROFINET
	See also: p0115


A01932	PB/PN: clock cycle synchronization missing for DSC
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no clock synchronization or clock synchronous sign of life and DSC is selected.
	Note:
	DSC: Dynamic Servo Control
	See also: p0922, p1190, p1191
Remedy:	Set clock synchronization across the bus configuration and transfer clock synchronous sign-of-life.
	See also: r2064 (PB/PN diagnostics clock cycle synchronism)
A01940	PB/PN: clock cycle synchronism not reached
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. It was not possible to synchronize to the clock cycle specified by the master.
	- the master does not send a clock synchronous global control telegram although clock synchronous operation was selected when configuring the bus.
	- the master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram.
	- at least one drive object has a pulse enable (not controlled from PROFIBUS/PROFINET either).
Remedy:	- check the master application and bus configuration.
	- check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master.
	- check that no drive object has a pulse enable. Only enable the pulses after synchronizing the PROFIBUS/PROFINET drives.
	Note:
	PB: PROFIBUS
	PN: PROFINET
A01941	PB/PN: clock cycle signal missing when establishing bus communication
Message value:	- PB/PN:
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. The global control telegram for synchronization is not being received.
Remedy:	Check the master application and bus configuration.
	Note:
	PB: PROFIBUS
	PN: PROFINET


A01943	PB/PN: clock cycle signal error when establishing bus communication
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram.
	The global control telegram for synchronization is being irregularly received. -.the master is sending an irregular global control telegram.
	- the master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram.
Remedy:	- check the master application and bus configuration.
	- check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master.
	Note:
	PB: PROFIBUS
	PN: PROFINET
A01944	PB/PN: sign-of-life synchronism not reached
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram.
	Synchronization with the master sign-of-life (STW2.12 ... STW2.15) could not be completed because the sign-of-life is changing differently to how it was configured in the Tmapc time grid.
Remedy:	- ensure that the master correctly increments the sign-of-life in the master application clock cycle Tmapc.   - correct the interconnection of the master sign-of-life (p2045).
	Note:
	PB: PROFIBUS
	PN: PROFINET


A01945	PROFIBUS: Connection to the Publisher failed
Message value:	Fault cause: \%1 bin
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	For PROFIBUS peer-to-peer data transfer, the connection to at least one Publisher has failed.
	Alarm value (r2124, interpret binary):
	Bit 0 = 1: Publisher with address in r2077[0], connection failed.
	...
	Bit 15 = 1: Publisher with address in r2077[15], connection failed.
	- check the PROFIBUS cables.
Remedy:	- carry out a first commissioning of the Publisher that has the failed connection.
	See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)


F01946 (A)	PROFIBUS: Connection to the Publisher aborted
Message value:	Fault cause: \%1 bin
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	At this drive object, the connection to at least one Publisher for PROFIBUS peer-to-peer data transfer in cyclic operation has been aborted.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : Publisher with address in r2077[0], connection aborted.
	$\ldots$
	Bit 15 = 1: Publisher with address in r2077[15], connection aborted.
Remedy:	- check the PROFIBUS cables.
	- check the state of the Publisher that has the aborted connection.
	See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F01950 (N, A)	PB/PN: clock cycle synchronous operation synchronization unsuccessful
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	OFF1 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Synchronization of the internal clock cycle to the global control telegram has failed. The internal clock cycle exhibits an unexpected shift.
Remedy:	Only for internal Siemens troubleshooting.
	Note:
	PB: PROFIBUS
	PN: PROFINET
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F01951	CU SYNC: Synchronization application clock cycle missing
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	If DRIVE-CLiQ components with different application clock cycle are operated on a DRIVE-CLiQ port, this requires synchronization with the Control Unit. This synchronization routine was unsuccessful.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.

### 4.2 List of faults and alarms

Remedy: $\quad$ - carry out a POWER ON (switch-off/switch-on) for all components. $\quad$ - upgrade the software of the DRIVE-CLiQ components. $\quad$ - upgrade the Control Unit software.
F01952
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Cause:	The existing system configuration requires that the connected DRIVE-CLiQ components support the synchronization
between the basic clock cycle, DRIVE-CLiQ clock cycle and the application clock cycle.	
However, not all DRIVE-CLiQ components have this functionality.	
Fault value (r0949, interpret decimal):	
Component number of the first faulty DRIVE-CLiQ component.	
Upemedy:	Upgrade the firmware of the component specified in the fault value.
Note:	
If required, also upgrade additional components in the DRIVE-CLiQ line.	


A01953	CU SYNC: Synchronization not completed
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	After the drive system is switched on, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started but was not completed within the selected time tolerance.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON (switch-off/switch-on) for all components.
	If the error occurs after the drive sampling times were changed, and if a Terminal Module 31 (TM31) is being used, the sampling times (p0115, p4099) should be set as integer multiples to the drive clock cycles (p0115).


F01954	CU DRIVE-CLiQ: Synchronization unsuccessful
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started and
	was not able to be successfully completed (e.g. after switch-on).
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	1. Remove the cause of a possible DRIVE-CLiQ fault.
	2. Initiate a new synchronization, e.g. as follows:
	- remove the PROFIBUS master and re-insert again.
	- restart the PROFIBUS master.
	- switch off the Control Unit and switch on again.
	- carry out a Control Unit hardware reset (RESET button, p0972).
	- carry out a parameter reset and download the saved parameters (p0009 = 30, p0976 = 2, 3).


A01955	CU DRIVE-CLiQ: Synchronization DO not completed
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	After the drive system is switched on, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started but was not completed within the selected time tolerance.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON (switch-off/switch-on) for all components of the DO.
A01970	CBE25: cyclic connection interrupted
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to the PROFINET controller is interrupted.
	See also: r8936 (Cyclic connection status)
Remedy:	Establish the PROFINET connection and activate the PROFINET controller in the cyclic mode.
A01971	CBE2x: maximum number of controllers exceeded
Message value:	Info 1: \%1, Info 2: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SEERVO, SERVO_AC, SERVO_IAC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A controller attempts to establish a connection to the drive, and as a consequence exceeds the permitted number of PROFINET connections.
	The alarm disappears automatically after approx. 30 seconds.
	Alarm value ( r 2124 , interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info $1=0$ : number of RT connections exceeded
	Info $1>0$ : number of IRT connections exceeded
	Info 2: permitted number of connections
Remedy:	Check the configuration of the PROFINET controllers.

4.2 List of faults and alarms

A01979	CBE2x: internal error for cyclic data transfer
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic actual values and/or setpoints were not transferred within the specified times.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	Correctly set T_io_input or T_io_output.
A01980	PN: cyclic connection interrupted
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC , HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to the PROFINET controller is interrupted.
	See also: r8936 (Cyclic connection status)
Remedy:	Establish the PROFINET connection and activate the PROFINET controller in the cyclic mode.
A01981	PN: Maximum number of controllers exceeded
Message value:	Info 1: \%1, Info 2: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC $, ~ H L A, H U B, R _I N F, S _I N F, \overline{S E R V O}, S E R V O _A \bar{C}, S E R V O _I A \bar{C}, T B 30, T M 120, ~ T M 15, ~ T M 150, ~$ TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A controller attempts to establish a connection to the drive, and as a consequence exceeds the permitted number of PROFINET connections.
	The alarm disappears automatically after approx. 30 seconds.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info $1=0$ : number of RT connections exceeded
	Info $1>0$ : number of IRT connections exceeded
	Info 2: permitted number of connections
Remedy:	Check the configuration of the PROFINET controllers.


A01982	PN: second controller missing
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Connections to two PROFINET controllers are expected. However, only the connection to a PROFINET controller is present.
	- system redundancy is activated.
Remedy:	Check the configuration of the PROFINET controllers.
A01983	PN: system redundancy switchover running
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "PROFINET system redundancy" function is configured and the connection between the primary control and drive device is interrupted. The backup controller assumes control of the drive device.
Remedy:	Not necessary.
	The alarm is automatically withdrawn after switchover has been successfully completed.
A01989	PN: internal cyclic data transfer error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic actual values and/or setpoints were not transferred within the specified times.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	Correctly set T_io_input or T_io_output.
A01990 (F)	USS: PZD configuration error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration of the process data (PZD) for the USS protocol is incorrect.
	Alarm value (r2124, interpret decimal):
	2: PZD amount (p2022) too great for the first drive object (p978[0]).
	The number of possible PZD items in a drive object is determined by the number of indices in r2050/p2051.

### 4.2 List of faults and alarms

Remedy:	For alarm value $=2:$   Check the amount of USS PZD (p2022) and the maximum PZD amount (r2050/p2051) for the first drive object   $($ p0978[0]).
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY


A02000	Function generator: Start not possible	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The function generator has already been started.	
Remedy:	Stop the function generator and restart again if necessary.	
	Note:	
	The alarm is reset as follows:	
	- remove the cause of this alarm.	
	- restart the function generator.	
	See also: p4800 (Function generator control)	


A02005	Function generator: Drive does not exist	
Message value:	\%1	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The drive object specified for connection does not exist.	
	See also: p4815 (Function generator drive number)	
Remedy:	Use the existing drive object with the corresponding number.	
	Note:	
	The alarm is reset as follows:	
	- remove the cause of this alarm.	
	- restart the function generator.	
	See also: p4815 (Function generator drive number)	


A02006	Function generator: No drive specified for connection	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	No drive specified for connection in p4815.	
	See also: p4815 (Function generator drive number)	
Remedy:	At least one drive to be connected must be specified in p4815.	
	Note:	
	The alarm is reset as follows:	
	- remove the cause of this alarm.	
	- restart the function generator.	
	See also: p4815 (Function generator drive number)	


A02007	Function generator: Drive not SERVO / VECTOR / DC_CTRL
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive object specified for connection is not a SERVO / VECTOR or DC_CTRL. See also: p4815 (Function generator drive number)
Remedy:	Use a SERVO / VECTOR / DC_CTRL drive object with the corresponding number. Note:   The alarm is reset as follows:   - remove the cause of this alarm.   - restart the function generator.
A02008	Function generator: Drive specified a multiple number of times
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive object specified for connection is already specified.   Alarm value (r2124, interpret decimal):   Drive object number of the drive object that is specified a multiple number of times.
Remedy:	Specify a different drive object.   Note:   The alarm is reset as follows:   - remove the cause of this alarm.   - restart the function generator.


A02009	Function generator: Illegal mode
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The set operating mode ( p 1300 ) of the drive object is not permissible when using the function generator. Alarm value (r2124, interpret decimal):
	Number of the drive object involved.
Remedy:	Change the operating mode for this drive object to p1300 $=20$ (encoderless speed control) or p1300 $=21$ (speed control with encoder).
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.


A02010	Function generator: Speed setpoint from the drive is not zero
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The speed setpoint of a drive selected for connection is greater than the value for the standstill detection set using p1226.
Remedy:	For all of the drives specified for connection, set the speed setpoints to zero.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.


A02011	Function generator: The actual drive speed is not zero
Message value:	-
Message class:	Error in the parameterization / configuration/ commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP,
	CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF,TB30,TM120, TM15, TM150,
Component:	TM15DI_DO, TM17, TM31, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:	None
Acknowledge:	NONE
Cause:	NONE
	The speed actual value of a drive selected for connection is greater than the value for the standstill detection set
Remedy:	using p1226.
	Set the relevant drives to zero speed before starting the function generator.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.


A02015	Function generator: Drive enable signals missing
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None $\quad$ Propagation: $\quad$ BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The master control and/or enable signals are missing to connect to the specified drive.
	See also: p4815 (Function generator drive number)
Remedy:	Fetch the master control to the specified drive object and set all enable signals.                                                Thete: alarm is reset as follows:   - remove the cause of this alarm.   - restart the function generator.


A02016	Function generator: Magnetizing running	
Message value:	\%1	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	Magnetizing has not yet been completed on a drive object specified for connection.	
	Alarm value (r2124, interpret decimal):	
	Number of the drive object involved.	
	See also: p4815 (Function generator drive number)	
	Wait for magnetizing of the motor (r0056.4).	
	Note:	
	The alarm is reset as follows:	
	- restart the function generator.	
	See also: r0056 (Status word, closed-loop control)	


A02020	Function generator: Parameter cannot be changed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	This parameter setting cannot be changed when the function generator is active ( $\mathrm{p} 4800=1$ ).
	See also: p4810, p4812, p4813, p4815, p4820, p4821, p4822, p4823, p4824, p4825, p4826, p4827, p4828, p4829
Remedy:	- stop the function generator before parameterizing ( $\mathrm{p} 4800=0$ ).
	- if required, start the function generator ( $\mathrm{p} 4800=1$ ).
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: p4800 (Function generator control)


A02025	Function generator: Period too short
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value for the period is too short.
	See also: p4821 (Function generator period)
Remedy:	Check and adapt the value for the period.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: p4821 (Function generator period)


A02026	Function generator: Pulse width too high	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The selected pulse width is too high.	
	The pulse width must be less than the period duration.	
	See also: p4822 (Function generator pulse width)	
	Reduce pulse width.	
Remedy:	Note:	
	The alarm is reset as follows:	
	- remove the cause of this alarm.	
	- restart the function generator.	
	See also: p4821 (Function generator period), p4822 (Function generator pulse width)	


A02030	Function generator: Physical address equals zero	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The specified physical address is zero.	
	See also: p4812 (Function generator physical address)	
Remedy:	Set a physical address with a value other than zero.	
	Note:	
	The alarm is reset as follows:	
	- remove the cause of this alarm.	
	- restart the function generator.	
	See also: p4812 (Function generator physical address)	


A02040	Function generator: Illegal value for offset
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value for the offset is higher than the value for the upper limit or lower than the value for the lower limit. See also: p4826 (Function generator offset)
Remedy:	Adjust the offset value accordingly.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: p4826 (Function generator offset), p4828 (Function generator lower limit), p4829 (Function generator upper limit)


A02041	Function generator: Illegal value for bandwidth
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The bandwidth referred to the time slice clock cycle of the function generator has either been set too low or too high.
	Depending on the time slice clock cycle, the bandwidth is defined as follows:
	Bandwidth_max $=1 /(2 \times$ time slice clock cycle)
	Bandwidth_min $=$ Bandwidth_max / 100000
	Example:
	Assumption: p4830 $=125 \mu \mathrm{~s}$
	$-->$ Bandwidth_max $=1 /(2 \times 125 \mu \mathrm{~s})=4000 \mathrm{~Hz}$
	--> Bandwidth_min $=4000 \mathrm{~Hz} / 100000=0.04 \mathrm{~Hz}$
	Note:
	p4823: Function generator bandwidth
	p4830: Function generator time slice clock cycle
	See also: p4823 (Function generator bandwidth $)$, p4830 (Function generator time slice cycle)
	Check the value for the bandwidth and adapt accordingly.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.


A02047	Function generator: Time slice clock cycle invalid	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The time slice clock cycle selected does not match any of the existing time slices.	
	See also: p4830 (Function generator time slice cycle)	
Remedy:	Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.	
	Note:	
	The alarm is reset as follows:	
	- remove the cause of this alarm.	
	- restart the function generator.	
	See also: r7901 (Sampling times)	


A02050	Trace: Start not possible		
Message value:	-		
Message class:	Error in the parameterization / configuration / commissioning procedure (18)		
Drive object:	All objects	Propagation:	BICO
Component:	None		
Reaction:	NONE		
Acknowledge:	NONE		
Cause:	The trace has already been started.		
	See also: p4700 (Trace control)		
Remedy:	Stop the trace and, if necessary, start again.		


A02051	Trace: recording not possible as a result of know-how protection
Message value:	initiating recorder: \%1, parameter \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	TRACE recording is not possible as at least one signal or trigger signal being used is under know-how protection.   Alarm value (r2124, interpret hexadecimal):   bbbbaaaa hex:   aaaa $=1$ : recorder 0   aaaa $=2$ : recorder 1   aaaa $=3$ : recorders 0 and 1   $\mathrm{bbbb}=$ parameter number (hexadecimal), that was not able to be written to.   See also: p4700, p4711, p4730, p4731, p4732, p4733, p4734, p4735, p4736, p4737
Remedy:	- Temporarily activate or deactivate know-how protection (p7766).   - include the signal in the OEM exception list (p7763, p7764).   - Where relevant do not record the signal.   See also: p7763 (KHP OEM exception list number of indices for p7764), p7764 (KHP OEM exception list)
A02055	Trace: Recording time too short
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace duration is too short.
	The minimum is twice the value of the trace clock cycle.
	See also: p4721 (Trace recording time)
Remedy:	Check the selected recording time and, if necessary, adjust.


A02056	Trace: Recording cycle too short	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The selected recording cycle is shorter than the selected basic clock cycle 0 (p0110[0]).	
	See also: p4720 (Trace recording cycle)   Remedy:	Increase the value for the trace cycle.


A02057	Trace: Time slice clock cycle invalid	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	Propagation:
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The time slice clock cycle selected does not match any of the existing time slices.	
	See also: p4723 (Trace time slice cycle)	
Remedy:	Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.	
	See also: r7901 (Sampling times)	


A02058	Trace: Time slice clock cycle for endless trace not valid
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for the endless trace
	See also: p4723 (Trace time slice cycle)
Remedy:	Enter the clock cycle of an existing time slice with a cycle time $>=2 \mathrm{~ms}$ for up to 4 recording channels or $>=4 \mathrm{~ms}$ from 5 recording channels per trace.
	The existing time slices can be read out via p7901.
	See also: r7901 (Sampling times)
A02059	Trace: Time slice clock cycle for $2 \times 8$ recording channels not valid
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for more than 4 recording channels.
	See also: p4723 (Trace time slice cycle)
Remedy:	Enter the clock cycle of an existing time slice with a cycle time $>=4 \mathrm{~ms}$ or reduce the number of recording channels to 4 per trace.
	The existing time slices can be read out via p7901.
	See also: r7901 (Sampling times)


A02060	Trace: Signal to be traced missing
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	- a signal to be traced was not specified.
	- the specified signals are not valid.
	See also: p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3)
Remedy:	- specify the signal to be traced.
	- check whether the relevant signal can be traced.


A02061	Trace: Invalid signal
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_NX_CX, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	- the specified signal does not exist.
	- the specified signal can no longer be traced (recorded).
	See also: p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3)

### 4.2 List of faults and alarms

Remedy: $\quad$ - specify the signal to be traced.

A02062	Trace: Invalid trigger signal	
Message value:	-	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	All objects	
Component:	None	Propagation:
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	- a trigger signal was not specified.	
	- the specified signal does not exist.	
	- the specified signal is not a fixed-point signal.	
	- the specified signal cannot be used as a trigger signal for the trace.	
	See also: p4711 (Trace trigger signal)	
Specify a valid trigger signal.		


A02063	Trace: Invalid data type
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The specified data type to select a signal using a physical address is invalid.
	See also: p4711 (Trace trigger signal), p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3)
Remedy:	Use a valid data type.


A02070	Trace: Parameter cannot be changed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None $\quad$ Propagation: $\quad$ BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace parameter settings cannot be changed when the trace is active.         See also: p4700, p4710, p4711, p4712, p4713, p4714, p4715, p4716, p4720, p4721, p4722, p4730, p4731, p4732,   p4733, p4780, p4781, p4782, p4783, p4789, p4795
Remedy:	- stop the trace before parameterization.   - if required, start the trace.


| A02075 | Trace: Pretrigger time too long |  |
| :--- | :--- | :--- | :--- |
| Message value: | - |  |
| Message class: | Error in the parameterization / configuration / commissioning procedure (18) |  |
| Drive object: | All objects |  |
| Component: | None |  |
| Reaction: | NONE |  |
| Acknowledge: | NONE |  |
| Cause: | The selected pretrigger time must be shorter than the trace time. |  |
|  | See also: p4721 (Trace recording time), p4722 (Trace trigger delay) |  |
| Remedy: | Check the pretrigger time setting and change if necessary. |  |


F02080	Trace: Parameterization deleted due to unit changeover
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The trace parameterization in the drive unit was deleted due to a unit changeover or a change in the reference parameters.
Remedy:	Restart trace.
A02085	Message function: Parameterization error
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A parameterization error was identified when starting the variable message function.
	Alarm value (r2124, interpret decimal):
	Incorrectly set parameter.
	See also: p3290, p3291, p3292, p3293, r3294, p3295, p3296, p3297, p3298, p3299
Remedy:	Correct the parameter and restart.
	Note:
	The alarm is automatically withdrawn when stopping, or when successfully starting the variable message function (p3290.0).


A02095	MTrace 0: multiple trace cannot be activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None $\quad$ LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following functions or settings are not permissible in conjunction with a multiple trace (trace recorder 0):
	- measuring function
	- long-time trace
	- trigger condition "immediate recording start" (IMMEDIATE)
	- trigger condition "start with function generator" (FG_START)
	- if required, deactivate the multiple trace (p4840[0] = 0).
	- deactivate function or setting that is not permissible
Remedy:	See also: p4840 (MTrace cycle number setting)


A02096	MTrace 0: cannot be saved
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to save the measurement results of a multiple trace on the memory card (trace recorder 0).
	A multiple trace is not started or is canceled.
	Alarm value (r2124, interpret decimal):
	1: Memory card cannot be accessed.
	- card is not inserted or is blocked by a mounted USB drive.

### 4.2 List of faults and alarms

3: data save operation to slow.

- a second trace has been completed before the measurement results of the first trace were able to be saved.
- writing the measurement result files to the card is blocked by the parameter save.

4: Data save operation canceled.

- for instance, the file required for the data save operation was not able to be found.

See also: p4840 (MTrace cycle number setting)
Remedy: - insert or remove the memory card.

- use a larger memory card.
- configure a longer trace time or use an endless trace.
- avoid saving parameters while a multiple trace is running.
- check whether other functions are presently accessing measurement result files.

A02097	MTrace 1: multiple trace cannot be activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:   Component:	All objects
Reaction:	None
Acknowledge:	NONE
Cause:	NONE
	The following functions or settings are not permissible in conjunction with a multiple trace (trace recorder 1):
	- measuring function
	- long-time trace
	- trigger condition "immediate recording start" (IMMEDIATE)
	- trigger condition "start with function generator" (FG_START)
Remedy:	- if required, deactivate the multiple trace (p4840[1] = 0).
	- deactivate function or setting that is not permissible
	See also: p4840 (MTrace cycle number setting)


A02098	MTrace 1: cannot be saved
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to save the measurement results of a multiple trace on the memory card (trace recorder 1).
	A multiple trace is not started or is canceled.
	Alarm value (r2124, interpret decimal):
	1: Memory card cannot be accessed.
	- card is not inserted or is blocked by a mounted USB drive.
	3: data save operation to slow.
	- a second trace has been completed before the measurement results of the first trace were able to be saved.
	- writing the measurement result files to the card is blocked by the parameter save.
	4: Data save operation canceled.
	- for instance, the file required for the data save operation was not able to be found.
	See also: p4840 (MTrace cycle number setting)
	- insert or remove the memory card.
- use a larger memory card.	
- configure a longer trace time or use an endless trace.	
Remedy:	- avoid saving parameters while a multiple trace is running.
	- check whether other functions are presently accessing measurement result files.


A02099	Trace: Insufficient Control Unit memory
Message value:	-
Message class: Error in the parameterization / configuration / commissioning procedure (18)   Drive object: All objects   Component: None   Reaction: NONE   Acknowledge: NONE   Cause: The memory space still available on the Control Unit is no longer sufficient for the trace function.   Remedy: Reduce the memory required, e.g. as follows:    - reduce the trace time.    - increase the trace clock cycle.    - reduce the number of signals to be traced.    See also: r4708 (Trace memory space required), r4799 (Trace memory location free)	


A02100	Drive: Computing dead time current controller too short
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value in p0118 produces a dead time of one clock cycle because it is prior to setpoint availability.
	Possible causes:
	- a parameter backup with a version higher than 4.3 was loaded to a version less than or equal to 4.3.
	- the system properties after replacing a component no longer match the parameter assignment.
	Alarm value (r2134, floating point):
	Minimum value for p0118 where dead time no longer occurs.
	- set p0118 to zero.
	- set p0118 to a value greater than or equal to the alarm value (for p1810.11 = 1)
	- set p0117 (from the device) to an automatic setting (p0117 = 1).
	- check the firmware versions of the components involved.
	See also: p0117 (Current controller computing dead time mode), p0118 (Current controller computing dead time)


A02150	TEC: Technology Extension cannot be loaded
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The system was not able to load a Technology Extension.
	Alarm value (r2124, interpret hexadecimal):
	10 hex (16 dec):
	The interface version in the DCB user library is not compatible to the DCC standard library that has been loaded. 12 hex ( 18 dec ):
	A technology package was not able to be downloaded to a Control Unit because the warm restart necessary was not able to be performed.
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a warm restart (p0009 = 30, p0976 = 2, 3).
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
	For alarm value = 10 hex ( 16 dec ):
	Load a compatible DCB user library (compatible to the interface of the DCC standard library).

### 4.2 List of faults and alarms

	For alarm value $=12 \mathrm{hex}(18 \mathrm{dec})$ :   Carry out a POWER ON (switch-off/switch-on) for all components.   Note:   DCB: Drive Control Block   DCC: Drive Control Chart   TEC: Technology Extension   See also: r4950, r4955, p4956, r4957
F02151 (A)	TEC: internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)
	Hla: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error has occurred within a Technology Extension.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
	- replace the Control Unit.
	Note:
	TEC: Technology Extension
	See also: r4950, r4955, p4956, r4957
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F02152 (A)	TEC: insufficient memory
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, Technology Extensions, blocks, etc).
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, Technology Extensions, blocks, etc).
	- use an additional Control Unit.
	Note:
	TEC: Technology Extension
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F02153	TEC: technology function does not exist
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A technology function (e.g. Technology Extension, DCB library) does not exist on the drive device.   When configuring, a technology function is activated, which does not exist on the drive device. This can occur when downloading a project or when powering up.
Remedy:	- load the required technology function to the drive device.   - if required, deactivate the technology function not required in the configuration.   Note:   DCB: Drive Control Block   TEC: Technology Extension
F03000	NVRAM fault on action
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault occurred during execution of action $p 7770=1$ or 2 for the NVRAM data.   Fault value (r0949, interpret hexadecimal):   yyxx hex: $y y=$ fault cause, $x x=$ application ID yy = 1:   The action p7770 $=1$ is not supported by this version if Drive Control Chart (DCC) is activated for the drive object concerned. yy = 2:   The data length of the specified application is not the same in the NVRAM and the backup. $y y=3:$   The data checksum in p7774 is not correct. $\mathrm{yy}=4:$   No data available to load.   See also: p7770 (NVRAM action)
Remedy:	- Perform the remedy according to the results of the troubleshooting.   - if necessary, start the action again.
F03001	NVRAM checksum incorrect
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A checksum error occurred when evaluating the non-volatile data (NVRAM) on the Control Unit. The NVRAM data affected was deleted.
Remedy:	Carry out a POWER ON (switch-off/switch-on) for all components.


F03500 (A)	TM: Initialization
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When initializing the Terminal Modules, the terminals of the Control Unit or the Terminal Board 30, an internal software error has occurred.
	Fault value (r0949, interpret decimal): yxxx dex
	$y=$ Only for internal Siemens troubleshooting
	xxx = component number ( p 0151 )
Remedy:	- switch-off/switch-on the power supply for the Control Unit.
	- check the DRIVE-CLiQ connection.
	- if required, replace the Terminal Module.
	The Terminal Module should be directly connected to a DRIVE-CLiQ socket of the Control Unit. If the fault occurs again, replace the Terminal Module.
Reaction upon A :	NONE
Acknowl upon A:	NONE

## A03501

Message value:
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects
Component: Terminal Module (TM) Propagation: BICO
Reaction: NONE

Acknowledge: NONE
Cause: The sampling times of the inputs/outputs were changed. This change only becomes valid after the next boot.
Remedy: Carry out a POWER ON.

F03505 (N, A)	CU: Analog input wire breakage
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	CU_I, CU_I_D410, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The wire-break monitoring for an analog input has responded.
	The input value of the analog input has exceeded the threshold value parameterized in $\mathrm{p} 0761[0]$.
	p0756[0]: analog input 0 (X131.7/X131.8)
	Fault value (r0949, interpret decimal):
	Note:
	For the following analog input type, the wire breakage monitoring is active:
	p0756[0] $=3$ ( $4 . . .20 \mathrm{~mA}$ with monitoring)
Remedy:	- check the wiring to the signal source for interruptions.
	- check the magnitude of the injected current - it is possible that the infed signal is too low.
	- check the load resistor (250 Ohm).
	Note:
	The input current measured by the analog input can be read in r0752[0].
	For $\mathrm{p} 756[0]=3$ (unipolar current input monitored ( $+4 \ldots+20 \mathrm{~mA}$ ) ) the following applies:
	A current less than 4 mA is not displayed in $\mathrm{r} 752[0]$ - but instead $\mathrm{r} 752[0]=4 \mathrm{~mA}$ is output.


Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $A:$	NONE
Acknowl. upon A:	NONE


F03505 (N, A)	Analog input wire breakage
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	CU_LINK, CU_NX_CX, TM120, TM150, TM54F_MA, TM54F_SL
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The wire-break monitoring for an analog input has responded.
	The input value of the analog input has exceeded the threshold value parameterized in $\mathrm{p} 4061[\mathrm{x}]$.
	Index $\mathrm{x}=0$ : Analog input 0 (X521.1/X521.2)
	Index $x$ = 1: Analog input 1 (X521.3/X521.4)
	Fault value (r0949, interpret decimal):
	yxxx dec
	$y=$ analog input (0 = analog input 0 (AI 0), 1 = analog input 1 (AI 1))
	xxx = component number (p0151)
	Note:
	For the following analog input type, the wire breakage monitoring is active:
	$\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored (+4 ... +20 mA)
Remedy:	- check the wiring for interruptions.
	- check the magnitude of the injected current - it is possible that the infed signal is too low.
	- check the load resistor (250 Ohm).
	Note:
	The input current measured by the Terminal Module can be read out from $\mathrm{r} 4052[\mathrm{x}]$.
	For $\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored ( $+4 \ldots+20 \mathrm{~mA}$ )) the following applies:
	A current less than 4 mA is not displayed in $\mathrm{r} 4052[\mathrm{x}]$ - but instead $\mathrm{r} 4052[\mathrm{x}]=4 \mathrm{~mA}$ is output.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F03505 (N, A)	Analog input wire breakage
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC,
	VECTOR_I_AC
Component:	Terminal Module (TM)
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The wire-break monitoring for an analog input has responded.
Remedy:	Check the wiring for interruptions.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F03505 (N, A)	TB: Analog input wire breakage		
Message value:	\%1		
Message class:	External measured value / signal state outside the permissible range (16)		
Drive object:	TB30		
Component:	Terminal Module (TM)		
Reaction:	NONE		
Acknowledge:	IMMEDIATELY (POWER ON)		
Cause:	The wire-break monitoring for an analog input has responded.		
Remedy:	Check the wiring for interruptions.		
Reaction upon N:	NONE		
Acknowl. upon N:	NONE		
Reaction upon A:	NONE		
Acknowl. upon A:	NONE		


F03505 (N, A)	TM: Analog input wire breakage
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	TM15, TM15DI_DO, TM17, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The wire-break monitoring for an analog input has responded.
	The input value of the analog input has exceeded the threshold value parameterized in $\mathrm{p} 4061[\mathrm{x}]$.
	Index $\mathrm{x}=0$ : Analog input 0 (X521.1/X521.2)
	Index $\mathrm{x}=1$ : Analog input 1 (X521.3/X521.4)
	Fault value (r0949, interpret decimal):
	yxxx dec
	$y=\operatorname{analog} \operatorname{input}(0=\operatorname{analog}$ input 0 (AI 0), $1=$ analog input 1 (AI 1))
	xxx = component number ( p 0151 )
	Note:
	For the following analog input type, the wire breakage monitoring is active:
	p4056[x] = 3 (unipolar current input monitored (+4 ... +20 mA )
Remedy:	- check the wiring for interruptions.
	- check the magnitude of the injected current - it is possible that the infed signal is too low.
	- check the load resistor (250 Ohm).
	Note:
	The input current measured by the Terminal Module can be read out from r4052[x].
	For $\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored ( $+4 \ldots+20 \mathrm{~mA}$ ) the following applies:
	A current less than 4 mA is not displayed in $\mathrm{r} 4052[\mathrm{x}]$ - but instead $\mathrm{r} 4052[\mathrm{x}]=4 \mathrm{~mA}$ is output.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


$\overline{\mathrm{F} 03505 \text { (N, A) }}$	TM: Analog input wire breakage
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	TM41
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The wire-break monitoring for an analog input has responded.
	The input value of the analog input has exceeded the threshold value parameterized in $\mathrm{p} 4061[\mathrm{x}]$.
	Index $x=0$ : Analog input 0 (X522.1 to .3)
	Index $x=1$ : Analog input 1 (X522.4 to .5)
	Fault value (r0949, interpret decimal):
	yxxx dec
	$y=$ analog input ( $0=$ analog input 0 (AI 0), $1=$ analog input 1 (AI 1))
	xxx = component number (p0151)
	Note:
	For the following analog input type, the wire breakage monitoring is active:
	$\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored (+4 ... +20 mA)
Remedy:	- check the wiring for interruptions.
	- check the magnitude of the injected current - it is possible that the infed signal is too low.
	- check the load resistor (250 Ohm).
	Note:
	The input current measured by the Terminal Module can be read out from r4052[x].
	For $\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored ( $+4 \ldots+20 \mathrm{~mA}$ )) the following applies:
	A current less than 4 mA is not displayed in $\mathrm{r} 4052[\mathrm{x}]$ - but instead $\mathrm{r} 4052[\mathrm{x}]=4 \mathrm{~mA}$ is output.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A03506 (F, N)	24 V power supply missing
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 24 V power supply for the digital outputs ( X 124 ) is missing.
Remedy:	Check the terminals for the power supply voltage (X124, L1+, M).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A03507 (F, N)	Digital output not set
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	CU_I, CU_I_D410, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HUB, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM54F_MA, TM54F_SL
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	Despite specification by the signal source the digital output has not been set.
	Possible causes:
	- power supply missing.
	- the digital output is in current limiting (e.g. due to short-circuit).
	- the digital output is being used for Safety Extended Functions.
	- the control has authority to access the digital output by means of direct access (see also r0729).
	Alarm value (r2124, interpret bitwise binary):
	Digital output involved (structured the same as r0747).
Remedy:	- check the 24 V power supply (e.g. X130.6 for CU310-2, ground is X130.5).
	- check the output terminals for short-circuits.
	- reset the signal source of the digital output for use by Safety Extended Functions.
	- carry out a POWER ON (switch-off/switch-on).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A03507 (F, N)	Digital output not set
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	Despite specification by the signal source the digital output has not been set.
	Possible causes:
	- power supply missing.
	- the digital output is in current limiting (e.g. due to short-circuit).
	- the digital output is being used for Safety Extended Functions.
	- the control has authority to access the digital output by means of direct access (see also r0729).
	Alarm value (r2124, interpret bitwise binary):
	Digital output involved (structured the same as r0747).
Remedy:	- check the 24 V power supply (e.g. X131.7 for CU305, ground is X131.8).
	- check the output terminals for short-circuits.
	- reset the signal source of the digital output for use by Safety Extended Functions.
	- carry out a POWER ON (switch-off/switch-on).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A03510 (F, N)	CU: Calibration data not plausible
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN
Component:	Terminal Module (TM) Propagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	During booting, the calibration data for the analog inputs is read and checked with respect to plausibility.
	At least one calibration data point was determined to be invalid.
Remedy:	- switch-off/switch-on the power supply for the Control Unit.
	- check the DRIVE-CLiQ wiring.
	Note:
	If it reoccurs, then replace the module.
	In principle, operation could continue.
	The analog channel involved possibly does not achieve the specified accuracy.
Reaction upon F:	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A03510 (F, N)	CU: Calibration data not plausible
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	CU_I, CU_I_D410
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	During ramp-up, the Terminal Module 31 (TM31) calibration data is read in and checked for plausibility.
	At least one calibration data point was determined to be invalid.
	Alarm value (r2124, interpret binary):
	Bit 1: 10 V value, analog input 0 invalid.
	Bit 3: 10 V value, analog input 1 invalid.
	Bit 4: Offset, analog output 0 invalid.
	Bit 5: 10 V value, analog output 0 invalid.
	Bit 6: Offset, analog output 1 invalid.
	Bit 7: 10 V value, analog input 1 invalid.
Remedy:	- switch-off/switch-on the power supply for the Control Unit.
	- check the DRIVE-CLiQ wiring.
	Note:
	If it reoccurs, then replace the module.
	In principle, operation could continue.
	The analog channel involved possibly does not achieve the specified accuracy.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A03510 (F, N)	Calibration data not plausible
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, CU_LINK, CU_NX_CX, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM41, TM54F_MA, TM54F_SL
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	During ramp-up, the Terminal Module 31 (TM31) calibration data is read in and checked for plausibility.
	At least one calibration data point was determined to be invalid.
	Alarm value (r2124, interpret binary):
	Bit 1: 10 V value, analog input 0 invalid.
	Bit 3: 10 V value, analog input 1 invalid.
	Bit 4: Offset, analog output 0 invalid.
	Bit 5: 10 V value, analog output 0 invalid.
	Bit 6: Offset, analog output 1 invalid.
	Bit 7: 10 V value, analog input 1 invalid.
Remedy:	- switch-off/switch-on the power supply for the Control Unit.
	- check the DRIVE-CLiQ wiring.
	Note:
	If it reoccurs, then replace the module.
	In principle, operation could continue.
	The analog channel involved possibly does not achieve the specified accuracy.
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A03510 (F, N)	Calibration data not plausible
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	During booting, the calibration data for the analog inputs is read and checked with respect to plausibility. At least one calibration data point was determined to be invalid.
Remedy:	- switch-off/switch-on the power supply for the Control Unit.
	- check the DRIVE-CLiQ wiring.
	Note:
	If it reoccurs, then replace the module.
	In principle, operation could continue.
	The analog channel involved possibly does not achieve the specified accuracy.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A03510 (F, N)	TM: Calibration data not plausible
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	TM120, TM15, TM150, TM15DI_DO, TM17, TM31
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	During ramp-up, the Terminal Module 31 (TM31) calibration data is read in and checked for plausibility.
	At least one calibration data point was determined to be invalid.
	Alarm value (r2124, interpret binary):
	Bit 1: 10 V value, analog input 0 invalid.
	Bit 3: 10 V value, analog input 1 invalid.
	Bit 4: Offset, analog output 0 invalid.
	Bit 5: 10 V value, analog output 0 invalid.
	Bit 6: Offset, analog output 1 invalid.
	Bit 7: 10 V value, analog input 1 invalid.
Remedy:	- switch-off/switch-on the power supply for the Control Unit.
	- check the DRIVE-CLiQ wiring.
	Note:
	If it reoccurs, then replace the module.
	In principle, operation could continue.
	The analog channel involved possibly does not achieve the specified accuracy.
Reaction upon F :	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A03550	TM: Speed setpoint filter natural frequency > Shannon frequency
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The natural filter frequency of the speed setpoint filter (p1417) is greater than or equal to the Shannon frequency.
	The Shannon frequency is calculated according to the following formula:
	0.5 / p4099[3]
	See also: p1417
Remedy:	Reduce the natural frequency of the speed setpoint filter (PT2 low pass) (p1417).
F03590 (N, A)	TM: Module not ready
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Terminal Module involved does not send a ready signal and no valid cyclic data.
	Fault value (r0949, interpret decimal):
	Drive object number of the Terminal Module involved.

### 4.2 List of faults and alarms

Remedy:	- check the 24 V power supply.
	- check the DRIVE-CLiQ wiring.
- check whether the sampling time of the drive object involved is not equal to zero (p4099[0]).	
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A05000 (N)	Power unit: Overtemperature heat sink AC inverter
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for overtemperature at the inverter heat sink has been reached. The response is set using   p0290.   If the heat sink temperature exceeds the value set in p0292[0], then fault F30004 is output.   Check the following:
Remedy:	- is the ambient temperature within the defined limit values?   - have the load conditions and the load duty cycle been appropriately dimensioned?
- has the cooling failed?	


A05001 (N)	Power unit: Overtemperature depletion layer chip
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached.   Note:   - the response is set using p0290.   - if the temperature of the barrier layer increases by the value set in p0292[1], then fault F30025 is initiated.
Remedy:	Check the following:   - is the ambient temperature within the defined limit values?   - have the load conditions and the load duty cycle been appropriately dimensioned?   - has the cooling failed?   - pulse frequency too high?   See also: r0037, p0290
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A05001 (N)	Power unit: Overtemperature depletion layer chip
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached.
	Note:
	- the response is set using p0290.
	- if the temperature of the barrier layer increases by the value set in p0292[1], then fault F30025 is initiated.


Remedy:	Check the following:
	- is the ambient temperature within the defined limit values?
	- have the load conditions and the load duty cycle been appropriately dimensioned?
	- has the cooling failed?
	- pulse frequency too high?
	Note:
	If the alarm occurs after reducing the current controller sampling time (p0115[0]) during the motor data identification (standstill measurement), then it is recommended that this is initially performed using the standard sampling time and then the sampling time should be subsequently changed over.
	See also: r0037, p0290
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A05002 (N)	Power unit: Air intake overtemperature
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for the air intake overtemperature has been reached. For air-cooled power units, the threshold is $42{ }^{\circ} \mathrm{C}$ (hysteresis 2 K ). The response is set using p0290.
	If the air intake temperature increases by an additional 13 K , then fault F30035 is output.
Remedy:	Check the following:
	- is the ambient temperature within the defined limit values?
	- has the fan failed? Check the direction of rotation.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A05003 (N)	Power unit: Internal overtemperature
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for internal overtemperature has been reached.
	If the temperature inside the power unit increases by an additional 5 K , then fault F30036 is triggered.
Remedy:	Check the following:
	- is the ambient temperature within the defined limit values?
	- has the fan failed? Check the direction of rotation.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A05004 (N)	Power unit: Rectifier overtemperature
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for the overtemperature of the rectifier has been reached. The response is set using p0290. If the temperature of the rectifier increases by an additional 5 K , then fault F30037 is triggered.

### 4.2 List of faults and alarms

Remedy:	Check the following:
	- is the ambient temperature within the defined limit values?   - have the load conditions and the load duty cycle been appropriately dimensioned?   - has the fan failed? Check the direction of rotation.   - has a phase of the line supply failed?   - is an arm of the supply (incoming) rectifier defective?
Reaction upon N: NONE   Acknowl. upon N: NONE	
A05005	Cooling unit: Cooling medium flow rate too low
Message value:	\%1
Message class:	Auxiliary unit faulted (20)   Drive object:
A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC    Component: Power Module   Reaction: NONE   Acknowledge: NONE   Cause: Cooling unit: Alarm - flow rate has fallen below the alarm value   Remedy: - check the feedback signals and parameter assignment (p0260 ... p0267).	


A05006 (N)	Power unit: Overtemperature thermal model
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	A_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (blocksize power units only).   Depending on p0290, an appropriate overload response is initiated.   See also: r0037
Remedy:	Not necessary.   This alarm is automatically withdrawn once the limit value has been fallen below.   Note:   If the alarm is not automatically withdrawn and the temperature continues to rise, this can result in fault F30024.   See also: p0290 (Power unit overload response)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


N05007 (A)	Power unit: Overtemperature thermal model (chassis PU)
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	A_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (r0293) (chassis power units only).
	Depending on p0290, an appropriate overload response is initiated.
	See also: r0037, r0293 (Power unit alarm threshold model temperature)
Remedy:	Not necessary.
	This alarm is automatically withdrawn once the limit value has been fallen below.
	See also: p0290 (Power unit overload response)
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F05050	Parallel circuit: Pulse enable in spite of pulse inhibit
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Vector: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	A power unit signals that the pulses are enabled although the pulses are inhibited Fault value (r0949, interpret decimal):
	Number of the power unit involved.
Remedy:	The power unit is defective and must be replaced.
F05051	Parallel circuit: Power unit pulse enable missing
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Vector: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	For one or several power units, the pulses were not able to be enabled.
	Fault value (r0949, interpret decimal):
	Number of the power unit involved.
Remedy:	- acknowledge power unit faults that are still present.
	- inhibit the pulses of the power unit involved (p7001).


A05052 (F)	Parallel circuit: Illegal current asymmetry
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The deviation of the individual currents of the power units exceeds the alarm threshold specified in p7010.   Alarm value (r2124, interpret decimal):   1: Phase U.   2: Phase V.   3: Phase W.
Remedy:	- inhibit the pulses of the faulted power unit (p7001).   - check the connecting cables. Loose contacts can cause current spikes.   - the motor reactors are non-symmetrical or faulty and must be replaced.   - the CTs must be calibrated or replaced.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)   Vector: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY


A05053 (F)	Parallel circuit: Inadmissible DC link voltage asymmetry
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The deviation of the DC link voltage measured values exceeds the alarm threshold specified in p7011.

### 4.2 List of faults and alarms

Remedy:	- inhibit the pulses of the faulted power unit (p7001).
	- check the DC link connecting cables.
	- the DC link voltage measurement is incorrect and must be calibrated or renewed.
Reaction upon F: $\quad$	Infeed: NONE (OFF1, OFF2)   Vector: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY


A05054 (N)	Parallel circuit: Power unit deactivated
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the drive object involved, fewer power units connected in parallel are active than exist in the target topology.
	Operation is only possible at reduced power (power derating).
Remedy:	Re-activate the deactivated power units if required.
	See also: p0125 (Activate/deactivate power unit components), p0895 (Activate/deactivate power unit components),
	p0897 (Parking axis selection)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


F05055	Parallel connection: Power units with illegal code numbers
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object: A_INF, B_INF, HLA, R_INF, S_INF   Component: Power Module   Reaction: OFF2 (NONE)   Acknowledge: IMMEDIATELY   Cause: The code numbers of the power units are not permissible.    For parallel circuit configurations, only power units with identical power unit data may be used.    Possible causes:    - the code numbers of the power units do not match.    For booksize drive units, the following additionally applies:    - a parallel connection is not possible for the power units being used.    - there are too many power units being used in the parallel connection.    Fault value (r0949, interpret decimal):   Parameter in which the inadmissible power unit code number was detected.     - Use power units with the same code number.    For booksize drive units, the following additionally applies:    - use power units which are permitted for a parallel connection.    - reduce the number of power units being used in the parallel connection.	


F05055	Parallel connection: Power units with illegal code numbers
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module $\quad$ Propagation:
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The code numbers of the power units do not match.
	Fault value (r0949, interpret decimal):
	Parameter in which the first different power unit code number was detected.
Remedy:	Use power units with the same code number.
	For parallel circuit configurations, only power units with identical power unit data may be used.


F05056	Parallel circuit: Power unit EEPROM versions differ
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The EEPROM versions of the power units do not match.
	Fault value (r0949, interpret decimal):
	Parameter in which the first different version number was detected.
Remedy:	Use power units with the same EEPROM version.
	Note:
	For parallel circuit configurations, only power units with identical EEPROM versions may be used.
F05057	Parallel circuit: Power unit firmware versions differ
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The firmware versions of the power units connected in parallel do not match.
	Fault value (r0949, interpret decimal):
	Parameter in which the first different version number was detected.
Remedy:	Use power units with the same firmware version.
	For parallel circuit configurations, only power units with identical firmware versions may be used.
F05058	Parallel circuit: VSM EEPROM versions differ
Message value:	Parameter: \%1
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The EEPROM versions of the Voltage Sensing Modules (VSM) do not match.
	Fault value (r0949, interpret decimal):
	Parameter in which the first different version number was detected.
Remedy:	For parallel circuit configurations, only Voltage Sensing Modules (VSM) with identical EEPROM versions may be used.
F05059	Parallel circuit: VSM firmware versions differ
Message value:	Parameter: \%1
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The firmware versions of the Voltage Sensing Module (VSM) do not match.
	Fault value (r0949, interpret decimal):
	Parameter in which the first different version number was detected.
Remedy:	For parallel circuit configurations, only Voltage Sensing Modules (VSM) with identical firmware versions may be used.


F05060	Parallel circuit: Power unit firmware version does not match
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Firmware from version V02.30.01.00 is required when connecting the power units in parallel.
Remedy:	Update the firmware of the power units (at least V02.30.01.00).
F05061	Infeed VSM count
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The number of active Voltage Sensing Modules (VSM) for the drive object infeed with chassis power units is not correct.
	For A_Infeed, each active power unit must be assigned an active VSM also for a parallel circuit configuration.
	For S_Infeed, the active drive object, must be assigned at least one active VSM.
	Fault value (r0949, interpret decimal):
	Number of VSMs that are currently assigned to the drive object.
Remedy:	Adapts the number of active Voltage Sensing Modules (VSM).
F05064	Parallel connection: Pulse synchronization error
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	Infeed: OFF2 (OFF1)
	Vector: OFF2 (OFF1, OFF3)
Acknowledge:	POWER ON (IMMEDIATELY)
Cause:	The pulse synchronization of at least one of the power units connected in parallel is incorrect.
Remedy:	Restart the drive system.
A05065 (F, N)	Voltage measured values not plausible
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage measurement does not supply any plausible values and is not used.
	Alarm value (r2124, interpret bitwise binary):
	Bit 1: Phase U
	Bit 2: Phase V
	Bit 3: Phase W
Remedy:	The following parameterization must be made in order to deactivate the alarm:
	- Deactivate voltage measurement (p0247.0 = 0).
	- Deactivate flying restart with voltage measurement (p0247.5 = 0) and deactivate fast flying restart (p1780.11 = 0) .
Reaction upon F:	NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F05118 (A)	Precharging contactor simultaneity monitoring time exceeded
Message value:	fault cause: \%1, additional information: \%2
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A feedback signal for the precharging contactor (ALM, SLM, BLM diode) or the line contactor (BLM thyristor) interconnected and the simultaneity monitoring ( $\mathrm{p} 0255[4,6]$ ) activated.
	After opening or closing a contactor of the parallel connection, after a monitoring time has elapsed, not all of the contactors have assumed the same state.
	Fault value (r0949, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, $\mathrm{xxxx}=$ fault cause
	Fault cause:
	Bit $0=1$ : simultaneity error when closing the contactors.
	Bit $1=1$ : simultaneity error when opening the contactors.
	Supplementary information:
	Bit $0=1$ : PDS0 contactor is closed.
	Bit $1=1$ : PDS1 contactor is closed.
	Bit $2=1$ : PDS2 contactor is closed.
	Bit $3=1$ : PDS3 contactor is closed.
	Bit 4 = 1: PDS4 contactor is closed.
	Bit $5=1$ : PDS5 contactor is closed.
	Bit $6=1$ : PDS6 contactor is closed.
	Bit $7=1$ : PDS7 contactor is closed.
	Note:
	ALM: Active Line Module
	BLM: Basic Line Module
	PDS: Power unit Data Set
	SLM: Smart Line Module
Remedy:	- check the monitoring time setting (p0255[4, 6]).
	- check the wiring and control of the contactor.
	- if required, replace the contactor.
	See also: p0255 (Power unit contactor monitoring time)
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F05119 (A)	Bypass contactor simultaneity monitoring time exceeded
Message value:	fault cause: \%1, additional information: \%2
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A feedback signal for the bypass contactor is interconnected and the simultaneity monitoring ( $\mathrm{p} 0255[5,7]$ ) activated.
	After opening or closing a contactor of the parallel connection, after a monitoring time has elapsed, not all of the contactors have assumed the same state.
	Fault value (r0949, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, $\mathrm{xxxx}=$ fault cause
	Fault cause:
	Bit $0=1$ : simultaneity error when closing the contactors.
	Bit $1=1$ : simultaneity error when opening the contactors.

### 4.2 List of faults and alarms

	Supplementary information:
	Bit $0=1$ : PDS0 contactor is closed.
	Bit $1=1$ : PDS1 contactor is closed.
	Bit $2=1$ : PDS2 contactor is closed.
	Bit $3=1$ : PDS3 contactor is closed.
	Bit $4=1$ : PDS4 contactor is closed.
	Bit $5=1$ : PDS5 contactor is closed.
	Bit $6=1$ : PDS6 contactor is closed.
	Bit $7=1$ : PDS7 contactor is closed.
	Note:
	PDS: Power unit Data Set
Remedy:	- check the monitoring time setting (p0255[5, 7]).
	- check the wiring and control of the contactor.
	- if required, replace the contactor.
	See also: p0255 (Power unit contactor monitoring time)
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F06000	Infeed: Precharging monitoring time expired
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	After the line contactor closes the power unit does not signal the READY state within the monitoring time ( p 0857 ).
	The end of the DC link precharging was not able to be completed for one of the following reasons:
	1) There is no line supply voltage connected.
	2) The line contactor/line side switch has not been closed.
	3) The line supply voltage is too low.
	4) Line supply voltage incorrectly set (p0210).
	5) The precharging resistors are overheated as there were too many precharging operations per time unit.
	6) The precharging resistors are overheated as the DC link capacitance is too high.
	7) The precharging resistors are overheated because when there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link.
	8) The precharging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module.
	9) The DC link has either a ground fault or a short-circuit.
	10) The precharging circuit is possibly defective (only for chassis units).
	See also: p0210 (Drive unit line supply voltage), p0857 (Power unit monitoring time)
Remedy:	In general:
	- check the line supply voltage at the connecting terminals.
	- check the line supply voltage setting (p0210).
	- check the monitoring time and, if required, increase (p0857).
	- where relevant, observe additional power unit messages/signals (e.g. F30027).
	- the following applies to booksize units: Wait (approx. 8 min.) until the precharging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply.
	For 5):
	- carefully observe the permissible precharging frequency (refer to the appropriate Equipment Manual).
	For 6):
	- check the total capacitance of the DC link and reduce in accordance with the maximum permissible $D C$ link capacitance if necessary (refer to the appropriate Equipment Manual)

For 7):

- interconnect the ready-for-operation signal from the infeed unit (r0863.0) in the enable logic of the drives connected to this DC link
For 8):
- check the connections of the external line contactor. The line contactor must be open during DC link fast discharge. For 9):
- check the DC link for ground faults or short circuits.


## F06010

## Message value:

Message class:
Drive object:
Component:

## Reaction:

Acknowledge:
Cause:

Remedy:

## Infeed: Power unit EP 24 V missing in operation

Infeed faulted (13)
A_INF, B_INF, R_INF, S_INF
Power Module Propagation: GLOBAL
OFF2 (OFF1)
IMMEDIATELY (POWER ON)
In operation, the pulse enable via terminal EP at the Line Module (X21.3, X21.4) was withdrawn. Note:

EP: Enable Pulses (pulse enable)

- do not open the line side switch in operation - only when the pulses are inhibited.
- check the wiring of terminal EP (X21.3, X21.4) at the Line Module to exclude any poor contacts.


## F06050

## Message value:

## Message class:

Drive object:
Component:
Reaction:
Acknowledge:
Cause:
Remedy:

Infeed: Smart Mode not supported
-
Error in the parameterization / configuration / commissioning procedure (18)
A_INF, R_INF, S_INF
Power Module Propagation: GLOBAL
OFF2
IMMEDIATELY (POWER ON)
The power unit does not support the Smart Mode or pulse frequency wobbulation is activated (p1810). - set the suitable sampling time $250 \mu \mathrm{~s}<=\mathrm{p} 0115[0]<=400 \mu \mathrm{~s}$ (e.g. by setting p0112 and p0115 to the factory setting).

- upgrade the power unit software and/or hardware for the Smart Mode. The availability of the Smart Mode function is displayed in r0192.
- when the software gating unit is activated ( $\mathrm{p} 1810.2=1$ or $\mathrm{p} 1810.13=1$ ), then the Smart Mode is not permissible. Either the Smart Motor must be deactivated ( $\mathrm{p} 3400.0=0$ ) or the software gating unit must be deactivated.
- for A_INF the following applies: deactivate the Smart Mode using p3400.0 $=0$, and activate closed-loop voltage control with $\mathrm{p} 3400.3=1$. For booksize power units, it must be noted that for a supply voltage p0210 > 415 V only the Smart Mode is possible in the presetting. If DC link voltages above 660 V are permissible in the application, then voltage-controlled operation can be activated with p0280, p0210, p3400 and p3510. The information regarding p0210 should be carefully noted.
See also: r0192 (Power unit firmware properties 1)


## F06052

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Remedy:

Infeed: Filter temperature evaluation not supported

Error in the parameterization / configuration / commissioning procedure (18)
A_INF, R_INF, S_INF
Power Module Propagation: GLOBAL
OFF2 (NONE)
IMMEDIATELY
The power unit does not support filter temperature evaluation.
This feature (r0192.11) is required when an Active Interface Module is used as a line filter ( $\mathrm{p} 0220=41 \ldots 45$ ).
Upgrade the firmware for the power unit to a later version.
See also: r0192 (Power unit firmware properties 1), p0220

F06080 (A)	Infeed: parameter error
Message value:	Parameter: \%1
Message class:	Infeed faulted (13)
Drive object:	A_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An infeed parameter is incorrectly set.
	Fault value (r0949, interpret decimal):
	Number of the parameter involved.
	See also: p3665 (VSM temperature evaluation sensor type), p3667, p3668
Remedy:	Appropriately change the parameter specified in the fault value.
	See also: p3665 (VSM temperature evaluation sensor type), p3667, p3668
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F06100	Infeed: Shutdown due to line supply undervoltage condition
Message value:	\%1
Message class:	Network fault (2)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The filtered (steady-state) value of the line supply voltage is less than the fault threshold (p0283).
	Fault condition: Vrms < p0283 * 0210
	Fault value (r0949, floating point):
	Actual steady-state line supply voltage.
	Note:
	The occurrence of this fault is delayed by the time in p3492. If the fault is removed during this design time, then the power unit is not tripped (shut down).
	See also: p0283 (Line supply undervoltage shutdown (trip) threshold), p3492 (Infeed, line supply undervoltage delay time)
Remedy:	- check the line supply.
	- check the line supply voltage (p0210).   - check the threshold value (p0283).


A06105 (F)	Infeed: Line supply undervoltage
Message value:	\%1
Message class:	Network fault (2)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The filtered (steady-state) value of line supply voltage is lower than the alarm threshold (p0282).
	Alarm condition: Vrms < p0282 * p0210
	Alarm value (r2124, floating point):
	Actual steady-state line supply voltage.
	See also: p0282 (Line supply undervoltage alarm threshold)
Remedy:	- check the line supply.
	- check the line supply voltage (p0210).
	- check the alarm threshold (p0282).
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


F06200	Infeed: One or several line phases failed
Message value:	-
Message class:	Network fault (2)
Drive object:	A_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Failure overvoltage in one or several line supply phases.
	The fault can be output in two operating states:
	1. During the switch-on phase of the infeed unit.
	The measured line supply angle deviates from the regular characteristic for a 3-phase system - the PLL cannot be synchronized.
	The fault occurs immediately after switch-on if, when operating with a Voltage Sensing Module (VSM), the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit.
	2. While the infeed is operational.
	During an active line voltage alarm (A06205) or current symmetry alarm (A06206), an additional fault occurred, which resulted in a shutdown. Alarm values A06205 and A06206 could provide additional information about the cause of the shutdown.
	Possible causes:
	- voltage dip on the line side or phase failure or overvoltage lasting longer than 10 ms .
	- overload condition on the load side with peak current.
	- line reactor missing.
Remedy:	- check the line supply, terminals and fuses.
	- check the connection and size (rating) of the line line filter and/or the line commutating reactor.
	- check and correct the phase assignment at the VSM (X521 or X522) and at the power unit.
	- check the load.
	- if failed in operation, carefully note the previous alarm messages A06205/A06206 with alarm values.
	See also: p3463 (Infeed phase failure detection line supply angle change)
A06205 (F)	Infeed: Voltage dip in at least one line supply phase
Message value:	\%1
Message class:	Network fault (2)
Drive object:	A_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Voltage dip or overvoltage in one or several line supply phases has been detected in operation.
	The event is displayed in status parameter r3405.2.
	If nothing else is specified for the alarm values, then at the instant of the alarm, the pulses are inhibited for a minimum of 8 ms .
	Also for alarm values with pulse inhibit, the operating signal of the infeed remains in r0863.0.
	Alarm value (r2124, interpret bitwise binary):
	Bit 0: Line angle deviation due to a line supply fault (limit value p3463).
	Bit 2: Active current deviation.
	Bit 3: Line frequency deviation (limit values: 115 \% * p0284, 85 \% * p0285).
	Bit 4: Line overvoltage (limit value: 120 \% * p0281 * p0210).
	Bit 5: Line undervoltage (limit value: 20 \% * p0210).
	Bit 7: peak current event.
	Bit 8: Line supply angle deviation identified in the Smart Mode (p3400.0 = 1). In addition, for Extended Smart Mode (p3440.1 = 1) the following applies: pulses are not inhibited.
	Bit 9: DC link voltage dip identified in the Smart Mode (p3400.0 = 1).
	Bit 11: Line voltage detection error identified in the Smart Mode (p3400.0 = 1):
	Bit 12: Line voltage deviation identified in the Extended Smart Mode (p3400.0 = 1, p3440.1 = 1). Pulses are not inhibited.
	Bit 14: Recharging current fault.

### 4.2 List of faults and alarms



Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


$\overline{\mathrm{F}} 06207$ (N, A)	Infeed: Line currents asymmetrical
Message value:	\%1
Message class:	Network fault (2)
Drive object:	A_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The asymmetry of the line currents is continuously too high.
	The most probable cause is failure of a line phase.
	Fault value (r2133, floating point):
	Digits to the left of the decimal point:
	Highest rms phase current in amps.
	Decimal places:
	Quotient of the lowest and highest rms phase current value.
Remedy:	- check the previous alarm A06206 and the alarm value.
	- check the line supply, terminals and fuses.
	- check the settings in p3462 and p3465.
	- check the connection and size (rating) of the line line filter and/or the line commutating reactor.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


A06208 (F, N)	Infeed line: supply voltage asymmetrical
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	A_INF, R_INF, S_INF
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	Asymmetry of the voltages in the line phase too high.
	The most probable cause is failure of a line phase.
	Note:
	This message is only output when asymmetry monitoring is activated (p3640.1 = 1).
Remedy:	- check the line supply, terminals and fuses.
	- check the setting values for the phase asymmetry (p3647[0, 1]).
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


F06210	Infeed: Summation current too high
Message value:	\%1
Message class:	Ground fault / inter-phase short-circuit detected (7)
Drive object:	A_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The smoothed total of the phase currents ( $\mathrm{i} 1+\mathrm{i} 2+\mathrm{i} 3$ ) is greater than $4 \%$ of the maximum power unit current (r0209)
	Possible causes:
	- the DC link has a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, line reactor or line filter!
	- the zero point calibration of the current measurement was not carried out (p3491, A06602).
	- defective current measurement in the power unit.
	Fault value (r0949, floating point):
	Smoothed total of the phase currents.
Remedy:	- check the DC link for a low-ohmic or high-ohmic ground fault and if present, remove.
	- increase the monitoring time of the current offset measurement (p3491).
	- replace the power unit if necessary.
F06211	Infeed: Summation current impermissibly high
Message value:	\%1
Message class:	Ground fault / inter-phase short-circuit detected (7)
Drive object:	A_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The smoothed sum of the phase currents ( $\mathrm{i} 1+\mathrm{i} 2+\mathrm{i} 3$ ) is impermissibly high. The summed current has exceeded the parameterized threshold for the ground fault monitoring (p0287).
	Possible causes:
	- there is a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, line reactor or line filter!
	- the zero point calibration of the current measurement was not carried out (p3491, A06602).
	- the current measurement in the power unit is defective.
	Fault value (r0949, floating point):
	Smoothed total of the phase currents (peak value).
Remedy:	- check the line supply for ground faults and remove any that are present.
	- check the set threshold for the ground fault monitoring (p0287).
	- if required, replace the power unit.
	See also: p0287 (Ground fault monitoring shutdown threshold)
F06211	Summation current impermissibly high
Message value:	\%1
Message class:	Ground fault / inter-phase short-circuit detected (7)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The smoothed sum of the phase currents ( $\mathrm{i} 1+\mathrm{i} 2+\mathrm{i} 3$ ) is impermissibly high. The total current has exceeded the parameterized threshold for the ground fault monitoring ( p 0287 ).
	Possible causes:
	- there is a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, reactor, filter or motor!
	- the current measurement in the power unit is defective.
	Fault value (r0949, floating point):
	Smoothed total of the phase currents.


Remedy:	- check the line supply for ground faults and remove any that are present.
- check the set threshold for the ground fault monitoring ( p 0287 ).	
- if required, replace the power unit.	
See also: 00287 (Ground fault monitoring shutdown threshold)	


A06215 (F)	Infeed: Summation current too high
Message value:	\%1
Message class:	Ground fault / inter-phase short-circuit detected (7)
Drive object:	A_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The smoothed total of the phase currents (i1+i2+i3) is greater than $3 \%$ of the maximum power unit current (r0209).
	Possible causes:
	- the DC link has a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, line reactor or line filter!
	- the zero point calibration of the current measurement was not carried out (p3491, A06602).
	- defective current measurement in the power unit.
	Alarm value (r2124, floating point):
	Smoothed total of the phase currents.
Remedy:	- check the DC link for a low-ohmic or high-ohmic ground fault and if present, remove.
	- increase the monitoring time of the current offset measurement (p3491).
	- replace the power unit if necessary.
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


A06250 (F, N)	Infeed: Defective capacitor(s) in at least one phase of line filter
Message value:	\%1
Message class:	Line filter faulted (15)
Drive object:	A_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A change in the line filter capacitance was detected in at least one line phase.
	The voltages and phase currents of the line filter, measured using a VSM, indicate a deviation of the filter capacitances from the value parameterized in p0221.
	A change or a defect of the line filter capacitors results in a shift of the resonant frequencies and can result in severe damage to the drive system.
	Alarm value (r2124, floating point):
	The currently calculated capacitance in $\mu \mathrm{F}$ (rounded-off to an integer number).
	Note:

The first decimal point specifies the number of the phase $(1,2,3)$ where the capacitance deviates from the specified value.
Remedy: - check the parameterized value of the filter capacitance (p0221).

- check the correct wiring of the VSM:

Differential voltages u12 and u23 must be available at the $100 \mathrm{~V} / 690 \mathrm{~V}$ inputs of the VSM.
The phase currents of the line filter must be available at the 10 V inputs via a current-voltage transformer.

- check the alarm limits for the permissible filter capacitance deviation (p3676).
- check the scaling of the line supply voltage measurement using the VSM (p3660).
- check the scaling of the filter current measurement using the VSM (p3670).
- check the line filter capacitors and if required, replace the line filter.

For a parallel connection of power units, the following applies:

- parameter r3677[0...2] indicates the average value of all filter capacitances.
- parameters $\mathrm{r} 7320[0 \ldots \mathrm{n}], \mathrm{r} 7321[0 \ldots \mathrm{n}]$ and $\mathrm{r} 7322[0 \ldots \mathrm{n}]$ indicate the capacitance of each individual filter. The defective filter can be localized by the particular VSM.


### 4.2 List of faults and alarms

	Note:
	VSM: Voltage Sensing Module
	See also: p0221, p3660, p3670, p3676
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F06255 (A)	Infeed: temperature threshold value not permissible
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	A_INF, R_INF, S_INF
Component:	Voltage Sensing Module (VSM) Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	At least one temperature threshold value is set outside the permissible value range.
	For sensor type KTY84 (p3665 = 2) or PT1000 (p3665 = 6), the value range from $181^{\circ} \mathrm{C}$ to $300{ }^{\circ} \mathrm{C}$ is not permissible.
	Fault value (r0949, interpret bitwise binary):
	The bit number corresponds to the number of the Voltage Sensing Module (VSM) involved.
	Bit 0 : the value in p3667/p3668 is outside the permissible value range.
	For liquid-cooled AIMs (see p0220) the value range between $71{ }^{\circ} \mathrm{C}$ and $300{ }^{\circ} \mathrm{C}$ is also not permissible.
	Bit 1: the value in $\mathrm{p} 5467[0] / \mathrm{p} 468[0]$ is outside the permissible value range.
	Bit 2: the value in $\mathrm{p} 5467[1] / \mathrm{p} 468[1]$ is outside the permissible value range.
	See also: p3667, p3668, p5467 (VSM2 overtemperature alarm threshold), p5468 (VSM2 overtemperature shutdown threshold)
Remedy:	Set the temperature thresholds within the measuring range.
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A06260	Infeed: Temperature in the line filter too high
Message value:	-
Message class:	Line filter faulted (15)
Drive object:	A_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature monitoring in the line filter has responded.
	If the temperature remains too high during the complete monitoring time, this results in fault F06261.
	Note:
	The temperature monitoring is only available for an Active Interface Module.
Remedy:	- check whether the line filter type set in $00220[0]$ matches the line filter that is actually connected. Ensure that the line filter specified for the infeed being used is connected or correct the setting of the line filter type in p0220[0].
	- temperature monitoring is mandatory for AIM line filters (refer to p0220). Ensure that the line filter temperature switch is correctly and reliably connected to input X21 of the infeed.
	- reduce the ambient temperature of the line filter.
	- reduce the load on the infeed and the filter module.
	- check the magnitude of the line supply voltage.
	- the internal fan of the filter module is defective. Replace the fan if necessary.
	- defective temperature switch of the filter module. Replace the filter module if necessary.

## F06261

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Remedy:

Infeed: Temperature in the line filter permanently too high

Line filter faulted (15)
A_INF, R_INF, S_INF
Power Module Propagation: GLOBAL
OFF2 (OFF1)
IMMEDIATELY
After the temperature monitoring responded, the temperature in the line filter was permanently exceeded. Note:

The temperature monitoring is only available for an Active Interface Module (AIM).

- check whether the line filter type set in p0220[0] matches the line filter that is actually connected. Ensure that the line filter specified for the infeed being used is connected or correct the setting of the line filter type in p0220[0].
- temperature monitoring is mandatory for AIM line filters (refer to p0220). Ensure that the temperature switch in the line filter is correctly and reliably connected to input X21 of the infeed.
- reduce the ambient temperature of the line filter.
- reduce the load on the infeed and the line filter.
- check the magnitude of the line supply voltage.
- the internal fan of the line filter is defective. Replace the fan if necessary.
- defective temperature switch of the line filter. Replace the line filter if necessary


## F06262

Message value:

## Message class:

Drive object:
Component:
Reaction:
Acknowledge:
Cause:
Remedy:

Infeed: Temperature switch in the line filter open when switching on -
Line filter faulted (15)
A_INF, R_INF, S_INF
Power Module Propagation: GLOBAL
OFF2 (OFF1)
IMMEDIATELY
When switching on the infeed, the temperature in the line filter is too high. Switching on is prevented.

- check whether the line filter type set in p0220[0] matches the line filter that is actually connected. Ensure that the line filter specified for the infeed being used is connected or correct the setting of the line filter type in p0220[0].
- temperature monitoring is mandatory for AIM line filters (refer to p0220). Ensure that the temperature switch in the line filter is correctly and reliably connected to input X21 of the infeed.
- the filter temperature is too high. Allow the system to cool down.
- the internal fan of the line filter is defective. Replace the fan if necessary.
- defective temperature switch of the line filter. Replace the line filter if necessary.


## F06300

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Infeed: Line voltage too high at power on

\%1
Network fault (2)
A_INF, R_INF, S_INF
None Propagation: GLOBAL

OFF2 (NONE, OFF1)
IMMEDIATELY (POWER ON)
The RMS line supply voltage Vrms was so high when switching on that controlled operation is not possible without exceeding the permissible maximum voltage in the DC link ( p 0280 ).
Fault condition: Vrms * $1.5>\mathrm{p} 0280$.
Fault value (r0949, floating point):
Lowest possible controlled DC link voltage for the line supply voltage presently connected.
See also: p0280 (DC link voltage maximum steady-state)
,

- check the line supply voltage
- check the maximum DC link voltage and if required, increase ( p 0280 ).
- check the line supply voltage and compare with the actual line supply voltage (p0210).
- check whether the power unit is dimensioned for the line supply voltage actually being used.

See also: p0210 (Drive unit line supply voltage), p0280 (DC link voltage maximum steady-state)

A06301 (F)	Infeed: Line supply overvoltage
Message value:	Line supply voltage: \%1
Message class:	Network fault (2)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The filtered (steady-state) value of the rms line supply voltage Vrms is higher than the alarm threshold (p0281).
	Alarm condition: Vrms > p0281 * p0210.
	Alarm value (r2124, floating point):
	Actual steady-state line supply voltage.
	See also: p0281 (Line supply overvoltage alarm threshold)
Remedy:	- check the line supply.
	- check the line supply voltage (p0210).
	- check the alarm threshold (p0281).
	See also: p0210 (Drive unit line supply voltage), p0281 (Line supply overvoltage alarm threshold)
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F06310 (A)	Infeed: Supply voltage (p0210) incorrectly parameterized
Message value:	Line supply voltage: \%1
Message class:	Network fault (2)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	After precharging was completed, the line supply voltage Vrms was calculated using the measured DC link voltage. This voltage Vrms is not within the tolerance range of the supply voltage.
	The following applies for the tolerance range: 85 \% * p0210 < Vrms < 110 \% * p0210
	Fault value (r0949, floating point):
	Line supply voltage Vrms present.
	See also: p0210 (Drive unit line supply voltage)
Remedy:	- check the parameterized supply voltage and if required change (p0210).
	- check the line supply voltage.
	See also: p0210 (Drive unit line supply voltage)
Reaction upon A :	NONE
Acknowl. upon A :	NONE
F06310 (A)	Supply voltage (p0210) incorrectly parameterized
Message value:	-
Message class:	Network fault (2)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For AC/AC drive units, the measured DC voltage lies outside the tolerance range after precharging has been completed.
	The following applies for the tolerance range: 1.16 * p0210 < r0070 < 1.6 * p0210
	Note:
	The fault can only be acknowledged when the drive is switched off.
	See also: p0210 (Drive unit line supply voltage)
Remedy:	- check the parameterized supply voltage and if required change (p0210).
	- check the line supply voltage.
	See also: p0210 (Drive unit line supply voltage)


Reaction upon $A$ : Acknowl. upon A	NONE NONE
F06311	Infeed: Supply voltage (p0210) incorrect
Message value:	Line supply voltage: \%1
Message class:	Network fault (2)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The line voltage nominal value indicated in p0210 is outside the nominal voltage range of the power unit.
	After precharging was completed, the actual line supply voltage Vrms was calculated using the measured DC link voltage. This voltage Vrms does not lie within the extended tolerance range of the supply voltage set in p0210.
	The following applies for the extended tolerance range: 75 \% * p0210 < Vrms < 120 \% * p0210
	Alarm value (r2124, floating point):
	Line supply voltage Vrms present.
	See also: p0210 (Drive unit line supply voltage)
Remedy:	- check the parameterized supply voltage and if required change (p0210).
	- check the line supply voltage.
	See also: p0210 (Drive unit line supply voltage)
F06320	Master/slave: 4-channel multiplexer control not valid
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	A_INF, R_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Values $0,1,2$, and 3 are valid to control the 4-channel multiplexer via connector input p3572.
	In this case, an invalid value was identified. The control remains effective with the previous value.
	Fault value (r0949, interpret decimal):
	Invalid value to control the multiplexer.
	See also: p3572 (Master/slave active current setpoint multiplexer selection)
Remedy:	- check the interconnection to control the multiplexer (CI: p3572).
	- check the signal source signal value of the BICO interconnection.
	See also: p3572 (Master/slave active current setpoint multiplexer selection)
F06321	Master/slave: 6-channel multiplexer control not valid
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	A_INF, R_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	For the 6 -channel multiplexer control via connector input p3577 an invalid value was identified. Values of $0,1,2,3,4$ and 5 are valid. The control remains effective with the previous value.
	Fault value (r0949, interpret decimal):
	Invalid value used to control the multiplexer.
	See also: p3577 (Master/slave current distribution factor multiplexer selection)
Remedy:	- check the interconnection to control the multiplexer (CI: p3577).
	- check the signal source signal value of the BICO interconnection.


A06350 (F)	Infeed: Measured line frequency too high
Message value:	Line frequency: \%1
Message class:	Network fault (2)
Drive object:	A_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The actual line frequency f_line is higher than the parameterized alarm threshold (f_line > p0211 * p0284).
	The alarm can be output in two operating states:
	1. During the switch-on phase of the infeed unit.
	Consequence:
	Synchronization of the infeed to the line supply is interrupted and is restarted.
	The alarm is reissued if the line frequency remains higher than the parameterized alarm threshold.
	2. While the infeed is operational.
	Consequence:
	The infeed still remains in the operating state, alarm A06350 is output. This signifies a critical operational fault.
	Alarm value (r2124, floating point):
	Actual line frequency determined.
	See also: p0284 (Line supply frequency exceeded alarm threshold)
Remedy:	- check the parameterized line frequency and if required change (p0211).
	- check the alarm threshold (p0284).
	- check the line supply.
	- check the line supply quality.
	See also: p0211, p0284 (Line supply frequency exceeded alarm threshold)
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A06351 (F)	Infeed: Measured line frequency too low
Message value:	Line frequency: \%1
Message class:	Network fault (2)
Drive object:	A_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The actual line frequency f_line is lower than the parameterized alarm threshold (f_line < p0211 * p0285).
	The alarm can be output in two operating states:
	1. During the switch-on phase of the infeed unit.
	Consequence:
	Synchronization of the infeed to the line supply is interrupted and is restarted.
	The alarm is reissued if the line frequency remains less than the parameterized alarm threshold.
	2. While the infeed is operational.
	Consequence:
	The infeed remains in the "operating" (run) state and alarm A06351 is output. This signifies a critical operational fault.
	Alarm value (r2124, floating point):
	Actual line frequency determined.
	See also: p0285 (Line supply frequency undershot alarm threshold)
Remedy:	- check the parameterized line frequency and if required change (p0211).
	- check the alarm threshold (p0285).
	- check the line supply.
	- check the line supply quality.
	See also: p0211, p0285 (Line supply frequency undershot alarm threshold)
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


A06400	Infeed: Line supply data identification selected/active
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	A_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The line supply data identification is selected and active.
	The line inductance and the DC link capacitance are measured at the next pulse enable.
	See also: p3410 (Infeed identification method)
Remedy:	Not necessary.
	This alarm is automatically withdrawn after the measurement has been completed.
A06401	Infeed: Transformer data identification/test mode selected/active
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	A_INF, R_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A transformer data identification type or a transformer test operation has been selected or is active.
	Alarm value (r2124, interpret decimal):
	11: Identification type 1 selected for transformer data (automatic determination of the magnetizing inductance).
	12: Identification type 2 selected for transformer data (automatic determination of transformer phase shift and gain correction).
	13: Identification type 3 selected for transformer data (determination of total leakage inductance of transformer during line data identification).
	101: Test mode 1 selected.
	102: Test mode 2 selected.
	See also: p5480 (Transformer magnetization mode)
Remedy:	Not necessary.
	This alarm is automatically withdrawn after the identification has expired.
F06500	Infeed: Line synchronization not possible
Message value:	-
Message class:	Network fault (2)
Drive object:	A_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The line synchronization is not possible within the monitoring time.
	The infeed was re-synchronized to the line supply because it was interrupted due to an incorrect line frequency or due to excessively high line voltage distortion.
	After 20 attempts, synchronization - and therefore also the switching-on operation - were interrupted.
Remedy:	- check the parameterized line frequency and if required change (p0211).
	- check the setting of the threshold values (p0284, p0285).
	- check the line supply.
	- check the connecting terminals
	- for significant line voltage distortion, after assessment by experts, the tolerance threshold p3457[2] can be adapted.
	When using a Voltage Sensing Module (VSM):
	- check the line supply connection at the terminals (X521, X522).
	- check VSM activation (p0145, p3400).
	- check the line supply quality.

Note:
In the case of chassis power units, the availability of correct VSM voltage measured values is imperative for line synchronization.
See also: p0211, p0284 (Line supply frequency exceeded alarm threshold), p0285 (Line supply frequency undershot alarm threshold), p3457 (Infeed PLL supplementary settings)

A06502 (F, N)	Infeed: Unable to achieve line synchronization in transformer magnetization
Message value:	-
Message class:	Network fault (2)
Drive object:	A_INF, R_INF
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	Line synchronization is not possible within the monitoring time (p5481[2]).
Remedy:	- check the setting of the threshold value (p5485).
	- check the setting of the maximum time (p5481[2])
	- check the line supply quality.
	See also: p5481 (Transformer magnetization times), p5485 (Transformer magnetization voltage thresholds)
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


F06503	Infeed: Line black start unsuccessful
Message value:	\%1
Message class:	Network fault (2)
Drive object:	A_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The line black start was unsuccessful.
	Fault value (r0949, interpret decimal):
	State of the black start (corresponds to r5482).
	The following applies for fault value r0949 = 109:
	At the start of a black start (p5581 = 1), a line supply was identified (frequency and voltage within the specified limits p0281 to p0285).
	The following applies to all other fault values:
	The maximum time for a black start (p5581[2]) was exceeded.
Remedy:	- check the conditions of a line black start.
	- check the parameterization of the line black start.
	See also: p5581 (Island grid times)


F06504	Infeed: Island line supply synchronization unsuccessful
Message value:	\%1
Message class:	Network fault (2)
Drive object:	A_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The island line supply synchronization was unsuccessful.
	Alarm value (r2124, interpret decimal):
	State, in which the island line supply synchronization has remained (corresponds to r5482).
	See also: r5482 (Line synchronization status)
Remedy:	- check the conditions for the island line supply synchronization.
	- check the parameterization of the island line supply synchronization.
	See also: p5581 (Island grid times)


F06505	Infeed: For transformer magnetization current limit exceeded
Message value:	\%1
Message class:	Network fault (2)
Drive object:	A_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The current limit was exceeded when magnetizing the transformer (r0068 > p5494[1] * r0207).
Remedy:	- check the setting of the current limit (p5494[1])
	- check the primary side of the transformer for a short-circuit.
	- check the control and feedback signal of the circuit breaker.
	See also: p5494 (Transformer magnetization scaling values)


A06601 (F)	Infeed: Current offset measurement interrupted
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	A_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Defective current measurement or a DC current is present during the offset measurement.
	Alarm value (r2124, interpret decimal):
	1: Excessively high phase current has occurred during the current offset calibration.
	2: The measured current offset is greater than the $3 \%$ of the maximum permissible converter current (e.g. due to a ground fault in the DC link).
Remedy:	For alarm value $=1$ :
	- possible counter-measure if there is no line contactor: Power up an adequately long time before OFF1 $=1$.
	For alarm value $=2$ :
	- defective current measurement or a DC current is present during the offset measurement.
	- check the DC link for a ground fault.
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


A06602 (F)	Infeed: Current offset measurement not possible
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	A_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	After an OFF1 = 1 no valid current offset measurement was able to be made within the monitoring time (p3491) before closing the line contactor. The current offset is set to 0 .   See also: p3491 (Infeed I-offset measurement monitoring time)
Remedy:	- check the DC link for a ground fault. A ground fault can destroy parts and components!   - check the monitoring time setting and if required increase (p3491). At least 100 ms is required for a valid measurement (p3491 > 100 ms ).   Notice:   If there is no valid measurement, then under certain circumstances the quality of the DC link control will be reduced.   See also: p3491 (Infeed I-offset measurement monitoring time)
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


F06700 (A)	Infeed: Switch line contactor for load condition
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	For an ON command, the infeed line contactor should be switched under load.
Remedy:	- do not load the DC link if the infeed has not issued an operating signal (r0863.0 = 1).
	- after the infeed has been switched off, all power units connected to the DC link should be switched off. To realize this, the operating signal of the infeed (r0863.0) must be suitably interconnected.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A06800 (F)	Infeed: Maximum steady-state DC link voltage reached
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	A_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage setpoint has reached the maximum steady-state voltage parameterized in p0280.
	The DC link voltage is increased by the modulation depth reserve controller for the following reasons: - modulation depth reserve is too low (p3480).
	- line supply voltage is too high.
	- supply voltage (p0210) parameterized to be too low.
	- excessively high setpoint for the reactive line current.
Remedy:	- check the line supply voltage setting (p0210).
	- check the line supply for an overvoltage condition.
	- reduce the modulation depth reserve (p3480).
	- reduce the reactive current setpoint.
	See also: p0210 (Drive unit line supply voltage), p0280 (DC link voltage maximum steady-state), p3480 (Infeed modulation depth limit)
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A06810 (F)	Infeed: DC link voltage alarm threshold fallen below
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	In operation, the DC link voltage has dropped to below the alarm threshold. The alarm threshold is obtained from the sum of p0279 and r0296.
	Note:
	When the alarm threshold is fallen below, this is also indicated using status bit r3405.7.
	Possible causes:
	- line supply voltage dip or another line supply fault.
	- overload of the infeed.
	- for Active Line Module: Controller incorrectly parameterized.
	See also: p0279 (DC link voltage offset alarm threshold), r0296 (DC link voltage undervoltage threshold), r3405


Remedy:	- check the line voltage and line supply quality.
	- reduce the power drawn, avoid step-like load changes
	- for Active Line Module: Adapt the controller parameterization (e.g. automatic line supply identification (p3410 $=4$,
5)).	
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


A06849 (F, N)	Infeed: Short-circuit operation active
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	A_INF, R_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The current hysteresis controller sequence control has detected a short circuit ( r 5452 , r5522). The absolute line supply voltage ( $\mathrm{r} 5444[0]$, r5512[0]) is below the short-circuit voltage limit ( p 5459 [2], $\mathrm{p} 5529[2]$ ), and the current limitation is active ( $\mathrm{r} 5402.3=1, r 5502.3=1$ ).
	Note:
Remedy:	The effective current limit is obtained from the parameterized overcurrent (p5453) and the hysteresis width (p5454). - check the parameterization of the current hysteresis controller (p5453).   - check the line supply cables for a short-circuit.
	See also: r5452 (Current hysteresis controller sequence control status word), p5453 (Current hysteresis controller overcurrent limit)
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F06850	Infeed: Short-circuit prevailing for too long
Message value:	\%1
Message class:	Network fault (2)
Drive object:	A_INF, R_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The maximum permissible duration (p5458[1], p5528[1]) for the short-circuit has been exceeded. The short-circuit could not be cleared within this time.
	See also: p5509 (Dynamic grid support scaling values)
Remedy:	- check the minimum time parameter setting (p5458[1], p5528[1]).
	- check the line supply and fuses.
	See also: p5458 (Current hysteresis controller minimum time operating state), p5528 (Dynamic grid control operating state times)


F06851	Infeed: Distributed infeed line monitoring tripped
Message value:	\%1
Message class:	Network fault (2)
Drive object:	A_INF, R_INF
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The line monitoring of the distributed line infeed has tripped.
	Alarm value (r2124, interpret hexadecimal):
	Corresponds to status word (r5542).
Remedy:	- check the line supply.
	- check the parameterization of the line monitoring (p5540 ... p5559).
	See also: p5540 (Line monitoring configuration), r5542 (Line monitoring status word)


F06855	Infeed: Line filter monitor responded
Message value:	\%1
Message class:	Line filter faulted (15)
Drive object:	A_INF, R_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A threshold value parameterized in p3678 has been exceeded or undershot in the line filter.
	Fault value (r0949, interpret decimal):
	0 : Voltage threshold, alpha/beta voltage monitoring fallen below (p3678[0]).
	2: Voltage threshold value of the phase voltage monitoring fallen below ( $\mathrm{p} 3678[0]$ ).
	x1:
	Current threshold value exceeded (p3678[1]). The 10th position codes the power unit number of the Active Interface Module involved.
	Example:
	01 : overcurrent in line filter 1
	11 : overcurrent in line filter 2
	See also: p3678 (Filter monitoring threshold values), p3679 (Transformer filter monitoring times)
Remedy:	- check the parameterization of the threshold values for filter monitoring (p3678]).
	- check filter.
	For fault value $=0$ :
	- check the parameterization of the voltage monitoring smoothing time (p3679[0]).
	For fault value = 1:
	- check the parameterization of the current monitoring minimum time (p3679[1]).


A06860	Infeed: Function module activation not possible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, R_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Function module activation is not possible.
	The power unit used has at least one of the following features:
	- gating unit with current limiting control (r0192.19).
	- gating unit with all-phase current limiting (r0192.30).
	The affected function module is identified in fault value r0949 (the value of r0949 corresponds to the bit of parameter p0108).
	r0949 = 7 "Dynamic grid support" function module
	r0949 = 12: "Line droop control" function module
	See also: r0192 (Power unit firmware properties 1), p5401 (Line droop control activation)
Remedy:	- check whether the power unit used has the "gating unit with current limiting control" feature (r0192.19) or "gating unit with all-phase current limiting" feature (r0192.30).
	- if necessary, use a power unit that has at least one of these features.


A06900 (F)	Braking Module: Fault (1 -> 0)
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Braking Module signals a fault ( 1 -> 0 ) via X21.4 ("booksize" format) or X21.5 ("chassis" format).   This signal is wired to a system digital input and correspondingly interconnected using binector input p3866[0...7].   Possible causes:   - wiring of the signal or BICO interconnection of the signal source incorrect.   - overtemperature   - electronics power supply missing.   - ground fault/short-circuit.   - internal component fault.   See also: p3866 (Braking Module fault)
Remedy:	- check binector input p3866[0...7] and the wiring from terminal X21.4 ("booksize" format) or X21.5 ("chassis" format)   - reduce the number of braking operations.   - check the 24 V power supply of the component.   - check for a ground fault or short circuit.   - replace the component if necessary.
Reaction upon F:	NONE (OFF2)
Acknowl. upon F:	IMMEDIATELY
A06901	Braking Module: Pre-alarm l2t shutdown
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Braking Module "Booksize" format signals "Pre-alarm I2t shutdown" via terminal X21.3.   This signal is wired to a system digital input and correspondingly interconnected using binector input p3865[0...7]. Note:   This function is not supported for the "chassis" format.
Remedy:	- reduce the number of braking operations.   - check binector input p3865[0...7] and the wiring from terminal X21.3 of the particular Braking Module.


A06904 (N)	Braking Module internal is inhibited
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Component:	None $\quad$ Propagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal Braking Module was inhibited via binector input p3680 = 1 signal.
	In the inhibited state, energy cannot be dissipated using the braking resistor.
	See also: p3680 (Braking Module internal inhibit)
Remedy:	Release the internal Braking Module (BI: p3680 = 0 signal).
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A06905	Braking Module internal I2t shutdown alarm
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal Braking Module outputs an alarm due to the high I2t value.
	80\% of the maximum switch-on duration of the braking resistor has been reached.
	Note:
	This message is also displayed via BO: p3685.
	See also: r3685 (Digital Braking Module: Pre-alarm I2t shutdown)
Remedy:	Reduce the number of braking operations.
F06906 (A)	Braking Module internal fault
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The internal Braking Module outputs a fault due to overcurrent or an excessively high $12 t$ value and is therefore inhibited.
	Note:
	This message is also displayed via BO: p3686.
	Fault value (r0949, interpret bitwise binary):
	Bit $0=1$ : 12 t exceeded
	Bit 1 = 1: overcurrent
	See also: r3686 (Digital Braking Module fault)
Remedy:	Reduce the number of braking operations.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F06907	Braking Module internal overtemperature
Message value:	-
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The temperature sensor connected to the braking resistor signals an overtemperature.
	The Braking Module is still active. If the overtemperature persists for more than 60 s , fault F06908 is output, and the braking module is switched off.
	See also: r3687 (Digital Braking Module pre-alarm overtemperature)
Remedy:	- reduce the temperature at the sensor.
	- check the temperature sensor connection.


F06908	Braking Module internal overtemperature shutdown
Message value:	-
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	Braking module shut down due to overtemperature at the temperature sensor of the braking resistor. The overtemperature is detected by the sensor for longer than 60 s . See also: r3688 (Braking Module internal overtemperature shutdown)
Remedy:	- reduce the temperature at the sensor.   - check the temperature sensor connection.
F06909	Braking Module internal Vce fault
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	In the power unit, the monitoring of the collector-emitter voltage (U_ce) of the power semiconductor to control the braking resistor has responded.
	Possible causes:
	- short circuit at the braking resistor terminals.
	- defective power semiconductor in the braking resistor control.
	Note:
	Under certain circumstances, this fault is also output if a braking resistor is not connected, and the energy is fed back into the Braking Module.
	See also: r3689 (Digital Braking Module Uce fault)
Remedy:	- connect a braking resistor.
	- check the braking resistor connection.
	- check the braking resistor.
	- carry out a POWER ON (switch-off/switch-on).
	- replace the unit.


A06921 (N)	Braking resistor phase asymmetry
Message value:	-
Message class:	Braking Module faulted (14)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor
Reaction:	NONE
Acknowledge:	NONE
Cause:	- the three resistors of the braking chopper are not symmetrical.
	- DC link voltage oscillations caused by fluctuating loads of the connected drives.
Remedy:	- check the feeder cables to the braking resistors.
	- if required, increase the value for detecting asymmetry (p1364).
	See also: p1360 (Braking chopper braking resistor cold), p1362 (Braking chopper activation threshold), r1363
	(Braking chopper output voltage), p1364 (Braking chopper resistor asymmetry)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


F06922	Braking resistor phase failure
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A phase failure for the brake resistor was detected.
	Fault value (r0949, interpret decimal):
	11: Phase U
	12: Phase V
	13: Phase W
	See also: p3235 (Phase failure signal motor monitoring time)
Remedy:	Check the feeder cables to the braking resistors.
	See also: p1360 (Braking chopper braking resistor cold), p1362 (Braking chopper activation threshold), r1363 (Braking chopper output voltage), p1364 (Braking chopper resistor asymmetry)
F07011	Drive: Motor overtemperature
Message value:	\%1
Message class:	Motor overload (8)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	KTY84/PT1000:
	The motor temperature has exceeded the fault threshold (p0605) or the timer (p0606) after the alarm threshold was exceeded (p0604) has expired.
	PTC, bimetallic NC contact:
	The response threshold of 1650 Ohm was exceeded (for SME p4600 ... p4603 or for TM120 p4610 ... p4613 $=10$, 30), or the timer (p0606) has expired after 1650 Ohm has been exceeded (for SME p4600 ... p4603 or for TM120 $\mathrm{p} 4610 \ldots \mathrm{p} 4613=12,32$ ).
	Motor temperature model:
	The calculated motor temperature is too high.
	Possible causes:
	- motor overloaded.
	- motor ambient temperature too high.
	- PTC / bimetallic NC contact: Wire breakage or sensor not connected.
	- motor temperature model incorrectly parameterized.
	Hysteresis:2K
	Fault value (r0949, interpret decimal):
	1, 2, 3, 4:
	Number of the temperature channel leading to the message (for SME/TM120 (p0601 $=10,11$ ) ).
	200:
	Motor temperature model 1 (I2t): temperature too high.
	300:
	Motor temperature model 3: after the monitoring time has expired, the temperature is still higher than the alarm threshold.
	301:
	Motor temperature model 3: temperature is too high, or the model has not been parameterized.
	302:
	Motor temperature model 3: Encoder temperature is not within the valid range.
	See also: p0351, p0604, p0605, p0606, p0612, p0613, p0617, p0618, p0619, p0625, p0626, p0627, p0628



### 4.2 List of faults and alarms



A07014 (N)	Drive: Motor temperature model configuration alarm
Message value:	\%1
Message class:	Motor overload (8)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Motor
Reaction:	NONE
Acknowledge:	NONE
Cause:	A fault has occurred in the configuration of the motor temperature model.
	Alarm value (r2124, interpret decimal):
	$1:$
	All motor temperature models: It is not possible to save the model temperature
	$300:$
	Motor temperature model $3:$ Threshold value for alarm (r5398) is higher than the threshold value for fault (r5399).
	See also: p0610 (Motor overtemperature response), p5390 (Mot_temp_mod 1/3 alarm threshold), p5391
	(Mot_temp_mod 1/3 fault threshold)


Remedy:	- set the response for motor overtemperature to "Alarm and fault, no reduction of I_max" (p0610 = 2).
	- check and correct the threshold values (r5398, r5399).
	See also: p0610 (Motor overtemperature response), p5390 (Mot_temp_mod 1/3 alarm threshold), p5391   (Mot_temp_mod 1/3 fault threshold)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A07014 (N)	Drive: Motor temperature model configuration alarm
Message value:	\%1
Message class:	Motor overload (8)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A fault has occurred in the configuration of the motor temperature model.
	Alarm value (r2124, interpret decimal):
	1:
	All motor temperature models: It is not possible to save the model temperature
	See also: p0610 (Motor overtemperature response)
Remedy:	- set the response for motor overtemperature to "Alarm and fault, no reduction of I_max" (p0610 = 2). See also: p0610 (Motor overtemperature response)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A07015	Drive: Motor temperature sensor alarm
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the temperature sensor set in p0600 and p0601.
	With the fault, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 50 ms after alarm A07015.
	Possible causes:
	- wire breakage or sensor not connected (KTY: $\mathrm{R}>1630$ Ohm, PT1000: $\mathrm{R}>1720$ Ohm).
	- measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm, PT1000: R < 603 Ohm).
	Alarm value (r2124, interpret decimal):
	- if SME/TM120 is selected (p0601 = 10, 11),
	this is the number of the temperature channel leading to the message.
Remedy:	- make sure that the sensor is connected correctly.
	- check the parameterization (p0600, p0601).
	See also: r0035, p0600, p0601, p0607

$\overline{\text { F07016 Drive: Motor temperature sensor fault }}$

Message value: \%1
Message class: External measured value / signal state outside the permissible range (16)
Drive object: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component: Motor Propagation: GLOBAL
Reaction:
Acknowledge:
OFF1 (NONE, OFF2, OFF3, STOP2)
IMMEDIATELY
Cause: An error was detected when evaluating the temperature sensor set in p 0600 and p0601.
Possible causes:

- wire breakage or sensor not connected (KTY: $\mathrm{R}>1630$ Ohm, PT1000: R > 1720 Ohm).
- measured resistance too low (PTC: $R<20$ Ohm, KTY: $R<50$ Ohm, PT1000: $R<603$ Ohm).


### 4.2 List of faults and alarms

Note:
If alarm A07015 is present, the time in p0607 is started. If the fault is still present after this time has expired, then fault
F07016 is output; however, at the earliest, 50 ms after alarm A07015.
Fault value (r0949, interpret decimal):

- if SME/TM120 is selected (p0601 = 10, 11),
this is the number of the temperature channel leading to the message.
See also: p0607 (Temperature sensor fault timer)
- make sure that the sensor is connected correctly.
- check the parameterization (p0600, p0601).
- induction motors: Deactivate temperature sensor fault (p0607 = 0).
- When TM120 and SMC/SME (p0601 = 10, 11) are being used, set the same sensor type on the drive (p4610 ....
p4613) as for TM120.
See also: r0035, p0600, p0601, p0607


## A07017

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## Additional temperature alarm threshold exceeded

\%1
External measured value / signal state outside the permissible range (16)
SERVO, SERVO_AC, SERVO_I_AC
None Propagation: GLOBAL
NONE
NONE
The additional temperature has exceeded the alarm threshold in p4102[0]
The time in p4103 is also started with this alarm. Fault F07018 is output if the alarm is still active after this time has expired.

- overtemperature (r4105 > p4102[0]).

See also: p4100, p4102, p4103, r4105
Remedy: - make sure that the sensor is connected correctly.

- check parameterization ( p 4100 ).


## F07018

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Additional temperature fault threshold exceeded
\%1
External measured value / signal state outside the permissible range (16)
SERVO, SERVO_AC, SERVO_I_AC
None Propagation: GLOBAL

OFF1 (ENCODER, NONE, OFF2, OFF3, STOP2)
IMMEDIATELY
The additional temperature has exceeded the fault threshold in p4102[1]
Fault value (r0949, interpret decimal):
0 :
Overtemperature ( $\mathrm{r} 4105>\mathrm{p} 4102[1]$ or $\mathrm{r} 4105>\mathrm{p} 4102[0]$ for longer than the time in p 4103 )
1:
Wire breakage or sensor not connected (KTY: R > 1630 Ohm, PT1000: R > 1720 Ohm).
Measured resistance too low (KTY: $\mathrm{R}<50$ Ohm, PT1000: R < 603 Ohm).
See also: p4100, p4102, p4103, r4105
Remedy: - make sure that the sensor is connected correctly.

- check parameterization (p4100).

F07080	Drive: Incorrect control parameter
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR I AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The closed-loop control parameters have been parameterized incorrectly (e.g. p0356 $=$ L_spread $=0$ ) .
	Fault value (r0949, interpret decimal):
	The fault value includes the parameter number involved.
	See also: p0310, p0311, p0341, p0344, p0350, p0354, p0356, p0357, p0358, p0360, p0400, p0404, p0408, p0640, p1082, r1082, p1300
Remedy:	Modify the parameter indicated in the fault value (r0949) (e.g. p0640 = current limit > 0).
	See also: p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0400, p0404, p0408, p0640, p1082, r1082
F07082	Macro: Execution not possible
Message value:	Fault cause: \%1, supplementary information: \%2, preliminary parameter number: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The macro cannot be executed.
	Fault value (r0949, interpret hexadecimal): ccccbbaa hex:
	$\mathrm{cccc}=$ preliminary parameter number, $\mathrm{bb}=$ supplementary information, $\mathrm{aa}=$ fault cause
	Fault causes for the trigger parameter itself:
	19: Called file is not valid for the trigger parameter.
	20: Called file is not valid for parameter 15.
	21: Called file is not valid for parameter 700.
	22: Called file is not valid for parameter 1000.
	23: Called file is not valid for parameter 1500.
	24: Data type of a TAG is incorrect (e.g. Index, number or bit is not U16).
	Fault causes for the parameters to be set:
	25: Error level has an undefined value.
	26: Mode has an undefined value.
	27: A value was entered as string in the tag value that is not "DEFAULT".
	31: Entered drive object type unknown.
	32: A device was not able to be found for the determined drive object number.
	34: A trigger parameter was recursively called.
	35: It is not permissible to write to the parameter via macro.
	36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect.
	37: Source parameter for a BICO interconnection was not able to be determined.
	38: An index was set for a non-indexed (or CDS-dependent) parameter.
	39: No index was set for an indexed parameter.
	41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN.
	42: A value not equal to 0 or 1 was set for a BitOperation.
	43: Reading the parameter to be changed by the BitOperation was unsuccessful.
	51: Factory setting for DEVICE may only be executed on the DEVICE.
	61: The setting of a value was unsuccessful.

### 4.2 List of faults and alarms

Remedy:	- check the parameter involved.   - check the macro file and BICO interconnection.   See also: p0015, p0700, p1000, p1500
F07083	Macro: ACX file not found
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The ACX file (macro) to be executed was not able to be found in the appropriate directory.   Fault value (r0949, interpret decimal):   Parameter number with which the execution was started.   See also: p0015, p0700, p1000, p1500
Remedy:	- check whether the file is saved in the appropriate directory on the memory card.   Example:   If p0015 is set to 1501, then the selected ACX file must be located in the following directory: ... /PMACROS/DEVICE/P15/PM001501.ACX


F07084	Macro: Condition for WaitUntil not fulfilled
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None $\quad$ Propagation: $\quad$
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts.
	Fault value (r0949, interpret decimal):
	Parameter number for which the condition was set.   Remedy:
	Check and correct the conditions for the WaitUntil loop.

## F07085 Drive: Open-loop/closed-loop control parameters changed

Message value: Parameter: \%1
Message class: Error in the parameterization / configuration / commissioning procedure (18)

Drive object:
Component:
Reaction:
Acknowledge:
Cause:

A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL
NONE
IMMEDIATELY (POWER ON)
Open-loop/closed-loop control parameters have had to be changed.
Possible causes:

1. As a result of other parameters, they have exceeded the dynamic limits.
2. They cannot be used due to the fact that the hardware detected not having certain features.
3. The value is estimated as the thermal time constant is missing.
4. Motor temperature model 1 is activated as thermal motor protection is missing.

Fault value (r0949, interpret decimal):
Changed parameter number.
340:
The motor and control parameters were automatically calculated ( $p 0340=1$ ), because the vector control was subsequently activated as configuration (r0108.2).
611:
The time constant for thermal motor model 1 was estimated.
612:
Thermal motor model 1 was activated ( $p 0612.0=1$ ).
See also: p0640, p1082, r1082, p1300, p1800

Remedy:	Not necessary.   It is not necessary to change the parameters as they have already been correctly limited.
F07086	Units changeover: Parameter limit violation due to reference value change
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A reference parameter was changed in the system. This resulted in the fact that for the parameters involved, the selected value was not able to be written in the per unit notation.
	The values of the parameters were set to the corresponding violated minimum limit/maximum limit or to the factory setting.
	Possible causes:
	- the steady-state minimum limit/maximum limit or that defined in the application was violated.
	Fault value (r0949, parameter):
	Diagnostics parameter to display the parameters that were not able to be re-calculated.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	Check the adapted parameter value and if required correct.
	See also: r9450 (Reference value change parameter with unsuccessful calculation)
F07087	Drive: Encoderless operation not possible for the selected pulse frequency
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Encoderless operation is not possible for the selected pulse frequency (p1800).
	Encoderless operation is activated under the following conditions:
	- the changeover speed for encoderless operation (p1404) is less than the maximum speed ( 0322 ).
	- a control type with encoderless operation has been selected (p1300).
	- encoder faults of the motor encoder result in a fault response with encoderless operation (p0491).
	See also: p0491, p1300, p1404, p1800
Remedy:	Increase the pulse frequency (p1800).
	Note:
	In encoderless operation, the pulse frequency must be at least as high as one quarter of the current controller clock cycle frequency (1/p0115[0]).
F07088	Units changeover: Parameter limit violation due to units changeover
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A changeover of units was initiated. This resulted in a violation of a parameter limit
	Possible causes for the violation of a parameter limit:
	- When rounding off a parameter corresponding to its decimal places, the steady-state minimum limit or maximum limit was violated.
	- inaccuracies for the data type "FloatingPoint".
	In these cases, when the minimum limit is violated then the parameter value is rounded up and when the maximum limited is violated the parameter value is rounded down.

### 4.2 List of faults and alarms

	Fault value (r0949, interpret decimal):
	Diagnostics parameter r9451 to display all parameters whose value had to be adapted.   See also: p0100 (IEC/NEMA Standards), p0349 (System of units motor equivalent circuit diagram data), p0505   (Selecting the system of units), p0595 (Technological unit selection)   Check the adapted parameter values and if required correct.   See also: r9451 (Units changeover adapted parameters)
Remedy:	Changing over units: Function module activation is blocked because the units have
	been changed over
A07089	-
Message value:	Error in the parameterization / configuration / commissioning procedure (18)
Message class:	All objects
Drive object:	None
Component:	NONE
Reaction:	NONE
Acknowledge:	An attempt was made to activate a function module. This is not permissible if the units have already been changed
Cause:	over.
	See also: p0100 (IEC/NEMA Standards), p0349 (System of units motor equivalent circuit diagram data), p0505
(Selecting the system of units)	
Remedy:	Restore units that have been changed over to the factory setting.

F07090 Drive: Upper torque limit less than the lower torque limit

Message value:
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Component: None Propagation: GLOBAL

Reaction:
Acknowledge: OFF2 (NONE, OFF1, OFF3)

Cause: IMMEDIATELY
The upper torque limit is lower than the lower torque limit.
Remedy: $\quad \mathrm{P} 1$ must be $>=\mathrm{P} 2$ if parameter P 1 is connected to p 1522 and parameter P 2 to p 1523 .

A07092	Drive: moment of inertia estimator still not ready
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The moment of inertia estimator has still not determined any valid values.
	The acceleration cannot be calculated.
	The moment of inertia estimator has stabilized, if the frictional values ( $\mathrm{p} 1563, \mathrm{p} 1564$ ) as well as the moment of inertia value ( p 1493 ) have been determined and the appropriate status signal is set (r1407.26=1).
	The following parameters influence the response of the moment of the inertia estimator: p1560, p1561, p1562
Remedy:	Traverse the axis until the moment of inertia estimator has stabilized.
	This alarm is automatically withdrawn after the moment of inertia estimator has stabilized.
F07093 (A)	Drive: Test signal error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	An error was identified when executing the "Test signal" function (p5307.1 = 1).
	The function was not executed or was canceled.
	Fault value (r0949, interpret decimal):
	1: No distance limit has been defined ( $\mathrm{p} 3308=0$ ).
	2: The moment of inertia estimator has not stabilized in the parameterized time (p5309) (r1407.26).
	3: The parameterized distance (p5308) was exceeded.
	4: no motor encoder parameterized (closed-loop speed control without encoder).
	5: Offset (p5297) is too high for the parameterized distance (p5308).
	6: Pulse enable was withdrawn while traversing.
	7: speed setpoint not equal to zero.
	See also: p5307 (Activate One Button Tuning test signal), p5308 (One Button Tuning test signal distance limiting), p5309 (One Button Tuning test signal duration)
Remedy:	For fault value $=1$ :
	- Define distance limiting (p5308).
	For fault value $=2$ :
	- increase the duration or distance limiting (p5309, p5308).
	For fault value $=3$ :
	- check distance limiting (p5308).
	For fault value $=4$ :
	- configure speed control with encoder.
	For fault value $=5$ :
	- increase distance limit p5308 or reduce offset p5297.
	- the fault can only be acknowledged after p5300 was set $=0$.
	- for the factory setting, a test signal duration of approximately 1.3 s is obtained. If an offset (p5297) of 60 rpm is set, for example, then this results in a distance of approximately 1.3 revolutions. As a consequence, a value must be parameterized in parameter p5308, which is longer than this distance $+10 \%$ controller reserve (e.g. $\mathrm{p} 5308=515^{\circ}$ ). Further, the distance depends on the speed controller sampling time ( $\mathrm{p} 0115[1]$ ) and the controller configuration (p5271).
	For fault value $=6$ :
	- keep the drive switched on until the "Test signal" function has been completely exited.
	For fault value $=7$ :
	- set the speed setpoint to zero.


Reaction upon A:   Acknowl. upon A:	NONE   NONE
A07094	General parameter limit violation
Message value:   Message class:   Drive object:	Parameter: \%1
Component:	All objects
Reaction:	None
Acknowledge: NONE   Cause: NONE    As a result of the violation of a parameter limit, the parameter value was automatically corrected.    Minimum limit violated --> parameter is set to the minimum value.    Maximum limit violated --> parameter is set to the maximum value.    Alarm value (r2124, interpret decimal):   Parameter number, whose value had to be adapted.    Remedy: Check the adapted parameter values and if required correct.	


A07095 (N)	Drive: One Button Tuning activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The One Button Tuning function is active.
	One Button Tuning is performed at the next switch-on command.
	See also: p5300 (Autotuning selection)
Remedy:	Not necessary.
	The alarm is automatically withdrawn after One Button Tuning has been exited (p5300 $=0$ ).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07097 (A)	Drive: Test signal error distance limiting
Message value:	Fault cause: \%1, traversing distance: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	An error was identified when executing the "Test signal" function (p5307.1 = 1) or auto tuning was selected (p5300 = 1).
	The function was not executed or was canceled.
	Fault value (r0949, interpret decimal):
	yyyyxxxx hex: yyyy = error cause, $\mathrm{xxxx}=$ traversing distance
	See also: p5307 (Activate One Button Tuning test signal), p5308 (One Button Tuning test signal distance limiting), p5309 (One Button Tuning test signal duration)
Remedy:	- enter the traversing path in parameter p5308- or deselect the function involved in p5301.
	- for fault cause $=1,2$, shorter traversing paths may be possible.
	For fault cause = 1:
	- deselect bit 0 and bit 1 in parameter p5301.
	For fault cause $=2$ :
	- deselect bit 2 in parameter p5301.
	For fault cause $=3$ :
	- deselect bit 4 and bit 5 in parameter p5301.
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F07098 (A)	Drive: One Button Tuning configuration error
Message value:	Fault cause: \%1 bin
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The requested One Button Tuning configuration (p5301) is not supported.
	Fault value (r0949, interpret binary):
	Bit 5:
	The function requires that the "Advanced Positioning Control" function module (APC) is activated.
	See also: p3700 (AVS/APC configuration), p5301 (One Button Tuning configuration)
Remedy:	For bit $5=1$ :
	- activate the "APC" function module (r0108.7 = 1).
	- activate the "APC without sensor on the load side" function (p3700.2 $=1$ ).
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07100	Drive: Sampling times cannot be reset
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When resetting drive parameter (p0976) sampling times cannot be reset using p0111, p0112, p0115.
	Fault value (r0949, interpret decimal):
	Parameter whose setting prevents the sampling times being reset.
	See also: r0110 (Basic sampling times)
Remedy:	- continue to work with the set sampling times.
	- before resetting the drive parameters, set the basic clock cycle p0110[0] to the original value.
	See also: r0110 (Basic sampling times)


F07110	Drive: Sampling times and basic clock cycle do not match
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The parameterized sampling times do not match the basic clock cycle.
	Fault value (r0949, interpret decimal):
	The fault value specifies the parameter involved.
	See also: r0110, r0111, p0115
Remedy:	Enter the current controller sampling times so that they are identical to the basic clock cycle, e.g. by selecting p0112.
	Note which basic clock cycle is selected in p0111.


A07140	Drive: current controller sampling time for spindle does not match
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None $\quad$ Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameterized current controller sampling time for the spindle has been set too high.
Remedy:	Set the sampling time equal to or less than the value in r5034 (p0112, p0115).
	See also: p0112, p0115, r5034

## A07200

Message value:
Message class:
Drive object:
Component:
Drive: Master control ON command present

Reaction:
Acknowledge:
-

Cause: The ON/OFF1 command is present (no 0 signal).
The command is either influenced via binector input p0840 (current CDS) or control word bit 0 via the master control.
Remedy: $\quad$ Switch the signal via binector input p0840 (current CDS) or control word bit 0 via the master control to 0.

F07220 (N, A)	Drive: Master control by PLC missing
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The "master control by PLC" signal was missing in operation.
	- interconnection of the binector input for "master control by PLC" is incorrect (p0854).
	- the higher-level control has withdrawn the "master control by PLC" signal.
	- data transfer via the fieldbus (master/drive) was interrupted.
Remedy:	- check the interconnection of the binector input for "master control by PLC" (p0854).
	- check the "master control by PLC" signal and, if required, switch in.
	- check the data transfer via the fieldbus (master/drive).
	Note:
	If the drive should continue to operate after withdrawing "master control by PLC" then fault response must be parameterized to NONE or the message type should be parameterized as alarm.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

### 4.2 List of faults and alarms

Bit 6: Drive switch feedback signal not consistent with the bypass state.
The drive switch is closed when switching-on or when switching-in the motor.
See also: p1260 (Bypass configuration), r1261 (Bypass control/status word), p1266 (Bypass control command), p1267 (Bypass changeover source configuration), p1269 (Bypass switch feedback signal), p1274 (Bypass switch monitoring time)
Remedy: - check the transfer of the feedback signals.

- check the switch.

F07312	Bypass Line Side Switch:
Message value:	Fault cause: \%1 bin
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault value (r0949, interpret bitwise binary):
	Bit 1: Switch "Closed" feedback signal missing.
	Bit 2: Switch "Open" feedback signal missing.
	Bit 3: Switch feedback signal too slow.
	After switching, the system waits for the positive feedback signal. If the feedback signal is received later than the specified time, then a fault trip (shutdown) is issued.
	Bit 6: Line Side Switch feedback signal not consistent with the bypass state.
	When switching-on or when switching-in the motor, the line side switch is closed without this having been requested from the bypass.
	See also: p1260 (Bypass configuration), r1261 (Bypass control/status word), p1266 (Bypass control command), p1267 (Bypass changeover source configuration), p1269 (Bypass switch feedback signal), p1274 (Bypass switch monitoring time)
Remedy:	- check the transfer of the feedback signals.   - check the switch.
F07320	Drive: Automatic restart interrupted
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	- the specified number of restart attempts ( p 1211 ) has been completely used up because within the monitoring time ( $p 1213$ ) the faults were not able to be acknowledged. The number of restart attempts ( $p 1211$ ) is decremented at each new start attempt.
	- the monitoring time for the power unit has expired (p0857).
	- when exiting commissioning or at the end of the motor identification routine or the speed controller optimization, the drive unit is not automatically switched on again.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- increase the number of restart attempts (p1211). The actual number of starting attempts is displayed in r1214.   - increase the delay time in p1212 and/or the monitoring time in p1213.   - either increase or disable the monitoring time of the power unit (p0857).


F07320	Drive: Automatic restart interrupted
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY   Cause:
	- the specified number of restart attempts (p1211) has been completely used up because within the monitoring time   (p1213) the faults were not able to be acknowledged. The number of restart attempts (p1211) is decremented at   each new start attempt.      - the monitoring time for the power unit has expired (p0857).
	- when exiting commissioning or at the end of the motor identification routine or the speed controller optimization, the   drive unit is not automatically switched on again.
	Fault value (r0949, interpret hexadecimal):   Only for internal Siemens troubleshooting.
- increase the number of restart attempts (p1211). The actual number of starting attempts is displayed in r1214.	
	- increase the delay time in p1212 and/or the monitoring time in p1213.
- either increase or disable the monitoring time of the power unit (p0857).	
- reduce the delay time to reset the start counter p1213[1] so that fewer faults are registered in the time interval.	


A07321	Drive: Automatic restart active
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic restart (AR) is active. When the line supply returns and/or the causes of the existing faults are   removed the drive is automatically restarted. The pulses are enabled and the motor starts to rotate.
Remedy:	- the automatic restart (AR) should, if required, be inhibited (p1210 $=0$ ).   - an automatic restart can be directly interrupted by withdrawing the switch-on command (BI: p0840).


A07329 (N)	Drive: kT estimator, $\mathbf{k T}$ (iq) characteristic or voltage compensation does not function	
Message value:	$\% 1$	
Message class:	Error in the parameterization / configuration / commissioning procedure (18)	
Drive object:	SERVO, SERVO_AC, SERVO_I_AC	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	

Cause: A function of the function module "extended torque control" (r0108.1) was activated - however the (complete) function is not available.

Alarm value (r2124, interpret decimal):
1 ... 3: The kT estimator is active ( $\mathrm{p} 1780.3=1$ ) without a functioning compensation of the voltage emulation error in the drive converter. This means that the accuracy is severely restricted.
1: The drive converter voltage emulation error "final value" is 0 ( $p 1952$ ).
2: The drive converter voltage emulation error "current offset" is 0 ( p 1953 ).
3: The compensation of the voltage emulation error is disabled (p1780.8 = 0).
4: The kT estimator ( $\mathrm{p} 1780.3=1$ ), the kT (iq) characteristic ( $\mathrm{p} 1780.9=1$ ) or the compensation of the voltage emulation error ( $\mathrm{p} 1780.8=1$ ) was activated without activating the function module "extended torque control" (when the function module is activated, the following must apply: r0108.1 = 1).
5 : the kT (iq) characteristic has been activated ( $\mathrm{p} 1780.9=1$ ). However, the kT characteristic value kT 1 is 0 ( p 0645 ). The function is not active.

### 4.2 List of faults and alarms

Remedy:	For alarm value $=1,2:$
	- carry out an identification of the voltage emulation error in the drive converter (p1909
	- set the parameter to compensate the voltage emulation error in the drive converter
	For alarm value = 3:
	- enable the compensation of the voltage emulation error in the drive converter (p1780
	For alarm value = 4:
	- activate the function module "extended torque control" (r0108.1 = 1) or deactivate
(p1780.3 = 0, p1780.8 = 0, p1780.9 = 0).	
	For alarm value = 5:


F07331	Flying restart: Function not supported
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	It is not possible to power up with the motor rotating (no flying restart).
	In the following cases, the "flying restart" function is not supported:
	Permanent-magnet synchronous motor (PMSM): - operation with U/f characteristic.
	- encoderless operation without a Voltage Sensing Module (VSM) being connected.
	Separately excited synchronous motor (SESM):
	- operation with U/f characteristic.
Remedy:	- deactivate the "flying restart" function (p1200 = 0).
	- change the open-loop/closed-loop control mode (p1300).
	- connect a Voltage Sensing Module (VSM) (voltage measurement).


N07332	Flying restart: maximum speed reduced
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC Propagation: GLOBAL
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum speed that can be reached is reduced; at very high speeds problems associated with the flying restart
	can be encountered.            $\quad$- possible causes:


Remedy:	Parameter changes are not required.   Note:   A flying restart at speeds above 3000 rpm should be avoided.
F07333	Closed-loop control function not supported
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A closed-loop control function that is not supported was activated.
	Fault value (r0949, decimal interpretation):
	0 :
	Open-loop controlled operation (open-loop mode for speeds < p1755) is not supported in the encoderless torque control mode (see p1300, p1501).
Remedy:	For fault value $=0$ :
	When keeping encoderless operation, these options include:
	- change the control mode to encoderless closed-loop speed control using p1300=20 and p1501=0.
	- when continuing the closed-loop torque control: activate encoderless operation including zero frequency with test pulses using p1750.5=1 (only S120 + purchased license).


A07350 (F)	Drive: Measuring probe parameterized to a digital output
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measuring probe is connected to a bi-directional digital input/output and the terminal is set as output.
	Alarm value (r2124, interpret decimal):
	8: DI/DO 8 (X122.9/X132.1)
	9: DI/DO 9 (X122.10/X132.2)
	10: DI/DO 10 (X122.12/X132.3)
	11: DI/DO 11 (X122.13/X132.4)
	12: DI/DO 12 (X132.9)
	13: DI/DO 13 (X132.10)
	14: DI/DO 14 (X132.12)
	15: DI/DO 15 (X132.13)
	Regarding the terminal designation:
	The first designation is valid for CU320, the second for CU305.
Remedy:	- set the terminal as input (p0728).
	- de-select the measuring probe (p0488, p0489, p0580).
OFF1	
Reaction upon F:	IMMEDIATELY
Acknowl. upon F:	


A07351 (F)	Drive: Measuring probe parameterized to a digital output
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measuring probe is connected to a bi-directional digital input/output and the terminal is set as output.   Alarm value (r2124, interpret decimal):   0 : DI/DO 0 distributed (X3.2)   1: DI/DO 1 distributed (X3.4)
Remedy:	- set the terminal as input (p4028).   - de-select the probe (p0488, p0489).   See also: p0488, p0489, p4028
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY
A07354	Drive: cogging torque compensation not possible
Message value:	Fault cause: \%1, drive data set: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	Cogging torque compensation is selected and is not (completely) supported.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxx hex: yyyy = fault cause, $\mathrm{xx}=$ drive data set
	yyyy $=1$ :
	The encoder evaluation does not support this function.
	yyyy $=2$ :
	The encoder has no absolute information.
	yyyy $=3$ :
	The motor has no encoder (p0187 = 99).
	yyyy $=3$ :
	The motor has no encoder (p0187 = 99).
	yyyy $=4$ :
	Learning was activated (p5251) for closed-loop control without encoder (p1300 $=20$ or p1404 < 12 rpm or $12 \mathrm{~m} / \mathrm{min}$ or p1317 = 1).
	yyyy $=5$ :
	The internal table is active; however, period p5253 has not been set equal to 1 .
Remedy:	If required, deselect the cogging torque compensation (p5250 = 0).
	For fault cause = 1:
	Use an absolute encoder or an encoder evaluation that supports the function (r0459.13 = 1). If required, upgrade the firmware to a newer version (version 04.50.30.01 or higher is required).
	For fault cause $=2$ :
	Use an encoder with absolute information (absolute track, unique zero mark, resolver with one pole pair). The function cannot be tested as long as the encoder is not reset after learning (encoder fault, parking, POWER ON). Continuous use is not recommended.
	For fault cause = 3:
	Only select cogging torque compensation for operation with motor encoder.
	For fault cause = 4:
	Activate learning, only for operation with encoder (p1300, p1404, p1317).

For fault cause $=5$ :

- set period p5253 = 1 .
- activate the external table and learning (p5250.0 = 1, p5251).

See also: p5250 (Compensation configuration), p5251 (Activate learn cogging torque compensation)

F07355 (N, A)	Drive: cogging torque compensation error when learning
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: DRIVE
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A cogging torque compensation error has occurred while learning.
	Fault value (r0949, interpret decimal):
	1:
	The learning velocity is too high.
	- rotating: absolute value greater than 5 [rpm]
	- linear: absolute value greater than 0.5 [ $\mathrm{m} / \mathrm{min}$ ]
Remedy:	For fault value = 1:
	Repeat learning with the lower velocity setpoint.
	Recommended speeds:
	- rotating 2 [rpm]
	- linear 0.1 [m/min]
	See also: p5250 (Compensation configuration), p5251 (Activate learn cogging torque compensation)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


A07400 (N)	Drive: DC link voltage maximum controller active
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated because of the upper switch-in threshold ( p 1244 ). A system deviation can occur between the setpoint and actual speed.   See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration)
Remedy:	Not necessary.   This alarm is automatically withdrawn after the upper threshold has been distinctly exceeded. Otherwise, apply the following measures:   - use a Braking Module or regenerative feedback unit.   - increase the ramp-down times (p1121, p1135).   - shut down the Vdc_max controller ( $\mathrm{p} 1240=0$ ).
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A07400 (N)	Drive: DC link voltage maximum controller active
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated because the upper switch-in threshold has been exceeded (r1242, r1282).
	The ramp-down times are automatically increased in order to maintain the DC link voltage (r0070) within the permissible limits. There is a system deviation between the setpoint and actual speeds.
	When the DC link voltage controller is switched out (disabled), this is the reason that the ramp-function generator output is set to the speed actual value.
	See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration), p1280 (Vdc controller or Vdc monitoring configuration (U/f))
Remedy:	If the controller is not to intervene:
	- increase the ramp-down times.
	- switch off the Vdc_max controller (p1240 = 0 for vector control, p1280 = 0 for U/f control).
	If the ramp-down times are not to be changed:
	- use a chopper or regenerative feedback unit.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07401 (N)	Drive: DC link voltage maximum controller deactivated
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Vdc_max controller can no longer maintain the DC link voltage (r0070) below the limit value (r1242, r1282) and was therefore switched out (disabled).
	- the line supply voltage is permanently higher than specified for the power unit.
	- the motor is permanently in the regenerative mode as a result of a load that is driving the motor.
Remedy:	- check whether the input voltage is within the permissible range (if required, increase the value in p0210).   - check whether the load duty cycle and load limits are within the permissible limits.
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A07402 (N)	Drive: DC link voltage minimum controller active
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object: SERVO, SERVO_AC, SERVO_I_AC   Component: None   Reaction: NONE   Acknowledge: NONE   Cause: The DC link voltage controller has been activated due to the lower switch-in threshold (p1248).    A system deviation can occur between the setpoint and actual speed.    A possible cause can be e.g. that the line supply has failed.    See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration), p1248    (DC link voltage threshold lower)	


Remedy:	Not necessary.
	This alarm is automatically withdrawn after the lower threshold has been distinctly exceeded.
	Otherwise, apply the following measures:
	- check the line supply and infeed.
	- increase the ramp-up times (p1120).
	- shut down the Vdc_min controller (p1240 = 0).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07402 (N)	Drive: DC link voltage minimum controller active
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated as the lower switch-in threshold has been undershot (r1246, r1286).
	The kinetic energy of the motor is used to buffer the DC link. The drive is therefore braked.
	See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration), p1280 (Vdc controller or Vdc monitoring configuration (U/f))
Remedy:	The alarm disappears when power supply returns.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07403 (N, A)	Drive: Lower DC link voltage threshold reached
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The DC link voltage monitoring is active $(\mathrm{p} 1240=5,6)$ and the lower DC link voltage threshold ( p 1248 ) was reached in the "Operation" state.
Remedy:	- check the line supply voltage.
	- check the infeed.
	- reduce the lower DC link threshold (p1248).
	- switch out (disable) the DC link voltage monitoring (p1240 = 0).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

## F07403 (N, A) Drive: Lower DC link voltage threshold reached

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Remedy:

Infeed faulted (13)
VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL

OFF1 (NONE, OFF2, OFF3)
IMMEDIATELY
The DC link voltage monitoring is active ( $\mathrm{p} 1240, \mathrm{p} 1280=5,6$ ) and the lower DC link voltage threshold ( $\mathrm{r} 1246, \mathrm{r} 1286$ ) was reached in the "Operation" state.

- check the line supply voltage.
- check the infeed.
- adapt the device supply voltage (p0210) or the switch-on level (p1245, p1285).
- disable the DC link voltage monitoring ( $p 1240, p 1280=0$ ).

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F07404	Drive: Upper DC link voltage threshold reached
Message value:	-
Message class:	DC link overvoltage (4)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The DC link voltage monitoring is active $(\mathrm{p} 1240=4,6)$ and the upper DC link voltage threshold ( p 1244 ) was reached in the "Operation" state.
Remedy:	- check the line supply voltage.
	- check the infeed unit or the Braking Module.
	- increase the upper DC link voltage threshold (p1244).
	- if necessary, deactivate the DC link voltage monitoring (p1240 = 0).


F07404	Drive: Upper DC link voltage threshold reached
Message value:	-
Message class:	DC link overvoltage (4)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	- the DC link voltage monitoring is active ( $p 1240, p 1280=4,6$ ) and the upper DC link voltage threshold (r1242, $r 1282)$ was reached in the "Operation" state.   - the monitoring of the DC link voltage ( p 1284 ) has responded (only U/f control).   - the DC link voltage control (only when the technology controller is activated $\mathrm{r0108.16}=1$ ) is available - and the supply voltage ( p 0210 ) has been reduced.
Remedy:	- check the line supply voltage.   - check the infeed.   - adapt the device supply voltage (p0210).   - if necessary, deactivate the DC link voltage monitoring (p1240, p1280 = 0).   - adapt the monitoring of the DC link voltage (p1284, only U/f).

F07405 (N, A) Drive: Kinetic buffering minimum speed fallen below

Message value:
Message class: Application/technological function faulted (17)
Drive object:
Component:
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

Reaction:
None Propagation: GLOBAL
OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
IMMEDIATELY
Cause: During kinetic buffering the speed fell below minimum speed (p1257 or p1297 for vector drives with U/f control) and the line supply did not return.
Remedy: $\quad$ Check the speed threshold for the Vdc_min controller (kinetic buffering) (p1257, p1297).
See also: p1257 (Vdc_min controller speed threshold), p1297 (Vdc_min controller speed threshold (U/f))
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F07406 (N, A)	Drive: Kinetic buffering maximum time exceeded
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The maximum buffer time (p1255 and p1295 for vector drives with U/f control) has been exceeded without the line supply having returned.
Remedy:	Check the time threshold for Vdc-min controller (kinetic buffering) (p1255, p1295).
	See also: p1255 (Vdc_min controller time threshold), p1295 (Vdc_min controller time threshold (U/f))
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F07407	Drive: Vdc reduction not permissible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	For chassis power units, the reduction of the line voltage (see r0212.0) is only possible for closed-loop control of the DC link voltage.
Remedy:	- Activate DC link voltage control for the motor/generator.
	- deactivate line voltage reduction (p0212.0 = 0).
	See also: p0212 (Power unit configuration)


A07409 (N)	Drive: U/f control, current limiting controller active
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The current limiting controller of the U/f control was activated because the current limit was exceeded.
Remedy:	The alarm is automatically withdrawn after one of the following measures:
	- increase current limit (p0640).
	- reduce the load.
Reaction upon N:	- slow down the ramp up to the setpoint speed.
Acknowl. upon N:	NONE

F07410 Drive: Current controller output limited

Message value:
Message class: Application/technological function faulted (17)
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Component: None Propagation: GLOBAL
Reaction:
Acknowledge:
OFF2 (NONE, OFF1)

Cause:

IMMEDIATELY
The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following:

- motor not connected or motor contactor open.
- no DC link voltage present.
- Motor Module defective.


### 4.2 List of faults and alarms

Remedy:	- connect the motor or check the motor contactor.   - check the DC link voltage (r0070).   - check the Motor Module.
F07410	Drive: Current controller output limited
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following:   - motor not connected or motor contactor open.   - motor data and motor configuration (star-delta) do not match.   - no DC link voltage present.   - power unit defective.   - the "flying restart" function is not activated.
Remedy:	- connect the motor or check the motor contactor.   - check the motor parameterization and the connection type (star-delta).   - check the DC link voltage (r0070).   - check the power unit.   - activate the "flying restart" function (p1200).

## F07411

Message value:
Message class: Application/technological function faulted (17)
Drive object:
Component:
Reaction:
Acknowledge:
SERVO, SERVO_AC, SERVO_I_AC
None Propagation: GLOBAL

Cause: The specified flux setpoint cannot be reached, although the set maximum field current is specified ( p 1603 ).

- incorrect motor data.
- motor data and motor configuration (star-delta) do not match.
- the current limit has been set too low for the motor (p0640, p0323, p1603).
- induction motor (encoderless, open-loop controlled) in I2t limiting.
- the Motor Module is too small.


## Remedy:

- correct the motor data.
- check the motor configuration.
- correct the current limits (p0640, p0323, p1603).
- reduce the induction motor load.
- if required, use a larger Motor Module.

F07411	Drive: Flux setpoint not reached when building up excitation
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	When quick magnetizing is configured (p1401.6 = 1) the specified flux setpoint is not reached although 90\% of the
	maximum current is specified.
	- incorrect motor data.
	- motor data and motor configuration (star-delta) do not match.
	- the current limit has been set too low for the motor.
	- induction motor (encoderless, open-loop controlled) in I2t limiting.
	- the Motor Module is too small.
	- the magnetizing time p0346 is too short.
	- correct the motor data. Perform motor data identification and rotating measurement.
	- check the motor configuration.
	- correct the current limits (p0640).
	- reduce the induction motor load.
	- if required, use a larger Motor Module.
	- check motor supply cable.
	- check power unit.
	- increase p0346.


Remedy:	- check the phase sequence for the motor, and if required, correct (wiring, p1820).   - if the encoder mounting was changed - re-adjust the encoder.   - replace the defective motor encoder.   - correctly set the angular commutation offset (p0431). If required, determine using p1990.   - correctly set the motor stator resistance, cable resistance and motor-stator leakage inductance (p0350, p0352, p0356).   Calculate the cable resistance from the cross-section and length, check the inductance and stator resistance using the motor data sheet, measure the stator resistance, e.g. using a multimeter - and if required, again identify the values using the stationary motor data identification (p1910).   - increase the changeover speed for the motor model (p1752). The monitoring is completely deactivated for p1752 > p1082 (maximum speed).   - with pole position identification activated (p1982 = 1) check the procedure for pole position identification ( p 1980 ) and force a new pole position identification procedure by means of de-selection followed by selection (p1982 = 0 -> 1).   Note:   For High Dynamic Motors (1FK7xxx-7xxx), for applications with a higher current, if necessary, the monitoring should be disabled.
F07413	Drive: Commutation angle incorrect (pole position identification)
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	ENCODER (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	An incorrect commutation angle was detected that can result in a positive coupling in the speed controller. Within the pole position identification routine (p1982 = 2):   - a difference of $>45^{\circ}$ electrical to the encoder angle was determined.   For VECTOR, within the encoder adjustment (p1990 = 2):   - a difference of $>6^{\circ}$ electrical to the encoder angle was determined.
Remedy:	- correctly set the angular commutation offset (p0431).   - re-adjust the motor encoder after the encoder has been replaced.   - replace the defective motor encoder.   - check the pole position identification routine. If the pole position identification routine is not suitable for this motor type, then disable the plausibility check (p1982 = 0).

## F07414 (N, A) Drive: Encoder serial number changed

Message value:
Message class:
Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Component:
Reaction:
Acknowledge:
SERVO, SERVO_AC, SERVO_I_AC
None Propagation: GLOBAL
ENCODER (NONE, OFF2)
IMMEDIATELY
Cause: The serial number of the motor encoder of a synchronous motor has changed. The change was only checked for encoders with serial number (e.g. EnDat encoders) and build-in motors (e.g. p0300 $=401$ ) or third-party motors (p0300 = 2).
Cause 1:

- the encoder was replaced.

Cause 2:

- a third-party, built-in or linear motor was re-commissioned.

Cause 3:

- the motor with integrated and adjusted encoder was replaced.

Cause 4:

- the firmware was updated to a version that checks the encoder serial number.

	Note:
	With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
	When the encoder is adjusted ( $\mathrm{p} 2507=3$ ), the serial number is checked for changes and if required, the adjustment is reset ( $\mathrm{p} 2507=1$ ).
	Proceed as follows to hide serial number monitoring:
	- set the following serial numbers for the corresponding Encoder Data Set: p0441= FF, p0442 = 0, p0443 = 0, p0444 $=0, p 0445=0$.
	- parameterize F07414 as message type N (p2118, p2119).
Remedy:	For causes 1, 2:
	Carry out an automatic adjustment using the pole position identification routine. Acknowledge fault. Initiate the pole position identification routine with $\mathrm{p} 1990=1$. Then check that the pole position identification routine is correctly executed.
	SERVO:
	If a pole position identification technique is selected in p1980, and if p0301 does not contain a motor type with an encoder adjusted in the factory, then p1990 is automatically activated.
	or
	Set the adjustment via p0431. In this case, the new serial number is automatically accepted.
	or
	Mechanically adjust the encoder. Accept the new serial number with p0440 $=1$.
	For causes 3, 4:
	Accept the new serial number with p0440 $=1$.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
N07415 (F)	Drive: Angular commutation offset transfer running
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The angular commutation offset was automatically determined using p1990=1.
	This fault causes the pulses to be suppressed - this is necessary to transfer the angular commutation offset to p0431. See also: p1990 (Encoder adjustment determine angular commutation offset)
Remedy:	The fault can be acknowledged without any additional measures.
Reaction upon F:	OFF2
Acknowl. upon F:	IMMEDIATELY
A07416	Drive: Flux controller configuration
Message value:	Parameter: \%1, Index: \%2, fault cause: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration of the flux control (p1401) is contradictory.
	Alarm value (r2124, interpret hexadecimal):
	ccbbaaaa hex
	aaaa $=$ Parameter
	$\mathrm{bb}=$ Index
	cc = fault cause
	$\mathrm{cc}=01 \mathrm{hex}=1 \mathrm{dec}$ :
	Quick magnetizing (p1401.6) for soft start (p1401.0).

### 4.2 List of faults and alarms

Remedy:	$\mathrm{cc}=02 \mathrm{hex}=2 \mathrm{dec}$ :
	Quick magnetizing (p1401.6) for flux build-up control (p1401.2). $c c=03$ hex $=3$ dec:
	Quick magnetizing (p1401.6) for Rs identification after restart (p0621 = 2).
	For fault cause $=1$ :
	- Shut down soft start (p1401.0 = 0).
	- Shut down quick magnetizing (p1401.6 = 0).
	For fault cause $=2$ :
	- switch-on flux build-up control (p1401.2 = 1).
	- Shut down quick magnetizing (p1401.6 = 0).
	For fault cause $=3$ :
	- Re-parameterize Rs identification (p0621 = 0, 1)
	- Shut down quick magnetizing (p1401.6 = 0).
F07417	Drive: Pulse technique not plausible (motor model)
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The evaluation of the test pulse response indicated incorrect values.
	Fault value (r0949, interpret decimal):
	0 :
	An impermissible pulse technique configuration was detected during ramp-up.
	Possible causes:
	- the pulse technique was initially selected when the system powered up (p1750.5 = 1) but the power unit component does not support the current oversampling required (see r0192.23). As a consequence, p1750.0 was de-selected automatically.
	10:
	The pulse response is repeatedly implausible.
	Possible causes:
	- incorrect configuration of the power unit component
	- the power unit component is faulty.
	20 :
	For the specified pulse amplitude, the measured pulse response is much higher than the expected value.
	Possible causes:
	- Strong oscillations have occurred.
	- the motor is short-circuited for high frequencies (output filter).
	- the motor is damaged.
Remedy:	For fault value $=0$ :
	Once the pulse technique has been de-selected automatically (p1750.5 = 0), there are two possible options:
	- acknowledge the fault and save parameter p1750.5 = 0 -> field-oriented control mode to standstill is not used and replaced by transition to open-loop control at low speeds.
	- upgrade the power unit firmware (at least V4.3) -> field-oriented control mode to standstill is available.
	For fault value = 10:
	With active selection of the pulse technique (p1750.5 = 1):
	- POWER ON (switch-off/switch-on) the Control Unit and the power unit together again.
	or
	- carry out a manual warm restart ( $0009=30, p 0976=2,3$ ).
	If this does not solve the problem: Replace the power unit component.
	For fault value $=20$ :
	- control parameters might have been adjusted (factory setting, commissioning).
	- filters must not be connected between motor and converter/inverter.
	- check the motor.


F07419	Drive: Current setpoint filter adaptation error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when configuring or when using the "Current setpoint filter adaptation" function.   Fault value (r0949, interpret binary):   Bit 0: a filter has still not been assigned (p5281).   Bit 1: the assigned filter belongs to the "Extended current setpoint filter" function module that has not been activated (r0108.21).   Bit 2: the assigned filter is a type or has a characteristic, which is unsuitable for adaptation.   Bit 3: the assigned filter has not been activated (p1656, p5200).   Bit 4 ... 15: internal fault occurred.   Bit 16 ... 31: number of the drive data set with fault.   See also: p5280 (Current setpoint filter adaptation configuration), p5281 (Current setpoint filter adaptation assignment)
Remedy:	The message can always be removed by deactivating adaptation (p5280 = 0, -1).   If adaptation is to remain active, then the countermeasure should be applied depending on the particular fault value.   For bit 0:   Assign the filter (p5281).   For bit 1:   activate the "Extended current setpoint filter" function module (r0108.21).   For bit 2:   Set the filter type "General filter 2nd order" and set the characteristic of a bandstop filter.   For bit 3:   Activate filter (p1656, p5200).   For bits $4 \ldots 15$ :   - carry out a POWER ON (switch-off/switch-on) for all components.   - upgrade firmware to later version.   See also: p5280 (Current setpoint filter adaptation configuration), p5281 (Current setpoint filter adaptation assignment)
F07420	Drive: Current setpoint filter natural frequency > Shannon frequency
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, R_INF
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	One of the filter natural frequencies is greater than the Shannon frequency.   The Shannon frequency is calculated according to the following formula: 0.5 / p0115[0]   Fault value (r0949, interpret hexadecimal):   Bit 3: Filter 4 (p1673, p1675)   Bit 16: Filter 5 (p5202, p5204)   Bit 18: Filter 7 (p5212, p5214)
Remedy:	- reduce the numerator or denominator natural frequency of the current setpoint filter involved.   - reduce the current controller sampling time (p0115[0]).   - switch out the filter involved ( p 1656 ).


F07420	Drive: Current setpoint filter natural frequency > Shannon frequency
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	One of the filter natural frequencies is greater than the Shannon frequency.
	The Shannon frequency is calculated according to the following formula: 0.5 / p0115[0]
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Filter 1 (p1658, p1660)
	Bit 1: Filter 2 (p1663, p1665)
	Bit 2: Filter 3 (p1668, p1670)
	Bit 3: Filter 4 (p1673, p1675)
	Bit 8 ... 15: Data set number (starting from zero)
	Bit 16: Filter 5 (p5202, p5204) - extended current setpoint filter (r0108.21)
	Bit 17: Filter 6 (p5207, p5209) - extended current setpoint filter (r0108.21)
	Bit 18: Filter 7 (p5212, p5214) - extended current setpoint filter (r0108.21)
	Bit 19: Filter 8 (p5217, p5219) - extended current setpoint filter (r0108.21)
	Bit 20: Filter 9 (p5222, p5224) - extended current setpoint filter (r0108.21)
	Bit 21: Filter 10 (p5227, p5229) - extended current setpoint filter (r0108.21)
Remedy:	- reduce the numerator or denominator natural frequency of the current setpoint filter involved.   - reduce the current controller sampling time ( $\mathrm{p} 0115[0]$ ).
	- switch out the filter involved (p1656).
F07421	Drive: Speed filter natural frequency > Shannon frequency
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	One of the filter natural frequencies is greater than the Shannon frequency.
	The Shannon frequency is calculated according to the following formula: 0.5 / p0115[1]
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Filter 1 (p1417, p1419)
	Bit 1: Filter 2 (p1423, p1425)
	Bit 4: Actual value filter (p1447, p1449)
	Bit 8 ... 15: Data set number (starting from zero)
Remedy:	- reduce the numerator or denominator natural frequency of the speed setpoint filter involved.
	- reduce the speed controller sampling time (p0115[1]).
	- switch off the filter involved (p1413, p1414).
F07422	Drive: Reference model natural frequency > Shannon frequency
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The natural filter frequency of the PT2 element for the reference model (p1433) is greater than the Shannon frequency.
	The Shannon frequency is calculated according to the following formula: 0.5 / $\mathrm{p} 0115[1]$
Remedy:	- reduce the natural frequency of PT2 element for reference model (p1433).
	- reduce the speed controller sampling time (p0115[1]).


F07423	Drive: APC filter natural frequency > Shannon frequency
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	One of the filter natural frequencies is greater than the Shannon frequency.
	The Shannon frequency is calculated according to the following formula: 0.5 / $\mathrm{p} 0115[1]$ * x )
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Filter 1.1 (p3711, p3713), $\mathrm{x}=1$
	Bit 4: Filter 2.1 (p3721, p3723), $x=p 3706$
	Bit 5: Filter 2.2 (p3726, p3728), $x=$ p3706
	Bit 8: Filter 3.1 (p3731, p3733), $x=p 3707$
	Bit 9: Filter 3.2 (p3736, p3738), $x=$ p3707
	Bit 16 ... 32: Data set number (starting from zero)
Remedy:	- reduce the numerator or denominator natural frequency of the filter involved.
	- reduce the speed controller sampling time (p0115[1]) or the sub-sampling (p3706, p3707).
	- switch out the filter involved (p3704).
A07424	Drive: Operating condition for APC not valid
Message value:	Fault cause: \%1 bin
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The APC function (Advanced Positioning Control) has identified an invalid operating condition.
	Alarm value (r2124, interpret hexadecimal):
	Bit $0=1$ :
	APC is operating without encoder
	Bit $1=1$ :
	Possible causes:
	- the load measuring system for APC, selected using p3701, has a fault.
	- the load measuring system selected using p3701 is in the park state (r0481[0...2].14).
	The APC function is disabled.
	Bit $2=1$ :
	Possible causes:
	- the load measuring system for APC, selected using p3701, has a fault.
	- the load measuring system selected using p3701 is in the park state (r0481[0...2].14).
	The pulse de-coupling is disabled, i.e. the speed of the motor measuring system is used as speed for the closed-loop motor speed control.
Remedy:	For bit 0:
	Only use the APC function in operation with an encoder.
	For bit 1, 2:
	Check the load measuring system.


F07425	Drive: APC monitoring time for speed limit expired
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The limit value ( p 3778 ) for the speed/velocity was exceeded for a time longer than that set in the monitoring time (p3779).
	Note:
	APC: Advanced Positioning Control
Remedy:	- check the measured value.
	- check the limit value and monitoring time (p3778, p3779).
F07426 (A)	Technology controller actual value limited
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual value for the technology controller, interconnected via connector input p2264, has reached a limit.
	Fault value (r0949, interpret decimal):
	1: upper limit reached.
	2: lower limit reached.
Remedy:	- adapt the limits to the signal level (p2267, p2268).
	- check the actual value normalization (p0595, p0596).
	- Deactivate evaluation of the limits (p2252.3)
	See also: p0595, p0596, p2264, p2267, p2268
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A07428 (N)	Technology controller parameterizing error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The technology controller has a parameterizing error.
	Alarm value (r2124, interpret decimal):
	1:
	The upper output limit in p2291 is set lower than the lower output limit in p2292.
Remedy:	For alarm value $=1$ :
	Set the output limit in p2291 higher than in p2292.
	See also: p2291 (Technology controller maximum limiting), p2292 (Technology controller minimum limiting)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F07429	Drive: DSC without encoder not possible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The function DSC (Dynamic Servo Control) was activated although there is no encoder.
	See also: p1191 (DSC position controller gain KPC), p1192 (DSC encoder selection)
Remedy:	Check the encoder selection configuration (p1192).
	Note:
	If there is no encoder and connector input p1191 (DSC position controller gain) is interconnected, then connector input p1191 must have a 0 signal.
F07430	Drive: Changeover to open-loop torque controlled operation not possible
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For encoderless operation, the converter cannot change over to closed-loop torque-controlled operation (BI: p1501).
Remedy:	Do not attempt to cover over to closed-loop torque-controlled operation.
F07431	Drive: Changeover to encoderless operation not possible
Message value:	- ${ }^{\text {din }}$
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	For closed-loop torque control, the converter cannot change over to encoderless operation (p1404).
Remedy:	Do not attempt to change over to encoderless operation.
F07432	Drive: Motor without overvoltage protection
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	In the case of a fault at maximum speed, the motor can generate an overvoltage that can destroy the drive system.   Fault value (r0949, interpret hexadecimal):   Associated Drive Data Set (DDS).

### 4.2 List of faults and alarms




3:
The function "DC link voltage compensation in the power unit" is selected (p1810.1 = 1), however, this is not supported by the power unit (r0192.28 = 0) .

## Remedy:

For fault value $=1$ :

- if necessary, upgrade the firmware of the booksize power unit to a later version (version >= 4.4).

Note:
If the firmware has already been automatically upgraded, then only a POWER ON (switch-off/switch-on) is required.

- Use a booksize power unit (version >=4.4).

For fault value $=2$ :

- if an encoder with Safety position actual values sensing is available (r0458[0...2].19 = 1), reparameterize the encoderless safety technology (p9506 = 1, 3) to safety technology with encoder (p9506 = 0).
For fault value $=1,2$ :
- Deselect the function "Current controller dynamics higher" (p1810.11 = 0) and if required, set the current, speed and position controller again or calculate (p0340 $=4$ ).
For fault value = 3:
- if necessary, upgrade the firmware of the blocksize power unit to a later version (version >= 4.6).
- deselect the "DC link voltage compensation in the power unit" function (p1810.1 = 0).

See also: r0192, p1810, p9506

## A07440

EPOS: Jerk time is limited
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause: $\quad$ The calculation of the jerk time $\operatorname{Tr}=\max (\mathrm{p} 2572, \mathrm{p} 2573) / \mathrm{p} 2574$ resulted in an excessively high value so that the jerk time is internally limited to 1000 ms .
Note:
The alarm is also output if jerk limiting is not active.
Remedy: - increase the jerk limiting (p2574).

- reduce maximum acceleration or maximum deceleration (p2572, p2573).

See also: p2572 (EPOS maximum acceleration), p2573 (EPOS maximum deceleration), p2574 (EPOS jerk limiting)

A07441	LR: Save the position offset of the absolute encoder adjustment
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The status of the absolute encoder adjustment has changed.
	In order to permanently save the determined position offset (p2525) and the determined number of the drive data set ( p 2733 ), they must be saved in a non-volatile fashion (p0971, p0977).
	Possible causes:
	- motor or encoder were replaced (applies to EQN and DQI).
	- position-relevant parameters were changed.
	- an encoder that was not adjusted was adjusted (save the project in a non-volatile fashion using "Copy RAM to ROM").
	Note:
	This message is not output when switching-on the axis after having first moved it in the switched-off state, as long as the parameterizable monitoring window was not exited.
Remedy:	Readjust the encoder.
	See also: p2507 (LR absolute encoder adjustment status), p2525 (LR encoder adjustment offset)


F07442 (A)	LR: Multiturn does not match the modulo range
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The ratio between the multiturn resolution and the modulo range (p2576) is not an integer number.
	This results in the adjustment being set back, as the position actual value cannot be reproduced after switch-off/switch-on.
Remedy:	Make the ration between the multiturn resolution and the modulo range an integer number.
	The ratio v is calculated as follows:
	1. Motor encoder without position tracking
	$\mathrm{v}=(\mathrm{p} 0421$ * p2506 * p0433 * p2505) / (p0432 * p2504 * p2576)
	2. Motor encoder with position tracking for the measuring gear
	$\mathrm{v}=$ (p0412 * p2506 * 22505 ) / p 2504 * p2576)
	3. Motor encoder with position tracking for the load gear
	$\mathrm{v}=(\mathrm{p} 2721$ * 2506 * p0433) / (p0432 * 25576 )
	4. Motor encoder with position tracking for the load and measuring gear
	$\mathrm{v}=(\mathrm{p} 2721$ * p2506) / p2576
	5. Direct encoder without position tracking
	$\mathrm{v}=(\mathrm{p} 0421$ * p2506 * 0433 ) / (p0432 * 25576 )
	6 . Direct encoder with position tracking for the measuring gear
	$\mathrm{v}=(\mathrm{p} 0412$ * p2506) / p2576
	Note:
	With position tracking, it is recommended that p0412 and p2721 are changed
	See also: p0412, p0432, p0433, p2504, p2505, p2506, p2576, p2721
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07443 (A)	LR: Reference point coordinate not in the permissible range
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The reference point coordinate received when adjusting the encoder via connector input p2599 lies outside the half of the encoder range and cannot be set as actual axis position.
	Fault value (r0949, interpret decimal):
	Maximum permissible value for the reference point coordinate.
Remedy:	Set the reference point coordinate to a lower value than specified in the fault value.
	See also: p2598 (EPOS reference point coordinate signal source), p2599 (EPOS reference point coordinate value)
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F07446 (A)	Load gear: Position tracking cannot be reset
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The position tracking cannot be reset.
Remedy:	Reset the position tracking as follows:
	- select encoder commissioning (p0010 = 4).
	- reset position tracking, position (p2720.2 = 1).
	- deselect encoder commissioning ( $\mathrm{p} 0010=0$ ).
	Then acknowledge the fault and, if necessary, re-adjust the absolute encoder ( p 2507 ).
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07447	Load gear: Position tracking, maximum actual value exceeded
Message value:	Component number: \%1, encoder data set: \%2, drive data set: \%3
Message class:	Application/technological function faulted (17)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When the position tracking of the load gear is configured, the drive/encoder (motor encoder) identifies a maximum possible absolute position actual value (r2723) that can no longer be represented within 32 bits.
	Maximum value: p0408 * p2721 * 2^p0419
	Fault value (r0949, interpret hexadecimal):
	ccbbaa hex
	aa $=$ encoder data set
	$\mathrm{bb}=$ component number
	cc = drive data set
	See also: p0408, p0419 (Fine resolution absolute value Gx_XIST2 (in bits)), p2721 (Load gear rotary absolute encoder revolutions virtual)
Remedy:	- reduce the fine resolution (p0419).
	- reduce the multiturn resolution (p2721).
	See also: p0419 (Fine resolution absolute value Gx_XIST2 (in bits)), p2721 (Load gear rotary absolute encoder revolutions virtual)
F07448 (A)	Load gear: Position tracking, linear axis has exceeded the maximum range
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: NONE
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For a configured linear axis/no modulo axis, the currently effective motor encoder (encoder 1 ) has exceeded the maximum possible traversing range.
	For the configured linear axis, the maximum traversing range is defined to be $64 x(+/-32 x)$ of p0421. It should be read in p2721 and interpreted as the number of load revolutions.
	Note:
	Only the motor encoder in the currently effective drive data set is monitored here. The actual effective drive data set is displayed in $\mathrm{x}=\mathrm{r0051}$ and the corresponding motor encoder is specified in in $\mathrm{p} 0187[\mathrm{x}]$.


Remedy:	The fault should be resolved as follows:   - select encoder commissioning (p0010 = 4).   - reset position tracking, position (p2720.2 = 1).   - deselect encoder commissioning ( $\mathrm{p} 0010=0$ ).   The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07449 (A)	Load gear: Position tracking actual position outside tolerance window
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: NONE
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When switched off, the currently effective motor encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.   Note:
	Only the motor encoder in the currently effective drive data set is monitored here. The actual effective drive data set is displayed in $\mathrm{x}=\mathrm{r} 0051$ and the corresponding motor encoder is specified in in $\mathrm{p} 0187[\mathrm{x}]$.
	Fault value (r0949, interpret decimal):
	Deviation (difference) to the last encoder position in increments of the absolute value after the measuring gear - if one is being used. The sign designates the traversing direction.
	Note:
	The deviation (difference) found is also displayed in r2724.
	See also: p2722 (Load gear position tracking tolerance window), r2724 (Load gear position difference)
Remedy:	Reset the position tracking as follows:
	- select encoder commissioning (p0010 = 4).
	- reset position tracking, position (p2720.2 = 1).
	- deselect encoder commissioning ( $00010=0$ ).
	The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
	See also: p0010, p2507
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F07450 (A)	LR: Standstill monitoring has responded
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	After the standstill monitoring time (p2543) expired, the drive left the standstill window (p2542).   - position actual value inversion incorrectly set (p0410).   - standstill window set too small (p2542).   - standstill monitoring time set too low (p2543).   - position loop gain too low (p2538).   - position loop gain too high (instability/oscillation, p2538).   - mechanical overload.   - Connecting cable, motor/drive converter incorrect (phase missing, interchanged).   - when selecting motor identification, select tracking mode (BI: p2655[0] = 1 signal).   - when selecting function generator, select tracking mode (BI: p2655[0] = 1 signal) and deactivate position control (BI:p2550 $=0$ signal).
Remedy:	Check the causes and resolve.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07451 (A)	LR: Position monitoring has responded
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When the position monitoring time (p2545) expired, the drive had still not reached the positioning window (p2544).   - positioning window parameterized too small (p2544).   - position monitoring time parameterized too short (p2545).   - position loop gain too low (p2538).   - position loop gain too high (instability/oscillation, p2538).   - drive mechanically locked.
Remedy:	Check the causes and resolve.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07452 (A)	LR: Following error too high
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The difference between the position setpoint position actual value (following error dynamic model, r 2563 ) is higher than the tolerance (p2546).   - the drive torque or accelerating capacity exceeded.   - position measuring system fault.   - encoder cable interrupted.   - position control sense incorrect.   - mechanical system locked.   - excessively high traversing velocity or excessively high position reference value (setpoint) differences
Remedy:	Check the causes and resolve.


Reaction upon A:   Acknowl. upon A:	NONE   NONE	
F07453	LR: Position actual value preprocessing error	
Message value:	-	
Message class:	Application/technological function faulted (17)	
Drive object: SERVO, SERVO_AC, VECTOR, VECTOR_AC Propagation:   Component: None   Reaction: OFF1 (OFF2, OFF3)   Acknowledge: IMMEDIATELY   Cause: An error has occurred during the position actual value preprocessing.   Remedy: Check the encoder for the position actual value preprocessing.    See also: p2502 (LR encoder assignment)		


A07454	LR: Position actual value preprocessing does not have a valid encoder
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	One of the following problems has occurred with the position actual value preprocessing:
	- an encoder is not assigned for the position actual value preprocessing (p2502 $=0$ ).
	- an encoder is assigned, but no encoder data set (p0187 = 99 or p0188 = 99 or p0189 = 99).
	- an encoder an an encoder data set have been assigned, however, the encoder data set does not contain any encoder data ( $\mathrm{p} 0400=0$ ) or invalid data (e.g. p0408 = 0).
Remedy:	Check the drive data sets, encoder data sets and encoder assignment.
	See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number), p0400 (Encoder type selection), p2502 (LR encoder assignment)


A07455	EPOS: Maximum velocity limited
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC $\quad$ Propagation: GLOBAL
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum velocity (p2571) is too high to correctly calculate the modulo correction.         Within the sampling time for positioning (p0115[5]), with the maximum velocity, a maximum of the half modulo length   must be moved through. p2571 was limited to this value.   - reduce the maximum velocity (p2571).   - increase the sampling time for positioning (p0115[5]).


| A07456 | EPOS: Setpoint velocity limited |
| :--- | :--- | :--- |
| Message value: | - |
| Message class: | Application/technological function faulted (17) |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC |
| Component: | None |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The actual setpoint velocity is greater than the parameterized maximum velocity (p2571) and is therefore limited. |
| Remedy: | - check the entered setpoint velocity. |
|  | - reduce the velocity override (CI: p2646). |
|  | - increase the maximum velocity (p2571). |
|  | - check the signal source for the externally limited velocity (CI: p2594). |


A07457	EPOS: Combination of input signals illegal
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An illegal combination of input signals that are simultaneously set was identified.
	Alarm value (r2124, interpret decimal):
	0: Jog 1 and jog 2 (p2589, p2590).
	1: Jog 1 or jog 2 and direct setpoint input/MDI (p2589, p2590, p2647).
	2: Jog 1 or jog 2 and start referencing (p2589, p2590, p2595).
	3: Jog 1 or jog 2 and activate traversing task (p2589, p2590, p2631).
	4: Direct setpoint input/MDI and starting referencing (p2647, p2595).
	5: Direct setpoint input/MDI and activate traversing task (p2647, p2631).
	6: Start referencing and activate traversing task (p2595, p2631).
Remedy:	Check the appropriate input signals and correct.
F07458	EPOS: Reference cam not found
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	After starting the search for reference, the axis moved through the maximum permissible distance to search for the reference cam without actually finding the reference cam.
Remedy:	- check the "reference cam" binector input (BI: p2612).
	- check the maximum permissible distance to the reference cam (p2606).
	- if axis does not have any reference cam, then set p2607 to 0 .
	See also: p2606 (EPOS search for reference reference cam maximum distance), p2607 (EPOS search for reference reference cam present), p2612 (EPOS search for reference reference cam)
F07459	EPOS: No zero mark
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	After leaving the reference cam, the axis has traversed the maximum permissible distance between the reference cam and zero mark without finding the zero mark.
Remedy:	- check the encoder regarding the zero mark
	- check the maximum permissible distance between the reference cam and zero mark (p2609).
	- use an external encoder zero mark (equivalent zero mark) (p0495).
	See also: p0495 (Equivalent zero mark input terminal), p2609 (EPOS search for reference max distance ref cam and zero mark)


F07460	EPOS: End of reference cam not found
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	During the search for reference, when the axis reached the zero mark it also reached the end of the traversing range without detecting an edge at the binector input "reference cam" (BI: p2612).
	Maximum traversing range: -2147483648 [LU] ... -2147483647 [LU]
Remedy:	- check the "reference cam" binector input (BI: p2612).
	- repeat the search for reference.
	See also: p2612 (EPOS search for reference reference cam)


| A07461 | EPOS: Reference point not set |
| :--- | :--- | :--- |
| Message value: | - |
| Message class: | Application/technological function faulted (17) |
| Drive object: | SERVO, SERVO_AC, VECTOR, VECTOR_AC Propagation: GLOBAL |
| Component: | None |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | When starting a traversing block/direct setpoint input, a reference point is not set (r2684.11 = 0). |
| Remedy: | Reference the system (search for reference, flying referencing, set reference point). |


A07462	EPOS: Selected traversing block number does not exist
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A traversing block selected via binector input p2625 ... p2630 was started via binector input p2631 $=0 / 1$ edge "Activate traversing task".
	- the number of the started traversing block is not contained in p2616[0..n].
	- the started traversing block is suppressed.
	Alarm value (r2124, interpret decimal):
	Number of the selected traversing block that is also not available.
Remedy:	- correct the traversing program.
	- select an available traversing block number.


A07463 (F)	EPOS: External block change not requested in the traversing block
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	For a traversing block with the block change enable CONTINUE_EXTERNAL_ALARM, the external block change
	was not requested.
	Alarm value (r2124, interpret decimal):
	Number of the traversing block.
Remedy:	Resolve the reason as to why the edge is missing at binector input (BI: p2632).   Reaction upon F:   OFF1
Acknowl. upon F:	IMMEDIATELY


F07464	EPOS: Traversing block is inconsistent
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The traversing block does not contain valid information.
	Alarm value (r2124, interpret decimal):
	Number of the traversing block with invalid information.
Remedy:	Check the traversing block and where relevant, take into consideration alarms that are present.
A07465	EPOS: Traversing block does not have a subsequent block
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no subsequent block in the traversing block.
	Alarm value (r2124, interpret decimal):
	Number of the traversing block with the missing subsequent block.
Remedy:	- parameterize this traversing block with the block change enable END.
	- parameterize additional traversing blocks with a higher block number and for the last block, using the block change enable END.
A07466	EPOS: Traversing block number assigned a multiple number of times
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The same traversing block number was assigned a multiple number of times.
	Alarm value (r2124, interpret decimal):
	Number of the traversing block that was assigned a multiple number of times.
Remedy:	Correct the traversing blocks.
A07467	EPOS: Traversing block has illegal task parameters
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The task parameter in the traversing block contains an illegal value.
	Alarm value (r2124, interpret decimal):
	Number of the traversing block with an illegal task parameter.
Remedy:	Correct the task parameter in the traversing block.


A07468	EPOS: Traversing block jump destination does not exist
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	In a traversing block, a jump was programmed to a non-existent block.
	Alarm value (r2124, interpret decimal):
	Number of the traversing block with a jump destination that does not exist.
Remedy:	- correct the traversing block.
	- add the missing traversing block.


A07469	EPOS: Traversing block < target position < software limit switch minus
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the traversing block the specified absolute target position lies outside the range limited by the software limit switch minus.
	Alarm value (r2124, interpret decimal):
	Number of the traversing block with illegal target position.
Remedy:	- correct the traversing block.
	- change software limit switch minus (Cl: p2578, p2580).


A07470	EPOS: Traversing block> target position > software limit switch plus
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the traversing block the specified absolute target position lies outside the range limited by the software limit switch
	plus.
	Alarm value (r2124, interpret decimal):         Remedy:
	- correct the traversing block.
	- change software limit switch plus (Cl: p2579, p2581).


A07471	EPOS: Traversing block target position outside the modulo range
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the traversing block the target position lies outside the modulo range.
	Alarm value (r2124, interpret decimal):
	Number of the traversing block with illegal target position.
Remedy:	- in the traversing block, correct the target position.
	- change the modulo range (p2576).


A07472	EPOS: Traversing block ABS_POS/ABS_NEG not possible
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the traversing block the positioning mode ABS_POS or ABS_NEG were parame not activated.
	Alarm value (r2124, interpret decimal):
	Number of the traversing block with the illegal positioning mode.
Remedy:	Correct the traversing block.
A07473 (F)	EPOS: Beginning of traversing range reached
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When traversing, the axis has moved to the traversing range limit.
Remedy:	Move away in the positive direction.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07474 (F)	EPOS: End of traversing range reached	
Message value:	-	
Message class:	Application/technological function faulted (17)	
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	When traversing, the axis has moved to the traversing range limit.	
Remedy:	Move away in the negative direction.	
Reaction upon F:	OFF1 (OFF2, OFF3)	
Acknowl. upon F:	IMMEDIATELY	


F07475 (A)	EPOS: Target position < start of traversing range
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The target position for relative traversing lies outside the traversing range.
Remedy:	Correct the target position.
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F07476 (A)	EPOS: Target position > end of the traversing range
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The target position for relative traversing lies outside the traversing range.
Remedy:	Correct the target position.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A07477 (F)	EPOS: Target position < software limit switch minus
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the actual traversing operation, the target position is less than the software limit switch minus.
Remedy:	- correct the target position.
	- change software limit switch minus (CI: p2578, p2580).
	See also: p2578 (EPOS software limit switch minus signal source), p2580 (EPOS software limit switch minus), p2582 (EPOS software limit switch activation)
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A07478 (F)	EPOS: Target position > software limit switch plus
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the actual traversing operation, the target position is greater than the software limit switch plus.
Remedy:	- correct the target position.
	- change software limit switch plus (CI: p2579, p2581).
	See also: p2579 (EPOS software limit switch plus signal source), p2581 (EPOS software limit switch plus), p2582 (EPOS software limit switch activation)
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A07479	EPOS: Software limit switch minus reached
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The axis is at the position of the software limit switch minus. An active traversing block was interrupted.
Remedy:	- correct the target position.
	- change software limit switch minus (CI: p2578, p2580).
	See also: p2578 (EPOS software limit switch minus signal source), p2580 (EPOS software limit switch minus), p2582 (EPOS software limit switch activation)


A07480	EPOS: Software limit switch plus reached
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The axis is at the position of the software limit switch plus. An active traversing block was interrupted.
Remedy:	- correct the target position.
	-change software limit switch plus (CI: p2579, p2581).
	See also: p2579 (EPOS software limit switch plus signal source), p2581 (EPOS software limit switch plus), p2582
(EPOS software limit switch activation)	

F07482 (A) EPOS: Axis position > software limit switch plus

Message value:
Message class: Application/technological function faulted (17)
Drive object: SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component: None Propagation: GLOBAL
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The actual position of the axis is greater than the position of the software limit switch plus.
Remedy: - correct the target position.

- change software limit switch plus (CI: p2579, p2581).

See also: p2579 (EPOS software limit switch plus signal source), p2581 (EPOS software limit switch plus), p2582 (EPOS software limit switch activation)
Reaction upon A: NONE
Acknowl. upon A: NONE

A07483	EPOS: Travel to fixed stop clamping torque not reached
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object: SERVO, SERVO_AC, VECTOR, VECTOR_AC   Component: None   Reaction: NONE   Acknowledge: NONE   Cause: The fixed stop in the traversing block was reached without the clamping torque/clamping force having been achieved.   Remedy: - check the maximum torque-generating current (r1533).    - check the torque limits (p1520, p1521).    - check the power limits (p1530, p1531).    - check the BICO interconnections of the torque limits (p1522, p1523, p1528, p1529).	


F07484	EPOS: Fixed stop outside the monitoring window
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF3 (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	In the "fixed stop reached" state, the axis has moved outside the defined monitoring window (p2635).
Remedy:	- check the monitoring window (p2635).
	- check the mechanical system.


F07485 (A)	EPOS: Fixed stop not reached
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	In a traversing block with the task FIXED STOP, the end position was reached without detecting a fixed stop.
Remedy:	- check the traversing block and locate the target position further into the workpiece.
	- check the "fixed stop reached" control signal (p2637).
	- if required, reduce the maximum following error window to detect the fixed stop (p2634).
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A07486	EPOS: Intermediate stop missing
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the modes "traversing blocks" or "direct setpoint input/MDI" at the start of motion, the binector input "no   intermediate stop/intermediate stop" (BI: p2640) did not have a 1 signal.   Comnect a 1 signal to the binector input "no intermediate stop/intermediate stop" (BI: p2640) and re-start motion.   Remedy:
	See also: p2640 (EPOS intermediate stop (0 signal))


A07487	EPOS: Reject traversing task missing
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the modes "traversing blocks" or "direct setpoint input/MDI" at the start of motion, the binector input "do not reject   traversing task/reject traversing task" (BI: p2641) does not have a 1 signal.   Comnect a 1 signal to the binector input "do not reject traversing task/reject traversing task" (BI: p2641) and restart
	motion.      $\quad$See also: p2641 (EPOS reject traversing task (0 signal))


F07488	EPOS: Relative positioning not possible
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	In the mode "direct setpoint input/MDI", for continuous transfer (p2649 = 1) relative positioning was selected (BI: p2648 $=0$ signal).
Remedy:	Check the control.
A07489	EPOS: Reference point correction outside the window
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the function "flying referencing" the difference between the measured position at the measuring probe and the reference point coordinate lies outside the parameterized window.
Remedy:	- check the mechanical system.
	- check the parameterization of the window (p2602).
F07490 (N)	EPOS: Enable signal withdrawn while traversing
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	- for a standard assignment, another fault may have occurred as a result of withdrawing the enable signals.   - the drive is in the "switching on inhibited" state (for a standard assignment).
Remedy:	- set the enable signals or check the cause of the fault that first occurred and then result (for a standard assignment).   - check the assignment to enable the basic positioning function.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07491 (A)	EPOS: STOP cam minus reached
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF3
Acknowledge:	IMMEDIATELY
Cause:	A 0 signal was detected at binector input p2569, i.e. the STOP cam minus was actuated.
	For a positive traversing direction, the STOP cam minus was reached - i.e. the wiring of the STOP cam is incorrect. See also: p2569 (EPOS STOP cam minus)
Remedy:	- leave the STOP cam minus in the positive traversing direction and return the axis to the valid traversing range.   - check the wiring of the STOP cam.
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F07492 (A)	EPOS: STOP cam plus reached
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF3
Acknowledge:	IMMEDIATELY
Cause:	A 0 signal was detected at binector input p2570, i.e. the STOP cam plus was reached.
	For a negative traversing direction, the STOP cam plus was reached - i.e. the wiring of the STOP cam is incorrect. See also: p2570 (EPOS STOP cam plus)
Remedy:	- leave the STOP cam plus in the negative traversing direction and return the axis to the valid traversing range.   - check the wiring of the STOP cam.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07493	LR: Overflow of the value range for position actual value
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The value range ( $-2147483648 \ldots 2147483647$ ) for the position actual value representation was exceeded.
	When the overflow occurs, the "referenced" or "adjustment absolute measuring system" status is reset.
	Fault value (r0949, interpret decimal):
	1: The position actual value (r2521) has exceeded the value range.
	2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range.
	3: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value.
	Note:
	For a linear encoder, the following must be maintained:
	- p0407 * p 2503 / (2^p0418*10^7) < 1
	- p0407 * p2503 / (2^p0419*10^7) < 1
Remedy:	If required, reduce the traversing range or position resolution (p2506).
	Increase the fine resolution of absolute position actual value (p0419).
	Note for fault value = 3:
	If the value for the maximum possible absolute position (LU) is greater than 4294967296, then it is not possible to make an adjustment due to an overflow.
	For rotary encoders, the maximum possible absolute position (LU) is calculated as follows:
	1. Motor encoder without position tracking
	p2506 * p0433 * p2505 / (p0432 * p2504)
	p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders
	2. Motor encoder with position tracking for measuring gear
	p2506 * p0412 * p2505 / p2504
	3. Motor encoder with position tracking for load gear
	p2506 * p2721 * 0433 / p0432
	4. Motor encoder with position tracking for load and measuring gear
	p2506 * p2721
	5. Direct encoder without position tracking
	p2506 * p0433 / p0432
	p2506 * p 0433 * p0421 / p 0432 for multiturn encoders
	6. Direct encoder with position tracking for measuring gear
	p2506 * 00412

### 4.2 List of faults and alarms

F07494	LR: Drive Data Set changeover in operation
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A Drive Data Set changeover (DDS) with a change of the mechanical relationships (p2503 ... 2506), direction of rotation ( p 1821 ) or the encoder assignment ( p 2502 ) was requested in operation.
	Note:
	DDS: Drive Data Set
Remedy:	To changeover the drive data set, initially, exit the "operation" mode.
A07495 (F, N)	LR: Reference function interrupted
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An activated reference function (reference mark search or measuring probe evaluation) was interrupted.
	Possible causes:
	- an encoder fault has occurred (Gn_ZSW. $15=1$ ).
	- position actual value was set during an activated reference function.
	- simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 signal).
	- activated reference function (reference mark search or measuring probe evaluation) was deactivated (BI: p2508 and BI : p2509 $=0$ signal).
	- the input terminal for the measuring probe is not set.
Remedy:	- check the causes and resolve.
	- reset the control (B1: p2508 and B1: p2509 = 0 signal) and activate the requested function.
	- set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07496	EPOS: Enable not possible
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to enable the basic positioner because at least one condition is missing.
	Alarm value (r2124, interpret decimal):
	1: EPOS enable missing (BI: p2656).
	2: Position actual value, valid feedback signal missing (B1: p2658).
	See also: p2656 (EPOS enable basic positioner), p2658 (EPOS position actual value valid feedback signal)
Remedy:	Check the corresponding missing condition (binector input, signal source).


A07497 (N)	LR: Position setting value activated
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	While the binector input p2514 has a 1 signal, the position actual value is set to the value received via connector input p2515. A possible system deviation cannot be corrected.
Remedy:	Not necessary.
	The alarm is automatically withdrawn for binector input p2514 $=0$ signal.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07498 (F)	LR: Measuring probe evaluation not possible
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the measuring probe, an error occurred.
	Alarm value (r2124, interpret decimal):
	6:
	The input terminal for the measuring probe is not set.
	4098:
	Error when initializing the measuring probe.
	4100:
	The measuring pulse frequency is too high.
	> 50000:
	The measuring clock cycle is not a multiple integer of the position controller clock cycle.
Remedy:	Deactivate the measuring probe evaluation (BI: p2509 = 0 signal).
	For alarm value = 6:
	Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
	For alarm value = 4098:
	Check the Control Unit hardware.
	For alarm value $=4100$ :
	Reduce the frequency of the measuring pulses at the measuring probe.
	For alarm value > 50000:
	Set the clock cycle ratio of the measuring clock cycle to the position controller clock cycle to an integer multiple.
	To do this, the currently effective measuring clock cycle can be determined from the alarm value as follows:
	Tmeas [ $125 \mu \mathrm{~s}$ ] = alarm value - 50000
	With PROFIBUS, the measuring clock cycle corresponds to the PROFIBUS clock cycle (r2064[1]).
	Without PROFIBUS, the measuring clock cycle is an internal cycle time that cannot be influenced.
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY


F07499 (A)	EPOS: Reversing cam approached with the incorrect traversing direction
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF3
Acknowledge:	IMMEDIATELY
Cause:	The reversing cam MINUS was approached in the positive traversing direction or the reversing cam PLUS was approached in the negative traversing direction.
	See also: p2613 (EPOS search for reference reversing cam minus), p2614 (EPOS search for reference reversing cam plus)
Remedy:	- check the wiring of the reversing cam (BI: p2613, BI: p2614).   - check the traversing direction to approach the reversing cam.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07500	Drive: Power unit data set PDS not configured
Message value:	Drive data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Only for controlled line supply infeed/regenerative feedback units:
	The power unit data set was not configured - this means that a data set number was not entered into the drive data set.
	Fault value (r0949, interpret decimal):
	Drive data set number of p0185.
Remedy:	The index of the power unit data set associated with the drive data set should be entered into p0185.
F07501	Drive: Motor Data Set MDS not configured
Message value:	Drive data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Only for power units:
	The motor data set was not configured - this means that a data set number was not entered into the associated drive data set.
	Fault value (r0949, interpret decimal):
	The fault value includes the drive data set number of p0186.
Remedy:	The index of the motor data set associated with the drive data set should be entered into p0186.
	See also: p0186 (Motor Data Sets (MDS) number)



A07505	EPOS: Task fixed stop not possible in the U/f/SLVC mode
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the U/f/SLVC mode, an attempt was made to execute a traversing block with the "fixed stop" task. This is not   possible.
	Alarm value (r2124, interpret decimal):   Number of the traversing block with an illegal task parameter.
Remedy:	- check the traversing block and change the task.   - change the open-loop/closed-loop control mode (p1300).   See also: p1300 (Open-loop/closed-loop control operating mode), p2621 (EPOS traversing block task)


A07506	EPOS: check BICO interconnection between EPOS and position controller
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The BICO interconnections to transfer setpoints between EPOS and LR (position control) have not been set, although the BICO interconnections to transfer the fine resolutions have been set.
Remedy:	1. Disconnect BICO interconnections for the fine resolutions (CI: p2694 = 0 , $\mathrm{Cl}: \mathrm{p} 2695=0$ ).   2. Set BICO interconnections for the setpoints (CI: p2530 = r2665, CI: p2531 = r2666).   3. Set BICO interconnections for the fine resolutions (CI: p2694 = r2696, CI: p2695 = r2697).   See also: p2530, p2531, r2665, r2666, p2694, p2695, r2696, r2697

## A07507

Message value:
Message class: Application/technological function faulted (17)
Drive object:
SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component: Motor Propagation: GLOBAL

Reaction:
Acknowledge:
NONE
NONE
Cause: After the reference point correction, the position setpoint lies outside the traversing range limits.
Remedy: - optimize the position controller.

- due to a possible position controller deviation, reference point coordinate p2599 should not be directly placed at the traversing range limits.

F07509	Drive: Component assignment missing
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A Drive Data Set (DDS) is assigned to a Motor Data Set (MDS) or Encoder Data Set (EDS) that does not have a component number.
	Fault value (r0949, interpret decimal): nnmmmxxyyy
	nn : Number of the MDS/EDS.
	mmm : Parameter number of the missing component number.
	xx : Number of the DDS that is assigned to the MDS/EDS.
	yyy: Parameter number that references the MDS/EDS.
	Example:
	p0186[7] = 5: DDS 7 is assigned MDS 5.
	$\mathrm{p} 0131[5]=0$ : There is no component number set in MDS 5.
	Alarm value $=0513107186$
Remedy:	In the drive data sets, no longer assign MDS/EDS using p0186, p0187, p0188, p0189 or set a valid component number.
	See also: p0131, p0141, p0142, p0186, p0187, p0188, p0189
F07510	Drive: Identical encoder in the drive data set
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	More than one encoder with identical component number is assigned to a single drive data set. In one drive data set, it is not permissible that identical encoders are operated together.
	Fault value (r0949, interpret decimal):
	1000 * first identical encoder + 100 * second identical encoder + drive data set.
	Example:
	Fault value $=1203$ means:
	In drive data set 3, the first (p0187[3]) and second encoder (p0188[3]) are identical.
Remedy:	Assign the drive data set to different encoders.
	See also: p0141, p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number)


F07511	Drive: Encoder used a multiple number of times
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Each encoder may only be assigned to one drive and within a drive must - in each drive data set - either always be encoder 1, always encoder 2 or always encoder 3. This unique assignment has been violated.
	Fault value (r0949, interpret decimal):
	The two parameters in coded form, that refer to the same component number.
	First parameter:
	Index: First and second decimal place (99 for EDS, not assigned DDS)
	Parameter number: Third decimal place (1 for p0187, 2 for p0188, 3 for p0189, 4 for EDS not assigned DDS)
	Drive number: Fourth and fifth decimal place
	Second parameter:
	Index: Sixth and seventh decimal place (99 for EDS, not assigned DDS)
	Parameter number: Eighth decimal place (1 for p0187, 2 for p0188, 3 for p0189, 4 for EDS, not assigned DDS)
	Drive number: Ninth and tenth decimal place
	See also: p0141
Remedy:	Correct the double use of a component number using the two parameters coded in the fault value.
F07512	Drive: Encoder data set changeover cannot be parameterized
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Using p0141, a changeover of the encoder data set is prepared that is illegal. In this firmware release, an encoder data set changeover is only permitted for the components in the actual topology.
	Fault value (r0949, interpret decimal):
	Incorrect EDS data set number.
	See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number)
Remedy:	Every encoder data set must be assigned its own dedicated DRIVE-CLiQ socket. The component numbers of the encoder interfaces ( p 0141 ) must have different values within a drive object.
	The following must apply:
	$\mathrm{p} 0141[0]$ not equal to p 0141 [1] not equal to ... not equal to p 0141 [ n ]


A07514 (N)	Drive: Data structure does not correspond to the interface module
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The interface mode "SIMODRIVE 611 universal" was set (p2038 = 1) and the data structure does not correspond to this mode.
	The following settings are possible, depending on the number of data sets:
	Number of DDS/MDS (p0180/p0130): 00186
	1/1: p0186[0] = 0
	2/2: $\mathrm{p} 0186[0]=0, \mathrm{p} 0186[1]=1$
	4/4: $\mathrm{p} 0186[0]=0, \mathrm{p} 0186[1]=1, \mathrm{p} 0186[2]=2, \mathrm{p} 0186[3]=3$
	8/8: p0186[0] $=0, \mathrm{p} 0186[1]=1, \mathrm{p} 0186[2]=2 \ldots \mathrm{p} 0186[7]=7$
	16/16: p0186[0] $=0, \mathrm{p} 0186[1]=1, \mathrm{p} 0186[2]=2 \ldots \mathrm{p} 0186[15]=15$
	32/32: p0186[0] $=0, \mathrm{p} 0186[1]=1, \mathrm{p} 0186[2]=2 \ldots \mathrm{p} 0186[31]=31$
	2/1: p0186[0, 1] = 0
	4/2: p0186[0, 1] $=0, \mathrm{p} 0186[1,2]=1$
	8/4: p0186[0, 1] $=0, \mathrm{p} 0186[1,2]=1, \mathrm{p} 0186[3,4]=2, \mathrm{p} 0186[5,6]=3$
	16/8: p0186[0, 1] $=0, \mathrm{p} 0186[1,2]=1, \mathrm{p} 0186[3,4]=2 \ldots \mathrm{p} 0186[14,15]=7$
	32/16: p0186[0, 1] $=0, \mathrm{p} 0186[1,2]=1, \mathrm{p} 0186[3,4]=2 \ldots \mathrm{p} 0186[30,31]=15$
	4/1: p0186[0, 1, 2, 3] = 0
	8/2: $\mathrm{p} 0186[0,1,2,3]=0, p 0186[4,5,6,7]=1$
	16/4: p0186[0, 1, 2, 3] = 0, p0186[4, 5, 6, 7] = 1, p0186[8, 9, 10, 11] = 2, p0186[12, 13, 14, 15] $=3$
	32/8: p0186[0, 1, 2, 3] = 0, p0186[4, 5, 6, 7] = 1, p0186[8, 9, 10, 11] $=2 \ldots \mathrm{p} 0186[28,29,30,31]=7$
	8/1: $\mathrm{p} 0186[0 . .7]=0$
	16/2: p0186[0...7] $=0, \mathrm{p} 0186[8 \ldots 15]=1$
	32/4: p0186[0...7] $=0, p 0186[8 \ldots 15]=1, p 0186[16 . .23]=2, p 0186[24 \ldots 31]=3$
	16/1: p0186[0...15] = 0
	32/2: p0186[0...15] = 0, p0186[16...31] $=1$
	32/1: p0186[0...31] $=0$
	9/2: p0186[0..7] $=0, \mathrm{p} 0186[8]=1$
	10/2: $\mathrm{p} 0186[0 . .7]=0, p 0186[8,9]=1$
	12/2: p0186[0..7] $=0, \mathrm{p} 0186[8 \ldots 11]=1$
	See also: p0180 (Number of Drive Data Sets (DDS)), p0186 (Motor Data Sets (MDS) number), p2038 (IF1 PROFIdrive STW/ZSW interface mode)
Remedy:	- check the data structure according to the possible settings mentioned in the cause.
	- check the interface mode (p2038).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07515	Drive: Power unit and motor incorrectly connected
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A power unit (via PDS) was assigned to a motor (via MDS) in a drive data set that is not connected in the target topology. It is possible that a motor has not been assigned to the power unit ( p 0131 ).
	Fault value (r0949, interpret decimal):
	Number of the incorrectly parameterized drive data set.

### 4.2 List of faults and alarms

Remedy:

- assign the drive data set to a combination of motor and power unit permitted by the target topology.
- adapt the target topology.
- if required, for a missing motor, recreate the component (drive Wizard).
See also: p0121 (Power unit component number), p0131 (Motor component number), p0186 (Motor Data Sets
(MDS) number)

F07516	Drive: Re-commission the data set
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The assignment between the drive data set and motor data set ( p 0186 ) or between the drive data set and the encoder data set was modified ( p 0187 ). This is the reason that the drive data set must re-commissioned.
	Fault value (r0949, interpret decimal):
	Drive data set to be re-commissioned.
Remedy:	Commission the drive data set specified in the fault value (r0949).


F07517	Drive: Encoder data set changeover incorrectly parameterized
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	In at least two drive data sets (DDS), the same motor data set (MDS) is assigned different encoder data sets (EDS) for the motor encoder. In various DDSs, it is not permissible for an MDS to have different motor encoders.
	The following parameterization therefore results results in an error:
	DDSO: p0186[0] $=0, \mathrm{p} 0187[0]=0$
	DDS1: $\mathrm{p} 0186[1]=0, \mathrm{p} 0187[1]=1$
	Fault value (r0949, interpret decimal):
	The lower 16 bits indicate the first DDS. The upper 16 bits indicate the second DDS.
Remedy:	Create two MDS with the same motor data in order to operate one motor with different motor encoders.
	DDSO: p0186[0] = 0, p0187[0] = 0
	DDS1: $\mathrm{p} 0186[1]=1, p 0187[1]=1$


F07518	Drive: Motor data set changeover incorrectly parameterized
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The system has identified that two motor data sets were incorrectly parameterized.
	Parameter r0313 (calculated from p0314, p0310, p0311), r0315 and p1982 may only have different values if the motor data sets are assigned different motors. p0827 is used to assign the motors and/contactors.
	It is not possible to toggle between motor data sets.
	Fault value (r0949, interpret hexadecimal):
	xxxxyyyy:
	xxxx: First DDS with assigned MDS, yyyy: Second DDS with assigned MDS
Remedy:	Correct the parameterization of the motor data sets.


A07519	Drive: Motor changeover incorrectly parameterized
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	With the setting p0833.0 = 1 , a motor changeover via the application is selected. This is the reason that p0827 must have different values in the appropriate motor data set.
	Alarm value (r2124, interpret hexadecimal):
	xxxxyyyy:
	xxxx: First MDS, yyyy: Second MDS
Remedy:	- parameterize the appropriate motor data sets differently (p0827).
	- select the setting p0833.0 $=0$ (motor changeover via the drive).


A07520	Drive: Motor cannot be changed over
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor cannot be changed over.
	Alarm value (r2124, interpret decimal):
	$1:$
	The contactor for the motor that is presently active cannot be opened, because for a synchronous motor, the speed
	(r0063) is greater than the speed at the start of field weakening (p0348). As long as r0063 > p0348, the current in the
	motor does not decay in spite of the pulses being suppressed.
	$2:$
	The "contactor opened" feedback signal was not detected within 1 s.
	$3:$
	The "contactor closed" feedback signal was not detected within 1 s.
	For alarm value = 1:
	Set the speed lower than the speed at the start of field weakening (r0063 < p0348).
	For alarm value = $2,3:$
	Check the feedback signals of the contactor involved.


A07530	Drive: Drive Data Set DDS not present
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
VECTOR_I_AC	
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected drive data set is not available (p0837 > p0180). The drive data set was not changed over.
	See also: p0180, p0820, p0821, p0822, p0823, p0824, r0837
Remedy:	- select the existing drive data set.
	- set up additional drive data sets.


A07531	Drive: Command Data Set CDS not present
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected command data set is not available (p0836 > p0170). The command data set was not changed over.
	See also: p0810, p0811, r0836   Remedy:
	- select the existing command data set.
	- set up additional command data sets.


A07541	Drive: Data set changeover not possible
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected drive data set changeover and the assigned motor changeover are not possible and are not carried out.
	For synchronous motors, the motor contactor may only be switched for actual speeds less than the speed at the start of field weakening (r0063 < p0348).
	See also: r0063, p0348
Remedy:	Reduce the speed to below the speed at the start of field weakening (r0063 < p0348).
A07550 (F, N)	Drive: Not possible to reset encoder parameters
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When carrying out a factory setting (e.g. using p0970 = 1), it was not possible to reset the encoder parameters. The encoder parameters are directly read out of the encoder via DRIVE-CLiQ.
	Alarm value (r2124, interpret decimal):
	Component number of the encoder involved.
Remedy:	- repeat the operation.
	- check the DRIVE-CLiQ connection.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F07551
Message value
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Component:
Reaction:

Acknowledge: IMMEDIATELY (POWER ON)

Cause:	The commutation angle information is missing. This means that synchronous motors cannot be controlled (closedloop control)
	Fault value (r0949, interpret decimal):
	yyyyxxxx dec: yyyy = fault cause, xxxx = drive data set
	yyyy = 1 dec:
	The motor encoder used does not supply an absolute commutation angle.
	yyyy = 2 dec:
	The selected ratio of the measuring gear does not match the motor pole pair number.
Remedy:	For fault cause = 1:
	- check the encoder parameterization (p0404).
	- use an encoder with track C/D, EnDat interface of Hall sensors.
	- use an encoder with sinusoidal A/B track for which the motor pole pair number (r0313) multiplied by the gear ratio ( $p 0432 / \mathrm{p} 0433$ ) is less than the encoder pulse number ( p 0408 ) - or is an integer multiple of the encoder pulse number (p0408).
	- activate the pole position identification routine (p1982 = 1).
	For fault cause $=2$ :
	- the quotient of the pole pair number divided by the ratio of the measuring gear must be an integer number: (p0314 * p0433)/p0432.
	Note:
	For operation with track C/D, this quotient must be less than 8 .
	See also: p0402 (Gearbox type selection), p0404 (Encoder configuration effective), p0432 (Gearbox factor encoder revolutions), p0433 (Gearbox factor motor/load revolutions)
F07551	Drive encoder: No commutation angle information
Message value:	Fault cause: \%1, drive data set: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	OFF2 (IASC/DCBRK)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The commutation angle information is missing. This means that synchronous motors cannot be controlled (closedloop control)
	Fault value (r0949, interpret decimal):
	yyyyxxxx dec: yyyy = fault cause, $x$ xxx = drive data set
	yyyy = 1 dec:
	The motor encoder used does not supply an absolute commutation angle.
	yyyy = 2 dec:
	The selected ratio of the measuring gear does not match the motor pole pair number.
Remedy:	For fault cause = 1:
	- check the encoder parameterization (p0404).
	- use an encoder with track C/D, EnDat interface of Hall sensors.
	- use an encoder with sinusoidal $A / B$ track for which the motor pole pair number ( r 0313 ) multiplied by the gear ratio ( $p 0432 / \mathrm{p} 0433$ ) is less than the encoder pulse number ( p 0408 ) - or is an integer multiple of the encoder pulse number (p0408).
	- activate the pole position identification routine (p1982 = 1) for motor encoders without absolute position information. Then, using an encoder adjustment (p1990), the angular commutation offset should be determined.
	For fault cause = 2:
	- the quotient of the pole pair number divided by the ratio of the measuring gear must be an integer number: (p0314 * p0433) / p0432.
	Note:
	For operation with track C/D, this quotient must be less than 8.
	See also: p0402 (Gearbox type selection), p0404 (Encoder configuration effective), p0432 (Gearbox factor encoder revolutions), p0433 (Gearbox factor motor/load revolutions)


F07552 (A)	Drive encoder: Encoder configuration not supported
Message value:	Fault cause: \%1, component number: \%2, encoder data set: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
Component:	VECTOR_I_AC
Reaction:	None
	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)


	cc: incorrect parameter
	$\mathrm{cc}=0$ : incorrect parameter is p0430
	$c c=1$ : incorrect parameter is p0437
	$\mathrm{cc}=2$ : incorrect parameter is r0459
	dd: reserved (always 0)
Remedy:	- check the encoder parameterization (p0430, p0437).
	- check the pole position identification routine (p1982).
	- use the matching encoder evaluation (r0458, r0459).
	See also: p0430, p0437, r0458, r0459, p1982
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F07555 (A)	Drive encoder: Configuration position tracking
Message value:	Component number: \%1, encoder data set: \%2, drive data set: \%3, fault cause: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For position tracking, the configuration is not supported.
	Position tracking can only be activated for absolute encoders.
	For linear axes, it is not possible to simultaneously activate the position tracking for load and measuring gears.
	Fault value (r0949, interpret hexadecimal):
	ddccbbaa hex
	$\mathrm{aa}=$ encoder data set
	$\mathrm{bb}=$ component number
	cc = drive data set
	dd = fault cause
	$\mathrm{dd}=00$ hex $=0 \mathrm{dec}$
	An absolute encoder is not being used.
	$\mathrm{dd}=01 \mathrm{hex}=1 \mathrm{dec}$
	Position tracking cannot be activated because the memory of the internal NVRAM is not sufficient or a Control Unit does not have an NVRAM.   $d d=02$ hex $=2$ dec
	For a linear axis, the position tracking was activated for the load and measuring gear. dd = 03 hex $=3$ dec
	Position tracking cannot be activated because position tracking with another gear ratio, axis type or tolerance window has already been detected for this encoder data set. $d d=04 \text { hex }=4 \mathrm{dec}$
	A linear encoder is being used.
	See also: p0404 (Encoder configuration effective), p0411 (Measuring gear configuration)
Remedy:	For fault value 0:
	- use an absolute encoder.
	For fault value 1:
	- use a Control Unit with sufficient NVRAM.
	For fault value $=2,4$ :
	- if necessary, de-select the position tracking (p0411 for the measuring gear, p2720 for the load gear).
	For fault value 3:
	- Only activate position tracking of the load gear in the same encoder data set if the gear ratio (p2504, p2505), axis type ( p 2720.1 ) and tolerance window (p2722) are also the same. These parameters must be the same in all drive data sets, which use the same motor encoder (p187).

### 4.2 List of faults and alarms

Reaction upon A: Acknowl. upon A:	NONE NONE
F07556	Measuring gear: Position tracking, maximum actual value exceeded
Message value:	Component number: \%1, encoder data set: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When the position tracking of the measuring gear is configured, the drive/encoder identifies a maximum possible absolute position actual value (r0483) that cannot be represented within 32 bits.
	Maximum value: p0408 * p0412 * 2^p0419
	Fault value (r0949, interpret decimal):
	aaaayyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ encoder data set
	See also: p0408, p0412 (Measuring gear absolute encoder rotary revolutions virtual), p0419 (Fine resolution absolute value Gx_XIST2 (in bits))
Remedy:	- reduce the fine resolution (p0419).
	- reduce the multiturn resolution (p0412).
	See also: p0412 (Measuring gear absolute encoder rotary revolutions virtual), p0419 (Fine resolution absolute value Gx_XIST2 (in bits))


A07557 (F)	Encoder 1: Reference point coordinate not in the permissible range
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The reference point coordinate received when adjusting the encoder via connector input Cl:p2599 lies outside the   half of the encoder range and cannot be set as actual axis position. The maximum permissible value is displayed in   the supplementary information.
Remedy:	Set the reference point coordinate less than the value from the supplementary information.
Reaction upon F:	See also: p2598 (EPOS reference point coordinate signal source)   OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07558 (F)	Encoder 2: Reference point coordinate not in the permissible range
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The reference point coordinate received when adjusting the encoder via connector input CI:p2599 lies outside the   half of the encoder range and cannot be set as actual axis position. The maximum permissible value is displayed in   the supplementary information.
	Set the reference point coordinate less than the value from the supplementary information.
Remedy:	See also: p2598 (EPOS reference point coordinate signal source)
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07559 (F)	Encoder 3: Reference point coordinate not in the permissible range
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The reference point coordinate received when adjusting the encoder via connector input $\mathrm{Cl}: \mathrm{p} 2599$ lies outside the half of the encoder range and cannot be set as actual axis position. The maximum permissible value is displayed in the supplementary information.
Remedy:	Set the reference point coordinate less than the value from the supplementary information. See also: p2598 (EPOS reference point coordinate signal source)
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F07560	Drive encoder: Number of pulses is not to the power of two
Message value:	Encoder data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For rotary absolute encoders, the pulse number in p0408 must be to the power of two.
	Fault value (r0949, interpret decimal):
	The fault value includes the encoder data set number involved.
Remedy:	- check the parameterization (p0408, p0404.1, r0458.5).
	- upgrade the Sensor Module firmware if necessary
F07561	Drive encoder: Number of multiturn pulses is not to the power of two
Message value:	Encoder data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The multiturn resolution in p0421 must be to the power of two.
	Fault value (r0949, interpret decimal):
	The fault value includes the encoder data set number involved.
Remedy:	- check the parameterization (p0421, p0404.1, r0458.5).
	- upgrade the Sensor Module firmware if necessary


F07562 (A)	Drive, encoder: Position tracking, incremental encoder not possible
Message value:	Fault cause: \%1, component number: \%2, encoder data set: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The requested position tracking for incremental encoders is not supported.
	Fault value (r0949, interpret hexadecimal):
	ccccbbaa hex
	aa $=$ encoder data set
	$\mathrm{bb}=$ component number
	cccc $=$ fault cause
	cccc $=00 \mathrm{hex}=0 \mathrm{dec}$
	The encoder type does not support the "Position tracking incremental encoder" function. cccc $=01 \mathrm{hex}=1 \mathrm{dec}$
	Position tracking cannot be activated because the memory of the internal NVRAM is not sufficient or a Control Unit does not have an NVRAM.
	cccc $=04 \mathrm{hex}=4 \mathrm{dec}$
	A linear encoder is used that does not support the "position tracking" function.
	See also: p0404 (Encoder configuration effective), p0411 (Measuring gear configuration), r0456 (Encoder configuration supported)
Remedy:	- check the encoder parameterization (p0400, p0404).
	- use a Control Unit with sufficient NVRAM.
	- if required, de-select position tracking for the incremental encoder (p0411.3 = 0).
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07563 (A)	Drive encoder: XIST1_ERW configuration incorrect
Message value:	Fault cause: \%1, encoder data set: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An incorrect configuration was identified for the "Absolute position for incremental encoder" function.
	Fault value (r0949, interpret decimal):
	Fault cause:
	1 (= 01 hex):
	The "Absolute value for incremental encoder" function is not supported (r0459.13 $=0$ ).
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	yyxx dec: $\mathrm{yy}=$ fault cause, $\mathrm{xx}=$ encoder data set
	See also: r0459, p4652
Remedy:	For fault value $=1$ :
	- upgrade the Sensor Module firmware version.
	- check the mode ( $\mathrm{p} 4652=1,3$ requires the property r0459.13 $=1$ ) .


Reaction upon A :	NONE
Acknowl. upon A:	NONE
A07565 (F, N)	Drive: Encoder error in PROFIdrive encoder interface 1
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An encoder error was signaled for encoder 1 via the PROFldrive encoder interface (G1_ZSW.15).
	Alarm value (r2124, interpret decimal):
	Error code from G1_XIST2, refer to the description regarding r0483.
	Note:
	This alarm is only output if p0480[0] is not equal to zero.
	Encoder control word Gn_STW signal source (p0480[0...2], $\mathrm{n}=$ encoder 1, 2, 3)
	Encoder status word Gn_ZSW (r0481[0...2], n = encoder 1, 2, 3)
Remedy:	Acknowledge the encoder error using the encoder control word (G1_STW. $15=1$ ).
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A07566 (F, N)	Drive: Encoder error in PROFldrive encoder interface 2
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	An encoder error was signaled for encoder 2 via the PROFIdrive encoder interface (G2_ZSW.15).
	Alarm value (r2124, interpret decimal):
	Error code from G2_XIST2, refer to the description regarding r0483.
	Note:
	This alarm is only output if p0480[1] is not equal to zero.
	Encoder control word Gn_STW signal source (p0480[0...2], n = encoder 1, 2, 3)
Remedy:	Encoder status word Gn_ZSW (r0481[0...2], n = encoder 1, 2, 3)
Reaction upon F:	Acknowledge the encoder error using the encoder control word (G2_STW.15 = 1).
NONE (OFF1, OFF2, OFF3)	
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A07567 (F, N)	Drive: Encoder error in PROFIdrive encoder interface 3
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	An encoder error was signaled for encoder 3 via the PROFIdrive encoder interface (G3_ZSW.15).
	Alarm value (r2124, interpret decimal):
	Error code from G3_XIST2, refer to the description regarding ro483.
	Note:
	This alarm is only output if p0480[2] is not equal to zero.


N07570 (F)	Encoder identification data transfer running
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The encoder type was automatically determined using p0400 $=10100$.
	Note:
	This fault causes the pulses to be suppressed - this is necessary to transfer the encoder parameterization to p0400 and the following.
	See also: p0400 (Encoder type selection)
Remedy:	Acknowledge the fault without taking additional measures.
Reaction upon F:	OFF2
Acknowl. upon F:	IMMEDIATELY
F07575	Drive: Motor encoder not ready
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	Infeed: OFF2
	Servo: OFF2 (ENCODER)
	Vector: OFF2 (ENCODER)
	Hla: OFF2 (ENCODER)
Acknowledge:	IMMEDIATELY
Cause:	The motor encoder signals that it is not ready.
	- initialization of encoder 1 (motor encoder) was unsuccessful.
	- the function "parking encoder" is active (encoder control word G1_STW. 14 = 1).
	- the encoder interface (Sensor Module) is deactivated (p0145).
	- the Sensor Module is defective.
Remedy:	Evaluate other queued faults via encoder 1.
A07576	Drive: Encoderless operation due to a fault active
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Encoderless operation is active due to a fault (r1407.13 = 1).
	Note:
	The behavior for faults has been set to ENCODER fault response in p0491.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- remove the cause of a possible encoder fault.
	- carry out a POWER ON (switch-off/switch-on) for all components.


A07577 (F)	Encoder 1: Measuring probe evaluation not possible
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the measuring probe, an error occurred.
	Alarm value (r2124, interpret decimal):
	6: The input terminal for the measuring probe is not set.
	4098: Error when initializing the measuring probe.
	4100: The measuring pulse frequency is too high.
	4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle.
Remedy:	Deactivate the measuring probe evaluation (B1: $\mathrm{p} 2509=0$ signal).
	For alarm value $=6$ :
	Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
	For alarm value $=4098$ :
	Check the Control Unit hardware.
	For alarm value $=4100$ :
	Reduce the frequency of the measuring pulses at the measuring probe.
	For alarm value $=4200$ :
	Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple.
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY
A07578 (F)	Encoder 2: Measuring probe evaluation not possible
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the measuring probe, an error occurred.
	Alarm value (r2124, interpret decimal):
	6: The input terminal for the measuring probe is not set.
	4098: Error when initializing the probe.
	4100: The measuring pulse frequency is too high.
	4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle.
Remedy:	Deactivate the measuring probe evaluation (B1: $\mathrm{p} 2509=0$ signal).
	For alarm value $=6$ :
	Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
	For alarm value $=4098$ :
	Check the Control Unit hardware.
	For alarm value $=4100$ :
	Reduce the frequency of the measuring pulses at the measuring probe.
	For alarm value $=4200$ :
	Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple.
Reaction upon F :	OFF1
Acknowl. upon F:	IMMEDIATELY


A07579 (F)	Encoder 3: Measuring probe evaluation not possible
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the measuring probe, an error occurred.
	Alarm value (r2124, interpret decimal):
	6 : The input terminal for the measuring probe is not set.
	4098: Error when initializing the probe.
	4100: The measuring pulse frequency is too high.
	4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle.
Remedy:	Deactivate the measuring probe evaluation (BI: p2509 = 0 signal).
	For alarm value = 6:
	Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
	For alarm value = 4098:
	Check the Control Unit hardware.
	For alarm value $=4100$ :
	Reduce the frequency of the measuring pulses at the measuring probe.
	For alarm value = 4200:
	Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple.
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY


A07580 (F, N)	Drive: No Sensor Module with matching component number
Message value:	Encoder data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
	VECTOR_I_AC
Component:	None Propagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Sensor Module with the component number specified in p0141 was not found.
	Alarm value (r2124, interpret decimal):
	Encoder data set involved (index of p0141).
Remedy:	Correct parameter p0141.
Reaction upon F:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A07581 (F)	Encoder 1: Position actual value preprocessing error
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the position actual value preprocessing.

### 4.2 List of faults and alarms

Remedy:	Check the encoder for the position actual value preprocessing.   See also: p2502 (LR encoder assignment)
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07582 (F)	Encoder 2: Position actual value preprocessing error
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the position actual value preprocessing.
Remedy:	Check the encoder for the position actual value preprocessing.
	See also: p2502 (LR encoder assignment)
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07583 (F)	Encoder 3: Position actual value preprocessing error
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	Encoder 3 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the position actual value preprocessing.
Remedy:	Check the encoder for the position actual value preprocessing.
	See also: p2502 (LR encoder assignment)
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07584	Encoder 1: Position setting value activated
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	While the binector input p2514 has a 1 signal, the position actual value is set to the value received via connector
input p2515. A possible system deviation cannot be corrected.	
Remedy:	Not necessary.
	The alarm is automatically withdrawn with binector input p2514 = 0 signal.


A07585	Encoder 2: Position setting value activated
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	While the binector input p2514 has a 1 signal, the position actual value is set to the value received via connector
	input p2515. A possible system deviation cannot be corrected.   Remedy:
	Not necessary.
	The alarm is automatically withdrawn with binector input p2514 = 0 signal.


A07586	Encoder 3: Position setting value activated
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	Encoder 3 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	While the binector input p2514 has a 1 signal, the position actual value is set to the value received via connector input p2515. A possible system deviation cannot be corrected.
Remedy:	Not necessary.
	The alarm is automatically withdrawn with binector input p2514 $=0$ signal.
A07587	Encoder 1: Position actual value preprocessing does not have a valid encoder
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following problem has occurred during the position actual value preprocessing.
	- an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400 $=0$ ) or invalid data (e.g. p0408=0).
Remedy:	Check the drive data sets, encoder data sets.
	See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number), p0400 (Encoder type selection), p2502 (LR encoder assignment)


A07588	Encoder 2: Position actual value preprocessing does not have a valid encoder
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	Encoder 2 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following problem has occurred during the position actual value preprocessing.   - an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400 $=0$ ) or invalid data (e.g. p0408=0).
Remedy:	Check the drive data sets, encoder data sets.
	See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number), p0400 (Encoder type selection), p2502 (LR encoder assignment)


A07589	Encoder 3: Position actual value preprocessing does not have a valid encoder
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	Encoder 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following problem has occurred during the position actual value preprocessing.

Remedy:
Check the drive data sets, encoder data sets.
See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number), p0400 (Encoder type selection), p2502 (LR encoder assignment)

A07590 (F)	Encoder 1: Drive Data Set changeover in operation
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment (p2502) was requested in operation.
Remedy:	To changeover the drive data set, initially, exit the "operation" mode.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A07591 (F)	Encoder 2: Drive Data Set changeover in operation
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment (p2502) was requested in operation.
Remedy:	To changeover the drive data set, initially, exit the "operation" mode.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A07592 (F)	Encoder 3: Drive Data Set changeover in operation
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment (p2502) was requested in operation.
Remedy:	To changeover the drive data set, initially, exit the "operation" mode.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07593 (F, N)	Encoder 1: Value range for position actual value exceeded
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value range (-2147483648 ... 2147483647) for the position actual value representation was exceeded.
	When the overflow occurs, the "referenced" or "absolute encoder adjusted" status is reset.
	Alarm value (r2124, interpret decimal):
	1: The position actual value (r2521) has exceeded the value range.
	2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has
	exceeded the value range.
	3: The maximum encoder value multiplied by the factor to convert the absolute position (r0483, r2723) from
	increments to length units (LU) has exceeded the value range for displaying the position actual value.


Remedy:	If required, reduce the traversing range or position resolution.
	For alarm value = 3:
	Reducing the position resolution and conversion factor:
	- reduce the length unit (LU) per load revolution for rotary encoders (p2506).
	- increase the fine resolution of absolute position actual values (p0419).
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE
A07594 (F, N)	Encoder 2: Value range for position actual value exceeded
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value range (-2147483648 ... 2147483647) for the position actual value representation was exceeded.
When the overflow occurs, the "referenced" or "absolute encoder adjusted" status is reset.	


A07595 (F, N)	Encoder 3: Value range for position actual value exceeded
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value range ( $-2147483648 \ldots 2147483647$ ) for the position actual value representation was exceeded. When the overflow occurs, the "referenced" or "absolute encoder adjusted" status is reset.   Alarm value (r2124, interpret decimal):   1: The position actual value (r2521) has exceeded the value range.   2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range.   3: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value.
Remedy:	If required, reduce the traversing range or position resolution.   For alarm value $=3$ :   Reducing the position resolution and conversion factor:   - reduce the length unit (LU) per load revolution for rotary encoders (p2506).   - increase the fine resolution of absolute position actual values (p0419).

### 4.2 List of faults and alarms

Reaction upon $\mathrm{F}:$	OFF1 (OFF2, OFF3)
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A07596 (F, N)	Encoder 1: Reference function interrupted
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An activated reference function (reference mark search or measuring probe evaluation) was interrupted.   - an encoder fault has occurred (Gn_ZSW. $15=1$ ).   - position actual value was set during an activated reference function.   - simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 signal).

Remedy: - check the causes and resolve.
- reset the control (BI: p2508 and $\mathrm{BI}:$ p2509 = 0 signal) and activate the requested function.
Reaction upon F: OFF1 (OFF2, OFF3)
Acknowl. upon F: IMMEDIATELY
Reaction upon N: NONE
Acknowl. upon N: NONE

A07597 (F, N)	Encoder 2: Reference function interrupted
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An activated reference function (reference mark search or measuring probe evaluation) was interrupted.   - an encoder fault has occurred (Gn_ZSW. $15=1$ ).   - position actual value was set during an activated reference function.   - simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 signal).   - activated reference function (reference mark search or measuring probe evaluation) was deactivated (BI: p2508 and $\mathrm{BI}:$ p2509 $=0$ signal).
Remedy:	- check the causes and resolve.   - reset the control (BI: p2508 and BI: p2509 $=0$ signal) and activate the requested function.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A07598 (F, N)	Encoder 3: Reference function interrupted
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	An activated reference function (reference mark search or measuring probe evaluation) was interrupted.
	- an encoder fault has occurred (Gn_Zsw.15 = 1).
	- position actual value was set during an activated reference function.
	- simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1
signal).	


F07600 (A)	Encoder 2: Adjustment not possible
Message value:	Drive data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	Encoder 2 Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range ( $-2147483648 \ldots 2147483647$ ) for displaying the position actual value.
Remedy:	If the value for the maximum possible absolute position (LU) is greater than 4294967296, then it is not possible to make an adjustment due to an overflow.
	For rotary encoders, the maximum possible absolute position (LU) is calculated as follows:
	1. Motor encoder without position tracking:
	p2506 * p0433 * p2505 / (p0432 * p2504)
	p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders
	2. Motor encoder with position tracking for measuring gear
	p2506 * p0412 * p2505 / p2504
	3. Motor encoder with position tracking for load gear:
	p2506 * p2721 * p0433 / p0432
	4. Motor encoder with position tracking for load and measuring gear:
	p2506 * 2721
	5. Direct encoder without position tracking:
	p2506 * 04333 / p0432
	p2506 * p0433 * p0421 / p0432 for multiturn encoders
	6 . Direct encoder with position tracking for measuring gear:
	p2506 * 0412
	For a linear encoder, the following must be maintained:
	- p0407 * p2503 / (2^p0419 * 10^7) < 1.0
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07601 (A)	Encoder 3: Adjustment not possible
Message value:	Drive data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, VECTOR, VECTOR_AC
Component:	Encoder 3 Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range ( $-2147483648 \ldots 2147483647$ ) for displaying the position actual value.
Remedy:	If the value for the maximum possible absolute position (LU) is greater than 4294967296, then it is not possible to make an adjustment due to an overflow.
	For rotary encoders, the maximum possible absolute position (LU) is calculated as follows:
	1. Motor encoder without position tracking:
	p2506 * p0433 * p2505 / (p0432 * p2504)
	p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders
	2. Motor encoder with position tracking for measuring gear
	p2506 * p0412 * p2505 / p2504
	3. Motor encoder with position tracking for load gear:
	p2506 * p2721 * p0433 / p0432
	4. Motor encoder with position tracking for load and measuring gear: p2506 * 2721



### 4.2 List of faults and alarms

Remedy:	- check position inversion (p0410.1).
- check direction convention: piston position (r0094) must be zero, if the piston is located at the A side. When moving	
from the A to the B side, velocity and position increase must be positive.	
- check the piston calibration, and if required, recalibrate the piston with the piston at the $A$ side $(p 1909.1=1)$.	
- when replacing the encoder, recalibrate the piston.	
- when shifting the machine zero point, recalibrate the piston.	
Note:	
Before acknowledging the fault, set p0476 $=0$. Then calibrate the piston again (p1909.1 = 1 with the piston	
completely retracted or set p1959.2 =1 and p1960 = 1).	
Reaction upon A: $\quad$See also: r0094, p0476 (Piston zero point calibration value)   Acknowl. upon A: NONE	

F07753 (N, A) Drive: No valid pressure actual value available

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

General drive fault (19)
HLA
Control Unit (CU) Propagation: DRIVE OFF2 (NONE, OFF1, OFF3) IMMEDIATELY

- the "force controller", "force limiting" or "stiction compensation" is activated (p1400), and at least one of the two required pressure sensors for pressure actual value $A$ or $B$ is not supplying a valid value. The two pressure actual values $A$ and $B$ are required for the functions listed above.
- the system pressure adaptation function for the speed controller is activated (p1400.15 = 1) and no system pressure measured value (r0069) is available. A system pressure measured value is required for this function.
Remedy: - check pressure sensors and wiring for pressure actual values $A$ and $B$ (X241 or X242).
- check offset correction values for pressure actual values A and B (p0241, p0243).
- if required, deselect the function "force controller", "force limiting" or "stiction compensation" (p1400).

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

## Drive: Incorrect shutoff valve configuration

Message value: $\% 1$
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Component: Reaction:
Acknowledge:
Cause: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC Control Unit (CU) Propagation: GLOBAL OFF2
IMMEDIATELY (POWER ON)
An incorrect shutoff valve configuration was detected.

Fault value (r0949, interpret decimal):
100:
Enable Safety Integrated (p9601/p9801), but p0218.0 = 0 (shutoff valve not available).
101:
The manipulated variable inhibit time is set less than the wait time to evaluate the feedback signal contacts when switching on the shutoff valve (p0230 < p9625[0]/p9825[0]).
102:
The manipulated variable inhibit time is set less than the wait time to evaluate the feedback signal contacts when switching off the shutoff valve ( p 0230 < p9625[1]/p9825[1]).

Remedy:	For fault value $=100$ :   Check the enable of Safety Integrated and the shutoff valve (p9601/p9801, p0218.0).   For fault value =101:   Set the manipulated variable inhibit time higher than the wait time to evaluate the feedback signal contacts when switching on the shutoff valve ( $\mathrm{p} 0230>\mathrm{p} 9625[0] / \mathrm{p} 9825[0]$ ).   For fault value =102:   Set the manipulated variable inhibit time higher than the wait time to evaluate the feedback signal contacts when switching off the shutoff valve ( $\mathrm{p} 0230>\mathrm{p} 9625[1] / \mathrm{p} 9825[1]$ ).   See also: p0230, p9625 (SI HLA shutoff valve wait time (CU)), p9825 (SI HLA shutoff valve wait time (MM))
F07755 (N, A)	Drive: travel to fixed end stop without force controller
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	HLA
Component:	Motor Propagation: DRIVE
Reaction:	OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The function "Travel to fixed end stop" (p1545) was selected, although no "Force controller" or no "Force limiting" has been activated (p1400). With these settings, the drive would be traversed with maximum force against the end stop.
Remedy:	- if required, deactivate the "Travel to end stop" function (p1545).   - activate the force controller (p1400.14 = 1).   or   - activate force limiting, mode 1 or mode $2(p 1400.0=1, p 1400.1=1)$.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F07756	Drive: Filter natural frequency > Shannon frequency
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA
Component:	Motor Propagation: DRIVE
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	One of the filter natural frequencies is greater than the Shannon frequency.
	The Shannon frequency is calculated according to the following formula: 0.5 / p0115[0]
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Manipulated variable filter 1 (p1658, p 1660 )
	Bit 1: Manipulated variable filter 2 (p1663, p 1665 )
	Bit 3: Manipulated variable filter (p1800, p1805)
	Bit 4: Precontrol filter (p1721, p1727)
Remedy:	- reduce the numerator or denominator natural frequency of the current setpoint filter involved.   - reduce controller sampling time (p0115[0]).   - deactivate the filter involved


F07800	Drive: No power unit present
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The power unit parameters cannot be read or no parameters are stored in the power unit.
	It is possible that the DRIVE-CLiQ cable between the Control Unit and power unit is interrupted or defective. Note:
	This fault also occurs if an incorrect topology was selected in the commissioning tool and this parameterization is then downloaded to the Control Unit.
	See also: r0200 (Power unit code number actual)
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- check the DRIVE-CLiQ cable between the Control Unit and power unit.
	- check the power unit and replace if necessary.
	- check the Control Unit, and if required replace it.
	- after correcting the topology, the parameters must be again downloaded using the commissioning tool.
F07801	Drive: Motor overcurrent
Message value:	-
Message class:	Motor overload (8)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The permissible motor limit current was exceeded.
	- effective current limit set too low.
	- current controller not correctly set.
	- motor was braked with an excessively high stall torque correction factor.
	- U/f operation: Up ramp was set too short or the load is too high.
	- U/f operation: Short-circuit in the motor cable or ground fault.
	- U/f operation: Motor current does not match the current of Motor Module.
	Note:
	Synchronous motor: Limit current $=1.3 \times \mathrm{p} 0323$
	Induction motor: Limit current= $1.3 \times$ r0209
Remedy:	- check the current limits (p0323, p0640).
	- check the current controller (p1715, p1717).
	- reduce the stall torque correction factor (p0326).
	- increase the up ramp (p1318) or reduce the load.
	- check the motor and motor cables for short-circuit and ground fault.
	- check the Motor Module and motor combination.


F07801	Drive: Motor overcurrent
Message value:	-
Message class:	Motor overload (8)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The permissible motor limit current was exceeded.
	- effective current limit set too low.
	- current controller not correctly set.
	- U/f operation: Up ramp was set too short or the load is too high.
	- U/f operation: Short-circuit in the motor cable or ground fault.
	- U/f operation: Motor current does not match current of power unit.
	- Switch to rotating motor without flying restart function (p1200).
	Note:
	Limit current $=2 \times$ minimum (p0640, $4 \times \mathrm{p} 0305 \times \mathrm{p} 0306)>=2 \times \mathrm{p} 0305 \times \mathrm{p} 0306$
Remedy:	- check the current limits (p0640).
	- vector control: Check the current controller (p1715, p1717).
	- U/f control: Check the current limiting controller (p1340 ... p1346).
	- increase the up ramp (p1120) or reduce the load.
	- check the motor and motor cables for short-circuit and ground fault.
	- check the motor for the star-delta configuration and rating plate parameterization.   - check the power unit and motor combination.
	- Choose "flying restart" function (p1200) if switched to rotating motor.
F07802	Drive: Infeed or power unit not ready
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	After an internal switch-on command, the infeed or drive does not signal ready.
	- monitoring time is too short.
	- DC link voltage is not present.
	- associated infeed or drive of the signaling component is defective.
	- supply voltage incorrectly set.
Remedy:	- increase the monitoring time (p0857).
	- ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed.   - replace the associated infeed or drive of the signaling component.
	- check the line supply voltage setting ( p 0210 ).
	See also: p0857 (Power unit monitoring time)


A07805 (N)	Infeed: Power unit overload I2t	
Message value:	-	
Message class:	Power electronics faulted (5)	
Drive object:	A_INF, B_INF, R_INF, S_INF	
Component:	Power Module	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The alarm threshold for I2t overload (p0294) of the power unit has been exceeded.	
Remedy:	- reduce the continuous load.	
	- adapt the load duty cycle.	
Reaction upon N:	NONE	
Acknowl. upon N:	NONE	


A07805 (N)	Drive: Power unit overload I2t
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for l2t overload (p0294) of the power unit has been exceeded.
	The response parameterized in p0290 becomes active.
	See also: p0290 (Power unit overload response)


F07808 (A)	HF Damping Module: damping not ready
Message value:	New message: \%1
Message class:	Power electronics faulted (5)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When switching on or in the switched-on state, the HF Damping Module does not return a ready signal.


Remedy:	- check the DRIVE-CLiQ wiring to the HF Damping Module.   - check the 24 V supply voltage.   - if required, replace the HF Damping Module.   Note:   HF Damping Module
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07810	Drive: Power unit EEPROM without rated data
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	No rated data are stored in the power unit EEPROM.
	See also: p0205, r0206, p0206, r0207, p0207, r0208, p0208, r0209, p0209
Remedy:	Replace the power unit or inform Siemens Customer Service.
F07815	Drive: Power unit has been changed
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The code number of the actual power unit does not match the saved number. This only occurs if the comparator in p9906 or p9908 is not at 2 (low) or 3 (minimum).
	Fault value (r0949, interpret decimal):
	Number of the incorrect parameter.
	See also: r0200 (Power unit code number actual), p0201 (Power unit code number)
Remedy:	Connect the original power unit and switch on the Control Unit again (POWER ON) or set p0201 to r0200 and exit commissioning with p0010 $=0$.
	For infeeds, the following applies:
	Line reactors or line filters must be used that are specified for the new power unit. A line supply and DC link identification routine $(\mathrm{p} 3410=5)$ must then be carried out. It is not possible to change the power unit without recommissioning the system if the type of infeed (A_Infeed, B_Infeed, S_Infeed), the type of construction/design (booksize, chassis) or the voltage class differ between the old and new power units.
	For inverters, the following applies:
	If the new power unit is accepted, then if required, the current limit ( p 0640 ) can be reduced by a lower maximum current of the power unit (r0209) (torque limits stay the same).
	If not only the power unit is changed, but also the motor, then the motor must be re-commissioned (e.g. using p0010 $=1$ ). This is also necessary if motor data is still to be downloaded via DRIVE-CLiQ.
	See also: r0200 (Power unit code number actual)
F07815	Drive: Power unit has been changed
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The code number of the actual power unit does not match the saved number. This only occurs if the comparator in p9906 or p9908 is not at 2 (low) or 3 (minimum).
	Fault value (r0949, interpret decimal):
	Number of the incorrect parameter.
	See also: r0200 (Power unit code number actual), p0201 (Power unit code number)

Remedy: Connect the original power unit and switch on the Control Unit again (POWER ON) or set p0201 to r0200 and exit commissioning with p0010 $=0$.
For infeeds, the following applies:
Line reactors or line filters must be used that are specified for the new power unit. A line supply and DC link identification routine $(\mathrm{p} 3410=5)$ must then be carried out. It is not possible to change the power unit without recommissioning the system if the type of infeed (A_Infeed, B_Infeed, S_Infeed), the type of construction/design (booksize, chassis) or the voltage class differ between the old and new power units.
For inverters, the following applies:
If the new power unit is accepted, then if required, the current limit ( p 0640 ) can be reduced by a lower maximum current of the power unit (r0209) (torque limits stay the same).
If not only the power unit is changed, but also the motor, then the motor must be re-commissioned (e.g. using p0010 $=1$ ). This is also necessary if motor data is still to be downloaded via DRIVE-CLiQ.
If the comparison stage in p9906 is set to 2,3 , then commissioning can be exited $(p 0010=0)$ and the fault acknowledged.
See also: r0200 (Power unit code number actual)

F07815	Drive: Power unit has been changed
Message value:	Parameter: $\% 1$

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: VECTOR, VECTOR_AC, VECTOR_I_AC
Component: Power Module Propagation: GLOBAL

## Reaction:

Acknowledge:
NONE

Cause: The code number of the actual power unit does not match the saved number. This only occurs if the comparator in p9906 or p9908 is not at 2 (low) or 3 (minimum).
Fault value (r0949, interpret decimal):
Number of the incorrect parameter.
See also: r0200 (Power unit code number actual), p0201 (Power unit code number)
Remedy: - Connect the original power unit and switch on the Control Unit again (POWER ON).

- set p0201 to r0200 and exit commissioning with p0010 $=0$.

Note:
If the power unit type was changed (see r0203) or the motor replaced, then the motor must be recommissioned (e.g. using p0010 $=1, \mathrm{p} 3900=3, \mathrm{p} 1900=1,2$ ). This is also necessary if motor data is still to be downloaded via DRIVECLiQ.
If the new power unit is accepted, then if required, the current limit p0640 can be reduced by a lower maximum current of the power unit (r0209) (torque limits stay the same).
If the comparison stage in p9906 is set to 2,3 , then commissioning can be exited $(p 0010=0)$ and the fault acknowledged. This procedure is not recommended for different power unit types.
See also: r0200 (Power unit code number actual)

## A07820

Message value:
Drive: Temperature sensor not connected
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## \%1

Error in the parameterization / configuration / commissioning procedure (18)
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL NONE
NONE
The temperature sensor for monitoring the motor temperature, specified in p0600, is not available.
Alarm value (r2124, interpret decimal):
1: p0601 = 10 (SME), but in p0600 - not evaluated via encoder is selected.
2: $\mathrm{p} 0600=10(\mathrm{BICO})$, but the signal source $(\mathrm{p} 0603)$ is not interconnected.
3: p0601 = 11 (BICO), but in p0600 - not evaluated via BICO interconnection is selected (20 or 21).
4: p0601 = $11(\mathrm{BICO})$ and p4610-p4613 > 0, but the associated signal source ( p 0608 , p0609) is not interconnected.
5: Component with sensor evaluation not present or has been removed in the meantime.
6: Evaluation via Motor Module not possible (r0192.21).

Remedy:	For alarm value = 1 :
	- in p0600 set an encoder with temperature sensor.
	For alarm value $=2$ :
	- interconnect p0603 with the temperature signal.
	For alarm value $=3,4$ :
	- set the available temperature sensor (p0600, p0601).
	- set p4610 ... p4613 $=0$ (no sensor), or interconnect p0608 or p0609 with an external temperature signal.
	For alarm value $=5$ :
	- connect the component with the temperature sensor. Check the DRIVE-CLiQ connection.
	For alarm value = 6:
	- update the Motor Module firmware. Connect temperature sensor via encoder.
	See also: p0600 (Motor temperature sensor for monitoring), p0601


A07821	Message value:
Message class:	-


Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC	
Component:	Control Unit (CU) Propagation: GLOBAL	

Reaction:
Acknowledge:
Cause: The alarm threshold for the lower speed was fallen below.
Note:

- the monitoring is activated using p2149.6 = 1 .
- status bit r2197.1 = 1 indicates that the value has been fallen below.
- for closed-loop control without encoder, this alarm is only output for an excited motor (r0056.4 = 1); for closed-loop control with encoder, it is always output.
- for a separately excited synchronous motor in closed-loop torque control without an encoder (p1300 = 20, p1501 set), the monitoring for an underspeed condition is automatically activated internally.
See also: p2140, p2149, p2155, r2197
Remedy: - check the parameterization (p2155, p2140).
- if required, reduce the load.
- switch-on additional unit for generator applications.

F07822 (N)	Monitoring underspeed threshold fallen below fault
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The fault threshold for the lower speed was fallen below.
	Note:
	- the monitoring is activated using p2149.6 = 1 .
	- status bit r2199.0 = 1 indicates that the value has been fallen below.
	- the fault is only output if the machine is excited (r0056.4 = 1).
	- for a separately excited synchronous motor in closed-loop torque control without an encoder (p1300 = 20, p1501 = 1 signal), the monitoring for an underspeed condition is automatically activated internally.
	See also: p2149, p2150, p2161, r2199
Remedy:	- check the parameterization (p2161, p2150).
	- if required, reduce the load.
	- switch-on additional unit for generator applications.
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A07823	I2t monitoring alarm threshold exceeded
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the freely parameterizable 12 t monitoring, the alarm threshold (p3243) was exceeded.
	Note:
	Status bit r2199.13 = 1 indicates that the value is exceeded.
	See also: p3240 (I2t input value signal source), p3241 (Permissible I2t continuous value), p3242 (I2t maximum duration), p3243 (I2t alarm threshold), r3244 (Actual I2t integrator value)
Remedy:	- check the received input value (p3240).
	- if required, reduce the load.
	- check the parameterization (p3241, p3242, p3243).
	Note:
	The alarm and status bit r2199.13 are reset if the I2t integrator value (r3244) falls below half of the value set in p 3243 .
F07824	12t monitoring fault threshold exceeded
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	For the freely parameterizable I 2 t monitoring, the fault threshold (100 \%) was exceeded.
	Note:
	Status bit r2199.14 = 1 indicates that the value is exceeded.
	See also: p3240 (I2t input value signal source), p3241 (Permissible I2t continuous value), p3242 (I2t maximum duration), p3243 (I2t alarm threshold), r3244 (Actual I2t integrator value)
Remedy:	- check the received input value (p3240).
	- if required, reduce the load.
	- check the parameterization (p3241, p3242, p3243).
	Note:
	Fault and status bit r2199.14 are reset if the I2t integrator value (r3244) falls below a value of 99\%.


A07825 (N)	Drive: Simulation mode activated	
Message value:	-	
Message class:	Application/technological function faulted (17)	
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC $\quad$ Propagation:	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The simulation mode is activated.	
	The drive can only be switched on if the DC link voltage is less than 40 V.	
Remedy:	Not necessary.	
	The alarm is automatically withdrawn when the simulation mode is deactivated (p1272 = 0).	
Reaction upon N:	NONE	
Acknowl. upon N:	NONE	


F07826	Drive: DC link voltage for simulation operation too high
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC $\quad$ Propagation: $\quad$ GLOBAL
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The simulation mode is activated and the DC link voltage is greater than the permissible value of 40 V.
Remedy:	- switch out (disable) simulation mode $(p 1272=0)$ and acknowledge the fault.
	- reduce the input voltage in order to reach a DC link voltage below 40 V.


F07840	Drive: Infeed operation missing
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The signal "infeed operation" is not present although the enable signals for the drive have been present for longer   than the parameterized monitoring time (p0857).
	- infeed not operational.
	- interconnection of the binector input for the ready signal is either incorrect or missing (p0864).
	- infeed is presently carrying out a line supply identification routine.
Remedy:	- bring the infeed into an operational state.
	- check the interconnection of the binector input for the signal "infeed operation" (p0864).
	- increase the monitoring time (p0857).
	- wait until the infeed has completed the line supply identification routine.
See also: p0857 (Power unit monitoring time), p0864	


F07841 (A)	Drive: Infeed operation withdrawn
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3)


A07850 (F)	External alarm 1	
Message value:	-	
Message class:	External measured value / signal state outside the permissible range (16)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The condition for "External alarm 1" is satisfied.	
	Note:	
	The "External alarm 1" is initiated by a 1/0 edge via binector input p2112.	
	See also: p2112 (External alarm 1)	
	Eliminate the causes of this alarm.	
Remedy:	Infeed: NONE (OFF1, OFF2)	
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)	
Acknowl. upon F:	IMMEDIATELY (POWER ON)	


A07851 (F)	External alarm 2
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object: All objects   Component: None   Reaction: NONE   Acknowledge: NONE   Cause: The condition for "External alarm 2" is satisfied.    Note:    The "External alarm 2" is initiated by a 1/0 edge via binector input p2116.    See also: p2116 (External alarm 2)   Remedy: Eliminate the causes of this alarm.   Reaction upon F: Infeed: NONE (OFF1, OFF2)    Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)    Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)    Hla: NONE (OFF1, OFF2, OFF3, STOP2)   Acknowl. upon F: IMMEDIATELY (POWER ON)	


A07852 (F)	External alarm 3
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object: All objects   Component: None   Reaction: NONE   Acknowledge: NONE   Cause: The condition for "External alarm 3" is satisfied.    Note:    The "External alarm 3" is initiated by a 1/0 edge via binector input p2117.    See also: p2117 (External alarm 3)    Eliminate the causes of this alarm.   Remedy: Infeed: NONE (OFF1, OFF2)   Reaction upon F: Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)    Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)    Hla: NONE (OFF1, OFF2, OFF3, STOP2)   Acknowl. upon F: IMMEDIATELY (POWER ON)	


F07860 (A)	External fault 1
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 1" is satisfied.
	Note:
	The "External fault 1 " is initiated by a $1 / 0$ edge via binector input p2106.
	See also: p2106 (External fault 1)
Remedy:	- eliminate the causes of this fault.
	- acknowledge fault.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07861 (A)	External fault 2
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 2" is satisfied.
	Note:
	The "External fault 2 " is initiated by a $1 / 0$ edge via binector input p2107.
	See also: p2107 (External fault 2)
Remedy:	- eliminate the causes of this fault.
	- acknowledge fault.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07862 (A)	External fault 3
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	All objects
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 3 " is satisfied.
	Note:
	The "External fault 3 " is initiated by a $1 / 0$ edge via the following parameters.   - AND logic operation, binector input p2108, p3111, p3112.   - switch-on delay p3110.
	See also: p2108, p3110, p3111, p3112

### 4.2 List of faults and alarms

Remedy:	- eliminate the causes of this fault.   - acknowledge fault.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07890	Internal voltage protection / internal armature short-circuit with STO active
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The internal armature short-circuit (p1231 = 4) is not possible as Safe Torque Off (STO) is enabled. The pulses cannot be enabled.
Remedy:	Switch out the internal armature short-circuit ( $\mathrm{p} 1231=0$ ) or deactivate Safe Torque Off (p9501 = p9561 = 0) . Note:   STO: Safe Torque Off / SH: Safe standstill
F07898	Drive: flying restart unsuccessful due to excessively low flux
Message value:	-
Message class:	Motor overload (8)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	While identifying the rotor position of a separately excited synchronous motor based on voltage measurement, after the excitation time had elapsed, the flux was too low.
Remedy:	Increase the excitation time (p0346).
	See also: p0346
A07899 (N)	Drive: Stall monitoring not possible
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Stall monitoring is not possible, because a change was made into the open-loop speed controlled mode before the wait time p2177 had expired.
	This situation can only occur, if the following conditions apply:
	p1300 = 20
	p2177 > p1758
	$\mathrm{p} 1750.2=0$
	$\mathrm{p} 1750.6=0$
Remedy:	- Deactivate the changeover into open-loop speed controlled operation when operating at the torque limit (p1750.6 = $0)$.
	Condition:
	No slow reversing through the open-loop speed controlled operating range p1755 within the time p1758 when operating at the torque limit.
	- shorten the stall detection wait time (p2177 < p1758).
	- Activate closed-loop controlled operation from standstill and higher (p1750.2 = 1).
	Condition:
	There is no active load, for example, a hoisting gear
	- Use an operating mode with encoder (p1300 = 21).
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F07900 (N, A)	Drive: Motor blocked/speed controller at its limit
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Motor has been operating at the torque limit longer than the time specified in p 2177 and below the speed threshold in p2175.
	This signal can also be initiated if the speed actual value is oscillating and the speed controller output repeatedly goes to its limit.
	See also: p2175, p2177
Remedy:	- check that the motor can freely move.
	- check the effective torque limit (r1538, r1539).
	- check the parameter, message "Motor blocked" and if required, correct (p2175, p2177).
	- check the inversion of the actual value (p0410).
	- check the motor encoder connection.
	- check the encoder pulse number (p0408).
	- for SERVO with encoderless operation and motors with low power ratings (< 300 W ), increase the pulse frequency (p1800).
	- after de-selecting the "Basic positioner" (EPOS) function mode, check the motoring (p1528) and regenerative (p1529) torque limit and modify again.
	- blocksize device: for encoderless operation and a current controller sampling time $00115[0]<80 \mu \mathrm{~s}$, either set the pulse frequency of $\mathrm{p} 1800=1 / \mathrm{p} 0115[0]$ or increase the switchover speed of the model p 1755 .
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07900 (N, A)	Drive: Motor blocked
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold in p2175.
	This signal can also be initiated if the speed actual value is oscillating and the speed controller output repeatedly goes to its limit.
	If the simulation mode is enabled ( $\mathrm{p} 1272=1$ ) and the closed-loop control with speed encoder activated ( $\mathrm{p} 1300=21$ ), then the inhibit signal is generated if the encoder signal is not received from a motor that is driven with the torque setpoint of the closed-loop control.
	See also: p2175, p2177
Remedy:	- check that the motor can freely move.
	- check the effective torque limit ( $\mathrm{r} 1538, \mathrm{r} 1539$ ).
	- check the parameter, message "Motor blocked" and if required, correct (p2175, p2177).
	- check the inversion of the actual value (p0410).
	- check the motor encoder connection.
	- check the encoder pulse number (p0408).
	- after de-selecting the "Basic positioner" (EPOS) function mode, check the motoring (p1528) and regenerative (p1529) torque limit and modify again.
	- in the simulation mode and operation with speed encoder, the power unit to which the motor is connected must be switched on and must be supplied with the torque setpoint of the simulated closed-loop control. Otherwise, change over to encoderless control (see p1300).
	- check the direction of rotation enable signals for a flying restart of the motor (p1110, p1111).
	- for U/f control: check the current limits and acceleration times (p0640, p1120).


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F07901	Drive: Motor overspeed
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	Servo: OFF2 (IASC/DCBRK)
	Hla: OFF2
Acknowledge:	IMMEDIATELY
Cause:	The maximum permissible speed was either positively or negatively exceeded.
	The maximum permissible positive speed is formed as follows: Minimum (p1082, CI: p1085) + p2162
	The maximum permissible negative speed is formed as follows: Maximum (-p1082, CI: 1088) - p2162
Remedy:	The following applies for a positive direction of rotation:
	- check r1084 and if required, correct p1082, Cl:p1085 and p2162.
	The following applies for a negative direction of rotation:
	- check r1087 and if required, correct p1082, Cl:p1088 and p2162.


F07901	Drive: Motor overspeed
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor
Reaction:	OFF2 (IASC/DCBRK)
Acknowledge:	IMMEDIATELY
Cause:	The maximum permissible speed was either positively or negatively exceeded.
	The maximum permissible positive speed is formed as follows: Minimum (p1082, CI: p1085) + p2162
	The maximum permissible negative speed is formed as follows: Maximum (-p1082, CI: 1088) - p2162
Remedy:	The following applies for a positive direction of rotation:
	- check r1084 and if required, correct p1082, CI:p1085 and p2162.
	The following applies for a negative direction of rotation:
	- check r1087 and if required, correct p1082, CI:p1088 and p2162.
	Activate precontrol of the speed limiting controller (p1401.7 = 1).
	Increase the hysteresis for the overspeed signal p2162. This upper limit is dependent upon the maximum motor
	speed p0322 and the maximum speed p1082 of the setpoint channel.

F07902 (N, A) Drive: Motor stalled

Message value: \%1
Message class: Application/technological function faulted (17)
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Component: Motor Propagation: GLOBAL
Reaction:
Acknowledge: IMMEDIATELY
Cause:
The system has identified that the motor has stalled for a time longer than is set in p2178.
Fault value (r0949, interpret decimal):
1: Stall detection using r1408.11 (p1744, p0492).
2: Stall detection using r1408.12 (p1745) or via the flux difference (r0083 ... r0084).
3: Stall detection using r0056.11 (only for separately excited synchronous motors).
See also: p1744 (Motor model speed threshold stall detection), p2178 (Motor stalled delay time)

Remedy:	For closed-loop speed and torque control with speed encoder, the following applies:   - check the speed signal (interrupted cable, polarity, pulse number, broken encoder shaft).   - check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the same motor that is controlled for the data set changeover.   If there is no fault, then the fault tolerance (p1744 and p0492) can be increased.   For closed-loop speed and torque control without speed encoder, the following applies:   - check whether the drive in the open-loop controlled mode (r1750.0) stalls under load. If yes, then increase the current setpoint using p1610.   - check whether the drive stalls due to the load if the speed setpoint is still zero. If yes, then increase the current setpoint using p1610.   - if the motor excitation (magnetizing) time (r0346) was significantly reduced, then it should be increased again.   - check the current limits ( 00640 , r0067). If the current limits are too low, then the drive cannot be magnetized.   - check the current controller ( $\mathrm{p} 1715, \mathrm{p} 1717$ ) and the speed adaptation controller ( $\mathrm{p} 1764, \mathrm{p} 1767$ ). If the dynamic response was significantly reduced, then this should be increased again.   - check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the motor that is controlled for the data set changeover.   If there is no fault, then the fault tolerance (p1745) or the delay time (p2178) can be increased.   For separately excited synchronous motors (closed-loop control with speed encoder), the following applies:   - check the speed signal (interrupted cable, polarity, pulse number).   - ensure the correct motor parameterization (rating plate and equivalent circuit diagram parameters).   - check the excitation equipment and the interface to the closed-loop control.   - encoder the highest possible dynamic response of the closed-loop excitation current control.   - check the speed control for any tendency to oscillate and if resonance effects occur, use a bandstop filter.   - do not exceed the maximum speed ( p 2162 ).   If there is no fault, then the delay time can be increased (p2178).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

## F07902 (N, A) Drive: Motor stalled

Message value: \%1
Message class: Application/technological function faulted (17)
Drive object:
Component:
Reaction:
Acknowledge:
VECTOR, VECTOR_AC, VECTOR_I_AC
Motor Propagation: GLOBAL
OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
IMMEDIATELY
Cause:
The system has identified that the motor has stalled for a time longer than is set in p2178.
Fault value (r0949, interpret decimal):
1: Stall detection using r1408.11 (p1744, p0492).
2: Stall detection using r1408.12 (p1745) or via the flux difference (r0083 ... r0084).
3: Stall detection using r0056.11 (only for separately excited synchronous motors).
See also: p1744 (Motor model speed threshold stall detection), p2178 (Motor stalled delay time)

### 4.2 List of faults and alarms

Remedy:	It should always be carefully ensured that the motor data identification (p1910) as well as the rotating measurement (p1960) were carried out (also refer to r3925). For synchronous motors with encoder, the encoder must have been adjusted (p1990).
	For closed-loop speed and torque control with speed encoder, the following applies:
	- check the speed signal (interrupted cable, polarity, pulse number, broken encoder shaft).
	- check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the same motor that is controlled for the data set changeover.
	If there is no fault, then the fault tolerance ( p 1744 or p 0492 ) can be increased. For resolvers with a high signal ripple, for example p0492 should be increased and the speed signal smoothed (p1441, p1442).
	If the stalled motor should take place in the range of the monitor model and for speeds of less than $30 \%$ of the rated motor speed, then a change can be made directly from the current model into the flux impression (p1401.5 = 1). We therefore recommend that the time-controlled model change is switched in ( $\mathrm{p} 1750.4=1$ ) or the model changeover limits are significantly increased ( $\mathrm{p} 1752>0.35 \times \mathrm{p} 0311$; p1753 $=5 \%$ ).
	- check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the motor that is controlled for the data set changeover.
	For closed-loop speed and torque control without speed encoder, the following applies:
	- check whether the drive stalls solely due to the load in controlled mode (r1750.0) or when the speed setpoint is still zero. If so, increase the current setpoint via p1610 or set p1750.2 = 1 (sensorless vector control to standstill for passive loads).
	- if the motor excitation time ( p 0346 ) was significantly reduced and the drive stalls when it is switched on and run immediately, p0346 should be increased again or quick magnetizing selected (p1401).
	- check the current controller (p1715, p1717) and the speed adaptation controller (p1764, p1767). If the dynamic response was significantly reduced, then this should be increased again.
	- if there is no fault, then the fault tolerance (p1745) or the delay time (p2178) can be increased.
	The following generally apply for closed-loop and torque control: - check whether the motor cables are disconnected.
	- check the current limits (p0640, r0067, r0289). If the current limits are too low, then the drive cannot be magnetized.
	- if the fault occurs with fault value 2 when the motor accelerates very quickly to the field weakening range, the deviation between the flux setpoint and flux actual value can be reduced and, in turn, the message prevented, by reducing p1596 or p1553.
	For separately excited synchronous motors (closed-loop control with speed encoder), the following applies: - check the speed signal (interrupted cable, polarity, pulse number).
	- ensure the correct motor parameterization (rating plate and equivalent circuit diagram parameters).
	- check the excitation equipment and the interface to the closed-loop control.
	- encoder the highest possible dynamic response of the closed-loop excitation current control.
	- check the speed control for any tendency to oscillate and if resonance effects occur, use a bandstop filter.
	- do not exceed the maximum speed (p2162).
	If there is no fault, then the delay time can be increased (p2178).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE



Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

## F07906

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## Armature short-circuit / internal voltage protection: Parameterization error

Fault cause: \%1, motor data set: \%2
Error in the parameterization / configuration / commissioning procedure (18)
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL
OFF2
IMMEDIATELY
The armature short-circuit is incorrectly parameterized.
Fault value (r0949, interpret decimal):
zzzzyyxx: zzzz = fault cause, xx = motor data set
$z z z z=0001$ hex = 1 dec:
A permanent-magnet synchronous motor has not been selected.
zzzz $=0002$ hex $=2 \mathrm{dec}$ :
No induction motor selected.
zzzz = 0065 hex = 101 dec:
External armature short-circuit: Output (r1239.0) not wired.
$z z z z=0066$ hex = 102 dec:
External armature short-circuit with contactor feedback signal: No feedback signal connected (BI:p1235). The feedback signal must be interconnected in all command data sets (CDS).
$z z z z=0067$ hex $=103 \mathrm{dec}$ :
External armature short-circuit without contactor feedback signal: Wait time when opening (p1237) is 0 .
zzzz $=00 \mathrm{C} 9$ hex $=201 \mathrm{dec}$ :
Internal voltage protection: The maximum output current of the Motor Module (r0209) is less than $1.8 \times$ motor shortcircuit current (r0331).
$z z z z=00 C A$ hex $=202 \mathrm{dec}$ :
Internal voltage protection: A Motor Module in booksize or chassis format is not being used.
$z z z z=00 C B$ hex $=203 \mathrm{dec}$ :
Internal voltage protection: The motor short-circuit current (p0320) is greater than the maximum motor current (p0323).
zzzz = 00CC hex = 204 dec :
Internal voltage protection: The activation (p1231 = 4) is not given for all motor data sets with synchronous motors (p0300 $=2 x x, 4 x x)$.
Remedy: $\quad$ For fault value $=1$ :

- an armature short-circuit / voltage protection is only permissible for permanent-magnetic synchronous motors. The highest position of the motor type in p0300 must either be 2 or 4 .
For fault value $=101$ :
- the contactor for the external armature short-circuit configuration should be controlled using output signal r1239.0.

For instance, the signal can be connected to an output terminal via binector input p0738. Before this fault can be acknowledged, p1231 must be set again.
For fault value = 102:

- if the external armature short circuit is selected with contactor feedback signal (p1231 $=1$ ), then the feedback signal must be connected to an input terminal (e.g. r0722.x) and then interconnected to binector input p1235.
- alternatively, the external armature short-circuit without contactor feedback signal (p1231=2) can be selected.

For fault value = 103:

- if the external armature short-circuit without contactor feedback signal (p1231 $=2$ ) is selected, then a delay time must be parameterized in p1237. This time must always be greater than the actual contactor opening time, as otherwise the Motor Module would be short-circuited!
For fault value = 201:
- a Motor Module with a higher maximum current or a motor with a lower short-circuit current must be used. The maximum Motor Module current must be higher than $1.8 \times$ short-circuit current of the motor.
For fault value = 202:
- for internal voltage protection, use a Motor Module in booksize or chassis format.

For fault value $=203$ :

- for internal voltage protection, only use short-circuit proof motors.

For fault value $=204$ :

- the internal voltage protection must either be activated for all motor data sets with synchronous motors ( $\mathrm{p} 0300=$ $2 x x, 4 x x)(p 1231=3)$ or it must be deactivated for all motor data sets ( p 1231 not equal to 3 ). This therefore ensures that the protection cannot be accidentally withdrawn as a result of a data set changeover. The fault can only be acknowledged if this condition is fulfilled.

F07907	Internal armature short-circuit: Motor terminals are not at zero potential after pulse
	suppression
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The function "Internal voltage protection" (p1231 = 3) was activated.
	The following must be observed:
	- when the internal voltage protection is active, after pulse suppression, all of the motor terminals are at half of the DC
	link voltage (without an internal voltage protection, the motor terminals are at zero potential)!
	- it is only permissible to use motors that are short-circuit proof (p0320 < p0323).
	- the Motor Module must be able to continually conduct 180\% short-circuit current (r0331) of the motor (r0289).
- the internal voltage protection cannot be interrupted due to a fault response. If an overcurrent condition occurs	

## F07909

Message value:
Message class:
Drive object:
Component: Reaction:
Acknowledge:
Cause:

Internal voltage protection: Deactivation only effective after POWER ON

Error in the parameterization / configuration / commissioning procedure (18)
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL
NONE
POWER ON
The deactivation of the internal voltage protection (p1231 not equal to 3) only becomes effective after POWER ON The status signal r1239.6 = 1 indicates that the internal voltage protection is ready.

### 4.2 List of faults and alarms

Remedy:	Not necessary.   This a note for the user.
A07910 (N)	Drive: Motor overtemperature
Message value:	\%1
Message class:	Motor overload (8)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	KTY84/PT1000:
	The motor temperature has exceeded the alarm threshold (p0604, p0616). PTC:
	The response threshold of 1650 Ohm was exceeded.
	Alarm value (r2124, interpret decimal):   this is the number of the temperature channel leading to the message.
	See also: p0604, p0612, p0617, p0618, p0619, p0625, p0626, p0627, p0628
Remedy:	- check the motor load.
	- check the motor ambient temperature and cooling.
	- check PTC or bimetallic NC contact.
	- check the monitoring limits (p0604, p0605).
	- activate/check the parameters of the motor temperature model (p0612, p0626 and following).
	See also: p0612, p0617, p0618, p0619, p0625, p0626, p0627, p0628
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A07910 (N)	Drive: Motor overtemperature
Message value:	\%1
Message class:	Motor overload (8)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	KTY84/PT1000 or no sensor:
	The measured motor temperature or temperature of motor temperature model 2 has exceeded the alarm threshold (p0604, p0616). The response parameterized in p0610 becomes active.
	PTC or bimetallic NC contact:
	The response threshold of 1650 Ohm was exceeded or the NC contact opened.
	Alarm value (r2124, interpret decimal):
	- SME not selected in p0601:
	11: No output current reduction.
	12: Output current reduction active.
	- SME or TM120 selected in p0601 (p0601 = 10, 11):
	this is the number of the temperature channel leading to the message.
	See also: p0604 (Mot_temp_mod 2: sensor alarm threshold), p0610 (Motor overtemperature response)
Remedy:	- check the motor load.
	- check the motor ambient temperature and cooling.
	- check PTC or bimetallic NC contact.
	- check the monitoring limits (p0604, p0605).
	- activate/check the parameters of the motor temperature model (p0612, p0626 and following).
	See also: p0612, p0617, p0618, p0619, p0625, p0626, p0627, p0628
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F07913	Excitation current outside the tolerance range
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The difference between the excitation current actual value and setpoint has exceeded the tolerance:   abs(r1641-r1626) > p3201 + p3202
	The cause of this fault is again reset for abs(r1641 - r1626) < p3201.
Remedy:	- check the parameterization (p1640, p3201, p3202).   - check the interfaces to the excitation equipment (r1626, p1640).
	- check the excitation equipment.


F07914	Flux out of tolerance
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The difference between the flux actual value and setpoint has exceeded the tolerance: abs(r0084-r1598) >p3204 + p3205
	The cause of this fault is again reset for abs(r0084-r1598) < p3204.
	The fault is only issued after the delay time in p3206 has expired.
Remedy:	- check the parameterization (p3204, p3205).
	- check the interfaces to the excitation equipment (r1626, p1640).
	- check the excitation equipment.
	- check the flux control (p1590, p1592, p1597).
	- check the control for oscillation and take the appropriate counter measures (e.g. optimize the speed control loop, parameterize a bandstop filter).


A07918 (N)	Three-phase setpoint generator operation selected/active
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Only for separately excited synchronous motors (p0300 = 5):
	The actual open-loop/closed-loop control mode is I/f control (open-loop) with a fixed current (p1300 = 18).
	The speed is entered via the setpoint channel and the current setpoint is given by the minimum current (p1620).
	It must be ensured that in this mode, the control dynamic performance is very limited. This is the reason that longer ramp-up times should be set for the setpoint speed than for normal operation.
	See also: p1620 (Stator current minimum)
Remedy:	Select another open-loop/closed-loop control mode
	See also: p1300 (Open-loop/closed-loop control operating mode)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A07920	Drive: Torque/speed too low
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor
Reaction:	NONE
Acknowledge:	NONE
Cause:	The torque deviates from the torque/speed envelope characteristic (too low).
	See also: p2181 (Load monitoring response)
Remedy:	- check the connection between the motor and load.
	- adapt the parameterization corresponding to the load.


A07921	Drive: Torque/speed too high
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor
Reaction:	NONE
Acknowledge:	NONE
Cause:	The torque deviates from the torque/speed envelope characteristic (too high).
Remedy:	- check the connection between the motor and load.
	- adapt the parameterization corresponding to the load.


A07922	Drive: Torque/speed out of tolerance
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor
Reaction:	NONE
Acknowledge:	NONE
Cause:	The torque deviates from the torque/speed envelope characteristic.
Remedy:	- check the connection between the motor and load.
	- adapt the parameterization corresponding to the load.
F07923	Drive: Torque/speed too low
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The torque deviates from the torque/speed envelope characteristic (too low).
Remedy:	- check the connection between the motor and load.
	- adapt the parameterization corresponding to the load.


F07924	Drive: Torque/speed too high
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The torque deviates from the torque/speed envelope characteristic (too high).
Remedy:	- check the connection between the motor and load.
	- adapt the parameterization corresponding to the load.


F07925	Drive: Torque/speed out of tolerance
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The torque deviates from the torque/speed envelope characteristic.
Remedy:	- check the connection between the motor and load.
	- adapt the parameterization corresponding to the load.


A07926	Drive: Envelope curve parameter invalid
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	Invalid parameter values were entered for the envelope characteristic of the load monitoring.
	The following rules apply for the speed thresholds:
	p2182 < p2183 < p2184
	The following rules apply for the torque thresholds:
	p2185 > p2186
	p2187 > p2188
	p2189 > p2190
	Load monitoring configuration and response must match.
	It is not permissible that the individual load torque monitoring areas overlap.
	Alarm value (r2124, interpret decimal):
	Number of the parameter with the invalid value.
	Note:
	The load torque monitoring has not been activated as long as the alarm is active.
	- set the parameters for the load monitoring according to the applicable rules.


A07927	DC braking active
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor is braked with DC current. DC braking is active.
	1)
	A message with response DCBRK is active. The motor is braked with the braking current set in p1232 for the   duration set in in p1233. If the standstill threshold p1226 is undershot, then braking is prematurely canceled.
	2)
	DC braking has been activated at binector input p1230 with the DC braking set (p1230 $=4$ ). Braking current p1232 is
injected until this binector input becomes inactive.	


F07928	Internal voltage protection initiated
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The Motor Module signals that the motor is short-circuited through the power semiconductors (r1239.5 = 1). The
	pulses cannot be enabled. The internal voltage protection is selected (p1231 = 3).
Remedy:	If the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1), then the Motor Module
	automatically decides - using the DC link voltage - as to whether the armature short-circuit should be activated.
	The armature short-circuit is activated and response OFF2 is initiated if the DC link voltage exceeds 800 V. If the DC
	link voltage falls below 450 V, then the armature short-circuit is withdrawn.
	If the motor is still in a critical speed range, the armature short-circuit is re-activated once the DC link voltage exceeds
	the threshold of 800 V.
	If the autonomous (independent) internal voltage protection is active (r1239.5 = 1) and the line supply returns (450 V
	< DC link voltage < 800 V), the armature short-circuit is withdrawn after 3 minutes.

```
Remedy: - check the motor holding brake connection.
 - for a parallel connection, check the setting of the power unit data set to control the holding brake (p7015).
 - check the function of the motor holding brake.
 - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module
 involved and, if required, carry out a diagnostics routine for the faults identified.
 - check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the
 motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are
 tightly screwed to the housing).
 - replace the Motor Module involved.
 Operation with Safe Brake Module:
 - check the Safe Brake Module connection.
 - replace the Safe Brake Module.
 Operation with Safe Brake Adapter (SBA):
 - check the SBA connection and if required, replace the SBA.
 See also: p1215 (Motor holding brake configuration), p1278 (Brake control diagnostics evaluation)
```

A07931 (F, N)	Brake does not open
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor
Reaction:	NONE
Acknowledge:	NONE
Cause:	This alarm is output for r1229.4 = 1.
	See also: p1216 (Motor holding brake opening time), r1229 (Motor holding brake status word)
Remedy:	- check the functionality of the motor holding brake.
	- check the feedback signal (p1223).
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

## A07932

Message value:
Message class: Application/technological function faulted (17)
Drive object:
Component: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I AC

Reaction:
Motor
NONE
Acknowledge: NONE
Cause: $\quad$ This alarm is output for $\mathrm{r} 1229.5=1$.
For r1229.5 $=1$, OFF1/OFF3 are suppressed to prevent the drive accelerating by a load that drives the motor whereby OFF2 remains effective.
See also: p1217 (Motor holding brake closing time), r1229 (Motor holding brake status word)
Remedy: - check the functionality of the motor holding brake.

- check the feedback signal (p1222).

F07934 (N)	Drive: S120 Combi motor holding brake configuration
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A connected motor holding brake has been detected with an S120 Combi. However, this brake has not been assigned to just one Combi feed drive and, therefore, brake control is not configured (correctly).
	Fault value (r0949, interpret decimal):
	0 : No motor holding brake is assigned ( $\mathrm{p} 1215=0$ or 3 on all S 120 Combi feed drives).
	1: More than one motor holding brake has been assigned ( $\mathrm{p} 1215=1$ or 2 on more than one S120 Combi feed drive) - or there is more than one DRIVE-CLiQ motor with motor holding brake.
	2: Brake was accidentally assigned to the spindle (p1215 = 1); this is not permitted for this software release.
	3: An attempt was made to enable the function "Safe Brake Control" (SBC, p9602 = p9802 = 1) for the spindle. This is not permitted for this software release.
Remedy:	Check whether the motor holding brake has been assigned to one S120 Combi feed drive exclusively (p1215 = 1 or 2).
	The fault will only be withdrawn once the motor holding brake has been assigned to just one of the S120 Combi feed drives ( $\mathrm{p} 1215=1$ or 2 for this one drive). From this point, the motor holding brake will be controlled by this drive.
	See also: p1215 (Motor holding brake configuration)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07935 (N)	Drive: Incorrect motor holding brake configuration
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An incorrect motor holding brake configuration was detected.
	Fault value (r0949, interpret decimal):
	0 :
	A motor holding brake was detected where the brake control has not been configured (p1215 = 0).
	The brake control configuration was set to "motor holding brake the same as sequence control" (p1215 = 1) (only when commissioning for the first time).
	For a chassis unit with Safe Brake Adapter (SBA), the interconnection p9621 = r9872.3 was established (only when commissioning for the first time).
	For a parallel connection, the power unit was set in p7015, to which the motor holding brake is connected (only when commissioning for the first time).
	1:
	A motor holding brake was detected where the brake control has not been configured (p1215 = 0).
	The brake control configuration was left at "No motor holding brake available" ( $p 1215=0$ ).
	The identification had detected more than one motor holding brake for a parallel connection.
	12:
	For the parallel connection, in p0121 there is no valid component number for the power unit data set that is set in p7015.
	13:
	With the "Safe Brake Control" (SBC) function activated, an attempt was made to change the value in p7015. 14:
	For a parallel connection, the power units set in p7015 cannot be addressed.



### 4.2 List of faults and alarms

Remedy: If required increase the threshold value phase synchronism (p3813) for synchronizing the line supply to the drive. Before OFF1 or OFF3, complete synchronizing (r03819.0 $=0$ ).
Before withdrawing the enable signal (p3802 = 0), reach synchronism (r3819.2 = 1).
See also: p3813 (Sync-line-drive phase synchronism threshold value)

A07941	Sync-line-drive: Target frequency not permissible
Message value:	Parameter: \%1
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC $\quad$ Propagation:
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The target frequency is outside the permissible value range.
	Alarm value (r2124, interpret decimal):
	1084: Target frequency greater than the positive speed limit, f_sync > f_max (r1084).
	1087: Target frequency less than the negative speed limit, f_sync < f_min (r1087).
	Fulfill the conditions for the target frequency for line-drive synchronization.
Remedy:	See also: r1084, r1087


A07942	Sync-line-drive: Setpoint frequency is completely different than the target frequency
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is a considerable difference between the setpoint frequency and the target frequency (f_set <> f_target). The deviation that can be tolerated is set in p3806.
Remedy:	Not necessary.
	The alarm is automatically withdrawn after the difference that can be tolerated between the setpoint and target frequencies (p3806) is reached.
	See also: p3806 (Sync-line-drive frequency difference threshold value)


A07943	Sync-line-drive: Synchronization not permitted
Message value:	Parameter: \%1
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Synchronization is not permitted.
	Alarm value (r2124, interpret decimal):
	1300: The control mode ( p 1300 ) has not been set to encoderless closed-loop speed control or U/f characteristic. 1910: Motor data identification activated.
	1960: Speed controller optimization activated.
	3801: Voltage Sensing Module (VSM) not found.
	3845: Friction characteristic record activated.
Remedy:	Fulfill the conditions for the line-drive synchronization.
	For alarm value = 1300:
	Set the control mode ( p 1300 ) to encoderless closed-loop speed control ( $\mathrm{p} 1300=20$ ) or U/f characteristic ( $\mathrm{p} 1300=0$ ... 19).
	For alarm value = 1910:
	Exit the motor data identification routine (p1910).
	For alarm value = 1960:
	Exit the speed controller optimization routine (p1960).

For alarm value $=3801$ :
Connect the Voltage Sensing Module (VSM), assign it to the synchronizing drive (see p9910, p0151) and enter the drive object number of the synchronizing drive in p3801. When connecting the VSM to a neighboring drive object, ensure that the same current controller sampling time p0115[0] exists as the one for the synchronizing drive.
For alarm value $=3845$ :
Exit the friction characteristic record (p3845).

F07950 (A)	Drive: Incorrect motor parameter
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	- the motor parameters were incorrectly entered while commissioning (e.g. p0300 $=0$, no motor)
	- the braking resistor has still not been parameterized - commissioning cannot be completed.
	Fault value (r0949, interpret decimal):
	Parameter number involved.
	300 (CU250S-2):
	For this control mode, the motor type is not supported.
	307:
	The following motor parameters could be incorrect:
	p0304, p0305, p0307, p0308, p0309
	See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0315, p0316, p0320, p0322, p0323
Remedy:	Compare the motor data with the rating plate data and if required, correct.
	For fault value = 300 (CU250S-2):
	Operate a motor type supported by the selected control mode.
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F07950 (A)	Drive: Incorrect motor parameter
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	- the motor parameters were incorrectly entered while commissioning (e.g. p0300 $=0$, no motor)
	- the braking resistor has still not been parameterized - commissioning cannot be completed.
	Fault value (r0949, interpret decimal):
	Parameter number involved.
	300:
	For this control mode, the motor type is not supported.
	The synchronous-reluctance motor is not operated in the closed-loop speed/torque control mode. 307:
	The following motor parameters could be incorrect:
	p0304, p0305, p0307, p0308, p0309
	See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0315, p0316, p0320, p0322, p0323
Remedy:	Compare the motor data with the rating plate data and if required, correct.
	For fault value = 300:
	Operate a motor type supported by the selected control mode.
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F07955	Drive: Motor has been changed
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The code number of the actual motor with DRIVE-CLiQ does not match the saved number.
	Fault value (r0949, interpret decimal):
	Number of the incorrect parameter.
	See also: p0301 (Motor code number selection), r0302 (Motor code number of motor with DRIVE-CLiQ)
Remedy:	Connect the original motor, switch on the Control Unit again (POWER ON) and exit quick commissioning with p0010 $=0$.
	Or set p0300 $=10000$ (load the parameters from the motor with DRIVE-CLiQ) and re-commission.
	Quick commissioning (p0010 $=1$ ) is automatically exited with p3900 $>0$.
	If quick commissioning was exited with p0010 $=0$, then an automatic controller calculation ( $\mathrm{p} 0340=1$ ) is not carried out.
F07956 (A)	Drive: Motor code does not match the list (catalog) motor
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The motor code of the connected motor with DRIVE-CLiQ does not match the possible list motor types (see selection in p 0300 ).
	The connected motor with DRIVE-CLiQ might not be supported by this firmware version.
	Fault value (r0949, interpret decimal):
	Motor code of the connected motor with DRIVE-CLiQ.
	Note:
	The first three digits of the motor code generally correspond to the list motor type.
Remedy:	Use a motor with DRIVE-CLiQ and the matching motor code.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A07960	Drive: Incorrect friction characteristic
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The friction characteristic is incorrect.
	Alarm value (r2124, interpret decimal):
	1:
	Incorrect parameter format.
	1538:
	The friction torque is greater than the maximum from the upper effective torque limit ( p 1538 ) and zero. This is the reason that the output of the friction characteristic (r3841) is limited to this value.   1539:
	The friction torque is less than the minimum from the lower effective torque limit (p1539) and zero. This is the reason that the output of the friction characteristic (r3841) is limited to this value.

3820 ... 3829:
Incorrect parameter number. The speeds entered in the parameters for the friction characteristic do not correspond to the following condition:
$0.0<$ p3820 < p3821 < .. < p3829 < p 0322 or p1082, if p0322 $=0$
Therefore the output of the friction characteristic (r3841) is set to zero.
3830 ... 3839:
Incorrect parameter number. The torques entered in the parameters for the friction characteristic do not correspond to the following condition:
$0<=$ p3830, p3831 ... p3839 <= p0333
Therefore the output of the friction characteristic (r3841) is set to zero.
See also: r3840 (Friction characteristic status word)
Remedy: Fulfill the conditions for the friction characteristic.
For alarm value = 1538:
Check the upper effective torque limit (e.g. in the field weakening range).
For alarm value = 1539:
Check the lower effective torque limit (e.g. in the field weakening range).
For alarm value = 3820 ... 3839:
Fulfill the conditions to set the parameters of the friction characteristic.
If the motor data (e.g. the maximum speed p0322) are changed during commissioning ( $\mathrm{p} 0010=1,3$ ), then the technological limits and threshold values, dependent on this, must be re-calculated by selecting p0340=5.

A07961	Drive: Friction characteristic record activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic friction characteristic record is activated.
	The friction characteristic is recorded at the next switch-on command.
	When plotting the friction characteristic, it is not possible to save the parameters (p0971, p0977).
Remedy:	Not necessary.

The alarm is automatically withdrawn after the friction characteristic recording has been successfully completed or recording has been deactivated (p3845=0).

F07963	Drive: Friction characteristic record interrupted
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The conditions to record the friction characteristic are not fulfilled.
	Fault value (r0949, interpret decimal):
	0046: Missing enable signals (r0046).
	1082: The highest speed value to be approached (p3829) is greater than the maximum speed (p1082).
	1084: The highest speed value to be approached (p3829) is greater than the maximum speed ( $\mathrm{r} 1084, \mathrm{p} 1083, \mathrm{p} 1085$ ).
	1087: The highest speed value to be approached ( p 3829 ) is greater than the maximum speed ( $\mathrm{r} 1087, \mathrm{p} 1086, \mathrm{p} 1088$ ).
	1110: Friction characteristic record, negative direction selected (p3845) and negative direction inhibited (p1110).
	1111: Friction characteristic record, positive direction selected (p3845) and positive direction inhibited (p1111).
	1198: Friction characteristic record selected ( $\mathrm{p} 3845>0$ ) and negative ( p 1110 ) and positive directions ( p 1111 ) inhibited (r1198).
	1300: The control mode ( p 1300 ) has not been set to closed-loop speed control.
	1755: For encoderless closed-loop control ( $\mathrm{p} 1300=20$ ), the lowest speed value to be approached ( p 3820 ) is less than or equal to the changeover speed, open-loop controlled operation (p1755).
	1910: Motor data identification activated.

### 4.2 List of faults and alarms

	1960: Speed controller optimization activated.
	3820 ... 3829: speed (p382x) cannot be approached.
	3840: Friction characteristic incorrect.
	3845: Friction characteristic record de-selected.
Remedy:	Fulfill the conditions to record the friction characteristic.
	For fault value $=0046$ :
	- establish missing enable signals.
	For fault value $=1082,1084,1087$ :
	- Select the highest speed value to be approached (p3829) less than or equal to the maximum speed ( p 1082 , r1084, r1087).
	- Re-calculate the speed points along the friction characteristic (p0340 = 5).
	For fault value = 1110:
	- Select the friction characteristic record, positive direction (p3845).
	For fault value = 1111:
	- Select the friction characteristic record, negative direction (p3845).
	For fault value = 1198:
	- Enable the permitted direction (p1110, p1111, r1198).
	For fault value = 1300:
	- set the control mode ( p 1300 ) on the closed-loop speed control (p1300 $=20,21$ ).
	For fault value = 1755:
	- For encoderless closed-loop speed control $(\mathrm{p} 1300=20)$ select the lowest speed value to be approached ( p 3820 ) greater than the changeover speed of open-loop controlled operation (p1755).
	- Re-calculate the speed points along the friction characteristic (p0340 = 5).
	For fault value = 1910:
	- Exit the motor data identification routine (p1910).
	For fault value = 1960:
	- Exit the speed controller optimization routine (p1960).
	For fault value 3820 ... 3829:
	- check the load at speed p382x.
	- check the speed signal (r0063) for oscillation at speed p382x. Check the settings of the speed controller if applicable.
	For fault value $=3840$ :
	- Make the friction characteristic error-free (p3820 ... p3829, p3830 ... p3839, p3840).
	For fault value $=3845$ :
	- Activate the friction characteristic record (p3845).


A07965 (N)	Drive: Save required
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC Propagation: $\quad$ GLOBAL
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The angular commutation offset (p0431) was re-defined and has still not been saved.
	In order to permanently accept the new value, it must be saved in a non-volatile fashion (p0971, p0977).
	See also: p0431 (Angular commutation offset), p1990 (Encoder adjustment determine angular commutation offset)
Remedy:	Not necessary.
	This alarm is automatically withdrawn after the data has been saved.
	See also: p0971 (Save drive object parameters), p0977 (Save all parameters)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


F07966	Drive: Check the commutation angle
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The speed actual value was inverted and the associated angular commutation offset is not equal to zero and is therefore possibly incorrect.
Remedy:	Angular commutation offset after the actual value inversion or determine it again (p1990=1).
F07967	Drive: Automatic encoder adjustment/pole position identification incorrect
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the automatic encoder adjustment or the pole position identification. Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON.
F07968	Drive: Lq-Ld measurement incorrect
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the Lq-Ld measurement.
	Fault value (r0949, interpret decimal):
	10: Stage 1: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
Remedy:	For fault value = 10:
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	Deactivate technique (p1909).
	For fault value = 12:
	Check whether motor data have been correctly entered.
	Deactivate technique (p1909).
	For fault value = 16:
	Deactivate technique (p1909).
	For fault value = 17:
	Repeat technique.


F07969	Drive: Incorrect pole position identification
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the pole position identification routine.
	Fault value (r0949, interpret decimal):
	1: Current controller limited
	2: Motor shaft locked.
	4: Encoder speed signal not plausible.
	10: Stage 1: The ratio between the measured current and zero current is too low.
	11: Stage 2: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	13: Stage 2: The maximum current was exceeded.
	14: Current difference to determine the +d axis too low.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
	18: First harmonic too low.
	20: Pole position identification requested with the motor shaft rotating and activated "flying restart" function.
Remedy:	For fault value $=1$ :
	- check whether the motor is correctly connected.
	- check whether motor data have been correctly entered.
	- replace the Motor Module involved.
	For fault value $=2$ :
	- open the motor holding brake (p1215 $=2$ ) and bring the motor into a no-load condition.
	For fault value $=4$ :
	- check whether the encoder pulse number (p0408) and gearbox ratio (p0432, p0433) are correct.   - check whether the motor pole pair number is correct ( p 0314 ).
	For fault value $=10$ :
	- when selecting p1980 $=4$ : increase the value for p0325.
	- when selecting p1980 $=1$ : increase the value for p0329.
	- check whether the motor is correctly connected.
	- replace the Motor Module involved.
	For fault value = 11:
	- increase the value for p0329.
	- check whether the motor is correctly connected.
	- replace the Motor Module involved.
	For fault value = 12:
	- when selecting p1980 $=4$ : reduce the value for p0325.
	- when selecting p1980 $=1$ : reduce the value for p0329 (minimum, p0305).
	- if p0329 = p0305: then reduce p0356, p0357.
	- check whether motor data have been correctly entered.
	For fault value = 13:
	- reduce the value for p0329.
	- check whether motor data have been correctly entered.
	For fault value = 14:
	- increase the value for p0329.
	- motor not sufficiently anisotropic, change the technique (p1980 = 1, 10).
	For fault value = 15:
	- increase the value for p0325.
	- motor not sufficiently anisotropic, change the technique (p1980 $=1,10$ ).

For fault value $=16$ :

- deactivate the technique (p1982).

For fault value =17:

- the same as fault value 12 - or repeat the technique.

For fault value $=18$ :

- increase the value for p0329.
- saturation not sufficient, change the technique (p1980 = 10).

For fault value $=20$ :

- before carrying out a pole position identification routine ensure that the motor shaft is absolutely stationary (zero speed).

F07970	Drive: Automatic encoder adjustment incorrect
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the automatic encoder adjustment.
	Fault value (r0949, interpret decimal):
	1: Current controller limited
	2: Motor shaft locked.
	4: Encoder speed signal not plausible.
	5: De-select U/f (p1300) or deactivate encoder calibration (p1990).
	10: Stage 1: The ratio between the measured current and zero current is too low.
	11: Stage 2: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	13: Stage 2: The maximum current was exceeded.
	14: Current difference to determine the +d axis too low.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
	24: only for separately excited synchronous motors:
	a) After the monitoring time has expired, the setpoint/actual value deviation of the excitation current is more than 50 \% of the no-load excitation current during the excitation buildup phase.
	b) At the end of the magnetizing phase, the setpoint/actual value deviation of the excitation current is more than $10 \%$ of the no-load excitation current.
Remedy:	For fault value = 1:
	Check whether the motor is correctly connected.
	Check whether motor data have been correctly entered.
	Replace the power unit involved.
	For fault value $=2$ :
	Open the motor holding brake ( $\mathrm{p} 1215=2$ ) and bring the motor into a no-load condition.
	For fault value $=4$ :
	Check whether the speed actual value inversion is correct (p0410.0).
	Check whether the motor is correctly connected.
	Check whether the encoder pulse number (p0408) and gearbox factor (p0432, p0433) are correct.
	Check whether the motor pole pair number is correct (p0314).
	For fault value = 5:
	Deselect U/f (p1300) or deactivate encoder calibration (p1990).
	For fault value = 10:
	Increase the value for p0325.
	Check whether the motor is correctly connected.
	Replace the power unit involved.

For fault value = 11:
Increase the value for p0329.
Check whether the motor is correctly connected.
Replace the power unit involved.
For fault value = 12:
Reduce the value for p0325.
Check whether motor data have been correctly entered.
For fault value = 13:
Reduce the value for p0329.
Check whether motor data have been correctly entered.
For fault value $=14$ :
Increase the value for 00329 .
For fault value $=15$ :
Increase the value for 00325 .
For fault value = 16:
Deactivate technique (p1982).
For fault value =17:
Repeat technique.
For fault value $=24$ :
Check the excitation equipment.
If there is no error, then extend the runtime for the automatic encoder calibration via p1999. Repeat technique.

A07971 (N)	Drive: Angular commutation offset determination activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic determination of the angular commutation offset (encoder adjustment) is activated (p1990 = 1).
	Note:
	The automatic determination is carried out at the next switch-on command.
	For SERVO and fault F07414 present, the following applies:
	The determination of the angular commutation offset is automatically activated (p1990 = 1), if a pole position
	identification technique is set in p1980.
	See also: p1990 (Encoder adjustment determine angular commutation offset)
Remedy:	Not necessary.
	The alarm is automatically withdrawn after successful determination or for the setting p1990 = 0 .
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A07971 (N)	Drive: Angular commutation offset determination activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic determination of the angular commutation offset (encoder adjustment) is activated (p1990 = 1, 3).
	Note:
	The automatic determination is carried out at the next switch-on command.
	See also: p1990 (Encoder adjustment determine angular commutation offset)
Remedy:	Not necessary.
	The alarm is automatically withdrawn after successful determination or for the setting p1990 = 0.


Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A07975 (N)	Drive: Travel to the zero mark - setpoint input expected
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The zero mark must be evaluated in order to adjust the encoder.
	It is expected that a speed or torque setpoint is entered.      Remedy:
	See also: p1990 (Encoder adjustment determine angular commutation offset)
Reaction upon $\mathrm{N}:$	This alarm is automatically withdrawn after the zero mark has been detected.
Acknowl. upon $\mathrm{N}:$	NONE
	NONE


A07976	Drive: Fine encoder calibration activated
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm indicates the phases of the fine encoder calibration using the alarm value.
	Alarm value (interpret decimal):
	1: Fine encoder calibration active.
	2: Rotating measurement started (set the setpoint speed > 40 \% rated motor speed).
	3: Rotating measurement lies within the speed and torque range.
	4: Rotating measurement successful: pulse inhibit can be initiated to accept the values.
	5: Fine encoder calibration is calculated.
	10: Speed too low, rotating measurement interrupted.
	12: Torque too high, rotating measurement interrupted.
	See also: p1905 (Parameter tuning selection)
For alarm value = 10:	
	Increase the speed.
	For alarm value = 12:
	Bring the drive into a no-load condition.


A07978 (N)	Drive: activated ESM mode waits for the end of motor identification
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The ESM mode and the motor data identification routine is activated.
	The motor must have been completely commissioned before the ESM mode becomes active.
	The motor data identification routine is performed at the next switch-on command and then the ESM mode becomes active.
	See also: p1910
Remedy:	Not necessary.
	The alarm is automatically withdrawn after the motor data identification has been successfully completed or for the setting p1900 $=0$.

### 4.2 List of faults and alarms

Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A07979 (F, N)	Drive: pole position identification calibration required
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Control Unit (CU)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The pole position identification was not successful as the calibration values for the current measurement are not
	correct.
Remedy:	Replace the Motor Module involved.
Reaction upon $\mathrm{F}:$	OFF2 (NONE)
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A07980	Drive: Rotating measurement activated		
Message value:	-		
Message class:	Error in the parameterization / configuration / commissioning procedure (18)		
Drive object: SERVO, SERVO_AC, SERVO_I_AC    Component: None Propagation:$\quad$ GLOBAL			
Reaction:	NONE		
Acknowledge:	NONE		

Cause: $\quad$ The rotating measurement is activated. For the rotating measurement, the motor can accelerate up to the maximum speed and with maximum torque. Only the parameterized current limit ( p 0640 ) and the maximum speed ( p 1082 ) are effective. The behavior of the motor can be influenced using the direction inhibit (p1959.14, p1959.15) and the ramp-up/ramp-down time (p1958).
The rotating measurement is carried out at the next switch-on command.
See also: p1960
Remedy: Not necessary.
The alarm is automatically withdrawn after the rotating measurement has been successfully completed or for the setting p1960 $=0$
Note:
If a POWER ON or a warm restart is performed with motor data identification selected, the motor data identification request will be lost. If motor data identification is required, it will need to be selected again manually following rampup.

A07980	Drive: Rotating measurement activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement (automatic speed controller optimization) is activated.
	The rotating measurement is carried out at the next switch-on command.
	Note:
	During the rotating measurement it is not possible to save the parameters (p0971, p0977).
	See also: p1960
Remedy:	Not necessary.
	The alarm is automatically withdrawn after the speed controller optimization has been successfully completed or for
	the setting p1900 $=0$.


A07981	Drive: Enable signals for the rotating measurement missing
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement cannot be started due to missing enable signals.
	For p1959.13 $=1$, the following applies:
	- enable signals for the ramp-function generator missing (see p1140 ... p1142).
	- enable signals for the speed controller integrator missing (see p1476, p1477).
Remedy:	- acknowledge faults that are present.
	- establish missing enable signals.
	See also: r0002, r0046
F07982	Drive: Rotating measurement encoder test
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the encoder test.
	Fault value (r0949, interpret decimal):
	1: The speed did not reach a steady-state condition.
	2: The speed setpoint was not able to be approached as the minimum limiting is active.
	3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	4: The speed setpoint was not able to be approached as the maximum limiting is active.
	5: The encoder does not supply a signal.
	6: Incorrect polarity.
	7: Incorrect pulse number.
	8: Noise in the encoder signal or speed controller unstable.
	9: Voltage Sensing Module (VSM) incorrectly connected.
Remedy:	For fault value $=1$ :
	- check the motor parameters.
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967 < 25 \%).
	For fault value $=2$ :
	- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
	For fault value $=3$ :
	- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
	For fault value $=4$ :
	- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
	For fault value $=5$ :
	- check the encoder connection. If required, replace the encoder.
	For fault value $=6$ :
	- check the connection assignment of the encoder cable. Adapt the polarity (p0410).
	For fault value $=7$ :
	- adapt the pulse number (p0408).
	For fault value $=8$ :
	- check the encoder connection and encoder cable. It is possible that there is a problem associated with the ground connection.
	- reduce the dynamic response of the speed controller (p1460, p1462 and p1470, p1472).

For fault value $=9$ :

- check the connections of the Voltage Sensing Module (VSM).

Note:
The encoder test can be switched out (disabled) using p1959.0.
See also: p1959

F07983	Drive: Rotating measurement saturation characteristic
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred while determining the saturation characteristic.
	Fault value (r0949, interpret decimal):
	1: The speed did not reach a steady-state condition.
	2: The rotor flux did not reach a steady-state condition.
	3: The adaptation circuit did not reach a steady-state condition.
	4: The adaptation circuit was not enabled.
	5: Field weakening active.
	6: The speed setpoint was not able to be approached as the minimum limiting is active.
	7: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	8: The speed setpoint was not able to be approached as the maximum limiting is active.
	9: Several values of the determined saturation characteristic are not plausible.
	10: Saturation characteristic could not be sensibly determined because load torque too high.
Remedy:	For fault value = 1 :
	- the total drive moment of inertia is far higher than that of the motor (p0341, p0342).
	De-select rotating measurement ( p 1960 ), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement.
	For fault value = $1 . . .2$ :
	- increase the measuring speed (p1961) and repeat the measurement.
	For fault value = $1 . . .4$ :
	- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967<25\%).
	For fault value = 5:
	- the speed setpoint (p1961) is too high. Reduce the speed.
	For fault value $=6$ :
	- adapt the speed setpoint (p1961) or minimum limiting (p1080).
	For fault value $=7$ :
	- adapt the speed setpoint (p1961) or suppression (skip) bandwidths (p1091 .. p1094, p1101).
	For fault value = 8:
	- adapt the speed setpoint (p1961) or maximum limit (p1082, p1083 and p1086).
	For fault value $=9,10$ :
	- the measurement was carried out at an operating point where the load torque is too high. Select a more suitable operating point, either by changing the speed setpoint (p1961) or by reducing the load torque. The load torque may not be varied while making measurements.
	Note:
	The saturation characteristic identification routine can be disabled using p1959.1.
	See also: p1959


F07984	Drive: Speed controller optimization, moment of inertia
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred while identifying the moment of inertia.
	Fault value (r0949, interpret decimal):
	1: The speed did not reach a steady-state condition.
	2: The speed setpoint was not able to be approached as the minimum limiting is active.
	3. The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	4. The speed setpoint was not able to be approached as the maximum limiting is active.
	5: It is not possible to increase the speed by $10 \%$ as the minimum limiting is active.
	6: It is not possible to increase the speed by $10 \%$ as the suppression (skip) bandwidth is active.
	7: It is not possible to increase the speed by $10 \%$ as the maximum limiting is active.
	8: The torque difference after the speed setpoint step is too low in order to be able to still reliably identify the moment of inertia.
	9: Too few data to be able to reliably identify the moment of inertia.
	10: After the setpoint step, the speed either changed too little or in the incorrect direction.
	11: The identified moment of inertia is not plausible. The measured moment of inertia is less than the 0.05 x or greater than 500 x the preset moment of inertia of the motor p0341.
Remedy:	For fault value $=1$ :
	- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967 < $25 \%$ ).
	For fault value $=2,5$ :
	- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
	For fault value $=3,6$ :
	- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
	For fault value $=4,7$ :
	- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
	For fault value $=8$ :
	- the total drive moment of inertia is far higher than that of the motor (refer to p0341, p0342). De-select rotating measurement ( p 1960 ), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement.
	For fault value $=9$ :
	- check the moment of inertia (p0341, p0342). After the change, re-calculate (p0340 $=3$ or 4).
	For fault value = 10:
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
	For fault value $=11$ :
	- reduce the moment of inertia of the motor p0341 (e.g. factor of 0.2 ) or increase (e.g. factor of 5 ) and repeat the measurement.
	Note:
	The moment of inertia identification routine can be disabled using p1959.2.


F07985	Drive: Speed controller optimization (oscillation test)
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the vibration test.
	Fault value (r0949, interpret decimal):
	1: The speed did not reach a steady-state condition.
	2: The speed setpoint was not able to be approached as the minimum limiting is active.
	3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.   4. The speed setpoint was not able to be approached as the maximum limiting is active.
	5: Torque limits too low for a torque step.
	6: No suitable speed controller setting was found.
Remedy:	For fault value $=1$ :
	- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967 < 25 \%).
	For fault value $=2$ :
	- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
	For fault value $=3$ :
	- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1101).
	For fault value $=4$ :
	- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
	For fault value $=5$ :
	- increase the torque limits (e.g. p1520, p1521).
	For fault value $=6$ :
	- reduce the dynamic factor (p1967).
	- disable the vibration test ( $\mathrm{p} 1959.4=0$ ) and repeat the rotating measurement.
	See also: p1959
F07986	Drive: Rotating measurement ramp-function generator
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	During the rotating measurements, problems with the ramp-function generator occurred.
	Fault value (r0949, interpret decimal):
	1: The positive and negative directions are inhibited.
Remedy:	For fault value = 1:
	Enable the direction (p1110 or p1111).
A07987	Drive: Rotating measurement, no encoder available
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	No encoder available. The rotating measurement was carried out without encoder.
Remedy:	Connect encoder or select p1960 $=1,3$.


F07988	Drive: Rotating measurement, no configuration selected
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	When configuring the rotating measurement (p1959), no function was selected.
Remedy:	Select at least one function for automatic optimization of the speed controller (p1959). See also: p1959
F07989	Drive: Rotating measurement leakage inductance (q-axis)
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred while measuring the dynamic leakage inductance.
	Fault value (r0949, interpret decimal):
	1: The speed did not reach a steady-state condition.
	2: The speed setpoint was not able to be approached as the minimum limiting is active.
	3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	4: The speed setpoint was not able to be approached as the maximum limiting is active.
	5: The $100 \%$ flux setpoint was not reached.
	6: No Lq measurement possible because field weakening is active.
	7: Speed actual value exceeds the maximum speed p1082 or $75 \%$ of the rated motor speed.
	8: Speed actual value is below $2 \%$ of the rated motor speed.
Remedy:	For fault value $=1$ :
	- check the motor parameters.
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967 < $25 \%$ ).
	For fault value $=2$ :
	- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
	For fault value $=3$ :
	- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
	For fault value $=4$ :
	- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
	For fault value $=5$ :
	- flux setpoint p1570 $=100 \%$ and current setpoint p1610 $=0 \%$ kept during the Lq measurement.
	For fault value $=6$ :
	- reduce the regenerative load so that the drive does not reach field weakening when accelerating.
	- reduce p1965 so that the q leakage inductance is recorded at lower speeds.
	For fault value $=7$ :
	- increase p1082, if this is technically permissible.
	- reduce p1965 so that the q leakage inductance is recorded at lower speeds.
	For fault value $=8$ :
	- reduce the load when motoring so that the drive is not braked.
	- increase p1965 so that the measurement may be taken at higher speeds.
	Note:
	The measurement of the $q$ leakage inductance can be disabled using p1959.5. If only p1959.5 is set, then only this measurement is carried out if p1960 is set to 1,2 and the drive is switched on.
	See also: p1959


F07990	Drive: Incorrect motor data identification
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the identification routine.
	Fault value (r0949, interpret decimal):
	10: Data set changeover during motor data identification.
	101: Voltage amplitude even at $30 \%$ maximum current amplitude is too low to measure the inductance.
	102, 104: Voltage limiting while measuring the inductance.
	103: Maximum frequency exceeded during the rotating inductance measurement.
	110: Motor not finely synchronized before the rotating measurement.
	111: The zero mark is not received within 2 revolutions.
	112:Fine synchronization is not realized within 8 seconds after the zero mark has been passed.
	113: The power, torque or current limit is zero.
	115: U/f control is active.
	120: Error when evaluating the magnetizing inductance.
	125: Cable resistance greater than the total resistance.
	126: Series inductance greater than the total leakage inductance.
	127: Identified leakage inductance negative.
	128: Identified stator resistance negative.
	129: Identified rotor resistance negative.
	130: Drive data set changeover during the motor data identification routine.
	140: The setpoint channel inhibits both directions.
	160: Accelerating time when determining kT , moment of inertia or reluctance torque too short or too long.
	161: When measuring the kT characteristic, constants $\mathrm{kT1} 1, \mathrm{kT3}$, $\mathrm{kT5}$ and $\mathrm{kT7}$ were not able to be determined (p0645 ... p0648), as too few points were measured.
	165: The current limit was reduced below the measurement current while determining the reluctance torque. 173: Internal problem.
	180: identification speed (maximum speed, rated speed, $0.9 \times \mathrm{p} 0348$ ) less than p 1755 or no DC link voltage available.
	181: Zero speed at the end of the measurement of periodic position errors.
	182: No complete mechanical revolution at to the end of the measurement of periodic position errors.
	190: Speed setpoint not equal to zero.
	191: An actual speed of zero is not reached.
	192: Speed setpoint not reached.
	193: Inadmissible motion of the motor when identifying the voltage emulation error.
	194: Supplementary torque (r1515) not equal to zero.
	195: Closed-loop torque control active.
	200, 201: Not possible to identify the voltage emulation error characteristic of the drive converter (p1952, p1953).
Remedy:	For fault value = 10:
	- do not initiate a data set changeover during the motor data identification.
	For fault value = 101:
	- increase current limit (p0640) or torque limit (p1520, p1521).
	- check current controller gain (p1715).
	- reduce current controller sampling time (p0115).
	It may be impossible to completely identify the $L$ characteristic, as required current amplitude is too high. - suppress meas. (p1909, p1959).
	For fault value $=102,104$ :
	- reduce current limit (p0640).
	- check current controller P gain.
	- suppress meas. (p1909, p1959).

For fault value $=103$ :

- increase external moment of inertia (if possible).
- reduce current controller sampling time (p0115).
- suppress meas. (p1909, p1959).

For fault value = 110:

- before rotating measurement, traverse motor over zero mark.

For fault value $=111$ :

- it is possible that encoder does not have zero mark. Correct setting in p0404.15.
- encoder pulse number was incorrectly entered. Correct setting in p0408.
- if zero mark signal is defective, replace encoder.

For fault value $=112$ :

- upgrade encoder software.

For fault value =113:

- check the limits (p0640, p1520, p1521, p1530, p1531), correct the zero values.

For fault value $=115$ :

- de-select U/f control (p1317 = 0).

For fault value $=120$ :

- check current controller $P$ gain ( p 1715 ) and if required, reduce.
- increase the pulse frequency (p1800).

For fault value = 125:

- reduce cable resistance (p0352).

For fault value =126:

- reduce series inductance (p0353).

For fault = 127, 128, 129:

- it is possible that current controller is oscillating. Reduce the P gain (p1715).
- if required, reduce the current limit (p0640).

For fault value = 130:

- do not initiate a drive data set changeover during motor ident. routine.

For fault value $=140$ :

- before the measurement, enable at least one direction (p1110 $=0$ or p1111 $=0$ or p1959.14 $=1$ or p1959.15 $=1$ ).

For fault value $=160$ :

- extend accelerating time when determining kT , moment of inertia and reluctance torque, e.g. by increasing max. speed ( p 1082 ), increasing moment of inertia or reducing max. current (p0640).
- in encoderless operation with load moment of inertia, parameterize the load moment of inertia ( p 1498 ).
- reduce the ramp-up time (p1958).
- increase speed controller P-gain (p1460).
- suppress meas. (p1959).

For fault value = 161:

- reduce the ramp-up time (p1958).
- increase max. speed (p1082).
- reduce current limit (p0640).
- if required, do not activate the kT characteristic (p1780.9 = 0).

For fault value $=165$ :

- decrease max. current (p0640).

For fault value = 173:

For fault value $=180$ :

- switch-on the infeed
- increase max. speed (p1082).
- reduce p1755.
- suppress meas. (p1909, p1959).

For fault value $=181,182$ :

- increase max. speed (p1082).
- if required, deactivate the measurement (p1959.0 = 0).

Note:

- to measure periodic position errors, the encoder must have absolute position information (unique zero mark, distance-coded zero marks, absolute encoder, 1-pole resolver p5263.10).
For fault value $=190$ :
- set speed setpoint to zero.

For fault value =191:

- do not start motor data identification routine while motor is still rotating.

For fault value =192:

- check closed-loop speed control (motor rotor may be locked or closed-loop speed control is not functioning).
- for p1215 = 1, 3 (brake the same as the sequence control) check the control sense (p0410.0).
- ensure that enable signals are present during measurement.
- remove any pulling loads from motor.
- increase max. current (p0640).
- reduce max. speed (p1082).
- suppress meas. (p1959).

For fault value $=193$ :

- the motor has moved through more than $5^{\circ}$ electrical (r0093). Lock motor rotor at one of these pole position angles (r0093): $90^{\circ}, 210^{\circ}$ or $330^{\circ}\left(+/-5^{\circ}\right)$ and then start identification.
For fault value $=194$ :
- switch out all supplementary torques (e.g. CI: p1511).
- for hanging/suspended axes: Lock motor rotor at one of these pole position angles (r0093): $90^{\circ}, 210^{\circ}$ or $330^{\circ}(+/-$ $1^{\circ}$ ) and then start identification.
For fault value = 195:
- de-select closed-loop torque control ( $\mathrm{p} 1300=21$ or 20 , or set the signal source in p1501 to a 0 signal).

For fault value $=200,201$ :

- set pulse frequency to 0.5 x current controller frequency (e.g. 4 kHz for a current controller sampling time $=125 \mathrm{us}$ ).
- reduce cable length between Motor Module and motor.
- read-out measured values (r1950, r1951) and therefore determine suitable values for p1952, p1953 according to your own estimation.

F07990	Drive: Incorrect motor data identification
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the identification routine.
	Fault value (r0949, interpret decimal):
	1: Current limit value reached.
	2: Identified stator resistance lies outside the expected range $0.02 \ldots 100 \%$ of Zn .
	3: Identified rotor resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn . Separately excited synchronous motors: damping resistance outside $1.0 \ldots 15 \%$ of Zn .
	4: Identified stator reactance lies outside the expected range $50 \ldots 900 \%$ of Zn . Separately excited synchronous motors: stator reactance outside 20 ... 500 \% of Zn .
	5: Identified magnetizing reactance lies outside the expected range $50 \ldots 900 \%$ of Zn . Separately excited synchronous motors: magnetizing reactance outside 20 ... $500 \%$ of Zn .
	6: Identified rotor time constant lies outside the expected range $10 \mathrm{~ms} . .5 \mathrm{~s}$. Separately excited synchronous motors: damping time constant outside of $5 \mathrm{~ms} . .1 \mathrm{~s}$.
	7: Identified total leakage reactance lies outside the expected range $4 \ldots 100 \%$ of Zn .
	8: Identified stator leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn . Separately excited synchronous motors: stator leakage reactance outside $2 . . .40 \%$ of Zn .

9: Identified rotor leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn . Separately excited synchronous motors: damping leakage reactance outside 1.5 ... 20 \% of Zn .

```
10: Motor has been incorrectly connected.
11: Motor shaft rotates.
12: Ground fault detected.
15: Pulse inhibit occurred during motor data identification.
16: During the Rs measurement an error occurred when activating one or several power modules connected in
parallel.
17: After the Rs measurement an error occurred when activating one or several power modules connected in parallel.
20: Identified threshold voltage of the semiconductor devices lies outside the expected range 0 ... 10 V.
30: Current controller in voltage limiting.
40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies.
50: The selected sampling time is too low for the motor identification (p0115[0]).
70: Identification of the circle center point canceled (reluctance motor).
Note:
Percentage values are referred to the rated motor impedance:
Zn = Vmot.nom / sqrt(3) / Imot,nom
```


## Remedy:

```
For fault value = \(1 \ldots 40\) :
- check whether motor data have been correctly entered in p0300, p0304 ... p0311.
- is there an appropriate relationship between the motor power rating and that of the Motor Module? The ratio of the Motor Module to the rated motor current should not be less than 0.5 and not be greater than 4 .
- check connection type (star-delta).
For fault value = 11 in addition:
- deactivate oscillation monitoring (p1909.7 = 1).
For fault value \(=2\) :
- for parallel circuits, check the motor winding system in p7003. If, for power units connected in parallel, a motor is specified with a single-winding system (p7003 = 0), although a multi-winding system is being used, then a large proportion of the stator resistance is interpreted as feeder cable resistance and entered in p0352.
For fault value \(=4,7\) :
- check whether inductances are correctly set in p0233 and p0353.
- check whether motor has been correctly connected (star-delta).
- set p1909.0 = 1 .
For fault value \(=12\) :
- check the power cable connections.
- check the motor
- check the CT.
For fault value \(=50\) :
- perform a motor data identification with a higher sampling time, and after this, change to the required higher sampling time (\(\mathrm{p} 0115[0]\)).
```

$\overline{\mathrm{F07990}}$
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:
Drive: Identification incorrect
\%1
Error in the parameterization / configuration / commissioning procedure (18)
HLA
Motor
OFF1 (NONE, OFF2)
IMMEDIATELY
A fault has occurred during the identification routine.
Fault value (r0949, interpret decimal):
1: piston calibration without absolute position (p1407.3 = 0).
2: determining the control sense without moving in both directions.
3: determining the control sense without a clear result.
4: determining the valve offset without moving.
5: traversing range identification without absolute position or piston calibration.
6: the measured piston stroke differs from the parameterized piston stroke (p0313) by more than 20 \%.
7: For the characteristic measurement, the drive comes to a standstill before reaching the parameterized free
distance.
8: The loop gain of the force controller is incorrect. At the positive end stop, pA (r0067) < pB (r0068).

8: The loop gain of the force controller is incorrect. At the positive end stop, pA (r0067) < pB (r0068).

10: There are less than 10 measuring points not equal to zero on one of the two characteristic sides (r1962). The measured characteristic is not evaluated.
100: Position and speed actual value inversion differ (p0410).
101: Start of measuring range > end of measuring range ( $p 1955[0]>p 1955[1]$ ).
102: Minimum measuring travel > maximum measuring travel ( $\mathrm{p} 1956[0]>\mathrm{p} 1956[1]$ ).
190: Velocity setpoint is not zero.
Remedy:
For fault value $=1$ :

- reference (home) the drive before calibrating the piston (p1407.3 must be = 1).

For fault value $=2,3$ :

- drive must be able to be moved.
- check system pressure and shutoff valves.
- increase the settling time (p1958[1]).

For fault value $=4$ :

- drive must be able to be moved.
- check system pressure and shutoff valves.

For fault value $=5$ :

- reference (home) the drive before the traversing range identification (p1407.3 must be $=1$ ) and calibrate the piston (p1909.1 = 1 or p1959.2 = 1 and p1960 = 1).
For fault value $=6$ :
- there is an obstruction in the traversing range. If necessary, remove the obstruction. If the measuring travel with obstruction is sufficient, no measure has to be applied.
- the piston stroke was incorrectly parameterized. If the actual piston stroke is less than the parameterized stroke, correct it ( p 0313 ). A piston stroke that has been parameterized too low, is automatically corrected.
- the selected search voltage is not sufficient for one direction in order to overcome the existing piston or guide friction. Check the setting of the search voltage to identify the valve characteristic, and if required, increase ( $\mathrm{p} 1955[2$, 3]).
For fault value $=7$ :
- piston calibration was incorrectly carried out. Correct the piston calibration or automatically calibrate it (p1959.2 = 1 and $\mathrm{p} 1960=1$ ).
- the minimum or maximum parameterized measuring travel cannot be traversed as there is an obstruction in the path or the piston stroke was incorrectly parameterized. If required, correct the measuring travel (p1956[0], p1956[1]), correct the piston stroke or automatically calibrate it (p1959.x = 1 and p1960 = 1).
- drive cannot be traversed, because the shutoff valve does not open, the system pressure is not available, encoder or valve are not connected. Check the shutoff valve, system pressure, encoder and valve connection.
For fault value $=8$ :
- interchange the connectors of pressure sensors $A$ and $B$ or invert the direction of motion ( $\mathrm{p} 1820, \mathrm{p} 0410$ ) and repeat the complete moving measurement.
- check the reference values for pressure sensors (p0240, p0242).

For fault value $=10$ :

- check the connection between the encoder and cylinder.
- measuring distance too short, if required lengthen (p1956[0], p1956[1]).
- measuring time too long, if required shorten (p1958[0], p1958[1], p1958[2]).
- increase the number of measuring points to a minimum of 20 ( $p 1957[0]$ ).

For fault value $=100$ :

- set the position and speed actual value inversion the same (p0410 = 0 or p0410 = 3).

For fault value $=101$ :

- start of measuring range must be parameterized less than the end of measuring range (p1955[0] > p1955[1]).

For fault value $=102$ :

- minimum measuring distance must be parameterized less than the maximum measuring distance (p1956[0] > p1956[1]).
For fault value $=190$ :
- during the identification, the velocity setpoint must be zero.

A07991 (N)	Drive: Motor data identification activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data identification routine is activated.
	The motor data identification routine is carried out at the next switch-on command.
	See also: p1910, p1960
Remedy:	Not necessary.
	The alarm is automatically withdrawn after the motor data identification routine has been successfully completed or for the setting p1910 $=0$ or p1960 $=0$.
	If a POWER ON or a warm restart is performed with motor data identification selected, the motor data identification request will be lost. If motor data identification is required, it will need to be selected again manually following rampup.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07991 (N)	Drive: Motor data identification activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data identification routine is activated.
	The motor data identification routine is carried out at the next switch-on command.
	If rotating measurement is selected (see p1900, p1960), it will not be possible to save the parameter assignment. Once motor data identification has been completed or deactivated, the option to save the parameter assignment will be made available again.
	See also: p1910
Remedy:	Not necessary.
	The alarm is automatically withdrawn after the motor data identification has been successfully completed or for the setting p1900 $=0$.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07991 (N)	Drive: Data identification activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Data identification is activated.
	Data identification is performed at the next switch-on command. When doing this, the drive moves.
	See also: p1910, p1960
Remedy:	Not necessary.
	The alarm is automatically withdrawn after the data identification routine has been successfully completed or for the setting p1910 $=0$ or p1960 $=0$.
	If a POWER ON or a warm restart is performed with motor data identification selected, the motor data identification request will be lost. If motor data identification is required, it will need to be selected again manually following rampup.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F07993
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## Remedy:

Drive: Incorrect direction of rotation of the field or encoder actual value inversion

Error in the parameterization / configuration / commissioning procedure (18) SERVO, SERVO_AC, SERVO_I_AC
None Propagation: GLOBAL OFF2 (NONE) IMMEDIATELY
Either the direction of the rotating field or the encoder actual value has an incorrect sign. The motor data identification automatically changed the actual value inversion (p0410) in order to correct the control sense. This can result in a direction of rotation change.
Note:
To acknowledge this fault, the correctness of the direction of rotation must first be acknowledged with p1910 $=-2$.
Check the direction of rotation (also for the position controller, if one is being used).
If the direction of rotation is correct, the following applies:
No additional measures are required (except set p1910 $=-2$ and acknowledge fault).
If the direction of rotation is incorrect, the following applies:
To change the direction of rotation, two phases must be interchanged and the motor identification routine must be repeated.

A07994 (F, N)	Drive: motor data identification not performed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "vector control" mode has been selected and a motor data identification has still not been performed.
	The alarm is initiated when changing the drive data set (see r0051) in the following cases:
	- vector control is parameterized in the actual drive data set (p1300 >= 20).
	and
	- motor data identification has still not been performed in the actual drive data set (see r3925).
	Note:
	For SINAMICS G120, a check is made and an alarm is output also when exiting commissioning and when the system powers up.
Remedy:	- Perform motor data identification (see p1900).
	- if required, parameterize "U/f control" (p1300 < 20).
	- switch over to a drive data set, in which the conditions do not apply.
Reaction upon F:	NONE (OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F07995 Drive: Pole position identification not successful

Message value: \%1
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Component: None Propagation: GLOBAL
Reaction:
Acknowledge: IMMEDIATELY
Cause: The pole position identification routine was unsuccessful.
Fault value (r0949, interpret decimal):
1: No current is established.
2: The starting current is not zero.
3: The selected max. distance was exceeded (p1981).
4 x : The measuring signal does not permit a clear evaluation.

5: The max. current was exceeded during the measurement.
6: The current measurement must be re-calibrated.
$7 x$ : The Sensor Module does not support the pole position identification routine.
8: The pole position identification routine current required is greater than the max. current.
9: The set pole position identification routine current is zero.
10: Data set changeover during the pole position identification.
11: The encoder adjustment to determine the commutation angle is active ( $\mathrm{p} 1990=1$ ) and the encoder without zero mark is not finely synchronized or does not have any valid data.
100: motion-based pole position identification, 1st and 2nd Measurements differ. Motor blocked or current (p1993) too low.
101: Motion-based position position identification, insufficient motion, motor blocked or current (p1993) too low.
102: Motion-based pole position identification, brake is being used and is closed. The motion-based position position identification in conjunction with the brake is not permitted.
103: Motion-based pole position identification without encoder.
104: Motion-based pole position identification, speed actual value not zero after stabilizing time.
200: Elasticity-based pole position identification, internal error in the arctan calculation (0/0).
201: Elasticity-based pole position identification, too few measuring points that can be evaluated.
202: Elasticity-based pole position identification, outliers in the measurement series.
203: Elasticity-based pole position identification, maximum rotation without current.
204: Elasticity-based pole position identification, no positive edge found.
205: Elasticity-based pole position identification, the result of the Fourier transformation differs by more than $480^{\circ}$ electrical / p3093 from the rough estimate.
206: Elasticity-based pole position identification, plausibility test unsuccessful.
207: Elasticity-based pole position identification, no negative measured value found.
It is possible that all measured values are identical. The expected deflection was not able to be reached, either because the expectation is too high or not enough current was able to be established.
208: Elasticity-based pole position identification, measuring current is 0 .
209: Elasticity-based pole position identification, the selected max. distance was exceeded (p3095).
210: Elasticity-based pole position identification without encoder.
250 ... 260:
Elasticity-based pole position identification, more than 3 attempts have been made and fault value 200 ... 210 output. Example:
Fault value $=253$--> more than 3 attempts have been made and fault value 203 output.
Remedy: $\quad$ For fault value $=1$ :

- check the motor connection and DC link voltage.
- for the following parameters, set practical values that are not zero (p0325, p0329).

For fault value $=1,2$ :

- in the case of a large computing time load (e.g. 6 drives with Safety Integrated), set the computing dead time of the current controller to late transfers ( $\mathrm{p} 0117=3$ ).
For fault value $=3$ :
- increase the max. distance (p1981).
- reduce the currents for the pole position identification routine (p0325, p0329).
- stop the motor in order to carry out the pole position identification routine.

For fault value $=5$ :

- reduce the currents for the pole position identification routine (p0325, p0329).

For fault value $=6$ :

- re-calibrate the Motor Module.

For fault value $=8$ :

- reduce the currents for the pole position identification routine (p0329, p0325, p1993).
- the power unit cannot provide the necessary pole position identification routine current (p0209 < p0329, p0325, p1993), replace the power unit with a power unit with a higher max. current.
For fault value $=9$ :
- enter a value not equal to zero in the pole position identification routine current (p0329, p0325, p1993).

For fault value $=10$ :

- do not initiate a data set changeover during the pole position identification.

For fault value $=11$ :

- for incremental encoders without commutation with zero mark ( $\mathrm{p} 0404.15=0$ ), it does not make sense to adjust the encoder to determine the commutation angle (p1990 = 1). In this case, the function should be de-selected ( $\mathrm{p} 1990=$ 0 ) or, for an encoder with suitable zero mark, commutation with zero mark should be selected ( $p 0404.15=1$ ).
- for absolute encoders, only adjust the encoder to determine the commutation angle (p1990 = 1) if the encoder supplies commutation information and is finely synchronized ( $p 1992.8=1$ and p1992.10 $=1$ ). The encoder is possibly parked, deactivated ( p 0145 ), not ready for operation or signals a fault condition.
- de-select the encoder adjustment to determine the commutation angle (set p1990 to 0).

For fault value $=40$... 49:

- increase the currents for the pole position identification routine ( $\mathrm{p} 0325, \mathrm{p} 0329$ ).
- stop the motor in order to carry out the pole position identification routine.
- select another technique for pole position identification routine (p1980).
- use another motor, absolute encoder or Hall sensors.

For fault value $=70 \ldots 79$ :

- upgrade the software in the Sensor Module.

For fault value $=100,101$ :

- check and ensure that the motor is free to move.
- increase the current for motion-based pole position identification (p1993).

For fault value $=102$ :

- if the motor is to be operated with a brake: Select a different technique to identify the pole position (p1980).
- if the motor can be operated without a brake: Open the brake (p1215 = 2).

For fault value =103:

- the motion-based pole position identification can only be carried out using an encoder. Connect an encoder or select another technique for pole position identification routine (p1980).
For fault value = 104:
- pole position identification, increase the smoothing time, motion-based (p1997).
- pole position identification, increase the rise time, motion-based (p1994).
- pole position identification, check the gain, motion-based (p1995).
- pole position identification, check the integral time, motion-based (p1996).
- for motor encoders with track A/B sq-wave ( $p 0404.3=1$ ) and flank time measurement ( $p 0430.20=0$ ), disable the integral time (p1996 = 0).
For fault value $=200$ :
- check parameter setting (p3090 ... p3096).

For fault value $=201$ :

- check parameter setting (p3090 ... p3096).
- reduce p3094.

For fault value $=202$ :

- check parameter setting (p3090 ... p3096).
- fault has occurred during the identification. Repeat the measurement.
- check the brake or brake control.

For fault value = 203:

- check the brake or brake control.
- check the measuring current (p3096).
- increase p3094.

For fault value = 204:

- check parameter setting (p3090 ... p3096).

For fault value $=205$ :

- check parameter setting (p3090 ... p3096).

For fault value $=206$ :

- check parameter setting (p3090 ... p3096).
- fault has occurred during the identification. Repeat the measurement.
- check the brake or brake control.

For fault value $=207$ :

- reduce the expected deflection (p3094).
- increase the measuring current (p3096).

For fault value $=208$ :

- set the measuring current (p3096).

For fault value $=209$ :

- check parameter setting p3095.
- check the brake or brake control.

For fault value $=210$ :

- the elasticity-based pole position identification can only be carried out using an encoder. Connect an encoder or select another technique for pole position identification routine (p1980).
For fault value $=250$... 260:
- check parameter setting (p3090 ... p3096, p1980).

F07996	Drive: Pole position identification routine not carried out
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	ENCODER (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	In operation, the operating mode that requires a pole position identification was changed over, which is not possible in this state.
	- the drive was changed over, flying, from encoderless operation to operation with encoder without having previously carried out a pole position identification for the encoder. p1404 is then at a value between zero and the max. speed and the pulses in the speed range above p1404 were enabled without a pole position ident. routine having been previously carried out in operation with encoder.
	- in operation, an EDS changeover was made to an encoder where it is necessary to carry out a pole position identification. However, this has still not been carried out (p1982 = 1 or 2 and p1992.7 = 0).
Remedy:	- for a flying changeover between operation with and without encoder with pole position identification after POWER ON or commissioning (p0010 not equal to zero) enable the pulses once at zero speed. This means that the pole position identification routine is carried out and the result is available for operation.
	- carry out the EDS changeover with the pulses inhibited, or, before the changeover, carry out a pole position identification using this data set.


A07998	Drive: Motor data identification active on another drive
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data identification is activated on the drive object specified in the alarm value, and interlocks the other drive objects so they cannot be switched on.
	Alarm value (r2124, interpret decimal):
	Drive object with the active motor data identification.
	See also: p1910, p1960
Remedy:	- wait for the complete execution of the motor data identification of the drive object designated in the alarm value.   - deselect the motor data identification for the drive object designated in the alarm value ( $\mathrm{p} 1910=0$ or p1960 $=0$ ).


A07999	Drive: Motor data identification cannot be activated
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Closed-loop control is enabled on a SERVO drive object type. To select motor data identification, pulses must be suppressed for all SERVO drive objects.   Alarm value (r2124, interpret decimal):   Drive object with enabled closed-loop control.
Remedy:	Withdraw the pulse enable on all drives and re-activate the motor data identification.
F08000 (N, A)	TB: +/-15 V power supply faulted
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	All objects
Component:	Controller Extension (CX) Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Terminal Board 30 detects an incorrect internal power supply voltage.
	Fault value (r0949, interpret decimal):
	0 : Error when testing the monitoring circuit.
	1: Fault in normal operation.
Remedy:	- replace Terminal Board 30.
	- replace Control Unit.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F08010 (N, A)	TB: Analog-digital converter
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	All objects
Component:	Controller Extension (CX) Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The analog/digital converter on Terminal Board 30 has not supplied any converted data.
Remedy:	- check the power supply.
	- replace Terminal Board 30.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F08500 (A)	COMM BOARD: Monitoring time configuration expired
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF1 (OFF2)
	Servo: OFF1 (OFF2, OFF3)
	Vector: OFF1 (OFF2, OFF3)
	Hla: OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time for the configuration has expired.
	Fault value (r0949, interpret decimal):
	0 : The transfer time of the send configuration data has been exceeded.
	1: The transfer time of the receive configuration data has been exceeded.
Remedy:	Check communications link.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F08501 (N, A)	PN/COMM BOARD: Setpoint timeout
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM15DI_DO, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF1 (OFF2)
	Servo: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
	Vector: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
	Hla: OFF3 (NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The reception of setpoints from the COMM BOARD has been interrupted.
	- bus connection interrupted.
	- controller switched off.
	- controller set into the STOP state.
	- COMM BOARD defective.
Remedy:	- Restore the bus connection and set the controller to RUN.
	- if the error is repeated, check the update time set in the bus configuration (HW Config).
	See also: p8840 (COMM BOARD monitoring time)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

4.2 List of faults and alarms

F08502 (A)	PN/COMM BOARD: Monitoring time sign-of-life expired
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF1 (OFF2)
	Servo: OFF1 (OFF2, OFF3)
	Vector: OFF1 (OFF2, OFF3)
	Hla: OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time for the sign-of-life counter has expired.
	The connection to the COMM BOARD was interrupted.
Remedy:	- check communications link.
	- check COMM BOARD.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A08504 (F)	PN/COMM BOARD: Internal cyclic data transfer error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic actual and/or setpoint values were not transferred within the specified times.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	Check the parameterizing telegram ( $\mathrm{Ti}, \mathrm{To}, \mathrm{Tdp}$, etc.).
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F08510 (A)	PN/COMM BOARD: Send configuration data invalid
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF1 (OFF2)
	Servo: OFF1 (OFF2, OFF3)
	Vector: OFF1 (OFF2, OFF3)
	Hla: OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	COMM BOARD did not accept the send-configuration data.
	Fault value (r0949, interpret decimal):
	Return value of the send-configuration data check.
Remedy:	Check the send configuration data.
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A08511 (F)	PN/COMM BOARD: Receive configuration data invalid
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC , HLA, HUBB, R_INF, S_INF, SERVO, SERVO_A $\bar{C}, S_{2}$ TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive unit did not accept the receive configuration data.
	Alarm value (r2124, interpret decimal):
	Return value of the receive configuration data check.
	1: Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence are defined in p0978.
	2: Too many PZD data words for output or input to a drive object. The number of possible PZD items in a drive object is determined by the number of indices in r2050/p2051 for PZD IF1, and in r8850/p8851 for PZD IF2.
	3: Uneven number of bytes for input or output.
	4: Setting data for synchronization not accepted. For more information, see A01902.
	5: Cyclic operation not active.
	17: CBE20 Shared Device: Configuration of the F-CPU has been changed.
	223: Illegal clock synchronization for the PZD interface set in p8815[0].
	500: Illegal PROFIsafe configuration for the interface set in p8815[1].
	501: PROFIsafe parameter error (e.g. F_dest).
	503: PROFIsafe connection is rejected as long as there is no isochronous connection (p8969).
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	Check the receive configuration data.
	For alarm value $=1,2$ :
	- check the list of the drive objects with process data exchange ( p 0978 ). With $\mathrm{p} 0978[\mathrm{x}]=0$, all of the following drive objects in the list are excluded from the process data exchange.
	For alarm value $=2$ :
	- check the number of data words for output and input to a drive object.
	For alarm value = 17:
	- CBE20 Shared Device: Unplug/plug A-CPU.
	For alarm value $=223,500$ :
	- check the setting in p8839 and p8815.
	- ensure that only one PZD interface is operated in clock synchronism or with PROFIsafe.
	For alarm value $=501$ :
	- check the set PROFIsafe address (p9610).
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A08520 (F)	PN/COMM BOARD: Non-cyclic channel error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory or the buffer status of the non-cyclic channel has an error.
	Alarm value (r2124, interpret decimal):
	0 : Error in the buffer status.
	1: Error in the memory.
Remedy:	Check communications link.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A08526 (F)	PN/COMM BOARD: No cyclic connection
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC̄, HLA, HUBB, R_INF, S_INF, SERVO, SERVO_AC , SERVO_I_AC , TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no cyclic connection to the control.
Remedy:	Establish the cyclic connection and activate the control with cyclic operation.
	For PROFINET, check the parameters "Name of Station" and "IP of Station" (r61000, r61001).
	If a CBE20 is inserted and PROFIBUS is to communicate via PZD Interface 1 , then this must be parameterized using the STARTER commissioning tool or directly using p8839.
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY
A08530 (F)	PN/COMM BOARD: Message channel error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory or the buffer status of the message channel has an error.
	Alarm value (r2124, interpret decimal):
	0 : Error in the buffer status.
	1: Error in the memory.
Remedy:	Check communications link.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A08531 (F)	CBE20 POWER ON required
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one parameter of the CBE20 (e.g. a parameter associated with SINAMICS Link) was changed as a result of a project download. A POWER ON is required to activate the values.
	Note:
	CBE20: Communication Board Ethernet 20
	See also: p8811 (SINAMICS Link project selection), p8812 (SINAMICS Link clock cycle settings), p8835 (CBE20 firmware selection), p8836 (SINAMICS link node address)
Remedy:	Back up the parameters and carry out a POWER ON (switch-off/switch-on).
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A08550	PZD Interface Hardware assignment error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The assignment of the hardware to the PZD interface has been incorrectly parameterized.
	Alarm value (r2124, interpret decimal):
	1: Only one of the two indices is not equal to 99 (automatic).
	2: Both PZD interfaces are assigned to the same hardware.
	3: Assigned COMM BOARD missing.
	4: CBC10 is assigned to interface 1.
	See also: p8839 (PZD interface hardware assignment)
Remedy:	Check the parameterization and if required, correct (p8839).


A08555	Modbus TCP: commissioning error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	A setting for the "Modbus TCP" protocol is incorrect.
	Alarm value (r2124, interpret decimal):
	1: Modbus simultaneously activated on the onboard interface (p2030) and CBE20 (p8835). CBE20 is not activated.
	2: A drive object supported by Modbus is not available under p0978[0]. Modbus is not activated.
	3: drive object SERVO is under p0978[0] - and FM bit LINMOT is set, Modbus is not activated.
	3: drive object SERVO with activated linear motor function is under p0978[0]. Modbus is not activated.
	See also: p0978 (List of drive objects), p2030 (Field bus interface protocol selection), p8835 (CBE20 firmware

### 4.2 List of faults and alarms

Remedy: $\quad$ For alarm value $=1:$
Check the parameterization and if required, correct (p2030, p8835).
For alarm value $=2,3$ :
Appropriately resort the list of drive objects in p0978.
Modbus supports the following drive object: SERVO (without linear motor), VECTOR

A08560	IE: Syntax error in configuration file
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC̄, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC , SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A syntax error has been detected in the ASCII configuration file for the Industrial Ethernet interface (X127). The saved configuration file has not been loaded.
	Note:
	IE: Industrial Ethernet
Remedy:	- Check the interface configuration (p8900 and following), correct if necessary, and activate (p8905 = 1).
	- Save the parameters for interface configuration (e.g. p8905 = 2)
	- reinitialize the station using the "Edit Ethernet node" screen form (e.g. with STARTER commissioning tool).
	See also: p8905 (Activate IE interface configuration)
A08561	IE: Consistency error affecting adjustable parameters
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC SERVO_IAC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A consistency error was detected when activating the configuration (p8905) for the Industrial Ethernet interface (X127).
	Alarm value (r2124, interpret decimal):
	0 : general consistency error
	1: error in the IP configuration (IP address, subnet mask or standard gateway).
	2: Error in the station names.
	5: standard gateway is also set at the PROFINET onboard interface.
	6: the station name is also set at the PROFINET onboard interface.
	7: IP address is located in the same subnet as the IP address of the PROFINET onboard interface.
	Note:
	For alarm value $=0,1,2,5,7$ the following applies: the configuration was not changed.
	For alarm value $=6$ the following applies: The new configuration was however activated.
	IE: Industrial Ethernet
	See also: p8900 (IE Name of Station), p8901 (IE IP address), p8902 (IE default gateway), p8903 (IE Subnet Mask)
Remedy:	- check the required interface configuration (p8900 and following), correct if necessary, and activate (p8905). or
	- reinitialize the station using the "Edit Ethernet node" screen form (e.g. with STARTER commissioning tool). See also: p8905 (Activate IE interface configuration)


A08562	PROFINET: Syntax error in configuration file
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, EN $\bar{C}, H L A, H U \bar{B}, R _I N F, S _I N \bar{F}$, , SERVO, SERVO_A $\bar{C}$, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A syntax error has been detected in the ASCII configuration file for the onboard PROFINET interface. The saved configuration file has not been loaded.
Remedy:	- Check the interface configuration (p8920 and following), correct if necessary, and activate (p8925 = 1).   - Save the parameters for interface configuration (e.g. p8925 = 2).   or   - reinitialize the station using the "Edit Ethernet node" screen form (e.g. with STARTER commissioning tool).   See also: p8925 (Activate PN interface configuration)
A08563	PROFINET: Consistency error affecting adjustable parameters
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A consistency error was detected when activating the configuration (p8925) for the PROFINET interface.
	Alarm value (r2124, interpret decimal):
	0 : general consistency error
	1: error in the IP configuration (IP address, subnet mask or standard gateway).
	2: Error in the station names.
	3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
	4: a cyclic PROFINET connection is not possible as DHCP is activated.
	5: standard gateway is also set at the Industrial Ethernet interface (X127).
	6: standard station name is also set at the Industrial Ethernet interface (X127).
	7: IP address is located in the same subnet as the IP address of the Industrial Ethernet interface (X127).
	Note:
	For alarm value $=0,1,2,3,4,5,7$, the following applies: the configuration was not changed.
	For alarm value $=6$ the following applies: The new configuration was however activated.
	DHCP: Dynamic Host Configuration Protocol
	See also: p8920 (PN Name of Station), p8921 (PN IP address), p8922 (PN Default Gateway), p8923 (PN Subnet Mask)
Remedy:	- check the required interface configuration (p8940 and following), correct if necessary, and activate (p8945). or
	- reinitialize the station using the "Edit Ethernet node" screen form (e.g. with STARTER commissioning tool).   See also: p8925 (Activate PN interface configuration)


A08564	PN/COMM BOARD: syntax error in the configuration file
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A syntax error has been detected in the ASCII configuration file for the Communication Board Ethernet 20/25 (CBE20/CBE25). The saved configuration file has not been loaded.
Remedy:	- check the CBE2x configuration (p8940 and following), correct if necessary, and activate (p8945 = 2).   - reinitialize the CBE $2 \times$ (e.g. using the STARTER commissioning tool)   Note:   The configuration is not applied until the next POWER ON!   See also: p8945 (CBE2x activate interface configuration)
A08565	PNCOMM BOARD: Consistency error affecting adjustable parameters
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM $54 \mathrm{~F}_{\mathrm{Z}} \mathrm{MA}, \mathrm{TM} 54 \mathrm{~F}$ _SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A consistency error was detected when activating the configuration (p8945) for the Communication Board Ethernet 20/25 (CBE20/CBE25).
	Alarm value (r2124, interpret decimal):
	0 : general consistency error
	1: error in the IP configuration (IP address, subnet mask or standard gateway).
	2: Error in the station names.
	3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
	4: a cyclic PROFINET connection is not possible as DHCP is activated.
	Note:
	For all alarm values, the following applies: currently set configuration has not been activated.
	DHCP: Dynamic Host Configuration Protocol
	See also: p8940 (CBE2x Name of Station), p8941 (CBE2x IP address), p8942 (CBE2x Default Gateway), p8943 (CBE2x Subnet Mask), p8944 (CBE2x DHCP Mode)
Remedy:	- check the required interface configuration (p8940 and following), correct if necessary, and activate (p8945). or
	- reinitialize the station using the "Edit Ethernet node" screen form (e.g. with STARTER commissioning tool). See also: p8945 (CBE2x activate interface configuration)


F08700 (A)	CAN: Communications error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: OFF3 (NONE, OFF1, OFF2)
	Vector: OFF3 (NONE, OFF1, OFF2)
	Hla: OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A CAN communications error has occurred.
	Fault value (r0949, interpret decimal):
	1: The error counter for the send telegrams has exceeded the BUS OFF value 255 . The bus disables the CAN controller.
	- bus cable short circuit.
	- incorrect baud rate.
	- incorrect bit timing.
	2: The master no longer interrogated the CAN node status longer than for its "life time". The "life time" is obtained from the "guard time" (p8604[0]) multiplied by the "life time factor" (p8604[1]).
	- bus cable interrupted.
	- bus cable not connected.
	- incorrect baud rate.
	- incorrect bit timing.
	- master fault.
	Note:
	The fault response can be set as required using p8641.
	See also: p8604 (CAN life guarding), p8641 (CAN Abort Connection Option Code)
Remedy:	- check the bus cable
	- check the baud rate (p8622).
	- check the bit timing (p8623).
	- check the master.
	The CAN controller must be manually restarted with p8608 = 1 after the cause of the fault has been resolved!
	See also: p8608 (CAN Clear Bus Off Error), p8622 (CAN bit rate), p8623 (CAN Bit Timing selection)
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F08701	CAN: NMT state change
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A INF, B INF, CU LINK, CU S120 DP, CU S120 PN, CU S150 DP, CU S150 PN, ENC, HLA, HUB, R INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF2
	Servo: OFF3
	Vector: OFF3
	Hla: OFF3
Acknowledge:	IMMEDIATELY
Cause:	A CANopen NMT state transition from "operational" to "pre-operational" or after "stopped".
	Fault value (r0949, interpret decimal):
	1: CANopen NMT state transition from "operational" to "pre-operational".
	2: CANopen NMT state transition from "operational" to "stopped".
	Note:
	In the NMT state "pre-operational", process data cannot be transferred and in the NMT state "stopped", no process data and no service data can be transferred.
Remedy:	Not necessary.
	Acknowledge the fault and continue operation.
F08702 (A)	CAN: RPDO Timeout
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF3 (NONE, OFF1, OFF2)
	Vector: OFF3 (NONE, OFF1, OFF2)
	Hla: OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time of the CANopen RPDO telegram has expired because the bus connection was either interrupted or the CANopen Master was switched-off.
	See also: p8699 (CAN: RPDO monitoring time)
Remedy:	- check the bus cable
	- check the master.
	- If required, increase the monitoring time (p8699).
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F08703 (A)	CAN: Maximum number of drive objects exceeded
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF3 (NONE, OFF1, OFF2)
	Vector: OFF3 (NONE, OFF1, OFF2)
	Hla: OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The maximum number of 8 drive objects with the "CAN" function module was exceeded.
	Note:
	In the CANopen standard, a maximum of 8 CANopen device modules (drive objects with function module "CAN") are defined for each CANopen slave.
Remedy:	- New commissioning of maximum 8 drive objects with the "CAN" function module in the topology.
	- For the drive objects, if required, deselect the "CAN" function module (r0108.29).
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A08751 (N)	CAN: Telegram loss
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The CAN controller has lost a receive message.
	Alarm value (r2124, interpret decimal):
	Hardware channel in the CAN controller.
	0 : Firmware version < 5.2 (no reference to the original hardware channel).
	1: NMT command message
	2: SYNC message
	3: NMT error control message
	7 ... 31: RPDO message
	32: SDO message
Remedy:	- increase the cycle times of the received messages.
	- CANopen reduce sampling time (p8848).
	See also: p8848 (IF2 PZD sampling time)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A08752	CAN: Error counter for error passive exceeded
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error counter for the send or receive telegrams has exceeded the value 127.

Remedy: $\quad$ - check the bus cable $\quad$ - set a higher baud rate (p8622). $\quad$ - check the bit timing and if required optimize (p8623). |  | See also: p8622 (CAN bit rate), p8623 (CAN Bit Timing selection) |
| :--- | :--- |

A08753	CAN: Message buffer overflow
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A message buffer overflow.
	Alarm value (r2124, interpret decimal):
	1: Non-cyclic send buffer (SDO response buffer) overflow.
	2: Non-cyclic receive buffer (SDO receive buffer) overflow.
	3: Cyclic send buffer (PDO send buffer) overflow.
Remedy:	- check the bus cable.
	- set a higher baud rate (p8622).
	- check the bit timing and if required optimize (p8623).
	For alarm value $=2$ :
	- reduce the cycle times of the SDO receive messages.
	- SDO request from master only after SDO feedback for previous SDO request.
	See also: p8622 (CAN bit rate), p8623 (CAN Bit Timing selection)


A08754	CAN: Incorrect communications mode
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERRVO, SĒRVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the "operational" mode, an attempt was made to change parameters p8700 ... p8737.
Remedy:	Change to the "pre-operational" or "stopped" mode.
A08755	CAN: Object cannot be mapped
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The CANopen object is not provided for the Process Data Object (PDO) Mapping.
Remedy:	Use a CANopen object intended for the PDO mapping or enter 0.
	The following objects can be mapped in the Receive Process Data Object (RPDO) or Transmit Process Data Object (TPDO):
	- RPDO: 6040 hex, 6060 hex, 60FF hex, 6071 hex; 5800 hex - 580F hex; 5820 hex - 5827 hex
	- TPDO: 6041 hex, 6061 hex, 6063 hex, 6069 hex, 606B hex, 606C hex, 6074 hex; 5810 hex - 581 F hex; 5830 hex 5837 hex
	Only sub-index 0 of the specified objects can be mapped.

Note:
As long as A08755 is present, the COB-ID cannot be set to valid.

A08756	CAN: Number of mapped bytes exceeded
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The number of bytes of the mapped objects exceeds the telegram size for net data. A max. of 8 bytes is permissible.
Remedy:	Map fewer objects or objects with a smaller data type.
	See also: p8710, p8711, p8712, p8713, p8714, p8715, p8716, p8717, p8730, p8731, p8732, p8733, p8734, p8735, p8736, p8737


A08757	CAN: Set COB-ID invalid
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_IAC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For online operation, the appropriate COB-ID must be set invalid before mapping.
	Example:
	Mapping for RPDO 1 should be changed (p8710[0]).
	--> set p8700[0] = C00006E0 hex (invalid COB-ID)
	--> set p8710[0] as required.
	--> p8700[0] enter a valid COB-ID
Remedy:	Set the COB-ID to invalid.
A08758	CAN: Maximum number of valid PDO exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SĒRVO, SĒRVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to exceed the maximum number of valid PDO.
	Alarm value (r2124, interpret decimal):
	1:
	An attempt was made to exceed the total number of valid RPDO of all CANopen supported drive objects.
	As a result of the hardware, the limit is 25 valid RPDO.
	2 :
	An attempt was made to exceed the total number of valid TPDO of all CANopen supported drive objects.
	The limit is defined by the following ratio:
	CAN sampling time (p8848) / CAN minimum processing time (r8739)
	Note:
	RPDO: Receive Process Data Object
	TPDO: Transmit Process Data Object
	See also: r8739 (Minimum CAN processing time), r8742 (CAN PDO available number)

### 4.2 List of faults and alarms

Remedy: | Comply with the limit for the maximum number of valid RPDO or TPDO. |
| :--- |
| Apply one of the following options to delete the alarm: |
| - successfully write to the COB ID index of a PDO communication parameter (p870x[0], p872x[0]). |
| - change CANopen NMT state. |
| - execute CANopen NMT command reset node. |
| - execute CANopen NMT command reset communication. |
| - carry out a warm restart (p0009 = 30, p0976 = 2). |
| - carry out a POWER ON (switch-off/switch-on). |
| Note: |
| The remaining available RPDO or TPDO are indicated in r8742. |

## A08759

Message value:
Message class:
Drive object:

Component:
Reaction:

## Acknowledge:

Cause:

## CAN: PDO COB-ID already available

Parameter: \%1
Error in the parameterization / configuration / commissioning procedure (18)
A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL

NONE
NONE
An existing PDO COB-ID was allocated.
Alarm value (r2124, interpret decimal):
Parameter number.
Note:
The COB-ID is included in index zero (p870x[0], p872x[0]).
Remedy: Select another PDO COB-ID.

A08760	CAN: maximum size of the IF PZD exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum size of the IF PZD was exceeded.
	Alarm value (r2124, interpret decimal):
	1: error for IF PZD receive.
	2: error for IF PZD send.
	Note:
	IF: interface
Remedy:	Map fewer process data in PDO.
	Apply one of the following options to delete the alarm:
	- POWER ON (switch-off/switch-on).
	- carry out a warm restart (p0009 = 30, p0976 = 2).
	- execute CANopen NMT command reset node.
	- change CANopen NMT state.
	- delete alarm buffer [0...7] (p2111 = 0).


A08800	PROFlenergy energy-saving mode active
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The PROFlenergy energy-saving mode is active
	Alarm value (r2124, interpret decimal):
	Mode ID of the active PROFlenergy energy-saving mode.
	See also: r5600 (Pe energy-saving mode ID)
Remedy:	The alarm is automatically withdrawn when the energy-saving mode is exited.
	Note:
	The energy-saving mode is exited after the following events:
	- the PROFlenergy command end_pause is received from the higher-level control.
	- the higher-level control has changed into the STOP operating state.
	- the PROFINET connection to the higher-level control has been disconnected.


A09000	Webserver security: password not set for administrator
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP,
	CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150,
	TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A password must be allocated to activate an "Administrator" as user in the web server with extended rights. There is
	no password for the "Administrator".
Remedy:	Enter the password for user "Administrator"


F13000	License not adequate
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	- for the drive unit, the options that require a license are being used but the licenses are not sufficient.
	- an error occurred when checking the existing licenses.
	Fault value (ro949, decimal interpretation):
	$0:$
	The existing license is not sufficient.
	$1:$
	An adequate license was not able to be determined as the memory card with the required licensing data was
	withdrawn in operation.
	$2:$
	An adequate license was not able to be determined as there is no licensing data available on the memory card.
	3:
	An adequate license was not able to be determined as there is a checksum error in the license key.
$4:$	
	An internal error occurred when checking the license.

### 4.2 List of faults and alarms

Remedy: | For fault value $=0$ : |
| :--- |
| Additional licenses are required and these must be activated (p9920, p9921). |
| For fault value = 1: |
| With the system powered down, re-insert the memory card that matches the system. |
| For fault value $=2$ : |
| Enter and activate the license key (p9920, p9921). |
| For fault value = 3: |
| Compare the license key (p9920) entered with the license key on the certificate of license. |
| Re-enter the license key and activate (p9920, p9921). |
| For fault value = 4: |
| - carry out a POWER ON. |
| - upgrade firmware to later version. |
| - contact Technical Support. |
| Note: |
| An overview of the drive device functions requiring a license can be displayed using a commissioning tool in the |
| online mode. Depending on the commissioning tool, you can obtain the necessary licenses (serial number, license |
|  |
| Key, Trial License Mode). |

A13001	Error in license checksum
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP,
	CU_S150_PN, ENC, HLA, HUB, R_INF,S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150,
	TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU)
Reaction:	NONE
Acknowledge:	NONE
Cause:	When checking the checksum of the license key, an error was detected.
Remedy:	Compare the license key (p9920) entered with the license key on the certificate of license.
	Re-enter the license key and activate (p9920, p9921).


F13009	Licensing Technology Extension not licensed
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	None $\quad$ Propagation: $\quad$ LOCAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	At least one Technology Extension that requires a license does not have a license.
	Note:
	Refer to r4955 and p4955 for information about the installed Technology Extensions.
	- enter and activate the license key for Technology Extensions that require a license (p9920, p9921).
Remedy:	- if necessary, deactivate Technology Extensions that are not licensed (p4956).
	See also: p9920 (Licensing enter license key), p9921 (Licensing activate license key)


F13010	Licensing function module not licensed
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	At least one function module requiring a license is not licensed.
	Fault value (r0949, interpret hexadecimal):
	Bit $x=1$ : The corresponding function module does not have a license.
	Note:
	Assigning bit number to function module, see p0108 or r0108.
Remedy:	- enter and activate the license key for function modules that require a license license (p9920, p9921).
	- if necessary, deactivate unlicensed function modules (p0108, r0108).
	See also: p9920 (Licensing enter license key), p9921 (Licensing activate license key)
F13020	Licensing not sufficient in the control
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: DRIVE
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	For the drive unit, the options that require a license are being used but the licenses are not sufficient.
Remedy:	- enter and activate the license key for options that require a license.
	- if necessary, deactivate unlicensed options.


A13021	License for 600 Hz is not sufficient
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	You have parameterized speeds that result in output frequencies $>550 \mathrm{~Hz}$. For SINAMICS drives, output frequencies $>550 \mathrm{~Hz}$ are only possible after enabling the corresponding high output frequency license. Without license, the SINAMICS output frequencies are limited to 550 Hz (independent of any other parameterization).
Remedy:	- enter and activate the license key for 600 Hz .
	- if required deactivate use of 600 Hz

## A13030

Message value:

## Message class:

Drive object:

## Component:

Reaction:
Acknowledge:
Cause:

## Trial License activated

Error in the parameterization / configuration / commissioning procedure (18)
A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Control Unit (CU) Propagation: LOCAL
NONE
NONE
The "Trial License" function was activated. One of the available periods is expiring.
See also: p9918 (Licensing active Trial License), r9919 (Licensing Trial License status)

Remedy:	Not necessary.
	The alarm is automatically withdrawn after the periods have expired.


A13031	Trial License period expired
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	One of the available periods of the "Trial License" function has expired.
	See also: p9918 (Licensing active Trial License), r9919 (Licensing Trial License status)
Remedy:	- if required, start an additional period (p9918 = 1).
	- deactivate functions requiring a license.
	- appropriately license the drive unit.
	Note:
	A license that is not adequate will only become evident after the next time the system runs up.


A13032	Trial License last period activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Trial License" function was activated. The last of the available periods is expiring.
	See also: p9918 (Licensing active Trial License), r9919 (Licensing Trial License status)
Remedy:	Not necessary.
	The alarm is automatically withdrawn after the last period has expired.


A13033	Trial License last period expired
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, CU_LINK, CU_S_AC_DP, CU_S_AC_PN, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC̄, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC , SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The last period of the "Trial License" function has expired. No additional periods available.
	See also: p9918 (Licensing active Trial License), r9919 (Licensing Trial License status)
Remedy:	- deactivate functions requiring a license.
	- appropriately license the drive unit.
	Note:
	A license that is not adequate will only become evident after the next time the system runs up.


F13100	Know-how protection: Copy protection error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The know-how protection with copy protection for the memory card is active.   An error has occurred when checking the memory card.   Fault value (r0949, interpret decimal):   0 : A memory card is not inserted.   2: An invalid memory card is inserted.   3: The memory card is being used in another Control Unit.   12: An invalid memory card is inserted (OEM input incorrect, p7769).   13: The memory card is being used in another Control Unit (OEM input incorrect, p7759).   See also: p7765 (KHP configuration)
Remedy:	For fault value $=0$ :   - insert the correct memory card and carry out POWER ON.   For fault value $=2,3,12,13$ :   - contact the responsible OEM.   - Deactivate copy protection (p7765) and acknowledge the fault (p3981).   - Deactivate know-how protection (p7766 ... p7768) and acknowledge the fault (p3981).   Note:   In general, the copy protection can only be changed when know-how protection is deactivated.   KHP: Know-How Protection   See also: p3981 (Acknowledge drive object faults), p7765 (KHP configuration)
F13101	Know-how protection: Copy protection cannot be activated
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error occurred when attempting to activate the copy protection for the memory card.   Fault value (r0949, interpret decimal):   0 : A memory card is not inserted.   Note:   KHP: Know-How Protection
Remedy:	- insert the memory card and carry out POWER ON.   - Try to activate copy protection again (p7765).   See also: p7765 (KHP configuration)


F13102	Know-how protection: Consistency error of the protected data
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	An error was identified when checking the consistency of the protected files. As a consequence, the project on the memory card cannot be run.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex: yyyy = object number, $x x x x=$ fault cause
	xxxx = 1 :
	A file has a checksum error.
	xxxx $=2$ :
	The files are not consistent with one another.
	The project files, which were loaded into the file system via load (download from the memory card), are inconsistent. Note:
	KHP: Know-How Protection
Remedy:	- Replace the project on the memory card or replace project files for download from the memory card.
	- Restore the factory setting and download again.
F30001	Power unit: Overcurrent
Message value:	Fault cause: \%1 bin
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overcurrent condition.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: Rated motor current is significantly greater than that of the Motor Module.
	- infeed: High discharge and post-charging currents for line voltage dip.
	- infeed: High post-charging currents for overload when motoring and DC link voltage dip.
	- infeed: Short-circuit currents at switch-on as there is no commutating reactor.
	- power cables are not correctly connected.
	- the power cables exceed the maximum permissible length.
	- power unit defective.
	- line phase interrupted.
	Additional causes for a parallel switching device (r0108.15 = 1):
	- a power unit has tripped (switched off) due to a ground fault.
	- the closed-loop circulating current control is either too slow or has been set too fast.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
	Bit 3: Overcurrent in the DC link.
	Note:
	Fault value $=0$ means that the phase with overcurrent is not recognized (e.g. for blocksize device).


Remedy:	- check the motor data - if required, carry out commissioning.   - check the motor circuit configuration (star/delta).   - U/f operation: Increase up ramp.   - U/f operation: Check the assignment of the rated currents of the motor and Motor Module.   - infeed: Check the line supply quality.   - infeed: Reduce the motor load.   - infeed: Check the correct connection of the line filter and the line commutating reactor.   - check the power cable connections.   - check the power cables for short-circuit or ground fault.   - check the length of the power cables.   - replace power unit.   - check the line supply phases.   For a parallel switching device (r0108.15 = 1) the following additionally applies:   - check the ground fault monitoring thresholds (p0287).   - check the setting of the closed-loop circulating current control (p7036, p7037).
F30002	Power unit: DC link voltage overvoltage
Message value:	\%1
Message class:	DC link overvoltage (4)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected overvoltage in the DC link.   - motor regenerates too much energy.   - device supply voltage too high.   - when operating with a Voltage Sensing Module (VSM), the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit.   - line phase interrupted.   Fault value (r0949, interpret decimal):   DC link voltage at the time of trip [0.1 V].
Remedy:	- increase the ramp-down time   - activate the DC link voltage controller (p1240)   - use a brake resistor or Active Line Module   - increase the current limit of the infeed or use a larger module (for the Active Line Module)   - check the device supply voltage   - check and correct the phase assignment at the VSM and at the power unit   - check the line supply phases.   See also: p0210 (Drive unit line supply voltage), p1240 (Vdc controller or Vdc monitoring configuration)
F30002	Power unit: DC link voltage overvoltage
Message value:	\%1
Message class:	DC link overvoltage (4)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected overvoltage in the DC link.   - motor regenerates too much energy.   - device supply voltage too high.   - when operating with a Voltage Sensing Module (VSM), the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit.   - line phase interrupted.   Fault value (r0949, interpret decimal):   DC link voltage at the time of trip [0.1 V ].

### 4.2 List of faults and alarms

Remedy: $\quad$ - increase the ramp-down time $\quad$ - activate the DC link voltage controller $\quad$ - use a brake resistor or Active Line Module $\quad$ - increase the current limit of the infeed or use a larger module (for the Active Line Module)

## F30003

Message value:

## Message class:

Drive object:
Component:
Reaction:
Acknowledge:
Power unit: DC link voltage undervoltage

Cause:

Cause:	- line supply failure
	- line supply voltage below the permissible value.
	- line supply infeed failed or interrupted.
	- line phase interrupted.
	Note:
	The monitoring threshold for undervoltage in the DC link is indicated in r0296.
Remedy:	- check the line supply voltage
	- check the line supply infeed and observe the fault messages relating to it (if there are any)
	- check the line supply phases.
	- check the line supply voltage setting (p0210).
	- booksize units: check the setting of p0278.
	Note:
	The ready signal for the infeed (r0863) must be interconnected to the associated drive inputs (p0864).
	See also: p0210 (Drive unit line supply voltage)
F30004	Power unit: Overtemperature heat sink AC inverter
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature of the power unit heat sink has exceeded the permissible limit value.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- pulse frequency too high.
	Fault value (r0949, interpret decimal):
	Temperature [ $0.01{ }^{\circ} \mathrm{C}$ ].
Remedy:	- check whether the fan is running.
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	- check the motor load.
	- reduce the pulse frequency if this is higher than the rated pulse frequency.

Notice:
This fault can only be acknowledged after the alarm threshold for alarm A05000 has been undershot.
See also: p1800

F30005	Power unit: Overload I2t
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC
Component:	Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit was overloaded (r0036 = 100 \%).
	- the permissible rated power unit current was exceeded for an inadmissibly long time.
	- the permissible load duty cycle was not maintained.
	Fault value (r0949, interpret decimal):
	I2t [100 \% = 16384].
- reduce the continuous load.	
	- adapt the load duty cycle.
	- check the motor and power unit rated currents.
	See also: r0036, r0206, p0206, p0307


F30005	Power unit: Overload I2t
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit was overloaded (r0036 = 100 \%).
	- the permissible rated power unit current was exceeded for an inadmissibly long time.
	- the permissible load duty cycle was not maintained.
	Fault value (r0949, interpret decimal):
	I2t [100 \% = 16384].
- reduce the continuous load.	
	- adapt the load duty cycle.
	- check the motor and power unit rated currents.
	- increase p0294
	See also: r0036, r0206, p0206, p0307


F30006	Power unit: Thyristor Control Board
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The Thyristor Control Board (TCB) of the Basic Line Module signals a fault.
	- there is no line supply voltage.
	- the line contactor is not closed.
	- the line supply voltage is too low.
	- line supply frequency outside the permissible range (45 ... 66 Hz).
	- there is a DC link short-circuit.


Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F30011	Power unit: Line phase failure in main circuit
Message value:	\%1
Message class:	Network fault (2)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	At the power unit, the DC link voltage ripple has exceeded the permissible limit value.
	Possible causes:
	- a line phase has failed.
	- the 3 line phases are inadmissibly asymmetrical.
	- the capacitance of the DC link capacitor forms a resonance frequency with the line inductance and the reactor integrated in the power unit.
	- the fuse of a phase of a main circuit has ruptured.
	- a motor phase has failed.
	- for power units operated on a single phase, the permissible active power was exceeded.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check the main circuit fuses.
	- check whether a single-phase load is distorting the line voltages.
	- Detune the resonant frequency with the line inductance by using an upstream line reactor.
	- Dampen the resonant frequency with the line inductance by switching over the DC link voltage compensation in the software (see p1810) - or increase the smoothing (see p1806). However, this can have a negative impact on the torque ripple at the motor output.
	- check the motor feeder cables.
F30012	Power unit: Temperature sensor wire breakage
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The connection to a temperature sensor in the power unit is interrupted.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Module slot (electronics slot)
	Bit 1: Air intake
	Bit 2: Inverter 1
	Bit 3: Inverter 2
	Bit 4: Inverter 3
	Bit 5: Inverter 4
	Bit 6: Inverter 5
	Bit 7: Inverter 6
	Bit 8: Rectifier 1
	Bit 9: Rectifier 2
	Bit14: capacitor air discharge
	Bit15: liquid intake
Remedy:	Contact Technical Support.


F30013	Power unit: Temperature sensor short circuit
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A temperature sensor in the power unit is short-circuited.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Module slot (electronics slot)
	Bit 1: Air intake
	Bit 2: Inverter 1
	Bit 3: Inverter 2
	Bit 4: Inverter 3
	Bit 5: Inverter 4
	Bit 6: Inverter 5
	Bit 7: Inverter 6
	Bit 8: Rectifier 1
	Bit 9: Rectifier 2
	Bit14: capacitor air discharge
	Bit15: liquid intake
Remedy:	Contact Technical Support.
F30015 (N, A)	Power unit: Phase failure motor cable
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A phase failure in the motor feeder cable was detected.
	The signal can also be output in the following case:
	- the motor is correctly connected, however the closed-speed control is instable and therefore an oscillating torque is generated.
	Note:
	Chassis power units do not feature phase failure monitoring.
Remedy:	- check the motor feeder cables.
	- check the speed controller settings.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


$\overline{\mathrm{F} 30015 \text { (N, A) }}$	Power unit: Phase failure motor cable
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A phase failure in the motor feeder cable was detected.
	The signal can also be output in the following cases:
	- the motor is correctly connected, but the drive has stalled in U/f control. In this case, a current of 0 A is possibly measured in one phase due to asymmetry of the currents.
	- the motor is correctly connected, however the closed-speed control is instable and therefore an oscillating torque is generated.
	Note:
	Chassis power units do not feature phase failure monitoring.
Remedy:	- check the motor feeder cables.
	- increase the ramp-up or ramp-down time (p1120) if the drive has stalled in U/f control.
	- check the speed controller settings.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A30016 (N)	Power unit: Load supply switched off
Message value:	\%1
Message class:	Network fault (2)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage is too low.
	Alarm value (r2124, interpret decimal):
	DC link voltage at the time of the trip [V].
Remedy:	- switch on load supply.
	- check the line supply if necessary.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F30017	Power unit: Hardware current limit has responded too often
Message value:	Fault cause: \%1 bin
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The hardware current limitation in the relevant phase (see A30031, A30032, A30033) has responded too often. The number of times the limit has been exceeded depends on the design and type of power unit.
	For infeed units, the following applies:
	- closed-loop control is incorrectly parameterized.
	- load on the infeed is too high.
	- Voltage Sensing Module incorrectly connected.
	- line reactor missing or the incorrect type.
	- power unit defective.

### 4.2 List of faults and alarms

Remedy:	The following applies to Motor Modules:
	- closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.
	Fault value (r0949, interpret binary):
	Bit 3: phase U
	Bit 4: phase V
	Bit 5: phase W
	Additional bits:
	Only for internal Siemens troubleshooting.
	Note:
	Fault value $=0$ means that the phase with current limiting is not recognized (e.g. for blocksize device).
	For infeed units, the following applies:
	- check the controller settings and reset and identify the controller if necessary ( $\mathrm{p} 0340=2, \mathrm{p} 3410=5$ )
	- reduce the load and increase the DC link capacitance or use a higher-rating infeed if necessary
	- check the connection of the optional Voltage Sensing Module
	- check the connection and technical data of the line reactor
	- check the power cables for short-circuit or ground fault.
	- replace power unit.
	The following applies to Motor Modules:
	- check the motor data and if required, recalculate the controller parameters ( $\mathrm{p} 0340=3$ ). As an alternative, run a motor data identification (p1910 $=1, \mathrm{p} 1960=1$ ).
	- check the motor circuit configuration (star-delta).
	- check the motor load.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
F30017	Power unit: 26.5 V supply voltage fault
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	HLA
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	For a drive that has been enabled, it has been identified that the 26.5 V supply voltage for the Hydraulic Module has a fault (X271).
	Permissible range: 26.0 ... 27.0 V
	Fault value (r0949, interpret decimal):
	Voltage value [ 0.1 V ].
Remedy:	- check the 26.5 V supply voltage (X271).


F30020	Power unit: Configuration not supported
Message value:	fault cause: \%1, additional information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A configuration is requested that is not supported by the power unit.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex: xxxx = fault cause, yyy = additional information (internal Siemens)
	$x \mathrm{xxx}=0$ : Autonomous operation is requested but is not supported.
	$x \mathrm{xxx}=1$ : The requested DRIVE-CLiQ timing is not permissible.
	$x \mathrm{xxx}=2$ 2: A PM260 has been detected with PS-ASIC version 2. This combination is not supported.
	$x x x x=3$ : Initialization was not able to be successfully completed. It is possible that the Control Unit was withdrawn from the Power Module before or during power up.
	$x \mathrm{xxx}=4$ : The combination of power unit and Control Unit or Control Unit Adapter is not supported.
	xxxx $=5$ : The higher current controller dynamic performance is not supported.
Remedy:	For fault cause $=0$ :
	If required, deactivate an active internal voltage protection (p1231).
	For fault cause = 1:
	Update the Control Unit firmware or change the DRIVE-CLiQ topology.
	For fault cause $=2$ :
	Replace the power unit with a PM260 with PS-ASIC version 3 (or higher).
	For fault cause $=3,4$ :
	Insert a Control Unit or Control Unit Adapter (CUAxx) on an appropriate Power Module and perform a POWER ON for the Control Unit or the Control Unit Adapter.
	For fault cause $=5$ :
	- use a booksize format power unit.
	- for a Double Motor Module operate the two drive controls with the same current controller sampling time ( $\mathrm{p} 0115[0]$ ). Otherwise, the higher current controller dynamics can only be activated on the drive with the longer sampling time.
	- if required, de-select the higher current controller dynamic performance ( $\mathrm{p} 1810.11=0$ ). After deselecting the computing dead time, recalculate the controller gains ( $\mathrm{p} 0340=4$ ). If required, optimize the speed controller.
	See also: p0115, p1231, p1810
F30021	Power unit: Ground fault
Message value:	\%1
Message class:	Ground fault / inter-phase short-circuit detected (7)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power has detected a ground fault.
	Possible causes:
	- ground fault in the power cables.
	- ground fault at the motor.
	- CT defective.
	- when the brake closes, this causes the hardware DC current monitoring to respond.
	- short-circuit at the braking resistor.
	- the closed-loop circulating current control for devices connected in parallel (r0108.15 = 1 ) is either too slow or has been set too fast.
	Note:
	For power units, a ground fault is also emulated in r3113.5.

### 4.2 List of faults and alarms

Fault value (r0949, interpret decimal):
$0:$

- the hardware DC current monitoring has responded.
- short-circuit at the braking resistor.
$>0$ :
Absolute value, total current amplitude [20479 = r0209 * 1.4142].
Remedy: $\quad$ - check the power cable connections.
- check the motor.
- check the CT.
- check the cables and contacts of the brake connection (a wire is possibly broken).
- check the braking resistor.
For parallel switching devices (r0108.15 = 1) the following additionally applies:
- check the ground fault monitoring thresholds (p0287).
- check the setting of the closed-loop circulating current control (p7036, p7037).
See also: p0287 (Ground fault monitoring shutdown threshold)

F30022	Power unit: Monitoring U_ce
Message value:	Fault cause: \%1 bin
Message class:	Ground fault / inter-phase short-circuit detected (7)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	In the power unit, the monitoring of the collector-emitter voltage ( $\left.U_{-} \mathrm{ce}\right)$ of the semiconductor has responded.
	Possible causes:
	- fiber-optic cable interrupted.
	- power supply of the IGBT gating module missing.
	- short-circuit at the power unit output.
	- defective semiconductor in the power unit.
	Fault value (r0949, interpret binary):
	Bit 0: Short-circuit in phase U
	Bit 1: Short circuit in phase V
	Bit 2: Short-circuit in phase W
	Bit 3: Light transmitter enable defective
	Bit 4: U_ce group fault signal interrupted
	See also: r0949 (Fault value)
Remedy:	- check the fiber-optic cable and if required, replace.
	- check the power supply of the IGBT gating module ( 24 V ).
	- check the power cable connections.
	- select the defective semiconductor and replace.

## F30024

Message value:
Message class:
Power electronics faulted (5)
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## Power unit: Overtemperature thermal model

A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC
Power Module Propagation: LOCAL
OFF2
IMMEDIATELY
The temperature difference between the heat sink and chip has exceeded the permissible limit value.

- the permissible load duty cycle was not maintained.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- pulse frequency too high.

See also: r0037

Remedy: $\quad$ - adapt the load duty cycle. $\quad$ - check whether the fan is running. $\quad$ - check the fan elements. $\quad$ - check whether the ambient temperature is in the permissible range. \begin{tabular}{l}

- check the motor load. <br>
- reduce the pulse frequency if this is higher than the rated pulse frequency.
\end{tabular}

F30024	Power unit: Overtemperature thermal model
Message value:	- Power unitiole
Message class:	Power electronics faulted (5)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature difference between the heat sink and chip has exceeded the permissible limit value.   - the permissible load duty cycle was not maintained.   - insufficient cooling, fan failure.   - overload.   - ambient temperature too high.   - pulse frequency too high.   See also: r0037
Remedy:	- adapt the load duty cycle.   - check whether the fan is running.   - check the fan elements.   - check whether the ambient temperature is in the permissible range.   - check the motor load.   - reduce the pulse frequency if this is higher than the rated pulse frequency.   - if DC braking is active: reduce braking current (p1232).
F30025	Power unit: Chip overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The chip temperature of the semiconductor has exceeded the permissible limit value.   - the permissible load duty cycle was not maintained.   - insufficient cooling, fan failure.   - overload.   - ambient temperature too high.   - pulse frequency too high.   Fault value (r0949, interpret decimal):   Temperature difference between the heat sink and chip [0.01 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	- adapt the load duty cycle.   - check whether the fan is running.   - check the fan elements.   - check whether the ambient temperature is in the permissible range.   - check the motor load.   - reduce the pulse frequency if this is higher than the rated pulse frequency.   Notice:   This fault can only be acknowledged after the alarm threshold for alarm A05001 has been undershot.   See also: r0037


F30027	Power unit: Precharging DC link time monitoring
Message value:	Enable signals: \%1, Status: \%2
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit DC link was not able to be precharged within the expected time.
	1) There is no line supply voltage connected.
	2) The line contactor/line side switch has not been closed.
	3) The line supply voltage is too low.
	4) Line supply voltage incorrectly set (p0210).
	5) The precharging resistors are overheated as there were too many precharging operations per time unit.
	6) The precharging resistors are overheated as the DC link capacitance is too high.
	7) The precharging resistors are overheated because when there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link.
	8) The precharging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module.
	9) The DC link has either a ground fault or a short-circuit.
	10) The precharging circuit is possibly defective (only for chassis units).
	11) Infeed is defective and/or fuse has ruptured in the Motor Module (only Booksize units).
	Fault value (r0949, interpret binary):
	yyyyxxxx hex:
	yyyy = power unit state
	0 : Fault status (wait for OFF and fault acknowledgment).
	1: Restart inhibit (wait for OFF).
	2: Overvoltage condition detected -> change into the fault state.
	3: Undervoltage condition detected -> change into the fault state.
	4: Wait for bridging contactor to open -> change into the fault state.
	5: Wait for bridging contactor to open -> change into restart inhibit.
	6: Wait for bypass contactor to open
	7: Commissioning.
	8: Ready for precharging.
	9: Precharging started, DC link voltage lower than the minimum switch-on voltage
	10: Precharging, DC link voltage end of precharging still not detected
	11: Wait for the end of the de-bounce time of the main contactor after precharging has been completed.
	12: Precharging completed, ready for pulse enable.
	13: It was detected that the STO terminal was energized at the power unit
	xxxx = Missing internal enable signals, power unit (inverted bit-coded, FFFF hex -> all internal enable signals available)
	Bit 0: Power supply of the IGBT gating shut down.
	Bit 1: Ground fault detected.
	Bit 2: Peak current intervention.
	Bit 3: 12t exceeded.
	Bit 4. Thermal model overtemperature calculated.
	Bit 5: (heat sink, gating module, power unit) overtemperature measured.
	Bit 6: Reserved.
	Bit 7: Overvoltage detected.
	Bit 8: Power unit has completed precharging, ready for pulse enable.
	Bit 9: STO terminal missing.
	Bit 10: Overcurrent detected.
	Bit 11: Armature short-circuit active.

### 4.2 List of faults and alarms

Bit 12: DRIVE-CLiQ fault active.
Bit 13: Vce fault detected, transistor de-saturated due to overcurrent/short-circuit.
Bit 14: Undervoltage detected.
See also: p0210 (Drive unit line supply voltage)
In general:

- check the line supply voltage at the input terminals.
- check the line supply voltage setting (p0210).
For booksize drive units, the following applies:
- wait (approx. 8 minutes) until the precharging resistors have cooled down. For this purpose, preferably disconnect
the infeed unit from the line supply.
For 5):
- carefully observe the permissible precharging frequency (refer to the appropriate Equipment Manual).
For 6):
- check the total capacitance of the DC link and reduce in accordance with the maximum permissible DC link
capacitance if necessary (refer to the appropriate Equipment Manual)
For 7 ):
- interconnect the ready-for-operation signal from the infeed unit (r0863.0) in the enable logic of the drives connected
to this DC link
For 8 ):
- check the connections of the external line contactor. The line contactor must be open during DC link fast discharge.
For 9):
- check the DC link for ground faults or short circuits.
For 11):
- check the DC link voltage of the infeed (r0070) and Motor Modules (r0070).
If the DC link voltage generated by the infeed (or external) is not displayed for the Motor Modules (r0070), then a fuse
has ruptured in the Motor Module.
See also: p0210 (Drive unit line supply voltage)

A30030	Power unit: Internal overtemperature alarm
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature inside the drive converter has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
	- possibly use an additional fan.
Remedy:	- check whether the ambient temperature is in the permissible range.
	Notice:

[^27]| A30031 | Power unit: Hardware current limiting in phase U |
| :---: | :---: |
| Message value: | - |
| Message class: | Power electronics faulted (5) |
| Drive object: | A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Component: | Power Module Propagation: GLOBAL |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Hardware current limit for phase $U$ responded. The pulsing in this phase is inhibited for one pulse period. <br> - closed-loop control is incorrectly parameterized. <br> - fault in the motor or in the power cables. <br> - the power cables exceed the maximum permissible length. <br> - motor load too high <br> - power unit defective. <br> Note: <br> Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase $\mathrm{U}, \mathrm{V}$ or W responds. |
| Remedy: | - check the motor data and if required, recalculate the control parameters ( $\mathrm{p} 0340=3$ ). As an alternative, run a motor data identification ( $\mathrm{p} 1910=1, \mathrm{p} 1960=1$ ). <br> - check the motor circuit configuration (star/delta). <br> - check the motor load. <br> - check the power cable connections. <br> - check the power cables for short-circuit or ground fault. <br> - check the length of the power cables. |
| A30032 | Power unit: Hardware current limiting in phase V |
| Message value: | - |
| Message class: | Power electronics faulted (5) |
| Drive object: | A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Component: | Power Module Propagation: LOCAL |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Hardware current limit for phase V responded. The pulsing in this phase is inhibited for one pulse period. <br> - closed-loop control is incorrectly parameterized. <br> - fault in the motor or in the power cables. <br> - the power cables exceed the maximum permissible length. <br> - motor load too high <br> - power unit defective. <br> Note: <br> Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase $\mathrm{U}, \mathrm{V}$ or W responds. |
| Remedy: | Check the motor data and if required, recalculate the control parameters ( $\mathrm{p} 0340=3$ ). As an alternative, run a motor data identification ( $\mathrm{p} 1910=1, \mathrm{p} 1960=1$ ). <br> - check the motor circuit configuration (star/delta). <br> - check the motor load. <br> - check the power cable connections. <br> - check the power cables for short-circuit or ground fault. <br> - check the length of the power cables. |


A30033	Power unit: Hardware current limiting in phase W
Message value:	- Power unit
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period.   - closed-loop control is incorrectly parameterized.   - fault in the motor or in the power cables.   - the power cables exceed the maximum permissible length.   - motor load too high   - power unit defective.   Note:   Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy:	- check the motor data and if required, recalculate the control parameters ( $\mathrm{p} 0340=3$ ). As an alternative, run a motor data identification $(p 1910=1, p 1960=1)$.   - check the motor circuit configuration (star/delta).   - check the motor load.   - check the power cable connections.   - check the power cables for short-circuit or ground fault.   - check the length of the power cables.
A30034	Power unit: Internal overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for internal overtemperature has been reached.   If the temperature inside the unit continues to increase, fault F30036 may be triggered.   - ambient temperature might be too high.   - insufficient cooling, fan failure.   Alarm value (r2124, interpret decimal):   Only for internal Siemens troubleshooting.
Remedy:	- check the ambient temperature.   - check the fan for the inside of the unit.
F30035	Power unit: Air intake overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The air intake in the power unit has exceeded the permissible temperature limit.
	For air-cooled power units, the temperature limit is at $55^{\circ} \mathrm{C}$.   - ambient temperature too high.   - insufficient cooling, fan failure.   Fault value (r0949, interpret decimal):   Temperature $\left[0.01^{\circ} \mathrm{C}\right]$.

### 4.2 List of faults and alarms

Remedy: $\quad$ - check whether the fan is running. \begin{tabular}{l}

- check the fan elements. <br>
- check whether the ambient temperature is in the permissible range. <br>
Notice: <br>
This fault can only be acknowledged after the alarm threshold for alarm A05002 has been undershot.
\end{tabular}

F30036	Power unit: Internal overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	All objects
Component:	Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature inside the drive converter has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	- check whether the fan is running.
- check the fan elements.	
	- check whether the ambient temperature is in the permissible range.
	Notice:
	This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.


F30037	Power unit: Rectifier overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature in the rectifier of the power unit has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- line supply phase failure.
	Fault value (r0949, interpret decimal):
	Temperature [0.01 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	- check whether the fan is running.
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	- check the motor load.
	- check the line supply phases.
	Notice:
	This fault can only be acknowledged after the alarm threshold for alarm A05004 has been undershot.



F30040	Power unit: Undervolt 24 V
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The undervoltage threshold of the 24 V power supply for the power unit was fallen below for longer than 3 ms .
	Note:
	- for booksize power units, the undervoltage threshold is 15 V .
	- for CU310-2, CUA31 and CUA32 the undervoltage threshold is 16 V .
	- for all other power units, the undervoltage threshold depends on the power unit, and is not displayed.
	Fault value (r0949, interpret decimal):
	24 V voltage [0.1 V].
Remedy:	- check the power supply of the power unit.
	- carry out a POWER ON (switch-off/switch-on) for the component.


A30041 (F)	Power unit: Undervoltage 24 V alarm	
Message value:	\%1	
Message class:	Supply voltage fault (undervoltage) (3)	
Drive object:	A_INF, B_INF, R_INF, S_INF	Propagation:
Component:	Power Module	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	For the power unit power supply, the lower threshold has been violated.	
	Alarm value (r2124, interpret hexadecimal):	
	Only for internal Siemens troubleshooting.   - check the power supply of the power unit.	
Remedy:	- carry out a POWER ON (switch-off/switch-on) for the component.	
Reaction upon F:	NONE (OFF1, OFF2)	
Acknowl. upon F:	IMMEDIATELY (POWER ON)	


A30041 (F)	Power unit: Undervolt 24/48 V alarm
Message value:	Channel: \%1, voltage: \%2 [0.1 V]
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the power unit power supply, the lower threshold has been violated.
	Alarm value (r2124, interpret hexadecimal):
	yyxxxx hex: yy = channel, $x$ xxx = voltage [0.1 V]
	yy $=0$ : 24 V power supply
	yy $=1: 48 \mathrm{~V}$ power supply
Remedy:	- check the power supply of the power unit.
	- carry out a POWER ON (switch-off/switch-on) for the component.
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


A30041 (F)	Power unit: Undervoltage 24 V alarm
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the power unit power supply, the lower threshold has been violated.
	Alarm value (r2124, interpret decimal):
	24 V voltage [0.1 V].
Remedy:	- check the power supply of the power unit.
	- carry out a POWER ON (switch-off/switch-on) for the component.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A30042	Power unit: Fan has reached the maximum operating hours
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum operating time of at least one fan will soon be reached, or has already been exceeded.
	Alarm value (r2124, interpret binary):
	Bit $0=1$ :
	The operating hours counter of the heat sink fan will reach the maximum operating time in 500 hours. After 500 hours has elapsed, bit 0 is cleared and bit 2 is set in the alarm value.
	Bit $1=1$ :
	The wear counter of the heat sink fan has reached $99 \%$. The remaining service life is $1 \%$. After this $1 \%$ has elapsed, bit 1 is cleared and bit 2 is set in the alarm value.
	Bit $2=1$ :
	The operating hours counter of the heat sink fan has exceeded the maximum operating time - and/or the wear counter has exceeded 100\%.
	Bit $8=1$ :
	The operating hours counter of the fan inside the device will reach the maximum operating time in 500 hours. After 500 hours has elapsed, bit 8 is cleared and bit 10 is set in the alarm value.
	Bit $10=1$ :
	The operating hours counter of the fan inside the device has exceeded the maximum operating time.
Remedy:	For the fan involved, carry out the following:
	- replace the fan.
	- reset the operating hours counter (p0251, p0254).
	See also: p0251 (Power unit heat sink fan operating hours counter), p0252 (Power unit heat sink fan operating time maximum), p0254 (Operating hours counter power unit fan inside the converter), r0277 (Power unit heat sink fan wear counter)
F30043	Power unit: Overvolt 24 V
Message value:	\%1
Message class:	Supply voltage fault (overvoltage) (3)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	For the power unit power supply, the upper threshold has been violated.
	Fault value (r0949, interpret decimal):
	24 V voltage [ 0.1 V ].
Remedy:	Check the power supply of the power unit.

### 4.2 List of faults and alarms

F30043	Power unit: Overvolt 24/48 V
Message value:	Channel: \%1, voltage: \%2 [0.1 V]
Message class:	Supply voltage fault (overvoltage) (3)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	For the power unit power supply, the upper threshold has been violated.
	Fault value (r0949, interpret hexadecimal):
	yyxxxx hex: $\mathrm{yy}=$ channel, $\mathrm{xxxx}=$ voltage [ 0.1 V ]
	yy $=0$ : 24 V power supply
	yy $=1: 48 \mathrm{~V}$ power supply
Remedy:	Check the power supply of the power unit.


A30044 (F)	Power unit: Overvoltage 24 V alarm
Message value:	\%1
Message class:	Supply voltage fault (overvoltage) (3)
Drive object: A_INF, B_INF, R_INF, S_INF   Component: Power Module   Reaction: NONE   Acknowledge: NONE   Cause: For the power unit power supply, the upper threshold has been violated.    Alarm value (r2124, interpret decimal):    Only for internal Siemens troubleshooting.   Remedy: Check the power supply of the power unit.   Reaction upon F: NONE (OFF1, OFF2)   Acknowl. upon F: IMMEDIATELY (POWER ON)	


A30044 (F)	Power unit: Overvolt 24/48 V alarm
Message value:	Channel: \%1, voltage: \%2 [0.1 V]
Message class:	Supply voltage fault (overvoltage) (3)
Drive object: SERVO, SERVO_AC, SERVO_I_AC   Component: Power Module   Reaction: NONE   Acknowledge: NONE   Cause: For the power unit power supply, the upper threshold has been violated.    Alarm value (r2124, interpret hexadecimal):    yyxxxx hex: yy = channel, xxxx = voltage [0.1 V]    yy $=0: 24$ V power supply    yy $=1: 48$ V power supply   Remedy: Check the power supply of the power unit.   Reaction upon F: NONE (OFF1, OFF2, OFF3)   Acknowl. upon F: IMMEDIATELY (POWER ON)	


A30044 (F)	Power unit: Overvoltage 24 V alarm
Message value:	\%1
Message class:	Supply voltage fault (overvoltage) (3)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the power unit power supply, the upper threshold has been violated.
	Alarm value (r2124, interpret decimal):
	24 V voltage $[0.1 \mathrm{~V}]$.

Remedy: Check the power supply of the power unit.
Reaction upon F: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F: IMMEDIATELY (POWER ON)

F30045	Power unit: Supply undervoltage
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Power supply fault in the power unit.
	- the voltage monitor signals an undervoltage fault on the module.
	The following applies for CU31x:
	- the voltage monitoring on the DAC board signals an undervoltage fault on the module.
Remedy:	- check the power supply of the power unit.
	- carry out a POWER ON (switch-off/switch-on) for the component.
	- replace the module if necessary.


F30045	Power unit: Supply undervoltage
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Power supply fault in the power unit.
	- the voltage monitor signals an undervoltage fault on the module.
	The following applies for CU31x:
	- the voltage monitoring on the DAC board signals an undervoltage fault on the module.
	- this message is displayed for undervoltage or overvoltage.
Remedy:	- check the power supply of the power unit.
	- carry out a POWER ON (switch-off/switch-on) for the component.   - replace the module if necessary


A30046 (F)	Power unit: Undervoltage alarm
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	Before the last restart, a problem occurred at the power unit power supply.
	The voltage monitor in the internal FPGA of the PSA signals an undervoltage fault on the module.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check the 24 V DC voltage supply to power unit.
	- carry out a POWER ON (switch-off/switch-on) for the component.
	- replace the module if necessary.
Reaction upon F:	NONE (OFF1, OFF2)   Acknowl. upon F:
	IMMEDIATELY (POWER ON)


A30046 (F)	Power unit: Undervoltage alarm
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Before the last restart, a problem occurred at the power unit power supply.
	The voltage monitor in the internal FPGA of the PSA signals an undervoltage fault on the module.
	Alarm value (r2124, interpret decimal):
	Register value of the voltage fault register.
Remedy:	- check the 24 V DC voltage supply to power unit.
	- carry out a POWER ON (switch-off/switch-on) for the component.
	- replace the module if necessary.
Reaction upon F:	Servo: NONE (OFF1, OFF2)
	Vector: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F30047	Cooling unit: Cooling medium flow rate too low
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The flow rate of the cooling unit has fallen below the fault threshold.
Remedy:	- check the feedback signals and parameter assignment (p0260 ... p0267).
	- check the coolant feed.
	- check the thermal conductivity of the coolant.
	- check the coolant concentration.


A30048	Power unit: fan defective
Message value:	Fault cause: \%1 bin
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The feedback signal from a fan indicates a fault.
	- fan defective.
	- fan blocked.
	- feedback signal inaccurate.
	- fan power supply interrupted (only for r0193.13 = 1 and heat sink fan)
	Alarm value (r2124, interpret binary):
	Bit $0=1$ : heat sink fan
	Bit $1=1$ : fan inside the device
	Note:
	- for firmware version < 5.1 of the power unit, the alarm value is always 0 . The alarm then refers to the heat sink fan.   - for r0193.13 = 1 , fault F30058 is output instead of this alarm for heat sink fans, if the pulses are inhibited or the fault
	- for r0193.13 = 1, fault F30058 is output instead of this alarm for heat sink fans, if the pulses are inhibited or the fault occurs within 10 s after the fan runs up when the pulses are enabled.
	- for r0193.13 = 1, fault F30059 is output instead of this alarm for fans inside the unit, if the air intake temperature (r0037[3]) has exceeded a specific threshold.


Remedy:	- check the fan involved.   - if required, replace the fan.   - check the fan power supply and if required switch on (only for r0193.13 = 1 and heat sink fan)   Note:   If the alarm has been withdrawn, this does not necessarily mean that the cause of the fault has been resolved. It is also possible that the software switched off the fan, and therefore can no longer evaluate the feedback signal.
A30049	Power unit: Internal fan faulty
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal fan has failed.
Remedy:	Check the internal fan and replace if necessary.
F30050	Power unit: 24 V supply overvoltage
Message value:	-
Message class:	Supply voltage fault (overvoltage) (3)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The voltage monitor signals an overvoltage fault on the module.
Remedy:	- check the 24 V power supply.
	- replace the module if necessary.


F30051	Power unit: Motor holding brake short circuit detected
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation:
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A short-circuit at the motor holding brake terminals has been detected.
	Fault value (ro949, interpret decimal):      Only for internal Siemens troubleshooting.
Remedy:	- check the motor holding brake for a short-circuit.
	- check the connection and cable for the motor holding brake.

## F30052

Message value:

## EEPROM data error

Message class: Hardware/software error (1)
Drive object:
Component: A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

Reaction:
Acknowledge:
OFF2

Cause: EEPROM data error of the power unit module
Fault value (r0949, interpret decimal):
0, 2, 3, 4:
The EEPROM data read in from the power unit module are incorrect.
1:
EEPROM data is not compatible to the firmware of the power unit application.
Additional values:
Only for internal Siemens troubleshooting.

### 4.2 List of faults and alarms

Remedy:	For fault value $=0,2,3,4:$
Replace the power unit module or update the EEPROM data.	
For fault value $=1:$	
The following applies for CU31x and CUA31:	
	Update the firmware ISIEMENSISINAMICSICODEISACIcu31xi.ufw (cua31.ufw)


F30053	FPGA data faulty
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	The FPGA data of the power unit are faulty. This can be caused, for example, if a firmware update is interrupted.
Remedy:	Replace the power unit or update of the FPGA data by updating the firmware.
	Note:
	If this fault occurs after a firmware update, then update the firmware again.


A30054 (F, N)	Power unit: Undervoltage when opening the brake
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the brake is being opened, it is detected that the power supply voltage is less than 21.4 V
	Alarm value (r2124, interpret decimal):
	Supply voltage fault [0.1 V].
	Example:
	Alarm value $=195$--> voltage = 19.5 V
Remedy:	Check the 24 V voltage for stability and value.
Reaction upon $\mathrm{F}:$	NONE (OFF1, OFF2, OFF3)
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE

## F30055 Power unit: Braking chopper overcurrent

Message value:
Message class: Braking Module faulted (14)
Drive object: A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component: None Propagation: GLOBAL
Reaction:
OFF2
Acknowledge: IMMEDIATELY
Cause:
An overcurrent condition has occurred in the braking chopper.
Remedy:

- check whether the braking resistor has a short circuit.
- for an external braking resistor, check whether the resistor may have been dimensioned too small.

Note:
The braking chopper is only enabled again at pulse enable after the fault has been acknowledged

A30057	Power unit: Line asymmetry
Message value:	\%1
Message class:	Network fault (2)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Frequencies have been detected on the DC link voltage that would suggest line asymmetry or failure of a line phase. It is also possible that a motor phase has failed.
	Fault F30011 is output if the alarm is present and at the latest after 5 minutes.
	The precise duration depends on the power unit type and the particular frequencies. For booksize and chassis power units, the duration also depends on how long the alarm has been active.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check the line phase connection.
	- check the motor feeder cable connections.
	If there is no phase failure of the line or motor, then line asymmetry is involved.
	- reduce the power in order to avoid fault F30011.
F30058 (N, A)	Power unit: heat sink fan defective
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The feedback signal from the heat sink fan signals a fault.
	- fan defective.
	- fan blocked.
	- feedback signal inaccurate.
	- fan power supply interrupted (only for r0193.13-1)
Remedy:	- check the heat sink fan and replace if necessary.
	- check the fan power supply and if required switch on (only for r0193.13 = 1)
	- if you are using an external fan with feedback signal, check its wiring (X12.2 or X13.2).
	Note:
	- when using an external fan without feedback signal, check the wiring of the feedback signal terminal at the power unit with respect to ground and if necessary, setup (X12.1/2 or X13.1/2).
	- if the fault can be acknowledged, this does not necessarily mean that the cause of the fault has been resolved. It is also possible that the software switched off the fan, and therefore can no longer evaluate the feedback signal.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F30059	Power unit: Internal fan faulty
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The internal power unit fan has failed and is possibly defective.

Remedy:
Check the internal fan and replace if necessary.
Note:
If the fault can be acknowledged, this does not necessarily mean that the cause of the fault has been resolved. It is
also possible that the software switched off the fan, and therefore can no longer evaluate the feedback signal.

F30060 (A)	Precharge contactor state monitoring
Message value:	Fault cause: \%1 bin
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A feedback signal for the precharging contactor (ALM, SLM, BLM diode) or the line contactor (BLM thyristor) interconnected and the monitoring activated.
	After switching-in/switching-out the contactor, a correct feedback signal was not received within the monitoring time set in p0255[0, 2].
	Fault value (r0949, interpret binary):
	Bit 0: The time set in p0255[0, 2] was exceeded when switching-in/switching-out the contactor.
	Bit 1: The precharging contactor was opened while precharging or in the infeed mode (BLM thyristor).
	Bit 2: The precharging contactor was switched-in in the OFF state or during infeed operation.
Remedy:	- check the monitoring time setting (p0255[0, 2]).
	- check the contactor wiring and activation.
	- replace the contactor.
	See also: p0255 (Power unit contactor monitoring time)
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F30061 (A)	Bridging contactor monitoring
Message value:	Fault cause: \%1 bin
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A feedback signal for the bypass contactor is interconnected and the monitoring activated.
	After switching-in/switching-out the contactor, a correct feedback signal was not received within the monitoring time set in p0255[1, 3].
	Fault value (r0949, interpret binary):
	Bit 0: The time set in $\mathrm{p} 0255[1,3]$ was exceeded when switching-in/switching-out the contactor.
	Bit 1: The bypass contactor was opened in operation.
	Bit 2: The bypass contactor was switched-in in the OFF state or during precharging.
Remedy:	- check the monitoring time setting (p0255[1, 3]).
	- check the contactor wiring and activation.
	- replace the contactor.
	See also: p0255 (Power unit contactor monitoring time)
Reaction upon A :	NONE
Acknowl. upon A:	NONE



### 4.2 List of faults and alarms

Remedy:	- check whether the fan is running.   - check the fan elements.   - check whether the ambient temperature is in the permissible range.   Note:   This fault can only be acknowledged after the limit value has been fallen below, and the corresponding hysteresis (5 $K)$.
F30070	Cycle requested by the power unit module not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A cycle is requested that is not supported by the power unit.
	Fault value (r0949, interpret hexadecimal):
	0 : The current control cycle is not supported.
	1: The DRIVE-CLiQ cycle is not supported.
	2: Internal timing problem (clearance between RX and TX instants too low).
	3: Internal timing problem (TX instant too early).
Remedy:	The power unit only supports the following cycles:
	$62.5 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}$ and $500 \mu \mathrm{~s}$
	For fault value $=0$ :
	Set a permitted current control cycle.
	For fault value = 1:
	Set a permitted DRIVE-CLiQ cycle.
	For fault value $=2,3$ :
	Contact the manufacturer (you may have an incompatible firmware version).
F30071	No new actual values received from the power unit
Message value:	-
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The number of actual value telegrams from the power unit module that have failed has exceeded the permissible number.
Remedy:	Check the interface (adjustment and locking) to the power unit module.

## F30072

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Remedy:

## Setpoints can no longer be transferred to the power unit

 -Internal (DRIVE-CLiQ) communication error (12)
A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC Power Module Propagation: LOCAL OFF2 IMMEDIATELY
The following applies for CU31x and CUA31:
More than one setpoint telegram was not able to be transferred to the power unit module.
The following applies for CU31x and CUA31:
Check the interface (adjustment and locking) to the power unit module.

A30073 (N)	Actual value/setpoint preprocessing no longer synchronous
Message value:	-
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Communication with the power unit module is no longer in synchronism with the current control cycle.
Remedy:	Wait until synchronization is re-established.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F30074 (A)	Communication error between the Control Unit and Power Module
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Communications between the Control Unit (CU) and Power Module (PM) via the interface no longer possible. The CU may have been withdrawn or is incorrectly inserted.
	Fault value (r0949, interpret hexadecimal):
	0 hex:
	- a Control Unit with external 24 V supply was withdrawn from the Power Module during operation.
	- with the Power Module switched off, the external 24 V supply for the Control Unit was interrupted for some time.
	The Control Unit was withdrawn from the Power Module during operation, although the encoderless safe motion
	The Control Unit was withdrawn from the Power Module during operation, although the encoderless safe motion monitoring functions are enabled. This is not supported. After re-inserting the Control Unit in operation, communications to the Power Module no longer possible.
	20A hex:
	The Control Unit was inserted on a Power Module, which has another code number.
	20B hex:
	The Control Unit was inserted on a Power Module, which although it has the same code number, has a different serial number.
	601 hex:
	The Control Unit was inserted on a Power Module, whose power/performance class (chassis unit) is not supported.
Remedy:	Reinsert the Control Unit (CU) or the Control Unit Adapter (CUAxx) onto the original Power Module and continue operation. If required, carry out a POWER ON for the CU and/or the CUA.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F30075	Configuration of the power unit unsuccessful
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A communication error has occurred while configuring the power unit using the Control Unit. The cause is not clear.
	Fault value (r0949, interpret decimal):
	0 :
	The output filter initialization was unsuccessful.
	1:
	Activation/deactivation of the regenerative feedback functionality was unsuccessful.

### 4.2 List of faults and alarms

Remedy:	- acknowledge the fault and continue operation.
	- if the fault reoccurs, carry out a POWER ON (switch-off/switch-on).
	- if required, replace the power unit.


F30080	Power unit: Current increasing too quickly
Message value:	Fault cause: \%1 bin
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an excessive rate of rise in the overvoltage range.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- infeed: High discharge and post-charging currents for line voltage dip.
	- infeed: High post-charging currents for overload when motoring and DC link voltage dip.
	- infeed: Short-circuit currents at switch-on as there is no commutating reactor.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	Additional causes for a parallel switching device (r0108.15 = 1) :
	- a power unit has tripped (switched off) due to a ground fault.
	- the closed-loop circulating current control is either too slow or has been set too fast.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
Remedy:	- check the motor data - if required, carry out commissioning.
	- check the motor circuit configuration (star-delta)
	- U/f operation: Increase up ramp.
	- U/f operation: Check assignment of rated currents of motor and power unit.
	- infeed: Check the line supply quality.
	- infeed: Reduce the motor load.
	- infeed: Correct connection of the line reactor.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
	For a parallel switching device (r0108.15 = 1) the following additionally applies:
	- check the ground fault monitoring thresholds (p0287).
	- check the setting of the closed-loop circulating current control (p7036, p7037).


F30081	Power unit: Switching operations too frequent
Message value:	Fault cause: \%1 bin
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has executed too many switching operations for current limitation.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- infeed: High discharge and post-charging currents for line voltage dip.
	- infeed: High post-charging currents for overload when motoring and DC link voltage dip.
	- infeed: Short-circuit currents at switch-on as there is no commutating reactor.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	Additional causes for a parallel switching device (r0108.15 = 1):
	- a power unit has tripped (switched off) due to a ground fault.
	- the closed-loop circulating current control is either too slow or has been set too fast.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
Remedy:	- check the motor data - if required, carry out commissioning.
	- check the motor circuit configuration (star-delta)
	- U/f operation: Increase up ramp.
	- U/f operation: Check assignment of rated currents of motor and power unit.
	- infeed: Check the line supply quality.
	- infeed: Reduce the motor load.
	- infeed: Correct connection of the line reactor.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
	For a parallel switching device (r0108.15 = 1) the following additionally applies:
	- check the ground fault monitoring thresholds (p0287).
	- check the setting of the closed-loop circulating current control (p7036, p7037).
F30105	PU: Actual value sensing fault
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA).
	The incorrect actual value channels are displayed in the following diagnostic parameters.
Remedy:	Evaluate the diagnostic parameters.
	If the actual value channel is incorrect, check the components and if required, replace.


F30314	Power unit: 24 V power supply overloaded by PM
Message value:	-
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The 24 V power supply through the Power Module (PM) is overloaded.
	An external 24 V power supply via X124 on the Control Unit is not connected.
Remedy:	Connect an external 24 V power supply via X124 at the Control Unit.


A30315 (F)	Power unit: 24 V power supply overloaded by PM
Message value:	-
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 24 V power supply through the Power Module (PM) is overloaded.
	An external 24 V power supply via X124 on the Control Unit is not connected.
Remedy:	Connect an external 24 V power supply via X124 at the Control Unit.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


A30502	Power unit: DC link overvoltage
Message value:	\%1
Message class:	DC link overvoltage (4)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power unit has detected overvoltage in the DC link on a pulse inhibit.   - device supply voltage too high.   - line reactor incorrectly dimensioned.   Alarm value (r0949, interpret decimal):   DC link voltage [ 1 bit $=100 \mathrm{mV}$ ].   See also: r0070
Remedy:	- check the device supply voltage ( p 0210 ).   - check the dimensioning of the line reactor.   See also: p0210 (Drive unit line supply voltage)

## F30600

Message value:

## SI P2: STOP A initiated

Message class:
Drive object:
Component:
Safety monitoring channel has identified an error (10)

Reaction:
Acknowledge: SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC None Propagation: LOCAL

Cause: OFF2 IMMEDIATELY (POWER ON)
The drive-integrated "Safety Integrated" function in monitoring channel 2 has detected a fault and initiated a STOP A (STO via the safety switch-off signal path of monitoring channel 2).

- forced checking procedure (test stop) of the safety switch-off signal path of monitoring channel 2 unsuccessful.
- subsequent response to fault F30611 (defect in a monitoring channel).

	Fault value (r0949, interpret decimal):
	0 : stop request from the Control Unit.
	1005:
	- STO active, although STO not selected and there is no internal STOP A active.
	- For a Power Module with "STO via terminals at the Power Module" (STO_A/STO_B), these terminals are active (DIP switch to "ON"). However, the "STO via terminals at the Power Module" function has not been enabled (p9601.7 = p9801.7 = 0).
	1010: STO inactive although STO is selected or an internal STOP A is present.
	1011: internal error for STO deselected in monitoring channel 2.
	1020: Internal software error in the "Internal voltage protection" function. The "internal voltage protection" function is withdrawn. A STOP A that cannot be acknowledged is initiated.
	9999: Subsequent response to fault F30611.
Remedy:	- select Safe Torque Off and de-select again.
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- replace the Motor Module involved.
	For fault value $=1005$ :
	- deactivate terminals STO_A/STO_B on the Power Module (set both DIP-switches to "OFF") or enable the "STO via terminals at the Power Module" function.
	For fault value = 1020:
	- upgrade the Motor Module software.
	- replace the Motor Module.
	For fault value = 9999:
	- carry out diagnostics for fault F30611.
	Note:
	CU: Control Unit
	MM: Motor Module
	SI: Safety Integrated
	STO: Safe Torque Off / SH: Safe standstill
F30600	SI P2: STOP A initiated
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function in monitoring channel 2 has detected a fault and initiated a STOP A (STO via the safety switch-off signal path of monitoring channel 2).
	- forced checking procedure (test stop) of the safety switch-off signal path of monitoring channel 2 unsuccessful.   - subsequent response to fault F30611 (defect in a monitoring channel).
	Fault value (r0949, interpret decimal):
	0 : stop request from the Control Unit.
	1005: STO active although STO not selected and there is no internal STOP A present.
	1010: STO inactive although STO is selected or an internal STOP A is present.
	9999: Subsequent response to fault F30611.
Remedy:	- select Safe Torque Off and de-select again.
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- replace Hydraulic Module involved.
	For fault value = 9999:
	- carry out diagnostics for fault F30611.
	Note:
	CU: Control Unit
	SI: Safety Integrated
	STO: Safe Torque Off / SH: Safe standstill


F30611 (A)	SI P2: Defect in a monitoring channel
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 2 has detected a fault in the data cross-check between the two monitoring channels and has initiated a STOP F.
	As a result of this fault, after the parameterized transition has expired (p9858), fault F30600 is output (SI MM: STOP A initiated).
	Fault value (r0949, interpret decimal):
	0 : Stop request from another monitoring channel.
	$1 . .9999$
	Number of the cross-compared data that resulted in this fault. This number is also displayed in r9895.
	1: SI monitoring clock cycle (r9780, r9880).
	2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.
	3: SI SGE changeover discrepancy time (p9650, p9850).
	4: SI transition period STOP F to STOP A (p9658, p9858).
	5: SI enable Safe Brake Control (p9602, p9802).
	6: SI Motion enable, safety-relevant functions (p9501, internal value).
	7: SI delay time of STO for Safe Stop 1 (p9652, p9852).
	8: SI PROFIsafe address (p9610, p9810).
	9: SI debounce time for STO/SBC/SS1 (p9651, p9851).
	10: SI delay time for initiating STO for ESR (p9697, p9897).
	11: SI Safe Brake Adapter mode, BICO interconnection (p9621, p9821).
	12: SI Safe Brake Adapter relay ON time (p9622[0], p9822[0]).
	13: SI Safe Brake Adapter relay OFF time (p9622[1], p9822[1]).
	14: SI PROFIsafe telegram selection (p9611, p9811).
	15: SI PROFIsafe bus failure response (p9612, p9812).
	1000: Watchdog timer has expired.
	Within the time of approx. $5 \times \mathrm{p} 9650$, alternatively, the following was defined:
	- the signal at terminal EP of the Motor Module continually changed with time intervals less than or equal to the discrepancy time (p9650/p9850).
	- via PROFIsafe/TM54F, STO (also as subsequent response) was continually selected and deselected with time intervals less than or equal to the discrepancy time (p9650/p9850).

- safe pulse cancellation (r9723.9-also as subsequent response) was continually selected and deselected with time intervals less than or equal to the discrepancy time (p9650/p9850).
1001, 1002: Initialization error, change timer / check timer.
1950: Module temperature outside the permissible temperature range.
1951: Module temperature not plausible.
1952: S120M: hardware access fault.
2000: Status of the STO selection for both monitoring channels different.
2001: Feedback signal of STO shutdown for both monitoring channels different. This value can also subsequently occur as a result of other faults.
2002: Status of the delay timer SS1 for both monitoring channels different (status of the timer in p9650/p9850).
2003: Status of the STO terminal for both monitoring channels different.
6000 ... 6999:
Error in the PROFIsafe control.
For these fault values, the failsafe control signals (Failsafe Values) are transferred to the safety functions. If "STOP B after failure of the PROFIsafe communication" (p9812) is parameterized, the transfer of the Failsafe Values is delayed.
The significance of the individual message values is described in safety message C01611.

Remedy:	For fault value = $1 \ldots 5$ and $7 \ldots 999$ :
	- check the cross data comparison that resulted in a STOP F.
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade the Motor Module software.
	- upgrade the Control Unit software.
	For fault value $=6$ :
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade the Motor Module software.
	- upgrade the Control Unit software.
	For fault value = 1000:
	- check the wiring of the safety-relevant inputs (SGE) on the Control Unit (contact problems).
	- PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller.
	- check the wiring of the failsafe inputs at the TM54F (contact problems).
	- check the discrepancy time, and if required, increase the value (p9650/p9850).
	For fault value = 1001, 1002:
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade the Motor Module software.
	- upgrade the Control Unit software.
	For fault value = 1950:
	- operate the module in the permissible range.
	- check the module fan, replace the Motor Module involved.
	For fault value = 1951:
	- operate the module in the permissible range.
	- replace the Motor Module involved.
	For fault value = 1952:
	- replace the Motor Module involved.
	For fault value = 2000, 2001, 2002, 2003:
	- check the discrepancy time, and if required, increase the value (p9650/p9850, p9652/p9852).
	- check the wiring of the safety-relevant inputs (SGE) (contact problems).
	- check why STO was selected in r9872. When the SMM functions are active (p9501 = 1), STO can also be selected using these functions.
	- replace the Motor Module involved.
	- diagnose the other active faults and resolve the causes.
	Note:
	This fault can be acknowledged after removing the cause of the error and after correct selection/deselection of STO.
	For fault value = 6000 ... 6999:
	Refer to the description of the message values in safety message C01611.
	Note:
	CU: Control Unit
	EP: Enable Pulses (pulse enable)
	ESR: Extended Stop and Retract
	MM: Motor Module
	SGE: Safety-relevant input
	SI: Safety Integrated
	SMM: Safe Motion Monitoring
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
	STO: Safe Torque Off / SH: Safe standstill
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F30611 (A)	SI P2: Defect in a monitoring channel
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA
Component:	None Propagation: LOCAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 2 has detected a fault in the data cross-check between the two monitoring channels and has initiated a STOP F.
	As a result of this fault, after the parameterized transition has expired (p9858), fault F30600 is output (SI MM: STOP A initiated).
	Fault value (r0949, interpret decimal):
	0 : Stop request from another monitoring channel.
	$1 . .999$ :
	Number of the cross-compared data that resulted in this fault. This number is also displayed in r9895.
	1: SI monitoring clock cycle (r9780, r9880).
	2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.
	3: SI SGE changeover discrepancy time (p9650, p9850).
	4: SI transition period STOP F to STOP A (p9658, p9858).
	6: SI Motion enable, safety-relevant functions (p9501, internal value).
	7: SI delay time of STO for Safe Stop 1 (p9652, p9852).
	8: SI PROFIsafe address (p9610, p9810).
	9: SI debounce time for STO/SBC/SS1 (p9651, p9851).
	10: SI delay time for initiating STO for ESR (p9697, p9897).
	11: SI HLA shutoff valve feedback signal contact configuration (p9626, p9826).
	12: SI HLA shutoff valve wait time switch-on (p9625[0], p9825[0]).
	13: SI HLA shutoff valve wait time switch-off (p9625[1], p9825[1]).
	14: SI PROFIsafe telegram selection (p9611, p9811).
	15: SI PROFIsafe bus failure response (p9612, p9812).
	1000: Watchdog timer has expired.
	Within the time of approx. $5 \times \mathrm{p} 9650$, alternatively, the following was defined:
	- the signal at terminal STO of the Hydraulic Module continually changed with time intervals less than or equal to the discrepancy time (p9650/p9850).
	- via PROFIsafe/TM54F, STO (also as subsequent response) was continually selected and deselected with time intervals less than or equal to the discrepancy time (p9650/p9850).
	1001, 1002: Initialization error, change timer / check timer.
	1950: Module temperature outside the permissible temperature range.
	1951: Module temperature not plausible.
	2000: Status of the STO selection for both monitoring channels different.
	2001: Feedback signal of STO shutdown for both monitoring channels different. This value can also subsequently occur as a result of other faults.
	2002: Status of the delay timer SS1 for both monitoring channels different (status of the timer in p9650/p9850).
	2003: Status of the STO terminal for both monitoring channels different.
	6000 ... 6999:
	Error in the PROFIsafe control.
	For these fault values, the failsafe control signals (Failsafe Values) are transferred to the safety functions. If "STOP B after failure of the PROFIsafe communication" (p9812) is parameterized, the transfer of the Failsafe Values is delayed.
	The significance of the individual message values is described in safety message C01611.



N30620 (F, A)	SI P2: Safe Torque Off active
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Torque Off" (STO) function of the basic functions has been selected in monitoring channel 2 using the
	input terminal and is active.
	Note:


Remedy:	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	- select Safe Torque Off and de-select again.
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- check whether there is a DRIVE-CLiQ communication error between the two monitoring channels and, if required, carry out a diagnostics routine for the faults identified.
	- de-select all drive functions that are not absolutely necessary.
	- reduce the number of drives.
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the enable of the safety functions for both of the monitoring channels and if required, correct (p9601, p9801).
	Note:
	P2: processor 2
	SI: Safety Integrated
F30630	SI P2: Brake control error
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The "Safety Integrated" function integrated in the drive on the Motor Module (MM) has detected a brake control error and initiated a STOP A.
	- motor cable is not shielded correctly.
	- defect in the brake control circuit of the Motor Module.
	Fault value (r0949, interpret decimal):
	10:
	Fault in "open holding brake" operation.
	- parameter p1278 incorrectly set.
	- no brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC deactivated)).
	- ground fault in brake cable.
	30:
	Fault in "close holding brake" operation.
	- no brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC deactivated)).
	- short-circuit in brake winding.
	40:
	Fault in "brake closed" state.
	60, 70:
	Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module (brake control).
	81: Safe Brake Adapter: Fault in "brake closed" state.
	82: Safe Brake Adapter: Fault for the operation "open brake".
	83: Safe Brake Adapter: Fault for the operation "close brake".
	84, 85:
	Safe Brake Adapter:
	Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module (brake control).
	90:
	Brake released for service purposes (X4).
	91:
	Fault in "open holding brake" operation.
	- no brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC deactivated)).

### 4.2 List of faults and alarms

Remedy: $\quad$ - check parameter p1278 (for SBC, only p1278 = 0 is permissible). $\quad$ - select Safe Torque Off and de-select again. $\quad$ - check the motor holding brake connection. $\quad$ - check the function of the motor holding brake. $\quad$ - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module \begin{tabular}{l}
involved and, if required, carry out a diagnostics routine for the faults identified. <br>

- check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the <br>
motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are <br>
tightly screwed to the housing). <br>
- replace the Motor Module involved. <br>
Operation with Safe Brake Module or Safe Brake Adapter: <br>
- check the Safe Brake Module or Safe Brake Adapter connection. <br>
- Replace the Safe Brake Module or Safe Brake Adapter. <br>
Note: <br>
MM: Motor Module <br>
SBC: Safe Brake Control <br>
SI: Safety Integrated
\end{tabular}

F30631 Brake control: External release active

Message value: -

## Message class:

Drive object:
Component:
Reaction:
Acknowledge:
Cause:
Remedy:

Brake control: External release active

External measured value / signal state outside the permissible range (16)
SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: LOCAL
OFF2
IMMEDIATELY (POWER ON)
For mounting purposes, the brake is supplied with voltage via terminal X4.1 and released. If required, again remove the power supply at X 4.1 .

F30632
Message value:

## Message class:

Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## SI P2: shutoff valve control/feedback signal error

 \%1Safety monitoring channel has identified an error (10)
HLA
None Propagation: GLOBAL
OFF2
IMMEDIATELY (POWER ON)
The drive-integrated "Safety Integrated" function on the Hydraulic Module (monitoring channel 2) has detected a fault for the control/feedback signal of the shutoff valve and initiated a STOP A.
Possible causes:

- shutoff valve either not connected or not correctly connected (X272).
- feedback signal of the shutoff valve either not connected or not correctly connected (X281/X282).
- feedback signal of the shutoff valve incorrectly set (p9626/p9826).
- shutoff valve defective.
- Hydraulic Module defective.

Fault value (r0949, interpret decimal):
10:
Fault in the "Open shutoff valve" operation.
30:
Fault in the "Close shutoff valve" operation.
40:
Fault in the "Shutoff valve closed" state.
60, 70:
Fault in the control of the cutoff valve or communication error between the Control Unit and the Hydraulic Module. 81:
Feedback signal of the shutoff valve: Fault in the "Shutoff valve closed" state.
82:
Feedback signal of the shutoff valve: Fault when "Opening shutoff valve".

	83:
	Feedback signal of the shutoff valve: Fault when "Closing shutoff valve".
	$84:$
	Feedback signal of the shutoff valve: Fault in the control of the shutoff valve or communication error between the
	Control Unit and the Hydraulic Module.
Remedy:	- check the shutoff valve connection (X272).
	- check the feedback signals of the shutoff valve (X281, X282).
	- check the configuration of the feedback signals of the shutoff valve (p9626/p9826).
	- check for EMC-compliant control cabinet design and cable routing (e.g. use shielded cables and connect the
	shield).
	- if necessary, replace the shutoff valve.
	- if necessary, replace the Hydraulic Module.
	See also: p9626 (SI HLA shutoff valve feedback signal contact configuration (CU)), p9826 (SI HLA shutoff valve
Reaction upon F:	feedback signal contact configuration (MM))
Acknowl. upon F:	SONE (OFF2)


A30640 (F)	SI P2: Fault in the switch-off signal path of the second channel
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Hydraulic Module has detected a communications error with the higher-level control or the TM54F to transfer the safety-relevant information.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	For the higher-level control, the following applies:
	- check the PROFIsafe address in the higher-level control and Hydraulic Module and if required, align.   - save all parameters (p0977 = 1).
	- carry out a POWER ON (switch-off/switch-on) for all components.
	For TM54F, carry out the following steps:
	- start the copy function for the node identifier (p9700 = 1D hex).
	- acknowledge hardware CRC (p9701 = EC hex).
	- save all parameters (p0977 = 1).
	- carry out a POWER ON (switch-off/switch-on) for all components.
	For a parallel connection, the following applies:
	- check the PROFIsafe address in both monitoring channels and if required, align.
	- save all parameters (p0977 = 1).
	- carry out a POWER ON (switch-off/switch-on) for all components.
	The following generally applies:
	- upgrade the Hydraulic Module software.
	Note:
	MM: Motor Module
	SI: Safety Integrated
	See also: p9810 (SI PROFIsafe address (Motor Module))
Reaction upon F:	NONE (OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F30649	SI P2: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal error in the Safety Integrated software in monitoring channel 2 has occurred.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- re-commission the Safety Integrated function and carry out a POWER ON.
	- upgrade the Motor Module/Hydraulic Module software.
	- contact Technical Support.
	- replace the Motor Module/Hydraulic Module.
	Note:
	MM: Motor Module
	SI: Safety Integrated


F30650	SI P2: Acceptance test required
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The "Safety Integrated" function on monitoring channel 2 requires an acceptance test.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, interpret decimal):
	130: Safety parameters for monitoring channel 2 not available.
	Note:
	This fault value is always output when Safety Integrated is commissioned for the first time.
	1000: Reference and actual checksum in monitoring channel 2 are not identical (booting).
	- as a result of the changed current controller sampling time ( $\mathrm{p} 0115[0]$ ), the clock cycle time for the Safety Integrated Basic Functions (r9880) was adapted.
	- safety parameters set offline and loaded into the Control Unit.
	- a download was made to the SINAMICS, whose firmware versions in monitoring channel 2 did not correspond to the latest version. The request to switch off the DRIVE-CLiQ component A1007 was present after the download. - at least one checksum-checked piece of data is defective.
	2000: Reference and actual checksum in monitoring channel 2 are not identical (commissioning mode). - reference checksum on monitoring channel 2 incorrectly entered (p9899 not equal to r9898).
	2003: Acceptance test is required as a safety parameter has been changed.
	2005: The safety logbook has identified that the safety checksums have changed. An acceptance test is required.
	3003: Acceptance test is required as a hardware-related safety parameter has been changed.
	9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
Remedy:	For fault value = 130:
	- carry out safety commissioning routine.
	For fault value = 1000:
	- check the Safety Integrated Basic Functions (r9880) and adapt the reference checksum (p9899).
	- again carry out safety commissioning routine.
	- Using STARTER, activate the safety parameters for the drive involved (change settings, copy parameters, activate settings).
	- switch off and switch on the drive unit and DRIVE-CLiQ components. If A30650 is still present, repeat the download   - replace the memory card or Control Unit.
	For fault value = 2000:
	- check the safety parameters on monitoring channel 2 and adapt the reference checksum (p9899).
	For fault value = 2003, 2005:
	- carry out an acceptance test and generate an acceptance report.
	The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
	SINAMICS S120 Function Manual Safety Integrated
	For fault value = 3003:
	- carry out the function checks for the modified hardware and generate an acceptance report.
	The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
	SINAMICS S120 Function Manual Safety Integrated
	For fault value = 9999:
	- carry out diagnostics for the other safety-related fault that is present.
	Note:
	MM: Motor Module
	SI: Safety Integrated
	See also: p9799 (SI reference checksum SI parameters (Control Unit)), p9899 (SI reference checksum SI parameters (Motor Module))


F30651	SI P2: Synchronization with Control Unit unsuccessful
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function requires synchronization of the safety time slices in both monitoring channels. This synchronization routine was unsuccessful.   Note:   This fault results in a STOP A that cannot be acknowledged.   Fault value (r0949, interpret decimal):   Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.   - upgrade the Motor Module/Hydraulic Module software.   - upgrade the Control Unit software.   Note:   MM: Motor Module   SI: Safety Integrated
F30652	SI P2: Illegal monitoring clock cycle
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Safety Integrated monitoring clock cycle cannot be maintained due to the communication conditions requested in the system.   Note:   This fault results in a STOP A that cannot be acknowledged.   Fault value (r0949, interpret decimal):   Only for internal Siemens troubleshooting.
Remedy:	- if fault F01652 simultaneously occurs, apply the remedy/countermeasure described there.   - upgrade the firmware of the Motor Module/Hydraulic Module to a later version.   Note:   MM: Motor Module   P2: processor 2   SI: Safety Integrated
F30655	SI P2: Align monitoring functions
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An error has occurred when aligning the Safety Integrated monitoring functions of both monitoring channels. No common set of supported SI monitoring functions was able to be determined.   - there is either a DRIVE-CLiQ communication error or communication has failed.   - Safety Integrated software releases on the Control Unit and Motor Module/Hydraulic Module are not compatible with one another.   Note:   This fault results in a STOP A that cannot be acknowledged.


Remedy:	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade the Motor Module/Hydraulic Module software.
	- upgrade the Control Unit software.
	- check the electrical cabinet design and cable routing for EMC compliance
	Note:
	CU: Control Unit
	MM: Motor Module
	SI: Safety Integrated
F30656	SI P2: Motor Module parameter error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When accessing the Safety Integrated parameters for monitoring channel 2 in the non-volatile memory, an error has occurred.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, interpret decimal):
	129:
	- safety parameters for monitoring channel 2 corrupted.
	- drive with enabled safety functions was possibly copied offline using the commissioning tool and the project downloaded.
	131: Internal software error on the Control Unit.
	255: Internal Motor Module/Hydraulic Module software error.
Remedy:	- re-commission the safety functions.
	- upgrade the Control Unit software.
	- upgrade the Motor Module/Hydraulic Module software.
	- replace the memory card or Control Unit.
	For fault value $=129$ :
	- activate the safety commissioning mode (p0010 = 95).
	- adapt the PROFIsafe address (p9610).
	- start the copy function for SI parameters (p9700 = D0 hex).
	- acknowledge data change (p9701 = DC hex).
	- exit the safety commissioning mode ( $\mathrm{p} 0010=0$ ).
	- save all parameters (p0977 = 1 or "copy RAM to ROM").
	- carry out a POWER ON (switch-off/switch-on) for all components.
	Note:
	MM: Motor Module
	SI: Safety Integrated


F30657	SI P2: PROFIsafe telegram number invalid
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The PROFIsafe telegram number set in p9811 is not valid.
	When PROFIsafe is enabled (p9801.3 = 1), then a telegram number greater than zero must be entered in p9811.
	Note:
	This fault does not result in a safety stop response.
	See also: p9611 (SI PROFIsafe telegram selection (Control Unit)), p60022 (PROFIsafe telegram selection)


	Note:   CU: Control Unit   ESR: Extended Stop and Retract   MM: Motor Module   SBC: Safe Brake Control   SI: Safety Integrated   SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)   STO: Safe Torque Off / SH: Safe standstill
F30659	SI P2: Write request for parameter rejected
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The write request for one or several Safety Integrated parameters in monitoring channel 2 was rejected.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	10: An attempt was made to enable the STO function although this cannot be supported.
	13: An attempt was made to enable the SS1 function although this cannot be supported.
	14: An attempt was made to enable the safe motion monitoring function with the higher-level control, although this cannot be supported.
	15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported.
	16: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version of the PROFIsafe driver used on both monitoring channels is different.
	18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported.
	19: For ESR, an attempt was made to enable the delay for pulse suppression, although this cannot be supported.
	27: An attempt was made to activate the Basic Functions by controlling via TM54F although this cannot be supported.
	29: An attempt was made to parameterize the fault response for PROFIsafe failure to STOP B although this cannot be supported.
	33: Safety functions without selection are not supported (p9601.5, p9801.5).
	See also: r9771 (SI common functions (Control Unit)), r9871 (SI common functions (Motor Module))
Remedy:	For fault value $=10,13,14,15,16,18,19$ :
	- check whether there are faults in the safety function alignment between the two monitoring channels (F01655, F30655) and if required, carry out diagnostics for the faults involved.
	- use a Hydraulic Module that supports the required function.
	- upgrade the Hydraulic Module software.
	- upgrade the Control Unit software.
	For fault value $=29$ :
	- check whether p9612 and p9812 are set; if required, correct the settings.
	- use a Hydraulic Module that supports the required function.
	- upgrade the Hydraulic Module software.
	- upgrade the Control Unit software.
	Note:
	SI: Safety Integrated
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
	STO: Safe Torque Off / SH: Safe standstill


F30664	Error while booting
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120,
	TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC,
Component:	VECTOR_I_AC
Reaction:	One
OFF2	
Acknowledge:	POWER ON
Cause:	An error has occurred during booting.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
- carry out a POWER ON (switch-off/switch-on).	


Reaction upon F :   Acknowl. upon F	NONE   IMMEDIATELY
F30672	SI P2: Control Unit software incompatible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The existing Control Unit software does not support the safe drive-based motion monitoring function. Note:   This fault results in a STOP A that cannot be acknowledged.   Fault value (r0949, interpret decimal):   Only for internal Siemens troubleshooting.
Remedy:	- check whether there are faults in the safety function alignment between the two monitoring channels (F01655, F30655) and if required, carry out diagnostics for the faults involved.   - use a Control Unit that supports the safe motion monitoring function.   - upgrade the Control Unit software.   Note:   SI: Safety Integrated
F30674	SI Motion P2: Safety function not supported by PROFIsafe telegram
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The monitoring function enabled in p9301 and p9801 is not supported by the currently set PROFIsafe telegram (p9811).
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret bitwise binary):
	Bit $18=1$ :
	SS2E via PROFIsafe is not supported (p9301.18).
	Bit $24=1$ :
	Transfer SLS limit value via PROFIsafe not supported (p9301.24).
	Bit $25=1$ :
	Transfer safe position (SP) via PROFIsafe is not supported (p9301.25).
	Bit $26=1: \quad$
	Gearbox stage switchover via PROFIsafe is not supported (p9301.26).
	Bit $28=1$ :
	SCA via PROFIsafe is not supported (p9301.28).
Remedy:	- deselect the monitoring function involved (p9301, p9801).
	- set the matching PROFIsafe telegram (p9811).
	Note:
	SCA: Safe Cam
	SI: Safety Integrated
	SLS: Safely-Limited Speed
	SP: Safe Position
	SS2E: Safe Stop 2 external (Safe Stop 2 with external stop, external STOP D)


F30680	SI Motion P2: Checksum error safety monitoring functions
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The actual checksum calculated by the Motor Module/Hydraulic Module and entered in r9398 via the safety-relevant parameters does not match the reference checksum saved in p9399 at the last machine acceptance.
	Safety-relevant parameters have been changed or a fault is present.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, interpret decimal):
	0: Checksum error for SI parameters for motion monitoring.
	1: Checksum error for SI parameters for component assignment.
Remedy:	- check the safety-relevant parameters and if required, correct.
	- set the reference checksum to the actual checksum.
	- execute the function "Copy RAM to ROM".
	- perform a POWER ON if safety parameters requiring a POWER ON have been modified.
	- carry out an acceptance test.
F30681	SI Motion P1: Incorrect parameter value
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameter cannot be parameterized with this value.
	Note:
	This message does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	yyyyxxxx dec: yyyy = supplementary information, $\mathrm{xxxx}=$ parameter
	yyyy $=0$ :
	No additional information available.
	xxxx = 9301:
	It is not permissible to enable the function " n < nx hysteresis and filtering" ( p 9301.16 ) in conjunction with the function "Extended functions without selection" (p9801.5).
	xxxx = 9301 and yyyy = 8:
	Referencing via SCC ( $\mathrm{p} 9301.27=1$ ) is enabled without enabling absolute motion monitoring functions (p9301.1 or p9301.2).
	$x x x x=9301$ and yyyy $=14$ :
	"Synchronous safe position via PROFIsafe" is enabled (p9301.29 = 1), without enabling "Safe position via PROFIsafe" (p9301.25).
	$x x x x=9301$ and yyyy $=17$ :
	"Synchronous safe position via PROFIsafe" is enabled ( $\mathrm{p} 9301.29=1$ ) and "Safety without encoder" is enabled (p9306).
	$x x x x=9301$ and yyyy $=19$ :
	SLA (p9301.20 = 1) is enabled with encoderless actual value sensing (p9306 equal to 1 or 3 ). xxxx = 9301 and yyyy $=20$ :
	SLA (p9301.20 = 1) is enabled with a 2-encoder system (p9326 not equal to 1 ).
	xxxx $=9334$ or 9335:
	The limit values of SLP have been set too high (absolute values). xxxx = 9347:
	The hysteresis tolerance is not permissible.

```
xxxx = 9378:
SLA is enabled (p9301.20=1). Acceleration limit is too low (p9378). Acceleration resolution is no longer sufficient
(r9790). The minimum limit is the 3x acceleration resolution.
xxxx = 9385:
For Safety without encoder and synchronous motor, p9385 must be set to 4.
xxxx = 9801 and yyyy = 1:
If motion monitoring functions integrated in the drive (p9801.2 = 1) and extended functions without selection (p9801.5
=1) are activated, then PROFIsafe (p9801.3 = 1) is not possible.
xxxx = 9801 and yyyy = 2:
Extended functions without selection (p9801.5 =1) are enabled without enabling motion monitoring functions
integrated in the drive (p9801.2).
xxxx = 9801 and yyyy = 3:
Onboard F-DI are enabled without enabling motion monitoring functions integrated in the drive (p9801.2).
xxxx = 9801 and yyyy = 5:
Transfer of the SLS limit value via PROFIsafe (p9301.24) has been enabled, without enabling PROFIsafe.
xxxx = 9801 and yyyy = 6:
Transfer of the safe position via PROFIsafe (p9301.25) has been enabled without enabling PROFIsafe.
xxxx = 9801 and yyyy = 7:
Safe switchover of the gearbox stages (p9301.26 = 1) has been enabled without enabling PROFIsafe.
xxxx = 9801 and yyyy = 11:
SS2E (p9301.18 = 1) is enabled without enabling PROFIsafe.
xxxx = 9801 and yyyy = 12:
SCA (p9301.28 = 1) is enabled without enabling PROFIsafe.
xxxx = 9801 and yyyy = 18:
SLA (p9301.20 = 1) is enabled without enabling PROFIsafe.
Remedy: Correct parameter (if required, also on another monitoring channel, p9601).
Note:
For different values in the two monitoring channels, start the copy function for SI parameters on the drive (p9700 = 57
hex).
For xxxx = 9301:
Correct parameters p9501.16 and p9301.16 or deselect the extended functions without selection (p9801.5).
For xxXX = 9301 and yyyy = 14:
Inhibit "Synchronous safe position via PROFIsafe" function (p9301.29 = 0), or enable "Safe position via PROFIsafe"
(p9301.25).
For xxxx = 9301 and yyyy = 17:
Inhibit "Synchronous safe position via PROFIsafe" function (p9301.29 = 0), or set "Safety with encoder" (p9306).
For xxxx = 9301 and yyyy = 19:
Inhibit SLA (p9301.20) or activate actual value sensing with encoder (p9306 equal to 0 or 2).
For xxxx = 9301 and yyyy = 20:
Inhibit SLA (p9301.20) or activate a single-encoder system (p9326 equal to 5).
If xxxx = 9501 and yyyy = 8:
Inhibit referencing via SCC (p9501.27 = 1) or enable an absolute motion monitoring function (p9501.1 or p9501.2).
For xxxx = 9317:
Further, p9316.0 should be checked.
If }\textrm{xxxx}=9334\mathrm{ or 9335:
Reduce the limit values (absolute values) of SLP.
For xxxx = 9347:
With hysteresis/filtering enabled (p9301.16 = 1), the following applies:
- set parameters p9346 and p9347 according to the following rule: p9347 <= 0.75 x p9346;
- the following rule must also be adhered to when actual value synchronization (p9301.3 = 1) is enabled: p9347 >=
p9349;
For xxxx = 9378:
- observe the information in r9790.
```


### 4.2 List of faults and alarms

For $x x x x=9801$ :
yyyy $=1$ :
Only enable motion monitoring functions integrated in the drive (p9801.2 = 1) and extended functions without selection ( $\mathrm{p} 9801.5=1$ ) - or only PROFIsafe (p9801.3 = 1).
yyyy $=2$, 3 :
Enable motion monitoring functions integrated in the drive (p9801.2 = 1).
yyyy = 5:
To transfer the SLS limit values via PROFIsafe (p9301.24 = 1), also enable PROFIsafe (p9801.3 =1) and motion monitoring functions integrated in the drive ( $\mathrm{p} 9801.2=1$ ).
yyyy = 6:
For the safe position via PROFIsafe (p9301.25 = 1), also enable PROFIsafe (p9801.3 =1) and motion monitoring functions integrated in the drive ( $p 9801.2=1$ ).
yyyy = 7:
For safe switchover of gearbox stages (p9301.26 = 1) also enable PROFIsafe (p9801.3 =1) and motion monitoring functions integrated in the drive ( $\mathrm{p} 9801.2=1$ ).
yyyy = 18:
For Safely-Limited Acceleration monitoring (p9301.20 = 1), also enable PROFIsafe (p9801.3 = 1) and the motion monitoring functions integrated in the drive (p9801.2 = 1).

F30681
Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## SI Motion P1: Incorrect parameter value

Parameter: \%1, supplementary information: \%2
Error in the parameterization / configuration / commissioning procedure (18)
HLA
None Propagation: GLOBAL
OFF2
IMMEDIATELY (POWER ON)
The parameter cannot be parameterized with this value.
Note:
This message does not result in a safety stop response.
Fault value (r0949, interpret decimal):
yyyyxxxx dec: yyyy = supplementary information, xxxx = parameter
yyyy $=0$ :
No additional information available.
xxxx = 9301:
It is not permissible to enable the function " $\mathrm{n}<\mathrm{nx}$ hysteresis and filtering" (p9301.16) in conjunction with the function "Extended functions without selection" (p9801.5).
$x x x x=9301$ and yyyy $=8$ :
Referencing via SCC ( $\mathrm{p} 9301.27=1$ ) is enabled without enabling absolute motion monitoring functions (p9301.1 or p9301.2).
$x x x x=9301$ and yyyy = 11:
Safe function SS2E (p9301.18 = 1) is enabled without enabling PROFIsafe.
xxxx = 9301 and yyyy = 14:
"Synchronous safe position via PROFIsafe" is enabled (p9301.29 = 1), without enabling "Safe position via
PROFIsafe" (p9301.25).
xxxx = 9301 and yyyy = 17:
"Synchronous safe position via PROFIsafe" is enabled (p9301.29 = 1) and "Safety without encoder" is enabled (p9306).
$x x x x=9301$ and yyyy $=19$ :
SLA (p9301.20 = 1) is enabled with encoderless actual value sensing (p9306 equal to 1 or 3 ).
$x x x x=9301$ and yyyy = 20:
SLA (p9301.20 = 1) is enabled with a 2-encoder system (p9326 not equal to 1).
$x x x x=9801$ and yyyy $=12: \operatorname{SCA}(p 9301.28=1)$ is enabled without enabling PROFIsafe.
$x x x x=9334$ or 9335 :
The limit values of SLP have been set too high (absolute values).
xxxx = 9378:
SLA is enabled (p9301.20 = 1). Acceleration limit is too low (p9378). Acceleration resolution is no longer sufficient (r9790) (the minimum limit is $3 x$ of the acceleration resolution).

```
xxxx = 9801 and yyyy = 1:
If motion monitoring functions integrated in the drive (p9801.2 = 1) and extended functions without selection (p9801.5
= 1) are activated, then PROFIsafe (p9801.3 = 1) is not possible.
xxxx = 9801 and yyyy = 2:
Extended functions without selection (p9801.5 =1) are enabled without enabling motion monitoring functions
integrated in the drive (p9801.2).
xxxx = 9801 and yyyy = 5:
Transfer of the SLS limit value via PROFIsafe (p9301.24) has been enabled, without enabling PROFIsafe.
xxxx = 9801 and yyyy = 6:
Transfer of the safe position via PROFIsafe (p9301.25) has been enabled without enabling PROFIsafe.
xxxx = 9801 and yyyy = 7:
Safe switchover of the gearbox stages (p9301.26 = 1) has been enabled without enabling PROFIsafe.
xxxx = 9801 and yyyy = 18:
SLA (p9301.20 = 1) is enabled without enabling PROFIsafe.
Remedy: Correct parameter (if required, also on another monitoring channel, p9601).
Note:
For different values in the two monitoring channels, start the copy function for SI parameters on the drive (p9700 = 57
hex).
For xxxx = 9301:
Correct parameters p9501.16 and p9301.16 or deselect the extended functions without selection (p9801.5).
For xxxx = 9301 and yyyy = 14:
Inhibit "Synchronous safe position via PROFIsafe" function (p9301.29 = 0), or enable "Safe position via PROFIsafe"
(p9301.25).
For xxxx = 9301 and yyyy = 17:
Inhibit "Synchronous safe position via PROFIsafe" function (p9301.29 = 0), or set "Safety with encoder" (p9306).
For xxxx = 9301 and yyyy = 19:
Inhibit SLA (p9301.20) or activate actual value sensing with encoder (p9306 equal to 0 or 2).
For xxxx = 9301 and yyyy = 20:
Inhibit SLA (p9301.20) or activate a single-encoder system (p9326 equal to 1).
If xxxx = 9501 and yyyy = 8:
Inhibit referencing via SCC (p9501.27 = 1) or enable an absolute motion monitoring function (p9501.1 or p9501.2).
For xxxx = 9501 and yyyy = 11: inhibit SS2E (p9501.18) or enable PROFIsafe.
For xxxx = 9501 and yyyy = 12: inhibit SCA (p9501.28) or enable PROFIsafe.
For xxxx = 9317:
Further, p9316.0 should be checked.
If xxxx = 9334 or 9335:
Reduce the limit values (absolute values) of SLP.
For xxxx = 9378:
- observe the information in r9790.
For xxxx = 9801:
yyyy = 1:
Only enable motion monitoring functions integrated in the drive (p9801.2 = 1) and extended functions without
selection (p9801.5 = 1) - or only PROFIsafe (p9801.3 = 1).
yyyy = 2:
Enable motion monitoring functions integrated in the drive (p9801.2 = 1).
yyyy = 5:
To transfer the SLS limit values via PROFIsafe (p9301.24 = 1), also enable PROFIsafe (p9801.3 =1) and motion
monitoring functions integrated in the drive (p9801.2 = 1).
yyyy = 6:
For the safe position via PROFIsafe (p9301.25 = 1), also enable PROFIsafe (p9801.3 =1) and motion monitoring
functions integrated in the drive (p9801.2 = 1).
yyyy = 7:
For safe switchover of gearbox stages (p9301.26 = 1) also enable PROFIsafe (p9801.3 =1) and motion monitoring
functions integrated in the drive (p9801.2 = 1).
```

yyyy $=18$ :
For Safely-Limited Acceleration monitoring (p9301.20 = 1), also enable PROFIsafe (p9801.3 = 1) and the motion monitoring functions integrated in the drive (p9801.2 = 1).

F30682	SI Motion P2: Monitoring function not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The monitoring function enabled in p9301, p9501, p9601, p9801, p9306, p9506, p9307 or p9507 is not supported in this firmware version.
	Note:
	This message does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	1: Monitoring function SLP not supported (p9301.1).
	2: Monitoring function SCA not supported (p9301.7 and p9301.8 ... 15).
	3: Monitoring function SLS override not supported (p9301.5).
	4: Monitoring function external ESR activation not supported (p9301.4).
	5: Monitoring function F-DI in PROFIsafe not supported (p9301.30).
	6: Enable actual value synchronization not supported (p9301.3).
	9: Monitoring function not supported by the firmware or enable bit not used.
	12: This Control Unit does not support operation of safety functions with a higher-level control (e.g. SINUMERIK).   14: Monitoring function SLA and ncSI not supported.
	24: Monitoring function SDI not supported.
	26: Hysteresis and filtering for SSM monitoring function without an encoder not supported (p9301.16).
	27: This hardware does not support onboard F-DI and F-DO.
	30: The firmware version of the Motor Module is older than the version of the Control Unit.
	33: Safety functions without selection not supported (p9601.5, p9801.5).
	34: This module does not support safe position via PROFIsafe.
	36: Function "SS1E" not supported.
	39: This module or software version of the CU/MM does not support safe gearbox stage switchover (p9501.26).
	44: this module/this software version does not support referencing via the Safety Control Channel (p9501.27).
	45: De-activating SOS/SLS during an external STOP A is not supported (p9301.23).
	50: Shortening the switchover times for SOS (p9569/p9369, p9567/p9367) is not supported.
	52: "SBR with encoder" function is not supported (p9306 = 2).
	53: function SS2E not supported (p9301.18).
	54: SCA function not supported (p9301.28).
	57: "Synchronous transfer safe position via PROFIsafe" function not supported (p9301.29).
	58: "SLA" function not supported (p9301.20).
Remedy:	- deselect monitoring function involved (p9301, p9501, p9601, p9801, p9307, p9507, p9506, p9306).
	- Upgrade the Motor Module firmware.
	Note:
	ESR: Extended Stop and Retract
	F-DI: Failsafe Digital Input
	SBR: Safe Brake Ramp (safe brake ramp monitoring)
	SCA: Safe Cam / SN: Safe software cam
	SDI: Safe Direction (safe motion direction)
	SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	SP: Safe Position

SS1E: Safe Stop 1 External (Safe Stop 1 with external stop)
SS2E: Safe Stop 2 external (Safe Stop 2 with external stop, external STOP D)
See also: p9301, p9501, p9503, p9601, p9801, r9871


F30684	SI Motion P2: Safely-Limited Position limit values interchanged
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the function "Safely-Limited Position" (SLP), a lower value is in p9334 than in p9335.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	1: Limit values SLP1 interchanged.
	2: Limit values SLP2 interchanged.
	See also: p9334, p9335
Remedy:	- correct the lower and upper limit values (p9335, p9334).
	- carry out a POWER ON (switch-off/switch-on).
	Note:
	SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches
F30685	SI Motion P2: Safely-Limited Speed limit value too high
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The limit value for the function "Safely-Limited Speed" (SLS) is greater than the speed that corresponds to an encoder limit frequency of 500 kHz .
	Note:
	This message does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	Maximum permissible speed.
Remedy:	Correct the limit values for SLS and carry out a POWER ON.
	Note:
	SI: Safety Integrated
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	See also: p9331 (SI Motion SLS limit values (Motor Module))
F30686	SI Motion: Illegal parameterization cam position
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	At least one enabled "Safety Cam" (SCA) is parameterized in p9336 or p9337 too close to the tolerance range around the modulo position.
	- the minus position value of a cam must be greater than the lower modulo limit + cam tolerance ( p 9340 ) + position tolerance (p9342).
	- the plus position value of a cam must be less than the upper modulo limit - cam tolerance (p9340) - position tolerance (p9342).
	- when the modulo position is parameterized ( $\mathrm{p} 9305>0$ ), the lower modulo limit $=0$, the upper modulo limit $=$ p9305.
	- the cam length of cam $\mathrm{x}=\mathrm{p} 9336[\mathrm{x}]$ - p9337[x] is less than the cam tolerance + position tolerance ( $=\mathrm{p} 9340+$ p9342).
	This also means that cams of the minus position value must be less than the plus position value.


	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	Number of the "Safe Cam" with an illegal position.
	See also: p9501 (SI Motion enable safety functions (Control Unit))
Remedy:	Correct the cam position and carry out a POWER ON.
	Note:
	SCA: Safe Cam
	SI: Safety Integrated
	See also: p9536, p9537
F30688	SI Motion P2: Actual value synchronization not permissible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	- it is not permissible to enable actual value synchronization for a 1-encoder system.
	- it is not permissible to simultaneously enable actual value synchronization and a monitoring function with absolute reference (SCA/SLP).
	- it is not permissible to simultaneously enable actual value synchronization and safe position via PROFIsafe.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
Remedy:	- either deselect the "actual value synchronization" function or parameterize a 2-encoder system.
	- either deselect the function "actual value synchronization" or the monitoring functions with absolute reference (SCA/SLP) and carry out a POWER ON.
	- either deselect the "actual value synchronization" function or do not enable "Safe position via PROFIsafe".
	Note:
	SCA: Safe Cam / SN: Safe software cam
	SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches
	SP: Safe Position
	See also: p9501 (SI Motion enable safety functions (Control Unit)), p9526 (SI Motion encoder assignment second channel)
F30692	SI Motion P2: Parameter value not permitted for encoderless
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameter cannot be parameterized with this value if encoderless motion monitoring functions have been parameterized in p9306.
	Note:
	This message does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	Parameter number with the incorrect value.
	See also: p9301 (SI Motion enable safety functions (Motor Module))
Remedy:	- correct the parameter specified in the fault value.
	- if necessary, deselect encoderless motion monitoring functions (p9306).
	See also: p9301 (SI Motion enable safety functions (Motor Module)), p9501 (SI Motion enable safety functions (Control Unit))


A30693 (F)	SI P2: Safety parameter settings changed, warm restart/POWER ON required
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Safety parameters have been changed; these will only take effect following a warm restart or POWER ON.   Alarm value ( r 2124 , interpret decimal):   Parameter number of the safety parameter which has changed, necessitating a warm restart or POWER ON.
Remedy:	- carry out a warm restart ( $\mathrm{p} 0009=30, \mathrm{p} 0976=2,3$ ).   - carry out a POWER ON (switch-off/switch-on) for all components.   Note:   Before performing an acceptance test, a POWER ON must be carried out for all components.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	POWER ON
C30700	SI Motion P2: STOP A initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP A (STO via the safety switch-off signal path of the Control Unit).   Possible causes:   - stop request from the Control Unit.   - STO not active after a parameterized time (p9357) after test stop selection.   - subsequent response to the message C30706 "SI Motion MM: SAM/SBR limit exceeded".   - subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded".   - subsequent response to the message C30701 "SI Motion MM: STOP B initiated".   - subsequent response to the message C01715 "SI Motion CU: Safely-Limited Position exceeded".   - subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded".
Remedy:	- remove the cause to the fault on the Control Unit.
	- check the value in p9357, if required, increase the value.
	- check the switch-off signal path of the Control Unit (check DRIVE-CLiQ communication).
	- carry out a diagnostics routine for message C30706.
	- carry out a diagnostics routine for message C30714.
	- carry out a diagnostics routine for message C30701.
	- carry out a diagnostics routine for message C30715.
	- carry out a diagnostics routine for message C30716.
	- replace the Motor Module, Power Module or Hydraulic Module.
	- replace Control Unit.
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment): - Terminal Module 54F (TM54F).
	- onboard F-DI (only CU310-2).
	- PROFIsafe.
	- machine control panel.
	Note:
	SAM: Safe Acceleration Monitor (safe acceleration monitoring)
	SBR: Safe Brake Ramp (safe brake ramp monitoring)
	SI: Safety Integrated


C30701	SI Motion P2: STOP B initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE (OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP B (braking along the OFF3 ramp).
	As a result of this fault, after the time parameterized in p9356 has expired or after the speed threshold parameterized in p9360 has been fallen below, message C30700 "SI Motion MM: STOP A initiated" is output.
	Possible causes:
	- stop request from the Control Unit.
	- subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded".
	- subsequent response to the message C30711 "SI Motion MM: Defect in a monitoring channel".
	- subsequent response to the message C30707 "SI Motion MM: tolerance for safe operating stop exceeded".
	- subsequent response to the message C01715 "SI Motion CU: Safely-Limited Position exceeded".
	- subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded".
Remedy:	- remove the cause to the fault on the Control Unit.
	- carry out a diagnostics routine for message C30714.
	- carry out a diagnostics routine for message C30711.
	- carry out a diagnostics routine for message C30707.
	- carry out a diagnostics routine for message C30715.
	- carry out a diagnostics routine for message C30716.
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment):
	- Terminal Module 54F (TM54F).
	- onboard F-DI (only CU310-2).
	- PROFIsafe.
	- machine control panel.
	Note:
	SI: Safety Integrated
C30706	SI Motion P2: SAM/SBR limit exceeded
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Motion monitoring functions with encoder (p9306 = 0) or encoderless with set acceleration monitoring (SAM, p9306 = 3):
	- after initiating STOP B (SS1) or STOP C (SS2), the speed has exceeded the selected tolerance.
	Motion monitoring functions encoderless with set brake ramp monitoring (SBR p9306-1):
	- after initiating STOP B (SS1) or SLS changeover to the lower speed level, the speed has exceeded the selected tolerance.
	The drive is shut down by the message C30700 "SI Motion MM: STOP A initiated".
Remedy:	Check the braking behavior and, if necessary, adapt the parameterization of the parameter settings of the "SAM" or the "SBR" function.
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment):
	- Terminal Module 54F (TM54F).
	- onboard F-DI (only CU310-2).
	- PROFIsafe.
	- machine control panel.

### 4.2 List of faults and alarms

Note:
SAM: Safe Acceleration Monitor (safe acceleration monitoring)
SBR: Safe Brake Ramp (safe ramp monitoring)
SI: Safety Integrated
See also: p9348, p9381, p9382, p9383, p9548

C30706	SI Motion P2: SAM/SBR limit exceeded
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Motion monitoring functions with encoder (p9306 = 0):   - after initiating STOP B (SS1) or STOP C (SS2), the speed has exceeded the selected tolerance. The drive is shut down by the message C30700 "SI Motion MM: STOP A initiated".
Remedy:	Check the braking behavior and, if necessary, adapt the parameterization of the parameter settings of the "SAM" or the "SBR" function.   This message can be acknowledged without a POWER ON as follows (safe acknowledgment):   - Terminal Module 54F (TM54F).   - onboard F-DI (only CU310-2).   - PROFIsafe.   - machine control panel.   Note:   SAM: Safe Acceleration Monitor (safe acceleration monitoring)   SBR: Safe Brake Ramp (safe ramp monitoring)   SI: Safety Integrated   See also: p9348, p9381, p9382, p9383, p9548
C30707	SI Motion P2: Tolerance for safe operating stop exceeded
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The actual position has distanced itself further from the target position than the standstill tolerance. The drive is shut down by the message C30701 "SI Motion MM: STOP B initiated".
Remedy:	- check whether safety faults are present and if required carry out the appropriate diagnostic routines for the particular faults.   - check whether the standstill tolerance matches the accuracy and control dynamic performance of the axis.   This message can be acknowledged without a POWER ON as follows (safe acknowledgment):   - Terminal Module 54F (TM54F).   - onboard F-DI (only CU310-2).   - PROFIsafe.   - machine control panel.   Note:   SI: Safety Integrated   SOS: Safe Operating Stop / SBH: Safe operating stop   See also: p9530 (SI Motion standstill tolerance (Control Unit))


C30708	SI Motion P2: STOP C initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	STOP2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP C (braking along the OFF3 ramp).
	"Safe Operating Stop" (SOS) is activated after the parameterized time has expired.
	Possible causes:
	- stop request from the higher-level control.
	- subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded".
	- subsequent response to the message C01715 "SI Motion CU: Safely-Limited Position exceeded".
	- subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded".
	See also: p9552 (SI Motion transition time STOP C to SOS (SBH) (Control Unit))
Remedy:	- remove the cause of the fault at the control.
	- carry out a diagnostics routine for messages C30714, C30715, C30716.
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment):
	- Terminal Module 54F (TM54F).
	- onboard F-DI (only CU310-2).
	- PROFIsafe.
	- machine control panel.
	Note:
	SI: Safety Integrated
	SOS: Safe Operating Stop / SBH: Safe operating stop
C30709	SI Motion P2: STOP D initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP D (braking along the path).
	"Safe Operating Stop" (SOS) is activated after the parameterized time has expired.
	Possible causes:
	- stop request from the Control Unit.
	- subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded".
	- subsequent response to the message C01715 "SI Motion CU: Safely-Limited Position exceeded".
	- subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded".
	See also: p9353 (SI Motion transition time STOP D to SOS (Motor Module)), p9553 (SI Motion transition time STOP D to SOS (SBH) (Control Unit))
Remedy:	- remove the cause of the fault at the control.
	- carry out a diagnostics routine for messages C30714, C30715, C30716.
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment):
	- Terminal Module 54F (TM54F).
	- onboard F-DI (only CU310-2).
	- PROFIsafe.
	- machine control panel.
	Note:
	SI: Safety Integrated
	SOS: Safe Operating Stop / SBH: Safe operating stop


C30710	SI Motion P2: STOP E initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP E (retraction motion).
	"Safe Operating Stop" (SOS) is activated after the parameterized time has expired.
	Possible causes:
	- stop request from the higher-level control.
	- subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded".
	- subsequent response to the message C01715 "SI Motion CU: Safely-Limited Position exceeded".
	- subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded".
	See also: p9354 (SI Motion transition time STOP E to SOS (Motor Module)), p9554 (SI Motion transition time STOP E to SOS (SBH) (Control Unit))
Remedy:	- remove the cause of the fault at the control.
	- carry out a diagnostics routine for messages C30714, C30715, C30716.
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment):
	- Terminal Module 54F (TM54F).
	- onboard F-DI (only CU310-2).
	- PROFIsafe.
	- machine control panel.
	Note:
	SI: Safety Integrated
	SOS: Safe Operating Stop / SBH: Safe operating stop
C30711	SI Motion P2: Defect in a monitoring channel
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When cross-comparing the two monitoring channels, the drive detected a difference between the input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
	If at least one monitoring function is active, then after the parameterized timer has expired, the message C30701 "SI Motion: STOP B initiated" is output. The message is output with message value 1031 when the Sensor Module hardware is replaced.
	The following message values may also occur in the following cases if the cause that is explicitly mentioned does not apply:
	- differently parameterized cycle times (p9500/p9300, p9511/p9311).
	- differently parameterized axis types (p9502/p9302).
	- excessively fast cycle times (p9500/p9300, p9511/p9311).
	- incorrect synchronization.
	Message value (r9749, interpret decimal):
	0 ... 999:
	Number of the cross-compared data that resulted in this message.
	The significance of the individual message values is described in safety message C01711 of the Control Unit. 1000: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs.
	1001: Initialization error of watchdog timer.
	1002:
	User agreement after the timer has expired different.
	The user agreement is not consistent. After a time of 4 s has expired, the status of the user agreement is different in both monitoring channels.

1003: Reference tolerance exceeded. When the user agreement is set, the difference between the new reference point that has been determined after power up (absolute encoder) or reference point approach (distance-coded or incremental measuring system) and the safe actual position (saved value + traversing distance) is greater than the reference tolerance (p9344). In this case, the user agreement is withdrawn.

1004:
Plausibility error for user agreement

1. If the user agreement has already been set, then the setting is initiated again. In this case, the user agreement is withdrawn.
2. The user agreement was set, although the axis has still not been referenced.

1005:

- for safe motion monitoring functions without encoder: pulses already suppressed for test stop selection.
- for safe motion monitoring functions with encoder: STO already active for test stop selection.

1011: Acceptance test status between the monitoring channels differ.
1012: Plausibility violation of the actual value from the encoder.
1014: fault when synchronizing the SGA for the "Safe cam" function
1015: Gearbox switchover (bit 27 in PROFIsafe telegram) takes longer than 2 min.
1020: Cyc. communication failure between the monit. channels.
1021: Cyc. communication failure between the monit. channel and Sensor Module.
1023: Error in the effectiveness test in the DRIVE-CLiQ encoder
1024: Sign-of-life error for HTL/TTL encoders
1030: Encoder fault detected from another monitoring channel.
1031:

- data transfer error between the monitoring channel and the Sensor Module (p9526/p9326).
- the Sensor Module for the second channel was replaced.
- the encoder for the second channel has been incorrectly parameterized.

1040: Pulses suppressed with active encoderless monitoring functions.
1041: Current absolute value too low (encoderless)
1042: Current/voltage plausibility error
1043: Too many acceleration phases
1044: Actual current values plausibility error.
1045: CRC of the standstill position incorrect.
5000 ... 5140:
PROFIsafe message values.
For these message values, the failsafe control signals (Failsafe Values) are transferred to the safety functions. The significance of the individual message values is described in safety message C01711 of the Control Unit. 6000 ... 6166:

PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
For these message values, the failsafe control signals (Failsafe Values) are transferred to the safety functions. If "Stop B after failure of the PROFISafe communication" (p9812) is parameterized, the transfer of the Failsafe Values is delayed.
The significance of the individual message values is described in safety fault F01611 of the Control Unit.
7000: Difference of the safe position is greater than the parameterized tolerance (p9542/p9342).
7001: Scaling value for the safe position in the 16 bit notation, too low (p9574/p9374).
7002: Cycle counter for transferring the safe position is different in both monitoring channels.
See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion diagnostics STOP F)
Remedy: For message value = 1002

- perform safe acknowledgment, set the user agreement in both monitoring channels simultaneously (within 4 s ).

For message value = 1003:

- check the mechanical system of the axis. It is possible that the axis was shifted when switched-off, and the last saved actual position no longer corresponds with the new actual position after the system has been powered up again.
- increase the tolerance for the actual value comparison when referencing (p9344).

Then check the actual values, perform a POWER ON and set the user agreement again.

For message value $=1004$ :
For 1., the following applies: Perform safe acknowledgment. Set the user agreement again.
For 2., the following applies: Perform safe acknowledgment. Only set the user agreement again if the axis has been referenced.
For message value $=1005$ :

- for safe motion monitoring functions without encoder: check the conditions for pulse enable.
- for safe motion monitoring functions with encoder: check the conditions for STO deselection.

Note:
For a Power Module, the test stop should always be performed for pulse enable (independent of whether with encoder or without encoder).
For message value $=1012$ :

- upgrade the Sensor Module firmware to a more recent version.
- for 1-encoder systems, the following applies: check the encoder parameters for equality (p9515/p9315, p9519/p9319, p9523/p9323, p9524/p9324, p9525/p9325, p9529/p9329).
- for a 1-encoder system and 2-encoder system the following applies: in order to correctly copy the encoder parameters from p04xx, p9700 must be set to 46 and p9701 must be set to 172 .
- for DQI encoders the following applies: If required, upgrade the firmware version of the Control Unit to a more recent version, which is released for DQI encoders.
- check the electrical cabinet design and cable routing for EMC compliance
- carry out a POWER ON (switch-off/switch-on) for all components or a warm restart ( $\mathrm{p} 0009=30, \mathrm{p} 0976=2,3$ ).
- replace the hardware.

For message value $=1014$ :

- check the encoder actual value, if necessary increase the position tolerance (p9342) and/or cam tolerance (p9340).

For message value $=1024$ :

- check the communication link.
- if required, increase the monitoring cycle clock settings (p9500, p9511).
- carry out a POWER ON (switch-off/switch-on) for all components.
- replace the hardware.

For message value $=1030$ :

- check the encoder connection.
- if required, replace the encoder.

For message value $=1031$ :
When replacing a Sensor Module, carry out the following steps:

- start the copy function for the node identifier on the drive (p9700 = 1D hex).
- acknowledge the hardware CRC on the drive (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (switch-off/switch-on) for all components.

Adapt the encoder parameterization for the second channel as follows:

- set the encoder type (p0400).
- activate the safety commissioning mode (p0010 = 95).
- start the copy function for encoder parameters (p9700 = 46).
- exit the safety commissioning mode ( $\mathrm{p} 0010=0$ ).
- save parameter in a non-volatile fashion (copy RAM to ROM).
- carry out a POWER ON (switch-off/switch-on) for all components.

The following always applies:

- check the encoder connection.
- if required, replace the encoder.

For message value $=1040$ :

- de-select encoderless monitoring functions, select and de-select STO.
- if monitoring function "SLS" is active, issue a pulse enable within 5 s of de-selecting STO.

For message value $=6000 \ldots 6999$ :

- the significance of the individual message values is described in safety fault F01611 of the Control Unit.

For other message values:

- the significance of the individual message values is described in safety message C01711.

This message can be acknowledged without a POWER ON as follows (safe acknowledgment):

- Terminal Module 54F (TM54F).
- onboard F-DI (only CU310-2).
- PROFIsafe.
- machine control panel.

See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))

## C30711 <br> Message value: <br> Message class: <br> Drive object: <br> Component: <br> Reaction: <br> Acknowledge:

## SI Motion P2: Defect in a monitoring channel

\%1
Safety monitoring channel has identified an error (10)
HLA
None
NONE
IMMEDIATELY (POWER ON)
Cause: When cross-comparing the two monitoring channels, the drive detected a difference between the input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
If at least one monitoring function is active, then after the parameterized timer has expired, the message C30701 "SI Motion: STOP B initiated" is output. The message is output with message value 1031 when the Sensor Module hardware is replaced.
The following message values may also occur in the following cases if the cause that is explicitly mentioned does not apply:

- differently parameterized cycle times (p9500/p9300, p9511/p9311).
- excessively fast cycle times (p9500/p9300, p9511/p9311).
- incorrect synchronization.

Message value (r9749, interpret decimal):
0 ... 999:
Number of the cross-compared data that resulted in this message.
The significance of the individual message values is described in safety message C01711 of the Control Unit.
1000: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs.
1001: Initialization error of watchdog timer.
1002:
User agreement after the timer has expired different.
The user agreement is not consistent. After a time of 4 s has expired, the status of the user agreement is different in both monitoring channels.
1003: Reference tolerance exceeded. When the user agreement is set, the difference between the new reference point that has been determined after power up (absolute encoder) or reference point approach (distance-coded or incremental measuring system) and the safe actual position (saved value + traversing distance) is greater than the reference tolerance (p9344). In this case, the user agreement is withdrawn.

1004:
Plausibility error for user agreement.

1. If the user agreement has already been set, then the setting is initiated again. In this case, the user agreement is withdrawn.
2. The user agreement was set, although the axis has still not been referenced.

1005: STO already active for test stop selection.
1011: Acceptance test status between the monitoring channels differ.
1012: Plausibility violation of the actual value from the encoder.
1014: fault when synchronizing the SGA for the "Safe cam" function
1015: Gearbox switchover (bit 27 in PROFIsafe telegram) takes longer than 2 min.
1020: Cyc. communication failure between the monit. channels.
1021: Cyc. communication failure between the monit. channel and Sensor Module.
1023: Error in the effectiveness test in the DRIVE-CLiQ encoder
1024: Sign-of-life error for HTL/TTL encoders.
1030: Encoder fault detected from another monitoring channel.

1031:

- data transfer error between the monitoring channel and the Sensor Module (p9526/p9326).
- the Sensor Module for the second channel was replaced.
- the encoder for the second channel has been incorrectly parameterized.

1045: CRC of the standstill position incorrect.
5000 ... 5140:
PROFIsafe message values.
For these message values, the failsafe control signals (Failsafe Values) are transferred to the safety functions. The significance of the individual message values is described in safety message C01711 of the Control Unit. 6000 ... 6166:

PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
For these message values, the failsafe control signals (Failsafe Values) are transferred to the safety functions.
The significance of the individual message values is described in safety fault F01611 of the Control Unit.
7000 ... 7002
Message values of the "Safe position via PROFIsafe" function.
See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion diagnostics STOP F)
Remedy: For message value $=1002$ :

- perform safe acknowledgment, set the user agreement in both monitoring channels simultaneously (within 4 s ).

For message value $=1003$ :

- check the mechanical system of the axis. It is possible that the axis was shifted when switched-off, and the last saved actual position no longer corresponds with the new actual position after the system has been powered up again.
- increase the tolerance for the actual value comparison when referencing (p9344).

Then check the actual values, perform a POWER ON and set the user agreement again. For message value $=1004$ :
For 1., the following applies: Perform safe acknowledgment. Set the user agreement again.
For 2., the following applies: Perform safe acknowledgment. Only set the user agreement again if the axis has been referenced.
For message value $=1005$ :

- check the conditions for deselecting STO.

For message value $=1012$ :

- upgrade the Sensor Module firmware to a more recent version.
- for 1-encoder systems, the following applies: check the encoder parameters for equality (p9515/p9315, p9519/p9319, p9523/p9323, p9524/p9324, p9525/p9325, p9529/p9329).
- for a 1-encoder system and 2-encoder system the following applies: in order to correctly copy the encoder parameters from p04xx, p9700 must be set to 46 and p9701 must be set to 172 .
- for DQI encoders the following applies: If required, upgrade the firmware version of the Control Unit to a more recent version, which is released for DQI encoders.
- check the electrical cabinet design and cable routing for EMC compliance
- carry out a POWER ON (switch-off/switch-on) for all components or a warm restart (p0009 = 30, p0976 = 2, 3).
- replace the hardware.

For message value $=1014$ :

- check the encoder actual value, if necessary increase the position tolerance (p9342) and/or cam tolerance (p9340).

For message value $=1024$ :

- check the communication link.
- increase the monitoring cycle clock settings (p9500, p9511).
- carry out a POWER ON (switch-off/switch-on) for all components.
- replace the hardware.

For message value $=1030$ :

- check the encoder connection.
- if required, replace the encoder.


## For message value $=1031$

When replacing a Sensor Module, carry out the following steps:

- start the copy function for the node identifier on the drive (p9700 = 1D hex).
- acknowledge the hardware CRC on the drive (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (switch-off/switch-on) for all components.

Adapt the encoder parameterization for the second channel as follows:

- set the encoder type (p0400).
- activate the safety commissioning mode ( $\mathrm{p} 0010=95$ ).
- start the copy function for encoder parameters (p9700 = 46).
- exit the safety commissioning mode ( $\mathrm{p} 0010=0$ ).
- save parameter in a non-volatile fashion (copy RAM to ROM).
- carry out a POWER ON (switch-off/switch-on) for all components.

The following always applies:

- check the encoder connection.
- if required, replace the encoder.

For message value $=6000$... 6999:

- the significance of the individual message values is described in safety fault F01611 of the Control Unit.

For other message values:

- the significance of the individual message values is described in safety message C01711.

Note:
This message can be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))

C30712	SI Motion P2: Defect in F-IO processing
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When cross checking and comparing the two monitoring channels, the drive detected a difference between parameters or results of the F-IO processing and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
	The safety message C30711 with message value 0 is also displayed due to initiation of STOP F. If at least one monitoring function is active, the safety message C30701 "SI Motion: STOP B initiated" is output after the parameterized timer has expired.
	Message value (r9749, interpret decimal):
	Number of the cross-compared data that resulted in this message.
	Refer to the description of the message values in safety message C01712.
Remedy:	- check parameterization in the parameters involved and correct if required.
	- ensure equality by copying the SI data to the second channel and then carry out an acceptance test.   - check monitoring clock cycle for equality (p9500, p9300).
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment): - onboard F-DI (only CU310-2).
	- PROFIsafe.
	- machine control panel.
	See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))


C30714	SI Motion P2: Safely-Limited Speed exceeded
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive had moved faster than that specified by the velocity limit value ( p 9331 ). The drive is stopped as a result of the configured stop response (p9363).   Message value (r9749, interpret decimal):   100: SLS1 exceeded.   200: SLS2 exceeded.   300: SLS3 exceeded.   400: SLS4 exceeded.   1000: Encoder limit frequency exceeded.
Remedy:	- check the traversing/motion program in the control.   - check the limits for "SLS" function and if required, adapt (p9331).   This message can be acknowledged without a POWER ON as follows (safe acknowledgment):   - Terminal Module 54F (TM54F).   - onboard F-DI (only CU310-2).   - PROFIsafe.   - machine control panel.   Note:   SI: Safety Integrated   SLS: Safely-Limited Speed / SG: Safely reduced speed   See also: p9331 (SI Motion SLS limit values (Motor Module)), p9363 (SI Motion SLS stop response (Motor Module))
C30715	SI Motion P2: Safely-Limited Position exceeded
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The axis has moved past a parameterized position that is monitored by the "SLP" function. Message value (r9749, interpret decimal):   10: SLP1 violated.   20: SLP2 violated.
Remedy:	- check the traversing/motion program in the control.   - check the limits for "SLP" function and if required, adapt (p9534, p9535).   This message can be acknowledged without a POWER ON as follows (safe acknowledgment):   Prerequisite:   - deselect "SLP" function and retract the axis into the permitted position range.   Carry out a safe acknowledgment using one of the following options:   - Terminal Module 54F (TM54F).   - onboard F-DI (only CU310-2).   - PROFIsafe.   - machine control panel.   Note:   SI: Safety Integrated   SLP: Safely-Limited Position / SE: Safe software limit switches   See also: p9334, p9335


C30716	SI Motion P2: Tolerance for safe motion direction exceeded
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The tolerance for the "safe motion direction" function was exceeded. The drive is stopped as a result of the configured stop response (p9366).   Message value (r9749, interpret decimal):   0 : Tolerance for the "safe motion direction positive" function exceeded.   1: Tolerance for the "safe motion direction negative" function exceeded.
Remedy:	- check the traversing/motion program in the control.   - check the tolerance for "SDI" function and if required, adapt (p9364).   This message can be acknowledged without a POWER ON as follows (safe acknowledgment):   Prerequisite:   - deselect the "SDI" function and if required select again.   Carry out a safe acknowledgment using one of the following options:   - Terminal Module 54F (TM54F).   - onboard F-DI (only CU310-2).   - PROFIsafe.   - machine control panel.   Note:   SDI: Safe Direction (safe motion direction)   SI: Safety Integrated   See also: p9364, p9365, p9366
C30717	SI Motion P2: SLA limit exceeded
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The acceleration limit for the "Safely-Limited Acceleration" function was exceeded. The drive is stopped as a result of the configured stop response (p9379).
Remedy:	- check the traversing/motion program in the control.   - check the acceleration limit for the "SLA" function and if required, adapt (p9378).   - carry out a safe acknowledgment.   Note:   SI: Safety Integrated   SLA: Safely-Limited Acceleration   See also: p9378 (SI Motion SLA acceleration limit (MM)), p9379 (SI Motion SLA stop response (Motor Module))


C30730	SI Motion P2: Reference block for dynamic Safely-Limited Speed invalid
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The reference block transferred via PROFIsafe is negative.
	A reference block is used to generate a referred velocity limit value based on the reference quantity "Velocity limit value SLS1" (p9331[0]).
	The drive is stopped as a result of the configured stop response ( $\mathrm{p} 9363[0]$ ).
	Message value (r9749, interpret decimal): requested, invalid reference block.
Remedy:	In the PROFIsafe telegram, input data S_SLS_LIMIT_IST must be corrected.
	This message can be acknowledged without a POWER ON as follows (safe acknowledgment):
	- PROFIsafe.
	Note:
	SI: Safety Integrated
	SLS: Safely-Limited Speed
C30770	SI Motion P2: Discrepancy error of the failsafe inputs/outputs
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The failsafe digital inputs/digital outputs (F-DI/F-DO) show a different state longer than that parameterized in p10002/p10102.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex
	xxxx: Discrepancy error for failsafe digital inputs (F-DI).
	Bit 0: Discrepancy error for F-DI 0
	Bit 1: Discrepancy error for F-DI 1
	...
	yyyy: Discrepancy error for failsafe digital outputs (F-DO).
	Bit 0: Discrepancy error for F-DO 0
	...
	Note:
	If several discrepancy errors occur consecutively, then this message is only signaled for the first error that occurs.
Remedy:	- check the wiring of the F-DI (contact problems).
	Note:
	This message can be acknowledged via F-DI or PROFIsafe (safe acknowledgment).
	Discrepancy errors of an F-DI can only be acknowledged if safe acknowledgment was carried out once after the cause of the error was resolved (p10106, acknowledgment via PROFIsafe, extended message acknowledgment). As long as safety acknowledgment was not carried out, the corresponding F-DI stays in the safe state internally.
	When the "Extended message acknowledgment" function (p9307.0) is active, the following applies:
	If the F-DI assigned for STO or SS1 is in a failsafe state due to a discrepancy error, then when deselecting via this FDI , safe acknowledgment can no longer be executed.
	For cyclic switching operations at the F-DI, it may be necessary to adapt the discrepancy time to the switching frequency.

If the period of a cyclic switching pulse corresponds to twice the value of p 10102 , then the following formulas should be checked:

- p10102 < (tp / 2) - td (discrepancy time must be less than half the period minus the actual discrepancy time)
- p10102 >= p9300 (discrepancy time must be at least p9300)
- p10102 > td (discrepancy time must be greater than the switch discrepancy time that may actually occur) td = possible actual discrepancy time (in ms ) that can occur with a switching operation. This must correspond to at least 1 SI monitoring cycle (see p9300).
tp = period for a switching operation in ms.
When debounce p10017 is active, the discrepancy time is directly specified by the debounce time.
If the period of a cyclic switching pulse corresponds to twice the debounce time, then the following formulas should be checked.

```
- p11002 < p10117 + 1 ms - td
- p10102 > td
- p10102 >= p9300
Example:
```

For a 12 ms SI monitoring cycle and a switching frequency of 110 ms ( $\mathrm{p} 10117=0$ ), the maximum discrepancy time which can be set is as follows: $\mathrm{p} 10102<=(110 / 2 \mathrm{~ms})-12 \mathrm{~ms}=43 \mathrm{~ms}$
Rounded-off, p10102 <= 36 ms is obtained (since the discrepancy time can only be accepted as a whole SI monitoring cycle, the value will need to be rounded up or down to a whole SI monitoring cycle if the result is not an exact multiple of an SI monitoring cycle).
Note:
F-DI: Failsafe Digital Input
F-DO: Failsafe Digital Output

A30772	SI Motion P2: Test stop for failsafe digital outputs running
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The forced checking procedure (test stop) for the failsafe digital inputs is currently in progress.
Remedy:	The alarm is automatically withdraw after successfully ending or canceling (when a fault condition occurs) the test stop.
	Note:
	F-DO: Failsafe Digital Output
F30773	SI Motion P2: Test stop failsafe digital output error
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault has occurred on processor 2 during the forced checking procedure (test stop) of the failsafe digital output.
	Fault value (r0949, interpret hexadecimal):
	RRRVWXYZ hex:
	R: Reserved.
	V: Actual state of the DO channel concerned (see X) on processor 2 (corresponds to the states read back from the hardware, bit $0=\mathrm{DO} 0$, bit $1=\mathrm{DO} 1$, etc.).
	W: Required state of the DO channel concerned (see $X$, bit $0=D O 0$, bit $1=\mathrm{DO} 1$, etc.).
	$X$ : DO channels involved, which indicate an error (bit $0=\mathrm{DO} 0$, bit $1=\mathrm{DO} 1$, etc.).
	Y: Reason for the test stop fault.
	Z : State of the test stop in which the fault has occurred.

Y: Reason for the test stop fault
$\mathrm{Y}=1$ : Processor 1 in incorrect test stop state (internal fault).
$Y=2$ : Expected states of the DOs were not fulfilled (CU305: readback via DI 22 / CU240 readback DI 2).
$\mathrm{Y}=3$ : Incorrect timer state on processor 1 (internal fault)
$\mathrm{Y}=4$ : Expected states of the diag DOs were not fulfilled (CU305: internal readback on processor 2).
$Y=5$ : Expected states of the second diag DOs were not fulfilled (CU305: internal readback on processor 1).
X and V indicate the DI or Diag-DO state dependent upon the reason for the fault (2, 4 or 5 ).
In the event of multiple test stop faults, the first one that occurred is shown.

Z: Test stop state and associated test actions
$Z=0 \ldots 3$ : Synchronization phase of test stop between processor 1 and processor 2 no switching operations
$Z=4$ : DO + OFF and DO - OFF
$Z=5$ : Check to see if states are as expected
$Z=6: D O+O N$ and DO - ON
$Z=7$ : Check to see if states are as expected
$\mathrm{Z}=8$ : DO + OFF and DO - ON
$Z=9$ : Check to see if states are as expected
$Z=10: D O+O N$ and DO - OFF
$Z=11$ : Check to see if states are as expected
$Z=12: D O+O F F$ and DO - OFF
$Z=13$ : Check to see if states are as expected
$Z=14$ : End of test stop

Diag expected states in table format:
Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
5: 0/-/-/1
7: 0/--/0
9: 0/-/-/0
11: 1/-/-/1
13: 0/-/-/1
Second diag expected states in table format:
Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
5: -/-/-/1
7: --/-/0
9: -/-/-1
11: --/-/0
13: -/-/-/1
DI expected states in table format:
Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
5: -/1/1/-
7: -/0/0/-
9: -/0/1/-
11: -/0/1/-
13: -/1/1/-

## Example:

Fault F01773 (P1) is signaled with fault value $=0001 _0127$ and fault F30773 (P2) is signaled with fault value 0000_0127.
This means that in state $7(Z=7)$ the state of the external readback signal was not set correctly $(Y=2)$ after DO-0 ( X $=1$ ) was switched to ON/ON.
Fault value 0001_0127 indicates that 0 was expected $(\mathrm{W}=0)$ and $1(\mathrm{~V}=1)$ was read back from the hardware. Fault value $0000 _0127$ on the processor 2 indicates that the states were as expected. In the case of fault F30773, W and $V$ are always identical; a value of 0 always means that 0 was expected at the readback input but was not present on processor 1.

Remedy:	Check the wiring of the failsafe digital output (F-DO) and restart the test stop.   Note:   - the fault is withdrawn if the test stop is successfully completed.   - in the event of multiple test stop faults, the first one that occurred is shown. Once the test stop has been restarted the next queued test stop fault will be signaled (if there is one).   F-DO: Failsafe Digital Output
A30788	Automatic test stop: wait for STO deselection via SMM
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Motor Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic test stop was not able to be carried out after powering up.
	Possible causes:
	- the STO function is selected via Safety Extended Functions.
	- a safety message is present, that resulted in a STO.
Remedy:	- Deselect STO via Safety Extended Functions.   - remove the cause of the safety messages and acknowledge the messages.
	The automatic test stop is performed after removing the cause.
C30797	SI Motion P2: Axis not safely referenced
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The standstill position saved before switching off does not match the actual position determined at switch-on.
	Message value (r9749, interpret decimal):
	1: Axis not safely referenced.
	2: User agreement missing.
Remedy:	If safe automatic referencing is not possible the user must issue a user agreement for the new position using the softkey. This mean that this position is then designated as safety-relevant.
	Note:
	SI: Safety Integrated

## C30798

Message value:
Message class:
Drive object:
Component:
Reaction:
SI Motion P2: Test stop for motion monitoring functions running

Acknowledge:
Cause:
Remedy:
Safety monitoring channel has identified an error (10)
HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL
NONE
IMMEDIATELY (POWER ON)
The forced checking procedure (test stop) for the safe motion monitoring functions is currently in progress.
Not necessary.
The message is automatically withdrawn when the test stop has been completed
Note:
SI: Safety Integrated

C30799	SI Motion P2: Acceptance test mode active
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The acceptance test mode is active.
	This means the following:
	- the setpoint velocity limiting is deactivated (r9733).
	- the standard limit switches are deactivated during the acceptance test for function SLP (for EPOS internal, otherwise via r10234).
Remedy:	Not necessary.
	The message is automatically withdrawn when exiting the acceptance test mode.
	Note:
	SI: Safety Integrated
	SLP: Safely-Limited Position
N30800 (F)	Power unit: Group signal
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The power unit has detected at least one fault.
Remedy:	Evaluate the other messages that are presently available.
Reaction upon F:	OFF2
Acknowl. upon F:	IMMEDIATELY
F30801	Power unit DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned.
	The computing time load might be too high.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- deselect functions that are not required.
	- if required, increase the sampling times (p0112, p0115).
	- replace the component involved (power unit, Control Unit).


F30802	Power unit: Time slice overflow
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred.
	Fault value (r0949, interpret decimal):
	xx: time slice number
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
F30804 (N, A)	Power unit: CRC
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	Infeed: OFF2 (OFF1)
	Servo: OFF2 (OFF1, OFF3)
	Vector: OFF2 (OFF1, OFF3)
	Hla: OFF2 (OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A checksum error (CRC error) has occurred for the power unit.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F30805	Power unit: EEPROM checksum error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted.
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
Remedy:	Replace the module.
F30809	Power unit: Switching information not valid
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	For 3P gating unit, the following applies:
	The last switching status word in the setpoint telegram is identified by the end ID. Such an end ID was not found.

### 4.2 List of faults and alarms

Remedy: - carry out a POWER ON (switch-off/switch-on) for all components.

- upgrade firmware to later version.
- contact Technical Support.

A30810 (F)	Power unit: Watchdog timer
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	When booting it was detected that the cause of the previous reset was an SAC watchdog timer overflow.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.         - upgrade firmware to later version.
- contact Technical Support.	
Reaction upon F:	NONE (OFF2)
Acknowl. upon F:	IMMEDIATELY

## F30820 Power unit DRIVE-CLiQ: Telegram error

Message value:
Component number: \%1, fault cause: \%2
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

Remedy:
Internal (DRIVE-CLiQ) communication error (12)
A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Power Module Propagation: LOCAL
OFF2
IMMEDIATELY
A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned.
Fault cause:
1 (= 01 hex):
Checksum error (CRC error).
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the component in the telegram and in the receive list do not match.
7 (= 07 hex):
A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
8 (= 08 hex):
No SYNC telegram is expected - but the received telegram is one.
9 (= 09 hex):
The error bit in the receive telegram is set.
16 (= 10 hex):
The receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause

- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

F30835	Power unit DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON.
	- replace the component involved (power unit, Control Unit).
F30836	Power unit DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
F30837	Power unit DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.

### 4.2 List of faults and alarms

	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F30845	Power unit DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON (switch-off/switch-on).
F30850	Power unit: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the power unit.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- replace power unit.
	- if required, upgrade the firmware in the power unit.
	- contact Technical Support.


F30851	Power unit DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)
	Hla: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- deselect functions that are not required.
	- if required, increase the sampling times (p0112, p0115).
	- replace the component involved (power unit, Control Unit).
A30853	Power unit: Sign-of-life error cyclic data
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power unit has detected that the cyclic setpoint telegrams of the Control Unit have not been updated on time. At least two sign-of-life errors have occurred within the window set in p 7788.
Remedy:	- reduce the size of the window (p7788) for monitoring.
	- check the Motor Module, and if required replace.

## F30860

Message value:

## Power unit DRIVE-CLiQ (CU): Telegram error

Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)

Drive object:

Component: Reaction:
Acknowledge:
Cause:

A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

Power Module
OFF2
IMMEDIATELY
A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
Fault cause
1 (= 01 hex):
Checksum error (CRC error)
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.

### 4.2 List of faults and alarms

6 (= 06 hex):
The address of the power unit in the telegram and in the receive list do not match.
9 (= 09 hex):
The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
16 (= 10 hex):
The receive telegram is too early.
17 (= 11 hex):
CRC error and the receive telegram is too early.
18 (= 12 hex):
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
19 (= 13 hex):
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
20 (= 14 hex):
The length of the receive telegram does not match the receive list and the receive telegram is too early.
21 (= 15 hex):
The type of the receive telegram does not match the receive list and the receive telegram is too early.
22 (= 16 hex):
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
25 (= 19 hex):
The error bit in the receive telegram is set and the receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy: - carry out a POWER ON (switch-off/switch-on).

- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

F30875	Power unit: power supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y = component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).   - check the dimensioning of the power supply for the DRIVE-CLiQ component.


F30885	CU DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 ( $=1 \mathrm{~A}$ hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
F30886	PU DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.


F30887	Power unit DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (power unit) involved. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F30895	PU DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Ha: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.


F30896	Power unit DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (power unit), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
F30899 (N, A)	Power unit: Unknown fault
Message value:	New message: \%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the power unit that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.
	Note:
	If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the power unit by an older firmware version (r0128).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

4.2 List of faults and alarms

F30903	Power unit: I2C bus error occurred
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Communications error with an EEPROM or an analog/digital converter.
	Fault value (r0949, interpret hexadecimal):
	80000000 hex:
	- internal software error.
	00000001 hex ... 0000FFFF hex:
	- module fault.
Remedy:	For fault value $=80000000$ hex:
	- upgrade firmware to later version.
	For fault value $=00000001$ hex ... 0000FFFF hex:
	- replace the module.
F30907	Power unit: FPGA configuration unsuccessful
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	During initialization within the power unit, an internal software error has occurred.
Remedy:	- if required, upgrade the firmware in the power unit.
	- replace power unit.
	- contact Technical Support.


A30919	Power unit: Temperature monitoring failed
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	Power Module
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature monitoring in the power unit has failed.
	Fault-free operation of the drive system is no longer guaranteed.
	Alarm value (r2124, interpret hexadecimal):
	Bit 0: Sensor 1 for the internal temperature can no longer be evaluated.
	Bit 1: Sensor 2 for the internal temperature can no longer be evaluated.
Remedy:	Replace the power unit immediately.


A30920 (F)	Power unit: Temperature sensor fault
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY: R > 1630 Ohm, PT100: R > 375 Ohm, PT1000: R > 1720 Ohm
	2: Measured resistance too low.
	PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm, PT100: $\mathrm{R}<30$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
	Note:
	A temperature sensor is connected to the following terminals:
	- "Booksize" format: X21.1/.2 or X22.1/2
	- "Chassis" format: X41.4/.3
	Information on temperature sensors is provided in the following literature for example:
	SINAMICS S120 Function Manual Drive Functions
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F :	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
A30930 (N)	Power unit: Component trace has saved data
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Trace data was saved in the component.
Remedy:	Not necessary.
	Note:
	For p7792= 1, the trace data of the component can be written to the memory card.
	See also: p7792 (Upload component trace data)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F30950	Power unit: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Information about the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- if necessary, upgrade the firmware in the power unit to a later version.
	- contact Technical Support.


A30999 (F, N)	Power unit: Unknown alarm
Message value:	New message: \%1
Message class:	Power electronics faulted (5)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Power Module Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the power unit by an older firmware version (r0128).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F31100 (N, A)	Encoder 1: Zero mark distance error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Ha: ENCODER (NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Fault value (r0949, interpret decimal):
	Last measured zero mark distance in increments (4 increments $=1$ encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F31101 (N, A)	Encoder 1: Zero mark failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
Component:	VECTOR_I_AC
Reaction:	Encoder 1
	Infeed: NONE (OFF1, OFF2)
	Servo: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)


	Note:
	The analog value of the amplitude error is not measured at the same time with the hardware fault output by the Sensor Module.
	The fault value can only be represented between -32768 ... $32767 \mathrm{dec}(-770 \ldots 770 \mathrm{mV}$ ) .
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- monitoring active (p0437.31 = 1).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check the speed range; frequency characteristic (amplitude characteristic) of the measuring equipment might not be sufficient for the speed range
	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections and contacts of the encoder cable.
	- check the encoder type (encoder with zero marks).
	- check whether the zero mark is connected and the signal cables RP and RN have been connected correctly (not connected with the incorrect polarity).
	- replace the encoder cable.
	- if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31110 (N, A)	Encoder 1: Serial communications error
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	There is an error in the transfer of the serial communication protocol between the encoder and internal or external evaluation module.
	Fault value (r0949, interpret binary):
	For an EnDat 2.1 encoder, the significance of the fault value is as follows:
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgment error: The encoder incorrectly understood the task (request) or cannot execute it.
	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 7: Timeout for the register communication.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
	Bit 13: Data line incorrect.
	Bit 14: Fault for the register communication.
	Bit 15: Internal communication error.
	Note:
	For an EnDat 2.2 encoder, the significance of the fault value for $\mathrm{F} 3 \times 135(x=1,2,3)$ is described.



### 4.2 List of faults and alarms

Bit 2: Position value incorrect.
Bit 3: Encoder power supply overvoltage condition.
Bit 4: Encoder power supply undervoltage condition.
Bit 5: Encoder power supply overcurrent condition.
Bit 6: The battery must be changed.
See also: p0491 (Motor encoder fault response ENCODER)

## Remedy:

For yyyy = 0:
For fault value, bit $0=1$ :
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
For fault value, bit $1=1$ :
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
For fault value, bit $2=1$ :
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
For fault value, bit $3=1$ :
5 V power supply voltage fault.
When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
For fault value, bit $4=1$ :
5 V power supply voltage fault.
When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
When using a motor with DRIVE-CLiQ: Replace the motor.
For fault value, bit $5=1$ :
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
For fault value, bit $6=1$ :
The battery must be changed (only for encoders with battery back-up).
For yyyy = 1 :
Encoder is defective. Replace encoder.
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F31112 (N, A)	Encoder 1: Encoder signals an internal error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
	VECTOR_I_AC
Component:	Encoder 1
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
	PULSE INHIBIT
Acknowledge:	The encoder signals an internal error via serial protocol.
Cause:	Fault value (r0949, interpret binary):
	Bit 0: Fault bit in the position protocol.
Remedy:	For fault value, bit 0 = 1:
	In the case of an EnDat encoder, F31111 may provide further details.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon $A:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE


F31115 (N, A)	Encoder 1: Signal level track A or B too low
Message value:	A track: \%1, B-track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The signal level (root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$ ) of the encoder falls below the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track B (16 bits with sign).
	xxxx = Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold is $<170 \mathrm{mV}$ (input frequency <= 256 kHz ) or $<120 \mathrm{mV}$ (input frequency $>256 \mathrm{kHz}$ ).
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV ( 2.0 Vrms ). The response threshold is $<1070 \mathrm{mV}$.
	A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	The following applies to measuring systems without their own bearing system:
	- adjust the scanning head and check the bearing system of the measuring wheel.
	The following applies for measuring systems with their own bearing system:
	- ensure that the encoder housing is not subject to any axial force.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F31116 (N, A)	Encoder 1: Signal level track A or B too low
Message value:	A track: \%1, B-track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The signal level of the rectified encoder signals $A$ and $B$ of the encoder fall below the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Signal level, track B (16 bits with sign).
	xxxx $=$ Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold is $<130 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31117 (N, A)	Encoder 1: Inversion error signals A/B/R
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	For a square-wave encoder (bipolar, double ended) signals $A^{*}, B^{*}$ and $R^{*}$ are not inverted with respect to signals $A$, $B$ and $R$.
	Fault value (r0949, interpret binary):
	Bits 0 ... 15: Only for internal Siemens troubleshooting.
	Bit 16: Error track A.
	Bit 17: Error track B.
	Bit 18: Error track R.
	Note:
	For SMC30 (only Article No. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1), CUA32, and CU310, the following applies:
	A square-wave encoder without track $R$ is used and track monitoring (p0405.2 = 1) is activated.
	See also: p0491 (Motor encoder fault response ENCODER)


Remedy:	- check the encoder/cable.
	- Does the encoder supply signals and the associated inverted signals?
	Note:
	For SMC30 (only Article Number 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1), the following applies: - check the setting of p0405 (p0405.2 = 1 is only possible if the encoder is connected at X520).
	For a square-wave encoder without track $R$, the following jumpers must be set for the connection at X520 (SMC30) or X23 (CUA32, CU310):
	- pin 10 (reference signal R) <--> pin 7 (encoder power supply, ground)
	- pin 11 (reference signal R inverted) <--> pin 4 (encoder power supply)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31118 (N, A)	Encoder 1: Speed change not plausible
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	For an HTL/TTL encoder, the speed change has exceeded the value in p0492 over several sampling cycles.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
	Encoder 1 is used as motor encoder and can be effective has fault response to change over to encoderless operation.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0491, p0492
Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
	- if required, increase the maximum speed difference per sampling cycle (p0492).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F31120 (N, A)	Encoder 1: Encoder power supply fault
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	An encoder power supply fault was detected.
	Fault value (r0949, interpret binary):
	Bit 0: Undervoltage condition on the sense line.
	Bit 1: Overcurrent condition for the encoder power supply.
	Bit 2: Overcurrent condition for encoder power supply on cable resolver excitation negative.
	Bit 3: Overcurrent condition for encoder power supply on cable resolver excitation positive.
	Bit 4: The 24 V power supply through the Power Module (PM) is overloaded.
	Bit 5: Overcurrent at the EnDat connection of the converter.
	Bit 6: Overvoltage at the EnDat connection of the converter.
	Bit 7: Hardware fault at the EnDat connection of the converter.
	Note:
	If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	For fault value, bit $0=1$ :
	- correct encoder cable connected?
	- check the plug connections of the encoder cable.
	- SMC30: Check the parameterization (p0404.22).
	For fault value, bit $1=1$ :
	- correct encoder cable connected?
	- replace the encoder or encoder cable.
	For fault value, bit $2=1$ :
	- correct encoder cable connected?
	- replace the encoder or encoder cable.
	For fault value, bit $3=1$ :
	- correct encoder cable connected?
	- replace the encoder or encoder cable.
	For fault value, bit $5=1$ :
	- Measuring unit correctly connected at the converter?
	- Replace the measuring unit or the cable to the measuring unit.
	For fault value, bit 6, $7=1$ :
	- Replace the defective EnDat 2.2 converter.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F31121 (N, A)	Encoder 1: Determined commutation position incorrect
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (NONE)
	Vector: ENCODER (NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	A commutation position actual value sensing error was detected.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31122	Encoder 1: Sensor Module hardware fault
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	Infeed: NONE
	Servo: ENCODER
	Vector: ENCODER
	Hla: ENCODER
Acknowledge:	IMMEDIATELY
Cause:	An internal Sensor Module hardware fault was detected.
	Fault value (r0949, interpret decimal):
	1: Reference voltage error.
	2: Internal undervoltage.
	3: Internal overvoltage.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
F31123 (N, A)	Encoder 1: Signal level A/B outside tolerance
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The unipolar level (AP/AN or BP/BN) for encoder 1 is outside the permissible tolerance.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : Either AP or AN outside the tolerance.
	Bit $16=1$ : Either BP or BN outside the tolerance.
	The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
	The response thresholds are < 1700 mV and $>3300 \mathrm{mV}$.

### 4.2 List of faults and alarms

	Note:
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- monitoring active (p0437.31 = 1).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- make sure that the encoder cables and shielding are installed in an EMC-compliant manner.
	- check the plug connections and contacts of the encoder cable.
	- check the short-circuit of a signal cable with mass or the operating voltage.
	- replace the encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
$\overline{\text { F31125 (N, A) }}$	Encoder 1: Signal level track A or B too high
Message value:	A track: \%1, B-track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The signal level (root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$ ) of the encoder exceeds the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Signal level, track B (16 bits with sign).
	xxxx = Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold is $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV (2.0 Vrms).
	The response threshold is > 3582 mV .
	A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note: $\quad$
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F31126 (N, A)	Encoder 1: Signal level track A or B too high
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The signal level ( $\|\mathrm{A}\|+\|\mathrm{B}\|)$ of the encoder exceeds the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	$x x x x=$ amplitude, i.e. root of $A^{\wedge} 2+B^{\wedge} 2(16$ bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold for $(\|A\|+\|B\|)$ is $>1120 \mathrm{mV}$ or the root of $\left(A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track $B$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.   - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31129 (N, A)	Encoder 1: Position difference hall sensor/track C/D and A/B too large
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The error for track $C / D$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.
	One period of track C/D corresponds to $360^{\circ}$ mechanical.
	One period of the Hall signal corresponds to $360{ }^{\circ}$ electrical.
	The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
	After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A31429.

### 4.2 List of faults and alarms

	Fault value (r0949, interpret decimal):
	For track C/D, the following applies:
	Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
	For Hall signals, the following applies:
	Measured deviation as electrical angle ( 16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31130 (N, A)	Encoder 1: Zero mark and position error from the coarse synchronization
Message value:	Angular deviation, electrical: \%1, angle, mechanical: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Hla: ENCODER (NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	After initializing the pole position using track $C / D$, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.
	When initializing via track $C / D(p 0404)$ then it is checked whether the zero mark occurs in an angular range of $+/-18^{\circ}$ mechanical.
	When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of $+/-60^{\circ}$ electrical.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex
	yyyy: Determined mechanical zero mark position (can only be used for track C/D).
	xxxx: Deviation of the zero mark from the expected position as electrical angle.
	Scaling: $32768 \mathrm{dec}=180^{\circ}$
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check p0431 and, if necessary, correct (trigger via p1990 $=1$ if necessary).
	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- if the Hall sensor is used as an equivalent for track C/D, check the connection.
	- check the connection of track C or D.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F31131 (N, A)	Encoder 1: Position deviation incremental/absolute too high
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Hla: ENCODER (NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Absolute encoder:
	When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected.
	Limit value for the deviation:
	- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI $1325>2$ quadrants, EQN $1325>50$ quadrants).
	- other encoders: 15 pulses = 60 quadrants.
	Incremental encoder:
	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- the first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Fault value (r0949, interpret decimal):
	Deviation in quadrants ( 1 pulse $=4$ quadrants).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check whether the coding disk is dirty or there are strong ambient magnetic fields.
	- adapt the parameter for the clearance between zero marks (p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F31135	Encoder 1: Fault when determining the position (single turn)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder has identified a position determination fault (singleturn) and supplies status information bit by bit in an internal status/fault word.
	Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
	Note regarding the bit designation:
	The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
	Fault value (r0949, interpret binary):
	Bit 0: F1 (safety status display).
	Bit 1: F2 (safety status display).
	Bit 2: Reserved (lighting).
	Bit 3: Reserved (signal amplitude).
	Bit 4: Reserved (position value).
	Bit 5: Reserved (overvoltage).
	Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, x=1, 2, 3).
	Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, x $=1,2,3$ ).
	Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, x $=1,2,3$ ).
	Bit 9: Reserved/overvoltage EnDat supply (--> $33 \times 110, x=1,2,3$ ).
	Bit 11: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
	Bit 12: Reserved/internal communication error (--> $53 \times 110, x=1,2,3$ ).
	Bit 13: Reserved/internal communication error (--> $33 \times 110, x=1,2,3)$.
	Bit 14: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, x=1,2,3$ ).
	Bit 15: Internal communication error (--> F3x110, $x=1,2,3$ ).
	Bit 16: Lighting (--> F3x135, $x=1,2,3$ ).
	Bit 17: Signal amplitude (--> $33 \times 135, \mathrm{x}=1,2,3$ ).
	Bit 18: Singleturn position 1 (--> $\mathrm{F} 3 \times 135, \mathrm{x}=1,2,3$ ).
	Bit 19: Overvoltage (--> F3x135, $x=1,2,3)$.
	Bit 20: Undervoltage (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 21: Overcurrent (--> F3x135, $x=1,2,3)$.
	Bit 22: Temperature exceeded (--> F3x405, $x=1,2,3$ ).
	Bit 23: Singleturn position 2 (safety status display).
	Bit 24: Singleturn system (--> F3x135, x=1, 2, 3).
	Bit 25: Singleturn power down (--> F3x135, x=1, 2, 3)
	Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3$ ).
	Bit 27: Multiturn position 2 (--> F3x136, $x=1,2,3$ ).
	Bit 28: Multiturn system (--> $\mathrm{F} 3 \times 136, \mathrm{x}=1,2,3$ ).
	Bit 29: Multiturn power down (--> F3x136, $x=1,2,3$ ).
	Bit 30: Multiturn overflow/underflow (--> F3x136, $x=1,2,3$ ).
	Bit 31: Multiturn battery (reserved).
Remedy:	- determine the detailed cause of the fault using the fault value.
	- replace the encoder if necessary.
	Note:
	An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
	If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON (switch-off/switch-on) is necessary to acknowledge the fault.


F31136	Encoder 1: Fault when determining the position (multiturn)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder has identified a position determination fault (multiturn) and supplies status information bit by bit in an internal status/fault word.
	Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
	Note regarding the bit designation:
	The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
	Fault value (r0949, interpret binary):
	Bit 0: F1 (safety status display).
	Bit 1: F2 (safety status display).
	Bit 2: Reserved (lighting).
	Bit 3: Reserved (signal amplitude).
	Bit 4: Reserved (position value).
	Bit 5: Reserved (overvoltage).
	Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, x = 1, 2, 3).
	Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, x=1, 2, 3).
	Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, x $=1,2,3$ ).
	Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, $\mathrm{x}=1,2,3$ ).
	Bit 11: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, x=1,2,3$ ).
	Bit 12: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
	Bit 13: Reserved/internal communication error (--> $33 \times 110, x=1,2,3$ ).
	Bit 14: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
	Bit 15: Internal communication error (--> F3x110, $x=1,2,3$ ).
	Bit 16: Lighting (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 17: Signal amplitude (--> $\mathrm{F} 3 \times 135, \mathrm{x}=1,2,3$ ).
	Bit 18: Singleturn position 1 (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 19: Overvoltage (--> $\mathrm{F} 3 \times 135, \mathrm{x}=1,2,3$ ).
	Bit 20: Undervoltage (--> $\mathrm{F} 3 \times 135, x=1,2,3$ ).
	Bit 21: Overcurrent (--> F3x135, $x=1,2,3$ ).
	Bit 22: Temperature exceeded ( - -> F3x405, $\mathrm{x}=1,2,3$ ).
	Bit 23: Singleturn position 2 (safety status display).
	Bit 24: Singleturn system (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 25: Singleturn power down (--> F3x135, x = 1, 2, 3)
	Bit 26: Multiturn position 1 (--> F3x136, $\mathrm{x}=1,2,3$ ).
	Bit 27: Multiturn position 2 (--> F3x136, $\mathrm{x}=1,2,3$ ).
	Bit 28: Multiturn system (--> F3x136, $\mathrm{x}=1,2,3$ ).
	Bit 29: Multiturn power down (--> $\mathrm{F} 3 \times 136, \mathrm{x}=1,2,3$ ).
	Bit 30: Multiturn overflow/underflow (--> F3x136, $x=1,2,3$ ).
	Bit 31: Multiturn battery (reserved).
Remedy:	- determine the detailed cause of the fault using the fault value.
	- replace the encoder if necessary.
	Note:
	An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
	If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON (switch-off/switch-on) is necessary to acknowledge the fault.


F31137	Encoder 1: Fault when determining the position (single turn)
Message value:	Fault cause: \%1 bin
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	A position determination fault has occurred in the DRIVE-CLiQ encoder.
	Fault value (r0949, interpret binary):
	yyxxxxxx hex: y = encoder version, $\mathrm{xxxxxx}=$ bit coding of the fault cause
	----------
	For $\mathrm{yy}=8$ (0000 1000 bin ), the following applies:
	Bit 1: Signal monitoring (sin/cos).
	Bit 8: F1 (safety status display) error position word 1.
	Bit 9: F2 (safety status display) error position word 2.
	Bit 16: LED monitoring.
	Bit 17: Fault when determining the position (multiturn).
	Bit 23: Temperature outside the limit values.
	-------
	For yy = 11 (0000 1011 bin), the following applies:
	Bit 0: Position word 1 difference between rotation counter and software counter (XC_ERR).
	Bit 1: Position word 1 track error of the incremental signals (LIS_ERR).
	Bit 2: Position word 1 error when aligning between incremental track signals and absolute value (ST_ERR).
	Bit 3: Maximum permissible temperature exceeded (TEMP_ERR).
	Bit 4: Power supply overvoltage (MON_OVR_VOLT).
	Bit 5: Power supply overcurrent (MON_OVR_CUR).
	Bit 6: Power supply undervoltage (MON_UND_VOLT).
	Bit 7: Rotation error counter (MT_ERR).
	Bit 8: F1 (safety status display) error position word 1.
	Bit 9: F2 (safety status display) error position word 2.
	Bit 11: Position word 1 status bit: singleturn position OK (ADC_ready).
	Bit 12: Position word 1 status bit: rotation counter OK (MT_ready).
	Bit 13: Position word 1 memory error (MEM_ERR).
	Bit 14: Position word 1 absolute position error (MLS_ERR).
	Bit 15: position word 1 LED error, lighting unit error (LED_ERR).
	Bit 18: Position word 2 error when aligning between incremental track signals and absolute value (ST_ERR).
	Bit 21: Position word 2 memory error (MEM_ERR).
	Bit 22: Position word 2 absolute position error (MLS_ERR).
	Bit 23: position word 2 LED error, lighting unit error (LED_ERR).
	-----
	For $\mathrm{yy}=12(00001100 \mathrm{bin})$, the following applies:
	Bit 8: encoder fault.
	Bit 10: error in the internal position data transport.
	---
	For yy = 14 (0000 1110 bin), the following applies:
	Bit 0: Position word 1 temperature outside limit value.
	Bit 1: Position word 1 position determination error (multiturn).
	Bit 2: Position word 1 FPGA error.
	Bit 3: Position word 1 velocity error.
	Bit 4: Position word 1 communication error between FPGAs/error in the incremental signal.
	Bit 5: Position word 1 timeout absolute value/error when determining the position (singleturn).

Bit 6: Position word 1 internal hardware fault (clock/power monitor IC/power).
Bit 7: Position word 1 internal error (FPGA communication/FPGA parameterization/self-test/software).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: Position word 2 temperature outside limit value.
Bit 17: Position word 2 position determination error (multiturn).
Bit 18: Position word 2 FPGA error.
Bit 19: Position word 2 velocity error.
Bit 20: Position word 2 communication error between FPGAs.
Bit 21: Position word 2 position determination error (singleturn).
Bit 22: Position word 2 internal hardware fault (clock/power monitor IC/power).
Bit 23: Position word 2 internal error (self-test/software).

## Note:

For an encoder version that is not described here, please contact the encoder manufacturer for more detailed information on the bit coding.

Remedy:	- determine the detailed cause of the fault using the fault value.   - if required, replace the DRIVE-CLiQ encoder.
F31138	Encoder 1: Fault when determining the position (multiturn)
Message value:	Fault cause: \%1 bin
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	A position determination fault has occurred in the DRIVE-CLiQ encoder.
	Fault value (r0949, interpret binary):
	yyxxxxxx hex: $\mathrm{yy}=$ encoder version, $\mathrm{xxxxxx}=$ bit coding of the fault cause

[^28]Bit 13: Position word 1 memory error (MEM_ERR).
Bit 14: Position word 1 absolute position error (MLS_ERR).
Bit 15: position word 1 LED error, lighting unit error (LED_ERR).
Bit 18: Position word 2 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 21: Position word 2 memory error (MEM_ERR).
Bit 22: Position word 2 absolute position error (MLS_ERR).
Bit 23: position word 2 LED error, lighting unit error (LED_ERR).

For yy = 14 (0000 1110 bin ), the following applies:
Bit 0: Position word 1 temperature outside limit value.
Bit 1: Position word 1 position determination error (multiturn).
Bit 2: Position word 1 FPGA error.
Bit 3: Position word 1 velocity error.
Bit 4: Position word 1 communication error between FPGAs/error in the incremental signal.
Bit 5: Position word 1 timeout absolute value/error when determining the position (singleturn).
Bit 6: Position word 1 internal hardware fault (clock/power monitor IC/power).
Bit 7: Position word 1 internal error (FPGA communication/FPGA parameterization/self-test/software).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: Position word 2 temperature outside limit value.
Bit 17: Position word 2 position determination error (multiturn).
Bit 18: Position word 2 FPGA error.
Bit 19: Position word 2 velocity error.
Bit 20: Position word 2 communication error between FPGAs.
Bit 21: Position word 2 position determination error (singleturn).
Bit 22: Position word 2 internal hardware fault (clock/power monitor IC/power).
Bit 23: Position word 2 internal error (self-test/software).
Note:
For an encoder version that is not described here, please contact the encoder manufacturer for more detailed information on the bit coding.
Remedy: - determine the detailed cause of the fault using the fault value.

- if required, replace the DRIVE-CLiQ encoder.
F31142 (N, A) Encoder 1: Battery voltage fault
Message value: -

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object
A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:
Reaction:

## Acknowledge:

Encoder 1
Propagation: LOCAL
Infeed: ENCODER (NONE, OFF1, OFF2)
Servo: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Hla: ENCODER (NONE, OFF1, OFF2, OFF3, STOP2)

Cause: When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information.
Remedy:
Replace battery.
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F31150 (N, A)	Encoder 1: Initialization error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Hla: ENCODER (NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Encoder functionality selected in p0404 cannot be executed.
	Fault value (r0949, interpret hexadecimal):
	Encoder malfunction.
	The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
	See also: p0404 (Encoder configuration effective), p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that p0404 is correctly set.
	- check the encoder type used (incremental/absolute) and for SMCxx, the encoder cable.
	- if relevant, note additional fault messages that describe the fault in detail.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31151 (N, A)	Encoder 1: Encoder speed for initialization AB too high
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Hla: ENCODER (NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder speed is too high while initializing the Sensor Module.
Remedy:	Reduce the speed of the encoder accordingly during initialization.
	If necessary, deactivate monitoring (p0437.29).
	See also: p0437 (Sensor Module configuration extended)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F31152 (N, A)	Encoder 1: Max. signal frequency (track A/B) exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: ENCODER (NONE, OFF1, OFF2)
	Servo: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Hla: ENCODER (NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The maximum signal frequency of the encoder evaluation has been exceeded.
	Fault value (r0949, interpret decimal):
	Actual signal frequency in Hz .
	See also: p0408
Remedy:	- reduce the speed.
	- Use an encoder with a lower pulse number (p0408).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31153 (N, A)	Encoder 1: Identification error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when identifying the encoder (waiting) p0400 $=10100$.
	The connected encoder was not able to be identified.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Data length incorrect.
	See also: p0400 (Encoder type selection)
Remedy:	Manually configure the encoder according to the data sheet.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F31160 (N, A)	Encoder 1: Analog sensor channel A failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: ENCODER (NONE)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4673).
	3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ) .
Remedy:	For fault value = 1:
	- check the output voltage of the analog sensor.
	For fault value $=2$ :
	- check the voltage setting for each encoder period (p4673).
	For fault value $=3$ :
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31161 (N, A)	Encoder 1: Analog sensor channel B failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: ENCODER (NONE)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the selected measuring range ( p 4675 ).
	3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ).
Remedy:	For fault value $=1$ :
	- check the output voltage of the analog sensor.
	For fault value $=2$ :
	- check the voltage setting for each encoder period (p4675).
	For fault value = 3:
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F31163 (N, A)	Encoder 1: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	Infeed: ENCODER (NONE)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$.
	Fault value (r0949, interpret decimal):
	1: Position value from the LVDT sensor.
	2: Position value from the encoder characteristic.
Remedy:	For fault value $=1$ :
	- check the LVDT ratio (p4678).
	- check the reference signal connection at track B.
	For fault value $=2$ :
	- check the coefficients of the characteristic (p4663 ... p4666).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A31400 (F, N)	Encoder 1: Zero mark distance error (alarm threshold exceeded)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Alarm value (r2124, interpret decimal):
	Last measured zero mark distance in increments (4increments $=1$ encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A31401 (F, N)	Encoder 1: Zero mark failed (alarm threshold exceeded)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The $1.5 x$ parameterized zero mark distance was exceeded without a zero mark being detected.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Alarm value (r2124, interpret decimal):
	Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the clearance between zero marks (p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F31405 (N, A)	Encoder 1: Temperature in the encoder evaluation exceeded
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Hla: ENCODER (NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An inadmissibly high temperature was detected in the encoder electronics or the encoder evaluation.
	Fault value (r0949, interpret hexadecimal):
	yyxxxx hex: yy = temperature sensor number, $x x x x=$ measured module temperature in $0.1^{\circ} \mathrm{C}$.
Remedy:	Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


A31407 (F, N)	Encoder 1: Function limit reached
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder has reached one of its function limits. A service is recommended.
	Alarm value (r2124, interpret decimal):
	1: Incremental signals
	3: Absolute track
	4: Code connection
Remedy:	Perform service. Replace the encoder if necessary.
	Note:
	The actual functional reserve of an encoder can be displayed via r4651.
	See also: p4650 (Encoder functional reserve component number), r4651 (Encoder functional reserve)
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31410 (F, N)	Encoder 1: Communication error (encoder and Sensor Module)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Serial communication protocol transfer error between the encoder and evaluation module.
	Alarm value (r2124, interpret binary):
	Bit 0 : Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgment error: The encoder incorrectly understood the task (request) or cannot execute it. Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace encoder.


Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A31411 (F, N)	Encoder 1: Encoder signals an internal alarm (detailed information)
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute encoder fault word includes alarm bits that have been set.
	Alarm value (r2124, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause
	yyyy $=0$ :
	Bit 0: Frequency exceeded (speed too high).
	Bit 1: Temperature exceeded.
	Bit 2: Control reserve, lighting system exceeded.
	Bit 3: Battery discharged.
	Bit 4: Reference point passed.
	yyyy = 1 :
	Bit 0: Signal amplitude outside the control range.
	Bit 1: Error multiturn interface
	Bit 2: Internal data error (singleturn/multiturn not with single steps).
	Bit 3: Error EEPROM interface.
	Bit 4: SAR_converter error.
	Bit 5: Fault for the register data transfer.
	Bit 6: Internal error identified at the error pin (nErr).
	Bit 7: Temperature threshold exceeded or fallen below.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Replace encoder.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A31412 (F, N)	Encoder 1: Encoder signals an internal alarm
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
	VECTOR_I_AC
Component:	Encoder 1
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder signals an internal alarm via serial protocol.
	Alarm value (r2124, interpret binary):
	Bit 0: Fault bit in the position protocol.
	Bit 1: Alarm bit in the position protocol.

### 4.2 List of faults and alarms

Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace encoder.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31414 (F, N)	Encoder 1: Signal level track C or D out of tolerance
Message value:	C track: \%1, D track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_IAC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The signal level ( $C^{\wedge} 2+D^{\wedge} 2$ ) of track $C$ or $D$ of the encoder or from the Hall signals, is not within the tolerance bandwidth.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Signal level, track D ( 16 bits with sign).
	xxxx $=$ Signal level, track C (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response thresholds are $<230 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- check the Hall sensor box.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


N31415 (F, A)	Encoder 1: Signal level track A or B outside tolerance (alarm)
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The signal level (root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$ ) of the encoder is outside the permissible tolerance.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold is 230 mV (observe the frequency response of the encoder).
	A signal level of 500 mV peak value corresponds to the numerical value 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track B.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV ( 2.0 Vrms ). The response threshold is < 1414 mV (1.0 Vrms).
	A signal level of 2900 mV peak value corresponds to the numerical value $3333 \mathrm{hex}=13107 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range.
	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A31418 (F, N)	Encoder 1: Speed change not plausible (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For an HTL/TTL encoder, the speed change has exceeded the value in p0492 over several sampling cycles.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0492

### 4.2 List of faults and alarms

Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
	- if required, increase the setting of p0492.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31419 (F, N)	Encoder 1: Track A or B outside tolerance
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The amplitude/phase/offset correction for track A or B is at the limit.
	Amplitude error correction: Amplitude B/Amplitude A = 0.78 ... 1.27
	Phase: <84 degrees or >96 degrees
	SMC20: Offset correction: +/-140 mV
	SMC10: Offset correction: +/-650 mV
	Alarm value (r2124, interpret hexadecimal):
	xxxx1: Minimum of the offset correction, track B
	xxxx2: Maximum of the offset correction, track B
	xxx1x: Minimum of the offset correction, track A
	$x x x 2 x$ : Maximum of the offset correction, track A
	xx 1 xx : Minimum of the amplitude correction, track B/A
	xx2xx: Maximum of the amplitude correction, track B/A
	x 1 xxx : Minimum of the phase error correction
	x2xxx: Maximum of the phase error correction
	1xxxx: Minimum of the cubic correction
	$2 x x x x$ : Maximum of the cubic correction
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders).   - check the plug connections (also the transition resistance).
	- check the encoder signals.
	- replace the encoder or encoder cable.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A31421 (F, N)	Encoder 1: Determined commutation position incorrect (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A commutation position actual value sensing error was detected.
	Alarm value (r2124, interpret decimal):
	3: The absolute position of the serial protocol and track $A / B$ differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.
Remedy:	For alarm value $=3$ :
	- For a standard encoder with cable, contact the manufacturer where relevant.
	- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange $A$ with $A^{*}$ and $B$ with $B^{*}$ ) or, for a programmable encoder, check the zero offset of the position.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31422 (F, N)	Encoder 1: Pulses per revolution square-wave encoder outside tolerance bandwidth
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	This alarm is triggered with active square-wave encoder PPR correction and re-parameterized fault 31131 if the accumulator contains larger values than p4683 or p4684.
	The zero mark distance for zero mark monitoring is set in p0425 (rotary encoder).
	Alarm value (r2124, interpret decimal): accumulated differential pulses in encoder pulses.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A31429 (F, N)	Encoder 1: Position difference hall sensor/track C/D and A/B too large
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error for track $\mathrm{C} / D$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.
	One period of track C/D corresponds to $360^{\circ}$ mechanical.
	One period of the Hall signal corresponds to $360^{\circ}$ electrical.
	The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
	Alarm value (r2124, interpret decimal):
	For track C/D, the following applies:
	Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
	For Hall signals, the following applies:
	Measured deviation as electrical angle ( 16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31431 (F, N)	Encoder 1: Position deviation incremental/absolute too high (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- the first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Alarm value (r2124, interpret decimal):
	Deviation in quadrants ( 1 pulse $=4$ quadrants).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- Clean coding disk or remove strong magnetic fields.


Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A31432 (F, N)	Encoder 1: Rotor position adaptation corrects deviation
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	On track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected. Alarm value (r2124, interpret decimal):
	Last measured deviation of zero mark in increments (4 increments = 1 encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check encoder limit frequency.
	- adapt the parameter for the distance between zero marks (p0424, p0425).
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A31442 (F, N)	Encoder 1: Battery voltage alarm threshold reached
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_IAC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The multiturn information can no longer be buffered if the battery voltage drops even further.
Remedy:	Replace battery.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A31443 (F, N)	Encoder 1: Signal level track C/D outside tolerance (alarm)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The unipolar level (CP/CN or DP/DN) for encoder 1 is outside the permissible tolerance.
	Alarm value (r2124, interpret binary):
	Bit $0=1$ : Either CP or CN outside the tolerance.
	Bit $16=1$ : Either DP or DN outside the tolerance.
	The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
	The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$.
	Note:
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- monitoring active (p0437.31 = 1).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections and contacts of the encoder cable.
	- are the C/D tracks connected correctly (have the signal cables CP and CN or DP and DN been interchanged)?   - replace the encoder cable.
Reaction upon F:	Infeed: NONE
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31460 (N)	Encoder 1: Analog sensor channel A failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside measuring range set in p4673.
	3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ).
Remedy:	For alarm value $=1$ :
	- check the output voltage of the analog sensor.
	For alarm value $=2$ :
	- check the voltage setting for each encoder period (p4673).
	For alarm value $=3$ :
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A31461 (N)	Encoder 1: Analog sensor channel B failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the selected measuring range (p4675).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	For alarm value = 1:
	- check the output voltage of the analog sensor.
	For alarm value $=2$ :
	- check the voltage setting for each encoder period (p4675).
	For alarm value $=3$ :
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31462 (N)	Encoder 1: Analog sensor no channel active
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Channel $A$ and $B$ are not activated for the analog sensor.
Remedy:	- activate channel A and/or channel B (p4670).
	- check the encoder configuration (p0404.17).
	See also: p4670 (Analog sensor configuration)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31463 (N)	Encoder 1: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$.
	Alarm value (r2124, interpret decimal):
	1: Position value from the LVDT sensor.
	2: Position value from the encoder characteristic.
Remedy:	For alarm value $=1$ :
	- check the LVDT ratio (p4678).
	- check the reference signal connection at track B.
	For alarm value $=2$ :
	- check the coefficients of the characteristic (p4663 ... p4666).


Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31470 (F, N)	Encoder 1: Encoder signals an internal error (X521.7)
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the Sensor Module Cabinet 30 (SMC30), a dirty encoder is signaled via a 0 signal at terminal X521.7.
Remedy:	- check the plug connections.
	- replace the encoder or encoder cable.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F31500 (N, A)	Encoder 1: Position tracking traversing range exceeded
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p0412 and interpreted as the number of motor revolutions.
	For $0411.0=1$, the maximum traversing range for the configured linear axis is defined to be $64 x(+/-32 x)$ of 0421 .
	For p0411.3 = 1, the maximum traversing range for the configured linear axis is preset (default value) to the highest possible value and is $+/$-p0412/2 (rounded off to complete revolutions). The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).
Remedy:	The fault should be resolved as follows:
	- select encoder commissioning (p0010 = 4).
	- reset the position tracking as follows (p0411.2 = 1).
	- deselect encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F31501 (N, A)	Encoder 1: Position tracking encoder position outside tolerance window
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When switched off, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.
	Fault value (r0949, interpret decimal):
	Deviation (difference) to the last encoder position in increments of the absolute value.
	The sign designates the traversing direction.
	Note:
	The deviation (difference) found is also displayed in r0477.
	See also: p0413 (Measuring gear position tracking tolerance window), r0477 (Measuring gear position difference)
Remedy:	Reset the position tracking as follows:
	- select encoder commissioning (p0010 = 4).
	- reset the position tracking as follows (p0411.2 = 1).
	- deselect encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
	See also: p0010, p2507
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 31502 \text { (N, A) }}$	Encoder 1: Encoder with measuring gear without valid signals
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	Infeed: OFF1 (OFF2)
	Servo: OFF1 (OFF2, OFF3)
	Vector: OFF1 (OFF2, OFF3)
	Hla: OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The encoder with measuring gear no longer provides any valid signals.
Remedy:	It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F31503 (N, A)	Encoder 1: Position tracking cannot be reset
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Ha: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The position tracking for the measuring gear cannot be reset.
Remedy:	The fault should be resolved as follows:
	- select encoder commissioning (p0010 = 4).
	- reset the position tracking as follows ( $\mathrm{p} 0411.2=1$ ).
	- deselect encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A31700	Encoder 1: Functional safety monitoring initiated
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Functional safety was activated. Self-test of the DRIVE-CLiQ encoder has detected a fault.
	Alarm value (r2124, interpret binary):
	Bit $\mathrm{x}=1$ : Effectivity test x unsuccessful.
Remedy:	Replace encoder.
N31800 (F)	Encoder 1: Group signal
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	NONE
Cause:	The motor encoder has detected at least one fault.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Evaluate the other messages that are presently available.
Reaction upon F:	Infeed: OFF2 (NONE)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowl. upon F:	IMMEDIATELY


F31801 (N, A)	Encoder 1 DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31802 (N, A)	Encoder 1: Time slice overflow
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred in encoder 1.
	Fault value (r0949, interpret hexadecimal):
	$y \mathrm{hex}$ : y f function involved (Siemens-internal fault diagnostics), $\mathrm{x}=$ time slice involved
	$x=9$ :
	Time slice overflow of the fast (current controller clock cycle) time slice.
	$\mathrm{x}=\mathrm{A}$ :
	Time slice overflow of the average time slice.
	$\mathrm{x}=\mathrm{C}$ :
	Time slice overflow of the slow time slice.
	$\mathrm{yx}=3 \mathrm{ET}$ :
	Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Increase the current controller sampling time
	Note:
	For a current controller sampling time $=31.25 \mu \mathrm{~s}$, use an SMx20 with Article No. 6SL3055-0AA00-5xA3 .

### 4.2 List of faults and alarms

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31804 (N, A)	Encoder 1: Sensor Module checksum error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	POWER ON (IMMEDIATELY)
Cause:	A checksum error has occurred when reading-out the program memory on the Sensor Module.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex
	yyyy: Memory area involved.
	xxxx: Difference between the checksum at POWER ON and the actual checksum.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- upgrade firmware to later version (>= V2.6 HF3, >= V4.3 SP2, >= V4.4).
	- check whether the permissible ambient temperature for the component is maintained.
	- replace the Sensor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE

## F31805 (N, A) Encoder 1: EEPROM checksum error

Message value: \%1
Message class: Hardware/software error (1)

Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
	VECTOR_I_AC
Component:	Sensor Module Encoder 1


Reaction:	Infeed: OFF2 (NONE)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	Data in the EEPROM corrupted .
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Replace the module.
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon A:	NONE


F31806 (N, A)	Encoder 1: Initialization error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder was not successfully initialized.
	Fault value (r0949, interpret hexadecimal):
	Bit 0,1 : Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in encoder pulses/4).
	Bit 2: Mid-voltage matching for track A unsuccessful.
	Bit 3: Mid-voltage matching for track B unsuccessful.
	Bit 4: Mid-voltage matching for acceleration input unsuccessful.
	Bit 5: Mid-voltage matching for track safety A unsuccessful.
	Bit 6: Mid-voltage matching for track safety B unsuccessful.
	Bit 7: Mid-voltage matching for track C unsuccessful.
	Bit 8: Mid-voltage matching for track D unsuccessful.
	Bit 9: Mid-voltage matching for track R unsuccessful.
	Bit 10: The difference in mid-voltages between $A$ and $B$ is too great (>0.5 V)
	Bit 11: The difference in mid-voltages between $C$ and $D$ is too great ( $>0.5 \mathrm{~V}$ )
	Bit 12: The difference in mid-voltages between safety $A$ and safety $B$ is too great ( $>0.5 \mathrm{~V}$ )
	Bit 13: The difference in mid-voltages between $A$ and safety $B$ is too great ( $>0.5 \mathrm{~V}$ )
	Bit 14: The difference in mid-voltages between $B$ and safety $A$ is too great ( $>0.5 \mathrm{~V}$ )
	Bit 15: The standard deviation of the calculated mid-voltages is too great ( $>0.3 \mathrm{~V}$ )
	Bit 16: Internal fault - fault when reading a register (CAFE)
	Bit 17: Internal fault - fault when writing a register (CAFE)
	Bit 18: Internal fault: No mid-voltage matching available
	Bit 19: Internal error - ADC access error.
	Bit 20: Internal error - no zero crossover found.
	Bit 28: Error while initializing the EnDat 2.2 measuring unit.
	Bit 29: Error when reading out the data from the EnDat 2.2 measuring unit.
	Bit 30: EEPROM checksum of the EnDat 2.2 measuring unit incorrect.
	Bit 31: Data of the EnDat 2.2 measuring unit inconsistent.
	Note:
	Bit 0, 1: Up to 6SL3055-0AA00-5*A0
	Bits 2 ... 20: 6SL3055-0AA00-5*A1 and higher
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Acknowledge fault.
	If the fault cannot be acknowledged:
	Bits 2 ... 9: Check encoder power supply.
	Bits 2 ... 14: Check the corresponding cable.
	Bit 15 with no other bits: Check track R, check settings in p0404.
	Bit 28: Check the cable between the EnDat 2.2 converter and the measuring unit.
	Bit 29 ... 31: Replace the defective measuring unit.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A31811 (F, N)	Encoder 1: Encoder serial number changed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The serial number of the motor encoder of a synchronous motor has changed. The change was only checked for encoders with serial number (e.g. EnDat encoders) and build-in motors (e.g. p0300 $=401$ ) or third-party motors (p0300 = 2).
	Cause 1:
	- the encoder was replaced.
	Cause 2:
	- a third-party, built-in or linear motor was re-commissioned.
	Cause 3:
	- the motor with integrated and adjusted encoder was replaced.
	Cause 4:
	- the firmware was updated to a version that checks the encoder serial number.
	Note:
	With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
	When the encoder is adjusted ( $\mathrm{p} 2507=3$ ), the serial number is checked for changes and if required, the adjustment is reset (p2507 = 1).
	Proceed as follows to hide serial number monitoring:
	- set the following serial numbers for the corresponding Encoder Data Set: p0441=FF, p0442 $=0, \mathrm{p} 0443=0, \mathrm{p} 0444$ $=0, \mathrm{p} 0445=0$.
	- parameterize F07414 as message type N (p2118, p 2119$)$.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	For causes 1, 2:
	Carry out an automatic adjustment using the pole position identification routine. Acknowledge fault. Initiate the pole position identification routine with p1990 $=1$. Then check that the pole position identification routine is correctly executed.
	SERVO:
	If a pole position identification technique is selected in p1980, and if p0301 does not contain a motor type with an encoder adjusted in the factory, then p1990 is automatically activated.
	or
	Set the adjustment via p0431. In this case, the new serial number is automatically accepted.
	Mechanically adjust the encoder. Accept the new serial number with p0440 $=1$.
	For causes 3, 4:
	Accept the new serial number with p0440 $=1$.
Reaction upon F:	Infeed: OFF2 (NONE)
	Servo: NONE (ENCODER, OFF2)
	Vector: NONE (ENCODER, OFF2)
	Hla: NONE (ENCODER, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F31812 (N, A)	Encoder 1: Requested cycle or RX-/TX timing not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A cycle requested from the Control Unit or RX/TX timing is not supported.
	Fault value (r0949, interpret decimal):
	0 : Application cycle is not supported.
	1: DRIVE-CLiQ cycle is not supported.
	2: Distance between $R X$ and TX instants in time too low.
	3: TX instant in time too early.
Remedy:	Carry out a POWER ON (switch-off/switch-on) for all components.
Reaction upon N:	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31813	Encoder 1: Hardware logic unit failed
Message value:	Fault cause: \%1 bin
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	Infeed: NONE
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The logic unit of the DRIVE-CLiQ encoder has failed.
	Fault value (r0949, interpret binary):
	Bit 0: ALU watchdog has responded.
	Bit 1: ALU has detected a sign-of-life error.
Remedy:	When the error reoccurs, replace the encoder.
$\overline{\text { F31820 (N, A) }}$	Encoder 1 DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: OFF2
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.


	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 ( $=04$ hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $y \mathrm{y}=$ component number, $\mathrm{xx}=$ error cause
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31835 (N, A)	Encoder 1 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: OFF2
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- carry out a POWER ON.
	- replace the component involved.


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 31836 \text { (N, A) }}$	Encoder 1 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: OFF2
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31837 (N, A)	Encoder 1 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: OFF2
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
	See also: p0491 (Motor encoder fault response ENCODER)

### 4.2 List of faults and alarms

Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F31845 (N, A) Encoder 1 DRIVE-CLiQ: Cyclic data transfer error
Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
Component: Sensor Module Encoder 1 Propagation: LOCAL

Reaction:

Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault cause:
11 (= 0B hex):
Synchronization error during alternating cyclic data transfer.
Note regarding the message value:
The individual information is coded as follows in the message value ( $\mathrm{r} 0949 / r 2124$ ):
0000yyxx hex: $y y=$ component number, $x x=$ error cause
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F31850 (N, A)	Encoder 1: Encoder evaluation internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the Sensor Module of encoder 1.
	Fault value (r0949, interpret decimal):
	1: Background time slice is blocked.
	2. Checksum over the code memory is not OK.
	10000: OEM memory of the EnDat encoder contains data that cannot be interpreted.
	11000 ... 11499: Descriptive data from EEPROM incorrect.
	11500 ... 11899: Calibration data from EEPROM incorrect.
	11900 ... 11999: Configuration data from EEPROM incorrect.
	12000 ... 12008: communication with analog/digital converter faulted.
	16000: DRIVE-CLiQ encoder initialization application error.
	16001: DRIVE-CLiQ encoder initialization ALU error.


	16002: DRIVE-CLiQ encoder HISI / SISI initialization error.
	16003: DRIVE-CLiQ encoder safety initialization error.
	16004: DRIVE-CLiQ encoder internal system error.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact Technical Support.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31851 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- Upgrade the firmware of the component involved.
	- carry out a POWER ON (switch-off/switch-on) for the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31860 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.

### 4.2 List of faults and alarms

3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the power unit in the telegram and in the receive list do not match.
9 (= 09 hex):
The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
16 (= 10 hex):
The receive telegram is too early.
17 (= 11 hex):
CRC error and the receive telegram is too early.
18 (= 12 hex):
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
19 (= 13 hex):
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
20 (= 14 hex):
The length of the receive telegram does not match the receive list and the receive telegram is too early.
21 (= 15 hex):
The type of the receive telegram does not match the receive list and the receive telegram is too early.
22 (= 16 hex):
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
25 (= 19 hex):
The error bit in the receive telegram is set and the receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy:

Reaction upon N :

- carry out a POWER ON (switch-off/switch-on).
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

Reaction upon A: NONE
Acknowl. upon A: NONE
F31875 (N, A) Encoder 1: power supply voltage failed
Message value: Component number: \%1, fault cause: \%2
Message class: $\quad$ Supply voltage fault (undervoltage) (3)
Drive object: A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component: Sensor Module Encoder 1 Propagation: LOCAL
Reaction:
Infeed: OFF2
Servo: ENCODER (IASC/DCBRK, NONE)
Vector: ENCODER (IASC/DCBRK, NONE)
Hla: ENCODER (NONE)
Acknowledge:
IMMEDIATELY
Cause:
The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
Fault cause:
9 (= 09 hex):
The power supply voltage for the components has failed.

	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31885 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F31886 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON.
	- check whether the firmware version of the encoder (r0148) matches the firmware version of Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31887 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 1). Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause


Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).   - check the electrical cabinet design and cable routing for EMC compliance   - if required, use another DRIVE-CLiQ socket (p9904).   - replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 31895}$ (N, A)	Encoder 1 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31896 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: OFF2 (ENCODER, IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (ENCODER, IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (ENCODER, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Sensor Module for encoder 1), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31899 (N, A)	Encoder 1: Unknown fault
Message value:	New message: \%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_IAC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Hla: ENCODER (NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.
	Note:
	If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A31902 (F, N)	Encoder 1: SPI-BUS error occurred
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
Component:	Sensor Module Encoder 1 Propagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal SPI bus.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact Technical Support.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A31903 (F, N)	Encoder 1: I2C-BUS error occurred
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal I2C bus.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact Technical Support.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Ha: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F31905 (N, A)	Encoder 1: Encoder parameterization error
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Hla: ENCODER (NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	An error was identified in the encoder parameterization.
	It is possible that the parameterized encoder type does not match the connected encoder.
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	yyyyxxxx dec: yyyy = supplementary information, $x \times x x=$ parameter
	xxxx = 421:
	For an EnDat/SSI encoder, the absolute position in the protocol must be less than or equal to 30 bits. yyy = 0 .
	No additional information available.
	yyyy $=1$ :
	The component does not support HTL level $(\mathrm{p} 0405.1=0)$ combined with track monitoring $\mathrm{A} / \mathrm{B}<>-\mathrm{A} / \mathrm{B}(\mathrm{p} 0405.2=1)$, yyyy $=2$ :
	A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please start a new encoder identification.
	yyyy $=3$ :
	A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please select a listed encoder in p0400 with a code number < 10000.
	yyyy $=4$ :
	This component does not support SSI encoders (p0404.9 = 1) without track A/B.

### 4.2 List of faults and alarms

	yyyy $=5$ :
	For SQW encoder, value in p4686 greater than in p0425.
	yyyy $=6$ :
	DRIVE-CLiQ encoder cannot be used with this firmware version.
	yyyy $=7$ :
	For an SQW encoder, the XIST1 correction (p0437.2) is only permitted for equidistant zero marks.
	yyyy $=8$ :
	The motor pole pair width is not supported by the linear scale being used.
	yyyy $=9$ :
	The length of the position in the EnDat protocol may be a maximum of 32 bits.
	yyyy $=10$ :
	The connected encoder is not supported.
	yyyy $=11$ :
	The hardware does not support track monitoring.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.
	- correct the parameter specified by the fault value (r0949) and p0187.
	- re parameter number $=314$ :
	- check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31912	Encoder 1: Device combination is not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: GLOBAL
Reaction:	Infeed: ENCODER (NONE)
	Servo: ENCODER (IASC/DCBRK, NONE)
	Vector: ENCODER (IASC/DCBRK, NONE)
	Hla: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The selected device combination is not supported.
	Fault value (r0949, interpret decimal):
	1003:
	The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$.
	1005:
	The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter. 1006:
	The maximum duration of the EnDat transfer ( $31.25 \mu \mathrm{~s}$ ) was exceeded.
	2001:
	The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter.
	2002:
	The resolution of the linear measuring unit does not match the pole pair width of the linear motor
	Pole pair width, minimum $=$ p0422 * $2^{\wedge} 20$


Remedy:	For fault value $=1003,1005,1006:$
	- Use a measuring unit that is permissible.
	For fault value $=2001:$
	- set a permissible cycle combination (if required, use standard settings).
	For fault value $=2002:$
	- Use a measuring unit with a lower resolution (p0422).


A31915 (F, N)	Encoder 1: Encoder configuration error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration for encoder 1 is incorrect.
	Alarm value (r2124, interpret decimal):
	1:
	Re-parameterization between fault/alarm is not permissible.
	419:
	When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual value (r0483) that can no longer be represented within 32 bits.
Remedy:	For alarm value = 1:
	No re-parameterization between fault/alarm.
	For alarm value $=419$ :
	Reduce the fine resolution (p0419) or deactivate the monitoring ( p 0437.25 ), if the complete multiturn range is not required.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK)
	Vector: NONE (ENCODER, IASC/DCBRK)
	Hla: NONE (ENCODER)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F31916 (N, A)	Encoder 1: Encoder parameterization error
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
Component:	VECTOR_I_AC
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Hla: ENCODER (NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	An encoder parameter was detected as being incorrect.
	It is possible that the parameterized encoder type does not match the connected encoder.
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	Parameter number.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.
- correct the parameter specified by the fault value (r0949) and p0187.	

### 4.2 List of faults and alarms

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31916 (N, A)	Encoder 1: Encoder parameterization error
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	ENC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A parameter of encoder 1 was detected as being incorrect.
	In the case of the ENCODER drive object, the selected encoder type (rotary/linear) might not match the function module setting (r0108.12).
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	Parameter number.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.
	- correct the parameter specified by the fault value (r0949) and p0187.
	- if a linear encoder has been selected in parameter p0400/p0404, the "linear encoder" function module has to be activated (r0108.12 = 1)
	- if a rotary encoder has been selected in parameter p0400/p0404, the "linear encoder" function module should not be activated $(\mathrm{r0108.12}=0)$
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


A31920 (F, N)	Encoder 1: Temperature sensor fault (motor)
Message value:	Fault cause: \%1, channel number: \%2
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor detected a fault when evaluating the temperature sensor.
	Fault cause:
	1 (= 01 hex):
	Wire breakage or sensor not connected.
	KTY: R > 1630 Ohm, PT1000: $\mathrm{R}>1720$ Ohm
	2 (= 02 hex):
	Measured resistance too low.
	PTC: R < 20 Ohm, KTY: R < 50 Ohm, PT1000: R < 603 Ohm
	Additional values:
	Only for internal Siemens troubleshooting.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = channel number, $x x=$ error cause
	See also: p0491 (Motor encoder fault response ENCODER)


Remedy:	- check that the encoder cable is the correct type and is correctly connected.
	- check the temperature sensor selection in p0600 to p0603.
	- replace the Sensor Module (hardware defect or incorrect calibration data).
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31930 (N)	Encoder 1: Data logger has saved data
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the activated function "Data logger" (p0437.0 = 1) a fault has occurred with the Sensor Module. This alarm indicates that the diagnostics data corresponding to the fault was saved on the memory card.
	The diagnostics data is saved in the following folder:
	/USER/SINAMICS/DATA/SMTRCOO.BIN
	...
	/USER/SINAMICS/DATA/SMTRC07.BIN
	/USER/SINAMICS/DATA/SMTRCIDX.TXT
	The following information is contained in the TXT file:
	- Display of the last written BIN file.
	- Number of write operations that are still possible (from 10000 downwards).
	Note:
	Only Siemens can evaluate the BIN files.
Remedy:	Not necessary.
	This alarm is automatically withdrawn.
	The data logger is ready to record the next fault case.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31940 (F, N)	Encoder 1: Spindle sensor S1 voltage incorrect
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 1 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage of analog sensor S1 is outside the permissible range.
	Alarm value (r2124, interpret decimal):
	Signal level from sensor S 1.
	Note:
	A signal level of 500 mV corresponds to the numerical value 500 dec .
Remedy:	- check the clamped tool.
	- check the tolerance and if required, adapt (p5040).
	- check the thresholds and if required, adapt (p5041).
	- check analog sensor S1 and connections.
	See also: p5040 (Spindle voltage threshold values tolerance), p5041 (Spindle voltage threshold values)

### 4.2 List of faults and alarms

Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


F31950	Encoder 1: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: LOCAL
Reaction:	ENCODER (OFF2)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	The fault value contains information regarding the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- if necessary, upgrade the firmware in the Sensor Module to a later version.
	- contact Technical Support.


A31999 (F, N)	Encoder 1: Unknown alarm
Message value:	New message: \%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	A_INF, B_INF, ENC, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 1 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A alarm has occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.   Alarm value (r2124, interpret decimal):   Alarm number.   Note:   If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.   See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148).   - upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	Infeed: NONE (OFF1, OFF2)   Servo: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)   Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)   Hla: NONE (ENCODER, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


$\overline{\mathrm{F} 32100 \text { ( }}$, A)	Encoder 2: Zero mark distance error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Fault value (r0949, interpret decimal):
	Last measured zero mark distance in increments (4 increments = 1 encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32101 (N, A)	Encoder 2: Zero mark failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Fault value (r0949, interpret decimal):
	Number of increments after POWER ON or since the last zero mark that was detected ( 4 increments $=1$ encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the clearance between zero marks (p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
	- when p0437.1 is active, check p4686.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F32103 (N, A)	Encoder 2: Signal level zero track (track R) outside tolerance
Message value:	R track: \%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation:
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)

## F32110 (N, A) Encoder 2: Serial communications error

Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)

Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Comp:
Encoder 2 Propagation: LOCAL

Reaction:
Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Ha: OFF1 (NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: There is an error in the transfer of the serial communication protocol between the encoder and internal or external evaluation module.
Fault value (r0949, interpret binary):
For an EnDat 2.1 encoder, the significance of the fault value is as follows:
Bit 0 : Alarm bit in the position protocol.
Bit 1: Incorrect quiescent level on the data line.
Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ).
Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.

	Bit 4: Encoder acknowledgment error: The encoder incorrectly understood the task (request) or cannot execute it.
	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 7: Timeout for the register communication.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
	Bit 13: Data line incorrect.
	Bit 14: Fault for the register communication.
	Bit 15: Internal communication error.
	Note:
	For an EnDat 2.2 encoder, the significance of the fault value for $\mathrm{F} 3 \times 135(x=1,2,3)$ is described.
Remedy:	For fault value, bit $0=1$ :
	- Enc defect F31111 may provide additional details.
	For fault value, bit $1=1$ :
	- incorrect encoder type / replace the encoder or encoder cable.
	For fault value, bit $2=1$ :
	- incorrect encoder type / replace the encoder or encoder cable.
	For fault value, bit $3=1$ :
	- EMC / connect the cable shield, replace the encoder or encoder cable.
	For fault value, bit $4=1$ :
	- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
	For fault value, bit $5=1$ :
	- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
	For fault value, bit $6=1$ :
	- Update Sensor Module firmware.
	For fault value, bit $7=1$ :
	- incorrect encoder type / replace the encoder or encoder cable.
	For fault value, bit $8=1$ :
	- check parameterization (p0429.2).
	For fault value, bit $9=1$ :
	- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
	For fault value, bit $10=1$ :
	- check parameterization (p0429.2, p0449).
	For fault value, bit $11=1$ :
	- check parameterization (p0436).
	For fault value, bit $12=1$ :
	- check parameterization (p0429.6).
	For fault value, bit $13=1$ :
	- check data line.
	For fault value, bit $14=1$ :
	- incorrect encoder type / replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F32111 (N, A)	Encoder 2: Encoder signals an internal error (detailed information)
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder error word provides detailed information (error bit).
	For p0404.8 $=0$, the following applies:
	Fault value for internal Siemens troubleshooting.
	For p0404.8 $=1$, the following applies:
	Fault value (r0949, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, $\mathrm{xxxx}=$ fault cause
	yyyy $=0$ :
	Bit 0 : Lighting system failed.
	Bit 1: Signal amplitude too low.
	Bit 2: Position value incorrect.
	Bit 3: Encoder power supply overvoltage condition.
	Bit 4: Encoder power supply undervoltage condition.
	Bit 5: Encoder power supply overcurrent condition.
	Bit 6: The battery must be changed.
Remedy:	For yyy = 0:
	For fault value, bit $0=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $1=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $2=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $3=1$ :
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
	For fault value, bit $4=1$ :
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When using a motor with DRIVE-CLiQ: Replace the motor.
	For fault value, bit $5=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $6=1$ :
	The battery must be changed (only for encoders with battery back-up).
	For yyy = 1 :
	Encoder is defective. Replace encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F32112 (N, A)	Encoder 2: Encoder signals an internal error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC
Component:	Encoder 2
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	Hla: OFF1 (NONE, OFF2, OFF3)
PULSE INHIBIT	


F32116 (N, A)	Encoder 2: Signal level track A or B too low
Message value:	A track: \%1, B-track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The signal level of the rectified encoder signals $A$ and $B$ of the encoder fall below the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Signal level, track B (16 bits with sign).
	xxxx $=$ Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold is $<130 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32117 (N, A)	Encoder 2: Inversion error signals A/B/R
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For a square-wave encoder (bipolar, double ended) signals $\mathrm{A}^{*}, \mathrm{~B}^{*}$ and $\mathrm{R}^{*}$ are not inverted with respect to signals A , $B$ and $R$.
	Fault value (r0949, interpret binary):
	Bits 0 ... 15: Only for internal Siemens troubleshooting.
	Bit 16: Error track A.
	Bit 17: Error track B.
	Bit 18: Error track R.
	Note:
	For SMC30 (only Article No. 6SL3055-0AA00-5CAO and 6SL3055-0AA00-5CA1), CUA32, and CU310, the following applies:
	A square-wave encoder without track R is used and track monitoring (p0405.2 $=1$ ) is activated.


Remedy:	- check the encoder/cable.
	- Does the encoder supply signals and the associated inverted signals?
	Note:
	For SMC30 (only Article Number 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1), the following applies: - check the setting of p0405 (p0405.2 = 1 is only possible if the encoder is connected at X520).
	For a square-wave encoder without track $R$, the following jumpers must be set for the connection at X520 (SMC30) or X23 (CUA32, CU310):
	- pin 10 (reference signal R) <--> pin 7 (encoder power supply, ground)
	- pin 11 (reference signal R inverted) <--> pin 4 (encoder power supply)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32118 (N, A)	Encoder 2: Speed change not plausible
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	For an HTL/TTL encoder, the speed change has exceeded the value in p0492 over several sampling cycles.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0492
Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
	- if required, increase the maximum speed difference per sampling cycle (p0492).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F32120 (N, A) Encoder 2: Encoder power supply fault

Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)

Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:
Component:
Encoder 2 Propagation: LOCAL

Reaction:
Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Ha: OFF1 (NONE, OFF2, OFF3)
Acknowledge:
PULSE INHIBIT
Cause: An encoder power supply fault was detected.
Fault value (r0949, interpret binary):
Bit 0: Undervoltage condition on the sense line.
Bit 1: Overcurrent condition for the encoder power supply.
Bit 2: Overcurrent condition for encoder power supply on cable resolver excitation negative.
Bit 3: Overcurrent condition for encoder power supply on cable resolver excitation positive.
Bit 4: The 24 V power supply through the Power Module (PM) is overloaded.
Bit 5: Overcurrent at the EnDat connection of the converter.
Bit 6: Overvoltage at the EnDat connection of the converter.
Bit 7: Hardware fault at the EnDat connection of the converter.

### 4.2 List of faults and alarms

Remedy:	Note:   If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed.
	For fault value, bit $0=1$ :
	- correct encoder cable connected?
	- check the plug connections of the encoder cable.
	- SMC30: Check the parameterization (p0404.22).
	For fault value, bit 1 = 1:
	- correct encoder cable connected?
	- replace the encoder or encoder cable.
	For fault value, bit $2=1$ :
	- correct encoder cable connected?
	- replace the encoder or encoder cable.
	For fault value, bit $3=1$ :
	- correct encoder cable connected?
	- replace the encoder or encoder cable.
	For fault value, bit $5=1$ :
	- Measuring unit correctly connected at the converter?
	- Replace the measuring unit or the cable to the measuring unit.
	For fault value, bit 6, $7=1$ :
	- Replace the defective EnDat 2.2 converter.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32121 (N, A)	Encoder 2: Determined commutation position incorrect
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	A commutation position actual value sensing error was detected.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32122	Encoder 2: Sensor Module hardware fault
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: GLOBAL
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	An internal Sensor Module hardware fault was detected.
	Fault value (r0949, interpret decimal):
	1: Reference voltage error.
	2: Internal undervoltage.
	3: Internal overvoltage.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.


F32123 (N, A)	Encoder 2: Signal level A/B outside tolerance
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32126 (N, A)	Encoder 2: Signal level track A or B too high
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The signal level ( $\|\mathrm{A}\|+\|\mathrm{B}\|)$ of the encoder exceeds the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	$x x x x=a m p l i t u d e$, i.e. root of $A^{\wedge} 2+B^{\wedge} 2(16$ bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold for $(\|A\|+\|B\|)$ is $>1120 \mathrm{mV}$ or the root of $\left(A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track $B$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

## F32129 (N, A) Encoder 2: Position difference hall sensor/track C/D and A/B too large

Message value:	$\% 1$
Message class:	Actual position/speed value incorrect or not available (11)

Drive object:
Component:
Reaction:

Acknowledge: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Encoder 2 Propagation: LOCAL

Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: $\quad$ The error for track $\mathrm{C} / \mathrm{D}$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.
One period of track C/D corresponds to $360^{\circ}$ mechanical.
One period of the Hall signal corresponds to $360^{\circ}$ electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A32429.
Fault value (r0949, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).

Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.


	Incremental encoder:
	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- the first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Fault value (r0949, interpret decimal):
	Deviation in quadrants (1 pulse $=4$ quadrants).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check whether the coding disk is dirty or there are strong ambient magnetic fields.
	- adapt the parameter for the clearance between zero marks ( p 0425 ).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32135	Encoder 2: Fault when determining the position (single turn)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: GLOBAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder has identified a position determination fault (singleturn) and supplies status information bit by bit in an internal status/fault word.
	Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
	Note regarding the bit designation:
	The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
	Fault value (r0949, interpret binary):
	Bit 0: F1 (safety status display).
	Bit 1: F2 (safety status display).
	Bit 2: Reserved (lighting).
	Bit 3: Reserved (signal amplitude).
	Bit 4: Reserved (position value).
	Bit 5: Reserved (overvoltage).
	Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, $x=1,2,3$ ).
	Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state ( $-->$ F3x110, $\mathrm{x}=1,2,3$ ).
	Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, x $=1,2,3$ ).
	Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, $\mathrm{x}=1,2,3$ ).
	Bit 11: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
	Bit 12: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, x=1,2,3$ ).
	Bit 13: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
	Bit 14: Reserved/internal communication error (--> $73 \times 110, x=1,2,3$ ).
	Bit 15: Internal communication error (--> F3x110, $x=1,2,3$ ).
	Bit 16: Lighting (--> F3x135, $x=1,2,3$ ).
	Bit 17: Signal amplitude (--> $\mathrm{F} 3 \times 135, \mathrm{x}=1,2,3$ ).
	Bit 18: Singleturn position 1 (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 19: Overvoltage (--> F3x135, $x=1,2,3)$.


	Bit 20: Undervoltage (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 21: Overcurrent (--> F3x135, $x=1,2,3$ ).
	Bit 22: Temperature exceeded (--> F3x405, $x=1,2,3$ ).
	Bit 23: Singleturn position 2 (safety status display).
	Bit 24: Singleturn system (--> F3x135, x=1, 2, 3).
	Bit 25: Singleturn power down (--> F3x135, $x=1,2,3$ )
	Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3$ ).
	Bit 27: Multiturn position 2 (--> F3x136, $x=1,2,3$ ).
	Bit 28: Multiturn system (--> F3x136, $x=1,2,3$ ).
	Bit 29: Multiturn power down (--> F3x136, $x=1,2,3$ ).
	Bit 30: Multiturn overflow/underflow (--> F3x136, $x=1,2,3$ ).
	Bit 31: Multiturn battery (reserved).
Remedy:	- determine the detailed cause of the fault using the fault value.
	- replace the encoder if necessary.
	Note:
	An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
	If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON (switch-off/switch-on) is necessary to acknowledge the fault.
F32136	Encoder 2: Fault when determining the position (multiturn)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: GLOBAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder has identified a position determination fault (multiturn) and supplies status information bit by bit in an internal status/fault word.
	Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
	Note regarding the bit designation:
	The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
	Fault value (r0949, interpret binary):
	Bit 0: F1 (safety status display).
	Bit 1: F2 (safety status display).
	Bit 2: Reserved (lighting).
	Bit 3: Reserved (signal amplitude).
	Bit 4: Reserved (position value).
	Bit 5: Reserved (overvoltage).
	Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, $x=1,2,3$ ).
	Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, $\mathrm{x}=1,2,3$ ).
	Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, $x=1,2,3$ ).
	Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, x=1, 2, 3).
	Bit 11: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
	Bit 12: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
	Bit 13: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
	Bit 14: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
	Bit 15: Internal communication error (--> F3x110, $x=1,2,3$ ).
	Bit 16: Lighting (--> F3x135, $x=1,2,3$ ).
	Bit 17: Signal amplitude (--> F3x135, $x=1,2,3$ ).
	Bit 18: Singleturn position 1 (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 19: Overvoltage (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 20: Undervoltage (--> F3x135, $x=1,2,3$ ).
	Bit 21: Overcurrent (--> F3x135, $x=1,2,3$ ).

Bit 22: Temperature exceeded $(-->F 3 \times 405, x=1,2,3)$.
Bit 23: Singleturn position 2 (safety status display).
Bit 24: Singleturn system (--> $F 3 \times 135, x=1,2,3)$.
Bit 25: Singleturn power down (--> $F 3 \times 135, x=1,2,3)$
Bit 26: Multiturn position 1 (--> $F 3 \times 136, x=1,2,3)$.
Bit 27: Multiturn position $2(-->F 3 \times 136, x=1,2,3)$.
Bit 28: Multiturn system (--> $F 3 \times 136, x=1,2,3)$.
Bit 29: Multiturn power down (--> $F 3 \times 136, x=1,2,3)$.
Bit 30: Multiturn overflow/underflow (--> $F 3 \times 136, x=1,2,3)$.
Remedy: $\quad$ Bit 31: Multiturn battery (reserved).

- determine the detailed cause of the fault using the fault value.
- replace the encoder if necessary.
Note:
An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON
(switch-off/switch-on) is necessary to acknowledge the fault.


## F32137

Message value:
Message class:
Drive object:
Component:
Reaction:

## Acknowledge:

Cause:

## Encoder 2: Fault when determining the position (single turn)

Fault cause: \%1 bin Hardware/software error (1)
HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Encoder 2 Propagation: GLOBAL

Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Ha: OFF1 (NONE, OFF2, OFF3)
PULSE INHIBIT
A position determination fault has occurred in the DRIVE-CLiQ encoder.
Fault value (r0949, interpret binary):
yyxxxxxx hex: $y y=$ encoder version, $x x x x x x=$ bit coding of the fault cause

```
For yy = 8 (0000 1000 bin), the following applies:
Bit 1: Signal monitoring (sin/cos).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: LED monitoring.
Bit 17: Fault when determining the position (multiturn).
Bit 23: Temperature outside the limit values.
For yy = 11 (0000 1011 bin), the following applies:
Bit 0: Position word 1 difference between rotation counter and software counter (XC_ERR).
Bit 1: Position word }1\mathrm{ track error of the incremental signals (LIS_ERR).
Bit 2: Position word 1 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 3: Maximum permissible temperature exceeded (TEMP_ERR).
Bit 4: Power supply overvoltage (MON_OVR_VOLT).
Bit 5: Power supply overcurrent (MON_OVR_CUR).
Bit 6: Power supply undervoltage (MON_UND_VOLT).
Bit 7: Rotation error counter (MT_ERR).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 11: Position word }1\mathrm{ status bit: singleturn position OK (ADC_ready).
Bit 12: Position word }1\mathrm{ status bit: rotation counter OK (MT_ready).
Bit 13: Position word }1\mathrm{ memory error (MEM_ERR).
Bit 14: Position word 1 absolute position error (MLS_ERR).
Bit 15: position word 1 LED error, lighting unit error (LED_ERR).
Bit 18: Position word 2 error when aligning between incremental track signals and absolute value (ST_ERR).
```

Bit 21: Position word 2 memory error (MEM_ERR).
Bit 22: Position word 2 absolute position error (MLS_ERR).
Bit 23: position word 2 LED error, lighting unit error (LED_ERR).

For yy = 12 (0000 1100 bin ), the following applies:
Bit 8: encoder fault.
Bit 10: error in the internal position data transport.

For yy = 14 (0000 1110 bin ), the following applies:
Bit 0: Position word 1 temperature outside limit value.
Bit 1: Position word 1 position determination error (multiturn).
Bit 2: Position word 1 FPGA error.
Bit 3: Position word 1 velocity error.
Bit 4: Position word 1 communication error between FPGAs/error in the incremental signal.
Bit 5: Position word 1 timeout absolute value/error when determining the position (singleturn).
Bit 6: Position word 1 internal hardware fault (clock/power monitor IC/power).
Bit 7: Position word 1 internal error (FPGA communication/FPGA parameterization/self-test/software).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: Position word 2 temperature outside limit value.
Bit 17: Position word 2 position determination error (multiturn).
Bit 18: Position word 2 FPGA error.
Bit 19: Position word 2 velocity error.
Bit 20: Position word 2 communication error between FPGAs.
Bit 21: Position word 2 position determination error (singleturn).
Bit 22: Position word 2 internal hardware fault (clock/power monitor IC/power).
Bit 23: Position word 2 internal error (self-test/software).

## Note:

For an encoder version that is not described here, please contact the encoder manufacturer for more detailed information on the bit coding.
Remedy: - determine the detailed cause of the fault using the fault value.

- if required, replace the DRIVE-CLiQ encoder.


## F32138

## Message value:

Message class:
Drive object:
Component:
Reaction:

## Acknowledge:

Cause:

## Encoder 2: Fault when determining the position (multiturn)

## Fault cause: \%1 bin

 Hardware/software error (1) HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC Encoder 2 Propagation: GLOBALServo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Hla: OFF1 (NONE, OFF2, OFF3)
PULSE INHIBIT
A position determination fault has occurred in the DRIVE-CLiQ encoder.
Fault value (r0949, interpret binary):
$y y x x x x x x$ hex: $y y=$ encoder version, $x x x x x x=$ bit coding of the fault cause
For yy = 8 (0000 1000 bin ), the following applies:
Bit 1: Signal monitoring (sin/cos).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: LED monitoring.
Bit 17: Fault when determining the position (multiturn).
Bit 23: Temperature outside the limit values.

For yy = 11 (0000 1011 bin ), the following applies:
Bit 0: Position word 1 difference between rotation counter and software counter (XC_ERR).
Bit 1: Position word 1 track error of the incremental signals (LIS_ERR).
Bit 2: Position word 1 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 3: Maximum permissible temperature exceeded (TEMP_ERR).
Bit 4: Power supply overvoltage (MON_OVR_VOLT).
Bit 5: Power supply overcurrent (MON_OVR_CUR).
Bit 6: Power supply undervoltage (MON_UND_VOLT).
Bit 7: Rotation error counter (MT_ERR).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 11: Position word 1 status bit: singleturn position OK (ADC_ready).
Bit 12: Position word 1 status bit: rotation counter OK (MT_ready).
Bit 13: Position word 1 memory error (MEM_ERR).
Bit 14: Position word 1 absolute position error (MLS_ERR).
Bit 15: position word 1 LED error, lighting unit error (LED_ERR).
Bit 18: Position word 2 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 21: Position word 2 memory error (MEM_ERR).
Bit 22: Position word 2 absolute position error (MLS_ERR).
Bit 23: position word 2 LED error, lighting unit error (LED_ERR).

For $y y=14$ (0000 1110 bin ), the following applies:
Bit 0: Position word 1 temperature outside limit value.
Bit 1: Position word 1 position determination error (multiturn).
Bit 2: Position word 1 FPGA error.
Bit 3: Position word 1 velocity error.
Bit 4: Position word 1 communication error between FPGAs/error in the incremental signal.
Bit 5: Position word 1 timeout absolute value/error when determining the position (singleturn).
Bit 6: Position word 1 internal hardware fault (clock/power monitor IC/power).
Bit 7: Position word 1 internal error (FPGA communication/FPGA parameterization/self-test/software).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: Position word 2 temperature outside limit value.
Bit 17: Position word 2 position determination error (multiturn).
Bit 18: Position word 2 FPGA error.
Bit 19: Position word 2 velocity error.
Bit 20: Position word 2 communication error between FPGAs.
Bit 21: Position word 2 position determination error (singleturn).
Bit 22: Position word 2 internal hardware fault (clock/power monitor IC/power).
Bit 23: Position word 2 internal error (self-test/software).

## Note:

For an encoder version that is not described here, please contact the encoder manufacturer for more detailed information on the bit coding.
Remedy: - determine the detailed cause of the fault using the fault value.

- if required, replace the DRIVE-CLiQ encoder.

F32142 (N, A)	Encoder 2: Battery voltage fault
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information.
Remedy:	Replace battery.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32150 (N, A)	Encoder 2: Initialization error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Encoder functionality selected in p0404 cannot be executed.
	Fault value (r0949, interpret hexadecimal):
	Encoder malfunction.
	The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
Remedy:	- check that p0404 is correctly set.
	- check the encoder type used (incremental/absolute) and for SMCxx, the encoder cable.
	- if relevant, note additional fault messages that describe the fault in detail.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32151 (N, A)	Encoder 2: Encoder speed for initialization AB too high
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder speed is too high while initializing the Sensor Module.
Remedy:	Reduce the speed of the encoder accordingly during initialization.
	If necessary, deactivate monitoring (p0437.29).
	See also: p0437 (Sensor Module configuration extended)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A :	NONE


F32152 (N, A)	Encoder 2: Max. signal frequency (track A/B) exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The maximum signal frequency of the encoder evaluation has been exceeded.
	Fault value (r0949, interpret decimal):
	Actual input frequency in Hz .
	See also: p0408
Remedy:	- reduce the speed.
	- Use an encoder with a lower pulse number (p0408).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32153 (N, A)	Encoder 2: Identification error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when identifying the encoder (waiting) $\mathrm{p} 0400=10100$.
	The connected encoder was not able to be identified.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Data length incorrect.
	See also: p0400 (Encoder type selection)
Remedy:	Manually configure the encoder according to the data sheet.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F32160 (N, A) Encoder 2: Analog sensor channel A failed
Message value: \%1
Message class: Actual position/speed value incorrect or not available (11)
Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component: Encoder 2 Propagation: LOCAL
Reaction:
Servo: OFF1 (IASC/DCBRK, NONE)
Vector: OFF1 (IASC/DCBRK, NONE) Hla: OFF1 (NONE)
Acknowledge: PULSE INHIBIT
Cause: The input voltage of the analog sensor is outside the permissible limits.
Fault value (r0949, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside the measuring range set in (p4673).
3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ).

Remedy:	For fault value =1:   - check the output voltage of the analog sensor.   For fault value $=2$ :   - check the voltage setting for each encoder period (p4673).   For fault value $=3$ :   - check the range limit setting and increase it if necessary ( p 4676 ).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A :	NONE
$\overline{\mathrm{F} 32161 \text { (N, A) }}$	Encoder 2: Analog sensor channel B failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE)
	Vector: OFF1 (IASC/DCBRK, NONE)
	Hla: OFF1 (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.   Fault value (r0949, interpret decimal):   1: Input voltage outside detectable measuring range.   2: Input voltage outside the selected measuring range ( p 4675 ).   3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	For fault value =1:   - check the output voltage of the analog sensor.   For fault value $=2$ :   - check the voltage setting for each encoder period (p4675).   For fault value $=3$ :   - check the range limit setting and increase it if necessary ( $p 4676$ ).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32163 (N, A)	Encoder 2: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE)
	Vector: OFF1 (IASC/DCBRK, NONE)
	Hla: OFF1 (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Fault value (r0949, interpret decimal):   1: Position value from the LVDT sensor.   2: Position value from the encoder characteristic.
Remedy:	For fault value $=1$ :   - check the LVDT ratio (p4678).   - check the reference signal connection at track $B$.   For fault value $=2$ :   - check the coefficients of the characteristic (p4663 ... p4666).


Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A32400 (F, N)	Encoder 2: Zero mark distance error (alarm threshold exceeded)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Alarm value (r2124, interpret decimal):
	Last measured zero mark distance in increments (4 increments $=1$ encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A32401 (F, N)	Encoder 2: Zero mark failed (alarm threshold exceeded)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 1.5 x parameterized zero mark distance was exceeded without a zero mark being detected.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Alarm value (r2124, interpret decimal):
	Number of increments after POWER ON or since the last zero mark that was detected ( 4 increments $=1$ encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the clearance between zero marks (p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F32405 (N, A)	Encoder 2: Temperature in the encoder evaluation exceeded
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 $\quad$ Propagation:
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An inadmissibly high temperature was detected in the encoder electronics or the encoder evaluation.
	Fault value (r0949, interpret hexadecimal):
	yyxxxx hex: yy = temperature sensor number, xxxx = measured module temperature in $0.1^{\circ} \mathrm{C}$.
Remedy:	Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A32407 (F, N)	Encoder 2: Function limit reached
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder has reached one of its function limits. A service is recommended.
	Alarm value (r2124, interpret decimal):
	1: Incremental signals
	3: Absolute track
	4: Code connection
	Perform service. Replace the encoder if necessary.
Remedy:	Note:
	The actual functional reserve of an encoder can be displayed via r4651.
	See also: p4650 (Encoder functional reserve component number), r4651 (Encoder functional reserve)
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A32410 (F, N)	Encoder 2: Communication error (encoder and Sensor Module)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	Serial communication protocol transfer error between the encoder and evaluation module.
	Alarm value (r2124, interpret binary):
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgment error: The encoder incorrectly understood the task (request) or cannot execute it.

### 4.2 List of faults and alarms

	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace encoder.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32411 (F, N)	Encoder 2: Encoder signals an internal alarm (detailed information)
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute encoder fault word includes alarm bits that have been set.
	Alarm value (r2124, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, $\mathrm{xxxx}=$ fault cause
	yyyy $=0$ :
	Bit 0: Frequency exceeded (speed too high).
	Bit 1: Temperature exceeded.
	Bit 2: Control reserve, lighting system exceeded.
	Bit 3: Battery discharged.
	Bit 4: Reference point passed.
	yyyy $=1$ :
	Bit 0: Signal amplitude outside the control range.
	Bit 1: Error multiturn interface
	Bit 2: Internal data error (singleturn/multiturn not with single steps).
	Bit 3: Error EEPROM interface.
	Bit 4: SAR converter error.
	Bit 5: Fault for the register data transfer.
	Bit 6: Internal error identified at the error pin ( n Err).
	Bit 7: Temperature threshold exceeded or fallen below.
Remedy:	Replace encoder.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A32412 (F, N)	Encoder 2: Encoder signals an internal alarm
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder signals an internal alarm via serial protocol.
	Alarm value (r2124, interpret binary):
	Bit 0: Fault bit in the position protocol.
	Bit 1: Alarm bit in the position protocol.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace encoder.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32414 (F, N)	Encoder 2: Signal level track C or D out of tolerance
Message value:	C track: \%1, D track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The signal level ( $C^{\wedge} 2+D^{\wedge} 2$ ) of track $C$ or $D$ of the encoder or from the Hall signals, is not within the tolerance bandwidth.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Signal level, track D (16 bits with sign).
	xxxx $=$ Signal level, track C (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response thresholds are $<230 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- check the Hall sensor box.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


N32415 (F, A)	Encoder 2: Signal level track A or B outside tolerance (alarm)
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The signal level (root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$ ) of the encoder is outside the permissible tolerance.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	$\mathrm{xxxx}=$ amplitude, i.e. root of $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$ (16 bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold is $<230 \mathrm{mV}$ (observe the frequency response of the encoder).
	A signal level of 500 mV peak value corresponds to the numerical value 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track B.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV ( $2.0 \mathrm{Vrms)}$. . The response threshold is $<1414 \mathrm{mV}$ ( 1.0 Vrms ).
	A signal level of 2900 mV peak value corresponds to the numerical value $3333 \mathrm{hex}=13107 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range.
	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A32418 (F, N)	Encoder 2: Speed change not plausible (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For an HTL/TTL encoder, the speed change has exceeded the value in p0492 over several sampling cycles.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0492
Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
	- if required, increase the setting of p0492.


Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)   Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A32419 (F, N)	Encoder 2: Track A or B outside tolerance
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The amplitude/phase/offset correction for track $A$ or $B$ is at the limit.
	Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27
	Phase: <84 degrees or >96 degrees
	SMC20: Offset correction: $+/-140 \mathrm{mV}$
	SMC10: Offset correction: $+/-650 \mathrm{mV}$
	Alarm value (r2124, interpret hexadecimal):
	xxxx1: Minimum of the offset correction, track B
	xxxx2: Maximum of the offset correction, track B
	xxx1x: Minimum of the offset correction, track $A$
	xxx2x: Maximum of the offset correction, track $A$
	xx1xx: Minimum of the amplitude correction, track B/A
	xx2xx: Maximum of the amplitude correction, track B/A
	x1xxx: Minimum of the phase error correction
	x2xxx: Maximum of the phase error correction
	1xxxx: Minimum of the cubic correction
	2 xxxx : Maximum of the cubic correction
Remedy:	- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders).   - check the plug connections (also the transition resistance).   - check the encoder signals.   - replace the encoder or encoder cable.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A32421 (F, N) Encoder 2: Determined commutation position incorrect (alarm)
Message value: \%1
Message class: Actual position/speed value incorrect or not available (11)
Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:
Reaction: NONE
Encoder 2 Propagation: LOCAL
Acknowledge: NONE
Cause: A commutation position actual value sensing error was detected.
Alarm value (r2124, interpret decimal):
3: The absolute position of the serial protocol and track $A / B$ differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.

Remedy:	For alarm value = 3:
	- For a standard encoder with cable, contact the manufacturer where relevant.
	- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must
be connected, inverted, at the Sensor Module (interchange A with A* and B with $\mathrm{B}^{*}$ ) or, for a programmable encoder,	
check the zero offset of the position.	
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Reaction upon F:	
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)


Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32431 (F, N)	Encoder 2: Position deviation incremental/absolute too high (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- the first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Alarm value (r2124, interpret decimal):
	Deviation in quadrants (1 pulse $=4$ quadrants).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- Clean coding disk or remove strong magnetic fields.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32432 (F, N)	Encoder 2: Rotor position adaptation corrects deviation
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	On track $A / B$, pulses have been lost or too many have been counted. These pulses are presently being corrected.
	Alarm value (r2124, interpret decimal):
	Last measured deviation of zero mark in increments (4increments = 1 encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check encoder limit frequency.
	- adapt the parameter for the distance between zero marks (p0424, p0425).


Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)   Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A32442 (F, N)	Encoder 2: Battery voltage alarm threshold reached
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The multiturn information can no
	longer be buffered if the battery voltage drops even further.
Remedy:	Replace battery.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)


A32443 (F, N)	Encoder 2: Signal level track C/D outside tolerance (alarm)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The unipolar level (CP/CN or DP/DN) for encoder 2 is outside the permissible tolerance.
	Alarm value (r2124, interpret binary):
	Bit $0=1$ : Either CP or CN outside the tolerance.
	Bit $16=1$ : Either DP or DN outside the tolerance.
	The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
	The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$.
	Note:
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- monitoring active ( $\mathrm{p} 0437.31=1$ ).
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections and contacts of the encoder cable.
	- are the C/D tracks connected correctly (have the signal cables CP and CN or DP and DN been interchanged)?
	- replace the encoder cable.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A32460 (N)	Encoder 2: Analog sensor channel A failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.   Alarm value (r2124, interpret decimal):   1: Input voltage outside detectable measuring range.   2: Input voltage outside measuring range set in p4673.   3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ).
Remedy:	For alarm value $=1$ :   - check the output voltage of the analog sensor.   For alarm value $=2$ :   - check the voltage setting for each encoder period (p4673).   For alarm value $=3$ :   - check the range limit setting and increase it if necessary ( p 4676 ).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32461 (N)	Encoder 2: Analog sensor channel B failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.   Alarm value (r2124, interpret decimal):   1: Input voltage outside detectable measuring range.   2: Input voltage outside the selected measuring range ( p 4675 ).   3: The absolute value of the input voltage has exceeded the range limit ( $p 4676$ ).
Remedy:	For alarm value $=1$ :   - check the output voltage of the analog sensor.   For alarm value $=2$ :   - check the voltage setting for each encoder period (p4675).   For alarm value $=3$ :   - check the range limit setting and increase it if necessary ( p 4676 ).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32462 (N)	Encoder 2: Analog sensor no channel active
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Channel $A$ and $B$ are not activated for the analog sensor.
Remedy:	- activate channel A and/or channel B (p4670).   - check the encoder configuration (p0404.17).   See also: p4670 (Analog sensor configuration)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A32463 (N)	Encoder 2: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$.
	Alarm value (r2124, interpret decimal):
	1: Position value from the LVDT sensor.
	2: Position value from the encoder characteristic.
Remedy:	For alarm value $=1$ :
	- check the LVDT ratio (p4678).
	- check the reference signal connection at track B.
	For alarm value $=2$ :
	- check the coefficients of the characteristic (p4663 ... p4666).
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A32470 (F, N)	Encoder 2: Encoder signals an internal error (X521.7)
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the Sensor Module Cabinet 30 (SMC30), a dirty encoder is signaled via a 0 signal at terminal X521.7.
Remedy:	- check the plug connections.
	- replace the encoder or encoder cable.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)         Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

## F32500 (N, A) Encoder 2: Position tracking traversing range exceeded

Message value:
Message class: Actual position/speed value incorrect or not available (11)
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## Remedy:

HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL
OFF1 (NONE, OFF2, OFF3)
IMMEDIATELY

For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p0412 and interpreted as the number of motor revolutions. For $\mathrm{p} 0411.0=1$, the maximum traversing range for the configured linear axis is defined to be $64 x(+/-32 x)$ of $p 0421$. For p0411.3 = 1, the maximum traversing range for the configured linear axis is preset (default value) to the highest possible value and is +/-p0412/2 (rounded off to complete revolutions). The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).

- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- deselect encoder commissioning (p0010 = 0).

The fault should then be acknowledged and the absolute encoder adjusted.

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32501 (N, A)	Encoder 2: Position tracking encoder position outside tolerance window
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When switched off, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.
	Fault value (r0949, interpret decimal):
	Deviation (difference) to the last encoder position in increments of the absolute value.
	The sign designates the traversing direction.
	Note:
	The deviation (difference) found is also displayed in r0477.
	See also: p0413 (Measuring gear position tracking tolerance window), r0477 (Measuring gear position difference)
Remedy:	Reset the position tracking as follows:
	- select encoder commissioning (p0010 = 4).
	- reset the position tracking as follows (p0411.2 = 1).
	- deselect encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
	See also: p0010, p2507
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F32502 (N, A) Encoder 2: Encoder with measuring gear without valid signals
Message value: -
Message class: Actual position/speed value incorrect or not available (11)
Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:
Sensor Module Encoder 2 Propagation: GLOBAL
Reaction:
Acknowledge:
OFF1 (OFF2, OFF3)
IMMEDIATELY
Cause:
Remedy:
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE
F32503 (N, A) Encoder 2: Position tracking cannot be reset
Message value:
Message class: Actual position/speed value incorrect or not available (11)
Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component: None Propagation: GLOBAL
Reaction
Acknowledge
OFF1 (NONE, OFF2, OFF3)
IMMEDIATELY
Cause:

[^29]
### 4.2 List of faults and alarms

Remedy:	The fault should be resolved as follows:   - select encoder commissioning ( $p 0010=4$ ).   - reset the position tracking as follows (p0411.2 = 1).   - deselect encoder commissioning ( $\mathrm{p} 0010=0$ ).   The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A32700	Encoder 2: Effectivity test does not supply the expected value
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
	Alarm value (r2124, interpret binary):
	Bit $\mathrm{x}=1$ : Effectivity test x unsuccessful.
Remedy:	Replace encoder.
N32800 (F)	Encoder 2: Group signal
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Ha: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	NONE
Cause:	The motor encoder has detected at least one fault.
Remedy:	Evaluates other actual messages.
Reaction upon F:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Ha: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

F32801 (N, A) Encoder 2 DRIVE-CLiQ: Sign-of-life missing
Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object:
Component: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

Reaction:

Acknowledge: Control Unit (CU) Propagation: LOCAL

Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved
Fault cause:
10 (= 0A hex)
The sign-of-life bit in the receive telegram is not set.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause

Remedy:	- check the electrical cabinet design and cable routing for EMC compliance   - replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32802 (N, A)	Encoder 2: Time slice overflow
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred in encoder 2.
	Fault value (r0949, interpret hexadecimal):   $y x$ hex: $y=$ function involved (Siemens-internal fault diagnostics), $x=$ time slice involved $x=9$ :
	Time slice overflow of the fast (current controller clock cycle) time slice. $\mathrm{x}=\mathrm{A}$ :
	Time slice overflow of the average time slice. $\mathrm{x}=\mathrm{C}$ :
	Time slice overflow of the slow time slice. $y x=3 E 7$ :
	Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).
Remedy:	Increase the current controller sampling time
	Note:
	For a current controller sampling time $=31.25 \mu \mathrm{~s}$, use an SMx20 with Article No. 6SL3055-0AA00-5xA3 .
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F32804 (N, A)	Encoder 2: Sensor Module checksum error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON (IMMEDIATELY)
Cause:	A checksum error has occurred when reading-out the program memory on the Sensor Module.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex
	yyyy: Memory area involved.
	xxxx: Difference between the checksum at POWER ON and the actual checksum.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- upgrade firmware to later version (>= V2.6 HF3, >= V4.3 SP2, >= V4.4).
	- check whether the permissible ambient temperature for the component is maintained.


Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32805 (N, A)	Encoder 2: EEPROM checksum error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Data in the EEPROM corrupted.
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
Remedy:	02: Too many blocks in the EEPROM.
Reaction upon N:	Replace the module.
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F32806 (N, A) Encoder 2: Initialization error
Message value: $\% 1$

Message class: Actual position/speed value incorrect or not available (11)
Drive object:
Component:
Reaction:

Cause: The encoder was not successfully initialized.
Fault value (r0949, interpret hexadecimal):
Bit 0, 1: Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in encoder pulses/4).
Bit 2: Mid-voltage matching for track A unsuccessful.
Bit 3: Mid-voltage matching for track $B$ unsuccessful.
Bit 4: Mid-voltage matching for acceleration input unsuccessful.
Bit 5: Mid-voltage matching for track safety $A$ unsuccessful.
Bit 6: Mid-voltage matching for track safety $B$ unsuccessful.
Bit 7: Mid-voltage matching for track $C$ unsuccessful.
Bit 8: Mid-voltage matching for track D unsuccessful.
Bit 9: Mid-voltage matching for track R unsuccessful.
Bit 10: The difference in mid-voltages between $A$ and $B$ is too great (> 0.5 V )
Bit 11: The difference in mid-voltages between $C$ and $D$ is too great ( $>0.5 \mathrm{~V}$ )
Bit 12: The difference in mid-voltages between safety $A$ and safety $B$ is too great ( $>0.5 \mathrm{~V}$ )
Bit 13: The difference in mid-voltages between $A$ and safety $B$ is too great (>0.5 V)
Bit 14: The difference in mid-voltages between $B$ and safety $A$ is too great (>0.5 V)
Bit 15: The standard deviation of the calculated mid-voltages is too great (> 0.3 V )
Bit 16: Internal fault - fault when reading a register (CAFE)
Bit 17: Internal fault - fault when writing a register (CAFE)
Bit 18: Internal fault: No mid-voltage matching available
Bit 19: Internal error - ADC access error.

	Bit 20: Internal error - no zero crossover found.
	Bit 28: Error while initializing the EnDat 2.2 measuring unit.
	Bit 29: Error when reading out the data from the EnDat 2.2 measuring unit.
	Bit 30: EEPROM checksum of the EnDat 2.2 measuring unit incorrect.
	Bit 31: Data of the EnDat 2.2 measuring unit inconsistent.
	Note:
	Bit 0, 1: Up to 6SL3055-0AA00-5*A0
	Bits $2 . . .20$ : 6SL3055-0AA00-5*A1 and higher
Remedy:	Acknowledge fault.
	If the fault cannot be acknowledged:
	Bits 2 ... 9: Check encoder power supply.
	Bits $2 \ldots$ 14: Check the corresponding cable.
	Bit 15 with no other bits: Check track R, check settings in p0404.
	Bit 28: Check the cable between the EnDat 2.2 converter and the measuring unit.
	Bit 29 ... 31: Replace the defective measuring unit.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A :	NONE
A32811 (F, N)	Encoder 2: Encoder serial number changed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder serial number has changed. The change is only checked for encoders with serial number (e.g. EnDat encoders).
	- the encoder was replaced.
	Note:
	With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
	When the encoder is adjusted ( $\mathrm{p} 2507=3$ ), the serial number is checked for changes and if required, the adjustment is reset ( $\mathrm{p} 2507=1$ ).
	Proceed as follows to hide serial number monitoring:
	- set the following serial numbers for the corresponding Encoder Data Set: p0441= FF, p0442 = 0, p0443 = 0, p0444 $=0, p 0445=0$.
Remedy:	Mechanically adjust the encoder. Accept the new serial number with p0440 $=1$.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F32812 (N, A)	Encoder 2: Requested cycle or RX-/TX timing not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A cycle requested from the Control Unit or RX/TX timing is not supported.
	Fault value (r0949, interpret decimal):
	0 : Application cycle is not supported.
	1: DRIVE-CLiQ cycle is not supported.
	2: Distance between RX and TX instants in time too low.
	3: TX instant in time too early.

### 4.2 List of faults and alarms

Remedy:	Carry out a POWER ON (switch-off/switch-on) for all components.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32813	Encoder 2: Hardware logic unit failed
Message value:	Fault cause: \%1 bin
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: GLOBAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The logic unit of the DRIVE-CLiQ encoder has failed.
	Fault value (r0949, interpret binary):
	Bit 0: ALU watchdog has responded.
	Bit 1: ALU has detected a sign-of-life error.
Remedy:	When the error reoccurs, replace the encoder.


F32820 (N, A)	Encoder 2 DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $y \mathrm{y}=$ component number, $\mathrm{xx}=$ error cause


Remedy:	- carry out a POWER ON (switch-off/switch-on).   - check the electrical cabinet design and cable routing for EMC compliance   - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32835 (N, A)	Encoder 2 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $x$ x = error cause
Remedy:	- carry out a POWER ON.
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32836 (N, A)	Encoder 2 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32837 (N, A)	Encoder 2 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F32845 (N, A)	Encoder 2 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: GLOBAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON (switch-off/switch-on).


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32850 (N, A)	Encoder 2: Encoder evaluation internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: GLOBAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the Sensor Module of encoder 2.
	Fault value (r0949, interpret decimal):
	1: Background time slice is blocked.
	2. Checksum over the code memory is not OK.
	10000: OEM memory of the EnDat encoder contains data that cannot be interpreted.
	11000 ... 11499: Descriptive data from EEPROM incorrect.
	11500 ... 11899: Calibration data from EEPROM incorrect.
	11900 ... 11999: Configuration data from EEPROM incorrect.
	12000 ... 12008: communication with analog/digital converter faulted.
	16000: DRIVE-CLiQ encoder initialization application error.
	16001: DRIVE-CLiQ encoder initialization ALU error.
	16002: DRIVE-CLiQ encoder HISI / SISI initialization error.
	16003: DRIVE-CLiQ encoder safety initialization error.
	16004: DRIVE-CLiQ encoder internal system error.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact Technical Support.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32851 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- Upgrade the firmware of the component involved.
	- carry out a POWER ON (switch-off/switch-on) for the component involved.

### 4.2 List of faults and alarms

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32860 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. 20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early.
	22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32875 (N, A)	Encoder 2: power supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32885 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause

### 4.2 List of faults and alarms

Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.

F32886 (N, A) Encoder 2 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object:
Component: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

Reaction:

Acknowledge: Sensor Module Encoder 2 Propagation: LOCAL
Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3) Hla: OFF1 (NONE, OFF2, OFF3)

- IMMEDIATELY

	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	O000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE

F32887 (N, A) Encoder 2 DRIVE-CLiQ (CU): Component fault
Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component: Sensor Module Encoder 2 Propagation: LOCAL
Reaction:
Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Ha: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 2). Faulty hardware cannot be excluded.
Fault cause:
32 (= 20 hex):
Error in the telegram header.
35 (= 23 hex):
Receive error: The telegram buffer memory contains an error.
66 (= 42 hex):
Send error: The telegram buffer memory contains an error.
67 (= 43 hex):
Send error: The telegram buffer memory contains an error.
96 (= 60 hex):
Response received too late during runtime measurement.
97 (= 61 hex):
Time taken to exchange characteristic data too long.

	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32895 \text { ( } \mathrm{N}, \mathrm{A})}$	Encoder 2 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32896 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Sensor Module for encoder 2), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
Reaction upon N :	NONE
Acknowl. upon N :	NONE

### 4.2 List of faults and alarms

Reaction upon A: Acknowl. upon A:	NONE NONE
F32899 (N, A)	Encoder 2: Unknown fault
Message value:	New message: \%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.
	Note:
	If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A32902 (F, N)	Encoder 2: SPI-BUS error occurred
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal SPI bus.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact Technical Support.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A32903 (F, N)	Encoder 2: I2C-BUS error occurred		
Message value:	\%1		
Message class:	Hardware/software error (1)		
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC		Propagation:
Component:	Sensor Module Encoder 2		
Reaction:	NONE		
Acknowledge:	NONE		
Cause:	Error when operating the internal I2C bus.		
	Alarm value (r2124, interpret hexadecimal):		
	Only for internal Siemens troubleshooting.		



### 4.2 List of faults and alarms

Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.   - correct the parameter specified by the fault value (r0949) and p0187.   - re parameter number $=314$ :   - check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32912	Encoder 2: Device combination is not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2 Propagation: GLOBAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE)
	Vector: OFF1 (IASC/DCBRK, NONE)
	Hla: OFF1 (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The selected device combination is not supported.
	Fault value (r0949, interpret decimal): 1003:
	The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$. $1005:$
	The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter. 1006:
	The maximum duration of the EnDat transfer ( $31.25 \mu \mathrm{~s}$ ) was exceeded. 2001:
	The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter. 2002:
	The resolution of the linear measuring unit does not match the pole pair width of the linear motor
	Pole pair width, minimum $=$ p0422 * $2^{\wedge} 20$
Remedy:	For fault value $=1003,1005,1006$ :
	- Use a measuring unit that is permissible.
	For fault value = 2001:
	- set a permissible cycle combination (if required, use standard settings).
	For fault value $=2002$ :
	- Use a measuring unit with a lower resolution (p0422).


A32915 (F, N)	Encoder 2: Encoder configuration error
Message value:	$\% 1$

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Component:
Reaction:
Acknowledge:
Cause: The configuration for encoder 2 is incorrect.
Alarm value (r2124, interpret decimal):
1:
Re-parameterization between fault/alarm is not permissible.
419:

When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual value (r0483) that can no longer be represented within 32 bits.

Remedy:	For alarm value $=1$ :
	No re-parameterization between fault/alarm.
	For alarm value $=419$ :
	Reduce the fine resolution (p0419) or deactivate the monitoring ( $p 0437.25$ ), if the comp required.
Reaction upon F:	Servo: NONE (IASC/DCBRK)
	Vector: NONE (IASC/DCBRK)
	Hla: NONE
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F32916 (N, A)	Encoder 2: Encoder parameterization error
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: GLOBAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	An encoder parameter was detected as being incorrect.
	It is possible that the parameterized encoder type does not match the connected encod
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	Parameter number.
Remedy:	- check whether the connected encoder type matches the encoder that has been param   - correct the parameter specified by the fault value (r0949) and p0187.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A32920 (F, N)	Encoder 2: Temperature sensor fault (motor)
Message value:	Fault cause: \%1, channel number: \%2
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor detected a fault when evaluating the temperature sensor.
	Fault cause:
	1 (= 01 hex):
	Wire breakage or sensor not connected.
	KTY: R > 1630 Ohm, PT1000: R > 1720 Ohm
	2 (= 02 hex):
	Measured resistance too low.
	PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm, PT1000: R < 603 Ohm
	Additional values:
	Only for internal Siemens troubleshooting.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ channel number, $\mathrm{xx}=$ error cause

### 4.2 List of faults and alarms



A32940 (F, N)	Encoder 2: Spindle sensor S1 voltage incorrect
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage of analog sensor S1 is outside the permissible range.
	Alarm value (r2124, interpret decimal):
	Signal level from sensor S1.
	Note:
	A signal level of 500 mV corresponds to the numerical value 500 dec.
Remedy:	- check the clamped tool.
	- check the tolerance and if required, adapt (p5040).
	- check the thresholds and if required, adapt (p5041).
	- check analog sensor S1 and connections.
	See also: p5040 (Spindle voltage threshold values tolerance), p5041 (Spindle voltage threshold values)


Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F32950	Encoder 2: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Information about the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- if necessary, upgrade the firmware in the Sensor Module to a later version.
	- contact Technical Support.
A32999 (F, N)	Encoder 2: Unknown alarm
Message value:	New message: \%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 2 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A alarm has occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F33100 (N, A)	Encoder 3: Zero mark distance error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)


F33103 (N, A)	Encoder 3: Signal level zero track (track R) outside tolerance
Message value:	R track: \%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The zero mark signal level (track R) does not lie within the tolerance bandwidth for encoder 1.
	The fault can be initiated when the unipolar voltage level is exceeded (RP/RN) or if the differential amplitude is undershot.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex: yyyy = 0, xxxx = Signal level, track R (16 bits with sign)
	The response thresholds of the unipolar signal levels of the encoder are between < 1400 mV and $>3500 \mathrm{mV}$.
	The response threshold for the differential signal level of the encoder is $<-1600 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	The analog value of the amplitude error is not measured at the same time with the hardware fault output by the Sensor Module.
	The fault value can only be represented between -32768 .. $32767 \mathrm{dec}(-770 \ldots 770 \mathrm{mV}$ ) .
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31-1).
	- monitoring active (p0437.31 = 1).
Remedy:	- check the speed range; frequency characteristic (amplitude characteristic) of the measuring equipment might not be sufficient for the speed range
	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections and contacts of the encoder cable.
	- check the encoder type (encoder with zero marks).
	- check whether the zero mark is connected and the signal cables RP and RN have been connected correctly (not connected with the incorrect polarity).
	- replace the encoder cable.
	- if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33110 (N, A)	Encoder 3: Serial communications error
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	There is an error in the transfer of the serial communication protocol between the encoder and internal or external evaluation module.
	Fault value (r0949, interpret binary):
	For an EnDat 2.1 encoder, the significance of the fault value is as follows:
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.

### 4.2 List of faults and alarms

Bit 4: Encoder acknowledgment error: The encoder incorrectly understood the task (request) or cannot execute it.
Bit 5: Internal error in the serial driver: An illegal mode command was requested.
Bit 6: Timeout when cyclically reading.
Bit 7: Timeout for the register communication.
Bit 8: Protocol is too long (e.g. > 64 bits).
Bit 9: Receive buffer overflow.
Bit 10: Frame error when reading twice.
Bit 11: Parity error.
Bit 12: Data line signal level error during the monoflop time.
Bit 13: Data line incorrect.
Bit 14: Fault for the register communication.
Bit 15: Internal communication error.

## Note:

For an EnDat 2.2 encoder, the significance of the fault value for $\operatorname{F3x135}(x=1,2,3)$ is described.
Remedy:

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

$\overline{\mathrm{F} 33111 \text { (N, A) }}$	Encoder 3: Encoder signals an internal error (detailed information)
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder error word provides detailed information (error bit).
	For p0404.8 = 0, the following applies:
	Fault value for internal Siemens troubleshooting.
	For p0404.8 = 1, the following applies:
	Fault value (r0949, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause
	yyyy $=0$ :
	Bit 0: Lighting system failed.
	Bit 1: Signal amplitude too low.
	Bit 2: Position value incorrect.
	Bit 3: Encoder power supply overvoltage condition.
	Bit 4: Encoder power supply undervoltage condition.
	Bit 5: Encoder power supply overcurrent condition.
	Bit 6: The battery must be changed.
Remedy:	For yyyy = 0:
	For fault value, bit $0=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $1=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $2=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $3=1$ :
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
	For fault value, bit $4=1$ :
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When using a motor with DRIVE-CLiQ: Replace the motor.
	For fault value, bit $5=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	For fault value, bit $6=1$ :
	The battery must be changed (only for encoders with battery back-up).
	For yyyy = 1 :
	Encoder is defective. Replace encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F33112 (N, A)	Encoder 3: Encoder signals an internal error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)         Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)


F33116 (N, A)	Encoder 3: Signal level track A or B too low
Message value:	A track: \%1, B-track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The signal level of the rectified encoder signals A and B of the encoder fall below the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track B (16 bits with sign).
	xxxx = Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold is $<130 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A :	NONE
F33117 (N, A)	Encoder 3: Inversion error signals A/B/R
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Ha: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For a square-wave encoder (bipolar, double ended) signals $A^{*}, B^{*}$ and $R^{*}$ are not inverted with respect to signals $A$, $B$ and $R$.
	Fault value (r0949, interpret binary):
	Bits $0 . .15$ : Only for internal Siemens troubleshooting.
	Bit 16: Error track A.
	Bit 17: Error track B.
	Bit 18: Error track R.
	Note:
	For SMC30 (only Article No. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1), CUA32, and CU310, the following applies:
	A square-wave encoder without track R is used and track monitoring ( $\mathrm{p} 0405.2=1$ ) is activated.

### 4.2 List of faults and alarms

Remedy:	- check the encoder/cable.
	- Does the encoder supply signals and the associated inverted signals?
	Note:
	For SMC30 (only Article Number 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1), the following applies: - check the setting of p0405 (p0405.2 = 1 is only possible if the encoder is connected at X520).
	For a square-wave encoder without track $R$, the following jumpers must be set for the connection at X520 (SMC30) or X23 (CUA32, CU310):
	- pin 10 (reference signal R) <--> pin 7 (encoder power supply, ground)
	- pin 11 (reference signal R inverted) <--> pin 4 (encoder power supply)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 33118 \text { (N, A) }}$	Encoder 3: Speed change not plausible
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	For an HTL/TTL encoder, the speed change has exceeded the value in p0492 over several sampling cycles.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time. Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0492
Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
	- if required, increase the maximum speed difference per sampling cycle (p0492).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE

F33120 (N, A) Encoder 3: Encoder power supply fault

Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)

Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:
,
Reaction:
Encoder 3 Propagation: LOCAL

Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3) Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: An encoder power supply fault was detected.
Fault value (r0949, interpret binary):
Bit 0: Undervoltage condition on the sense line.
Bit 1: Overcurrent condition for the encoder power supply.
Bit 2: Overcurrent condition for encoder power supply on cable resolver excitation negative.
Bit 3: Overcurrent condition for encoder power supply on cable resolver excitation positive.
Bit 4: The 24 V power supply through the Power Module (PM) is overloaded.
Bit 5: Overcurrent at the EnDat connection of the converter.
Bit 6: Overvoltage at the EnDat connection of the converter.
Bit 7: Hardware fault at the EnDat connection of the converter.


F33123 (N, A)	Encoder 3: Signal level A/B outside tolerance
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The unipolar level (AP/AN or BP/BN) for encoder 3 is outside the permissible tolerance.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : Either AP or AN outside the tolerance.
	Bit $16=1$ : Either BP or BN outside the tolerance.
	The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
	The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$.
	Note:
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- monitoring active (p0437.31 = 1).
Remedy:	- make sure that the encoder cables and shielding are installed in an EMC-compliant manner.   - check the plug connections and contacts of the encoder cable.
	- check the short-circuit of a signal cable with mass or the operating voltage.
	- replace the encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

## F33125 (N, A) Encoder 3: Signal level track A or B too high

Message value: A track: \%1, B-track: \%2
Message class: Actual position/speed value incorrect or not available (11)
Drive object:
Component:
Reaction:

Acknowledge: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

Cause: The signal level (root from $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$ ) of the encoder exceeds the permissible limit value.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Signal level, track B (16 bits with sign).
xxxx = Signal level, track A (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to $600 \mathrm{mV}(500 \mathrm{mV}-25 /+20 \%)$.
The response threshold is $>750 \mathrm{mV}$.
A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
Note for Sensor Modules for resolvers (e.g. SMC10):
The nominal signal level is at 2900 mV ( 2.0 Vrms ).
The response threshold is $>3582 \mathrm{mV}$.
A signal level of 2900 mV peak value corresponds to the numerical value 6666 hex $=26214 \mathrm{dec}$.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy: - check that the encoder cables and shielding are routed in compliance with EMC.

- replace the encoder or encoder cable.

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\text { F33126 (N, A) }}$	Encoder 3: Signal level track A or B too high
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge: Cause:	PULSE INHIBIT
	The signal level ( $\|\mathrm{A}\|+\|\mathrm{B}\|)$ of the encoder exceeds the permissible limit value.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	$x x x x=$ amplitude, i.e. root of $A^{\wedge} 2+B^{\wedge} 2(16$ bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold for ( $\|A\|+\|B\|)$ is $>1120 \mathrm{mV}$ or the root of $\left(A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track $B$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE

## F33129 (N, A) Encoder 3: Position difference hall sensor/track C/D and A/B too large

Message value:	$\% 1$
Message class:	Actual position/speed value incorrect or not available (11)

Drive object:
Component:
Reaction:
HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Encoder $3 \quad$ Propagation: LOCAL

Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Ha: OFF1 (NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: $\quad$ The error for track $\mathrm{C} / \mathrm{D}$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.
One period of track C/D corresponds to $360^{\circ}$ mechanical.
One period of the Hall signal corresponds to $360^{\circ}$ electrical
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A33429.
Fault value (r0949, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle ( 16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).

### 4.2 List of faults and alarms

Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.	
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F33130 (N, A)	Encoder 3: Zero mark and position error from the coarse synchronization
Message value:	Angular deviation, electrical: \%1, angle, mechanical: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.
	When initializing via track C/D (p0404) then it is checked whether the zero mark occurs in an angular range of $+/-18^{\circ}$ mechanical.
	When initializing via Hall sensors ( p 0404 ) or pole position identification ( p 1982 ) it is checked whether the zero mark occurs in an angular range of $+/-60^{\circ}$ electrical.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex
	yyyy: Determined mechanical zero mark position (can only be used for track C/D).
	xxxx: Deviation of the zero mark from the expected position as electrical angle.
	Scaling: $32768 \mathrm{dec}=180^{\circ}$
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- if the Hall sensor is used as an equivalent for track C/D, check the connection.
	- check the connection of track C or D.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE

F33131 (N, A) Encoder 3: Position deviation incremental/absolute too high
Message value: \%1
Message class: Actual position/speed value incorrect or not available (11)
Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:
Reaction:

## Cause: <br> Absolute encoder:

Acknowledge: PULSE INHIBIT

When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected.
Limit value for the deviation:

- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI $1325>2$ quadrants, EQN $1325>50$ quadrants).
- other encoders: 15 pulses = 60 quadrants.

	Incremental encoder:
	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- the first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have $n$ times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Fault value (r0949, interpret decimal):
	Deviation in quadrants ( 1 pulse $=4$ quadrants).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check whether the coding disk is dirty or there are strong ambient magnetic fields.
	- adapt the parameter for the clearance between zero marks (p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33135	Encoder 3: Fault when determining the position (singleturn)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: GLOBAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder has identified a position determination fault (singleturn) and supplies status information bit by bit in an internal status/fault word.
	Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
	Note regarding the bit designation:
	The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
	Fault value (r0949, interpret binary):
	Bit 0: F1 (safety status display).
	Bit 1: F2 (safety status display).
	Bit 2: Reserved (lighting).
	Bit 3: Reserved (signal amplitude).
	Bit 4: Reserved (position value).
	Bit 5: Reserved (overvoltage).
	Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, $x=1,2,3$ ).
	Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state ( $-->\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
	Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, x $=1,2,3$ ).
	Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, $\mathrm{x}=1,2,3$ ).
	Bit 11: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, x=1,2,3$ ).
	Bit 12: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
	Bit 13: Reserved/internal communication error (--> $73 \times 110, x=1,2,3$ ).
	Bit 14: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
	Bit 15: Internal communication error (--> F3x110, $\mathrm{x}=1,2,3$ ).
	Bit 16: Lighting (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 17: Signal amplitude (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 18: Singleturn position 1 (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 19: Overvoltage (--> $\mathrm{F} 3 \times 135, \mathrm{x}=1,2,3$ ).


	Bit 20: Undervoltage (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 21: Overcurrent (--> F3x135, $x=1,2,3)$.
	Bit 22: Temperature exceeded (--> F3x405, $x=1,2,3$ ).
	Bit 23: Singleturn position 2 (safety status display).
	Bit 24: Singleturn system (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 25: Singleturn power down (--> F3x135, $x=1,2,3$ )
	Bit 26: Multiturn position 1 (--> F3x136, $\mathrm{x}=1,2,3$ ).
	Bit 27: Multiturn position 2 (--> F3x136, $\mathrm{x}=1,2,3$ ).
	Bit 28: Multiturn system (--> $3 \times 136, x=1,2,3$ ).
	Bit 29: Multiturn power down (--> F3x136, $x=1,2,3$ ).
	Bit 30: Multiturn overflow/underflow (--> F3x136, $x=1,2,3$ ).
	Bit 31: Multiturn battery (reserved).
Remedy:	- determine the detailed cause of the fault using the fault value.
	- replace the encoder if necessary.
	Note:
	An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
	If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON (switch-off/switch-on) is necessary to acknowledge the faul.
F33136	Encoder 3: Fault when determining the position (multiturn)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: GLOBAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder has identified a position determination fault (multiturn) and supplies status information bit by bit in an internal status/fault word.
	Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
	Note regarding the bit designation:
	The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
	Fault value (r0949, interpret binary):
	Bit 0: F1 (safety status display).
	Bit 1: F2 (safety status display).
	Bit 2: Reserved (lighting).
	Bit 3: Reserved (signal amplitude).
	Bit 4: Reserved (position value).
	Bit 5: Reserved (overvoltage).
	Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, x = 1, 2, 3).
	Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, $x=1,2,3$ ).
	Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, x = 1, 2, 3).
	Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, $\mathrm{x}=1,2,3$ ).
	Bit 11: Reserved/internal communication error (--> F3x110, $x=1,2,3)$.
	Bit 12: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
	Bit 13: Reserved/internal communication error (--> F3x110, $x=1,2,3)$.
	Bit 14: Reserved/internal communication error (--> F3x110, $\mathrm{x}=1,2,3$ ).
	Bit 15: Internal communication error (--> F3x110, $x=1,2,3$ ).
	Bit 16: Lighting (--> F3x135, $x=1,2,3$ ).
	Bit 17: Signal amplitude (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 18: Singleturn position 1 (--> F3x135, $x=1,2,3$ ).
	Bit 19: Overvoltage (--> F3x135, $\mathrm{x}=1,2,3$ ).
	Bit 20: Undervoltage (--> F3x135, $x=1,2,3$ ).
	Bit 21: Overcurrent (--> F3x135, $x=1,2,3)$.

```
Bit 22: Temperature exceeded (--> F3x405, x = 1, 2, 3).
Bit 23: Singleturn position 2 (safety status display).
Bit 24: Singleturn system (--> F3x135, x=1, 2, 3).
Bit 25: Singleturn power down (--> F3x135, x = 1, 2, 3)
Bit 26: Multiturn position 1 (--> F3x136, x = 1, 2, 3).
Bit 27: Multiturn position 2 (--> F3x136, x=1, 2, 3).
Bit 28: Multiturn system (--> F3x136, x=1, 2, 3).
Bit 29: Multiturn power down (--> F3x136, x=1, 2, 3).
Bit 30: Multiturn overflow/underflow (--> F3x136, x = 1, 2, 3).
Bit 31: Multiturn battery (reserved).
Remedy: - determine the detailed cause of the fault using the fault value
- replace the encoder if necessary.
Note:
An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON
(switch-off/switch-on) is necessary to acknowledge the fault.
```


## F33137

Message value:
Message class:
Drive object:
Component:
Reaction:

## Acknowledge:

Cause:

Encoder 3: Fault when determining the position (singleturn)
Fault cause: \%1 bin Hardware/software error (1)
HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Encoder 3 Propagation: GLOBAL

Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Hla: OFF1 (NONE, OFF2, OFF3)
PULSE INHIBIT
A position determination fault has occurred in the DRIVE-CLiQ encoder.
Fault value (r0949, interpret binary):
yyxxxxxx hex: $y y=$ encoder version, $x x x x x x=$ bit coding of the fault cause

```
```

For yy = 8 (0000 1000 bin), the following applies:

```
```

For yy = 8 (0000 1000 bin), the following applies:
Bit 1: Signal monitoring (sin/cos).
Bit 1: Signal monitoring (sin/cos).
Bit 8: F1 (safety status display) error position word 1.
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: LED monitoring.
Bit 16: LED monitoring.
Bit 17: Fault when determining the position (multiturn).
Bit 17: Fault when determining the position (multiturn).
Bit 23: Temperature outside the limit values.
Bit 23: Temperature outside the limit values.
For yy = 11 (0000 1011 bin), the following applies:
For yy = 11 (0000 1011 bin), the following applies:
Bit 0: Position word 1 difference between rotation counter and software counter (XC_ERR).
Bit 0: Position word 1 difference between rotation counter and software counter (XC_ERR).
Bit 1: Position word }1\mathrm{ track error of the incremental signals (LIS_ERR).
Bit 1: Position word }1\mathrm{ track error of the incremental signals (LIS_ERR).
Bit 2: Position word }1\mathrm{ error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 2: Position word }1\mathrm{ error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 3: Maximum permissible temperature exceeded (TEMP_ERR).
Bit 3: Maximum permissible temperature exceeded (TEMP_ERR).
Bit 4: Power supply overvoltage (MON_OVR_VOLT).
Bit 4: Power supply overvoltage (MON_OVR_VOLT).
Bit 5: Power supply overcurrent (MON_OVR_CUR).
Bit 5: Power supply overcurrent (MON_OVR_CUR).
Bit 6: Power supply undervoltage (MON_UND_VOLT).
Bit 6: Power supply undervoltage (MON_UND_VOLT).
Bit 7: Rotation error counter (MT_ERR).
Bit 7: Rotation error counter (MT_ERR).
Bit 8: F1 (safety status display) error position word 1.
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 9: F2 (safety status display) error position word 2.
Bit 11: Position word }1\mathrm{ status bit: singleturn position OK (ADC_ready).
Bit 11: Position word }1\mathrm{ status bit: singleturn position OK (ADC_ready).
Bit 12: Position word 1 status bit: rotation counter OK (MT_ready).
Bit 12: Position word 1 status bit: rotation counter OK (MT_ready).
Bit 13: Position word }1\mathrm{ memory error (MEM_ERR).
Bit 13: Position word }1\mathrm{ memory error (MEM_ERR).
Bit 14: Position word 1 absolute position error (MLS_ERR).
Bit 14: Position word 1 absolute position error (MLS_ERR).
Bit 15: position word 1 LED error, lighting unit error (LED_ERR).
Bit 15: position word 1 LED error, lighting unit error (LED_ERR).
Bit 18: Position word 2 error when aligning between incremental track signals and absolute value (ST_ERR).

```
```

Bit 18: Position word 2 error when aligning between incremental track signals and absolute value (ST_ERR).

```
```

Bit 21: Position word 2 memory error (MEM_ERR).
Bit 22: Position word 2 absolute position error (MLS_ERR).
Bit 23: position word 2 LED error, lighting unit error (LED_ERR).
For yy = 12 (0000 1100 bin$)$, the following applies:
Bit 8: encoder fault.
Bit 10: error in the internal position data transport.

For yy = 14 (0000 1110 bin ), the following applies:
Bit 0: Position word 1 temperature outside limit value.
Bit 1: Position word 1 position determination error (multiturn).
Bit 2: Position word 1 FPGA error.
Bit 3: Position word 1 velocity error.
Bit 4: Position word 1 communication error between FPGAs/error in the incremental signal.
Bit 5: Position word 1 timeout absolute value/error when determining the position (singleturn).
Bit 6: Position word 1 internal hardware fault (clock/power monitor IC/power).
Bit 7: Position word 1 internal error (FPGA communication/FPGA parameterization/self-test/software).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: Position word 2 temperature outside limit value.
Bit 17: Position word 2 position determination error (multiturn).
Bit 18: Position word 2 FPGA error.
Bit 19: Position word 2 velocity error.
Bit 20: Position word 2 communication error between FPGAs.
Bit 21: Position word 2 position determination error (singleturn).
Bit 22: Position word 2 internal hardware fault (clock/power monitor IC/power).
Bit 23: Position word 2 internal error (self-test/software).
Note:
For an encoder version that is not described here, please contact the encoder manufacturer for more detailed information on the bit coding.
Remedy: - determine the detailed cause of the fault using the fault value.

- if required, replace the DRIVE-CLiQ encoder.

F33138
Message value:

## Message class:

Drive object:
Component:
Reaction:

Acknowledge:
Cause:

## Encoder 3: Fault when determining the position (multiturn)

## Fault cause: \%1 bin

 Hardware/software error (1) HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC Encoder 3 Propagation: GLOBALServo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Hla: OFF1 (NONE, OFF2, OFF3)
PULSE INHIBIT
A position determination fault has occurred in the DRIVE-CLiQ encoder.
Fault value (r0949, interpret binary):
yyxxxxxx hex: $y y=$ encoder version, $x x x x x x=$ bit coding of the fault cause

[^30]For yy = 11 (0000 1011 bin), the following applies:
Bit 0: Position word 1 difference between rotation counter and software counter (XC_ERR).
Bit 1: Position word 1 track error of the incremental signals (LIS_ERR).
Bit 2: Position word 1 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 3: Maximum permissible temperature exceeded (TEMP_ERR).
Bit 4: Power supply overvoltage (MON_OVR_VOLT).
Bit 5: Power supply overcurrent (MON_OVR_CUR).
Bit 6: Power supply undervoltage (MON_UND_VOLT).
Bit 7: Rotation error counter (MT_ERR).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 11: Position word 1 status bit: singleturn position OK (ADC_ready).
Bit 12: Position word 1 status bit: rotation counter OK (MT_ready).
Bit 13: Position word 1 memory error (MEM_ERR).
Bit 14: Position word 1 absolute position error (MLS_ERR).
Bit 15: position word 1 LED error, lighting unit error (LED_ERR).
Bit 18: Position word 2 error when aligning between incremental track signals and absolute value (ST_ERR).
Bit 21: Position word 2 memory error (MEM_ERR).
Bit 22: Position word 2 absolute position error (MLS_ERR).
Bit 23: position word 2 LED error, lighting unit error (LED_ERR).

For yy = 14 (0000 1110 bin), the following applies:
Bit 0: Position word 1 temperature outside limit value.
Bit 1: Position word 1 position determination error (multiturn).
Bit 2: Position word 1 FPGA error.
Bit 3: Position word 1 velocity error.
Bit 4: Position word 1 communication error between FPGAs/error in the incremental signal.
Bit 5: Position word 1 timeout absolute value/error when determining the position (singleturn).
Bit 6: Position word 1 internal hardware fault (clock/power monitor IC/power).
Bit 7: Position word 1 internal error (FPGA communication/FPGA parameterization/self-test/software).
Bit 8: F1 (safety status display) error position word 1.
Bit 9: F2 (safety status display) error position word 2.
Bit 16: Position word 2 temperature outside limit value.
Bit 17: Position word 2 position determination error (multiturn).
Bit 18: Position word 2 FPGA error.
Bit 19: Position word 2 velocity error.
Bit 20: Position word 2 communication error between FPGAs.
Bit 21: Position word 2 position determination error (singleturn).
Bit 22: Position word 2 internal hardware fault (clock/power monitor IC/power).
Bit 23: Position word 2 internal error (self-test/software).

## Note:

For an encoder version that is not described here, please contact the encoder manufacturer for more detailed information on the bit coding.
Remedy: - determine the detailed cause of the fault using the fault value.

- if required, replace the DRIVE-CLiQ encoder.

F33142 (N, A)	Encoder 3: Battery voltage fault
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information.
Remedy:	Replace battery.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F33150 (N, A)	Encoder 3: Initialization error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Encoder functionality selected in p0404 cannot be executed.
	Fault value (r0949, interpret hexadecimal):
	Encoder malfunction.
	The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
Remedy:	- check that p0404 is correctly set.
	- check the encoder type used (incremental/absolute) and for SMCxx, the encoder cable.
	- if relevant, note additional fault messages that describe the fault in detail.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F33151 (N, A)	Encoder 3: Encoder speed for initialization AB too high
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder speed is too high while initializing the Sensor Module.
Remedy:	Reduce the speed of the encoder accordingly during initialization.
	If necessary, deactivate monitoring (p0437.29).
	See also: p0437 (Sensor Module configuration extended)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F33152 (N, A)	Encoder 3: Max. signal frequency (track A/B) exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The maximum signal frequency of the encoder evaluation has been exceeded.
	Fault value (r0949, interpret decimal):
	Actual input frequency in Hz .
	See also: p0408
Remedy:	- reduce the speed.
	- Use an encoder with a lower pulse number (p0408).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33153 (N, A)	Encoder 3: Identification error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when identifying the encoder (waiting) $\mathrm{p} 0400=10100$.
	The connected encoder was not able to be identified.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Data length incorrect.
	See also: p0400 (Encoder type selection)
Remedy:	Manually configure the encoder according to the data sheet.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F33160 (N, A) Encoder 3: Analog sensor channel A failed
Message value: \%1
Message class: Actual position/speed value incorrect or not available (11)
Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component: Encoder 3 Propagation: LOCAL
Reaction:
Servo: OFF1 (IASC/DCBRK, NONE)
Vector: OFF1 (IASC/DCBRK, NONE) Hla: OFF1 (NONE)
Acknowledge: PULSE INHIBIT
Cause: The input voltage of the analog sensor is outside the permissible limits.
Fault value (r0949, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside the measuring range set in (p4673).
3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ).

### 4.2 List of faults and alarms

Remedy:	For fault value $=1:$
	- check the output voltage of the analog sensor.
	For fault value $=2$ :
	- check the voltage setting for each encoder period (p4673).
	For fault value $=3$ :
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE


F33161 (N, A)	Encoder 3: Analog sensor channel B failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE)
	Vector: OFF1 (IASC/DCBRK, NONE)
	Hla: OFF1 (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the selected measuring range (p4675).
	3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ).
Remedy:	For fault value = 1:
	- check the output voltage of the analog sensor.
	For fault value $=2$ :
	- check the voltage setting for each encoder period (p4675).
	For fault value = 3 :
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F33163 (N, A)	Encoder 3: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE)
	Vector: OFF1 (IASC/DCBRK, NONE)
	Hla: OFF1 (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The position value has exceeded the permissible range of -0.5 ... +0.5 .
	Fault value (r0949, interpret decimal):
	1: Position value from the LVDT sensor.
	2: Position value from the encoder characteristic.
Remedy:	For fault value = 1:
	- check the LVDT ratio (p4678).
	- check the reference signal connection at track B.
	For fault value $=2$ :
	- check the coefficients of the characteristic (p4663 ... p4666).


Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A33400 (F, N)	Encoder 3: Zero mark distance error (alarm threshold exceeded)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Alarm value (r2124, interpret decimal):
	Last measured zero mark distance in increments (4 increments = 1 encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A33401 (F, N)	Encoder 3: Zero mark failed (alarm threshold exceeded)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The $1.5 x$ parameterized zero mark distance was exceeded without a zero mark being detected.   The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).   Alarm value (r2124, interpret decimal):   Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC.   - check the plug connections.   - check the encoder type (encoder with equidistant zero marks).   - adapt the parameter for the clearance between zero marks (p0425).   - replace the encoder or encoder cable.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)   Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)   Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F33405 (N, A)	Encoder 3: Temperature in the encoder evaluation exceeded
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An inadmissibly high temperature was detected in the encoder electronics or the encoder evaluation.
	Fault value (r0949, interpret hexadecimal):
	yyxxx hex: yy = temperature sensor number, xxxx = measured module temperature in $0.1^{\circ} \mathrm{C}$.
Remedy:	Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A33407 (F,N)	Encoder 3: Function limit reached
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder has reached one of its function limits. A service is recommended.
	Alarm value (r2124, interpret decimal):
	1: Incremental signals
	3: Absolute track
	4: Code connection
	Perform service. Replace the encoder if necessary.
Remedy:	Note:
	The actual functional reserve of an encoder can be displayed via r4651.
	See also: p4650 (Encoder functional reserve component number), r4651 (Encoder functional reserve)
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A33410 (F, N)	Encoder 3: Communication error (encoder and Sensor Module)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	Serial communication protocol transfer error between the encoder and evaluation module.
	Alarm value (r2124, interpret binary):
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgment error: The encoder incorrectly understood the task (request) or cannot execute it.


	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace encoder.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A33411 (F, N)	Encoder 3: Encoder signals an internal alarm (detailed information)
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute encoder fault word includes alarm bits that have been set.
	Alarm value (r2124, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause
	yyyy $=0$ :
	Bit 0: Frequency exceeded (speed too high).
	Bit 1: Temperature exceeded.
	Bit 2: Control reserve, lighting system exceeded.
	Bit 3: Battery discharged.
	Bit 4: Reference point passed.
	yyyy = 1 :
	Bit 0: Signal amplitude outside the control range.
	Bit 1: Error multiturn interface
	Bit 2: Internal data error (singleturn/multiturn not with single steps).
	Bit 3: Error EEPROM interface.
	Bit 4: SAR converter error.
	Bit 5: Fault for the register data transfer.
	Bit 6: Internal error identified at the error pin (nErr).
	Bit 7: Temperature threshold exceeded or fallen below.
Remedy:	Replace encoder.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A33412 (F, N)	Encoder 3: Encoder signals an internal alarm
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder signals an internal alarm via serial protocol.
	Alarm value (r2124, interpret binary):
	Bit 0: Fault bit in the position protocol.
	Bit 1: Alarm bit in the position protocol.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace encoder.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A33414 (F, N)	Encoder 3: Signal level track C or D out of tolerance
Message value:	C track: \%1, D track: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The signal level ( $C^{\wedge} 2+D^{\wedge} 2$ ) of track $C$ or $D$ of the encoder or from the Hall signals, is not within the tolerance bandwidth.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track D (16 bits with sign).
	$x x x x=$ Signal level, track C (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response thresholds are $<230 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- check the Hall sensor box.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


N33415 (F, A)	Encoder 3: Signal level track A or B outside tolerance (alarm)
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The signal level (root from $A^{\wedge} 2+B^{\wedge} 2$ ) of the encoder is outside the permissible tolerance.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	$x x x x=$ amplitude, i.e. root of $A^{\wedge} 2+B^{\wedge} 2(16$ bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold is $<230 \mathrm{mV}$ (observe the frequency response of the encoder).
	A signal level of 500 mV peak value corresponds to the numerical value 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track $B$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at $2900 \mathrm{mV}(2.0 \mathrm{Vrms})$. The response threshold is < 1414 mV (1.0 Vrms).
	A signal level of 2900 mV peak value corresponds to the numerical value $3333 \mathrm{hex}=13107 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range.
	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A33418 (F, N)	Encoder 3: Speed change not plausible (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For an HTL/TTL encoder, the speed change has exceeded the value in p0492 over several sampling cycles.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0492
Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
	- if required, increase the setting of p0492.

### 4.2 List of faults and alarms

Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A33419 (F, N)	Encoder 3: Track A or B outside tolerance
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The amplitude/phase/offset correction for track A or B is at the limit.
	Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27
	Phase: <84 degrees or >96 degrees
	SMC20: Offset correction: $+/-140 \mathrm{mV}$
	SMC10: Offset correction: $+/-650 \mathrm{mV}$
	Alarm value (r2124, interpret hexadecimal):
	xxxx1: Minimum of the offset correction, track B
	xxxx2: Maximum of the offset correction, track B
	$x \mathrm{xx} 1 \mathrm{x}$ : Minimum of the offset correction, track $A$
	xxx2x: Maximum of the offset correction, track $A$
	$x \mathrm{x} 1 \mathrm{xx}$ : Minimum of the amplitude correction, track B/A
	$x \times 2 x x$ : Maximum of the amplitude correction, track B/A
	x1xxx: Minimum of the phase error correction
	x2xxx: Maximum of the phase error correction
	1xxxx: Minimum of the cubic correction
	$2 x x x x$ : Maximum of the cubic correction
Remedy:	- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders).   - check the plug connections (also the transition resistance).   - check the encoder signals.   - replace the encoder or encoder cable.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A33421 (F, N) Encoder 3: Determined commutation position incorrect (alarm)
Message value: \%1
Message class: Actual position/speed value incorrect or not available (11)
Drive object:
Component: Reaction: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC Encoder 3 Propagation: LOCAL NONE

## Acknowledge: NONE

Cause: A commutation position actual value sensing error was detected.
Alarm value (r2124, interpret decimal):
3: The absolute position of the serial protocol and track A/B differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.

Remedy:	For alarm value = 3:
	- For a standard encoder with cable, contact the manufacturer where relevant.
	- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must
be connected, inverted, at the Sensor Module (interchange A with A* and B with $\mathrm{B}^{*}$ ) or, for a programmable encoder,	
check the zero offset of the position.	
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Reaction upon F:	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)

### 4.2 List of faults and alarms

Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A33431 (F, N)	Encoder 3: Position deviation incremental/absolute too high (alarm)
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- the first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Alarm value (r2124, interpret decimal):
	Deviation in quadrants ( 1 pulse $=4$ quadrants).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- Clean coding disk or remove strong magnetic fields.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A33432 (F, N)	Encoder 3: Rotor position adaptation corrects deviation
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	On track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected. Alarm value (r2124, interpret decimal):
	Last measured deviation of zero mark in increments (4 increments = 1 encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check encoder limit frequency.
	- adapt the parameter for the distance between zero marks (p0424, p0425).


Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A33442 (F, N)	Encoder 3: Battery voltage alarm threshold reached
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The multiturn information can no longer be buffered if the battery voltage drops even further.
Remedy:	Replace battery.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A33443 (F, N)	Encoder 3: Signal level track C/D outside tolerance (alarm)
Message value:	Fault cause: \%1 bin
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The unipolar level (CP/CN or DP/DN) for encoder 3 is outside the permissible tolerance.
	Alarm value (r2124, interpret binary):
	Bit $0=1$ : Either CP or CN outside the tolerance.
	Bit $16=1$ : Either DP or DN outside the tolerance.
	The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
	The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$.
	Note:
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- monitoring active (p0437.31 = 1).
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections and contacts of the encoder cable.
	- are the C/D tracks connected correctly (have the signal cables CP and CN or DP and DN been interchanged)?
	- replace the encoder cable.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A33460 (N)	Encoder 3: Analog sensor channel A failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside measuring range set in p4673.
	3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ).
Remedy:	For alarm value = 1:
	- check the output voltage of the analog sensor.
	For alarm value $=2$ :
	- check the voltage setting for each encoder period (p4673).
	For alarm value $=3$ :
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A33461 (N)	Encoder 3: Analog sensor channel B failed
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the selected measuring range (p4675).
	3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ).
Remedy:	For alarm value $=1$ :
	- check the output voltage of the analog sensor.
	For alarm value $=2$ :
	- check the voltage setting for each encoder period (p4675).
	For alarm value $=3$ :
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A33462 (N)	Encoder 3: Analog sensor no channel active
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Channel $A$ and B are not activated for the analog sensor.
Remedy:	- activate channel A and/or channel B (p4670).
	- check the encoder configuration (p0404.17).
	See also: p4670 (Analog sensor configuration)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A33463 (N)	Encoder 3: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$.
	Alarm value (r2124, interpret decimal):
	1: Position value from the LVDT sensor.
	2: Position value from the encoder characteristic.
Remedy:	For alarm value $=1$ :
	- check the LVDT ratio (p4678).
	- check the reference signal connection at track B.
	For alarm value $=2$ :
	- check the coefficients of the characteristic (p4663 ... p4666).
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A33470 (F, N)	Encoder 3: Encoder signals an internal error (X521.7)
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the Sensor Module Cabinet 30 (SMC30), a dirty encoder is signaled via a 0 signal at terminal X521.7.
Remedy:	- check the plug connections.
	- replace the encoder or encoder cable.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F33500 (N, A)	Encoder 3: Position tracking traversing range exceeded
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY

Cause: For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p 0412 and interpreted as the number of motor revolutions. For $p 0411.0=1$, the maximum traversing range for the configured linear axis is defined to be $64 x(+/-32 x)$ of p0421. For $\mathrm{p} 0411.3=1$, the maximum traversing range for the configured linear axis is preset (default value) to the highest possible value and is +/-p0412/2 (rounded off to complete revolutions). The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).
Remedy: The fault should be resolved as follows:

- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- deselect encoder commissioning (p0010 = 0).

The fault should then be acknowledged and the absolute encoder adjusted.

### 4.2 List of faults and alarms

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33501 (N, A)	Encoder 3: Position tracking encoder position outside tolerance window
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When switched off, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.
	Fault value (r0949, interpret decimal):
	Deviation (difference) to the last encoder position in increments of the absolute value.
	The sign designates the traversing direction.
	Note:
	The deviation (difference) found is also displayed in r0477.
	See also: p0413 (Measuring gear position tracking tolerance window), r0477 (Measuring gear position difference)
Remedy:	Reset the position tracking as follows:
	- select encoder commissioning (p0010 = 4).
	- reset the position tracking as follows (p0411.2 = 1).
	- deselect encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
	See also: p0010, p2507
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F33502 (N, A) Encoder 3: Encoder with measuring gear without valid signals
Message value: -
Message class: Actual position/speed value incorrect or not available (11)
Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:
Sensor Module Encoder 3 Propagation: GLOBAL
Reaction:
Acknowledge:
OFF1 (OFF2, OFF3)
IMMEDIATELY
Cause:
Remedy:
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE
F33503 (N, A) Encoder 3: Position tracking cannot be reset
Message value: -
Message class: Actual position/speed value incorrect or not available (11)
Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component: None Propagation: GLOBAL
Reaction:
OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause:
The position tracking for the measuring gear cannot be reset.

Remedy:	The fault should be resolved as follows:   - select encoder commissioning ( $\mathrm{p} 0010=4$ ).   - reset the position tracking as follows (p0411.2 = 1).   - deselect encoder commissioning (p0010 = 0).   The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A :	NONE
A33700	Encoder 3: Effectivity test does not supply the expected value
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
	Alarm value (r2124, interpret binary):
	Bit $\mathrm{x}=1$ : Effectivity test x unsuccessful.
Remedy:	Replace encoder.
N33800 (F)	Encoder 3: Group signal
Message value:	-
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	NONE
Cause:	The motor encoder has detected at least one fault.
Remedy:	Evaluate the other messages that are presently available.
Reaction upon F:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F33801 (N, A)	Encoder 3 DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause

### 4.2 List of faults and alarms

Remedy:	- check the electrical cabinet design and cable routing for EMC compliance   - replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 33802 \text { (N, A) }}$	Encoder 3: Time slice overflow
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred in encoder 3.
	Fault value (r0949, interpret hexadecimal):   $y x$ hex: $y=$ function involved (Siemens-internal fault diagnostics), $x=$ time slice involved $x=9$ :
	Time slice overflow of the fast (current controller clock cycle) time slice. $\mathrm{x}=\mathrm{A}$ :
	Time slice overflow of the average time slice. $\mathrm{x}=\mathrm{C}$ :
	Time slice overflow of the slow time slice. $y x=3 E 7$ :
	Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).
Remedy:	Increase the current controller sampling time
	Note:
	For a current controller sampling time $=31.25 \mu \mathrm{~s}$, use an SMx20 with Article No. 6SL3055-0AA00-5xA3 .
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

F33804 (N, A) Encoder 3: Sensor Module checksum error
Message value: \%1
Message class: Hardware/software error (1)
Drive object:
Component: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

Reaction:

## Acknowledge:

Cause:

## Remedy:

Sensor Module Encoder 3 Propagation: LOCAL

Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3) Hla: OFF1 (NONE, OFF2, OFF3) POWER ON (IMMEDIATELY)
A checksum error has occurred when reading-out the program memory on the Sensor Module. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex yyyy: Memory area involved. xxxx: Difference between the checksum at POWER ON and the actual checksum.

- carry out a POWER ON (switch-off/switch-on).
- upgrade firmware to later version (>= V2.6 HF3, >= V4.3 SP2, >= V4.4).
- check whether the permissible ambient temperature for the component is maintained.
- replace the Sensor Module.

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 33805 \text { (N, A) }}$	Encoder 3: EEPROM checksum error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Data in the EEPROM corrupted.
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
Remedy:	Replace the module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33806 (N, A)	Encoder 3: Initialization error
Message value:	\%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder was not successfully initialized.
	Fault value (r0949, interpret hexadecimal):
	Bit 0,1 : Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in encoder pulses/4).
	Bit 2: Mid-voltage matching for track A unsuccessful.
	Bit 3: Mid-voltage matching for track B unsuccessful.
	Bit 4: Mid-voltage matching for acceleration input unsuccessful.
	Bit 5: Mid-voltage matching for track safety A unsuccessful.
	Bit 6: Mid-voltage matching for track safety B unsuccessful.
	Bit 7: Mid-voltage matching for track C unsuccessful.
	Bit 8: Mid-voltage matching for track D unsuccessful.
	Bit 9: Mid-voltage matching for track R unsuccessful.
	Bit 10: The difference in mid-voltages between $A$ and $B$ is too great ( $>0.5 \mathrm{~V}$ )
	Bit 11: The difference in mid-voltages between $C$ and D is too great ( $>0.5 \mathrm{~V}$ )
	Bit 12: The difference in mid-voltages between safety $A$ and safety $B$ is too great (>0.5 V)
	Bit 13: The difference in mid-voltages between $A$ and safety $B$ is too great ( $>0.5 \mathrm{~V}$ )
	Bit 14: The difference in mid-voltages between $B$ and safety $A$ is too great ( $>0.5 \mathrm{~V}$ )
	Bit 15: The standard deviation of the calculated mid-voltages is too great (>0.3 V)
	Bit 16: Internal fault - fault when reading a register (CAFE)
	Bit 17: Internal fault - fault when writing a register (CAFE)
	Bit 18: Internal fault: No mid-voltage matching available
	Bit 19: Internal error - ADC access error.

### 4.2 List of faults and alarms

	Bit 20: Internal error - no zero crossover found.
	Bit 28: Error while initializing the EnDat 2.2 measuring unit.
	Bit 29: Error when reading out the data from the EnDat 2.2 measuring unit.
	Bit 30: EEPROM checksum of the EnDat 2.2 measuring unit incorrect.
	Bit 31: Data of the EnDat 2.2 measuring unit inconsistent.
	Note:
	Bit 0, 1: Up to 6SL3055-0AA00-5*A0
	Bits 2 ... 20:6SL3055-0AA00-5*A1 and higher
Remedy:	Acknowledge fault.
	If the fault cannot be acknowledged:
	Bits 2 ... 9: Check encoder power supply.
	Bits 2 ... 14: Check the corresponding cable.
	Bit 15 with no other bits: Check track R, check settings in p0404.
	Bit 28: Check the cable between the EnDat 2.2 converter and the measuring unit. Bit 29 31: Replace the defective measuring unit
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A33811 (F, N)	Encoder 3: Encoder serial number changed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder serial number has changed. The change is only checked for encoders with serial number (e.g. EnDat encoders).
	- the encoder was replaced.
	Note:
	With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
	When the encoder is adjusted (p2507 = 3), the serial number is checked for changes and if required, the adjustment is reset (p2507 = 1).
	Proceed as follows to hide serial number monitoring:
	- set the following serial numbers for the corresponding Encoder Data Set: p0441=FF, p0442 = 0, p0443 = 0, p0444 $=0, \mathrm{p} 0445=0$.
Remedy:	Mechanically adjust the encoder. Accept the new serial number with p0440 $=1$.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F33812 (N, A) Encoder 3: Requested cycle or RX-/TX timing not supported

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:
\%1
Error in the parameterization / configuration / commissioning procedure (18) HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC Sensor Module Encoder 3 Propagation: LOCAL OFF2 IMMEDIATELY
A cycle requested from the Control Unit or RX/TX timing is not supported. Fault value (r0949, interpret decimal):
0 : Application cycle is not supported.
1: DRIVE-CLiQ cycle is not supported.
2: Distance between RX and TX instants in time too low.
3: TX instant in time too early.

Remedy:	Carry out a POWER ON (switch-off/switch-on) for all components.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33813	Encoder 3: Hardware logic unit failed
Message value:	Fault cause: \%1 bin
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: GLOBAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The logic unit of the DRIVE-CLiQ encoder has failed.
	Fault value (r0949, interpret binary):
	Bit 0: ALU watchdog has responded.
	Bit 1: ALU has detected a sign-of-life error.
Remedy:	When the error reoccurs, replace the encoder.
F33820 (N, A)	Encoder 3 DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause

### 4.2 List of faults and alarms

Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F33835 (N, A) Encoder 3 DRIVE-CLiQ: Cyclic data transfer error
Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object:
Component: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC

Reaction:

Acknowledge: IMMEDIATELY
Cause:
A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. The nodes do not send and receive in synchronism.
Fault cause:
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 (= 40 hex):
Timeout in the telegram send list.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy: - carry out a POWER ON.

- replace the component involved.

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F33836 (N, A)	Encoder 3 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F33837 (N, A)	Encoder 3 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F33845 (N, A)	Encoder 3 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON (switch-off/switch-on).


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F33850 (N, A)	Encoder 3: Encoder evaluation internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the Sensor Module of encoder 3.
	Fault value (r0949, interpret decimal):
	1: Background time slice is blocked.
	2. Checksum over the code memory is not OK.
	10000: OEM memory of the EnDat encoder contains data that cannot be interpreted.
	11000 ... 11499: Descriptive data from EEPROM incorrect.
	11500 ... 11899: Calibration data from EEPROM incorrect.
	11900 ... 11999: Configuration data from EEPROM incorrect.
	12000 ... 12008: communication with analog/digital converter faulted.
	16000: DRIVE-CLiQ encoder initialization application error.
	16001: DRIVE-CLiQ encoder initialization ALU error.
	16002: DRIVE-CLiQ encoder HISI / SISI initialization error.
	16003: DRIVE-CLiQ encoder safety initialization error.
	16004: DRIVE-CLiQ encoder internal system error.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact Technical Support.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F33851 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= OA hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
	- Upgrade the firmware of the component involved.
Remedy:	


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33860 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hala: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex ):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early 20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early.
	22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y = component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33875 (N, A)	Encoder 3: power supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE

## F33885 (N, A) Encoder 3 DRIVE-CLiQ (CU): Cyclic data transfer error

Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:
Component:
Reaction:
Sensor Module Encoder 3 Propagation: LOCAL

Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Ha: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
The nodes do not send and receive in synchronism.
Fault cause:
26 (= 1A hex):
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 (= 40 hex):
Timeout in the telegram send list.
98 (= 62 hex):
Error at the transition to cyclic operation.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, $x x=$ error cause

Remedy:	- check the power supply voltage of the component involved.   - carry out a POWER ON.   - replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33886 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33887 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Ha: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 3). Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.


	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33895 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
	Fault cause:
	11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33896 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Sensor Module for encoder 3), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33899 (N, A)	Encoder 3: Unknown fault
Message value:	New message: \%1
Message class:	Actual position/speed value incorrect or not available (11)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Sensor Module for encoder 3 that cannot be interpreted by the Control Unit firmware.   This can occur if the firmware on this component is more recent than the firmware on the Control Unit.   Fault value (r0949, interpret decimal):   Fault number.   Note:   If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148).   - upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


A33902 (F, N)	Encoder 3: SPI-BUS error OcCurred
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal SPI bus.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact Technical Support.
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A33903 (F, N)	Encoder 3: I2C-BUS error OCCurred
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal I2C bus.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.


	yyyy = 7 :
	For an SQW encoder, the XIST1 correction (p0437.2) is only permitted for equidistant zero marks.
	yyyy = 8:
	The motor pole pair width is not supported by the linear scale being used.
	yyyy $=9$ :
	The length of the position in the EnDat protocol may be a maximum of 32 bits.
	yyyy $=10$ :
	The connected encoder is not supported.
	yyyy = 11:
	The hardware does not support track monitoring.
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.
	- correct the parameter specified by the fault value (r0949) and p0187.
	- re parameter number $=314$ :
	- check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F33912	Encoder 3: Device combination is not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3 Propagation: GLOBAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE)
	Vector: OFF1 (IASC/DCBRK, NONE)
	Hla: OFF1 (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The selected device combination is not supported.
	Fault value (r0949, interpret decimal):
	1003:
	The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$.
	1005:
	The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter. 1006:
	The maximum duration of the EnDat transfer ( $31.25 \mu \mathrm{~s}$ ) was exceeded.
	2001:
	The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter.
	2002:
	The resolution of the linear measuring unit does not match the pole pair width of the linear motor
	Pole pair width, minimum $=\mathrm{p} 0422$ * $2^{\wedge} 20$
Remedy:	For fault value $=1003,1005,1006$ :
	- Use a measuring unit that is permissible.
	For fault value = 2001:
	- set a permissible cycle combination (if required, use standard settings).
	For fault value = 2002:
	- Use a measuring unit with a lower resolution (p0422).


A33915 (F, N)	Encoder 3: Encoder configuration error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration for encoder 3 is incorrect.
	Alarm value (r2124, interpret decimal):
	1:
	Re-parameterization between fault/alarm is not permissible.
	419:
	When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual value (r0483) that can no longer be represented within 32 bits.
Remedy:	For alarm value $=1$ :
	No re-parameterization between faultalarm.
	For alarm value $=419$ :
	Reduce the fine resolution (p0419) or deactivate the monitoring ( p 0437.25 ), if the complete multiturn range is not required.
Reaction upon F:	Servo: NONE (IASC/DCBRK)
	Vector: NONE (IASC/DCBRK)
	Hla: NONE
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F33916 (N, A)	Encoder 3: Encoder parameterization error
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: GLOBAL
Reaction:	Servo: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Hla: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	An encoder parameter was detected as being incorrect.
	It is possible that the parameterized encoder type does not match the connected encoder.
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	Parameter number.
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.
	- correct the parameter specified by the fault value (r0949) and p0187.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A33920 (F, N)	Encoder 3: Temperature sensor fault (motor)
Message value:	Fault cause: \%1, channel number: \%2
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor detected a fault when evaluating the temperature sensor.
	Fault cause:
	1 (= 01 hex):
	Wire breakage or sensor not connected.
	KTY: R > 1630 Ohm, PT1000: R > 1720 Ohm
	2 (= 02 hex):
	Measured resistance too low.
	PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
	Additional values:
	Only for internal Siemens troubleshooting.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124): $0000 y y x x$ hex: $y y=$ channel number, $x x=$ error cause
Remedy:	- check that the encoder cable is the correct type and is correctly connected.
	- check the temperature sensor selection in p0600 to p0603.
	- replace the Sensor Module (hardware defect or incorrect calibration data).
Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A33930 (N)	Encoder 3: Data logger has saved data
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Sensor Module Encoder 3 Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the activated function "Data logger" (p0437.0 = 1) a fault has occurred with the Sensor Module. This alarm indicates that the diagnostics data corresponding to the fault was saved on the memory card.
	The diagnostics data is saved in the following folder:
	/USER/SINAMICS/DATA/SMTRC00.BIN
	...
	/USER/SINAMICS/DATA/SMTRC07.BIN
	/USER/SINAMICS/DATA/SMTRCIDX.TXT
	The following information is contained in the TXT file:
	- Display of the last written BIN file.
	- Number of write operations that are still possible (from 10000 downwards).
	Note:
	Only Siemens can evaluate the BIN files.
Remedy:	Not necessary.
	This alarm is automatically withdrawn.
	The data logger is ready to record the next fault case.
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A33940 (F, N)	Encoder 3: Spindle sensor S1 voltage incorrect
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Encoder 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage of analog sensor S1 is outside the permissible range.
	Alarm value (r2124, interpret decimal):
	Signal level from sensor S1.

F33950 Encoder 3: Internal software error
Message value: \%1
Message class: Hardware/software error (1)
Drive object:
Component:
HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Sensor Module Encoder 3 Propagation: LOCAL
Reaction: OFF1 (OFF2)
Acknowledge: POWER ON
Cause: An internal software error has occurred.
Fault value (r0949, interpret decimal):
Information about the fault source.
Only for internal Siemens troubleshooting.
Remedy: - if necessary, upgrade the firmware in the Sensor Module to a later version.
- contact Technical Support.


Reaction upon F:	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F34207 (N, A)	VSM: Temperature fault threshold exceeded
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The temperature (r3666) measured using the Voltage Sensing Module (VSM) has exceeded the threshold value (p3668).
	Note:
	This fault can only be output if the temperature evaluation was activated ( $\mathrm{p} 3665>0$ )
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
	See also: r3666 (VSM temperature actual value), p3668
Remedy:	- check the fan.
	- reduce the power.
	- check the temperature sensor type setting (p3665).
	- infeed: check the line filter type setting (p0220).
	See also: p3665 (VSM temperature evaluation sensor type)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F34207 (N, A)	VSM: Temperature fault threshold exceeded
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The temperature (r3666) measured using the Voltage Sensing Module (VSM) has exceeded the threshold value (p3668).
	Note:
	This fault can only be output if the temperature evaluation was activated (p3665 > 0).
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
	See also: r3666 (VSM temperature actual value), p3668
Remedy:	- check the fan.
	- reduce the power.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


A34211 (F, N)	VSM: Temperature alarm threshold exceeded
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r3666) measured using the Voltage Sensing Module (VSM) has exceeded the threshold value (p3667).
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [ $\left.0.1^{\circ} \mathrm{C}\right]$.
	See also: r3666 (VSM temperature actual value), p3667
Remedy:	- check the fan.
	- reduce the power.
	- check the temperature sensor type setting (p3665).
	- infeed: check the line filter type setting (p0220).
	See also: p3665 (VSM temperature evaluation sensor type)
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A34211 (F, N)	VSM: Temperature alarm threshold exceeded
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r3666) measured using the Voltage Sensing Module (VSM) has exceeded the threshold value (p3667).
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
	See also: r3666 (VSM temperature actual value), p3667
Remedy:	- check the fan.
	- reduce the power.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


N34800 (F)	VSM: Group signal
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Vector: NONE (OFF1, OFF2, OFF3)
Acknowledge:	NONE
Cause:	The Voltage Sensing Module (VSM) has detected at least one fault.
Remedy:	Evaluates other actual messages.
Reaction upon F:	Infeed: OFF2 (NONE, OFF1)      Acknowl. upon F:$\quad$Vector: NONE (OFF1, OFF2, OFF3)


F34801 (N, A)	VSM DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	Control Unit (CU) LOCAL
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM).
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
Remedy:	0000yyxx hex: yy = component number, xx = error cause
	- check the DRIVE-CLiQ connection.
Reaction upon N:	- replace the Voltage Sensing Module (VSM).
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F34801 (N, A)	VSM DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) LOCAL
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM).
	Fault cause:
	10 (=0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
Remedy:	0000yyxx hex: yy = component number, xx = error cause
	- check the DRIVE-CLiQ connection.
Reaction upon N:	- replace the component involved.
NONE	
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


| F34802 (N, A) | VSM: Time slice overflow |
| :--- | :--- | :--- |
| Message value: | - |
| Message class: | Hardware/software error (1) |
| Drive object: | A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC |
| Component: | Voltage Sensing Module (VSM) |
| Reaction: | Infeed: OFF2 (NONE, OFF1) |
|  | Vector: NONE (OFF1, OFF2, OFF3) |
| Acknowledge: | IMMEDIATELY |
| Cause: | A time slice overflow has occurred on the Voltage Sensing Module. |
| Remedy: | Replace the Voltage Sensing Module. |

4.2 List of faults and alarms

Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F34803	VSM: Memory test
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM)
Reaction:	Infeed: OFF2 (NONE, OFF1)
Vector: NONE (OFF1, OFF2, OFF3)	
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred during the memory test on the Voltage Sensing Module.
Remedy:	- check whether the permissible ambient temperature for the Voltage Sensing Module is being maintained.   - replace the Voltage Sensing Module.


F34804 (N, A)	VSM: CRC
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM)
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Vector: NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A checksum error has occurred when reading-out the program memory on the Voltage Sensing Module (VSM).
Remedy:	- check whether the permissible ambient temperature for the component is maintained.
	- replace the Voltage Sensing Module.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F34805 (N, A) VSM: EEPROM checksum error
Message value: \%1
Message class: Hardware/software error (1)
Drive object: A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component: Voltage Sensing Module (VSM) Propagation: LOCAL

Reaction:	Infeed: OFF2 (NONE, OFF1)
	Vector: NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted.
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.

Remedy: - check whether the permissible ambient temperature for the component is maintained

- replace the Voltage Sensing Module (VSM).

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F34806	VSM: Initialization
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Vector: NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For the Voltage Sensing Module (VSM), a fault has occurred while initializing.
Remedy:	Replace the Voltage Sensing Module.
A34807 (F, N)	VSM: Sequence control time monitoring
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error, timeout in the sequence control on the Voltage Sensing Module (VSM).
Remedy:	Replace the Voltage Sensing Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F34820	VSM DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Vector: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module involved.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.

Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyx hex: yy = component number, $x x=$ error cause
Remedy:

- carry out a POWER ON (switch-off/switch-on).
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

F34835	VSM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Vector: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module involved. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON.

F34836

Message value:
Message class:
Drive object:
Component:
Reaction:

Acknowledge:
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module. Data were

Remedy:
not able to be sent.
Fault cause:
65 (= 41 hex):
Telegram type does not match send list.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause
VSM DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Voltage Sensing Module (VSM) Propagation: LOCAL
Infeed: OFF2 (NONE, OFF1)
Vector: NONE (OFF1, OFF2)
IMMEDIATELY

Carry out a POWER ON.

F34837	VSM DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Vector: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F34845	VSM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Vector: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM).
	Fault cause:
	11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F34850	VSM: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Vector: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error in the Voltage Sensing Module (VSM) has occurred.
	Fault value (r0949, interpret decimal):
	1: Background time slice is blocked.
	2: Checksum over the code memory is not OK.

### 4.2 List of faults and alarms

Remedy:	- replace the Voltage Sensing Module (VSM).   - if required, upgrade the firmware in the Voltage Sensing Module.   - contact Technical Support.
F34851	VSM DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: NONE (OFF1, OFF2)
	Vector: NONE (OFF1, OFF2)
	Hla: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y = component number, $\mathrm{xx}=$ error cause
Remedy:	Upgrade the firmware of the component involved.
F34860	VSM DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: NONE (OFF1, OFF2)
	Vector: NONE (OFF1, OFF2)
	Hla: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Contro Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.


	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early 20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early.
	22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
F34875	VSM: power supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.


F34885	VSM DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: NONE (OFF1, OFF2)
	Vector: NONE (OFF1, OFF2)
	Hla: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
F34886	VSM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: NONE (OFF1, OFF2)
	Vector: NONE (OFF1, OFF2)
	Hla: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.


F34887	VSM DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_IAC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: NONE (OFF1, OFF2)
	Vector: NONE (OFF1, OFF2)
	Hla: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (Voltage Sensing Module) involved. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex ):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F34895	VSM DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: NONE (OFF1, OFF2)
	Vector: NONE (OFF1, OFF2)
	Hla: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.


F34896	VSM DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_IAC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Voltage Sensing Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
F34899 (N, A)	VSM: Unknown fault
Message value:	New message: \%1
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Vector: NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Voltage Sensing Module that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.
	Note:
	If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Voltage Sensing Module by an older firmware version (r0158).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A34903 (F, N)	VSM: I2C bus error occurred
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred when accessing the module-internal I2C bus.
Remedy:	Replace the Voltage Sensing Module (VSM).
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A34903 (F, N)	VSM: I2C bus error OCCurred	
Message value:	-	
Message class:	Hardware/software error (1)	
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC	
Component:	Voltage Sensing Module (VSM) LOCAL	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	An error has occurred when accessing the module-internal I2C bus.	
Remedy:	Replace the Terminal Module.	
Reaction upon F:	NONE	
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)	
Reaction upon N:	NONE	
Acknowl. upon N:	NONE	


A34904 (F, N)	VSM: EEPROM
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy:	Replace the Voltage Sensing Module (VSM).
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Vector: NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A34905 (F, N)	VSM: Parameter access
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Control Unit attempted to write an illegal parameter value to the Voltage Sensing Module (VSM).
Remedy:	- check whether the firmware version of the VSM (r0158) matches the firmware version of Control Unit (r0018).
	- if required, replace the Voltage Sensing Module.
	Note:
	The firmware versions that match each other are in the readme.txt file on the memory card.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Vector: NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F34920 (N, A)	VSM: overtemperature or temperature sensor fault
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, R_INF, S_INF
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When evaluating the temperature sensor, a resistance value outside the permissible range was detected.
	Fault value (r0949, interpret decimal):
	1: overtemperature, wire breakage or sensor not connected.
	KTY: R > 1630 Ohm, PT1000: R > 1720 Ohm
	2: Measured resistance too low.
	PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm, PT1000: $\mathrm{R}<723$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
	- allow to cool down and then check the ambient conditions, load cycle and cooling (fan fuse).
	- check the temperature sensor type setting (p3665).
	- infeed: check the line filter type setting (p0220).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F34920 (N, A) VSM: overtemperature or temperature sensor fault
Message value: \%1
Message class: External measured value / signal state outside the permissible range (16)
Drive object: VECTOR, VECTOR_AC, VECTOR_I_AC
Component: Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:
NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: When evaluating the temperature sensor, a resistance value outside the permissible range was detected.
Fault value (r0949, interpret decimal):
1: overtemperature, wire breakage or sensor not connected.
KTY: R > 1630 Ohm, PT1000: R > 1720 Ohm
2: Measured resistance too low.
PTC: R < 20 Ohm, KTY: R < 50 Ohm, PT1000: R < 723 Ohm
Remedy: - make sure that the sensor is connected correctly.
- replace the sensor.
- allow to cool down and then check the ambient conditions, load cycle and cooling (fan fuse).
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F34950	VSM: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error in the Voltage Sensing Module (VSM) has occurred.
	Fault value (r0949, interpret decimal):
	Information about the fault source.
	Only for internal Siemens troubleshooting.

Remedy: - if necessary, upgrade the firmware in the Voltage Sensing Module to a later version. - contact Technical Support.

A34999 (F, N)	VSM: Unknown alarm
Message value:	New message: \%1
Message class:	Infeed faulted (13)
Drive object:	A_INF, B_INF, R_INF, S_INF, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Voltage Sensing Module (VSM) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A fault occurred on the Voltage Sensing Module (VSM) an alarm has occurred that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Voltage Sensing Module by an older firmware version (r0148).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Vector: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F35000	TM54F: Sampling time invalid
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL,
	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	The set sampling time is invalid.
	- not a multiple integer of the DP clock cycle.
	Fault value (r0949, floating point):
	Recommended valid sampling time.
Remedy:	Adapt the sampling time (e.g. set the recommended valid sampling time).
	See also: p10000 (SI TM54F communication clock cycle)


F35001	TM54F: Parameter value invalid
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL,
Component:	VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The functionality of Safety Basic Functions via TM54F is used.
	TM54F has been incorrectly parameterized (incorrect parameter assignment).
	Only the following signals may be parameterized:
	- STO active
	- SS1 active
	- internal event
	- safe state

### 4.2 List of faults and alarms

	Possible causes:
	- p10024 ... p10038 not set to 0 or 255.
	- p10039, p10042 ... p10045 use signals from Safety Extended Functions.
	Fault value (r0949, interpret binary):
	Bits $0 \ldots 3$ specifies for which drive group an illegal F-DI was parameterized:
	Bit $0=1$ : drive group 1 error
	Bit 1 = 1: drive group 2 error
	Bit 2 = 1: drive group 3 error
	Bit 3 = 1: drive group 4 error
	Bits $4 \ldots 7$ specifies for which F-DOs incorrect links were specified:
	Bit $4=1$ : F-DO 0 error (p10042)
	Bit $5=1$ : F-DO 1 error (p10043)
	Bit $6=1$ : F-DO 2 error (p10044)
	Bit $7=1$ : F-DO 3 error (p10045)
Remedy:	- check the setting of the failsafe digital inputs (F-DI) for the Safety Extended Functions - and set to a value of 0 or 255 (p10024 ... p10039).
	- check the setting of the signal sources for the failsafe digital outputs (F-DO) and if necessary, correct (p10042 ... p10045).
	Note:
	F-DI: Failsafe Digital Input
	F-DO: Failsafe Digital Output
F35002	TM54F: Commissioning not possible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The commissioning mode activation was rejected because at least one drive belonging to the TM54F is enabled for operation.
	Fault value (r0949, interpret decimal):
	Drive object number of the first drive found without pulse suppression/power inhibit.
Remedy:	Withdraw the operating enable for the drive specified in the fault value.
F35003	TM54F: Acknowledgment on the Control Unit is required
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault on the Terminal Module 54F (TM54) was acknowledged using the safe acknowledgment (p10006).
	An additional acknowledgment is also required at the Control Unit.
Remedy:	- acknowledge all faults on the Control Unit (BI: p2102).
	or
	- acknowledge all faults on the drive object TM54F (BI: p2103, p2104 or p2105).
	Note:
	A fault acknowledgment is triggered with a 0/1 signal.


F35004	TM54F: communication cycle invalid
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	- the communication cycle specified in $\mathrm{p} 10000[\mathrm{x}]$ does not correspond with the monitoring cycle of the drive object, which was specified in $\mathrm{p} 10010[\mathrm{x}]$.
	As long as this fault is present, Failsafe Values are activated in TM54F. All the drives are not enabled.
	Fault value (r0949, interpret binary):
	If a bit is set in the range bit $0 \ldots 5$, then the following applies:
	The communication cycle specified in $\mathrm{p} 10000[\mathrm{x}]$ does not correspond with the monitoring cycle of the drive object which was specified in $\mathrm{p} 10010[\mathrm{x}]$. (if only p10000[0] used, then this value must be identical with all monitoring cycles of the drive objects used in $\mathrm{p} 10010[0 . . .5]$.)
	Bit $0=1$ : p10000[0] does not correspond with the monitoring cycle of p10010[0]
	Bit $1=1$ : p10000[1] does not correspond with the monitoring cycle of p10010[1]
	..
	Bit $5=1$ : $\mathrm{p} 10000[5]$ does not correspond with the monitoring cycle of p10010[5]
	If a bit is set in the range bit $16 \ldots 21$, then the following applies:
	Bit $16=1$ : p10000[0] has been selected too low.
	Bit $17=1$ : p10000[1] has been selected too low.
	.
	Bit $21=1$ : p10000[5] has been selected too low.
	When using an axis with Basic Safety Functions with TM54F, then the monitoring cycle should be greater than 500us +8 * current controller clock cycles of the drive.
	Note:
	This error is also signaled if a drive controlled with TM54F is parameterized so that the basic functions are controlled via TM54F - and simultaneously the extended safety functions or ncSI have been parameterized.
	The following applies for fault value $=0$ :
	- since the firmware update of the TM54F it has not been switched off.
	- the firmware of the connected TM54F is too old.
	See also: p10010 (SI TM54F drive object assignment)
Remedy:	For a fault value in the range from bit 0 ... 5 :
	- First check that all drives are entered in p10010, extended safety functions or basic functions have been enabled via TM54F
	- Execute the copy function for $\operatorname{TM54F}(\mathrm{p} 9700=87)$.
	- adapt the checksums for $\operatorname{TM54F}(\mathrm{p} 9701=172)$.
	- copy RAM to ROM.
	- carry out a POWER ON.
	For a fault value in the range from bit $16 . . .21$ :
	Increase the current controller sampling time of the corresponding drive, in order to avoid faults in operation.
	- Execute the copy function for $\operatorname{TM54F}(\mathrm{p9700}=87)$.
	- adapt the checksums for $\operatorname{TM54F}(\mathrm{p9701}=172)$.
	- copy RAM to ROM.
	- carry out a POWER ON.


F35005	TM54F:parallel connection not supported
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	HLA, SERVO, SERVO_AC, SERVO_I_AC, VECTOR
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	The TM54F function with Basic Safety Functions is used. This function is not supported when power units are connected in parallel.
	All drives of the TM54F assume Failsafe Values, and are not enabled.
	See also: p10010 (SI TM54F drive object assignment)
Remedy:	- deactivate parallel connection or TM54F with Basic Safety Functions.
	- copy RAM to ROM.
	- carry out a POWER ON (switch-off/switch-on).
F35006	TM54F: drive groups invalid
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR AC, VECTOR I AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	The functionality of the basic functions via TM54F is used.
	Drive groups have been incorrectly parameterized (incorrect parameter assignment).
	Fault value (r0949, interpret binary):
	The value specifies in which drive group Basic Safety drives are mixed with Extended Safety drives.
	Bit $0=1$ : drive group 1 error
	Bit $1=1$ : drive group 2 error
	Bit $2=1$ : drive group 3 error
	Bit $3=1$ : drive group 4 error
	As long as this fault is present, Failsafe Values are activated in TM54F. All the drives are not enabled.
	Note:
	-this error is also signaled if a drive controlled with TM54F is parameterized so that the basic functions are controlled via TM54F and simultaneously extended safety functions or ncSI have been parameterized.
Remedy:	Corresponding to the fault value, p10011 should be checked to ensure that no Basic Safety drives are mixed with Extended Safety drives in a drive group.
F35009	TM54F: Safety commissioning drive incomplete
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	For Terminal Module 54F (TM54F), a drive object was assigned (p10010), for which no safety functions or faulty safety functions are parameterized (p9501, p9601).
	Fault value (r0949, interpret bitwise binary):
	Bit $0=1$ : drive 1 error
	Bit $1=1$ : drive 2 error
	Bit $2=1$ : drive 3 error
	Bit $3=1$ : drive 4 error
	Bit $4=1$ : drive 5 error
	Bit 5 = 1: drive 6 error


Remedy:	- carry out the safety commissioning of the drive involved and enable the safety functions for TM54F.   - commission the TM54F - and just set p9700 $=87 \mathrm{~d}$ and p9701 $=172 \mathrm{~d}$.
F35011	TM54F: Drive object number assignment illegal
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A drive object number was assigned twice. Each drive object number can be assigned only once.
Remedy:	Correct the assignment of the drive object numbers.
	See also: p10010 (SI TM54F drive object assignment)


A35012	TM54F: Test stop for failsafe digital inputs/outputs	
Message value:	-	
Message class:	Safety monitoring channel has identified an error (10)	
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR AC $\bar{C}, ~ V E C T O R ~ I ~ A C ~$	
Component:	Terminal Module (TM) Propagation: GLOBAL	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The forced checking procedure (test stop) for the failsafe digital inputs/outputs (F-DI/F-DO) is currently in progress.	
Remedy:	The alarm is automatically withdraw after successfully ending or canceling (when a fault condition occurs) the test stop.	
	Note:	
	F-DI: Failsafe Digital Input	
	F-DO: Failsafe Digital Output	
F35013	TM54F: Test stop error	
Message value:	\%1	
Message class:	Safety monitoring channel has identified an error (10)	
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_IAC	
Component:	Terminal Module (TM) Propagation: GLOBAL	
Reaction:	NONE	
Acknowledge:	IMMEDIATELY (POWER ON)	
Cause:	A fault has been detected during the forced checking procedure (test stop) of the failsafe digital inputs/outputs on the TM54F. Failsafe control signals (Failsafe Values) are transferred to the safety functions.	
	Fault value (r0949, interpret hexadecimal): aaaabbcc hex:	
	aaaa: DO or F-DI (dependent on test step cc), where the expected state was not assumed (bit $0=F-D I O$ or F-DO 0 , bit 1 = F-DI 1 or F-DO 1, etc.).	
	bb: Fault cause	
	$\mathrm{bb}=01$ hex: Internal fault.	
	$\mathrm{bb}=02$ hex: Fault when comparing the switching signals of the two channels (F-DI or DI).	
	$\mathrm{bb}=03$ hex: Internal fault.	
	$\mathrm{bb}=04$ hex: Fault when comparing the switching signals of the two channels (Diag-DO).	
	cc: State of the test stop in which the fault has occurred.	
	The display format is as follows:	
	Slave fault state: (test actions)(test actions) \| corresponding step for the master: (test actions)(test actions)	Description
	00 hex: (L1+OFF)(L2+ON) \| OA hex: ( )( )	Synchronization / switching step
	0A hex: (L1+OFF)(L2+ON) \| 15 hex: ( )( )	Wait step
	15 hex: (L1+OFF)(L2+OFF)\| 20 hex:( )( )	1.) F-DI 0 ... 4 check for 0 V 2 .) Switch step to new level

20 hex: (L1+OFF)(L2+OFF) | 2B hex: ( ) ( ) | Wait step
2B hex: $(\mathrm{L} 1+\mathrm{ON})(\mathrm{L} 2+\mathrm{ON}) \mid 36$ hex: ( )( )| 1.) F-DI 5 ... 9 check for 0 V 2.) Switch step to new level
36 hex: (DO OFF)( )| 41 hex: (DO OFF)( )| Wait step / switching step
41 hex: (DO OFF)( )|4C hex: (DO OFF)( ) | Wait step
4C hex: (DO ON)( )|57 hex: (DO ON)( )| 1.) Check diag-DO or diag-DI 2.) Switch step to new level
57 hex: (DO ON)( )| 62 hex: (DO ON)( )| Wait step
62 hex: (DO OFF)( )|6D hex: (DO ON)( )| 1.) Check diag-DO or diag-DI 2.) Switch step
6D hex: (DO OFF)( )|78 hex: (DO ON)( ) | Wait step
78 hex: (DO ON)( )| 83 hex: (DO OFF)( )| 1.) Check diag-DO or diag-DI 2.) Switch step
83 hex: (DO ON)( )| 8E hex: (DO OFF)( ) | Wait step
8E hex: (DO OFF)( )| 99 hex: (DO OFF)( )| 1.) Check diag-DO or diag-DI 2.) Switch step
99 hex: (DO OFF)( ) |A4 hex: (DO OFF)( ) | Wait step
A4 hex: (DO OFF)( )|AF hex: (DO OFF)( )| Check Diag-DO or Diag-DI
AF hex: (DO original state)() | C5 hex: (DO original state)() | Switching step
C5 hex: End of test

The expected states to be checked depend on the parameterized test mode (p10047).
The following expected states are tested in the test steps when testing the F-DOs:
The display format is as follows:
Test step (SL MA): Expected Diag-DO mode 1 | Expected DI 20 ... 23 mode 2 | Expected DI 20 ... 23 mode 3
(4C hex 57 hex): Diag-DO $=0 \mathrm{~V}|\mathrm{DI}=24 \mathrm{~V}| \mathrm{DI}=24 \mathrm{~V}$
(62 hex 6D hex): Diag-DO $=0 \mathrm{~V}|\mathrm{DI}=0 \mathrm{~V}| \mathrm{DI}=0 \mathrm{~V}$
( 78 hex 83 hex): Diag-DO $=0 \mathrm{~V}|\mathrm{DI}=0 \mathrm{~V}| \mathrm{DI}=24 \mathrm{~V}$
(8E hex 99 hex): Diag-DO $=24 \mathrm{~V}|\mathrm{DI}=0 \mathrm{~V}| \mathrm{DI}=24 \mathrm{~V}$
(A4 hex AF hex): Diag-DO $=0 \mathrm{~V}|\mathrm{DI}=24 \mathrm{~V}| \mathrm{DI}=24 \mathrm{~V}$
Example:
If an error with fault causes $\mathrm{bb}=02$ hex or 04 hex occurs in a test stop step, the test action for the fault took place in the previous test stop step. The expected states are tested in the next step.
Master signals fault value 0001_04AF and slave signals fault value 0001_04A4.
aaaa $=1$--> F-DO 0 is involved.
$\mathrm{bb}=04$ hex $-->$ the test of the Diag-DO was unsuccessful.
$c c=$ The expected states were tested in test stop step AF on the master and A4 on the slave.
The expected state Diag-DO $=0 \mathrm{~V}$ was checked in the table, i.e. Diag-DO was at 0 V instead of the expected 24 V . The associated test action took place in the previous step (99 hex DO OFF, A4 hex DO OFF). Both DOs were switched to OFF.
Remedy: $\quad$ Check the wiring of the F-DIs and F-DOs and restart the test stop.
Note:
The fault is withdrawn if the test stop is successfully completed.
For fault value = CCCCCCCC hex, DDDDDDDD hex, EEEEEEEE hex the following applies:
These fault values occur together with fault F35152. Possible countermeasure:

- check all parameters for the test stop.
- you should also check whether the firmware version of the TM54F matches that of the Control Unit.
- check p10001, p10017, p10046 and p10047.

A POWER ON must be carried out after correcting the parameters.
F-DI: Failsafe Digital Input
F-DO: Failsafe Digital Output

A35014	TM54F: Test stop for failsafe digital inputs/outputs
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time set in p10003 for the forced checking procedure (test stop) for the digital inputs/outputs has been exceeded. A new forced checking procedure is required.
	After the next time the forced checking procedure is selected, the message is withdrawn and the monitoring time is reset.
	Note:
	- this message does not result in a safety stop response.
	- the test must be performed within a defined, maximum time interval ( p 10003 , maximum of 8760 hours) in order to comply with the requirements as laid down in the standards for timely fault detection and the conditions to calculate the failure rates of safety functions (PFH value). Operation beyond this maximum time period is permissible if it can be ensured that the forced checking procedure is performed before persons enter the hazardous area and who are depending on the safety functions correctly functioning.
	See also: p10003
Remedy:	Carry out the forced checking procedure for the digital inputs/outputs.
	The signal source to select the forced checking procedure is set via binector input p10007.
	See also: p10007
A35015	TM54F: Motor/Hydraulic Module replaced or configuration inconsistent
Message value:	Fault cause: \%1 bin
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	Cyclic communication of at least one drive with the Terminal Module 54F (TM54F) is not active.
	Possible causes:
	- at least one Motor Module/Hydraulic Module was replaced (e.g. hardware was replaced).
	- the parameterization of theTM54F (p10010) is inconsistent with the number of drives, which have drive-based motion monitoring functions activated with TM54F.
	- For the signaled drive, it is not permissible that the "Safe motion monitoring without selection" (p9601.5 = 1) is parameterized.
	- And activated drive has no communication via DRIVE-CLiQ.
	- p10010 of the TM54F master module is not the same as p10010 of the TM54F slave module (in this case, F35051 is also output).
	- in p10010 of the TM54F master or slave module, the number of a drive object was entered several times.
	- the control of the Basis Functions via TM54F was parameterized, and simultaneously the Extended Safety Functions or ncSI were parameterized.
	Alarm value (r2124, interpret binary):
	yyyy yyyy xxxx xxxx bin
	xxxx xxxx bin: inconsistent configuration
	Bit $0=1$ : No communication with drive 1.
	...
	Bit $5=1$ : No communication with drive 6.
	yyyy yyyy bin: Motor Module/Hydraulic Module replaced or a DRIVE-CLiQ cable of a Motor Module/Hydraulic Module not inserted.
	Bit 8 = 1: Motor Module/Hydraulic Module from drive 1 was replaced or does not communicate
	...
	Bit 13 = 1: Motor Module/Hydraulic Module from drive 6 was replaced or does not communicate.

Note:
When this alarm is active, none of the drives listed in the alarm value, which have drive-based motion monitoring functions operating with TM54F, are enabled.
For alarm value $=0$ :
The number of drive objects specified in p10010 is not equal to the number of drives that have drive-based motion monitoring functions that have been enabled.
See also: p10010 (SI TM54F drive object assignment)
Remedy: For all drive objects specified in p10010, check whether the drive-based motion monitoring functions with TM54F are enabled (p9601).
Check as to whether F35051 is also output and remove the cause.
Check whether each drive object number is listed only once in the indices of p10010.
Note:
If a drive was deactivated and activated without first having established the DRIVE-CLiQ connection, then this alarm is also output.
When replacing a Motor Module/Hydraulic Module, carry out the following steps:

- start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
- save all parameters ( $\mathrm{p} 0977=1$ ).
- carry out a POWER ON (switch-off/switch-on) for all components.

For SINUMERIK, the following applies:
HMI supports the replacement of components with Safety functions (operating area "Diagnostics" --> Softkey "Alarm list" --> Softkey "Confirm SI HW" etc.).
The precise procedure is given in the following document:
SINUMERIK Function Manual Safety Integrated

## A35016

Message value:
Message class:
Drive object:

Component:
Reaction:
Acknowledge:
Cause: The cyclic net data communication within the Terminal Module 54F (TM54F) is still not active for at least one drive.
Note:
This message is output after the TM54F master and TM54F slave have booted and is automatically withdrawn as soon as communications have been established.
Remedy: When replacing a Motor Module/Hydraulic Module, carry out the following steps:

- start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (switch-off/switch-on) for all components.

The following always applies:

- for all drive objects specified in p10010, check whether the drive-based motion monitoring functions with TM54F are enabled (p9601).
- check whether fault F35150 is present and if required, remove the cause of this fault.

Note:
The communication status of the individual drives is indicated in r10055. The corresponding drive objects can be identified together with p10010.
See also: r10055 (SI TM54F communication status drive-specific)

F35040	TM54F: 24 V undervoltage
Message value:	Fault cause: \%1 bin
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR AC, VECTOR I AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	For the 24 V power supply for the Terminal Module 54F (TM54F) an undervoltage condition was detected. As fault response failsafe input terminal signals are transferred to the motion monitoring functions.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : Power supply undervoltage at connection X524.
	Bit $1=1$ : Power supply undervoltage at connection X514.
Remedy:	- check the 24 V DC power supply for the TM54F.
	- carry out safe acknowledgment (p10006).
F35043	TM54F: 24 V overvoltage
Message value:	-
Message class:	Supply voltage fault (overvoltage) (3)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	For the 24 V power supply for the Terminal Module 54F (TM54F) an overvoltage condition was detected.
	As fault response failsafe input terminal signals are transferred to the motion monitoring functions.
Remedy:	- check the 24 V DC power supply for the TM54F.
	- carry out safe acknowledgment (p10006).
F35051	TM54F: Defect in a monitoring channel
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The Terminal Module 54F (TM54F) has identified an error in the data cross check between the two control channels.
	This can be the result of incorrect parameterization. However, a fault may have occurred, which was identified by the Safety Integrated software (e.g. defective hardware).
	Perform the steps listed under "Remedy" in order to rule out any defective hardware.
	As fault response failsafe input terminal signals are transferred to the motion monitoring functions.
	Fault value (r0949, interpret hexadecimal): aaaabbcc hex
	aaaa: A value greater than zero indicates an internal software error.
	bb: Data to be cross-compared that resulted in the error.
	If specified, check the specified parameters to ensure that they are the same for both the TM54F master and TM54F slave.
	$\mathrm{bb}=00$ hex: p10000[0]
	$\mathrm{bb}=01$ hex: p10001
	bb = 02 hex: p10002
	$\mathrm{bb}=03$ hex: p 10006
	bb = 04 hex: p10008
	bb = 05 hex: p10010
	$\mathrm{bb}=06$ hex: p10011
	$\mathrm{bb}=07$ hex: p10020

```
bb = 08 hex: p10021
bb = 09 hex: p10022
bb = 0A hex: p10023
bb = OB hex: p10024
bb = 0C hex: p10025
bb = 0D hex: p10026
bb = 0E hex: p10027
bb = 0F hex: p10028
bb = 10 hex: p10036
bb = 11 hex: p10037
bb = 12 hex: p10038
bb = 13 hex: p10039
bb = 14 hex: p10040
bb = 15 hex: p10041
bb = 16 hex: p10042
bb = 17 hex: p10043
bb = }18\mathrm{ hex: p10044
bb = 19 hex: p10045
bb = 1A hex: p10046
bb = 1B hex: p10041
bb = 1C hex: p10046
bb = 1D ... 1F hex: p10017, p10002, p10000
bb = 20 .. 2A hex: p10040, p10046, p10047
bb}=2B\mathrm{ hex: error in the data for test stop initialization
bb=2C hex: error in the data for initializing the input/output calculation
bb = 2D ... 45 hex: error in the data for the output calculation p10042 ... p10045
bb}=46\ldots63\mathrm{ hex: error in the data for the calculation of drive group 1
bb}=64\ldots81\mathrm{ hex: error in the data for the calculation of drive group 2
bb}=82\ldots9F hex: error in the data for the calculation of drive group
bb}=A0\ldotsBD hex: error in the data for the calculation of the drive group
bb = BE hex: debounce time of the failsafe inputs (F-DI) p10017
bb = BF hex: debounce time of the single-channel inputs (DI) p10017
bb = C0 hex: debounce time of the Diag inputs p10017
bb}=\textrm{C}1\mathrm{ hex: error in the internal data for p10030 SDI positive
bb}=\textrm{C}2\mathrm{ hex: error in the internal data for p10031 SDI negative
bb = C3 ... CA hex: error in the data to calculate the drive groups p10030 ... p10031
bb = CB hex: p10032
bb = CC hex: p10033
bb = CD hex: p10009
bb = CE ... CF error in the data for drive group 1 SLP parameter p10032 ... p10033
bb = D0 ... D1 error in the data for drive group 2 SLP parameter p10032 ... p10033
bb = D2 ... D3 error in the data for drive group 3 SLP parameter p10032 ... p10033
bb = D4 _.. D5 error in the data for drive group 4 SLP parameter p10032 ... p10033
bb}=\textrm{D6}\mathrm{ error in the data for initializing the retract function
bb}=\textrm{D}7\mathrm{ error in the data for the retract function SLP
bb = D8 error in parameter p10000[1...5]
bb = D9 ... E3 error in the internal data of the axis communication
bb = E4 ... F2 error in the internal data of the discrepancy check
cc: indicates the index of the data to be cross-compared that resulted in the error.
```

Remedy: $\quad$\begin{tabular}{l}
Carry out the following steps on the TM54F: <br>

- check the specified parameters for incorrect parameterization. <br>
- activate the safety commissioning mode $(p 0010=95)$. <br>
<br>
- start the copy function for SI parameters $(p 9700=57$ hex $)$. <br>
<br>
- acknowledge complete data change $(p 9701=A C$ hex $)$. <br>
<br>
- exit the safety commissioning mode $(p 0010=0)$. <br>
<br>
- save all parameters $(p 0977=1)$. <br>
<br>
- carry out safe acknowledgment $(p 10006)$. <br>
<br>
For an internal software error (aaaa >0): <br>
<br>
- For TM54F, upgrade the firmware to a later version. <br>
<br>
- contact Technical Support. <br>
<br>
- replace the TM54F.
\end{tabular}

F35052 (A)	TM54F: Internal hardware error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL,
	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM)
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software/hardware error has been detected on the Terminal Module 54F (TM54F).
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
	- upgrade TM54F firmware to more recent version.
	- contact Technical Support.
Reaction upon A:	- replace the TM54F.
NONE	
Acknowl. upon A:	NONE


F35053	TM54F: Temperature fault threshold exceeded
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The temperature measured using the temperature sensing on the TM54F has exceeded the threshold value to initiate this fault.
	As fault response failsafe input terminal signals are transferred to the motion monitoring functions.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- allow the TM54F to cool down.
	- carry out safe acknowledgment (p10006).


A35054	TM54F: Temperature alarm threshold exceeded
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL,
Component:	VECTOR, VECTOR_AC, VECTOR_I_AC
Terminal Module (TM)	
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing on the TM54F has exceeded the threshold value to   initiate this alarm.
Remedy:	- allow the TM54F to cool down.         - carry out safe acknowledgment (p10006).


A35075 (F)	TM54F: Error during internal communication
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An internal communications error has occurred in the Terminal Module 54F (TM54F).
	This message is also output in the following cases:
	- parameter p10000 (TM54F master) is not set the same as p10000 (TM54F slave).
	- parameter p10010 (TM54F master) is not set the same as p10010 (TM54F slave).
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens diagnostics.
Remedy:	For p10010/p10000 from the TM54F master not equal to the TM54F slave:
	- start the copy function for the node identifier on the TM54F ( $\mathrm{p} 9700=1 \mathrm{D}$ hex).
	- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
	- save all parameters ( $00977=1$ ).
	- carry out a POWER ON (switch-off/switch-on) for all components.
	For internal communication errors:
	- check the electrical cabinet design and cable routing for EMC compliance
	- upgrade the software on the TM54F.
	- contact Technical Support.
	- replace the TM54F.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)


A35080 (F)	TM54F: Checksum error safety parameters
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The calculated checksum entered in r10004 over the safety-relevant parameters does not match the reference checksum saved in p10005 at the last machine acceptance.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : Checksum error for functional SI parameters.
	Bit 1 = 1: Checksum error for SI parameters for component assignment.


Remedy:	- check the safety-relevant parameters and if required, correct.   - set the reference checksum to the actual checksum.   - acknowledge the hardware replacement.   - carry out a POWER ON (switch-off/switch-on).   - carry out an acceptance test.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A35081 (F)	TM54F: Static (steady state) 1 signal at the F-DI for safe acknowledgment
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A logical 1 signal is present at the F-DI configured in p10006 for more than 10 seconds.
	If, at the F-DI no acknowledgment was performed for safe acknowledgment, then a steady-state logical and 0 signal must be present. This avoids unintentional safety-relevant acknowledgment (or the "Internal Event Acknowledge" signal) if a wire breaks or one of the two digital inputs bounces.
Remedy:	Set the failsafe digital input (F-DI) to a logical 0 signal (p10006).
	Note:
	F-DI: Failsafe Digital Input
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY


F35150	TM54F: Communication error
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL,
Component:	VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:	Terminal Module (TM)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A communication error between the TM54F master and Control Unit or between the TM54F slave and the Motor
	Module/Hydraulic Module was detected.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	When replacing a Motor Module/Hydraulic Module, carry out the following steps:
	- start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
	- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
	- save all parameters (p0977 = 1).
	- carry out a POWER ON (switch-off/switch-on) for all components.
	The following always applies:
	- check the electrical cabinet design and cable routing for EMC compliance
	- upgrade the software on the TM54F.
	- contact Technical Support.
	- replace the TM54F.


F35151	TM54F: Discrepancy error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The safe input terminals or output terminals have a different state for longer than the time parameterized in p 10002 or too many switching operations were carried out within a monitoring cycle p10002.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex
	xxxx: The safety-relevant input terminals F-DI indicate a discrepancy.
	Bit 0: Discrepancy for F-DI 0
	...
	Bit 9: Discrepancy for F-DI 9
	yyyy: The safety-relevant output terminals F-DO indicate a discrepancy.
	Bit 0: Discrepancy for F-DO 0
	...
	Bit 3: Discrepancy for F-DO 3
	Note:
	If several discrepancy errors occur consecutively, then this fault is only signaled for the first error that occurs.
	The following options are available to analyze all of the discrepancy errors:
	- using the commissioning tool, evaluate the input states and output states of the TM54F. All discrepancy errors are displayed here.
	- compare parameters p10051 and p10052 from the TM54F master and TM54F slave for discrepancy.
Remedy:	Check the wiring of the corresponding F-DI (contact problems).
	If the wiring is correct and there is no wire breakage, then a check must be made as to whether the switching frequency at $F-D I$ is too high and must therefore be reduced (switching pulses must have have a longer time between them).
	The time interval between each signal edge at an F-DI must be at least equal to the discrepancy time before the input is switched again.
	Discrepancy errors in the failsafe digital inputs (F-DI) can only be completely acknowledged if, after the cause of the error was resolved, safe acknowledgment was carried out (see p10006). As long as safety acknowledgment was not carried out, the corresponding F-DI stays in the safe state internally.
	Sets the discrepancy time for fast switching operations at the F-DIs:
	For fast switching operations at the failsafe digital inputs (F-DI), it may be necessary to adapt the discrepancy time to the switching frequency:
	- the period of a cyclic switching pulse must be less than half of the discrepancy time (if necessary, round down).   - the time between two switching pulses should be longer than the discrepancy time (if necessary, round up).
	- the discrepancy time must be at least r10003 (it must always be rounded up or down to be an integer multiple of the SI sampling time r10003). If a debounce time has been parameterized ( $\mathrm{p} 10017>0$ ), then the shortest possible discrepancy time is directly specified using the debounce time.
	- the period of a cyclic switching pulse must be less than half of the discrepancy time p10017 (if necessary, round down).
	- the time between two fast switching pulses should be longer than the discrepancy time +p 10017 (if necessary, round up).
	- the discrepancy time must be at least r10003.
	The debounce time must always be set less than the discrepancy time.

## Example:

If the SI sampling cycle is 12 ms and the switching frequency is $110 \mathrm{~ms}(\mathrm{p} 10017=0)$, the maximum discrepancy time which can be set is as follows:
p10002 <= 110/2 ms - $12 \mathrm{~ms}=43 \mathrm{~ms}$--> rounded-off, the following is obtained p10002 <= 36 ms
Since the discrepancy time can only be accepted as a whole SI sampling time, the value will need to be rounded up or down to a whole SI sampling time value if it is not an exact integer multiple of an SI sampling time.
Basic secondary condition to set the discrepancy time:
The discrepancy time of the F-DIs must always be longer than the longest SI sampling time of all drives that use Safety Integrated with TM54F (p9780/p9500).
F-DI: Failsafe Digital Input
F-DO: Failsafe Digital Output

F35152	TM54F: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL,
Component:	VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:	Terminal Module (TM)
Acknowledge:	IMMEDIATELY
Cause:	An internal software error has occurred in the Terminal Module 54F (TM54F).
	The failsafe digital inputs and digital outputs (F-DI, F-DO) on the TM54F have been set to the safe state.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	Note:
	F-DI: Failsafe Digital Input
	F-DO: Failsafe Digital Output
	Check that the firmware version of the TM54F matches the Control Unit's firmware version.
	The automatic firmware update must be activated in the project.
	Note:
	This signal will also appear, for example, in conjunction with fault F35013. In this case you should check all the
	parameters for the test stop on the TM54F (p10001, p10003, p10007, p10041, p10046, p10047). In this case, a
	POWER ON is required after the parameters have been corrected.


A35200 (F, N)	TM: Calibration data
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected in the calibration data of the Terminal Module.
	Alarm value (r2124, interpret decimal):
	ddcbaa dec: dd = component number, c = Al/AO, b = fault type, aa = number
	$\mathrm{c}=0$ : analog input (AI)
	$c=1$ : analog output (AO)
	$b=0$ : No calibration data available.
	$\mathrm{b}=1$ : Offset too high (> 100 mV ).
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- replace the component if necessary.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F35207 (N, A)	TM: Temperature fault/alarm threshold channel 0 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO,
Component:	TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Reaction:	Terminal Module (TM)
	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)
	Hla: OFF2 (NONE, OFF1, OFF3)


	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy:	- allow the temperature sensor to cool down to below p4102[3] - hysteresis (5 K, for TM150, can be set using p4118[1]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\text { F35209 (N, A) }}$	TM: Temperature fault/alarm threshold channel 2 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)
	Hla: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[4], p4103[2]).
	or
	- fault threshold exceeded (p4102[5]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[2] = 1, 4), the following applies:
	- if r 4101 [2] > 1650 ohms, the temperature $\mathrm{r} 4105[2]=250^{\circ} \mathrm{C}$
	- if r4101[2] <= 1650 ohms, the temperature r4105[2] $=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[2] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	- allow the temperature sensor to cool down to below p4102[5] - hysteresis ( 5 K , for TM150, can be set using p4118[2]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F35210 (N, A)	TM: Temperature fault/alarm threshold channel 3 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR,
Component:	VECTOR_AC, VECTOR_I_AC
Reaction:	Terminal Module (TM)
	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)


Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A35212 (F, N)	TM: Temperature alarm threshold channel 1 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[1]) has exceeded the threshold value to initiate this alarm (p4102[2]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[1] = 1, 4), the following applies: - if r 4101 [1] > 1650 ohms, the temperature $\mathrm{r} 4105[1]=250^{\circ} \mathrm{C}$
	- if r4101[1] <= 1650 ohms, the temperature r4105[1] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	Allow the temperature sensor to cool down to below p4102[4] - hysteresis ( 5 K , for TM150, can be set using p4118[1]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35213 (F, N)	TM: Temperature alarm threshold channel 2 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[2]) has exceeded the threshold value to initiate this alarm (p4102[4]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[2] = 1, 4), the following applies:
	- if r4101[2] > 1650 ohms, the temperature r4105[2] $=250{ }^{\circ} \mathrm{C}$
	- if r4101[2] <= 1650 ohms, the temperature r4105[2] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	Allow the temperature sensor to cool down to below p4102[4] - hysteresis (5 K, for TM150, can be set using p4118[2]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35214 (F, N)	TM: Temperature alarm threshold channel 3 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[3]) has exceeded the threshold value to initiate this alarm (p4102[6]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[3] = 1, 4), the following applies: - if r4101[3] > 1650 ohms, the temperature $\mathrm{r} 4105[3]=250^{\circ} \mathrm{C}$
	- if $\mathrm{r} 4101[3]<=1650$ ohms, the temperature r4105[3] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [ $\left.0.1{ }^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[6] - hysteresis (5 K, for TM150, can be set using p4118[3]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F35220 (N, A)	TM: Frequency limit reached for signal output
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM15, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_IAC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The signals output from the Terminal Module 41 (TM41) for tracks A/B have reached the limit frequency. The output signals are no longer in synchronism with the specified setpoint.
	SIMOTION (p4400 = 0) operating mode:
	- if the TM41 has been configured as the technology project, this fault is also output in response to short-circuited $A / B$ signals in X520.
	SINAMICS (p4400 = 1) operating mode:
	- the fine resolution of TM41 in p0418 does not match that of the connector input that was interconnected at p4420
	- the encoder position actual value r0479 interconnected at connector input p4420 has an excessively high actual speed
	- the output signals correspond to a speed, which is greater than the maximum speed (r1082 of TM41).
Remedy:	SIMOTION (p4400 = 0) operating mode:
	- enter a lower speed setpoint (p1155).
	- reduce the encoder pulse number (p0408).
	- check track A/B for short-circuits.
	SINAMICS (p4400 = 1) operating mode:
	- enter a lower speed setpoint (p1155).
	- reduce the encoder pulse number (p0408).
	Notice:
	The output signal is no longer monitored after changing the message type to "Alarm" (A).


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F35221 (N, A)	TM: Setpoint - actual value deviation outside the tolerance range
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM15, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The deviation between the setpoint and the output signals (track A/B) exceeds the tolerance of $+/-3 \%$. The deviation between the internal and external measured value is too high (> 1000 pulses).
Remedy:	- reduce the basic clock cycle (p0110, p0111).
	- if required, replace the component (e.g. internal short-circuit).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A35222 (F, N)	TM: Encoder pulse number not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM15, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder pulse number entered does not match the permissible pulse number from a hardware perspective.
	Alarm value (r2124, interpret decimal):
	1: Encoder pulse number is too high.
	2: Encoder pulse number is too low.
	4: Encoder pulse number is less than the zero mark offset (p4426).
Remedy:	- enter the encoder pulse number in the permissible range (p0408).
	- if necessary, replace TM41 SAC with TM41 DAC.
	Note:
	TM41 SAC: Article No. $=6$ SL3055-0AA00-3PA0
	TM41 DAC: Article No. $=6$ SL3055-0AA00-3PA1
	The following applies for TM41 SAC:
	- minimum/maximum value for p0408: 1000/8192
	The following applies for TM41 DAC:
	- minimum/maximum value for p0408: 1000/16384
	See also: p0408
Reaction upon F:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35223 (F, N)	TM: Zero mark offset not permissible
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM15, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The entered zero mark offset is not permissible.
	Alarm value (r2124, interpret decimal):
	1: Zero mark offset is too high.
	See also: p4426 (TM41 encoder emulation pulses for zero mark)
Remedy:	Enter the zero mark offset in the permissible range (p4426).
Reaction upon F:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35224 (N)	TM: Zero mark synchronization interrupted
Message value:	\%1
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The zero mark synchronization with the encoder to be emulated was interrupted.
	Alarm value (r2124, interpret decimal):
	0 : The encoder is not in the ready state (e.g. encoder parked)
	1: An absolute encoder was connected.
	2: The encoder r0479[0...2] interconnected via connector input: p4420 is already communicating with another TM41 (precisely one TM41 can be interconnected with a specific r0479[0...2]).
	3: The BICO interconnection to Terminal Module 41 (TM41) was removed (CI: $\mathrm{p} 4420=0$ signal).
	4: The encoder interconnected via connector input: p4420 has carried out an EDS changeover or has been reparameterized (this operation is not supported, set p4420 to 0 and interconnect again).
	5: The maximum number of revolutions of the encoder was exceeded.
	6: Encoder in an invalid state.
	7: Encoder in an invalid state.
	8: Encoder in an invalid state (the encoder is not parameterized or the interconnected signal source is not in the cyclic state).
Remedy:	Not necessary.
	- if the encoder changes into the ready state, then a synchronization operation that was previously interrupted is carried out again.
	- if the synchronization was interrupted due to the maximum permissible synchronization duration, then a new synchronization is not carried out.
	- the alarm is only output, if, for an absolute encoder, the zero mark synchronization is set to the zero position ( $\mathrm{p} 4401.0=1$ and $\mathrm{p} 4401 \cdot 1=0$ ).
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35225	TM: Zero mark synchronization held - encoder not in the ready state
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The zero mark synchronization with the encoder to be emulated was held.
	The encoder is not in the "ready" state.
Remedy:	Bring the encoder into the "ready" state.
A35226	TM: Tracks A/B are deactivated
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no frequency setpoint for the Terminal Module 41 (TM41). The output of tracks A/B has been held (frozen).
	Possible causes:
	- connector input p4420 is not interconnected.
	- the leading encoder is not in the "ready" state (parking encoder or encoder data set not parameterized).
	- TM41 has a fault.
	- the TM41 is in the commissioning mode ( $00010>0$ ).
	- the TM41 component is not connected to DRIVE-CLiQ.
Remedy:	- appropriately interconnect connector input p4420.
	- bring the leading encoder into the "ready" state.
	- remove any TM41 faults.

## A35227

Message value:
Message class:
Drive object:

Component:
Reaction:
Acknowledge:
EDS changeover/encoder data set change not supported

Cause:

## Remedy:

Error in the parameterization / configuration / commissioning procedure (18)
A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
None Propagation: GLOBAL
NONE
NONE
Terminal Module 41 (TM41) does not support the following application cases:

- the encoder interconnected via connector input p4420 has carried out an EDS changeover
- the encoder interconnected with the TM41 was re-parameterized so that the position actual value of the encoder must be newly interpreted.
For example, this is the case when changing the direction of rotation of the motor (p0410, p1821) or when changing the fine resolution (p0418). This may result in a sudden change in the position actual value of the encoder (position setpoint of the TM41), which must not be output at the TM41
See also: p4420 (TM41 encoder emulation position setpoint)
Set connector input p4420 $=0$ and re-wire.

A35228 (F, N)	TM: Sampling time p4099[3] invalid
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The sampling time set in p4099[3] for incremental encoder emulation in Terminal Module 41 (TM41) does not correspond to the valid value. To resolve the problem, correct the setting of p4099[3]. The system automatically performs a warm restart/sub-boot.
	Alarm value (r2124, interpret decimal):
	1:
	A sampling time $\mathrm{p} 4099[3]$ < $125 \mu$ s was set.
	2 :
	An integer multiple of the DRIVE-CLiQ clock cycle was not entered in p4099[3].
	3:
	- in the SINAMICS mode (p4400 = 1), the sampling time in p4099[3] is not an integer multiple of the current controller sampling time ( $\mathrm{p} 0115[0]$ ) of the drive object, which supplies the position setpoint ( Cl : p 4420 ) for the incremental encoder simulation.
	- the encoder interconnected via connector input p4420 (e.g. an SSI encoder) is sampled in a slower clock cycle.
Remedy:	- if necessary, cancel the BICO interconnection via connector input p4420.
	- check the rules specified under cause for setting the sampling time in p4099[3].
	- if necessary, set the BICO interconnection via connector input p4420 again.
	Note:
	Every time the BICO interconnection is reset via connector input p4420, the sampling time is checked in p4099[3] and, where necessary, this message is output.
Reaction upon F:	OFF1 (NONE, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F35229	TM: Time slice deactivated
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: NONE
	Vector: NONE
	Hla: NONE
Acknowledge:	IMMEDIATELY
Cause:	The required value of a cycle time in p4099[0...2] is invalid.
	The corresponding time slice was not activated.
	Alarm value (r2124, interpret decimal):
	0 : Digital input/outputs (p4099[0])
	1: Analog inputs (p4099[1])
	3: Encoder emulation (p4099[3]).
	4: Encoder emulation speed setpoint (p4099[3]).
	5: Encoder emulation speed setpoint (p4099[3]).
	6: Internal sequence control of the TM41 (internal error)
Remedy:	Change the sampling time according to the alarm value.
	Note:
	The sampling time p4099[0] may not be zero.


F35230	TM: Hardware fault
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM15DI_DO, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: GLOBAL
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: NONE
	Vector: NONE
	Hia: NONE
Acknowledge:	POWER ON
Cause:	The Terminal Module (TM) used has signaled internal errors.
	Signals from this module may not be evaluated because they are very likely to be incorrect.
Remedy:	If required, replace the Terminal Module.
A35231	TM: Master control by PLC missing
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "master control by PLC" signal was missing in operation.
	- interconnection of the binector input for "master control by PLC" is incorrect (p0854).
	- the higher-level control has withdrawn the "master control by PLC" signal.
	- data transfer via the fieldbus (master/drive) was interrupted.
	Note:
	This alarm is only decisive in the "SIMOTION" operating mode (p4400 $=0$ ).
	In the "SINAMICS" operating mode ( $\mathrm{p} 4400=1$ ), the setpoints at p 4420 are evaluated independent of binector input p0854.
Remedy:	- check the interconnection of the binector input for "master control by PLC" (p0854).
	- check the "master control by PLC" signal and, if required, switch in.
	- check the data transfer via the fieldbus (master/drive).
	- check the setting of parameter p2037.
A35232	TM41: Zero mark no longer synchronous POWER ON required
Message value:	- Apple
Message class:	Application/technological function faulted (17)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	SINAMICS (p4400 = 1) operating mode:
	When parameterizing a Terminal Module 41 (TM41) or when operating a TM41 Module, an operating state was reached which required a POWER ON.
	These include:
	- changing the encoder pulse number (p0408).
	- changing the fine resolution (p0418).
	- withdrawing the DRIVE-CLiQ cable without first deactivating TM41 via p0105.
	If this alarm was output, then the zero mark of the TM41 can no longer be output in synchronism to that of the encoder interconnected at p 4420 .
	SIMOTION (p4400 $=0$ ) operating mode:
	A previously set zero mark position (p4426) no longer matches encoder position (r0479) due to the change in the pulse number ( p 0408 ).


Remedy:	The incremental position at output X520 of TM41 can still be evaluated independent of the zero mark. A POWER ON must be carried out if the TM41 zero mark is evaluated.
F35233	DRIVE-CLiQ component function not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A function requested by the Control Unit is not supported by a DRIVE-CLiQ component.
	Fault value (r0949, interpret decimal):
	1: Terminal Module 31 does not support the function "Timer for temperature evaluation" (X522.7/8, p4103>0.000).   4: The improved actual value resolution is not supported ( p 4401.4 ).
	5: The improved setpoint resolution is not supported (p4401.5).
	6: The residual value handling in the setpoint channel cannot be deactivated (p4401.6).
	7: Output frequencies greater than 750 kHz cannot be activated (p4401.7).
Remedy:	For fault value $=1$ :
	- Deactivate timer for temperature evaluation (X522.7/8) (p4103 = 0.000).
	- use Terminal Module 31 and the relevant firmware version to enable the "Timer for temperature evaluation" function (Article No. 6SL3055-0AA00-3AA1, firmware version 2.6 and higher).
	See also: p4103, p4401 (TM41 encoder emulation mode)

$\overline{\text { F35400 (N, A) TM: Temperature fault/alarm threshold channel } 4 \text { exceeded }}$
Message value: \%1

Message class: External measured value / signal state outside the permissible range (16)
Drive object: A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC,
Component: Terminal Module (TM) Propagation: BICO
Hla: OFF2 (NONE, OFF1, OFF3)

## Remedy:

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
$\overline{\text { F35401 (N, A) }}$	TM: Temperature fault/alarm threshold channel 5 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)
	Hla: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[10], p4103[5]).
	or
	- fault threshold exceeded (p4102[11]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[5] = 1, 4), the following applies:
	- if r4101[5] > 1650 ohms, the temperature r4105[5] $=250^{\circ} \mathrm{C}$
	- if r4101[5] <= 1650 ohms, the temperature r4105[5] = -50 ${ }^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[5] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	- allow the temperature sensor to cool down to below p4102[11] - hysteresis (p4118[5]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F35402 (N, A)	TM: Temperature fault/alarm threshold channel 6 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)
	Hla: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[12], $\mathrm{p} 4103[6]$ ).
	or
	- fault threshold exceeded (p4102[13]).

### 4.2 List of faults and alarms

Note:
For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[6] = 1, 4), the following applies:

- if r 4101 [6] > 1650 ohms, the temperature $\mathrm{r} 4105[6]=250^{\circ} \mathrm{C}$
- if $\mathrm{r} 4101[6]<=1650$ ohms, the temperature $\mathrm{r} 4105[6]=-50^{\circ} \mathrm{C}$

The temperature actual value is displayed via connector output $\mathrm{r} 4105[6]$ and can be interconnected.
Notice:
This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
Fault value (r0949, interpret decimal):
Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.

Remedy:	- allow the temperature sensor to cool down to below p4102[13] - hysteresis (p4118[6]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F35403 (N, A) TM: Temperature fault/alarm threshold channel 7 exceeded
Message value: $\% 1$
Message class: External measured value / signal state outside the permissible range (16)
Drive object: A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC,
Component: Terminal Module (TM) Propagation: BICO

Reaction:

## Acknowledge:

Cause:
Infeed: OFF2 (NONE, OFF1) Servo: OFF2 (NONE, OFF1, OFF3)
Vector: OFF2 (NONE, OFF1, OFF3)
Hla: OFF2 (NONE, OFF1, OFF3)
IMMEDIATELY (POWER ON)
For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:

- alarm threshold has been exceeded longer than that set in the timer (p4102[14], p4103[7]).
or
- fault threshold exceeded (p4102[15]).

Note:
For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[7] = 1, 4), the following applies:

- if r4101[7] > 1650 ohms, the temperature r4105[7] $=250^{\circ} \mathrm{C}$
- if $\mathrm{r} 4101[7]<=1650$ ohms, the temperature $\mathrm{r} 4105[7]=-50^{\circ} \mathrm{C}$

The temperature actual value is displayed via connector output r4105[7] and can be interconnected.
Notice:
This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
Fault value (r0949, interpret decimal):
Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy: - allow the temperature sensor to cool down to below p4102[15] - hysteresis (p4118[7]).

- if required, set the fault response to NONE (p2100, p2101).

See also: p4102
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F35404 (N, A)	TM: Temperature fault/alarm threshold channel 8 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)
	Hla: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[16], p4103[8]).
	or
	- fault threshold exceeded (p4102[17]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[8] = 1, 4), the following applies:
	- if r4101[8] > 1650 ohms, the temperature r4105[8] $=250^{\circ} \mathrm{C}$
	- if r4101[8] <= 1650 ohms, the temperature r4105[8] $=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[8] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	- allow the temperature sensor to cool down to below p4102[17] - hysteresis (p4118[8]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F35405 (N, A)	TM: Temperature fault/alarm threshold channel 9 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)
	Hla: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[18], p4103[9]).
	or
	- fault threshold exceeded (p4102[19]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[9] = 1, 4), the following applies:
	- if r4101[9] > 1650 ohms, the temperature r4105[9] $=250{ }^{\circ} \mathrm{C}$
	- if r4101[9] <= 1650 ohms, the temperature r4105[9] $=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[9] and can be interconnected.

### 4.2 List of faults and alarms

	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	- allow the temperature sensor to cool down to below p4102[19] - hysteresis (p4118[9]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F35406 (N, A)	TM: Temperature fault/alarm threshold channel 10 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)
	Hla: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[20], p4103[10]).
	or
	- fault threshold exceeded (p4102[21]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[10] = 1, 4), the following applies: - if r 4101 [10] > 1650 ohms, the temperature $\mathrm{r} 4105[10]=250^{\circ} \mathrm{C}$
	- if r4101[10] <= 1650 ohms, the temperature r4105[10] $=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[10] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	- allow the temperature sensor to cool down to below p4102[21] - hysteresis (p4118[10]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F35407 (N, A)	TM: Temperature fault/alarm threshold channel 11 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (NONE, OFF1, OFF3)
	Vector: OFF2 (NONE, OFF1, OFF3)
	Hla: OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[22], p4103[11]).
	or
	- fault threshold exceeded (p4102[23]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" ( $\mathrm{p} 4100[11]=1,4$ ), the following applies:
	- if r4101[11] > 1650 ohms, the temperature $\mathrm{r} 4105[11]=250{ }^{\circ} \mathrm{C}$
	- if r4101[11] <= 1650 ohms, the temperature r4105[11] = -50 ${ }^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[11] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	- allow the temperature sensor to cool down to below p4102[23] - hysteresis (p4118[11]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A35410 (F, N)	TM: Temperature alarm threshold channel 4 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[4]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[8]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[4] = 1, 4), the following applies:
	- if r4101[4] > 1650 ohms, the temperature $\mathrm{r} 4105[4]=250{ }^{\circ} \mathrm{C}$
	- if r4101[4] <= 1650 ohms, the temperature r4105[4] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[8] - hysteresis (p4118[4]).
	See also: p4102

### 4.2 List of faults and alarms

Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A35411 (F, N)	TM: Temperature alarm threshold channel 5 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[5]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[10]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[5] = 1, 4), the following applies: - if r4101[5] > 1650 ohms, the temperature $\mathrm{r} 4105[5]=250^{\circ} \mathrm{C}$
	- if r4101[5] <= 1650 ohms, the temperature r4105[5] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	Allow the temperature sensor to cool down to below p4102[10] - hysteresis (p4118[5]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35412 (F, N)	TM: Temperature alarm threshold channel 6 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[6]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[12]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[6] = 1, 4), the following applies:
	- if r4101[6] > 1650 ohms, the temperature r4105[6] $=250{ }^{\circ} \mathrm{C}$
	- if r4101[6] <= 1650 ohms, the temperature $\mathrm{r} 4105[6]=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	Allow the temperature sensor to cool down to below p4102[12] - hysteresis (p4118[6]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35413 (F, N)	TM: Temperature alarm threshold channel 7 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[7]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[14]).   Note:   For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[7] = 1, 4), the following applies:   - if r 4101 [7] > 1650 ohms, the temperature $\mathrm{r} 4105[7]=250^{\circ} \mathrm{C}$   - if $\mathrm{r} 4101[7]<=1650$ ohms, the temperature $\mathrm{r} 4105[7]=-50^{\circ} \mathrm{C}$   Alarm value (r2124, interpret decimal):   Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[14] - hysteresis (p4118[7]). See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35414 (F, N)	TM: Temperature alarm threshold channel 8 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[8]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[16]).   Note:   For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[8] = 1, 4), the following applies:   - if r 4101 [8] > 1650 ohms, the temperature $\mathrm{r} 4105[8]=250^{\circ} \mathrm{C}$   - if $\mathrm{r} 4101[8]<=1650$ ohms, the temperature $\mathrm{r} 4105[8]=-50^{\circ} \mathrm{C}$   Alarm value (r2124, interpret decimal):   Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[16] - hysteresis (p4118[8]). See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35415 (F, N)	TM: Temperature alarm threshold channel 9 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[9]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[18]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[9] = 1, 4), the following applies:
	- if r4101[ 9 ]>1650 ohms, the temperature $\mathrm{r} 4105[9]=250^{\circ} \mathrm{C}$
	- if $\mathrm{r} 4101[9]<=1650$ ohms, the temperature $\mathrm{r} 4105[9]=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [ $\left.0.1^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[18] - hysteresis (p4118[9]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35416 (F, N)	TM: Temperature alarm threshold channel 10 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[10]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[20]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[10] = 1, 4), the following applies:
	- if r4101[10] > 1650 ohms, the temperature r4105[10] $=250^{\circ} \mathrm{C}$
	- if r4101[10] <= 1650 ohms, the temperature r4105[10] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[20] - hysteresis (p4118[10]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35417 (F, N)	TM: Temperature alarm threshold channel 11 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[11]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[22]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[11] = 1, 4), the following applies: - if r4101[11]> 1650 ohms, the temperature $\mathrm{r} 4105[11]=250^{\circ} \mathrm{C}$
	- if r 4101 [11] <= 1650 ohms, the temperature $\mathrm{r} 4105[11]=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [ $\left.0.1^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[22] - hysteresis (p4118[11]).
	See also: p4102
Reaction upon F :	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
N35800 (F)	TM: Group signal
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: BICO
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	NONE
Cause:	The Terminal Module has detected at least one fault.
Remedy:	Evaluates other actual messages.
Reaction upon F:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY

4.2 List of faults and alarms

F35801 (N, A)	TM DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred between the Control Unit and the Terminal Module involved. Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ connection.
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A35802 (F, N)	TM: Time slice overflow	
Message value:	-	
Message class:	Hardware/software error (1)	
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO,	
	TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC	
Component:	Terminal Module (TM) BICO	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	A time slice overflow has occurred on the Terminal Module.	
Remedy:	Replace the Terminal Module.	
Reaction upon $\mathrm{F}:$	NONE	
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)	
Reaction upon $\mathrm{N}:$	NONE	
Acknowl. upon $\mathrm{N}:$	NONE	


A35803 (F, N)	TM: Memory test
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM15, TM15DI_DO, TM17, TM41,
	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the memory test on the Terminal Module.
Remedy:	- check whether the permissible ambient temperature for the Terminal Module is being maintained.
	- replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


F35804 (N, A)	TM: CRC
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A checksum error has occurred when reading-out the program memory on the Terminal Module.
	Fault value (r0949, interpret hexadecimal):
	Difference between the checksum at POWER ON and the actual checksum.
Remedy:	- check whether the permissible ambient temperature for the component is maintained.
	- replace the Terminal Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F35805 (N, A)	TM: EEPROM checksum error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Internal parameter data is corrupted.
	Alarm value (r2124, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
Remedy:	- check whether the permissible ambient temperature for the component is maintained.
	- replace the Terminal Module 31 (TM31).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A35807 (F, N)	TM: Sequence control time monitoring
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM15, TM15DI_DO, TM17, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error, timeout, sequence control on the Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F35820	TM DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM 17, TM 31, TM41, TM54F MA, TM54F SL, VECTOR, VECTOR AC, VECTOR I AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the Terminal Module involved. Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
F35835	TM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the Terminal Module involved. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.


	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $x x=$ error cause
Remedy:	- carry out a POWER ON.
	- replace the component involved.
F35836	TM DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred between the Control Unit and the Terminal Module involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F35837	PTM DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.


F35845	TM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred between the Control Unit and the Terminal Module (TM) involved Fault cause:
	11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F35850	TM: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM 17 , TM 31, TM41, TM $54 F$ MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	Infeed: OFF1 (NONE, OFF2)
	Servo: OFF1 (NONE, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error in the Terminal Module (TM) has occurred.
	Fault value (r0949, interpret decimal):
	1: Background time slice is blocked.
	2: Checksum over the code memory is not OK.
Remedy:	- replace the Terminal Module (TM).
	- if required, upgrade the firmware in the Terminal Module.
	- contact Technical Support.
F35851	TM DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Upgrade the firmware of the component involved.


F35860	TM DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. 20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early.
	22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $x x=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).


F35875	TM: power supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).   - check the dimensioning of the power supply for the DRIVE-CLiQ component.


F35885	TM DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.


F35886	TM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F35887	TM DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (Terminal Module) involved. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.


F35895	TM DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_IAC
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit.
	Fault cause:
	11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F35896	TM DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_IAC
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	Infeed: OFF2 (NONE, OFF1)
	Servo: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Hla: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Terminal Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).

F35899 (N, A) TM: Unknown fault

Message value: New message: \%1
Message class: General drive fault (19)

Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO,	
	TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC	
Component:	Terminal Module (TM)	Propagation:
Reaction:	Infeed: NONE (OFF1, OFF2)	

        Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
        Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
        Hla: NONE (OFF1, OFF2, OFF3, STOP2)
    Acknowledge:
IMMEDIATELY (POWER ON)
Cause: A fault has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
Fault number.
Note:
If required, the significance of this new fault can be read about in a more recent description of the Control Unit.

Remedy:	- replace the firmware on the Terminal Module by an older firmware version (r0158).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A35903 (F, N)	TM: I2C bus error occurred
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO,
	TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred while accessing the internal I2C bus of the Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A35904 (F, N)	TM: EEPROM
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_NF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO,
	TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A35905 (F, N)	TM: Parameter access
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR AC, VECTOR I AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Control Unit attempted to write an illegal parameter value to the Terminal Module.
Remedy:	- check whether the firmware version of the Terminal Module (r0158) matches the firmware version of Control Unit (r0018).
	- if required, replace the Terminal Module.
	Note:
	The firmware versions that match each other are in the readme.txt file on the memory card.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35906 (F, N)	TM: 24 V power supply missing
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 24 V power supply for the digital outputs is missing.
	Alarm value (r2124, interpret hexadecimal):
	01: TM17 24 V power supply for DI/DO $0 \ldots 7$ missing.
	02: TM17 24 V power supply for DI/DO 8 ... 15 missing.
	04: TM15 24 V power supply for DI/DO 0 ... 7 (X520) missing.
	08: TM15 24 V power supply for DI/DO $8 \ldots 15$ (X521) missing.
	10: TM15 24 V power supply for DI/DO 16 ... 23 (X522) missing.
	20: TM4124 V power supply for DI/DO 0 ... 3 missing.
Remedy:	Check the terminals for the power supply voltage ( $\mathrm{L} 1+$, L2+, L3+, M or +24 V_1 for TM41).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35907 (F, N)	TM: Hardware initialization error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO,
	TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Bropagation:
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Terminal Module was not successfully initialized.
	Alarm value (r2124, interpret hexadecimal):
	01: TM17 or TM41 - incorrect configuration request.
	02: TM17 or TM41 - programming not successful.
Remedy:	04: TM17 or TM41 - invalid time stamp
Reaction upon F:	Carry out a POWER ON.
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A35910 (F, N)	TM: Module overtemperature
Message value:	-
Message class:	Overtemperature of the electronic components (6)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO,
	TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature in the module has exceeded the highest permissible limit.
Remedy:	- reduce the ambient temperature.
	- replace the Terminal Module.


Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A35911 (F, N)	TM: Clock synchronous operation sign-of-life missing
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum permissible number of errors in the master sign-of-life (clock synchronous operation) has been exceeded in cyclic operation.
	When the alarm is output, the module outputs are reset up to the next synchronization.
Remedy:	- check the physical bus configuration (terminating resistor, shielding, etc.).
	- check the interconnection of the master sign-of-life (r4201 via p0915).
	- check whether the master correctly sends the sign-of-life (e.g. set up a trace with r4201.12 ... r4201.15 and trigger signal r4301.9).
	- check the bus and master for utilization level (e.g. bus cycle time Tdp was set too short).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35920 (F, N)	TM: Error temperature sensor channel 0
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: $\mathrm{R}>1630$ Ohm (TM150: $\mathrm{R}>2170$ Ohm), PT100: $\mathrm{R}>194$ Ohm, PT1000: $\mathrm{R}>1720$ Ohm (TM150: R > 1944 Ohm)
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35921 (F, N)	TM: Error temperature sensor channel 1
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 1630 Ohm (TM150: $\mathrm{R}>2170$ Ohm), PT100: $\mathrm{R}>194$ Ohm, PT1000: R > 1720 Ohm (TM150: R > 1944 Ohm)
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35922 (F, N)	TM: Error temperature sensor channel 2
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: $R$ > 1630 Ohm (TM150: $R$ > 2170 Ohm), PT100: $R>194$ Ohm, PT1000: $R>1720$ Ohm (TM150: R > 1944 Ohm)
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35923 (F, N)	TM: Error temperature sensor channel 3
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 1630 Ohm (TM150: $\mathrm{R}>2170$ Ohm), PT100: $\mathrm{R}>194$ Ohm, PT1000: $\mathrm{R}>1720$ Ohm (TM150: R > 1944 Ohm)
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35924 (F, N)	TM: Error temperature sensor channel 4
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: R < 20 Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: R < 603 Ohm
Remedy:	- make sure that the sensor is connected correctly.   - replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35925 (F, N)	TM: Error temperature sensor channel 5
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.   - replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35926 (F, N)	TM: Error temperature sensor channel 6
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35927 (F, N)	TM: Error temperature sensor channel 7
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35928 (F, N)	TM: Error temperature sensor channel 8
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35929 (F, N)	TM: Error temperature sensor channel 9
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F :	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35930 (F, N)	TM: Error temperature sensor channel 10
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35931 (F, N)	TM: Error temperature sensor channel 11
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM150, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: BICO
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: R < 20 Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: R < 603 Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F35950	TM: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM) Propagation: LOCAL
Reaction:	OFF2 (NONE)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Information about the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- if necessary, upgrade the firmware in the Terminal Module to a later version.   - contact Technical Support.


A35999 (F, N)	TM: Unknown alarm
Message value:	New message: \%1
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, HLA, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO,
	TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Module (TM)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Terminal Module by an older firmware version (r0158).
	- upgrade the firmware on the Control Unit (r0018).

### 4.2 List of faults and alarms

Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F36207 (N, A)	Hub: Overtemperature component
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The temperature on the DRIVE-CLiQ Hub Module has exceeded the fault threshold.
	Fault value (r0949, interpret decimal):
	Actual temperature in $0.1{ }^{\circ} \mathrm{C}$ resolution.
Remedy:	- check ambient temperature at component installation location.
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


A36211 (F, N)	Hub: Overtemperature alarm component
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
	VECTOR_I_AC
Component:	Terminal Board (TB)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature on the DRIVE-CLiQ Hub Module has exceeded the alarm threshold.
	Alarm value (r2124, interpret decimal):
	Actual temperature in $0.1^{\circ} \mathrm{C}$ resolution.
Remedy:	- check ambient temperature at component installation location.
	- replace the component involved.
Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F36214 (N, A) Hub: overvoltage fault 24 V supply
Message value: \%1
Message class: Supply voltage fault (overvoltage) (3)
Drive object: A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
VECTOR_I_AC
Component: Terminal Board (TB) Propagation: LOCAL
Reaction:
Acknowledge: IMMEDIATELY (POWER ON)
Cause: $\quad$ The 24 V power supply on the DRIVE-CLiQ Hub Module has exceeded the fault threshold.
Fault value (r0949, interpret decimal):
Actual operating voltage in $0.1^{\circ} \mathrm{C}$ resolution

Remedy:	- check the supply voltage of the component involved.   - replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F36216 (N, A)	Hub: undervoltage fault 24 V supply
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The 24 V power supply on the DRIVE-CLiQ Hub Module has undershot the fault threshold.
	Fault value (r0949, interpret decimal):
	Actual operating voltage in $0.1{ }^{\circ} \mathrm{C}$ resolution
Remedy:	- check the supply voltage of the component involved.   - replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A36217 (N)	Hub: undervoltage alarm 24 V supply
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,
	VECTOR_I_AC
Component:	Terminal Board (TB)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 24 V power supply on the DRIVE-CLiQ Hub Module has undershot the alarm threshold.
	Alarm value (r2124, interpret decimal):
	Actual operating voltage in $0.1^{\circ} \mathrm{C}$ resolution
Remedy:	- check the supply voltage of the component involved.
	- replace the component involved.
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE


N36800 (F)	Hub: Group signal	
Message value:	-	
Message class:	General drive fault (19)	
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC,	
	VECTOR_I_AC	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	The DRIVE-CLiQ Hub Module has detected at least one fault.	
Remedy:	Evaluates other actual messages.	
Reaction upon F:	NONE	
Acknowl. upon F:	IMMEDIATELY	


A36801 (F, N)	Hub DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved.
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ connection.
	- replace the component involved.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A36802 (F, N)	Hub: Time slice overflow
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	A time slice overflow has occurred on the DRIVE-CLiQ Hub Module.
	Fault value (r0949, interpret decimal):   xx : Time slice number xx
Remedy:	- reduce the current controller frequency.
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
Reaction upon F:	Infeed: OFF2 (NONE)
	Servo: NONE
	Vector: NONE
	Hla: NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F36804 (N, A)	Hub: Checksum error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A checksum error has occurred when reading out the program memory on the DRIVE-CLiQ Hub Module.
	Fault value (r0949, interpret hexadecimal):
	Difference between the checksum at POWER ON and the actual checksum.
Remedy:	- check whether the permissible ambient temperature for the component is maintained.
	- replace the DRIVE-CLiQ Hub Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F36805 (N, A)	Hub: EEPROM checksum incorrect
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The internal parameter data on the DRIVE-CLiQ Hub Module is incorrect.
	Alarm value (r2124, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
Remedy:	- check whether the permissible ambient temperature for the component is maintained.
	- replace the DRIVE-CLiQ Hub Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F36820	Hub DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.

### 4.2 List of faults and alarms

	$5 \text { (= } 05 \text { hex): }$
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
F36835	Hub DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 ( $=40 \mathrm{hex}$ ):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON.
	- replace the component involved.

## F36836

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## Hub DRIVE-CLiQ: Send error for DRIVE-CLiQ data

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Terminal Board (TB) Propagation: LOCAL
NONE
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved. Data were not able to be sent.
Fault cause:
65 (= 41 hex):
Telegram type does not match send list.

	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F36837	Hub DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F36845	Hub DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.

### 4.2 List of faults and alarms

F36851	Hub DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Upgrade the firmware of the component involved.
F36860	Hub DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early 20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.


	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early. 22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
F36875	HUB: power supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	A_INF, B_INF, CU_LINK, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.

## F36885

Message value:
Message class:
Drive object:

Component: Reaction:
Acknowledge:
Cause:

## Hub DRIVE-CLiQ (CU): Cyclic data transfer error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
A_INF, B_INF, CU_LINK, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Terminal Board (TB)
Propagation: LOCAL
NONE
IMMEDIATELY
DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to the Control Unit.
The nodes do not send and receive in synchronism.
Fault cause:
26 (= 1A hex):
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 (= 40 hex):
Timeout in the telegram send list.
98 (= 62 hex):
Error at the transition to cyclic operation

Remedy:	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
	- check the supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
F36886	Hub DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F36887	Hub DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module) involved. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 ( $=60$ hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.


F36895	Hub DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI DO, TM17, TM31, TM41, VECTOR, VECTOR AC, VECTOR - IAC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F36896	Hub DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	A_INF, B_INF, CU_LINK, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, VECTOR, VECTOR AC, VECTOR I AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
F36899 (N, A)	Hub: Unknown fault
Message value:	New message: \%1
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the DRIVE-CLiQ Hub Module that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.
	Note:
	If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the DRIVE-CLiQ Hub Module with older firmware (r0158).   - upgrade the firmware on the Control Unit (r0018).


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F36950	Hub: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	OFF2 (NONE)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Information about the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- if required, upgrade the firmware in the DRIVE-CLiQ Hub Module to a more recent version.   - contact Technical Support.


A36999 (F, N)	Hub: Unknown alarm
Message value:	New message: \%1
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TM41, VECTOR, VECTOR_AC, VECTOR_IAC
Component:	Terminal Board (TB) Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the DRIVE-CLiQ Hub Module that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the DRIVE-CLiQ Hub Module with older firmware (r0158).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Hla: NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

## F37001 HF Damping Module: overcurrent

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:
Fault cause: \%1 bin
General drive fault (19)
SERVO, SERVO_AC, SERVO_I_AC
None Propagation: LOCAL
OFF2
IMMEDIATELY
The power unit has detected an overcurrent condition.

- HF Choke Module or HF Damping Module defective.
- Resonance frequency of the output filter was excited.



### 4.2 List of faults and alarms

Remedy:	- check whether the fan is running.   - check the fan elements.   - check whether the ambient temperature is in the permissible range.   Notice:   This fault can only be acknowledged after the alarm threshold for alarm A05000 has been undershot.   Note:   HF Damping Module
F37005	HF Damping Module: I2t overload
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The filter capacitor of the HF Damping Module was overloaded (r5173 = $100 \%$ ).   - the filter resonance frequency was excessively excited.   - the HF Choke Module is defective.   Fault value (r0949, interpret decimal): I2t [100 \% = 16384].
Remedy:	- reduce the motor power in the proximity of the fault-generating frequency.   - the system should not stay in a steady-state condition in the vicinity of the fault-generating frequency.   - check the HF Choke Module and if required replace.   Note:   HF Choke Module (reactor module)   HF Damping Module   See also: r5173 (HF Damping Module I2t overload)

## F37012

Message value: HF Damping Module: Heat sink temperature sensor wire breakage
Message value: $\% 1$
Message class: General drive fault (19)
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Component: None Propagation: LOCAL
Reaction:
Acknowledge: OFF1 (OFF2)

Cause: IMMEDIATELY

Cause:	The connection to one of the heat sink temperature sensors in the HF Damping Module
	Fault value (r0949, interpret hexadecimal):
	Bit 0: HF Damping Module
	Bit 1: HF Choke Module
Remedy:	Contact the manufacturer.
	Note:
	HF Choke Module (reactor module)
	HF Damping Module
F37013	HF Damping Module: Heat sink temperature sensor short-circuit
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The heat sink temperature sensor in the HF Damping Module is short-circuited.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: HF Damping Module


Remedy:	Contact the manufacturer.
	Note:
	HF Choke Module (reactor module)
	HF Damping Module
F37024	HF Damping Module: Overtemperature thermal model
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature difference between the heat sink and chip has exceeded the permissible limit value.
- the permissible load duty cycle was not maintained.	
- insufficient cooling, fan failure.	
- overload.	
- ambient temperature too high.	
- pulse frequency too high.	
Semedy:	See also: roos7   - adapt the load duty cycle.   - check whether the fan is running.   - check the fan elements.   - check whether the ambient temperature is in the permissible range.   - check the motor load.   - reduce the pulse frequency if this is higher than the rated pulse frequency.


F37025	HF Damping Module: Chip overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The chip temperature has exceeded the permissible limit value.
	- the permissible load duty cycle was not maintained.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- pulse frequency too high.
	Fault value (r0949, interpret decimal):
	Temperature difference between the heat sink and chip [0.01 $\left.{ }^{\circ} \mathrm{C}\right]$.
	- adapt the load duty cycle.
	- check whether the fan is running.
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	- check the motor load.
	- reduce the pulse frequency if this is higher than the rated pulse frequency.
	Note:
	HF Damping Module
	See also: r0037


A37034	HF Damping Module: Internal overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for internal overtemperature has been reached.
	If the temperature inside the unit continues to increase, fault F37036 may be triggered.
	- ambient temperature might be too high.
	- insufficient cooling, fan failure.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : Control electronics range.
	Bit 1 = 1: Power electronics range.
Remedy:	- check the ambient temperature.
	- check the fan for the inside of the unit.
	Note:
	HF Damping Module
F37036	HF Damping Module: Internal overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature inside the HF Damping Module has exceeded the permissible temperature limit. - insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : Control electronics range.
	Bit $1=1$ : Power electronics range.
Remedy:	- check whether the fan is running.
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	Notice:
	This fault can only be acknowledged once the permissible temperature limit minus 5 K has been undershot.
	Note:
	HF Damping Module
F37040	HF Damping Module: 24 V undervoltage
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Failure of the 24 V power supply for the HF Damping Module.
	- the undervoltage threshold was undershot for longer than 3 ms .
	Fault value (r0949, interpret decimal):
	24 V voltage $[0.1 \mathrm{~V}$ ].


Remedy:	- check the 24 V DC voltage supply of the HF Damping Module.
- carry out a POWER ON (switch-off/switch-on) for the component.	
	Note:
	HF Damping Module


A37041 (F)	HF Damping Module: 24 V undervoltage alarm	
Message value:	\%1	
Message class:	Supply voltage fault (undervoltage) (3)	
Drive object:	SERVO, SERVO_AC, SERVO_I_AC	
Component:	None Propagation:	LOCAL
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	Fault in the 24 V power supply for the HF Damping Module. - the 16 V threshold was undershot..   Alarm value (r2124, interpret decimal):   24 V voltage [ 0.1 V ].	
Remedy:	- check the 24 V DC voltage supply of the HF Damping Module.   - carry out a POWER ON (switch-off/switch-on) for the component.   Note:   HF Damping Module	
Reaction upon F:	NONE (OFF1, OFF2, OFF3)	
Acknowl. upon F:	IMMEDIATELY (POWER ON)	


F37043	HF Damping Module: 24 V overvoltage	
Message value:	-	
Message class:	Supply voltage fault (overvoltage) (3)	
Drive object:	SERVO, SERVO_AC, SERVO_I_AC	
Component:	None Propagation:	LOCAL
Reaction:	OFF2	
Acknowledge:	POWER ON	
Cause:	Overvoltage of the 24 V power supply for the HF Damping Module.   - the 31.5 V threshold was exceeded for more than 3 ms .	
Remedy:	Check the 24 V DC voltage supply of the HF Damping Module. Note:   HF Damping Module	


A37044 (F)	HF Damping Module: 24 V overvoltage alarm		
Message value:	-		
Message class:	Supply voltage fault (overvoltage) (3)		
Drive object:	SERVO, SERVO_AC, SERVO_I_AC		
Component:	None	Propagation:	
Reaction:	NONE		
Acknowledge:	NONE		
Cause:	Fault in the 24 V power supply for the HF Damping Module.		
	- the 32.0 V threshold was exceeded.		
Remedy:	Check the 24 V DC voltage supply of the HF Damping Module.		
	Note:		
	HF Damping Module		
Reaction upon F:	NONE (OFF1, OFF2, OFF3)		
Acknowl. upon F:	IMMEDIATELY (POWER ON)		



A37049	HF Damping Module: Internal fan defective
Message value:	-
Message class:	General drive fault (19)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal fan of the HF Damping Module has failed.
Remedy:	Check the internal fan of the HF Damping Module and replace if necessary.
F37050	HF Damping Module: 24 V overvoltage fault
Message value:	-
Message class:	Supply voltage fault (overvoltage) (3)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The voltage monitor signals an overvoltage fault on the module.
Remedy:	- check the 24 V power supply.
	- replace the module if necessary.

## F37052

Message value:
Message class: Hardware/software error (1)
Drive object:
Component: SERVO, SERVO_AC, SERVO_I_AC

Reaction:
Acknowledge:
NONE

Cause: EEPROM data error of the HF Damping Module.
Fault value (r0949, interpret hexadecimal):
0 : The EEPROM data read in from the HF Damping Module is inconsistent.
1: EEPROM data is not compatible to the firmware of the HF Damping Module.
Additional values:
Only for internal Siemens troubleshooting.

Remedy:	For fault value $=0$ :   Replace the HF Damping Module or update the EEPROM data.   For fault value =1:   If necessary, upgrade the firmware to a later version.   Note:   HF Damping Module
A37056 (F)	HF Damping Module: Heat sink overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature of the HF Damping Module heat sink has exceeded the permissible limit value.   - insufficient cooling, fan failure.   - overload.   - ambient temperature too high.   Alarm value (r2124, interpret decimal):   Temperature [ $0.01^{\circ} \mathrm{C}$ ].
Remedy:	- check whether the fan is running.   - check the fan elements.   - check whether the ambient temperature is in the permissible range.   Notice:   This fault can only be acknowledged after the alarm threshold for alarm A05000 has been undershot.   Note:   HF Damping Module
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A37310 (F)	HF Choke Module: Overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature of the HF Choke Module heat sink has exceeded the permissible limit value.   - insufficient cooling, fan failure.   - overload.   - ambient temperature too high.   Alarm value (r2124, interpret decimal):   Temperature [ $0.01^{\circ} \mathrm{C}$ ].
Remedy:	- check whether the fan is running.   - check the fan elements.   - check whether the ambient temperature is in the permissible range.   Notice:   This fault can only be acknowledged after the alarm threshold for alarm A05000 has been undershot.   Note:   HF Choke Module (reactor module)
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


F37311	HF Choke Module: Heat sink overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature of the HF Choke Module heat sink has exceeded the permissible limit value.   - insufficient cooling, fan failure.   - overload.   - ambient temperature too high.   Fault value (r0949, interpret decimal):   Temperature $\left[0.01^{\circ} \mathrm{C}\right]$.
Remedy:	- check whether the fan is running.   - check the fan elements.   - check whether the ambient temperature is in the permissible range.   - check the motor load.   Notice:   This fault can only be acknowledged after this alarm threshold for alarm A05000 has been undershot.   Note:   HF Choke Module (reactor module)


A37312 (F)	HF Choke Module: Overtemperature or fan failure
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The HF Choke Module signals an overtemperature or fan failure.
	Fault F37313 is output if the alarm is present for longer than 30 s .
Remedy:	- the cable between the HF Choke Module and the HF Damping Module has been withdrawn or is defective (X21).   - check the fan of the HF Choke Module and replace if necessary.   - check whether the ambient temperature is in the permissible range.   Note:   HF Choke Module (reactor module)   HF Damping Module
Reaction upon F :	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F37313	HF Choke Module: Overtemperature or fan failure
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Alarm A37312 to display overtemperature or fan failure in the HF Choke Module was signaled for longer than 30 s .
Remedy:	- the cable between the HF Choke Module and the HF Damping Module has been withdrawn or is defective (X21).   - check the fan of the HF Choke Module and replace if necessary.
	- check whether the ambient temperature is in the permissible range.
	Note:
	HF Choke Module (reactor module)
	HF Damping Module


A37502 (F)	HF Damping Module: Damping voltage too high
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The damping voltage has exceeded the alarm threshold.   - a motor harmonic with a high amplitude has coincided with the resonance frequency of the output filter.   - the current controller excessively excites the resonance of the output filter.   If the damping voltage exceeds an inadmissibly high value, F37002 is output.   Alarm value (r2124, interpret decimal):   Damping voltage in the case of a fault [mV].   See also: r5171 (HF damping voltage actual value)
Remedy:	- reduce the motor power in the proximity of the fault-generating frequency.   - check the current controller and if required, adapt.   - if required, use another motor.   Note:   HF Damping Module
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
N37800 (F)	HF Damping Module: Group signal
Message value:	-
Message class:	General drive fault (19)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The HF Damping Module has detected at least one fault.
Remedy:	Evaluates other actual messages.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
A37801 (F, N)	HF Damping Module: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is a DRIVE-CLiQ communication error between the Control Unit and the HF Damping Module.   Fault cause: $10 \text { (= OA hex): }$   The sign-of-life bit in the receive telegram is not set.   Note regarding the message value:   The individual information is coded as follows in the message value (r0949/r2124):   0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy:	- check the DRIVE-CLiQ connection.   - replace the component involved.   Note:   HF Damping Module

### 4.2 List of faults and alarms

Reaction upon F:	NONE	
Acknowl. upon F:	IMMEDIATELY	
Reaction upon N :	NONE	
Acknowl. upon N :	NONE	
F37802 (N, A)	HF Damping Module: time slice overflow	
Message value:	-	
Message class:	Hardware/software error (1)	
Drive object:	SERVO, SERVO_AC, SERVO_I_AC	
Component:	None Propagation:	LOCAL
Reaction:	OFF2	
Acknowledge:	IMMEDIATELY	
Cause:	A time slice overflow has occurred.	
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.   - upgrade firmware to later version.   - contact Technical Support.	
Reaction upon N :	NONE	
Acknowl. upon N :	NONE	
Reaction upon A:	NONE	
Acknowl. upon A:	NONE	

F37804 (N, A) HF Damping Module: CRC
Message value: \%1
Message class: Hardware/software error (1)
Drive object: SERVO, SERVO_AC, SERVO_I_AC
Component: None Propagation: LOCAL
Reaction: OFF2 (OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: A checksum error (CRC error) has occurred for the HF Damping Module.
Remedy: - carry out a POWER ON (switch-off/switch-on) for all components.

- upgrade firmware to later version.
- contact Technical Support.

Note:
HF Damping Module
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

F37805	HF Damping Module: EEPROM checksum incorrect
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted.
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
	Replace the module.
	Note:
	HF Damping Module


F37820	HF Damping Module: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the damping module.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	Note:
	HF Damping Module
F37835	HF Damping Module: Cyclic data transmission error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	There is a DRIVE-CLiQ communication error between the Control Unit and the HF Damping Module. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.


	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
O000yyx hex: yy = component number, xx = error cause	
Remedy:	- carry out a POWER ON.
	- replace the component involved.
	Note:
	HF Damping Module


F37845	HF Damping Module: Cyclic data transmission error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	There is a DRIVE-CLiQ communication error between the Control Unit and the HF Damping Module.   Fault cause: $11 \text { (= OB hex): }$   Synchronization error during alternating cyclic data transfer.   Note regarding the message value:   The individual information is coded as follows in the message value (r0949/r2124):   0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy:	Carry out a POWER ON.   Note:   HF Damping Module
F37850	HF Damping Module: Internal software error
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error in the HF Damping Module has occurred. Fault value (r0949, interpret decimal):   Only for internal Siemens troubleshooting.
Remedy:	- Replace the HF Damping Module   - if required, upgrade the firmware in the HF Damping Module.   - contact Technical Support.   Note:   HF Damping Module
F37851	HF Damping Module (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from the HF Damping Module to the Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.   Fault cause: $10 \text { (= 0A hex): }$   The sign-of-life bit in the receive telegram is not set.   Note regarding the message value:   The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: yy = component number, xx = error cause
Remedy:	Upgrade the firmware of the component involved.   Note:   HF Damping Module


F37860	HF Damping Module (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from the HF Damping Module to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. 20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 ( $=15$ hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early.
	22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	Note:
	HF Damping Module


F37875	HF Damping Module: power supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
F37885	HF Damping Module (CU): Cyclic data transmission error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from the damping module to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $x$ = error cause
Remedy:	- check the supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
	Note:
	HF Damping Module


F37886	HF Damping Module (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from the HF Damping Module to the Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
	Note:
	HF Damping Module
F37887	HF Damping Module (CU): Component faulted
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (HF Damping Module) involved. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
	Note:
	HF Damping Module


F37895	HF Damping Module (CU): Alternating cyclic data transmission error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from the HF Damping Module to the Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
	Note:
	HF Damping Module
F37896	HF Damping Module (CU): Component properties inconsistent
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (HF Damping Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
	Note:
	HF Damping Module
F37899 (N, A)	HF Damping Module: Unknown fault
Message value:	New message: \%1
Message class:	General drive fault (19)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault has occurred on the HF Damping Module that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.
	Note:
	If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the HF Damping Module by an older firmware version (r0168).
	- upgrade the firmware on the Control Unit (r0018).
	Note:
	HF Damping Module


Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE


F37903	HF Damping Module: I2C bus error occurred
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Communications error with an EEPROM or an analog/digital converter.
	Fault value (r0949, interpret hexadecimal):
	80000000 hex:
	- internal software error.
	00000001 hex ... 0000FFFF hex:
	- module fault.
Remedy:	For fault value $=80000000$ hex:
	- upgrade firmware to later version.
	For fault value $=00000001$ hex. .0000 FFFF hex: - replace the module.
	Note:
	HF Damping Module


F37950	HF Damping Module: Internal software error	
Message value:	\%1	
Message class:	Hardware/software error (1)	
Drive object:	SERVO, SERVO_AC, SERVO_I_AC	
Component:	None	
Reaction:	OFF2	
Acknowledge:	POWER ON	
Cause:	An internal software error has occurred.	
	Fault value (r0949, interpret decimal):	
	Information about the fault source.	
	Only for internal Siemens troubleshooting.	
	- if necessary, upgrade the firmware in the HF Damping Module to a later version.	
	- contact Technical Support.	
	Note:	
	HF Damping Module	


A37999 (F, N)	HF Damping Module: Unknown alarm
Message value:	New message: \%1
Message class:	General drive fault (19)
Drive object:	SERVO, SERVO_AC, SERVO_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred on the HF Damping Module that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.


Remedy:	- replace the firmware on the HF Damping Module by an older firmware version (r0168).
	- upgrade the firmware on the Control Unit (r0018).
	Note:
	HF Damping Module
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F40000	Fault at DRIVE-CLiQ socket X100
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X100.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.


F40001	Fault at DRIVE-CLiQ socket X101	
Message value:	\%1	
Message class:	General drive fault (19)	
Drive object:	All objects	Propagation:
Component:	None	
Reaction:	NONE	
Acknowledge:	IMMEDIATELY	
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X101.	
	Fault value (ro949, interpret decimal):	
	First fault that has occurred for this drive object.	
	Evaluate the fault buffer of the specified object.	


F40002	Fault at DRIVE-CLiQ socket X102		
Message value:	\%1		
Message class:	General drive fault (19)	Propagation:	LOCAL
Drive object:	All objects		
Component:	None		
Reaction:	NONE		
Acknowledge:	IMMEDIATELY		
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X102.		
	Fault value (r0949, interpret decimal):		
	First fault that has occurred for this drive object.		
	Evaluate the fault buffer of the specified object.		


F40003	Fault at DRIVE-CLiQ socket X103	
Message value:	\%1	
Message class:	General drive fault (19)	
Drive object:	All objects	Propagation:
Component:	None	
Reaction:	NONE	
Acknowledge:	IMMEDIATELY	
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X103.	
	Fault value (r0949, interpret decimal):	
	First fault that has occurred for this drive object.	
	Evaluate the fault buffer of the specified object.	


F40004	Fault at DRIVE-CLiQ socket X104	
Message value:	\%1	
Message class:	General drive fault (19)	
Drive object:	All objects	
Component:	None Propagation:	LOCAL
Reaction:	NONE	
Acknowledge:	IMMEDIATELY	
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X104.	
	Fault value (r0949, interpret decimal):	
	First fault that has occurred for this drive object.	
Remedy:	Evaluate the fault buffer of the specified object.	
F40005	Fault at DRIVE-CLiQ socket X105	
Message value:	\%1	
Message class:	General drive fault (19)	
Drive object:	All objects	
Component:	None Propagation:	LOCAL
Reaction:	NONE	
Acknowledge:	IMMEDIATELY	
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X105.	
	Fault value (r0949, interpret decimal):	
	First fault that has occurred for this drive object.	
Remedy:	Evaluate the fault buffer of the specified object.	


A40100	Alarm at DRIVE-CLiQ socket X100	
Message value:	\%1	
Message class:	General drive fault (19)	
Drive object:	All objects	Propagation:
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X100.	
	Alarm value (r2124, interpret decimal):	
	First alarm that has occurred for this drive object.	
	Evaluate the alarm buffer of the specified object.	


A40101	Alarm at DRIVE-CLiQ socket X101	
Message value:	$\% 1$	
Message class:	General drive fault (19)	
Drive object:	All objects	
Component:	None	
Reaction:	NONE	
Acknowledge:	NONE	
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X101.	
	Alarm value (r2124, interpret decimal):	
	First alarm that has occurred for this drive object.	
	Evaluate the alarm buffer of the specified object.	


A40102	Alarm at DRIVE-CLiQ socket X102
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X102.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.
A40103	Alarm at DRIVE-CLiQ socket X103
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X103.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.
A40104	Alarm at DRIVE-CLiQ socket X104
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X104.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.


A40105	Alarm at DRIVE-CLiQ socket X105
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X105.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.

## F40799

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:
Remedy:

## CX32: Configured transfer end time exceeded

Internal (DRIVE-CLiQ) communication error (12)
All objects
None Propagation: LOCAL
NONE
IMMEDIATELY
The configured transfer end time when transferring the cyclic actual values was exceeded.

- carry out a POWER ON (switch-off/switch-on) for all components.
- contact Technical Support.


## F40801

Message value:
Message class:

## Drive object:

Component:
Reaction:
Acknowledge:
Cause:

## CX32 DRIVE-CLiQ: Sign-of-life missing

Component number: \%1, fault cause: \%2 Internal (DRIVE-CLiQ) communication error (12) All objects Control Unit (CU) Propagation: LOCAL OFF2 IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
Fault cause:
10 (= 0A hex):
The sign-of-life bit in the receive telegram is not set.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause
Remedy: - carry out a POWER ON (switch-off/switch-on).

- replace the component involved.


## F40820

## Message value:

Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## CX32 DRIVE-CLiQ: Telegram error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
All objects
DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
OFF2
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
Fault cause:
1 (= 01 hex):
Checksum error (CRC error).
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex ):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the component in the telegram and in the receive list do not match.
7 (= 07 hex):
A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
8 (= 08 hex):
No SYNC telegram is expected - but the received telegram is one.
9 (= 09 hex):
The error bit in the receive telegram is set.

	$16 \text { (= } 10 \text { hex): }$
	The receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
F40825	CX32 DRIVE-CLiQ: Supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	All objects
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the supply voltage wiring of the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the DRIVE-CLiQ component power supply.
F40835	CX32 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- replace the component involved.


F40836	CX32 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON (switch-off/switch-on).
F40837	CX32 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F40845	CX32 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
	Fault cause: 11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.


	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON (switch-off/switch-on).
F40851	CX32 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Upgrade the firmware of the component involved.
F40860	CX32 DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.

### 4.2 List of faults and alarms

20 (= 14 hex):
The length of the receive telegram does not match the receive list and the receive telegram is too early.
21 (= 15 hex):
The type of the receive telegram does not match the receive list and the receive telegram is too early.
22 (= 16 hex):
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
25 (= 19 hex):
The error bit in the receive telegram is set and the receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, $x x=$ error cause
Remedy: - carry out a POWER ON (switch-off/switch-on).

- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

F40875	CX32 DRIVE-CLiQ (CU): Supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	All objects
Component:	DRIVE-CLiQ Hub Module (Hub) LOCAL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the
	supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the supply voltage wiring of the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the DRIVE-CLiQ component power supply.

## F40885

Message value:
Message class:
Drive object:
Component:
Reaction:
Acknowledge:
Cause:

## CX32 DRIVE-CLiQ (CU): Cyclic data transfer error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
All objects
DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
OFF2
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. The nodes do not send and receive in synchronism
Fault cause:
26 (= 1A hex):
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 (= 40 hex):
Timeout in the telegram send list.
98 (= 62 hex):
Error at the transition to cyclic operation

	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON (switch-off/switch-on).
	- replace the component involved.
F40886	CX32 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON (switch-off/switch-on).
F40887	CX32 DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $x$ x = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.


F40895	CX32 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Component:	DRIVE-CLiQ Hub Module (Hub) Propagation: LOCAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON (switch-off/switch-on).
F49150	Cooling unit: Fault occurred
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The cooling unit signals a general fault.
Remedy:	- check the wiring between the cooling unit and the input terminal (Terminal Module).
	- check the external control device for the cooling unit.
	See also: p0266 (Cooling unit feedback signals signal source)
F49151	Cooling unit: Conductivity has exceeded the fault threshold
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The conductivity of the cooling liquid has exceeded the selected fault threshold (p0269[2]).
	See also: p0261 (Cooling unit starting time 2), p0262 (Cooling unit fault conductivity delay time), p0266 (Cooling unit feedback signals signal source)
Remedy:	Check the device to de-ionize the cooling liquid.
F49152	Cooling unit: ON command feedback signal missing
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The feedback signal of the ON command of the cooling unit is missing.
	- after the ON command, the feedback signal has not been received within the selected starting time (p0260).
	- the feedback signal has failed in operation.
	- the cooling system was stopped by an external signal.
	See also: p0260 (Cooling unit starting time 1), r0267 (Cooling unit status word)
Remedy:	- check the wiring between the cooling unit and the input terminal (Terminal Module).
	- check the wiring between the output terminal (Terminal Module) and the cooling system.   - check the external control device for the cooling unit.


F49153	Cooling unit: Liquid flow too low
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The drive converter cooling unit signals that the cooling liquid flow is too low.   - after the ON command, the feedback signal has not been received within the selected starting time ( p 0260 ).   - in operation, the feedback signal has failed for longer than the permitted failure time (p0263).
	See also: p0260 (Cooling unit starting time 1), p0263 (Cooling unit fault liquid flow delay time), r0267 (Cooling unit status word)
Remedy:	- check the wiring between the cooling unit and the input terminal (Terminal Module).
	- check the external control device for the cooling unit.
F49154 (A)	Cooling unit: Liquid leak is present
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The liquid leakage monitoring function has responded.
	Caution:
	If this fault is reparameterized as an alarm, then using other monitoring functions it must be ensured that when cooling water is lost, the drive is switched off!
	See also: r0267 (Cooling unit status word)
Remedy:	- check the cooling system for leaks in the cooling circuit.
	- check the wiring of the input terminal (Terminal Module) used to monitor leaking fluid.
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F49155	Cooling unit: Power Stack Adapter, firmware version too old
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The firmware version in the Power Stack Adapter (PSA) is too old and does not support the liquid cooling.
Remedy:	Upgrade the firmware. Check EEPROM data.
F49156	Cooling unit: Cooling liquid temperature has exceeded the fault threshold
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The cooling liquid intake temperature has exceeded the specified fault threshold.
	Note:
	The value for the fault threshold depends on the power unit (hardware description data, e.g. $52 \ldots 5{ }^{\circ} \mathrm{C}$ ).
Remedy:	Check the cooling system and the ambient conditions.


A49170	Cooling unit: Alarm has occurred
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cooling unit signals a general alarm.
Remedy:	- check the wiring between the cooling unit and the input terminal (Terminal Module).
	- check the external control device for the cooling unit.


A49171 (N)	Cooling unit: Conductivity has exceeded the alarm threshold
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	The conductivity of the cooling liquid has exceeded the selected alarm threshold (p0269[1]).
	Note:
	The threshold cannot be set higher than the fault threshold specified in the equipment description.
Remedy:	Check the device to de-ionize the cooling liquid.
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A49171 (N)	Cooling unit: Conductivity has exceeded the alarm threshold
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	Conductivity monitoring is set for the cooling liquid (r0267.7, from p0266[7]).
	See also: p0261 (Cooling unit starting time 2), p0262 (Cooling unit fault conductivity delay time), p0266 (Cooling unit      feedback signals signal source), r0267 (Cooling unit status word)   Remedy:   Reaction upon $\mathrm{N}:$$\quad$ Check the device to de-ionize the cooling liquid.
Acknowl. upon $\mathrm{N}:$	NONE


A49172	Cooling unit: Conductivity actual value is not valid
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	When monitoring the conductivity of the cooling liquid, there is a fault in the wiring or in the sensor.
Remedy:	- check the wiring between the cooling unit and the Power Stack Adapter (PSA).
	- check the function of the sensor to measure the conductivity.


A49173	Cooling unit: Cooling liquid temperature has exceeded the alarm threshold
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cooling liquid intake temperature has exceeded the specified alarm threshold.
	Note:
	The value for the alarm threshold depends on the power unit (hardware description data, e.g. $42 \ldots 5{ }^{\circ} \mathrm{C}$ ).
Remedy:	Check the cooling system and the ambient conditions.
F49200	Excitation group signal fault
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The excitation sequence control signals a fault.
	Fault value (r0949, interpret hexadecimal):
	Bit 0:
	When switched off or when switching off the excitation, the signal "excitation ready feedback signal" was not received within the monitoring time.
	Bit 1:
	After an ON command, the signal "excitation ready feedback signal" was not received within the monitoring time.
	Bit 2:
	After the pulses were enabled, the signal "excitation operational feedback signal" was not received within the monitoring time.
	Bit 3:
	The "excitation group signal fault" signal is present.
	Bit 4:
	The switch-on command for the excitation was reset, although pulse enable (r0899.11) is still available, or the excitation current actual value has still not fallen below a minimum value.
	Note:
	This signal can be generated via p6500[59].
Remedy:	- check the excitation.
	- check commands, feedback signals and BICO interconnections.
	- re bit 4: increase the switch-off delay time (p1647).
A49201 (F)	Excitation group signal alarm
Message value:	-
Message class:	General drive fault (19)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "excitation group signal alarm" signal is present.
	Note:
	This signal can be generated via p6500[58].
Remedy:	Check the excitation equipment.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY


A49204 (N)	Excitation switch-off alarm
Message value:	-
Message class:	Hardware/software error (1)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switching off the excitation, after the delay time ( p 1647 ) has expired, the excitation current has still not decayed to zero.
Remedy:	Extend the switch-off delay time in (p1647).
	Note:
	The alarm is automatically reset after adapting p1647.
	See also: p1647 (Excitation switch-off delay time)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A49205	Excitation alarm incorrect/incomplete parameterization of the brushless exciter
Message value:	Parameter: \%1
Message class:	General drive fault (19)
Drive object:	VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	Control Unit (CU) Propagation: GLOBAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	The brushless exciter has not been completely parameterized. The speed-dependent ratio cannot be calculated. As a consequence, it is assumed to be 1 .
	Additional information: parameter number that is assigned an illegal value.
	See also: p0699 (Excitation configuration)
Remedy:	Assign the displayed parameter a value <> 0 .
	See also: p0690, p0691, p0692, p0693, p0694, p0696, p0697, p0698
A49920 (F)	Protective breaker main circuit tripped
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	The protective breaker in the main circuit of the power supply has tripped.
	Note:
	This message is output via the signal source of binector input p6577[1] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the main circuit.
Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A49921 (F)	Protective breaker redundant main circuit tripped
Message value:	- Prote
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	The protective breaker in the main circuit for the redundant feed to the power supply has tripped.
	Note:
	This message is output via the signal source of binector input p6577[2] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the redundant main circuit.
Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A49922 (F)	Protective breaker 24 V circuit has tripped
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	A protective breaker in the 24 V circuit has tripped.
	Note:
	This message is output via the signal source of binector input p6577[3] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the 24 V circuit
Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A49923 (F)	Protective breaker terminal strip 24 V circuit has tripped
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	A protective breaker for the terminal strip in the 24 V circuit has tripped.
	Note:
	This message is output via the signal source of binector input p6577[6] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the terminal strip for the 24 V circuit.

### 4.2 List of faults and alarms

Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A49924 (F)	Protective breaker power unit supply circuit tripped
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_IAC
Component:	None Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	A protective breaker in the circuit of the power unit supply has tripped.
	Note:
	This message is output via the signal source of binector input p6577[9] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the power unit supply circuit.
Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A49926 (F)	Protective breaker synchronizing voltage tripped
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	A protective breaker for the synchronizing voltage has tripped.
	Note:
	This message is output via the signal source of binector input p6577[13] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the synchronizing voltage.
Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A49927 (F)	Protective breaker auxiliary fan circuit has tripped
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	The protective breaker in the fan circuit of the auxiliary fan has tripped.
	Note:
	This message is output via the signal source of binector input p6577[14] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the auxiliary fan.
Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Ha: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A49933 (F)	Protective breaker excitation 230 V AC circuit tripped
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	The protective breaker in the 230 V AC circuit of the excitation has tripped.
	Note:
	This message is output via the signal source of binector input p6577[17] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the 230 V AC circuit of the excitation.
Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A49934 (F)	Protective breaker output cooling unit 230 V AC circuit tripped
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	The protective breaker in the 230 V AC circuit of the outgoing feeder of the cooling unit has tripped.
	Note:
	This message is output via the signal source of binector input p6577[18] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the 230 V AC circuit of the outgoing feeder of the cooling unit.

### 4.2 List of faults and alarms

Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
Hla: OFF1 (NONE, OFF2, OFF3)	
Acknowl. upon F:	IMMEDIATELY


A49935 (F)	Protective breaker power unit door solenoids 24 V circuit has tripped
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	The protective breaker in the 24 V circuit of the door solenoids in the power unit has tripped.
	Note:
	This message is output via the signal source of binector input p6577[19] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the 24 V circuit of the door solenoids in the power unit.
Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A49936	Prot. breaker lighting supply/socket outlets 230V AC cct has tripped
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC,
	TB30,TM120,TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC,
Component:	VECTOR_I_AC
Reaction:	None
Acknowledge:	NONE
Cause:	The protective breaker in the 230 V AC circuit for the lighting supply/socket outlets has tripped.
	Note:
	This message is output via the signal source of binector input p6577[20] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Chemedy:	


A49937 (F)	UPS not ready
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC,
	TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC,
Component:	VECTOR_I_AC
Reaction:	NONE
Acknowledge:	NONE
Cause:	The uninterruptible power supply (UPS) is not ready.
	Note:
	This message is output via the signal source of binector input p6577[25] of the Control Unit.
	UPS: Uninterruptible Power Supply
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the UPS.


Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A49938 (F)	UPS battery operation
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC,
	TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC,
Component:	VECTOR_I_AC
Reaction:	None
Acknowledge:	NONE
Cause:	The uninterruptible power supply (UPS) is in battery operation.
	Note:
	This message is output via the signal source of binector input p6577[26] of the Control Unit.
	UPS: Uninterruptible Power Supply
Remedy:	See also: p6577 (Circuit monitoring functions signal source)
Reaction upon F:	Check the power supply of the control cabinet.
	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A49939 (F)	UPS battery discharged
Message value:	-
Message class:	General drive fault (19)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC,
	TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC,
Component:	VECTOR_I_AC
Reaction:	NONE
Acknowledge: NONE   Cause: The uninterruptible power supply (UPS) battery is discharged.    Note:    This message is output via the signal source of binector input p6577[27] of the Control Unit.    UPS: Uninterruptible Power Supply    See also: p6577 (Circuit monitoring functions signal source)   Remedy: Check the UPS battery.   Reaction upon F: Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)    Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)    Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)    Hla: OFF1 (NONE, OFF2, OFF3)   Acknowl. upon F: IMMEDIATELY	


A49940 (F)	Protective breaker tripped PU supply 400 V circuit
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC VECTOR_I_AC
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	The protective breaker for the 400 VAC supply of the power unit has tripped.
	Note:
	This message is output via the signal source of binector input p6577[28] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the 400 V AC supply voltage for the power unit.
Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A49941 (F)	Protective breaker anti-condensation heating tripped
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC VECTOR_I_AC
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	The protective breaker for the anti-condensation heating was tripped.
	Note:
	This message is output via the signal source of binector input p6577[29] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the anti-condensation heating circuit.
Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A49942 (F)	Protective breaker SITOP supply circuit tripped
Message value:	- Prome
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	A_INF, B_INF, CU_I, CU_I_D410, CU_LINK, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC VECTOR_I_AC
Component:	Control Unit (CU) Propagation: DRIVE
Reaction:	NONE
Acknowledge:	NONE
Cause:	The protective breaker for the SITOP 24 V circuit has tripped.
	Note:
	This message is output via the signal source of binector input p6577[21] of the Control Unit.
	See also: p6577 (Circuit monitoring functions signal source)
Remedy:	Check the SITOP power supply.


Reaction upon F:	Infeed: OFF1 (NONE, OFF1_DELAYED, OFF2)
	Servo: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Vector: OFF1 (NONE, OFF1_DELAYED, OFF2, OFF3)
	Hla: OFF1 (NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A49998	Recorder trigger event occurred
Message value:	\%1
Message class:	Hardware/software error (1)
Drive object:	A_INF, B_INF, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None
Reaction:	NONE
Acknowledge:	NONE
Cause:	A recorder trigger event has occurred. The data are then written to the memory card, specifying the event number.
	Alarm value (r2124, interpret decimal):
	Event number.
Remedy:	Not necessary.
	This message disappears automatically.


A50002 (F)	COMM BOARD: Alarm 2
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	A specific telegram word (send) is being used twice.
	Alarm value (r2124, interpret decimal):
	Telegram word used twice
	See also: p8871 (SINAMICS Link PZD send word)
Remedy:	CBE20 SINAMICS Link:
	Correct the parameter assignment.
	See also: p8871 (SINAMICS Link PZD send word)
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A50003 (F)	COMM BOARD: Alarm 3
Message value:	Info 1: \%1, Info 2: \%2
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	A specific telegram word (receive) is being used twice.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info. 1 (decimal) $=$ Address of sender
	Info. 2 (decimal) = Receive telegram word
	See also: p8870 (SINAMICS Link PZD receive word), p8872 (SINAMICS Link PZD receive address)
Remedy:	CBE20 SINAMICS Link:
	Correct the parameter assignment.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A50004 (F)	COMM BOARD: Alarm 4
Message value:	Info 1: \%1, Info 2: \%2
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	- telegram word (receive) and address of sender inconsistent. Both values have to be either equal to zero or not equal to zero.
	- address of the sender > maximum project address.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info. 1 (decimal) = Drive object number from p8870, p8872
	Info. 2 (decimal) $=$ Index from p8870, p8872
	See also: p8811, p8870, p8872
Remedy:	In the case of CBE20 SINAMICS Link:
	Correct the parameter assignment.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A50005 (F)	COMM BOARD: Alarm 5
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	Sender not found on SINAMICS Link.
	Alarm value (r2124, interpret decimal):
	0 : synchronization to the bus clock cycle unsuccessful.
	$1 \ldots$...64: address of the sender that was not found.
	See also: p8872 (SINAMICS Link PZD receive address)
Remedy:	CBE20 SINAMICS Link:
	Check the connection to the sender.
	Set parameters p8811, p8812[1] to identical values for all participants/nodes.
	Check parameter p8836 for all participants.
	See also: p8811 (SINAMICS Link project selection), p8812 (SINAMICS Link clock cycle settings), p8836 (SINAMICS link node address)
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Ha: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A50006 (F)	COMM BOARD: Alarm 6
Message value:	Info 1: \%1, Info 2: \%2
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	The parameter assignment indicates that the sender and the receiver are one and the same. This is not permitted.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info. 1 (decimal) = Drive object number from p8872
	Info. 2 (decimal) = Index from p8872
	See also: p8836 (SINAMICS link node address), p8872 (SINAMICS Link PZD receive address)
Remedy:	In the case of CBE20 SINAMICS Link:
	Correct the parameter assignment. All p8872[index] must be set to a value not equal to p8836.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A50007 (F)	COMM BOARD: Alarm 7
Message value:	Info 1: \%1, Info 2: \%2
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	A send telegram word is greater than possible in the project.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info. 1 (decimal) = drive object number from p8871
	Info. 2 (decimal) = index from p8871
	See also: p8811 (SINAMICS Link project selection), p8871 (SINAMICS Link PZD send word)
Remedy:	In the case of CBE20 SINAMICS Link:
	Correct the parameter assignment.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A50008 (F)	COMM BOARD: Alarm 8
Message value:	Info 1: \%1, Info 2: \%2
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	A receive telegram word is greater than possible in the project.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info. 1 (decimal) = drive object number from p8870
	Info. 2 (decimal) = index from p8870
	See also: p8811 (SINAMICS Link project selection), p8870 (SINAMICS Link PZD receive word)
Remedy:	In the case of CBE20 SINAMICS Link:
	Correct the parameter assignment.
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A50011 (F)	EtherNetIP/COMM BOARD: configuration error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	A_INF, B_INF, CU_LINK, CU_S120_DP, CU_S120_PN, CU_S150_DP, CU_S150_PN, ENC, HLA, HUB, R_INF, S_INF, SERVO, SERVO_AC, SERVO_I_AC, TB30, TM120, TM15, TM150, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR, VECTOR_AC, VECTOR_I_AC
Component:	None Propagation: LOCAL
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 EtherNet/IP:
	An EtherNet/IP controller attempts to establish a connection using an incorrect configuring telegram.
	The telegram length set in the controller does not match the parameterization in the drive device.
Remedy:	Check the set telegram length.
	Note:
	PZD interface 1:
	For p0922 not equal to 999, then the length of the selected telegram applies.
	For p0922 = 999, the maximum interconnected PZD (r2067) applies.
	PZD interface 2:
	The maximum interconnected PZD (r8867) applies.
	See also: p0922, r2067, r8867
Reaction upon F:	Infeed: NONE (OFF1, OFF2)
	Servo: NONE (OFF1, OFF2, OFF3)
	Vector: NONE (OFF1, OFF2, OFF3)
	Hla: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

4 Faults and alarms
4.2 List of faults and alarms

## Appendix

## Content

A. 1 ASCII table (characters that can be displayed) ..... 3224
A. 2 List of abbreviations ..... 3227
A. 3 References ..... 3236

## A. 1 ASCII table (characters that can be displayed)

The following table includes the decimal and hexadecimal notation of ASCII characters that can be displayed (printable).

Table A-1 ASCII table (characters that can be displayed)

Character	Decimal	Hexadecimal	Meaning
	32	20	Space
!	33	21	Exclamation mark
"	34	22	Quotation mark
\#	35	23	Number sign
\$	36	24	Dollar
\%	37	25	Percent
\&	38	26	Ampersand
,	39	27	Apostrophe, closing single quotation mark
$($	40	28	Opening parenthesis
)	41	29	Closing parenthesis
*	42	2A	Asterisk
+	43	2B	Plus
,	44	2 C	Comma
-	45	2D	Hyphen, minus
.	46	2E	Period, decimal point
1	47	2 F	Slash, slant
0	48	30	Digit 0
1	49	31	Digit 1
2	50	32	Digit 2
3	51	33	Digit 3
4	52	34	Digit 4
5	53	35	Digit 5
6	54	36	Digit 6
7	55	37	Digit 7
8	56	38	Digit 8
9	57	39	Digit 9
:	58	3A	Colon
;	59	3B	Semicolon
<	60	3C	Less than
=	61	3D	Equals
>	62	3E	Greater than
?	63	3F	Question mark
@	64	40	Commercial At

Table A-1 ASCII table (characters that can be displayed), continued

Character	Decimal	Hexadecimal	Meaning
A	65	41	Capital letter A
B	66	42	Capital letter B
C	67	43	Capital letter C
D	68	44	Capital letter D
E	69	45	Capital letter E
F	70	46	Capital letter F
G	71	47	Capital letter G
H	72	48	Capital letter H
I	73	49	Capital letter I
$J$	74	4A	Capital letter J
K	75	4B	Capital letter K
L	76	4 C	Capital letter L
M	77	4D	Capital letter M
N	78	4E	Capital letter N
0	79	4F	Capital letter O
P	80	50	Capital letter P
Q	81	51	Capital letter Q
R	82	52	Capital letter R
S	83	53	Capital letter S
T	84	54	Capital letter T
U	85	55	Capital letter U
V	86	56	Capital letter V
W	87	57	Capital letter W
X	88	58	Capital letter X
Y	89	59	Capital letter Y
Z	90	5A	Capital letter Z
[	91	5B	Opening bracket
1	92	5C	Backslash
]	93	5D	Closing bracket
$\wedge$	94	5E	Circumflex
-	95	5F	Underline
	96	60	Opening single quotation mark
a	97	61	Small letter a
b	98	62	Small letter b
c	99	63	Small letter c
d	100	64	Small letter d

A. 1 ASCII table (characters that can be displayed)

Table A-1 ASCII table (characters that can be displayed), continued

Character	Decimal	Hexadecimal	Meaning
e	101	65	Small letter e
$f$	102	66	Small letter f
g	103	67	Small letter g
h	104	68	Small letter h
i	105	69	Small letter i
j	106	6A	Small letter j
k	107	6B	Small letter k
1	108	6C	Small letter I
m	109	6D	Small letter m
n	110	6E	Small letter n
-	111	6 F	Small letter o
p	112	70	Small letter p
q	113	71	Small letter q
r	114	72	Small letter r
s	115	73	Small letter s
t	116	74	Small letter t
$u$	117	75	Small letter u
v	118	76	Small letter v
w	119	77	Small letter w
x	120	78	Small letter x
y	121	79	Small letter y
z	122	7A	Small letter z
\{	123	7B	Opening brace
\|	124	7C	Vertical line
\}	125	7D	Closing brace
$\sim$	126	7E	Tilde

## A. 2 List of abbreviations

## Note

The following list of abbreviations includes all abbreviations and their meanings used in the entire SINAMICS family of drives.

## Abbreviation

A
A...

AC
ADC
AI
AIM
ALM
AO
AOP
APC
AR
ASC
ASCII

AS-i

ASM
AVS
B
BB
BERO
BI
BIA

BICO
BLM
BO
BOP
C
C
C...

CAN
CBC
CBE
CD
CDS
CF Card

## Derivation of abbreviation

Alarm
Alternating Current
Analog Digital Converter
Analog Input
Active Interface Module
Active Line Module
Analog Output
Advanced Operator Panel
Advanced Positioning Control
Automatic Restart
Armature Short Circuit
American Standard Code for Information Interchange
AS-Interface (Actuator Sensor Interface)

Asynchronmotor
Active Vibration Suppression

Betriebsbedingung

Binector Input
Berufsgenossenschaftliches Institut für Arbeitssicherheit

Binector Connector Technology
Basic Line Module
Binector Output
Basic Operator Panel

Capacitance

Controller Area Network
Communication Board CAN
Communication Board Ethernet
Compact Disc
Command Data Set
CompactFlash Card

## Significance

Warning
Alternating current
Analog digital converter
Analog input
Active Interface Module
Active Line Module
Analog output
Advanced Operator Panel
Advanced Positioning Control
Automatic restart
Armature short-circuit
American coding standard for the exchange of information
AS-Interface (open bus system in automation technology)
Induction motor
Active load vibration damping

Operation condition
Contactless proximity switch
Binector input
BG-Institute for Occupational Safety and Health

Binector connector technology
Basic Line Module
Binector output
Basic Operator Panel

## Capacitance

Safety message
Serial bus system
Communication Board CAN
PROFINET communication module (Ethernet)
Compact disc
Command data set
CompactFlash card

Abbreviation	Derivation of abbreviation	Significance
Cl	Connector Input	Connector input
CLC	Clearance Control	Clearance control
CNC	Computerized Numerical Control	Computer-supported numerical control
CO	Connector Output	Connector output
CO/BO	Connector Output/Binector Output	Connector output/Binector output
COB ID	CAN Object Identification	CAN object identification
CoL	Certificate of License	Certificate of License
COM	Common contact of a changeover relay	Center contact of a changeover contact
COMM	Commissioning	Startup
CP	Communication Processor	Communication processor
CPU	Central Processing Unit	Central processing unit
CRC	Cyclic Redundancy Check	Cyclic redundancy check
CSM	Control Supply Module	Control Supply Module
CU	Control Unit	Control Unit
CUA	Control Unit Adapter	Control Unit Adapter
CUD	Control Unit DC	Control Unit DC
D		
DAC	Digital Analog Converter	Digital analog converter
DC	Direct Current	DC current
DCB	Drive Control Block	Drive Control Block
DCBRK	DC Brake	DC braking
DCC	Drive Control Chart	Drive Control Chart
DCN	Direct Current Negative	Direct current negative
DCP	Direct Current Positive	Direct current positive
DDC	Dynamic Drive Control	Dynamic Drive Control
DDS	Drive Data Set	Drive data set
DI	Digital Input	Digital input
DI/DO	Digital Input/Digital Output	Digital input/output, bidirectional
DMC	DRIVE-CLiQ Hub Module Cabinet	DRIVE-CLiQ Hub Module Cabinet
DME	DRIVE-CLiQ Hub Module External	DRIVE-CLiQ Hub Module External
DMM	Double Motor Module	Double Motor Module
DO	Digital Output	Digital output
DO	Drive Object	Drive object
DP	Decentralized Peripherals	Distributed I/O
DPRAM	Dual Ported Random Access Memory	Dual-Port Random Access Memory
DQ	DRIVE-CLiQ	DRIVE-CLiQ
DRAM	Dynamic Random Access Memory	Dynamic Random Access Memory
DRIVE-CLiQ	Drive Component Link with IQ	Drive Component Link with IQ
DSC	Dynamic Servo Control	Dynamic Servo Control
DSM	Doppelsubmodul	Double submodule
DTC	Digital Time Clock	Timer


Abbreviation	Derivation of abbreviation
E	
EASC	External Armature Short-Circuit
EDS	Encoder Data Set
EEPROM	Electrically Erasable Programmable Read-Only Memory
EGB	Elektrostatisch gefährdete Baugruppen
ELCB	Earth Leakage Circuit Breaker
ELP	Earth Leakage Protection
EMC	Electromagnetic Compatibility
EMF	Electromotive Force
EMK	Elektromotorische Kraft
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Norm
EnDat	Encoder-Data-Interface
EP	Enable Pulses
EPOS	Einfachpositionierer
ES	Engineering System
ESB	Ersatzschaltbild
ESD	Electrostatic Sensitive Devices
ESM	Essential Service Mode
ESR	Extended Stop and Retract
F	
F...	Fault
FAQ	Frequently Asked Questions
FBLOCKS	Free Blocks
FCC	Function Control Chart
FCC	Flux Current Control
FD	Function Diagram
F-DI	Failsafe Digital Input
F-DO	Failsafe Digital Output
FEPROM	Flash-EPROM
FG	Function Generator
FI	-
FOC	Fiber-Optic Cable
FP	Funktionsplan
FPGA	Field Programmable Gate Array
FW	Firmware
G	
GB	Gigabyte
GC	Global Control
GND	Ground

## Significance

External armature short-circuit
Encoder data set
Electrically Erasable Programmable
Read-Only-Memory
Electrostatically sensitive devices
Residual current operated circuit breaker
Ground-fault monitoring
Electromagnetic compatibility
Electromotive force
Electromotive force
Electromagnetic compatibility
European standard
Encoder interface
Pulse enable
Basic positioner
Engineering system
Equivalent circuit diagram
Elektrostatisch gefährdete Baugruppen
Essential service mode
Extended stop and retract

Fault
Frequently asked questions
Free function blocks
Function Control Chart
Flux current control
Function diagram
Fail-safe digital input
Fail-safe digital output
Non-volatile write and read memory
Function generator
Fault current
Fiber-optic cable
Function diagram
Field Programmable Gate Array
Firmware

## Gigabyte

Global control telegram (broadcast telegram)
Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as M)

Abbreviation	Derivation of abbreviation	Significance
GSD	Gerätestammdatei	Generic Station Description: Describes the features of a PROFIBUS slave
GSV	Gate Supply Voltage	Gate supply voltage
GUID	Globally Unique Identifier	Globally Unique Identifier
H		
HF	High frequency	High frequency
HFD	Hochfrequenzdrossel	Radio frequency reactor
HLA	Hydraulic Linear Actuator	Hydraulic linear actuator
HLG	Hochlaufgeber	Ramp-function generator
HM	Hydraulic Module	Hydraulic Module
HMI	Human Machine Interface	Human Machine Interface
HTL	High-Threshold Logic	Logic with high interference threshold
HW	Hardware	Hardware
I		
i. V.	In Vorbereitung	Under development: This property is currently not available
I/O	Input/Output	Input/output
I2C	Inter-Integrated Circuit	Internal serial data bus
IASC	Internal Armature Short-Circuit	Internal armature short-circuit
IBN	Inbetriebnahme	Startup
ID	Identifier	Identification
IE	Industrial Ethernet	Industrial Ethernet
IEC	International Electrotechnical Commission	International Electrotechnical Commission
IF	Interface	Interface
IGBT	Insulated Gate Bipolar Transistor	Insulated gate bipolar transistor
IGCT	Integrated Gate-Controlled Thyristor	Semiconductor power switch with integrated control electrode
IL	Impulslöschung	Pulse suppression
IP	Internet Protocol	Internet protocol
IPO	Interpolator	Interpolator
IT	Isolé Terre	Non-grounded three-phase line supply
IVP	Internal Voltage Protection	Internal voltage protection
$J$		
JOG	Jogging	Jogging
K		
KDV	Kreuzweiser Datenvergleich	Data cross-check
KHP	Know-how protection	Know-how protection
KIP	Kinetische Pufferung	Kinetic buffering
Kp	-	Proportional gain
KTY84	-	Temperature sensor
L		
L	-	Symbol for inductance
LED	Light Emitting Diode	Light emitting diode


Abbreviation	Derivation of abbreviation
LIN	Linearmotor
LR	Lageregler
LSB	Least Significant Bit
LSC	Line-Side Converter
LSS	Line-Side Switch
LU	Length Unit
LWL	Lichtwellenleiter
M	
M	-
M	Masse
MB	Megabyte
MCC	Motion Control Chart
MDI	Manual Data Input
MDS	Motor Data Set
MLFB	Maschinenlesbare Fabrikatebezeichnung
MM	Motor Module
MMC	Man-Machine Communication
MMC	Micro Memory Card
MSB	Most Significant Bit
MSC	Motor Side Converter
MSCY_C1	Master Slave Cycle Class 1
MSR	Motorstromrichter
MT	Messtaster
N	
N. C.	Not Connected
N...	No Report
NAMUR	Normenarbeitsgemeinschaft für Mess- und Regeltechnik in der chemischen Industrie
NC	Normally Closed (contact)
NC	Numerical Control
NEMA	National Electrical Manufacturers Association
NM	Nullmarke
NO	Normally Open (contact)
NSR	Netzstromrichter
NTP	Network Time Protocol
NVRAM	Non-Volatile Random Access Memory

## Significance

Linear motor
Position controller
Least significant bit
Line-side converter
Line-side switch
Length unit
Fiber-optic cable

Symbol for torque
Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as GND)
Megabyte
Motion Control Chart
Manual data input
Motor data set
Machine-readable product code
Motor Module
Man-machine communication
Micro memory card
Most significant bit
Motor-side converter
Cyclic communication between master (class 1 )
and slave
Motor-side converter
Probe

Not connected
No report or internal message
Standardization association for measurement and control in chemical industries
NC contact
Numerical control
Standardization association in USA (United States of America)
Zero mark
NO contact
Line-side converter
Standard for synchronization of the time of day
Non-volatile read/write memory

Abbreviation	Derivation of abbreviation	Significance
0		
OA	Open Architecture	Software component which provides additional functions for the SINAMICS drive system
OAIF	Open Architecture Interface	Version of the SINAMICS firmware as of which the OA-application can be used
OASP	Open Architecture Support Package	Expands the STARTER commissioning tool by the corresponding OA-application
OC	Operating Condition	Operation condition
OCC	One Cable Connection	One-cable technology
OEM	Original Equipment Manufacturer	Original equipment manufacturer
OLP	Optical Link Plug	Bus connector for fiber-optic cable
OMI	Option Module Interface	Option Module Interface
P		
p...	-	Adjustable parameters
P1	Processor 1	Processor 1
P2	Processor 2	Processor 2
PB	PROFIBUS	PROFIBUS
PcCtrl	PC Control	Master control
PD	PROFIdrive	PROFIdrive
PDC	Precision Drive Control	Precision Drive Control
PDS	Power unit Data Set	Power unit data set
PDS	Power Drive System	Drive system
PE	Protective Earth	Protective ground
PELV	Protective Extra Low Voltage	Safety extra-low voltage
PFH	Probability of dangerous failure per hour	Probability of dangerous failure per hour
PG	Programmiergerät	Programming device
PI	Proportional Integral	Proportional integral
PID	Proportional Integral Differential	Proportional integral differential
PLC	Programmable Logic Controller	Programmable logic controller
PLL	Phase-Locked Loop	Phase-locked loop
PM	Power Module	Power Module
PMI	Power Module Interface	Power Module Interface
PMSM	Permanent-magnet synchronous motor	Permanent-magnet synchronous motor
PN	PROFINET	PROFINET
PNO	PROFIBUS Nutzerorganisation	PROFIBUS user organization
PPI	Point to Point Interface	Point-to-point interface
PRBS	Pseudo Random Binary Signal	White noise
PROFIBUS	Process Field Bus	Serial data bus
PS	Power Supply	Power supply
PSA	Power Stack Adapter	Power Stack Adapter
PT1000	-	Temperature sensor
PTC	Positive Temperature Coefficient	Positive temperature coefficient
PTP	Point To Point	Point-to-point


Abbreviation	Derivation of abbreviation
PWM	Pulse Width Modulation
PZD	Prozessdaten
Q	
R	
r...	-
RAM	Random Access Memory
RCCB	Residual Current Circuit Breaker
RCD	Residual Current Device
RCM	Residual Current Monitor
REL	Reluctance motor textile
RESM	Reluctance synchronous motor
RFG	Ramp-Function Generator
RJ45	Registered Jack 45
RKA	Rückkühlanlage
RLM	Renewable Line Module
RO	Read Only
ROM	Read-Only Memory
RPDO	Receive Process Data Object
RS232	Recommended Standard 232
RS485	Recommended Standard 485
RTC	Real Time Clock
RZA	Raumzeigerapproximation
S	
S1	-
S3	-
SAM	Safe Acceleration Monitor
SBC	Safe Brake Control
SBH	Sicherer Betriebshalt
SBR	Safe Brake Ramp
SBT	Safe Brake Test
SCA	Safe Cam
SCC	Safety Control Channel
SCSE	Single Channel Safety Encoder
SD Card	SecureDigital Card
SDC	Standard Drive Control
SDI	Safe Direction
SE	Sicherer Software-Endschalter

## Significance

Pulse width modulation
Process data

Display parameters (read only)
Memory for reading and writing Residual current operated circuit breaker
Residual current operated circuit breaker
Residual current monitor
Reluctance motor textile
Synchronous reluctance motor
Ramp-function generator
Term for an 8-pin socket system for data transmission with shielded or non-shielded multiwire copper cables
Cooling unit
Renewable Line Module
Read only
Read-only memory
Receive Process Data Object
Interface standard for a cable-connected serial data transmission between a transmitter and receiver (also known as EIA232)
Interface standard for a cable-connected differential, parallel, and/or serial bus system (data transmission between a number of transmitters and receivers, also known as EIA485)
Real-time clock
Space-vector approximation

Continuous duty
Intermittent duty
Safe acceleration monitoring
Safe brake control
Safe operating stop
Safe brake ramp monitoring
Safe brake test
Safe cam
Safety Control Channel
Single-channel safety encoder
Secure digital memory card
Standard Drive Control
Safe motion direction
Safe software limit switch

Abbreviation	Derivation of abbreviation
SESM	Separately-excited synchronous motor
SG	Sicher reduzierte Geschwindigkeit
SGA	Sicherheitsgerichteter Ausgang
SGE	Sicherheitsgerichteter Eingang
SH	Sicherer Halt
SI	Safety Integrated
SIC	Safety Info Channel
SIL	Safety Integrity Level
SITOP	-
SLA	Safely-Limited Acceleration
SLM	Smart Line Module
SLP	Safely-Limited Position
SLS	Safely-Limited Speed
SLVC	Sensorless Vector Control
SM	Sensor Module
SMC	Sensor Module Cabinet
SME	Sechnology Extension
SMI	Sensor Module External
SMM	SINAMICS Sensor Module Integrated
SN	Single Motor Module
SOS	Sicherer Software-Nocken Monitor
SP	Safe Operating Stop
SP	Service Pack
SPC	Safe Position
TB	Setpoint Channel
SPI	Serial Peripheral Interface
SPS	Speicherprogrammierbare Steuerung
SS1	Safe Stop 1
SS1E	Safe Stop 1 Extep 2 Exnal
SS2	SSternal
SS2E	SSI

## Significance

Separately excited synchronous motor
Safely-limited speed
Safety-related output
Safety-related input
Safe stop
Safety Integrated
Safety Info Channel
Safety integrity level
Siemens power supply system
Safety limited acceleration
Smart Line Module
Safely-limited position
Safely-limited speed
Sensorless vector control
Sensor Module
Sensor Module Cabinet
Sensor Module External
SINAMICS Sensor Module Integrated
Single Motor Module
Safe software cam
Safe operating stop
Service pack
Safe position
Setpoint channel
Serial peripheral interface
Programmable logic controller
Safe Stop 1
(time-monitored, ramp-monitored)
Safe Stop 1 with external stop
Safe Stop 2
Safe Stop 2 with external stop
Synchronous serial interface
Encryption protocol for secure data transfer (new TLS)

Safe feedback from speed monitor
SINAMICS support package
Safe torque off
Control word

## Terminal Board

Software component which is installed as an additional technology package and which expands the functionality of SINAMICS (previously OA-application)

Abbreviation	Derivation of abbreviation	Significance
TIA	Totally Integrated Automation	Totally Integrated Automation
TLS	Transport Layer Security	Encryption protocol for secure data transfer (previously SSL)
TM	Terminal Module	Terminal Module
TN	Terre Neutre	Grounded three-phase line supply
Tn	-	Integral time
TPDO	Transmit Process Data Object	Transmit Process Data Object
TSN	Time-Sensitive Networking	Time-Sensitive Networking
TT	Terre Terre	Grounded three-phase line supply
TTL	Transistor-Transistor Logic	Transistor-transistor logic
Tv	-	Rate time
U		
UL	Underwriters Laboratories Inc.	Underwriters Laboratories Inc.
UPS	Uninterruptible Power Supply	Uninterruptible power supply
USV	Unterbrechungsfreie Stromversorgung	Uninterruptible power supply
UTC	Universal Time Coordinated	Universal time coordinated
v		
VC	Vector Control	Vector control
Vdc	-	DC-link voltage
VdcN	-	Partial DC-link voltage negative
VdcP	-	Partial DC-link voltage positive
VDE	Verband Deutscher Elektrotechniker	Association of German Electrical Engineers
VDI	Verein Deutscher Ingenieure	Association of German Engineers
VPM	Voltage Protection Module	Voltage Protection Module
Vpp	Volt peak to peak	Volt peak to peak
VSM	Voltage Sensing Module	Voltage Sensing Module
w		
WEA	Wiedereinschaltautomatik	Automatic restart
WZM	Werkzeugmaschine	Machine tool
X		
XML	Extensible Markup Language	Extensible markup language (standard language for Web publishing and document management)
Y		
Z		
ZK	Zwischenkreis	DC link
ZM	Zero Mark	Zero mark
ZSW	Zustandswort	Status word

## A. 3 References <br> Documentation for SINAMICS

## Catalogs

ID 11/ SINAMICS G130 Drive Converter Chassis Units SINAMICS G150 Drive Converter Cabinet Units

Article number: E86060-K5511-A101-A6
Edition: 2015

ID 21.3/ SINAMICS S120 Chassis Format Units SINAMICS S120 Cabinet Modules SINAMICS S150 Converter Cabinet Units
Article number: E86060-K5521-A131-A6 Edition: 2017
ID 21.4/ SINAMICS S120 and SIMOTICS
Article number: E86060-K5521-A141-A1
Edition: 2017
ID 31.1/ SINAMICS Inverters for Single-Axis Drives - Built-In Units
Article number: E86060-E5531-A121-A1 Edition: 2018
ID 31.2/ SINAMICS Inverters for Single-Axis Drives - Distributed Inverters
Article number: E86060-E5531-A121-A1 Edition: 2018
ID 32I SINAMICS S210 and SIMOTICS S-1FK2 Servo Drive System

Article number: pdf Edition: 2017
ID 35/ SINAMICS G120P and SINAMICS G120P Cabinet
Pump, Fan, Compressor Converters
Article number: E86060-K5535-A101-A1
Edition: 2017

Related catalogs
IST 70/ SIMATIC Products for Totally Integrated Automation
Article number: E86060-K4670-A101-B6
Edition: 2017

IST 70 N/ SIMATIC Products for Totally Integrated Automation
Article number: E86060-K4670-A151-A8 Edition: 2016
/NC 62/ SINUMERIK 840D, Equipment for Machine Tools
Article number: E86060-K4462-A101-A2
Edition: 2016
/NC 81.1/ SINUMERIK 808, Equipment for Machine Tools
Article number: E86060-K4481-A111-A3
Edition: 2017

INC 82/ SINUMERIK 828, Equipment for Machine Tools
Article number: E86060-K4482-A101-A5
Edition: 2017

## Interactive catalogs

ICA 01/ Products for Automation and Drives
DVD
Article number: E86060-D4001-A500-D8 Edition: 10/2017

/Mall/ | Indus |
| :---: |
| Catal |
| http:/// |

User documentation
/BA1/ SINAMICS G150
Operating instructions
Article number: On request Edition: 11/2017
/BA2I SINAMICS G130
Operating instructions
Article number: On request Edition: 11/2017
/BA3/ SINAMICS S150
Operating instructions
Article number: On request Edition: 11/2017
/BA21/ SINAMICS/SIMOTICS SINAMICS S210 servo drive system
Operating Instructions for SINAMICS S210 converters and SIMOTICS S-1FK2 servomotor
Article number: A5E41702836A AB Edition: 07/2018
/GH1/ SINAMICS S120
Control Units and Additional System Components Manual
Article number: 6SL3097-4AH00-0■P7 Edition: 11/2017
/GH2/ SINAMICS S120
Booksize Power Units Manual
Article number: 6SL3097-4AC00-0■P9 Edition: 11/2017
/GH3/ SINAMICS S120
Chassis Power Units Air-Cooled Manual
Article number: 6SL3097-4AE00-0םP5 Edition: 11/2017
/GH4/
SINAMICS S120
Booksize C/D Type Manual
Article number: 6SL3097-4AC20-0■P2
Edition: 09/2017

/GH5/	SINAMICS S120		
	Cabinet Modules Manual		
	Article number:	On request	Edition: 07/2016
/GH6/	SINAMICS S120		
	AC Drive Manual		
	Article number:	6SL3097-5AL00-0ゅP1	Edition: 07/2018
/GH7]	SINAMICS S120		
	Chassis Power Units Liquid-Cooled Manual		
	Article number:	6SL3097-4AM00-0םP8	Edition: 11/2017
/GH12/	SINAMICS S120M		
	Distributed Drive Technology Manual		
	Article number:	6SL3097-4AW00-0■P3	Edition: 12/2014
/GH14/	SINAMICS S120		
	Chassis Power Units Water-Cooled for Common Cooling Circuits Manual		
	Article number:	6SL3097-4AM10-0םP0	Edition: 08/2017
/GS1/	SINAMICS S120		
	Getting Started with STARTER		
	Article number:	6SL3097-4AG00-0■P5	Edition: 11/2017
/GS10/	SINAMICS S120		
	Getting Started with Startdrive		
	Article number:	6SL3097-4AG30-0■P0	Edition: 11/2017
/IH1/	SINAMICS S120		
	Commissioning Manual with STARTER		
	Article number:	6SL3097-4AF00-0■P6	Edition: 11/2017
/IH2/	SINAMICS S120		
	CANopen Commissioning Manual		
	Article number:	6SL3097-4AA00-0■P3	Edition: 11/2017
/IH3/	SINAMICS S120		
	Commissioning Manual with Startdrive		
	Article number:	6SL3097-4AA10-0םP1	Edition: 11/2017
/FH1/	SINAMICS S120		
	Drive Functions Function Manual		
	Article number:	6SL3097-5AB00-0■P0	Edition: 07/2018
/FHS/	SINAMICS S120		
	Safety Integrated Function Manual		
	Article number:	6SL3097-5AR00-0■P0	Edition: 07/2018


/FH4/	SINAMICS/SIMOTION		
	DCC Standard Blocks Function Manual		
	Article number:	6SL3097-4AQ00-0』P4	Edition: 07/2016
/PB1/	SINAMICS/SIMOTION		
	Programming and Operating Manual for DCC Editor Description		
	Article number:	6SL3097-4AN00-0םP3	Edition: 07/2016
/LH1/	SINAMICS S120/S150		
	List Manual		
	Article number:	6SL3097-5AP00-0■P0	Edition: 07/2018
/LH2/	SINAMICS G130/G150		
	List Manual		
	Article number:	A5E03263479A	Edition: 07/2018
/MA1/	SINAMICS/SINUMERIK		
	Machine Configuration Guidelines		
	Article number:	6FC5397-6CP10-0■A2	Edition: 01/2013
/SH1/	SINAMICS S120 and SIMODRIVE 611		
	Control Cabinet Integration Guidelines		
	Article number:	6SL3097-0AT00-0■P0	Edition: 09/2007
/SH2/	SINAMICS S120 High Frequency Drive		
	System Manual		
	Article number:	6SL3097-4AH10-0■P3	Edition: 04/2015
/SH3/	SINAMICS S120 Hydraulic Drive		
	System Manual		
	Article number:	6SL3097-4BA00-0■P2	Edition: 07/2016
/PFK7S/	SIMOTICS S-1FK7 Synchronous Motors for SINAMICS S110/S120 Configuration Manual		
	Article number:	6SN1197-0AD16-0■P4	Edition: 10/2011
/PFT7S/	SIMOTICS S-1FT7 Synchronous Motors for SINAMICS S120 Configuration Manual		
	Article number:	6SN1197-0AD13-0■P5	Edition: 09/2015
/PKTS/	SIMOTICS T-1FW3 Complete Torque Motors		
	Configuration Manual		
	Article number:	6SN1197-0AD70-0■P8	Edition: 11/2015
/PJ1FN3/	SIMOTICS L-1FN3 Linear Motors		
	Configuration Manual		
	Article number:	6SN1197-0AB86-0■P1	Edition: 03/2015


/1FN3_BE/	SIMOTICS L-1FN3 Linear Motors	
	Operating instructions	
	Article number: 6SN1197-0AF01-0םP1	Edition: 12/2016
/PJTMS/	SIMOTICS T-1FW6 Built-In Torque Motors	
	Configuration Manual	
	Article number: 6SN1197-0AE00-0םP8	Edition: 08/2016
/1FW6_BE/	SIMOTICS T-1FW6 Built-In Torque Motors	
	Operating instructions	
	Article number: 6SN1197-0AF00-0ゅP3	Edition: 07/2017
/PJTMS2/	Non-Ventilated SIMOTICS T-1FW6 Built-In Torque Motors	
	Configuration Manual	
	Article number: 6SN1197-0AE01-0■P2	Edition: 02/2015
/1FW6_BE2/	Non-Ventilated SIMOTICS T-1FW6 Built-In Torque Motors	
	Operating instructions	
	Article number: 6SN1197-0AF02-0ゅP2	Edition: 07/2017
/PH8S/	SIMOTICS M-1PH8 Synchronous/Induction Motors	
	Configuration Manual	
	Article number: 6SN1197-0AD74-0םP2	Edition: 12/2016
/PMH2/	SINAMICS SIMAG H2 Hollow-Shaft Measuring System	
	Configuration Manual	
	Article number: 6SN1197-0AB31-0םP8	Edition: 01/2011
/PH1/	EMC Installation Guidelines	
	Configuration Manual	
	Article number: 6FC5297-0AD30-0םP3	Edition: 01/2012

## Documentation for PROFIBUS/PROFINET/PROFIenergy

/P1/ PROFIBUS-DP/DPV1 IEC 61158
Basics, Tips and Tricks for Users
Hüthig; Manfred Popp, 2nd Edition
ISBN 3-7785-2781-9
/P2/ PROFIBUS-DP, Getting Started
PROFIBUS Nutzerorganisation e. V.; Manfred Popp
Haid-und-Neu-Strasse 7, D-76131 Karlsruhe, Germany
http://www.profibus.com - http://www.profinet.com
Article number $\quad 4.071$ (German)
4.072 (English)


ISISH/	Safety Integrated   System Manual	
	Article number:	6ZB5000-0AA01-0BA1

## Index

## Numbers

1020
Explanation of the symbols (part 1), 2022 1021

Explanation of the symbols (part 2), 2023
1022
Explanation of the symbols (part 3), 2024 1030

Handling BICO technology, 2025 2019

CU310-2 Overview, 2027
2020
CU310-2 digital inputs, electrically isolated (DI 0 ... DI 3, DI 22), 2028
2021
CU310-2 digital inputs, electrically isolated
(DI 16 ... DI 21), 2029
2030
CU310-2 digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2030
2031
CU310-2 digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2031
2032
CU310-2 digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13), 2032
2033
CU310-2 digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15), 2033
2038
CU310-2 digital output (DO 16), 2034
2040
CU310-2 analog input (AI 0), 2035
2119
CU320-2 Overview, 2037
2120
CU320-2 digital inputs, electrically isolated
(DI 0 ... DI 3, DI 16, DI 17), 2038
2121
CU320-2 digital inputs, electrically isolated (DI 4 ... DI 7, DI 20, DI 21), 2039
2130
CU320-2 digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2040
2131
CU320-2 digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2041

## 2132

CU320-2 digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13), 2042
2133
CU320-2 digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15), 2043
2179
CX32-2 overview, 2045
2180
CU32-2 digital inputs, electrically isolated (DI 0 ... DI 3, DI 16, DI 17), 2046
2190
CX32-2 digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2047
2191
CX32-2 digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2048
2194
CU_CX32/CU_LINK, 2050
2195
CU_LINK/CU internal, 2051
2197
SINAMICS Link overview (r0108.31 = 1, p8835 = 3), 2052
2198
SINAMICS Link configuration
(r0108.31 = 1, p8835 = 3), 2053
2199
SINAMICS Link receive data
(r0108.31 = 1, p8835 = 3), 2054
2200
SINAMICS Link send data (r0108.31 = 1, p8835 = 3), 2055
2201
S120M digital inputs/outputs, bidirectional
(DI/DO 0 ... DI/DO 1), 2057
2381
Control commands / interrogation commands, 2059
2382
States, 2060
2401
PROFIdrive overview, 2064
2410
PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics, 2065
2415
Standard telegrams and process data 1, 2066

2416	2443
Standard telegrams and process data 2, 2067	STW1 control word interconnection (p2038 = 1),
2419	2085
Manufacturer-specific telegrams and process data 1,	2444
2068	STW2 control word interconnection (p2038 = 0),
2420	2086
Manufacturer-specific telegrams and process data 2,	2445
2069	STW2 control word interconnection (p2038 = 1),
2421	2087
Manufacturer-specific telegrams and process data 3,	2447
2070	E_STW1 control word infeed interconnection, 2088
2422	2449
Manufacturer-specific telegrams and process data 4, $2071$	PZD send signals interconnection, profile-specific, $2089$
2423	2450
Manufacturer-specific/free telegrams and process data, 2072	PZD send signals interconnection, manufacturerspecific, 2090
2425	2451
STW1_BM control word, metal industry interconnection, 2073	ZSW1 status word interconnection (p2038 = 2), 2091 2452
2426	ZSW1 status word interconnection (p2038 = 0), 2092
STW2_BM control word, metal industry interconnection 2074	$2453$   ZSW1 status word interconnection $(\mathrm{p} 2038=1) 2093$
2427	2454
E_STW1_BM control word, infeed metal industry interconnection, 2075	ZSW2 status word interconnection (p2038 = 0), 2094 2455
2428	ZSW2 status word interconnection (p2038 = 1), 2095
ZSW1_BM status word, metal industry interconnection, 2076	$2456$   MELDW status word interconnection, 2096
2429	2457
ZSW2_BM status word, metal industry interconnection, 2077	E_ZSW1 status word infeed interconnection, 2097 2462
2430	POS_STW positioning control word interconnection
E_ZSW1_BM status word, infeed metal industry	(r0108.4 = 1), 2098
interconnection, 2078	2463
2433	POS_STW1 positioning control word 1
STW2_ENC control word, ENCODER	interconnection (r0108.4 = 1), 2099
interconnection, 2079	2464
2434	POS_STW2 positioning control word 2
ZSW2_ENC status word, ENCODER	interconnection (r0108.4 = 1), 2100
interconnection, 2080	2466
2439	POS_ZSW1 positioning status word 1
PZD receive signals interconnection, profile-specific, $2081$	interconnection (r0108.4 = 1), 2101 2467
2440	POS_ZSW2 positioning status word 2
PZD receive signals interconnection, manufacturerspecific, 2082	```interconnection (r0108.4 = 1), 2102 2468```
2441	IF1 receive telegram, free interconnection via BICO
STW1 control word interconnection (p2038 = 2),	(p0922 = 999), 2103
2083	2470
2442	IF1 send telegram, free interconnection via BICO
STW1 control word interconnection (p2038 = 0),	(p0922 = 999), 2104
2084	2472
	IF1 status words, free interconnection, 2105

2475
STW1 control word 1 interconnection (r0108.4 = 1), 2106
2476
SATZANW block selection interconnection (r0108.4 = 1), 2107
2479
ZSW1 status word 1 interconnection (r0108.4 = 1), 2108
2480
MDI_MOD-MDI mode interconnection (r0108.4 = 1), 2109
2481
IF1 receive telegram, free interconnection via BICO (p0922 = 999), 2110
2483
IF1 send telegram, free interconnection via BICO (p0922 = 999), 2111
2485
IF2 receive telegram, free interconnection, 2112 2487

IF2 send telegram, free interconnection, 2113 2489

IF2 status words, free interconnection, 2114 2491

IF2 receive telegram, free interconnection, 2115 2493

IF2 send telegram, free interconnection, 2116 2495

CU_STW1 control word 1, Control Unit interconnection, 2117
2496
CU_ZSW1 status word 1, Control Unit interconnection, 2118
2497
A_DIGITAL interconnection, 2119
2498
E_DIGITAL interconnection, 2120 2499

A DIGITAL 1 interconnection, 2121 2500

E_DIGITAL_1 interconnection, 2122 2501

Control word, sequence control, 2124 2503

Status word, sequence control, 2125 2505

Control word, setpoint channel, 2126 2520

Control word, speed controller, 2127 2522

Status word, speed controller, 2128 2526

Status word, closed-loop control, 2129

2530
Status word, closed-loop current control, 2130 2534

Status word, monitoring functions 1, 2131 2536

Status word, monitoring functions 2, 2132 2537

Status word, monitoring functions 3, 2133
2546
Control word, faults/alarms, 2134
2548
Status word, faults/alarms 1 and 2, 2135
2610
Sequencer, 2137
2634
Missing enable signals, line contactor control, logic operation, 2138
2701
Basic brake control (r0108.14 = 0), 2140
2704
Extended brake control, zero-speed detection (r0108.14 = 1), 2141
2707
Extended brake control, open/close brake (r0108.14 = 1), 2142
2711
Extended brake control, signal outputs (r0108.14 = 1), 2143
2800
SI Basic Functions, parameter manager, 2145 2802

Monitoring functions and faults/alarms, 2146 2804

SI status CU, MM, CU + MM, group STO, 2147 2806

S_STW1/2 Safety control word 1/2, S_ZSW1/2
Safety status word 1/2, 2148
2810
STO (Safe Torque Off), SS1 (Safe Stop 1), 2149
2811
STO (Safe Torque Off), safe pulse cancellation, 2150
2814
SBC (Safe Brake Control), SBA (Safe Brake Adapter), 2151
2818
SI Extended Functions, parameter manager, 2153 2819

SS1, SS2, SOS, internal STOP B, C, D, F, 2154 2820

SLS (Safely-Limited Speed), 2155
2821
Safe referencing, 2156
2822
SLP (Safely-Limited Position), 2173

2823
SSM (Safe Speed Monitor), 2157
2824
SDI (Safe Direction), 2158
2825
SAM (Safe Acceleration Monitor), SBR (Safe Brake
Ramp), 2159
2826
SCA (Safe Cam), 2174
2836
SBT (Safe Brake Test), 2160
2837
Selection of active control word, 2161
2838
SLA (Safely-Limited Acceleration), 2162
2840
SI Motion drive-integrated control signals/status signals, 2163
2842
S_STW1 Safety control word 1, S_ZSW1 Safety status word 1, 2164
2843
S_STW2 Safety control word 2, S_ZSW2 Safety status word 2, 2165
2844
S_ZSW_CAM1 safety status word Safe Cam 1, 2175
2858
Control via PROFIsafe (p9601.2 = p9601.3 = 1), 2166
2870
CU310-2 (F-DI 0 ... F-DI 2), 2167
2873
CU310-2 fail-safe digital output (F-DO 0), 2168 2875

CU310-2 control interface, 2169
2876
CU310-2 Safe State selection, 2170
2877
CU310-2 assignment (F-DO 0), 2171
2890
TM54F overview, 2177
2891
TM54F parameter manager, 2178
2892
TM54F configuration, F-DI/F-DO Test, 2179
2893
TM54F fail-safe digital inputs (F-DI 0 ... F-DI 4), 2180
2894
TM54F fail-safe digital inputs (F-DI 5 ... F-DI 9), 2181
2895
TM54F fail-safe digital outputs (F-DO 0 ... F-DO 3)
digital inputs (DI $20 \ldots$ DI 23), 2182
2900
TM54F Basic Functions control interface (p9601.2/3 = 0 \& p9601.6 = 1), 2183

2901
TM54F - Basic Functions safe state selection, 2184 2902

TM54F Basic Functions assignment
(F-DO 0 ... F-DO 3), 2185
2905
TM54F Extended Functions control interface (p9601.2 = 1 \& p9601.3 = 0), 2186
2906
TM54F - Extended Functions safe state selection, 2187
2907
TM54F Extended Functions assignment (F-DO 0 ... F-DO 3), 2188
2915
Standard telegrams, 2190
2917
Manufacturer-specific telegrams, 2191
3001
Setpoint channel overview, 2193
3010
Fixed speed setpoints, 2194
3020
Motorized potentiometer, 2195
3030
Main/supplementary setpoint, setpoint scaling, jogging, 2196
3040
Direction limitation and direction reversal, 2197
3050
Skip frequency bands and speed limitations, 2198 3060

Basic ramp-function generator, 2199
3070
Extended ramp-function generator, 2200
3080
Ramp-function generator selection, -status word, -tracking, 2201
3082
Extended Stop and Retract (ESR, r0108.9 = 1), 2202
3090
Dynamic Servo Control (DSC) linear and DSC Spline (r0108.6 = 1), 2203
3095
Generation of the speed limits (r0108.8 = 0), 2205
3610
Jog mode (r0108.4 = 1), 2207
3612
Referencing/reference point approach mode (r0108.4 = 1) (p2597 = 0-signal), 2208
3614
Flying referencing mode (r0108.4 = 1) (p2597 = 1 signal), 2209

3615
Traversing block mode, external block change mode (r0108.4 = 1), 2210
3616
Traversing block mode (r0108.4 = 1), 2211 3617

Travel to fixed stop (r0108.4 = 1), 2212
3618
Direct setpoint input/MDI mode, dynamic values (r0108.4 = 1), 2213
3620
Direct setpoint input/MDI mode (r0108.4 = 1), 2214 3625

Mode control (r0108.4 = 1), 2215
3630
Traversing range limits (r0108.4 = 1), 2216 3635

Interpolator (r0108.4 = 1), 2217
3640
Control word, block selection/MDI selection (r0108.4 = 1), 2218
3645
Status word 1 (r0108.3 = 1, r0108.4 = 1), 2219 3646

Status word 2 (r0108.3 = 1, r0108.4 = 1), 2220 3650

Status word, active traversing block/MDI active (r0108.4 = 1), 2221
4010
Position actual value preprocessing (r0108.3 = 1), 2223
4015
Position controller (r0108.3 = 1), 2224
4020
Standstill monitoring / positioning monitoring (r0108.3 = 1), 2225
4025
Dynamic following error monitoring, cam controllers (r0108.3 = 1), 2226
4700
Encoder evaluation, servo control, overview, 2228
4702
Encoder evaluation, vector control, overview, 2229 4704

Position and temperature sensing, encoders $1 \ldots 3$, 2230
4710
Speed actual value and pole position sensing, encoder 1, 2231
4711
Speed actual value sensing, encoders 2,3 (r0108.7 = 1, APC activated), 2232
4715
Speed actual value and pole position sensing, encoder 1, n_act_filter 5, 2233

4720
Encoder interface, receive signals, encoders 1 ... 3, 2234
4730
Encoder interface, send signals, encoders $1 . . .3$, 2235
4735
Reference mark search with
external zero mark, encoders 1 ... 3, 2236
4740
Measuring probe evaluation, measured value memory, encoders 1 to 3,2237
4750
Absolute value for incremental encoder, 2238 4965

Velocity controller, 2240
4966
Transition point compensation, 2241
4970
Force controller, 2242
4975
Valve characteristic, plane adaptation, 2243
4977
Static friction compensation using a force controller (p1400.2 = 1), 2244
4978
Static friction compensation via voltage pulse / voltage ramp, 2245
4985
Sequencer, 2246
4990
P24 management with shutoff valve, 2247
4991
P24 management without shutoff valve, 2248
5019
Speed control and U/f-control, overview, 2250
5020
Speed setpoint filter and
speed pre-control, 2251
5030
Reference model/pre-control balancing/speed limitation, 2252
5035
Moment of inertia estimator (r0108.10 = 1), 2253 5040

Speed controller with encoder, 2254
5042
Speed controller, torque/speed pre-control with encoder (p1402 = 1), 2255
5045
Online tuning with activated moment of inertia estimator (r0108.10 = 1), 2256
5050
Speed controller adaptation
(Kp_n/Tn_n adaptation), 2257

## 5060

Torque setpoint, control type changeover, 2258
5210
Speed controller without encoder, 2259
5300
U/f control for diagnostics, 2260
5301
Signaling function variable, 2261
5490
Speed control configuration, 2262
5609
Generation of the torque limits, overview, 2263
5610
Torque limiting/reduction, interpolator, 2264
5620
Motoring/generating torque limit, 2265
5630
Upper/lower torque limit, 2266
5640
Mode changeover,
power/current limiting, 2267
5650
Vdc_max controller and Vdc_min controller, 2268
5700
Current control, overview, 2269
5710
Current setpoint filter 1 ... 4, 2270
5711
Current setpoint filter $5 \ldots 10$ (r0108.21 = 1), 2271
5714
Iq and Id controllers, 2272
5722
Field current/flux input, flux reduction, flux controller, 2273
5730
Interface to the Motor Module (gating signals, current actual values), 2274
6020
Speed control and generation of the torque limits, overview, 2277
6030
Speed setpoint, droop, 2278
6031
Pre-control balancing, reference/
acceleration model, 2279
6035
Moment of inertia estimator (r0108.10 = 1), 2280
6040
Speed controller with/without encoder, 2281
6050
Speed controller adaptation
(Kp_n/Tn_n adaptation), 2282
6060
Torque setpoint, 2283

6220
Vdc_max controller and Vdc_min controller, 2284 6300

U/f control, overview, 2285
6301
U/f characteristic and voltage boost, 2286
6310
Resonance damping and slip compensation, 2287
6320
Vdc_max controller and Vdc_min controller (U/f), 2288
6490
Speed control configuration, 2289
6491
Flux control configuration, 2290
6495
Excitation (SESM, p0300 = 5), 2291
6630
Upper/lower torque limit, 2292
6640
Current/power/torque limits, 2293
6700
Current control, overview, 2294
6710
Current setpoint filter, 2295
6714
Iq and Id controllers, 2296
6721
Id setpoint (PMSM, p0300 = 2), 2297
6722
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 2298
6723
Field weakening controller, flux controller (ASM, p0300 = 1), 2299
6724
Field weakening controller (PMSM, p0300 = 2), 2300
6725
Flux setpoint, field weakening controller (SESM, p0300 = 5), 2301
6726
Field weakening controller, flux controller (SESM, p0300 = 5), 2302
6727
Current model, excitation current monitoring, control cos phi (SESM, p0300 = 5), 2303
6730
Interface to the Motor Module (ASM, p0300 = 1), 2304
6731
Interface to the Motor Module (PMSM, p0300 = 2), 2305
6732
Interface to the Motor Module (SESM, p0300 = 5), 2306

6733
Motor model selection (SESM and p1300 = 20, p0300 = 5), 2307
6790
Flux setpoint (RESM, p0300 = 6), 2308 6791

Id setpoint (RESM, p0300 = 6), 2309
6792
Interface to the Motor Module (RESM, p0300 = 6), 2310
6799
Display signals, 2311
7008
kT estimator, 2313
7010
Friction characteristic, 2314
7012
Advanced Positioning Control (APC, r0108.7 = 1), 2315
7013
APC differential position gain (APC, r0108.7 = 1), 2316
7014
External Armature Short-Circuit (EASC, p0300 = $2 x x$ or $4 x x$ ), 2317
7016
Internal Armature Short-Circuit (IASC, p0300 = $2 x x$ or $4 x x$ ), 2318
7017
DC brake $(p 0300=1 x x), 2319$
7020
Synchronization, 2320
7033
Essential service mode (ESM), 2321
7950
Fixed value selection binary (r0108.16 = 1 and p2216[D] = 2), 2323
7951
Fixed value selection direct (r0108.16 = 1 and p2216 = 1), 2324
7954
Motorized potentiometer (r0108.16 = 1), 2325
7958
Closed-loop control (r0108.16 = 1), 2326
7959
$\mathrm{Kp} / \mathrm{Tn}$ adaption $(\mathrm{rO108.16}=1), 2327$
7960
DC link voltage controller (r0108.16 = 1), 2328 7982

Line droop, voltage correction control, 2330 7983

Direct component control, harmonicscontrol, 2331 7984

Modulation depth control, 2332

7986
Sequence control, overcurrent, 2333
7987
Direct component control, negative sequence system controller, 2335
7988
Island grid black start sequence control, 2336
7989
Island grid synchronization, sequence control, 2337 7990

Transformer model (p5580 = 1), 2339
7991
Line filter monitoring, 2340
7992
PLL2 (phase locked loop 2), 2341
7993
Transformer magnetization voltage threshold, 2342
7994
Transformer magnetization, sequence control, 2343 7995

Island grid synchronization voltagethreshold, 2338 7996

Characteristic, 2345
7997
Current limits (p5501 = 1), 2346
7998
Sequence control, 2347
7999
Grid monitoring anti-islanding, 2348
8005
Signals and monitoring functions overview, 2350
8010
Speed signals 1, 2351
8011
Speed signals 2, 2352
8012
Torque signals, motor blocked/stalled, 2353
8013
Load monitoring (r0108.17 = 1), 2354
8016
Thermal motor monitoring, motor
temperature ZSW F/A, 2355
8017
Motor temperature model 1 (I2t), 2356
8018
Motor temperature model 2, 2357
8019
Motor temperature model 3, 2358
8020
Separately excited synchronous motor (SESM, p0300 = 5), 2359
8021
Thermal monitoring, power unit, 2360
8022
Freely parameterizable I2t monitoring (SESM), 2361

8050
Diagnostics overview, 2363
8060
Fault buffer, 2364
8065
Alarm buffer, 2365
8070
Faults/alarms trigger word (r2129), 2366
8075
Faults/alarms configuration, 2367
8134
Measuring sockets (T0, T1, T2), 2368
8144
Recorder overview (r0108.5 = 1), 2369
8145
Recorder sequence control, 2370
8560
Command Data Sets (CDS), 2372
8565
Drive Data Sets (DDS), 2373
8570
Encoder Data Sets (EDS), 2374
8575
Motor Data Sets (MDS), 2375
8580
Power unit Data Sets (PDS), 2376
8710
Basic Infeed overview, 2378
8720
Control word,
sequence control infeed, 2379
8726
Status word,
sequence control infeed, 2380
8732
Sequencer, 2381
8738
Missing enable signals, line contactor control, 2382
8750
Interface to the Basic Infeed power unit (control
signals, actual values), 2383
8760
Signals and monitoring functions (p3400 = 0), 2384
8810
Smart Infeed overview, 2386
8820
Control word,
sequence control infeed, 2387
8826
Status word,
sequence control infeed, 2388
8828
Status word, infeed, 2389
8832
Sequencer, 2390

8838
Missing enable signals, line contactor control, 2391
8850
Interface to the Smart Infeed (control signals, actual values), 2392
8860
Signals and monitoring functions, line supply voltage monitoring, 2393
8864
Signals and monitoring functions, line frequency and Vdc monitoring, 2394
8910
Active Infeed overview, 2396
8920
Control word, sequence control infeed, 2397
8926
Status word, sequence control infeed, 2398
8928
Status word, infeed, 2399
8932
Sequencer, 2400
8938
Missing enable signals, line contactor control, 2401
8940
Controller modulation depth reserve/controller DC link voltage (p3400.0 = 0), 2402
8945
Reactive current/apparent current limits
(r0108.3 = 1), 2403
8946
Current pre-control/current controller/gating unit (p3400.0 = 0), 2404
8948
Master/slave (r0108.19 = 1), 2405
8950
Interface to the Active Infeed, control signals, actual values (p3400.0 = 0), 2406
8951
Cos phi display (r0108.10 = 1), 2407
8960
Signals and monitoring functions, line supply voltage monitoring (p3400.0 = 0), 2408
8964
Signals and monitoring functions, line frequency and Vdc monitoring (p3400.0 = 0), 2409
9099
TB30 Overview, 2411
9100
TB30 digital inputs, electrically isolated (DI $0 \ldots$ DI 3), 2412
9102
TB30 digital outputs, electrically isolated
(DO 0 ... DO 3), 2413

9104
TB30 analog inputs (AI 0 ... AI 1), 2414
9106
TB30 analog outputs (AO 0 ... AO 1), 2415
9204
Receive telegram, free PDO mapping ( $\mathrm{p} 8744=2$ ), 2417
9206
Receive telegram, Predefined Connection Set (p8744 = 1), 2418
9208
Send telegram, free PDO mapping (p8744 = 2), 2419
9210
Send telegram, Predefined Connection Set (p8744 = 1), 2420
9220
Control word, CANopen, 2421
9226
Status word, CANopen, 2422
9389
Overview TM15 (SIMOTION), 2424
9399
Overview TM15DI_DO (SINAMICS), 2425
9400
TM15 digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 7), 2426
9401
TM15 digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 15), 2427
9402
TM15 digital inputs/outputs, bidirectional (DI/DO 16 ... DI/DO 23), 2428
9419
TM17 High Feature overview, 2430
9549
TM31 Overview, 2432
9550
TM31 digital inputs, electrically isolated
(DI 0 ... DI 3), 2433
9552
TM31 digital inputs, isolated (DI 4 ... DI 7), 2434
9556
TM31 digital relay outputs, electrically isolated (DO 0 ... DO 1), 2435
9560
TM31 digital inputs/outputs, bidirectional
(DI/DO 8 ... DI/DO 9), 2436
9562
TM31 digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2437
9566
TM31 analog input 0 (AI 0), 2438
9568
TM31 analog input 1 (AI 1), 2439

9572
TM31 analog outputs (AO 0 ... AO 1), 2440
9576
TM31 temperature evaluation, 2441
9605
TM120 temperature evaluation channels 0 and 1, 2443
9606
TM120 temperature evaluation channels 2 and 3, 2444
9625
TM150 Temperature evaluation structure
(channels 0 ... 11), 2446
9626
TM150 Temperature evaluation 1x2, 3, 4 wire (channels 0 ... 5), 2447
9627
TM150 Temperature evaluation $2 \times 2$ wire
(channels 0 ... 11), 2448
9659
TM41 overview, 2450
9660
TM41 digital inputs (DI $0 \ldots$ II 3), 2451
9661
TM41 digital inputs/outputs, bidirectional
(DI/DO 0 ... DI/DO 1), 2452
9662
TM41 digital inputs/outputs, bidirectional
(DI/DO 2 ... DI/DO 3), 2453
9663
TM41 analog input 0 (AI 0), 2454
9674
TM41 incremental encoder emulation ( $\mathrm{p} 4400=0$ ), 2455
9676
TM41 incremental encoder emulation (p4400 = 1), 2456
9677
STW1 control word interconnection (p0922 = 3), 2457
9678
TM41 control word, sequence control ( $p 4400=0$ ), 2458
9679
STW2 control word interconnection $(p 0922=3)$, 2459
9680
TM41 status word, sequence control, 2460
9681
ZSW1 status word interconnection (p0922 = 3), 2461
9682
TM41 sequencer $(p 4400=0), 2462$
9683
ZSW2 status word interconnection (p0922 = 3), 2463

9794
Cooling unit, control and feedback signals (r0108.28 = 1), 2465
9795
Cooling unit, sequence control (r0108.28 = 1), 2466 9814

Chassis power units, 3 AC-lineconnection and
contactor statusdisplay, 2467
9880
VSM analog inputs (AI 0 ... AI 3), 2469
9886
VSM temperature evaluation, 2470
9912
BOP20 control word interconnection, 2472
9951
Braking Module External sequencer (r0108.26 = 1), 2474

## A

Access level (parameter), 27
Acknowledgment
Adjustable, 2485
Default, 2485
IMMEDIATELY, 2479
POWER ON, 2479
PULSE INHIBIT, 2479
Active (parameter, C1(x), C2(x), U, T), 26
Active Infeed, 2395
Control word, sequence control, 2397
Line contactor control, 2401
Overview, 2396
Sequencer, 2400
Signals and monitoring functions, 2395
Status word, sequence control, 2398
Table of contents, 2395
Address
PROFIBUS, 2065
PROFINET, 2065
Technical Support, 7
Adjustable parameters, 19
Advanced Positioning Control (APC, r0108.7 = 1), 2315

Alarm
Cause, 2486
Component, 2484
Display, 2476
Drive object, 2484
Explanation of list, 2480
Fault location, 2481
General information, 2476
How to distinguish an alarm from a fault, 2476
List of all alarms, 2489
Message class, 2481
Message value, 2481
Name, 2481
Number, 2480
Number range, 2487
Remedy, 2486
Alarm buffer, 2362
Alarm value, 2486
Analog inputs
Terminal Board 30 (TB30), 2410
Terminal Module 31 (TM31), 2431
Analog outputs
Terminal Board 30 (TB30), 2410
Terminal Module 31 (TM31), 2431
ASCII table, 3224
Auxiliaries, 2464
Axxxx, 2480

## B

Basic Infeed, 2377
Control word, sequence control, 2379
Interface (control signals, actual values), 2383
Missing enable signals, line contactor control, 2382
Overview, 2378
Sequencer, 2381
Signals and monitoring functions, 2377, 2384
Status word, sequence control, 2380
Table of contents, 2377
Basic Operator Panel (BOP), 2471
Basic positioner (EPOS), 2206
Basic/extended brake control, 2139
BI, Binector Input, 20
BICO technology, 2025
Binector
Input (BI), 20
Output (BO), 20
Bit array (parameter), 34
BO, Binector Output, 20
Brake control
Basic, 2139
Extended, 2139

## C

C1(x) - State commissioning device, 26
C2(x) - State commissioning drive, 26
Calculated (parameter), 27
Can be changed (parameter, C1(x), C2(x), U, T), 26
Catalogs, 3236
CDS, (Command Data Set), 29, 2371, 2372
CI , Connector Input, 20
CO, Connector Output, 20
CO/BO, Connector/Binector Output, 20
Command data sets, 2371
Communication
CANopen, 2416
Communication Board CAN 10 (CBC10), 2416
Component, 2484
Connector
Input (CI), 20
Output (CO), 20
Control
Active Infeed, 2395
Basic Infeed, 2377
Hydraulic drive, 2239
Servo, 2249
Smart Infeed, 2385
Technology controller, 2326, 2327
Vector, 2275
Control type, 2258
Control Unit 310-2 (CU310-2)
Digital inputs, 2026
Digital inputs/outputs, 2026
Control Unit 320-2 (CU320-2)
Digital inputs, 2036
Digital inputs/outputs, 2036
Control Unit communication
(CU_LINK, SINAMICS Link), 2049
Control words, 2061
Internal, 2123
Standard telegrams, 2061
Controller Extension 32-2 (CX32-2)
Digital inputs, 2044
Digital inputs/outputs, 2044
Converter
Binector/connector, 2105, 2114
Connector/binector, 2103, 2110, 2112, 2115
CU_LINK, 2049
Cxxxxx, 2480

## D

Data protection, 8
Data Set, 29, 2371
Command Data Set, CDS, 29
Drive Data Set, DDS, 29
Encoder Data Set, EDS, 29
Motor Data Set, MDS, 29
Power unit Data Set, PDS, 29

Data set, 29, 2371
Command data set, 29
Drive data set, 29
Encoder data set, 29
Motor data set, 29
Power unit data set, 29
Data type (parameter, signal source), 28
DC link voltage controller, 2395
DCBRK, 2478
DDS, (Drive Data Set), 29, 2371, 2373
Dependency (parameter), 35
Description (parameter), 34
Digital inputs
Control Unit 310-2 (CU310-2), 2026
Control Unit 320-2 (CU320-2), 2036
Controller Extension 32-2 (CX32-2), 2044
Terminal Board 30 (TB30), 2410
Terminal Module 15 (TM15), 2423
Terminal Module 17 High Feature (TM17 High Feature), 2429
Terminal Module 31 (TM31), 2431
Digital inputs/outputs
Control Unit 310-2 (CU310-2), 2026
Control Unit 320-2 (CU320-2), 2036
Controller Extension 32-2 (CX32-2), 2044
S120M, 2056
Terminal Module 31 (TM31), 2431
Digital outputs
Control Unit 310-2 (CU310-2), 2026
Control Unit 320-2 (CU320-2), 2036
Controller Extension 32-2 (CX32-2), 2044
Terminal Board 30 (TB30), 2410
Terminal Module 15 (TM15), 2423
Terminal Module 17 High Feature (TM17 High Feature), 2429
Terminal Module 31 (TM31), 2431
Direction limitation, 2192
Direction reversal, 2192
Directory
ASCII table, 3224
Complete table of contents, 9
Index, 3243
List of abbreviations, 3227
References, 3236
Table of contents, function diagrams, 2007
Display
Alarms, 2476
Faults, 2476
Display parameters, 19
DO, Drive Object, 20
Drive data sets, 2371
Drive object, 20
DSC (Dynamic Servo Control), 2192, 2203
Dynamic grid support (r0108.7 = 1), 2344

## E

EC Declaration of Conformity, 7
EDS, (Encoder Data Set), 29, 2371, 2374
ENCODER, 2478
Encoder data sets, 2371
Encoder evaluation, 2227
Essential service mode (ESM), 2321
Expert list, 34
Explanations
on function diagrams, 2021
External Braking Module, 2473

## F

Factory setting, 33
Fault
Acknowledgment, 2479, 2485
Cause, 2486
Component, 2484
Display, 2476
Drive object, 2484
Explanation of list, 2480
Fault location, 2481
Fault reaction, 2477, 2485
General information, 2476
How to distinguish a fault from an alarm, 2476
List of all faults, 2489
Message class, 2481
Message value, 2481
Name, 2481
Number, 2480
Number range, 2487
Propagation, 2485
Remedy, 2486
Fault buffer, 2362
Configuration, 2363, 2364
Fault value, 2486
Faults/alarms configuration, 2362
Faults/alarms triggering (r2129), 2362
Fixed speed setpoints, 2192
Fixed values, 2023, 2323, 2324
Free interconnection via BICO, 2061
Free interconnection, status words, 2105, 2114
Friction characteristic, 2314

Function (parameter), 34
Function diagrams, Active Infeed
Control word, sequence control infeed, 2397
Controller modulation depth reserve, controller DC link voltage (p3400.0 = 0), 2402
Cos phi display (r0108.10 = 1), 2407
Current pre-control/current controller/gating unit (p3400.0 = 0), 2404
Interface to the Active Infeed, control signals, actual values (p3400.0 = 0), 2406
Master/slave (r0108.19 = 1), 2405
Missing enable signals, line contactor control, 2401
Overview, 2396
Reactive current/apparent current limits (r0108.3 = 1), 2403
Sequencer, 2400
Signals and monitoring functions, line frequency and Vdc monitoring (p3400.0 = 0), 2409
Signals and monitoring functions, line supply voltage monitoring (p3400.0 = 0), 2408
Status word, infeed, 2399
Status word, sequence control infeed, 2398
Function diagrams, auxiliaries
Chassis power units, 3 AC-lineconnection and contactor statusdisplay, 2467
Cooling unit, control and feedback signals (r0108.28 = 1), 2465
Cooling unit, sequence control (r0108.28 = 1), 2466
Function diagrams, Basic Infeed
Control word, sequence control infeed, 2379
Interface to the Basic Infeed power unit (control signals, actual values), 2383
Missing enable signals, line contactor control, 2382
Overview, 2378
Sequencer, 2381
Signals and monitoring functions (p3400 = 0), 2384
Status word, sequence control infeed, 2380
Function diagrams, Basic Operator Panel 20 (BOP20) Control word BOP20 interconnection, 2472

Function diagrams, basic positioner (EPOS)
Control word, block selection/MDI selection (r0108.4 = 1), 2218
Direct setpoint input/MDI mode (r0108.4 = 1), 2214
Direct setpoint input/MDI mode, dynamic values (r0108.4 = 1), 2213
Flying referencing mode (r0108.4 = 1) $(\mathrm{p} 2597=1$ signal), 2209
Interpolator (r0108.4 = 1), 2217
Jog mode (r0108.4 = 1), 2207
Mode control (r0108.4 = 1), 2215
Referencing/reference point approach mode (r0108.4 = 1) (p2597 = 0-signal), 2208
Status word 1 (r0108.3 = 1, r0108.4 = 1), 2219
Status word 2 (r0108.3 = 1, r0108.4 = 1), 2220
Status word, active traversing block/MDI active (r0108.4 = 1), 2221
Travel to fixed stop (r0108.4 = 1), 2212
Traversing block mode (r0108.4 = 1), 2211
Traversing block mode, external block change mode (r0108.4 = 1), 2210
Traversing range limits (r0108.4 = 1), 2216
Function diagrams, brake control
Basic brake control (r0108.14 = 0), 2140
Extended brake control, open/close brake (r0108.14 = 1), 2142
Extended brake control, signal outputs (r0108.14 = 1), 2143
Extended brake control, zero-speed detection (r0108.14 = 1), 2141
Function diagrams, Braking Module External
Sequencer (r0108.26 = 1), 2474
Function diagrams, Communication Board CAN
Control word, CANopen, 2421
Receive telegram, free PDO mapping ( $p 8744=2$ ), 2417
Receive telegram, Predefined Connection Set (p8744 = 1), 2418
Send telegram, free PDO mapping (p8744 = 2), 2419
Send telegram, Predefined Connection Set (p8744 = 1), 2420
Status word, CANopen, 2422
Function diagrams, Control Unit communication
CU_CX32/CU_LINK, 2050
CU_LINK/CU internal, 2051
SINAMICS Link configuration (r0108.31 = 1, p8835 = 3), 2053
SINAMICS Link overview (r0108.31 = 1, p8835 = 3), 2052
SINAMICS Link receive data (r0108.31 = 1, p8835 = 3), 2054
SINAMICS Link send data (r0108.31 = 1, p8835 = 3), 2055

Function diagrams, CU310-2 input/output terminals
Analog input (AI 0), 2035
Digital inputs, electrically isolated (DI $0 \ldots$ DI 21), 2029
Digital inputs, electrically isolated (DI $0 \ldots$ DI 3 , DI 22), 2028
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2031
Digital inputs/outputs, bidirectional (DI/DO $12 \ldots$ DI/DO 13), 2032
Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15), 2033
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2030
Digital output (DO 16), 2034
Overview, 2027
Function diagrams, CU320-2 input/output terminals
Digital inputs, electrically isolated (DI $0 \ldots$ DI 3, DI 16, DI 17), 2038
Digital inputs, electrically isolated (DI 4 ... DI 7, DI 20, DI 21), 2039
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2041
Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13), 2042
Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15), 2043
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2040
Overview, 2037
Function diagrams, CX32-2 input/output terminals
Digital inputs, electrically isolated (DI $0 \ldots$ DI 3, DI 16, DI 17), 2046
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 2048
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 2047
Overview, 2045
Function diagrams, data sets
Command Data Sets (CDS), 2372
Drive Data Sets (DDS), 2373
Encoder Data Sets (EDS), 2374
Motor Data Sets (MDS), 2375
Power unit Data Sets (PDS), 2376
Function diagrams, diagnostics
Alarm buffer, 2365
Fault buffer, 2364
Faults/alarms configuration, 2367
Faults/alarms trigger word (r2129), 2366
Measuring sockets (T0, T1, T2), 2368
Overview, 2363
Recorder overview (r0108.5 = 1), 2369
Recorder sequence control (r0108.5 = 1), 2370

Function diagrams, dynamic grid support (r0108.7 = 1) Function diagrams, internal control/status words

Characteristic, 2345
Current limits (p5501 = 1), 2346
Grid monitoring anti-islanding, 2348
Sequence control, 2347
Function diagrams, encoder evaluation
Absolute value for incremental encoder, 2238
Encoder interface, receive signals, encoders 1 ... 3 , 2234
Encoder interface, send signals, encoders 1 ... 3, 2235
Measuring probe evaluation, measured value memory, encoders 1 to 3, 2237
Position and temperature sensing, encoders 1 ... 3 , 2230
Reference mark search with external zero mark, encoders 1 ... 3, 2236
Servo control, overview, 2228
Speed actual value and pole position sensing, encoder 1, 2231
Speed actual value and pole position sensing, encoder 1, n_act_filter 5, 2233
Speed actual value sensing, encoders 2, 3 (r0108.7 = 1, APC activated), 2232
Vector control, overview, 2229
Function diagrams, explanations
Explanation of the symbols (part 1), 2022
Explanation of the symbols (part 2), 2023
Explanation of the symbols (part 3), 2024
Handling BICO technology, 2025
Function diagrams, hydraulic drive
Force controller, 2242
P24 management with shutoff valve, 2247
P24 management without shutoff valve, 2248
Sequencer, 2246
Static friction compensation using a force controller (p1400.2 = 1), 2244
Static friction compensation via voltage pulse / voltage ramp, 2245
Transition point compensation, 2241
Valve characteristic, plane adaptation, 2243
Velocity controller, 2240

Control word, faults/alarms, 2134
Control word, sequence control, 2124
Control word, setpoint channel, 2126
Control word, speed controller, 2127
Status word, closed-loop control, 2129
Status word, closed-loop current control, 2130
Status word, faults/alarms 1 and 2, 2135
Status word, monitoring functions 1, 2131
Status word, monitoring functions 2, 2132
Status word, monitoring functions 3, 2133
Status word, sequence control, 2125
Status word, speed controller, 2128
Function diagrams, line droop control (r0108.12 = 1)
Direct component control, harmonicscontrol, 2331
Line droop, voltage correction control, 2330
Modulation depth control, 2332
Sequence control, overcurrent, 2333
Function diagrams, line transformer (r0108.4 = 1)
Direct component control, negative sequence system controller, 2335
Island grid black start sequence control, 2336
Island grid synchronization voltagethreshold, 2338
Island grid synchronization, sequence control, 2337
Line filter monitoring, 2340
PLL2 (phase locked loop 2), 2341
Transformer magnetization voltage threshold, 2342
Transformer magnetization, sequence control, 2343
Transformer model (p5480 = 1), 2339
Function diagrams, position control
Cam controllers (r0108.3 = 1), 2226
Dynamic following error monitoring (r0108.3 = 1), 2226
Position actual value preprocessing (r0108.3 = 1), 2223
Position controller (r0108.3 = 1), 2224
Standstill monitoring / positioning monitoring (r0108.3 = 1), 2225

Function diagrams, PROFIdrive
A_DIGITAL interconnection, 2119
A_DIGITAL_1 interconnection, 2121
CU_STW1 control word 1, Control Unit interconnection, 2117
CU_ZSW1 status word 1, Control Unit interconnection, 2118
E_DIGITAL interconnection, 2120
E_DIGITAL_1 interconnection, 2122
E_STW1 control word infeed interconnection, 2088
E_STW1_BM control word, infeed metal industry interconnection, 2075
E_ZSW1 status word infeed interconnection, 2097
E_ZSW1_BM status word, infeed metal industry interconnection, 2078
IF1 receive telegram, free interconnection via BICO (p0922 = 999), 2103, 2110
IF1 send telegram, free interconnection via BICO (p0922 = 999), 2104, 2111
IF1 status words, free interconnection, 2105
IF2 receive telegram, free interconnection, 2112, 2115
IF2 send telegram, free interconnection, 2113, 2116
IF2 status words, free interconnection, 2114
Manufacturer-specific telegrams and process data 1, 2068
Manufacturer-specific telegrams and process data 2, 2069
Manufacturer-specific telegrams and process data 3, 2070
Manufacturer-specific telegrams and process data 4, 2071
Manufacturer-specific/free telegrams and process data, 2072
MDI_MOD-MDI mode interconnection (r0108.4 = 1), 2109
MELDW status word interconnection, 2096
Overview, 2064
POS_STW positioning control word interconnection (r0108.4 = 1), 2098
POS_STW1 positioning control word 1 interconnection (r0108.4 = 1), 2099
POS_STW2 positioning control word 2 interconnection (r0108.4 = 1), 2100
POS_ZSW1 positioning status word 1 interconnection (r0108.4 = 1), 2101
POS_ZSW2 positioning status word 2 interconnection (r0108.4 = 1), 2102
PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics, 2065
PZD receive signals interconnection, manufacturerspecific, 2082
PZD receive signals interconnection, profile-specific, 2081

PZD send signals interconnection, manufacturerspecific, 2090
PZD send signals interconnection, profile-specific, 2089
SATZANW block selection interconnection (r0108.4 = 1), 2107
Standard telegrams and process data 1, 2066
Standard telegrams and process data 2, 2067
STW1 control word 1 interconnection (r0108.4 = 1), 2106
STW1 control word interconnection $(\mathrm{p} 2038=0)$, 2084
STW1 control word interconnection $(p 2038=1)$, 2085
STW1 control word interconnection (p2038 = 2), 2083
STW1_BM control word, metal industry interconnection, 2073
STW2 control word interconnection (p2038 = 0), 2086
STW2 control word interconnection (p2038 = 1), 2087
STW2_BM control word, metal industry interconnection, 2074
STW2_ENC control word, ENCODER interconnection, 2079
ZSW1 status word 1 interconnection (r0108.4 = 1), 2108
ZSW1 status word interconnection (p2038 = 0), 2092
ZSW1 status word interconnection (p2038 = 1), 2093
ZSW1 status word interconnection (p2038 = 2), 2091
ZSW1_BM status word, metal industry interconnection, 2076
ZSW2 status word interconnection (p2038 = 0), 2094
ZSW2 status word interconnection (p2038 = 1), 2095
ZSW2_BM status word, metal industry interconnection, 2077
ZSW2_ENC status word, ENCODER interconnection, 2080
Function diagrams, PROFlenergy
Control commands / interrogation commands, 2059
States, 2060
Function diagrams, S120M input/output terminals
Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 1), 2057
Function diagrams, sequence control
Missing enable signals, line contactor control, logic operation, 2138
Sequencer, 2137

Function diagrams, servo control
Current control, overview, 2269
Current setpoint filter 1 ... 4, 2270
Current setpoint filter 5 ... 10 (r0108.21 = 1), 2271
Field current/flux input, flux reduction, flux controller, 2273
Generation of the torque limits, overview, 2263
Interface to the Motor Module (gating signals, current actual values), 2274
Iq and Id controllers, 2272
Mode changeover, power/current limiting, 2267
Moment of inertia estimator (r0108.10 = 1), 2253
Motoring/generating torque limit, 2265
Online tuning with activated moment of inertia estimator (r0108.10 = 1), 2256
Reference model/pre-control balancing/speed limitation, 2252
Signaling function variable, 2261
Speed control and U/f-control, overview, 2250
Speed control configuration, 2262
Speed controller adaptation (Kp_n/Tn_n adaptation), 2257
Speed controller with encoder, 2254
Speed controller without encoder, 2259
Speed controller, torque/speed pre-control with encoder (p1402 = 1), 2255
Speed setpoint filter and speed pre-control, 2251
Torque limiting/reduction, interpolator, 2264
Torque setpoint, control type changeover, 2258
U/f control for diagnostics, 2260
Upper/lower torque limit, 2266
Vdc_max controller and Vdc_min controller, 2268
Function diagrams, setpoint channel
Direction limitation and direction reversal, 2197
Dynamic Servo Control (DSC) linear and DSC Spline (r0108.6 = 1), 2203
Extended Stop and Retract (ESR, r0108.9 = 1), 2202
Fixed speed setpoints, 2194
Main/supplementary setpoint, setpoint scaling, jogging, 2196
Motorized potentiometer, 2195
Overview, 2193
Ramp-function generator (basic), 2199
Ramp-function generator (extended), 2200
Ramp-function generator selection, -status word, -tracking, 2201
Skip frequency bands and speed limitations, 2198
Function diagrams, setpoint channel not activated
Generation of the speed limits (r0108.8 = 0), 2205
Function diagrams, SI Advanced Functions
SCA (Safe Cam), 2174
SLP (Safely-Limited Position), 2173

Function diagrams, SI Basic Functions
Monitoring functions and faults/alarms, 2146
Parameter manager, 2145
S_STW1/2 Safety control word 1/2, 2148
S_ZSW1/2 Safety status word 1/2, 2148
SBC (Safe Brake Control),
SBA (Safe Brake Adapter), 2151
SI status CU, MM, CU + MM, group STO, 2147
STO (Safe Torque Off), safe pulse cancellation, 2150
STO (Safe Torque Off), SS1 (Safe Stop 1), 2149
Function diagrams, SI Extended Functions
Control via PROFIsafe (p9601.2 = p9601.3 = 1) , 2166
CU310-2 (F-DI 0 ... F-DI 2), 2167
CU310-2 assignment (F-DO 0), 2171
CU310-2 control interface, 2169
CU310-2 fail-safe digital output (F-DO 0), 2168
CU310-2 Safe State selection, 2170
Parameter manager, 2153
S_STW1 Safety control word 1, 2164
S_STW2 Safety control word 2, 2165
S_ZSW_CAM1 safety status word Safe Cam 1, 2175
S_ZSW1 Safety status word 1, 2164
S_ZSW2 Safety status word 2, 2165
Safe referencing, 2156
SAM (Safe Acceleration Monitor), 2159
SBR (Safe Brake Ramp), 2159
SBT (Safe Brake Test), 2160
SDI (Safe Direction), 2158
Selection of active control word, 2161
SI Motion drive-integrated control signals/status signals, 2163
SLA (Safely-Limited Acceleration), 2162
SLS (Safely-Limited Speed), 2155
SS1, SS2, SOS, internal STOP B, C, D, F, 2154
SSM (Safe Speed Monitor), 2157
Function diagrams, SI PROFIsafe
Manufacturer-specific telegrams, 2191
Standard telegrams, 2190
Function diagrams, signals and monitoring functions
Freely parameterizable I2t monitoring (SESM), 2361
Load monitoring (r0108.17 = 1), 2354
Motor temperature model 1 (I2t), 2356
Motor temperature model 2, 2357
Motor temperature model 3, 2358
Overview, 2350
Separately excited synchronous motor
(SESM, p0300 = 5), 2359
Speed signals 1, 2351
Speed signals 2, 2352
Thermal monitoring, power unit, 2360
Thermal motor monitoring, motor temperature ZSW F/A, 2355
Torque signals, motor blocked/stalled, 2353

Function diagrams, Smart Infeed
Control word,
sequence control infeed, 2387
Interface to the Smart Infeed (control signals, actual values), 2392
Missing enable signals, line contactor control, 2391
Overview, 2386
Sequencer, 2390
Signals and monitoring functions, line frequency and Vdc monitoring, 2394
Signals and monitoring functions, line supply voltage monitoring, 2393
Status word, infeed, 2389
Status word, sequence control infeed, 2388
Function diagrams, TB30
Analog inputs (AI $0 \ldots \mathrm{Al} 1$ ), 2414
Analog outputs (AO 0 ... AO 1), 2415
Digital inputs, electrically isolated (DI $0 \ldots$ DI 3), 2412 Function diagrams, TM31
Digital outputs, electrically isolated (DO $0 \ldots$ DO 3), 2413
Overview, 2411
Function diagrams, technology controller
Closed-loop control (r0108.16 = 1), 2326
DC link voltage controller (r0108.16 = 1), 2328
Fixed value selection binary (r0108.16 = 1 and p2216[D] = 2), 2323
Fixed value selection direct ( $\mathrm{r} 0108.16=1$ and p2216 = 1), 2324
$\mathrm{Kp} / \mathrm{Tn}$ adaption (r0108.16 = 1), 2327
Motorized potentiometer (r0108.16 = 1), 2325
Function diagrams, technology functions
Advanced Positioning Control (APC, r0108.7 = 1), 2315
APC differential position gain (APC, r0108.7 = 1), 2316
DC brake (p0300 = 1xx), 2319
Essential service mode (ESM), 2321
External Armature Short-Circuit (EASC, p0300 $=2 x x$ or $4 x x$ ), 2317
Friction characteristic, 2314
Internal Armature Short-Circuit (IASC, p0300 = 2 xx or 4 xx ), 2318
kT estimator, 2313
Synchronization, 2320
Function diagrams, TM120
Temperature evaluation channels 0 and 1, 2443
Temperature evaluation channels 2 and 3, 2444

Function diagrams, TM15
Digital inputs/outputs, bidirectional (DI/DO 0 ... DI/DO 7), 2426
Digital inputs/outputs, bidirectional (DI/DO 16 ... DI/DO 23), 2428
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 15), 2427
Overview TM15 (SIMOTION), 2424
Overview TM15DI_DO (SINAMICS), 2425
Function diagrams, TM150
Temperature evaluation $1 \times 2,3,4$ wire (channels 0 ... 5), 2447
Temperature evaluation $2 \times 2$ wire (channels $0 \ldots 11$ ), 2448
Temperature evaluation structure (channels 0 ... 11), 2446
Function diagrams, TM17 High Feature
Overview, 2430

Analog input 0 (AI 0), 2438
Analog input 1 (AI 1), 2439
Analog outputs (AO $0 \ldots$ AO 1), 2440
Digital inputs, electrically isolated (DI 0 ... DI 3), 2433
Digital inputs, electrically isolated (DI $4 \ldots$ DI 7), 2434
Digital inputs/outputs, bidirectional
(DI/DO 10 ... DI/DO 11), 2437
Digital inputs/outputs, bidirectional
(DI/DO 8 ... DI/DO 9), 2436
Digital relay outputs, electrically isolated (DO 0 ... DO 1), 2435
Overview, 2432
Temperature evaluation, 2441
Function diagrams, TM41
Analog input 0 (AI 0), 2454
Control word, sequence control (p4400=0), 2458
Digital inputs (DI 0 ... DI 3), 2451
Digital inputs/outputs, bidirectional
(DI/DO 0 ... DI/DO 1), 2452
Digital inputs/outputs, bidirectional (DI/DO 2 ... DI/DO 3), 2453
Incremental encoder emulation (p4400 = 0), 2455
Incremental encoder emulation (p4400 = 1), 2456
Overview, 2450
Sequencer (p4400 = 0), 2462
Status word, sequence control, 2460
STW1 control word interconnection ( $\mathrm{p} 0922=3$ ), 2457
STW2 control word interconnection (p0922 = 3), 2459
ZSW1 status word interconnection (p0922 = 3), 2461
ZSW2 status word interconnection (p0922 = 3), 2463

Function diagrams, vector control
Current control, overview, 2294
Current model, excitation current monitoring, control cos phi (SESM, p0300 = 5), 2303
Current setpoint filter, 2295
Current/power/torque limits, 2293
Display signals, 2311
Excitation (SESM, p0300 = 5), 2291
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 2298
Field weakening controller (PMSM, p0300 = 2), 2300
Field weakening controller, flux controller (ASM, p0300 = 1), 2299
Field weakening controller, flux controller (SESM, p0300 = 2), 2302
Flux control configuration, 2290
Flux setpoint (RESM, p0300 = 6), 2308
Flux setpoint, field weakening controller (SESM, p0300 = 5), 2301
Id setpoint (PMSM, p0300 = 2), 2297
Id setpoint (RESM, p0300 = 6), 2309
Interface to the Motor Module (ASM, p0300 = 1), 2304
Interface to the Motor Module (PMSM, p0300 = 2), 2305
Interface to the Motor Module (RESM, p0300 = 6), 2310
Interface to the Motor Module (SESM, p0300 = 5), 2306
Iq and Id controllers, 2296
Moment of inertia estimator (r0108.10 = 1), 2280
Motor model selection (SESM and p1300 $=20$, p0300 = 5), 2307
Pre-control balancing, reference/ acceleration model, 2279
Resonance damping and slip compensation, 2287
Speed control and generation of the torque limits, overview, 2277
Speed control configuration, 2289
Speed controller adaptation (Kp_n/Tn_n adaptation), 2282
Speed controller with/without encoder, 2281
Speed setpoint, droop, 2278
Torque setpoint, 2283
U/f characteristic and voltage boost, 2286
U/f control, overview, 2285
Upper/lower torque limit, 2292
Vdc_max controller and Vdc_min controller, 2284
Vdc_max controller and Vdc_min controller (U/f), 2288

Function diagrams, Voltage Sensing Module (VSM)
Analog inputs (AI 0 ... AI 3), 2469
Temperature evaluation, 2470
Function Module, 20
Fxxxx, 2480

## G

General information
about parameters, 18
on faults and alarms, 2476
on function diagrams, 2021

## H

Holding brake, 2139
Hotline, 7
Hydraulic drive
Force controller, 2242
P24 management with shutoff valve, 2247
P24 management without shutoff valve, 2248
Sequencer, 2246
Static friction compensation using a force controller (p1400.2 = 1), 2244
Static friction compensation via voltage pulse / voltage ramp, 2245
Table of contents, 2239
Valve characteristic, plane adaptation, 2243
Velocity controller, 2240

## I

IASC, 2478
Incremental encoder emulation, 2449
Index
Factory setting, 34
Parameters, 19, 34
Industrial security, 15
Input terminals
Control Unit 310-2 (CU310-2), 2026
Control Unit 320-2 (CU320-2), 2036
Controller Extension 32-2 (CX32-2), 2044
Terminal Board 30 (TB30), 2410
Terminal Module 31 (TM31), 2431
Internal control/status words, 2123

## J

Jogging, 2192, 2196

## K

kT estimator, 2313

## L

Line contactor control, 2138, 2377, 2385, 2391, 2395, 2401
Line droop control (r0108.12 = 1), 2329
Line transformer (r0108.4 = 1), 2334
Linked parameters, 19
List
Abbreviations, 3227
ASCII table, 3224
Faults and alarms, 2489
Message ranges, 2487
Parameter ranges, 36
Parameters for command data sets, 1971
Parameters for drive data sets, 1974
Parameters for encoder data sets, 1990
Parameters for motor data sets, 1992
Parameters for power unit data sets, 1997
Parameters for write protection and know-how protection, 1999
Parameters, all, 39
References, 3236
List of abbreviations, 3227
Load monitoring (r0108.17 = 1), 2349

## M

Main/supplementary setpoint, 2192
Manufacturer-specific telegrams, 2061
MDS, (Motor Data Set), 29, 2371, 2375
Measuring sockets, 2362
Message buffer, 2362
Message class, 2481
Message value, 2481
Missing enable signals
Active Infeed, 2401
Basic Infeed, 2382
Drive, 2138
Smart Infeed, 2391

Monitoring functions, 2349
Motor data sets, 2371
Motor holding brake, 2139
Motorized potentiometer, 2192, 2325

## N

Name
Alarm, 2481
Fault, 2481
Parameters, 20
Normalization, 33
Not for motor type, 33
Notes
Hotline, 7
Product information, 5
Technical Support, 7
Number
Alarm, 2480
Fault, 2480
Parameters, 19
Number range
Alarms, 2487
Faults, 2487
Parameters, 36

## 0

Object, 20
OFF1, 2477
OFF1_DELAYED, 2477
OFF2, 2477
OFF3, 2478
Output terminals
Control Unit 310-2 (CU310-2), 2026
Control Unit 320-2 (CU320-2), 2036
Controller Extension 32-2 (CX32-2), 2044
Terminal Board 30 (TB30), 2410
Terminal Module 31 (TM31), 2431

## P

P group (parameter), 29
Parameter
Normalization, 33
Not for motor type, 33
Parameters
Access level, 27
Calculated, 27
Can be changed, 26
Data type, 28
Description, 34
Dynamic index, 29
Expert list, 34
Full name, 20
Function, 34
Function diagram, 29
Index, 19, 34
Linked parameters, 19
List of all parameters, 39
List of parameters for commanddata sets, 1971
List of parameters for drivedata sets, 1974
List of parameters for encoderdata sets, 1990
List of parameters for motor data sets, 1992
List of parameters for power unit data sets, 1997
Name, 20
Number, 19
Number range, 36
P group, 29
Safety instructions, 35
Short name, 20
Unit, 30
Unit group, 30
Unit selection, 30
Values, 34
PDS, (Power unit Data Set), 29, 2371, 2376
PID controller (p0108.16 = 1), 2322
Position control, 2222
Power unit data sets, 2371
Process data, 2061
Product information, 5
PROFIdrive, 2061
PROFlenergy, 2058
PROFIsafe, 2189
Propagation, 2485
pxxxx, 19

## R

Ramp-function generator, 2192
Reaction to faults, 2477
References, 3236
Relay outputs, 2431
Resetting faults, 2485
rxxxx, 19

## S

S120M distributed drive, 2056
Safety instructions
Fundamental, 13
General, 14
Industrial security, 15
Safety instructions (parameter), 35
Safety Integrated
Advanced Functions, 2172
Basic Functions, 2144
Extended Functions, 2152
PROFIsafe, 2189
TM54F, 2176
Search tools for this manual, 7
Sequence control, 2136
Servo control
Control type changeover, 2258
Current setpoint filter 1 ... 4, 2270
Current setpoint filter $5 \ldots 10$ (r0108.21 = 1), 2271
Encoder evaluation, 2227
Iq and Id controllers, 2272
Kp_n-/Tn_n adaptation, 2257
Signaling function variable, 2261
Speed controller, 2254
Speed controller without encoder, 2259
Speed setpoint filter and pre-control, 2251
Table of contents, 2249
Torque setpoint, 2258
U/f control for diagnostics, 2260
Setpoint channel, 2192
Setpoint channel not activated, 2204
SI TM54F function diagrams
Basic Functions assignment (F-DO 0 ... F-DO 3), 2185
Basic Functions safe state selection, 2184
Configuration, F-DI/F-DO Test, 2179
Control interface (p9601.2 = $1 \&$ p9601.3 = 0) , 2186
Control interface (p9601.2/3 = 0 \& p9601.6 = 1), 2183
Extended Functions assignment (F-DO 0 ... F-DO 3), 2188
Extended Functions, safe state selection, 2187
Fail-safe digital inputs (F-DI 0 ... F-DI 4), 2180
Fail-safe digital inputs (F-DI $5 \ldots$ F-DI 9), 2181
Fail-safe digital outputs (F-DO 0 ... F-DO 3), digital inputs (DI 20 ... DI 23), 2182
Overview, 2177
Parameter manager, 2178
Signal path in function diagrams, 2022
Signaling function variable, 2261
Signals, 2349
SINAMICS Link, 2049
Skip frequency bands, 2192

Smart Infeed, 2385
Control word, sequence control, 2387
Interface (control signals, actual values), 2392
Line contactor control, 2391
Line supply voltage monitoring, 2393
Overview, 2386
Sequencer, 2390
Signals and monitoring functions, 2385
Status word, sequence control, 2388
Table of contents, 2385
Speed control
Servo, 2249
Vector, 2275
Speed signals, 2349
Status words
Internal, 2123
Standard telegrams, 2061
STOP2, 2478
Support, 7
Support Request, 7
Synchronization, 2320

## T

T - Ready state, 26
Target group, 6
Technical Support, 7
Technology controller ( $p 0108.16=1$ ), 2322
Technology functions, 2312
Telegrams, 2061
Temperature evaluation
Terminal Module 120 (TM120), 2442
Terminal Module 150 (TM150), 2445
Terminal Module 31 (TM31), 2431
Terminal Board 30 (TB30), 2410
Terminal Module 120 (TM120), 2442
Terminal Module 15 (TM15), 2423
Terminal Module 150 (TM150), 2445
Terminal Module 17 High Feature (TM17 High Feature), 2429
Terminal Module 31 (TM31), 2431
Terminal Module 41 (TM41), 2449
Terminal Module 54F (TM54F), 2176

Terminals
Control Unit 310-2 (CU310-2), 2026
Control Unit 320-2 (CU320-2), 2036
Controller Extension 32-2 (CX32-2), 2044
Terminal Board 30 (TB30), 2410
Terminal Module 31 (TM31), 2431
Thermal monitoring, 2349
Torque signals, 2349

## U

U- Operation state, 26
U/f control
Servo, 2260
Vector, 2286
Unit (parameter), 30
Usage phases, 6

## V

Values (parameter), 34
Vector control
Current setpoint filter, 2295
Droop, 2278
Encoder evaluation, 2227
Field weakening characteristic, Id setpoint, 2298
Flux control, 2290
Iq and Id controllers, 2296
Kp_n-/Tn_n adaptation, 2282
Resonance damping and slip compensation, 2287
Speed control configuration, 2289
Speed controller with/without encoder, 2281
Table of contents, 2275
Torque setpoint, 2283
V/f characteristic, 2286
Vdc_max controller and Vdc_min controller, 2284, 2288
Version
List of all parameters, 39
List of faults and alarms, 2489
List of parameters for commanddata sets, 1971
List of parameters for drivedata sets, 1974
List of parameters for encoderdata sets, 1990
List of parameters for motor data sets, 1992
List of parameters for power unit data sets, 1997
Voltage Sensing Module (VSM)
Analog inputs, 2468
Sensor monitoring KTY/PTC, 2468
Temperature evaluation, 2468

General documentation/catalogs			
SINAMICS	G110	D 11	- Converter built-in units 0.12 kW up to 3 kW
	G120	D 31	- SINAMICS Converters for Single-Axis Drives and SIMOTICS Motors
	G130, G150	D 11	- Converter built-in units   - Converter cabinet units
	S120, S150	D 21	- SINAMICS S120 built-in units in the chassis format and Cabinet Modules - SINAMICS S150 Converter Cabinet Units
	S120	D 21.4	- SINAMICS S120 and SIMOTICS
Manufacturer/service documentation			
SINAMICS	G110		- Getting Started   - Operating instructions   - List Manuals
	G120		- Getting Started   - Operating instructions   - Hardware Installation Manuals   - Function Manual Safety Integrated   - List Manuals
	G130		- Operating instructions   - List Manual
	G150		- Operating instructions   - List Manual
	GM150,SM120/SM150,GL150, SL150		- Operating instructions   - List Manuals
	S110		- Manual   - Getting Started   - Function Manual   - List Manual
	S120		- Getting Started with STARTER   - Commissioning Manual with STARTER   - Getting Started with Startdrive   - Commissioning Manual with Startdrive   - Commissioning Manual CANopen   - Function Manual Drive Functions   - Function Manual Safety Integrated   - Function Manual DCC   - List Manual   - Manual Control Unit and supplementary system components   - Manual Power Unit Booksize   - Manual Power Unit Booksize C/D Type   - Manual Power Unit Chassis air-cooled   - Manual Power Unit Chassis liquid-cooled   - Combi Manual   - Manual Cabinet Modules   - Manual AC Drive   - SINAMICS S120M Manual Distributed Drive Technology   - SINAMICS HLA System Manual Hydraulic Drive
	S150		- Operating instructions   - List Manual
Motors			- Configuration Manuals, Motors
General			- Configuration Manual, EMC Guidelines

## More information

Siemens:
www.siemens.com
Industry Online Support (service and support):
www.siemens.com/online-support
Industry Mall
www.siemens.com/industrymall

Siemens AG
Digital Factory
Motion Control
Postfach 3180
91050 ERLANGEN
GERMANY


[^0]:    Value:
    4: p0005

[^1]:    Note:

[^2]:    Value:
    0: Clockwise
    1: Counter-clockwise

[^3]:    Display and connector output for the smoothed actual value after the filter (PT1) of the technology controller.

[^4]:    Value: $\quad 0: \quad$ Offset calculation enabled

[^5]:    Description: Setting to parameterize the signals for the recorder.

[^6]:    Description: Setting to parameterize the signals for the recorder.

[^7]:    Description: Setting to parameterize the signals for the recorder.

[^8]:    The signals are available at binector output r8510.0 ... 7 for interconnection.

[^9]:    0: DHCP off
    DHCP on, identification using MAC address
    DHCP on, identification via name of station

[^10]:    Description:
    Displays the IP address of the second PROFINET controller connected with the device via CBE20/CBE25.

[^11]:    мирノ」Оソன $6{ }^{\circ}$ ع
    

[^12]:    
    sueィ6е！р uо！џ৩ип」 $\varepsilon$

[^13]:    әииецэ ұи！оdəәs 8レ
    sue»6e！p uо！џगun」 $\varepsilon$

[^14]:    оィиоэ оләя 七乙＇غ
    

[^15]:    
    suе»бе!р ио!эип」 $\mathcal{1}$

[^16]:    $\omega$
    sweıбе!р ио!!৩ип」

[^17]:    $\varepsilon$

[^18]:    $\varepsilon$

[^19]:    
    sweィ6е!р ио!џэип」 $\varepsilon$

[^20]:    оґиоэ ィоџวə Gて・غ
    suе»бе！р ио！эип」 $\mathcal{1}$

[^21]:    
    

[^22]:    
    

[^23]:    рәәృи э!seg $七 \varepsilon$ ' $\varepsilon$
    sweлБе!р ио!ŋэип」 \&

[^24]:    $\varepsilon \varepsilon^{\circ} \varepsilon$
    us $9 \varepsilon$

[^25]:    
    

[^26]:    $\varepsilon$
    \&

[^27]:    This alarm is automatically withdrawn once the permissible temperature limit value has been fallen below minus 5 K .

[^28]:    For yy = 8 (0000 1000 bin ), the following applies:
    Bit 1: Signal monitoring (sin/cos).
    Bit 8: F1 (safety status display) error position word 1.
    Bit 9: F2 (safety status display) error position word 2.
    Bit 16: LED monitoring
    Bit 17: Fault when determining the position (multiturn).
    Bit 23: Temperature outside the limit values.

    For yy = 11 (0000 1011 bin ), the following applies:
    Bit 0: Position word 1 difference between rotation counter and software counter (XC_ERR).
    Bit 1: Position word 1 track error of the incremental signals (LIS_ERR).
    Bit 2: Position word 1 error when aligning between incremental track signals and absolute value (ST_ERR).
    Bit 3: Maximum permissible temperature exceeded (TEMP_ERR).
    Bit 4: Power supply overvoltage (MON_OVR_VOLT).
    Bit 5: Power supply overcurrent (MON_OVR_CUR).
    Bit 6: Power supply undervoltage (MON_UND_VOLT).
    Bit 7: Rotation error counter (MT_ERR).
    Bit 8: F1 (safety status display) error position word 1.
    Bit 9: F2 (safety status display) error position word 2.
    Bit 11: Position word 1 status bit: singleturn position OK (ADC_ready).
    Bit 12: Position word 1 status bit: rotation counter OK (MT_ready).

[^29]:    The position tracking for the measuring gear cannot be reset.

[^30]:    For yy $=8(00001000 \mathrm{bin})$, the following applies:
    Bit 1: Signal monitoring (sin/cos).
    Bit 8: F1 (safety status display) error position word 1.
    Bit 9: F2 (safety status display) error position word 2.
    Bit 16: LED monitoring.
    Bit 17: Fault when determining the position (multiturn).
    Bit 23: Temperature outside the limit values.

